
How High Performance
Organizations

Innovate at Scale

ENTERPRISE
LEAN

Jez Humble, Joanne Molesky & Barry O’Reilly

THE LEAN SERIES	 ERIC RIES, SERIES EDITOR

“…destined to be the classic, authoritative reference for how
organizations plan, organize, implement, and measure their work….
Any business leader who cares about creating competitive advantage
through technology and building a culture of innovation needs to
read this book.”

—Gene Kim, co-author of The Phoenix Project: A Novel About IT, DevOps,
and Helping Your Business Win, founder and former CTO of Tripwire, Inc.

“Lean Enterprise provides a pragmatic toolkit of strategies and
practices for establishing high performing organizations. It should
be required reading for every executive who understands that we’re
all in the technology business now.”

—Stephen Foreshew-Cain, COO, UK Government Digital Service

“To thrive in the digital world, transformation must be more than
technology-driven—everyone within the organization must collectively
work together to adapt. This book provides an essential guide for all
leaders to change the way they deliver value to customers.”

—Matt Pancino, CEO, Suncorp Business Services

“The approach in this book is both challenging and disciplined, and
some organizations will be unable to imagine following this path.
But those who make the journey will find it impossible to imagine
ever going back—and if they happen to be a competitor, they are
well positioned to steal both your market and your people. Ignore
this book at your own risk.”

—Mary Poppendieck, co-author of The Lean Mindset
and the Lean Software Development series

THE LEAN SERIES	 ERIC RIES, SERIES EDITOR

Business/Entrepreneur

ISBN: 978-1-449-36842-5

US $24.99	 CAN $26.99 Twitter: @oreillymedia
facebook.com/oreilly
oreilly.com

Praise for Lean Enterprise
“This book is Reengineering the Corporation for the digital age. It is destined
to be the classic, authoritative reference for how organizations plan, organize,

implement, and measure their work. Lean Enterprise describes how
organizations can win in the marketplace while harnessing and developing the

capabilities of employees. Any business leader who cares about creating
competitive advantage through technology and building a culture of

innovation needs to read this book.”

— Gene Kim, co-author of The Phoenix Project: A Novel
About IT, DevOps, and Helping Your Business Win,

founder and former CTO of Tripwire, Inc.

“This book is a godsend for anyone who’s tried to change their organization
and heard: ‘It’s OK for the little guy, but we’re too big/regulated/complex to

work like that here.’ Humble, Molesky, and O’Reilly have written an easy-to-
read guide that demystifies the success of Lean organizations in a way that
everyone can understand and apply. Lean Enterprise provides a pragmatic

toolkit of strategies and practices for establishing high performing
organizations. It should be required reading for every executive who

understands that we’re all in the technology business now.”

— Stephen Foreshew-Cain, COO,
UK Government Digital Service

“To thrive in the digital world, transformation must be more than technology
driven—everyone within the organization must collectively work together to

adapt. This book provides an essential guide for all leaders to change the way
they deliver value to customers.”

— Matt Pancino, CEO, Suncorp Business Services

“This is the book I’ve been waiting for—one that takes on the hardest
questions in bringing Lean approaches to the enterprise. The authors provide

solutions that are valuable even in low trust environments.”

— Mark A. Schwartz (@schwartz_cio)

“This book integrates into a compelling narrative the best current thinking
about how to create great software-intensive products and services. The

approach in this book is both challenging and disciplined, and some
organizations will be unable to imagine following this path. But those who
make the journey will find it impossible to imagine ever going back—and if
they happen to be a competitor, they are well positioned to steal both your

market and your people. Ignore this book at your own risk.”

— Mary Poppendieck, co-author of The Lean Mindset and
the Lean Software Development series

“My job is to support people in practicing a scientific pattern, to help reshape
thinking and working habits in business, politics, education, and daily life. The

21st century is increasingly demanding a way of working that’s cognitively
complex, interpersonal, iterative, and even entrepreneurial. With Lean

Enterprise, Jez Humble, Joanne Molesky, and Barry O’Reilly explain how
software can and is leading the way to transforming our ways of working,
which can change our ways of thinking and help us adapt to the emerging

world around us.”

— Mike Rother, author of Toyota Kata

“Nearly all industries and institutions are being disrupted through the rapid
advance of technology, guided by the inspired vision of individuals and teams.

This book clearly explains how the disciplines of Lean, Agile, Kata, Lean
Startup, and Design Thinking are converging through the unifying principles of

an adaptive learning organization.”

— Steve Bell, Lean Enterprise Institute faculty,
author of Lean IT and Run Grow Transform

“Building software the right way is a challenging task in and of itself, but Lean
Enterprise goes beyond the technology considerations to guide organizations

on how to quickly build the right software to deliver expected business results
in a low risk fashion. This is a must read for any organization that provides

software based services to its customers.”

— Gary Gruver, VP of Release, QE, and
Operations for Macys.com

“To compete in the future businesses need to be skilled at understanding their
customers and taking the validated learnings to market as quickly as possible.

This requires a new kind of adaptive and learning organization—the lean
enterprise. The journey starts here in this book!”

— John Crosby, Chief Product and Technology Officer,
lastminute.com

“Rapid advancements in technology are creating unparalleled rates of
disruption. The rules of the disruption game have changed, and many

organizations wonder how to compete as new giants emerge with a different
approach to serving their customers. This book provides an essential guide to
those that have come to the realization that they have to change to regain an

innovative competitive advantage but are unsure where to start.”

— Jora Gill, Chief Digital Officer, The Economist

``Lean Enterprise was the book I gave my leadership team to get everyone on
the same page about how we can challenge the status quo, remove roadblocks,
and out-innovate our competition. By leveraging the continual insights we get
from co-creating with customers, our people, and data, we now have so many

additional new ways to grow our business.''

— Don Meij, CEO, Domino’s Pizza Enterprises Ltd.

“While agile and lean methods have had a big impact on software delivery,
their true potential only comes as they have a broader impact on enterprises of
all sizes. In this book, Jez, Joanne, and Barry have set out what those changes

look like—a realistic vision of how future companies will make today’s look
like cassette tape players.”

— Martin Fowler, Chief Scientist, ThoughtWorks

“This is an important book. It takes an informed and informative look at the
fundamentals that need to shift to start building organizations capable of

continuous learning and improvement. It moves well beyond the technical to
the organizational. Lean Enterprise is a must-read for existing and emerging

leaders seeking to ensure their company’s ongoing success.”

— Jeff Gothelf, author of Lean UX,
and Principal of Neo Innovation

“I was telling everyone to get this book for a year before it was finished. It
documents the path being taken by the leading lean enterprises and the fat

ones will be wiped out by the lean ones in the years to come.”

— Adrian Cockcroft (@adrianco)

Jez Humble, Joanne Molesky, and Barry O’Reilly

Lean Enterprise

978-1-449-36842-5

[CW]

Lean Enterprise
by Jez Humble, Joanne Molesky, and Barry O’Reilly

Copyright © 2015 Jez Humble, Joanne Molesky, and Barry O’Reilly. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://safaribooksonline.com). For more informa-
tion, contact our corporate/institutional sales department: 800-998-9938 or corpo-
rate@oreilly.com.

Editors: Mary Treseler and Angela
Rufino

Indexers: Dmitry Kirsanov and Alina
Kirsanova

Production Editor: Kara Ebrahim Interior Designer: David Futato
Copyeditor: Dmitry Kirsanov Cover Designer: Ellie Volckhausen
Proofreader: Alina Kirsanova Illustrators: Rebecca Demarest and Peter

Staples

Revision History for the First Edition
2014-12-01: First Release
2015-01-07: Second Release
2015-02-13: Third Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449368425 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Lean Enterprise, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the informa-
tion and instructions contained in this work are accurate, the publisher and the authors dis-
claim all responsibility for errors or omissions, including without limitation responsibility for
damages resulting from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code samples or other technol-
ogy this work contains or describes is subject to open source licenses or the intellectual prop-
erty rights of others, it is your responsibility to ensure that your use thereof complies with
such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781449368425

This book is dedicated to all of you who have (to paraphrase Admiral Grace
Hopper) asked for forgiveness, not permission, in the pursuit of perfection,
and to all the leaders committed to creating organizations where everybody

knows what the right thing is, and you don’t need anyone’s permission to do it.

Contents

Preface. XIII

PART I: ORIENT

Chapter 1
Introduction . 5

Chapter 2
Manage the Dynamics of the Enterprise Portfolio 21

PART II: EXPLORE

Chapter 3
Model and Measure Investment Risk . 45

Chapter 4
Explore Uncertainty to Detect Opportunities . 63

Chapter 5
Evaluate the Product/Market Fit . 87

IX

PART III: EXPLOIT

Chapter 6
Deploy Continuous Improvement . 111

Chapter 7
Identify Value and Increase Flow . 133

Chapter 8
Adopt Lean Engineering Practices . 155

Chapter 9
Take an Experimental Approach to Product Development 171

Chapter 10
Implement Mission Command . 189

PART IV: TRANSFORM

Chapter 11
Grow an Innovation Culture . 209

Chapter 12
Embrace Lean Thinking for Governance, Risk, and Compliance 231

Chapter 13
Evolve Financial Management to Drive Product Innovation 245

Chapter 14
Turn IT into a Competitive Advantage . 265

Chapter 15
Start Where You Are . 283

CONTENTSX

Bibliography . 297

Index . 303

CONTENTS XI

1 http://www.bbc.co.uk/news/business-16611040

Preface

Software is eating the world.
Marc Andreesen

In an industrial company, avoid software at your own peril . . . a soft-
ware company could disintermediate GE someday, and we’re better off
being paranoid about that.

Jeff Immelt

You are a fool if you do just as I say. You are a greater fool if you
don’t do as I say. You should think for yourself and come up with bet-
ter ideas than mine.

Taiichi Ohno, Workplace Management

In this book we show how to grow organizations which can innovate rapidly
in response to changing market conditions, customer needs, and emerging
technologies.

Companies live and die on their ability to discover new businesses and create
ongoing value for customers. This has always been true, but never more so
than in the past few years. Competitive pressure is increasing, fueled by rapid
changes in technology and society. As Deloitte’s Shift Index shows, the average
life expectancy of a Fortune 500 company has declined from around 75 years
half a century ago to less than 15 years today. Professor Richard Foster of Yale
University estimates that “by 2020, more than three-quarters of the S&P 500
will be companies that we have not heard of yet.”1 The long-term survival of

XIII

http://www.bbc.co.uk/news/business-16611040

2 Evaluation of the Importance of Design, Danish Design Center, 2006.

3 In 1965 Gordon Moore, co-founder of Intel, predicted that the density of integrated circuits
would double approximately every two years.

any enterprise depends on its ability to understand and harness the cultural
and technical forces that continue to accelerate innovation cycles.

First, the Internet and social media have provided consumers with powerful
tools to inform the decisions they make. These tools also give smart organiza-
tions new ways to discover and engage with users and customers. Enterprises
that use design thinking and user experience (UX) design strategically to
delight customers at each step of their interaction with the organization have
thrived: research shows companies which apply UX design in this way experi-
ence faster growth and higher revenues.2

Second, advances in technology and process have made it possible to build,
evolve, and scale disruptive products and services rapidly and with little capital
investment. Small teams across the world prototype new software-based prod-
ucts in days or weeks, using free or cheap services and infrastructure, and then
rapidly evolve those that gain traction. In the near future, the ubiquity of
cheap, powerful networked embedded devices will enable us to prototype and
evolve a wider variety of products cheaply on similarly short cycles. As 3D
printing becomes cheaper and faster and begins to handle a wider variety of
materials, we will create and deliver an enormous variety of customized prod-
ucts on demand.

Software has three characteristics which enable this kind of rapid innovation.
First, it’s relatively inexpensive to prototype and evolve ideas in software. Sec-
ond, we can actually use such prototypes from an early stage in their evolu-
tion. Finally, in the course of creating these prototypes, we can discover a great
deal about what customers find valuable and incorporate it back into our
design—accelerating the rate at which we can test new ideas with users, collect
feedback, and use it to improve our products and businesses.

Meanwhile, the relentless march of miniaturization (embodied in Moore’s
Law)3 has enabled incredibly powerful computers to become tiny and find their
way into everything, with software at center stage. In a Forbes article titled
“Now Every Company Is A Software Company,” David Zanca, senior vice
president for information technology at FedEx, describes himself as running “a
software company inside of FedEx.” Venkatesh Prasad, senior technical leader
at Ford, describes his company as a maker of “sophisticated computers-on-
wheels.” Ben Wood of CCS Insight notes that Nokia “went through this
incredible decade of innovation in hardware, but what Apple saw was that all
you needed was a rectangle with a screen, and the rest was all about the

LEAN ENTERPRISEXIV

4 http://www.bbc.co.uk/news/technology-23947212; in our opinion, this is the key insight behind
Microsoft’s acquisition of Nokia.

5 The Economist Special Report: Outsourcing and Offshoring, 406, no. 8819, 19 January 2013.

software.”4 As a result of this shift in thinking about software, companies,
including IT outsourcing pioneers GE and GM, are taking software develop-
ment back in-house. As we discuss in Chapter 15, the UK government has fol-
lowed suit. As reported by The Economist:5

GM’s reasons for doing this may well apply to many other firms too.
“IT has become more pervasive in our business and we now consider
it a big source of competitive advantage,” says Randy Mott, GM’s
Chief Information Officer, who has been responsible for the reversal
of the outsourcing strategy. While the work was being done by outsid-
ers, he said most of the resources that GM was devoting to IT were
spent on keeping things going as they were rather than on thinking up
new ways of doing them. The company reckons that having its IT
work done mostly in-house and nearby will give it more flexibility and
speed and encourage more innovation.

The business world is moving from treating IT as a utility that improves inter-
nal operations to using rapid software- and technology-powered innovation
cycles as a competitive advantage. This has far-reaching consequences. The tra-
ditional program and project management models we have used for IT are
unsuited to rapid innovation cycles. However, they are deeply embedded in the
way we manage everything from operations and customer service to budgeting,
governance, and strategy. The elements of a suitable product-centric paradigm
that works at scale have all emerged in the last 10 years, but they have not yet
been connected and presented in a systematic way. This book aims to fill this
gap, providing inspiration from organizations that have successfully adopted
these ideas. More importantly, we have made a detailed inquiry into the cul-
ture of high performance, which is the critical factor enabling rapid innovation
at scale.

Why Did We Write This Book?
All of the authors are experienced working in both enterprises and startups,
and we have set out to present a pragmatic and systematic approach to innova-
tion and transformation that works effectively in an enterprise context. We
have addressed not just how high-performing organizations develop products,
but how companies that are working towards higher performance can adopt
these techniques in an incremental, iterative, low-risk way.

PREFACE XV

http://www.bbc.co.uk/news/technology-23947212

6 [ohno12]

We wrote the book because of our frustration at the state of the industry. The
techniques and practices we describe are not new, and they are known to
work. However, they are not yet mainstream, and are often implemented piece-
meal, leading to local, rather than systemic, improvements. As a result, compa-
nies toil at building—at huge cost—products, services, and businesses that do
not deliver the expected value to customers.

When Continuous Delivery (Addison-Wesley) and The Lean Startup (Crown
Business) were published, we saw an enormous amount of demand from peo-
ple working in enterprises who wanted to adopt the practices described in
these books. A large number of companies have achieved measurable benefit
from using the practices we discuss, resulting in delivery of higher-quality
products to market faster, increased customer satisfaction, and higher returns
on investment. This comes with reduced cost and risk as well as happier
employees who are no longer working unsustainable hours and have the
opportunity to harness their creativity and passion at work.

However, everyone finds it difficult to implement these ideas successfully. In
most cases it was impossible to realize anything more than incremental
improvements because only part of the organization changed—and that part
still needed to work with the rest of the organization, which expected them to
behave in the traditional way. Thus we describe how successful companies
have rethought everything from financial management and governance, to risk
and compliance, to systems architecture, to program, portfolio, and require-
ments management in the pursuit of radically improved performance.

This book presents a set of patterns and principles designed to help you imple-
ment these ideas. We believe that every organization is different and will have
different needs, so we don’t provide rules on how to implement particular
practices. Instead, we describe a heuristic approach to implementation that
emphasizes the importance of experimentation in order to learn how your
organization can best adopt these ideas and improve. This approach takes
longer, but it has the advantages of showing measurable benefits faster and
reducing the risk of change. It also enables your organization and people to
learn for themselves what works best.

We hope you will find value in this book. The most dangerous attitude would
be: “These are good ideas, but they cannot work in our organization.” As Taii-
chi Ohno, the father of the Toyota Production System, said:6

Whether top management, middle management, or the workers who
actually do the work, we are all human, so we’re like walking

LEAN ENTERPRISEXVI

7 [ohno12]

misconceptions, believing that the way we do things now is the best
way. Or perhaps you do not think it is the best way, but you are work-
ing within the common sense that “We can’t help it, this is how things
are.”

You will face obstacles adopting the ideas in this book. When you read the
case studies, you will likely see reasons why the described approach may not
work in your organization. Do not turn obstacles into objections. Treat what
you read here as an inspiration for your own efforts, not as recipes to be fol-
lowed without deviation. Look for obstacles constantly and treat them as
opportunities to experiment and learn. To quote Ohno again:7

Kaizen [improvement] opportunities are infinite. Don’t think you have
made things better than before and be at ease…This would be like the
student who becomes proud because they bested their master two
times out of three in fencing. Once you pick up the sprouts of kaizen
ideas, it is important to have the attitude in our daily work that just
underneath one kaizen idea is yet another one.

Opportunities to improve lie everywhere—not just in the products or services
we build but in the way we behave and interact and, most importantly, in the
way we think.

Who Should Read This Book?
We wrote this book primarily for leaders and managers. The book focuses on
principles and patterns that can be applied in any domain in any type of
organization.

Our intended audience includes:

• Executives interested in strategy, leadership, organization culture, and
good governance

• Directors of IT, both for applications and for infrastructure and operations

• Anyone working in program or project management, including members
of the PMO

• People in finance and accounting or in governance, regulation, and compli-
ance who are involved in delivery

PREFACE XVII

• CMOs, product managers, and others involved in designing products and
services that involve software development

Anyone working on delivery teams should also find this book valuable—but
don’t expect any deep discussion of engineering practices, such as how to write
maintainable functional acceptance tests, automate deployment, or manage
configuration. Those topics are discussed in much more depth in Continuous
Delivery.

This book is particularly targeted at people working in medium and large
organizations who realize they must think differently about strategy, culture,
governance, and the way they manage products and services in order to suc-
ceed. That’s not to say that smaller organizations won’t find the book useful—
just that some of the material may not be applicable to them at this stage in
their evolution.

One of our goals was to keep the book relatively short, concise, and practical.
In order to do that, we decided not to spend a lot of time discussing the theo-
retical models that drive the principles and practices we describe. Instead, we
have presented some foundational principles from these fields so you can
understand the basic theoretical underpinnings; then we describe the practical
applications of these theories. We also provide references to further reading for
those who are interested.

We are also careful not to offer detailed guidance on which software tools to
use and how to use them. This is for two reasons. First, we think that tool
choice is actually not a tremendously important decision (so long as you avoid
the bad ones). Many organizations moving to agile methodologies spend an
undue amount of time on tool choice hoping to magically solve their underly-
ing problems. But the most common failure mode for such organizations is
their inability to change their organizational culture, not the availability of
good tools. Secondly, information on particular tools and processes quickly
goes out of date. There are plenty of good tools (including many open source
ones) and literature on how to use them. In this book we focus on strategies to
help your organization succeed, regardless of the tools you choose.

Conspectus
Part I of the book introduces the main themes of the book: culture, strategy,
and the lifecycle of innovations. In Part II we discuss how to explore new ideas
to gather data so you can quickly evaluate which ones will provide value or see
a sufficiently rapid uptake. Part III covers how to exploit validated ideas—
those that emerge from the crucible of exploration—at scale, and also presents
a systematic approach to improving the way we run large programs of work.
Finally, Part IV shows how enterprises can grow an environment that fosters

LEAN ENTERPRISEXVIII

learning and experimentation, with a focus on culture, governance, financial
management, IT, and strategy.

Everybody should read Part I. Readers should then feel free to dip into the
chapters that interest them. However it’s worth reading Chapter 3, Chapter 6,
and Chapter 7 before proceeding to Part IV since it builds on concepts presen-
ted in those chapters.

Safari® Books Online
NOTE

Safari Books Online is an on-demand digital library that delivers expert content in
both book and video form from the world’s leading authors in technology and
business.

Technology professionals, software developers, web designers, and business
and creative professionals use Safari Books Online as their primary resource
for research, problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, govern-
ment, education, and individuals.

Members have access to thousands of books, training videos, and prepublica-
tion manuscripts in one fully searchable database from publishers like O’Reilly
Media, Prentice Hall Professional, Addison-Wesley Professional, Microsoft
Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons,
Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press,
Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and hundreds more. For more information about Safari Books Online,
please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information: http://bit.ly/lean-enterprise-book.

PREFACE XIX

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://bit.ly/lean-enterprise-book

To comment or ask technical questions about this book, send email to book-
questions@oreilly.com.

For more information about our books, courses, conferences, and news, see
our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Many people have contributed to this book. In particular, we are deeply grate-
ful to the following people who provided detailed reviews of early drafts or
individual chapters (alphabetically by first name): Adrian Cockcroft, Amy
McLeod, Andy Pittaway, Bas Vodde, Ben Williams, Bjarte Bogsnes, Brett Ans-
ley, Carmen Cook, Charles Betz, Chris Cheshire, Courtney Hemphill, Dan
North, Darius Kumana, David Tuck, Don Reinertsen, Gary Gruver, Gene Kim,
Ian Carroll, James Cook, Jean-Marc Domaingue, Jeff Gothelf, Jeff Patton, Jim
Highsmith, Joe Zenevitch, John Allspaw, John Crosby, Jonathan Thoms, Josh
Seiden, Kevin Behr, Kief Morris, Kraig Parkinson, Lane Halley, Lee Nicholls,
Lindsay Ratcliffe, Luke Barrett, Marc Hofer, Marcin Floryan, Martin Fowler,
Matt Pancino, Michael Orzen, Mike Rother, Pat Kua, Randy Shoup, Ranjan
Sakalley, Salim Virani, Steve Bell, Tom Barker, Tristan Kromer, and Will Edel-
muth. Thank you so much. The ideas we present came from a wide variety of
sources, and were winnowed and refined through innumerable workshops,
talks, and discussions with people working in an enormous variety of organi-
zations across the world. Thanks to all of you who participated in those dis-
cussions and gave us the benefit of your experiences and feedback. We’d like to
extend special thanks to our fabulous editorial and production team at
O’Reilly: Mary Treseler, Angela Rufino, Allyson MacDonald, Kara Ebrahim,
and Dan Fauxsmith. Special thanks are also due to Peter Staples for creating
almost all of the gorgeous diagrams in the book. Steve Bell, John Kordyback,
Scott Buckley, and Gareth Rushgrove provided case studies for this book:
thanks so much for your contributions and insight. Finally, Dmitry Kirsanov
and Alina Kirsanova did characteristically thorough, detailed, and high-quality
work copyediting, proofreading, and indexing the book—thank you.

Jez started working on this book as an excuse to stay home after his second
daughter, Reshmi, was born. Reshmi and her sister, Amrita, have taught him
the joy of disruption throughout by playing pranks and co-creating many new
adventures that provoked both new insights and helpless laughter. Rani, his
beautiful, brilliant wife, kept it real throughout even when it felt relentless, for
which she has his undying gratitude, love, and admiration. He thanks his mum

LEAN ENTERPRISEXX

mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

for her encouragement and support, particularly when he had to write during
visits. Jez would like to thank his co-authors Joanne and Barry for moderating
his command-and-control tendencies and making this book a truly
collaborative exercise. It would have been a very different—and much poorer
—book without you. He would like to thank his colleagues at Chef for provid-
ing inspiration and support, and for living the dream of stirring up delight in
the pursuit of a world-class product and customer experience. He also wants
to thank his previous employer, ThoughtWorks, for providing a unique, mind-
ful home for innovators and tinkerers, many of whose ideas populate these
pages. Finally, special thanks to Chris Murphy, Chad Wathington, David Rice,
Cyndi Mitchell, Barry Crist, and Adam Jacob for their support of this book.

Joanne really didn’t understand what she had agreed to when Jez Humble and
Martin Fowler convinced her to collaborate on a book about the next steps for
Continuous Delivery. As time progressed (over two and a half years) and the
book evolved into what it is today, there are a lot of people who provided sup-
port, encouragement, and complete trust in her capabilities to finish this work.
John, Joanne’s husband, lifetime partner, and best friend, provided encourage-
ment and unending understanding during those guilt-ridden weekends and eve-
nings when “the book” distracted her from fun activities. Her colleagues and
the leadership team at ThoughtWorks provided all that she needed to research
and write this work, in particular David Whalley, Chris Murphy, and the
ThoughtWorks Australia leadership team who hired her—because they under-
stood how important it is for something as command-and-control as security,
risk, and compliance to fit with agile and lean delivery practices. Last, but not
least, she would like to acknowledge her co-authors and good friends Barry
and Jez, who taught her about perseverance, collaboration, and true trust in
each other.

Barry could not have written this book without Qiu Yi, his life editor, partner,
and wife. Her passion, persistence, and patience smooths his edges. Her com-
passion knows no end. His parents, Niall and Joan, have always believed in
him, providing support and making personal sacrifices to enable him to reach
for his goals. He could not ask for better role models; their principles and val-
ues have shaped his own, and for that he is grateful. He misses his brothers
and sisters. The time they spend together is always precious and too short. His
entire family is close to his heart and never far from his thoughts. He has been
inspired by many friends, colleagues, and storytellers in his life and career;
their conversations, lessons, and knowledge is captured here. Thank you for
exposing him to it. When he wrote his first blog and pressed publish, he never
imagined the outcome would lead him here. The encouragement, collabora-
tion, and calibration of Jez and Joanne have taught him much more than how
to craft ideas into words—he’s grown with their guidance.

PREFACE XXI

1 http://on.ft.com/1zmWBMd

PART I

ORIENT

The purpose of an organization is to enable ordinary human beings to
do extraordinary things.

Peter Drucker

Shareholder value is the dumbest idea in the world…[it is] a result, not
a strategy…Your main constituencies are your employees, your cus-
tomers, and your products.1

Jack Welch

We begin by offering our definition of an enterprise: “a complex, adaptive sys-
tem composed of people who share a common purpose.” We thus include non-
profits and public sector companies as well as corporations. We will go into
more detail on complex, adaptive systems in Chapter 1. However, the idea of a
common purpose known to all employees is essential to the success of an enter-
prise. A company’s purpose is different from its vision statement (which
describes what an organization aspires to become) and its mission (which
describes the business the organization is in). Graham Kenny, managing direc-
tor of consultancy Strategic Factors, describes the purpose of an organization
as what it does for someone else, “putting managers and employees in

1

http://on.ft.com/1zmWBMd

2 http://bit.ly/1zmWArB

3 In the copious free time left over from SpaceX, Musk co-founded Tesla Motors along with “a
group of intrepid Silicon Valley engineers who set out to prove that electric vehicles could be
awesome.”

4 This strategy originates from Jensen and Meckling’s “Theory of the Firm” (Journal of Financial
Economics, 3, no. 4, 1976).

5 John Kay’s Obliquity (Penguin Books) provides detailed research and analysis supporting what
he describes as the “profit-seeking paradox.”

customers’ shoes.”2 He cites as examples the Kellogg food company (“Nourish-
ing families so they can flourish and thrive”) and the insurance company IAG
(“To help people manage risk and recover from the hardship of unexpected
loss”), to which we add our favorite example: SpaceX, “founded in 2002 by
Elon Musk to revolutionize space transportation and ultimately make it possi-
ble for people to live on other planets.”3

Creating, updating, and communicating the company’s purpose is the responsi-
bility of the enterprise’s executives. Their other responsibilities include creating
a strategy through which the company will achieve its purpose and growing
the culture necessary for that strategy to succeed. Both strategy and culture
will evolve in response to changes in the environment, and leaders are respon-
sible for directing this evolution and for ensuring that culture and strategy sup-
port each other to achieve the purpose. If leaders do a good job, the organiza-
tion will be able to adapt, to discover and meet the changing customer needs,
and to remain resilient to unexpected events. This is the essence of good
governance.

In the context of corporations, the idea of a common purpose other than profit
maximization may seem quaint. For many years, the conventional wisdom
held that corporate executives should focus on maximizing shareholder value,
and this goal was reinforced by compensating executives with stocks.4 How-
ever, these strategies have a number of flaws. They create a bias towards short-
term results (such as quarterly earnings) at the expense of longer-term priori-
ties such as developing the capabilities of employees and the relationships with
customers. They also tend to stifle innovation by focusing on tactical actions to
reduce costs in the short term at the expense of riskier strategies that have the
potential to provide a higher payoff over the lifetime of the organization, such
as research and development or creating disruptive new products and services.
Finally, they often ignore the value of intangibles, such as the capabilities of
employees and intellectual property, and externalities such as the impact on the
environment.

Research has shown that focusing only on maximizing profits has the paradox-
ical effect of reducing the rate of return on investment.5 Rather, organizations

LEAN ENTERPRISE2

http://bit.ly/1zmWArB

succeed in the long term through developing their capacity to innovate and
adopting the strategy articulated by Jack Welch in the above epigraph: focus-
ing on employees, customers, and products. Part I of this book sets out how to
achieve this.

3PART I: ORIENT

1 The story of the NUMMI plant is covered comprehensively in This American Life, episode 403:
http://www.thisamericanlife.org/radio-archives/episode/403/, from which all the direct quotes are
taken.

C H A P T E R 1

Introduction

It’s possible for good people, in perversely designed systems, to casu-
ally perpetrate acts of great harm on strangers, sometimes without
ever realizing it.

Ben Goldacre

On April 1, 2010, California’s only motor vehicle plant, New United Motor
Manufacturing, Inc. (NUMMI), shut down. NUMMI, which opened in 1984,
had been a joint venture between GM and Toyota. Both companies stood to
benefit from the partnership. Toyota wanted to open a plant in the US to
escape import restrictions threatened by the US Congress in reaction to the
inexorably falling market share of US auto manufacturers. For GM, it was a
chance to learn how to build small cars profitably and to study the Toyota Pro-
duction System (TPS) that had enabled Japanese auto manufacturers to consis-
tently deliver the highest quality in the industry at costs that undercut those of
US manufacturers.1

For the joint venture, GM chose the site of their shuttered Fremont Assembly
plant. GM’s Fremont plant was one of their worst in terms of both the quality
of the cars produced and the relationship between managers and workers. By
the time the plant closed in 1982, labor relations had almost completely bro-
ken down, with workers drinking and gambling on the job. Incredibly, Toyota
agreed to the demand of United Auto Workers’ negotiator Bruce Lee to rehire

5

http://www.thisamericanlife.org/radio-archives/episode/403/

the union leaders from Fremont Assembly to lead the workforce at NUMMI.
The workers were sent to Toyota City in Japan to learn the TPS. Within three
months, the NUMMI plant was producing near-perfect quality cars—some of
the best quality in America, as good as those coming from Japan—at much
lower cost than Fremont Assembly had achieved. Lee had been right in his bet
that “it was the system that made it bad, not the people.”

Much has been written about the TPS, but one recurring theme, when you lis-
ten to the Fremont Assembly workers who ended up at NUMMI, is teamwork.
It might seem banal, but it was an incredibly powerful experience for many of
the UAW employees. The TPS makes building quality into products the highest
priority, so a problem must be fixed as soon as possible after it’s discovered,
and the system must then be improved to try and prevent that from happening
again. Workers and managers cooperate to make this possible. The moment a
worker discovers a problem, he or she can summon the manager by pulling on
a cord (the famous andon cord). The manager will then come and help to try
and resolve the problem. If the problem cannot be resolved within the time
available, the worker can stop the production line until the problem is fixed.
The team will later experiment with, and implement, ideas to prevent the prob-
lem from occurring again.

These ideas—that the primary task of managers is to help workers, that work-
ers should have the power to stop the line, and that they should be involved in
deciding how to improve the system—were revolutionary to the UAW employ-
ees. John Shook, the first American to work in Toyota City, who had the job of
training the NUMMI workers, reflects that “they had had such a powerful
emotional experience of learning a new way of working, a way that people
could actually work together collaboratively—as a team.”

The way the TPS works is in sharp contrast to the traditional US and Euro-
pean management practice based on the principles of Frederick Winslow Tay-
lor, the creator of scientific management. According to Taylor, the job of man-
agement is to analyze the work and break it down into discrete tasks. These
tasks are then performed by specialized workers who need understand nothing
more than how to do their particular specialized task as efficiently as possible.
Taylorism fundamentally thinks of organizations as machines which are to be
analyzed and understood by breaking them down into component parts.

In contrast, the heart of the TPS is creating a high-trust culture in which every-
body is aligned in their goal of building a high-quality product on demand and
where workers and managers collaborate across functions to constantly
improve—and sometimes radically redesign—the system. These ideas from the
TPS—a high-trust culture focused on continuous improvement (kaizen), pow-
ered by alignment and autonomy at all levels—are essential to building a large
organization that can adapt rapidly to changing conditions.

LEAN ENTERPRISE6

2 Behavioral scientists often classify work into two types: routine tasks where there is a single cor-
rect result that can be achieved by following a rule are known as algorithmic, and those that
require creativity and trial-and-error are called heuristic.

3 Decades of studies have repeatedly demonstrated these results. For an excellent summary, see
[pink].

4 Indeed one of W. Edwards Deming’s “Fourteen Points For The Transformation Of Manage-
ment” is “Remove barriers that rob people in management and in engineering of their right to
pride of workmanship. This means, inter alia, abolishment of the annual or merit rating and of
management by objective” [deming], p. 24.

A key part of the success of the TPS is in its effect on workers. Taylorism
makes workers into cogs in a machine, paid simply to perform preplanned
actions as quickly as possible. The TPS, instead, requires workers to pursue
mastery through continuous improvement, imbues them with a higher purpose
—the pursuit of ever-higher levels of quality, value, and customer service—and
provides a level of autonomy by empowering them to experiment with
improvement ideas and to implement those that are successful.

Decades of research have shown that these intrinsic motivators produce the
highest performance in tasks which require creativity and trial-and-error—
where the desired outcome cannot be achieved simply by following a rule.2 In
fact, extrinsic motivators such as bonuses and rating people in performance
reviews actually decrease performance in such nonroutine work.3 Rick Madrid,
who worked at the Fremont plant both before and during the NUMMI era,
says of the TPS that “it changed my life from being depressed, bored—and like
my son said, it changed my attitude. It changed me all for the better.” Giving
people pride in their work rather than trying to motivate them with carrots
and sticks is an essential element of a high-performance culture.4

Although the principles at the heart of the TPS might seem relatively straight-
forward, they were very hard to adopt. Indeed, GM utterly failed in taking
what it had achieved at NUMMI and reproducing it in other GM plants. Some
of the biggest obstacles were changes to the organizational hierarchy. The TPS
does away with the concept of seniority in which union workers are assigned
jobs based on how many years of service they have, with the best jobs going to
the most senior. Under the TPS, everybody has to learn all the jobs required of
their team and rotate through them. The TPS also removes the visible trap-
pings and privileges of management. Nobody wore a tie at the NUMMI plant
—not even contractors—to emphasize the fact that everybody was part of the
same team. Managers did not receive perks accorded to them at other GM
plants, such as a separate cafeteria and car park.

Finally, attempts to improve quality ran up against organizational boundaries.
In the TPS, suppliers, engineers, and workers collaborate to continuously

7CHAPTER 1: INTRODUCTION

5 John Kotter, author of Leading Change, says, “a majority of employees, perhaps 75 percent of
management overall and virtually all of the top executives, need to believe that considerable
change is absolutely essential” [kotter], p. 51.

improve the quality of the parts and to make sure workers have the tools they
need to do their job. This worked at NUMMI because the engineers were in-
house and the parts came from Japanese suppliers that had a collaborative
relationship with Toyota. In the US supply chain, things were different. If the
parts that came in to GM assembly plants were of poor quality, or didn’t fit,
there was simply no mechanism to fix the problem.

Ernie Schaefer, manager of GM’s Van Nuys plant—which faced many of the
same problems as Fremont Assembly—describes what was different about
NUMMI: “You can see a lot of things different. But the one thing you don’t
see is the system that supports the NUMMI plant. I don’t think, at that time,
anybody understood the large nature of this system. General Motors was a
kind of throw it over the wall organization. Each department, we were very
compartmentalized, and you design that vehicle, and you’d throw it over the
wall to the manufacturing guys.” This is the legacy of a Taylorist management
approach. The TPS exists—and can only succeed—within an ecosystem of
organizational culture, supplier relations, financial management, HR, and gov-
ernance designed around its philosophy.

GM tried to implement the TPS at Van Nuys, but failed. Workers and manag-
ers rebelled in the face of changes in status and behavior that were required of
them, despite the threat of closure (which was ultimately carried out). Accord-
ing to Larry Spiegel, a veteran of NUMMI who had been sent to Van Nuys to
help implement the TPS, people at the plant simply didn’t believe the threats to
shut it down: “There were too many people convinced that they didn’t need
to change.”

This lack of urgency acted as a barrier to adoption across GM—and is perhaps
the biggest obstacle to organizational change in general.5 The US division of
GM took about 15 years to decide they needed to seriously prioritize imple-
menting the TPS, and a further 10 years to actually implement it. By this time
any competitive advantage they could have gained was lost. GM went bank-
rupt and was bailed out by the US government in 2009, at which point it
pulled out of NUMMI. Toyota shut down the NUMMI plant in 2010.

The story of NUMMI is important because it illustrates the main concern of
this book—growing a lean enterprise, such as Toyota—and many of the com-
mon obstacles. Toyota has always been very open about what it is doing, giv-
ing public tours of its plants, even to competitors—partly because it knows
that what makes the TPS work is not so much any particular practices but the

LEAN ENTERPRISE8

6 [westrum-2014]

culture. Many people focus on the practices and tools popularized by the TPS,
such as the andon cords. One GM vice president even ordered one of his man-
agers to take pictures of every inch of the NUMMI plant so they could copy it
precisely. The result was a factory with andon cords but with nobody pulling
them because managers (following the principle of extrinsic motivation) were
incentivized by the rate at which automobiles—of any quality—came off the
line.

A Lean Enterprise Is Primarily a Human System
As the pace of social and technological change in the world accelerates, the
lean approach pioneered by Toyota becomes ever more important because it
sets out a proven strategy for thriving in uncertainty through embracing
change. The key to understanding a lean enterprise is that it is primarily a
human system. It is common for people to focus on specific practices and tools
that lean and agile teams use, such as Kanban board, stand-up meetings, pair
programming, and so forth. However, too often these are adopted as rituals or
“best practices” but are not seen for what they really are—countermeasures
that are effective within a particular context in the pursuit of a particular goal.

In an organization with a culture of continuous improvement, these counter-
measures emerge naturally within teams and are then discarded when they are
no longer valuable. The key to creating a lean enterprise is to enable those
doing the work to solve their customers’ problems in a way that is aligned with
the strategy of the wider organization. To achieve this, we rely on people being
able to make local decisions that are sound at a strategic level—which, in turn,
relies critically on the flow of information, including feedback loops.

Information flow has been studied extensively by sociologist Ron Westrum,
primarily in the context of accidents and human errors in aviation and health-
care. Westrum realized that safety in these contexts could be predicted by
organizational culture, and developed a “continuum of safety cultures” with
three categories:6

Pathological organizations are characterized by large amounts of fear and
threat. People often hoard information or withhold it for political reasons,
or distort it to make themselves look better.

Bureaucratic organizations protect departments. Those in the department
want to maintain their “turf,” insist on their own rules, and generally do
things by the book—their book.

9CHAPTER 1: INTRODUCTION

7 [forsgren]

Generative organizations focus on the mission. How do we accomplish our
goal? Everything is subordinated to good performance, to doing what we
are supposed to do.

These cultures process information in different ways. Westrum observes that
“the climate that provides good information flow is likely to support and
encourage other kinds of cooperative and mission-enhancing behavior, such as
problem solving, innovations, and interdepartmental bridging. When things go
wrong, pathological climates encourage finding a scapegoat, bureaucratic
organizations seek justice, and the generative organization tries to discover the
basic problems with the system.” The characteristics of the various types of
culture are shown in Table 1-1.

Table 1-1. How organizations process information

Pathological (power-oriented) Bureaucratic (rule-oriented) Generative (performance-oriented)

Low cooperation Modest cooperation High cooperation

Messengers shot Messengers neglected Messengers trained

Responsibilities shirked Narrow responsibilities Risks are shared

Bridging discouraged Bridging tolerated Bridging encouraged

Failure leads to scapegoating Failure leads to justice Failure leads to enquiry

Novelty crushed Novelty leads to problems Novelty implemented

Westrum’s typology has been extensively elaborated upon, and has a visceral
quality that will appeal to anybody who has worked in a pathological (or even
bureaucratic) organization. However, some of its implications are far from
academic.

In 2013, PuppetLabs, IT Revolution Press, and ThoughtWorks surveyed 9,200
technologists worldwide to find out what made high-performing organizations
successful. The resulting 2014 State of DevOps Report is based on analysis of
answers from people working in a variety of industries including finance, tele-
coms, retail, government, technology, education, and healthcare.7 The headline
result from the survey was that strong IT performance is a competitive advan-
tage. Analysis showed that firms with high-performing IT organizations were

LEAN ENTERPRISE10

8 The survey measured organizational performance by asking respondents to rate their organiza-
tion’s relative performance in terms of achieving its profitability, market share, and productivity
goals. This is a standard scale that has been validated multiple times in prior research. See [wid-
ener].

9 In the interests of full disclosure, Jez was part of the team behind the 2014 State of DevOps
Report.

10 This method of measuring attitudes quantitatively is known as a Likert scale.

twice as likely to exceed their profitability, market share, and productivity
goals.8

The survey also set out to examine the cultural factors that influenced organi-
zational performance. The most important of these turned out to be whether
people were satisfied with their jobs, based on the extent to which they agreed
with the following statements (which are strongly reminiscent of the reaction
of the NUMMI workers who were introduced to the Toyota Production
System):

• I would recommend this organization as a good place to work.

• I have the tools and resources to do my job well.

• I am satisfied with my job.

• My job makes good use of my skills and abilities.

The fact that job satisfaction was the top predictor of organizational perfor-
mance demonstrates the importance of intrinsic motivation. The team working
on the survey wanted to look at whether Westrum’s model was a useful tool to
predict organizational performance.9 Thus the survey asked people to assess
their team culture along each of the axes of Westrum’s model as shown in
Table 1-1, by asking them to rate the extent to which they agreed with state-
ments such as “On my team, failure causes enquiry.”10 In this way, the survey
was able to measure culture.

Statistical analysis of the results showed that team culture was not only
strongly correlated with organizational performance, it was also a strong pre-
dictor of job satisfaction. The results are clear: a high-trust, generative culture
is not only important for creating a safe working environment—it is the foun-
dation of creating a high-performance organization.

Mission Command: An Alternative to Command and
Control
High-trust organizational culture is often contrasted to what is popularly
known as “command and control”: the idea from scientific management that

11CHAPTER 1: INTRODUCTION

11 As we discuss in Chapter 3, this concept is formalized in John Boyd’s OODA (observe-orient-
decide-act) loop, which in turn inspired Eric Ries’ build-measure-learn loop.

the people in charge make the plans and the people on the ground execute
them—which is usually thought to be modelled on how the military functions.
In reality, however, this type of command and control has not been fashionable
in military circles since 1806 when the Prussian Army, a classic plan-driven
organization, was decisively defeated by Napoleon’s decentralized, highly
motivated forces. Napoleon used a style of war known as maneuver warfare to
defeat larger, better-trained armies. In maneuver warfare, the goal is to mini-
mize the need for actual fighting by disrupting your enemy’s ability to act cohe-
sively through the use of shock and surprise. A key element in maneuver war-
fare is being able to learn, make decisions, and act faster than your enemy—
the same capability that allows startups to disrupt enterprises.11

Three men were especially important to the reconstruction of the Prussian
Army following its defeat by Napoleon: Carl von Clausewitz, David Scharn-
horst, and Helmuth von Moltke. Their contributions not only transformed the
military doctrine; they have important implications for people leading and
managing large organizations. This particularly applies to the idea of Auftrag-
staktik, or Mission Command, which we will explore here. Mission Command
is what enables maneuver warfare to work at scale—it is key to understanding
how enterprises can compete with startups.

Following the eventual defeat of Napoleon, General David Scharnhorst was
made Chief of the newly established Prussian General Staff. He put together a
reform commission which conducted a postmortem and began to transform
the Prussian Army. Scharnhorst noted that Napoleon’s officers had the author-
ity to make decisions as the situation on the ground changed, without waiting
for approval through the chain of command. This allowed them to adapt rap-
idly to changing circumstances.

Scharnhorst wanted to develop a similar capability in a systematic way. He
realized this required the training of a independent, intelligent cadre of staff
officers who shared similar values and would be able to act decisively and
autonomously in the heat of battle. Thus military schools were set up to train
staff officers, who for the first time were accepted from all social backgrounds
based on merit.

In 1857, Helmuth von Moltke, perhaps best known for his saying “no plan
survives contact with the enemy,” was appointed Chief of the General Staff of
the Prussian Army. His key innovation, building on the military culture estab-
lished by Scharnhorst, was to treat military strategy as a series of options
which were to be explored extensively by officers in advance of the battle. In

LEAN ENTERPRISE12

12 [bungay]

1869 he issued a directive titled “Guidance for Large Unit Commanders”
which sets out how to lead a large organization under conditions of
uncertainty.

In this document, von Moltke notes that “in war, circumstances change very
rapidly, and it is rare indeed for directions which cover a long period of time in
a lot of detail to be fully carried out.” He thus recommends “not commanding
more than is strictly necessary, nor planning beyond the circumstances you can
foresee.” Instead, he has this advice: “The higher the level of command, the
shorter and more general the orders should be. The next level down should
add whatever further specification it feels to be necessary, and the details of
execution are left to verbal instructions or perhaps a word of command. This
ensures that everyone retains freedom of movement and decision within the
bounds of their authority…The rule to follow is that an order should contain
all, but also only, what subordinates cannot determine for themselves to ach-
ieve a particular purpose.”

Crucially, orders always include a passage which describes their intent, com-
municating the purpose of the orders. This allows subordinates to make good
decisions in the face of emerging opportunities or obstacles which prevent
them from following the original orders exactly. Von Moltke notes that “there
are numerous situations in which an officer must act on his own judgment. For
an officer to wait for orders at times when none can be given would be quite
absurd. But as a rule, it is when he acts in line with the will of his superior that
he can most effectively play his part in the whole scheme of things.”

These ideas form the core of the doctrine of Auftragstaktik, or Mission Com-
mand, which, in combination with the creation of a professionally trained
cadre of staff officers who understood how to apply the doctrine operationally,
was adopted by multiple elite military units, including the US Marine Corps as
well as (more recently) NATO.

The history of the Prussian Army’s development of Auftragstaktik is described
in more detail in Stephen Bungay’s treatise on business strategy, The Art of
Action (from which the above quotations from “Guidance for Large Unit
Commanders” are taken).12 Bungay develops a theory of directing strategy at
scale which builds on the work of Scharnhorst, von Moltke, and another Prus-
sian general, Carl von Clausewitz. As a 26-year old, Clausewitz had fought
against Napoleon in the fateful battles of Jena and Auerstadt. He subsequently
served on Scharnhorst’s reform commission and bequeathed us his unfinished
magnum opus, On War. In this work he introduces the concept of the “fog of
war”—the fundamental uncertainty we face as actors in a large and rapidly

13CHAPTER 1: INTRODUCTION

13 For those interested in different types of systems and how to make sense of them, we recom-
mend studying Dave Snowden’s Cynefin framework: http://www.youtube.com/watch?
v=N7oz366X0-8.

changing environment, with necessarily incomplete knowledge of the state of
the system as a whole. He also introduces the idea of friction which prevents
reality from behaving in an ideal way. Friction exhibits itself in the form of
incomplete information, unanticipated side effects, human factors such as mis-
takes and misunderstandings, and the accumulation of unexpected events.

Friction and Complex Adaptive Systems
Clausewitz’ concept of friction is an excellent metaphor to understand the behavior of
complex adaptive systems such as an enterprise (or indeed any human organization).
The defining characteristic of a complex adaptive system is that its behavior at a global
level cannot be understood through Taylor’s reductionist approach of analyzing its
component parts. Rather, many properties and behavior patterns of complex adaptive
systems “emerge” from interactions between events and components at multiple levels
within the system. In the case of open systems (such as enterprises), we also have to
consider interactions with the environment, including the actions of customers and
competitors, as well as wider social and technological changes.13 Friction is ultimately a
consequence of the human condition—the fact that organizations are composed of
people with independent wills and limited information. Thus friction cannot be
overcome.

Bungay argues that friction creates three gaps. First, a knowledge gap arises
when we engage in planning or acting due to the necessarily imperfect state of
the information we have to hand, and our need to making assumptions and
interpret that information. Second, an alignment gap is the result of people
failing to do things as planned, perhaps due to conflicting priorities, misunder-
standings, or simply someone forgetting or ignoring some element of the plan.
Finally, there is an effects gap due to unpredictable changes in the environ-
ment, perhaps caused by other actors, or unexpected side effects producing
outcomes that differ from those we anticipated. These gaps are shown in
Figure 1-1.

LEAN ENTERPRISE14

http://www.youtube.com/watch?v=N7oz366X0-8
http://www.youtube.com/watch?v=N7oz366X0-8

Figure 1-1. Gaps in complex adaptive systems, from The Art of Action: How Leaders Close the
Gaps between Plans, Actions, and Results by Stephen Bungay (reprinted by permission of Nicho-

las Brealey Publishing)

Bungay then goes on to describe the usual scientific management remedy
applied by enterprises, the alternative proposed by the doctrine of Auftragstak-
tik, and his own interpretation of Mission Command as applied to business,
which he terms “directed opportunism.” These are shown in Table 1-2.

Table 1-2. The three gaps, and how to manage them

Effects gap Knowledge gap Alignment gap

What is it? The difference
between what we
expect our actions to
achieve and what they
actually achieve

The difference between
what we would like to know
and what we actually know

The difference between what
we want people to do and what
they actually do

Scientific
management
remedy

More detailed controls More detailed information More detailed instructions

15CHAPTER 1: INTRODUCTION

14 [reinertsen]

Effects gap Knowledge gap Alignment gap

Auftragstaktik
remedy

“Everyone retains
freedom of decision
and action within
bounds”

“Do not command more
than is necessary or plan
beyond the circumstances
you can foresee”

“Communicate to every unit as
much of the higher intent as is
necessary to achieve the
purpose”

Directed
opportunism
remedy

Give individuals
freedom to adjust their
actions in line with
intent

Limit direction to defining
and communicating the
intent

Allow each level to define how
they will achieve the intent of
the next level up, and
“backbrief”

It is crucial to understand that when we work in a complex adaptive system
where friction dominates, the scientific management remedies cannot work. In
fact, they make things worse. Creating ever more detailed plans delays the
feedback that would tells us which of our assumptions are invalid. Complex
sets of rules and controls punish the innocent but can be evaded by the guilty,
all the while destroying morale, innovation, and entrepreneurialism. Intelli-
gence gathering fails in the face of bureaucratic or pathological organizations
which hide or distort information in order to protect their turf. Organizations
unable to escape the grip of scientific management are perfect targets to be dis-
rupted by organizations that understand how to move fast at scale.

Create Alignment at Scale Following the Principle of
Mission
The most important concern leaders and managers operating within a complex
adaptive system face is this: how can we enable people within the organization
to make good decisions—to act in the best interests of the organization—given
that they can never have sufficient information and context to understand the
full consequences of their decisions, and given that events often overtake our
plans?

In The Principles of Product Development Flow,14 Donald Reinertsen presents
the Principle of Mission, based on the doctrine of Mission Command, in which
we “specify the end state, its purpose, and the minimum possible constraints.”
According to the Principle of Mission, we create alignment not by making a
detailed plan of how we achieve our objective but by describing the intent of
our mission and communicating why we are undertaking it.

The key to the Principle of Mission is to create alignment and enable
autonomy by setting out clear, high-level target conditions with an agreed time

LEAN ENTERPRISE16

frame—which gets smaller under conditions of greater uncertainty—and then
leaving the details of how to achieve the conditions to teams. This approach
can even be applied to multiple levels of hierarchy, with each level reducing the
scope while providing more context. In the course of the book, this principle is
applied in multiple contexts:

Budgeting and financial management
Instead of a traditional budgeting process which requires all spending for
the next year to be planned and locked down based on detailed projections
and business plans, we set out high-level objectives across multiple per-
spectives such as people, organization, operations, market, and finance
that are reviewed regularly. This kind of exercise can be used at multiple
levels, with resources allocated dynamically when needed and the indica-
tors reviewed on a regular basis.

Program management
Instead of creating detailed, upfront plans on the work to be done and
then breaking that work down into tiny little bits distributed to individual
teams, we specify at the program level only the measurable objectives for
each iteration. The teams then work out how to achieve those objectives,
including collaborating with other teams and continuously integrating and
testing their work to ensure they will meet the program-level objectives.

Process improvement
Working to continuously improve processes is a key element of the TPS
and a powerful tool to transform organizations. In Chapter 6 we present
the Improvement Kata in which we work in iterations, specifying target
objectives for processes and providing the people who operate the pro-
cesses the time and resources to run experiments they need to meet the tar-
get objectives for the next iteration.

Crucially, these mission-based processes must replace the command and con-
trol processes, not run alongside them. This requires people to behave and act
in different ways and to learn new skills. It also requires a cultural change
within the organization, as we discuss in Chapter 11. Discussing how to apply
Mission Command in business, Stephen Bungay reflects on a culture that ena-
bles Mission Command—which, not coincidentally, has the same characteris-
tics that we find in the generative organizations described by Westrum in
Table 1-1:

The unchanging core is a holistic approach which affects recruiting,
training, planning, and control processes, but also the culture and val-
ues of an organization. Mission Command embraces a conception of
leadership which unsentimentally places human beings at its center. It
crucially depends on factors which do not appear on the balance sheet

17CHAPTER 1: INTRODUCTION

15 [bungay], p. 88.

16 [rother-2010], p. 40, emphasis ours.

of an organization: the willingness of people to accept responsibility;
the readiness of their superiors to back up their decisions; the toler-
ance of mistakes made in good faith. Designed for an external envi-
ronment which is unpredictable and hostile, it builds on an internal
environment which is predictable and supportive. At its heart is a net-
work of trust binding people together up, down, and across a hierar-
chy. Achieving and maintaining that requires constant work.15

Your People Are Your Competitive Advantage
The story of the Fremont Assembly site doesn’t stop with NUMMI. It is in fact
the locus of two paradigm shifts in the US auto manufacturing industry. In
2010, the NUMMI plant was purchased by Tesla Motors and became the Tesla
Factory. Tesla uses continuous methods to innovate faster than Toyota, dis-
carding the concept of model years in favor of more frequent updates and in
many cases enabling owners of older cars to download new firmware to gain
access to new features. Tesla has also championed transparency of informa-
tion, announcing it will not enforce its patents. In doing so, it echoes a story
from Toyota’s origins when it used to build automatic looms. Upon hearing
that the plans for one of the looms had been stolen, Kiichiro Toyoda is said to
have remarked:

Certainly the thieves may be able to follow the design plans and pro-
duce a loom. But we are modifying and improving our looms every
day. So by the time the thieves have produced a loom from the plans
they stole, we will have already advanced well beyond that point. And
because they do not have the expertise gained from the failures it took
to produce the original, they will waste a great deal more time than us
as they move to improve their loom. We need not be concerned about
what happened. We need only continue as always, making our
improvements.16

The long-term value of an enterprise is not captured by the value of its prod-
ucts and intellectual property but rather by its ability to continuously increase
the value it provides to customers—and to create new customers—through
innovation.

A key premise of this book—supported by the experience of companies such as
Tesla, among many, many others—is that the flexibility provided by software
can, when correctly leveraged, accelerate the innovation cycle. Software can

LEAN ENTERPRISE18

provide your enterprise with a competitive advantage by enabling you to
search for new opportunities and execute validated opportunities faster than
the competition. The good news is that these capabilities are within the reach
of all enterprises, not just tech giants. The data from the 2014 State of Devops
Report shows that 20% of organizations with more than 10,000 employees
fall into the high-performing group—a smaller percentage than smaller compa-
nies, but still significant.

Many people working in enterprises believe that there is some essential differ-
ence between them and tech giants such as Google, Amazon, or Netflix that
are held up as examples of technology “done right.” We often hear, “that
won’t work here.” That may be right, but people often look in the wrong
places for the obstacles that prevent them from improving. Skeptics often treat
size, regulation, perceived complexity, legacy technology, or some other special
characteristic of the domain in which they operate as a barrier to change. The
purpose of this chapter is to show that while these obstacles are indeed chal-
lenges, the most serious barrier is to be found in organizational culture, leader-
ship, and strategy.

Many organizations try to take shortcuts to higher performance by starting
innovation labs, acquiring startups, adopting methodologies, or reorganizing.
But such efforts are neither necessary nor sufficient. They can only succeed if
combined with efforts to create a generative culture and strategy across the
whole organization, including suppliers—and if this is achieved, there will be
no need to resort to such shortcuts.

The second chapter of this book describes the principles that enable organiza-
tions to succeed in the long term by balancing their portfolio of products. In
particular, we distinguish two independent types of activity in the product
development lifecycle: exploring new ideas to gather data and eliminate those
that will not see rapid uptake by users, and exploiting those that we have vali-
dated against the market. Part II of the book discusses how to run the explore
domain, with Part III covering the exploit domain. Finally, Part IV of the book
shows how to transform your organization focusing on culture, financial man-
agement, governance, risk, and compliance.

19CHAPTER 1: INTRODUCTION

1 Rogers’ work, detailed in [rogers], was in fact derived from research into the adoption of tech-
nology by farmers in Iowa.

C H A P T E R 2

Manage the Dynamics of the
Enterprise Portfolio

The purpose of a business is to create a customer.
Peter Drucker

In this chapter we will examine the lifecycle of businesses and how companies
can balance the exploration of new business models with the exploitation of
proven ones. We’ll need this distinction in order to understand where lean
startup practices and principles can be applied in an enterprise context and
how they can be used as the basis of managing an innovation portfolio.

In his book Diffusion of Innovations, Everett Rogers describes the cycle
through which all successful technologies and ideas progress, shown in
Figure 2-1.1 Over time, all successful ideas, whether technologies, product cate-
gories, business models, or even methodologies, progress from being scarce
and unevenly distributed to eventually becoming a commodity. They then form
building blocks for new, higher-level, more valuable innovations. Of course the
time it takes for innovations to progress through the various stages of the cycle
can vary substantially.

21

Figure 2-1. The S-curve which shows the lifecycle of innovations

Rogers believed people could be classified into groups based on how they
respond to innovation, as shown in Figure 2-2. Initially, new technologies and
ideas are experimented with and tested by innovators, which form the smallest
group of the overall population. As innovators discover technologies that pro-
vide competitive advantage (most will not), these technologies are taken up by
the early adopters. In this way, success in each group leads to further diffusion
through the other groups. Rogers’ ideas were popularized and built upon by
Geoffrey Moore, who introduced the concept of the “chasm,” a logical divide
between uptake by early adopters and the early majority. This chasm was
inspired by Moore’s observation that many innovations flounder once they are
no longer seen as a source of competitive advantage by visionaries, but are not
yet sufficiently established to be seen as a safe bet or proven practice by people
in the early majority.

LEAN ENTERPRISE22

Figure 2-2. Technology adoption lifecycle, from Dealing with Darwin by Geoffrey A. Moore,
2006 (used by permission of Portfolio, an imprint of Penguin Group (USA) LLC)

Once the market has assimilated a disruptive new technology or idea, a whole
range of product offerings gets spawned. Moore’s take on the product category
lifecycle is shown in Figure 2-3. A successful product category will initially see
high growth (stage B), followed by a mature market (stage C) in which consoli-
dation takes place. Growth in mature markets is typically driven by acquiring
competitors and new customers as well as by efficiency gains. Finally, product
categories decline (stage D). At any point, a category can be disrupted by some
new innovation—indeed an innovation is defined as “disruptive” based on its
effect on existing product categories and business models. Even in the face of
disruption, it’s sometimes possible to maintain a lucrative niche market; for
instance, feature phones are still an important category in many countries, and
IBM still has a profitable mainframe business.

23CHAPTER 2: MANAGE THE DYNAMICS OF THE ENTERPRISE PORTFOLIO

2 This distinction was first proposed by James March in his paper “Exploration and Exploitation
in Organizational Learning” [march].

3 [blank]

Figure 2-3. Category maturity lifecycle, from Dealing with Darwin by Geoffrey A. Moore, 2006
(used by permission of Portfolio, an imprint of Penguin Group (USA) LLC)

The first point to observe is that products at different stages of maturity vary
significantly in terms of how they are managed, developed, marketed, and fun-
ded. For example, in a mature market we have a good understanding of our
customers and the value they get from the product; acquiring new customer or
selling new products to existing ones is well understood, and new products in
the category typically contain only incremental innovations. For new cate-
gories, the opposite is true.

While there is a lot of detail involved in understanding these different stages of
the lifecycle, such as whether our customers are other businesses or consumers,
we can get to the important discussion by drastically simplifying the problem
and looking at two key activities that all enterprises will engage in: exploring
new product categories and business models, and exploiting the proven ones.2

Steve Blank refers to these activities as “search” and “execute” in the context
of customer development.3

Startups begin by exploring new opportunities through business model innova-
tion: they search for a new business model that is aligned with the founders’
purpose and vision, delivers value for customers, and can drive the profitability
and growth of the organization. Once it is found, the business model is exploi-
ted by growing and scaling it, finding ways to drive down costs, improve
efficiency, and increase market share and customer base. However, every busi-

LEAN ENTERPRISE24

ness model is ultimately transient: eventually, every business model and prod-
uct category will be disrupted by new ones—it is only a matter of time.

Exploring new opportunities and exploiting existing ones are fundamentally
different strategies requiring different structure, competencies, processes, and
mindset. It is hard to overemphasize this key point: management practices that
are effective in the exploit domain will lead to failure if applied to exploring
new opportunities—and vice versa. The differences between these two domains
are listed in Table 2-1.

Table 2-1. Explore versus exploit

Explore Exploit

Strategy Radical or disruptive innovation, new
business model innovation

Incremental innovation, optimizing
existing business model

Structure Small cross-functional multiskilled team Multiple teams aligned using Principle of
Mission

Culture High tolerance for experimentation, risk
taking, acceptance of failure, focus on
learning

Incremental improvement and
optimization, focus on quality and
customer satisfaction

Risk
management

Biggest risk is failure to achieve product/
market fit

A more complex set of trade-offs specific
to each product/service

Goals Creating new markets, discovering new
opportunities within existing markets

Maximizing yield from captured market,
outperforming competitors

Measure of
progress

Achieving product/market fit Outperforming forecasts, achieving
planned milestones and targets

Startups that discover a successful business model and cross the chasm often
find it hard to transition into the next stage: executing and scaling in a growth
market. Meanwhile, organizations that succeed in transforming themselves
into engines of execution often lose their ability to explore new business mod-
els. Eric Ries wrote himself an imaginary memo capturing this shift in mindset:

Dear Eric, thank you for your service to this company. Unfortunately,
the job you have been doing is no longer available, and the company
you used to work for no longer exists. However, we are pleased to
offer you a new job at an entirely new company, that happens to con-
tain all the same people as before. This new job began months ago,
and you are already failing at it. Luckily, all the strategies you’ve

25CHAPTER 2: MANAGE THE DYNAMICS OF THE ENTERPRISE PORTFOLIO

4 http://bit.ly/1v6Y8YI

5 http://bit.ly/1v6YfTX; these numbers vary by industry, with the 5-year survival rate for infotech
businesses being substantially lower than education and health: http://bit.ly/1v6YeiN.

6 Hard data is harder to come by, but circumstantial evidence is everywhere.

7 http://bit.ly/1v6Y8YI

developed that made you successful at the old company are entirely
obsolete. Best of luck!4

A key goal of successful portfolio management in an enterprise is understand-
ing how to balance exploring new businesses with exploiting proven existing
business models—and how to transition businesses successfully from one state
to the other. Leaders must understand the difference between these two
domains and be able to operationalize the very different mindsets and strate-
gies that govern them.

Exploring New Ideas
Less than 50% of startups are alive five years after they start.5 In a similar way,
enterprises waste enormous amounts of money on trying to grow new busi-
nesses, creating little to no value for customers.6 Of course it’s impossible to
know in advance whether or not a new business will be successful, but Eric
Ries’ The Lean Startup details a method for working in conditions of extreme
uncertainty. The Lean Startup methodology applies within the enterprise con-
text just as it does in the world of startups, so long as we are clear on its pur-
pose: to discover and operationalize new and potentially disruptive business
models, and to quickly discard those that will not work.

Every entrepreneur, whether they work in a startup or an enterprise, has a
vision of their business and the impact it will have on legions of grateful, ador-
ing customers. For this vision to become reality, there are two key assumptions
that must be tested: the value hypothesis and the growth hypothesis. The value
hypothesis asks whether our business actually provides value for users by solv-
ing a real problem. If so, we can say we have found a problem/solution fit. The
growth hypothesis tests how fast we can acquire new customers and whether
we have what Steve Blank calls a repeatable and scalable sales process—in
other words, if our customer base can rapidly move up the “hockey stick” in
Figure 2-1 and whether we have a sufficiently low customer acquisition cost. If
we pass these tests, we have a product/market fit and can proceed to the final
two stages in Steve Blank’s customer development process: customer creation,
where we launch our business in earnest, followed by company building where
we attempt to cross the chasm.7

LEAN ENTERPRISE26

http://bit.ly/1v6Y8YI
http://bit.ly/1v6YfTX
http://bit.ly/1v6YeiN
http://bit.ly/1v6Y8YI

In the Lean Startup methodology, we take a systematic approach by working
through this process iteratively. We start by working out what we need to learn
by creating a value hypothesis. We then decide what to measure in order to test
that hypothesis. We then design an experiment, called the minimum viable
product, which we build in order to gather the necessary data from real cus-
tomers to determine if we have a product/market fit.

The trick is to invest a minimum of work to go through this cycle. Since we are
operating in conditions of extreme uncertainty, we expect that our value
hypothesis will be incorrect. At this point we pivot, coming up with a new
value hypothesis based on what we learned, and go through the process again.
We keep doing this until we either achieve a product/market fit, decide to stop
experimenting, or funding dries up. The amount of time we have before the
money runs out is known as the runway, and the goal is to pivot as frequently
as possible in order to find a product/market fit while we still have runway left.

An important characteristic of the Lean Startup method is that experiments are
cheap and quick to run compared to building a complete product. In general,
we are able to build a minimum viable product and gather data in the space of
hours, days, or weeks rather than months or years, using small, cross-
functional teams that are focused on executing the build-measure-learn feed-
back loop shown in Figure 2-4. We expect that many experiments will fail but
a few will succeed; however, by being rigorous in following the steps above,
every iteration will result in validated learning. Validated learning means that
we test—to the necessary degree of precision and no further—the key assump-
tions behind our business model to understand whether or not it would suc-
ceed, and then made the decision to persevere, pivot, or stop.

The Lean Startup process being relatively cheap, in an enterprise context we
can pursue multiple possible business models simultaneously using the Princi-
ple of Optionality.

NOTE

What Is an Option?
Purchasing an option gives us the right, but not the obligation, to do something
in the future (typically to buy or sell an asset at a fixed price). Options have a price
and an expiry date. Concert tickets, an agreement to go out for dinner with some-
one, and a decision to fund the development of a new product are all examples of
options.

27CHAPTER 2: MANAGE THE DYNAMICS OF THE ENTERPRISE PORTFOLIO

8 This idea of option-like trial and error, or tinkering, is explored in Nassim Taleb’s Antifragile
[taleb], p. 181ff. Using the language of Dave Snowden’s Cynefin framework, options are a way
to make experiments “safe to fail” by designing them so as to limit the possible negative out-
comes associated with failure. For more on the application of options to IT management, read
Commitment (Hathaway Te Brake Publications) by Olav Maassen et al.

Figure 2-4. The build-measure-learn loop

Investing a fixed amount of time and money to investigate the economic
parameters of an idea—be it a business model, product, or an innovation such
as a process change—is an example of using optionality to manage the uncer-
tainties of the decision to invest further. We limit our maximum investment
loss (“downside”) on any individual idea, with the expectation that a small
number of ideas will pay off big time, and offset or negate investments in those
that did not, as shown in Figure 2-5.8 Optionality is a powerful concept that
lets you defer decisions on how to achieve a desired outcome by exploring
multiple possible approaches simultaneously.

LEAN ENTERPRISE28

9 For a three-page guide to the effectuation framework, visit http://bit.ly/1v6YjmK.

Figure 2-5. The principle of optionality, from Antifragile: Things That Gain From Disorder by
Nassim Nicholas Taleb, 2012 (used by permission of Random House)

TIP

Effectuation
Limiting the downside and making sure every decision creates at least some
upside (even if it is just new information) is one of several techniques that entre-
preneurs apply in situations of uncertainty, where simple cause-effect (algorith-
mic) reasoning is an inappropriate way to manage risk. In her book Effectuation:
Elements of Entrepreneurial Expertise (Edward Elgar Publishing), cognitive scientist
Dr Saras Sarasvathy describes a framework for entrepreneurship based on
research into how entrepreneurs work in real life.9

Limiting initial investment and creating resource scarcity is essential to manag-
ing the risk of innovation. Given that most innovative ideas we have will not
succeed, we must come up with simple, quick experiments to eliminate bad
ideas rapidly and cheaply.

Consider the case of the ARM CPU that is at the heart of almost every mobile
device today. The first version of this processor was designed in Cambridge,
UK, in the 1980s by two people, Sophie Wilson and Steve Furber. It went from

29CHAPTER 2: MANAGE THE DYNAMICS OF THE ENTERPRISE PORTFOLIO

http://bit.ly/1v6YjmK

10 http://bit.ly/1v6Ynmw

11 http://bit.ly/1v6YoH7

a concept to a production-ready design in 18 months.10 When their boss, Her-
man Hauser, was asked how they did it, he said, “When we decided to do a
microprocessor, in hindsight, I think I made two great decisions. I trusted the
team, and gave them two things that Intel and Motorola had never given their
people: the first was no money and the second was no people. They had to
keep it simple.”11

The concepts at the heart of the Lean Startup are designed to rapidly evaluate
business models through identifying and testing assumptions in a scientific
way. Thus they have application beyond the creation of new businesses. For
example, the principles of constraining time and resources, thus limiting down-
side, and building a minimum viable product to test your value hypothesis as
soon as possible with real customers should be applied at the start of every
endeavor. We should use this approach to explore all new ideas which have
unknowns, uncertainties, and therefore risks—whether it’s delivering new
products, replacing existing systems, adopting new tools, processes, or meth-
odologies, or implementing commercial off-the-shelf software solutions
(COTS). Whenever you hear of a new IT project starting up with a large
budget, teams of tens or hundreds of people, and a timeline of many months
before something actually gets shipped, you can expect the project will go over
time and budget and not deliver the expected value.

WARNING

Apply Lean Startup to Internal IT Projects
Lean Startup principles are just as important for internal software engineering
projects, including services and platforms such as private clouds, systems replace-
ments, and so forth. Enormous initiatives, with roadmaps of months or even years,
constantly pop up for these types of projects, with lip service paid to working
incrementally to solve a real (internal) customer problem. In fact, teams building
these systems are often dismissive of their customers’ needs and preferences—
we often hear statements such as “we know what they need better than them.”
Projects run in this way, without regularly delivering incremental value to their
customers in order to get feedback, are an appalling waste of time and resources
and rarely achieve their intent, outcome, or objectives. But there are other serious
negative consequences: internal systems that are painful to use make employees
frustrated, impact morale and their ability to do their work effectively. Apart from
underperformance costs, businesses create systems that add further complexity
to already enormously complex production environments. The inevitable out-
come is “shadow IT”—teams deserting the services approved or maintained by
the IT department in favor of something better so they can get their work done.

LEAN ENTERPRISE30

http://bit.ly/1v6Ynmw
http://bit.ly/1v6YoH7

Organizations tend to start new projects with large teams both because they
assume (wrongly) that this will help finish sooner and because they use pro-
cesses, such as annual budgeting cycles, that stimulate land grabs for favored
projects and resources. In building complex systems, however, these forces
inevitably lead to system bloat, increased complexity and dependency manage-
ment, inefficiency, and poor quality. Establishing and trying to maintain effec-
tive communication within large teams consumes enormous amounts of
capacity on large projects. Meanwhile, the systems created grow rapidly in an
uncontrolled and undirected manner.

In this environment it is extremely hard to establish effective feedback loops to
determine whether what is being built is valuable and aligned to the product or
project vision. Often it’s not even possible to integrate the components into a
working system for much of the project—and when we try to do that, we find
a myriad of problems that must be addressed to get the system into a working
state, let alone released. It has been our experience, as reflected in Table 1-2,
that adding more upfront planning to this process tends to make the eventual
outcome worse, not better.

No major piece of work should be fully funded before we have evidence to
support the business and economic model on which it is based, and this explo-
ration must be done with small, cross-functional teams with a limited runway,
as described in Part II.

When Exploring New Business Models, Minimize Investment in
Software Development

One large retail organization we worked with wanted to open a store in a new market
—their first international expansion. The IT team were given eight weeks to adapt their
point-of-sale system to work in the new country, calculating a different sales tax and
using a different currency. We estimated that changing the existing system to work in
multiple currencies and tax regimes would be a substantial multi-month IT project
requiring significant investment. Forced to seek options to validate that the solution
was actually possible, the team hard-coded the new sales tax into the existing main-
frame system and implemented a simple proxy that replaced the currency symbols in
real time for systems in the new store. Although the international expansion was ulti-
mately cancelled as a result of the 2008 financial crisis, the initial software part of the
project validated the proposed solution with minimal investment, before an invest-
ment into a fully functioning and robust long-term solution was agreed.

A final note on exploration. In this chapter we focus on the diffusion of inno-
vation as it applies to products, but exactly the same principles apply to organ-
izational change. Many enterprises try to roll out new methodologies, practi-
ces, processes, and tools across the entire organization in one go, ignoring the

31CHAPTER 2: MANAGE THE DYNAMICS OF THE ENTERPRISE PORTFOLIO

fact that people respond to such innovations in different ways and that there is
no one-size-fits-all approach to adoption. It is common to see this kind of “big
bang” approach fail to achieve expected results, or be quietly abandoned to
give way to another new initiative attempting to address the failings of the last.

We should explore and experiment with radical process changes—known as
kaikaku in Lean terminology—in the same way we explore potential new busi-
ness models. That is, we should try them out with a relatively small, cross-
functional part of the organization, with people that fall in the “innovator”
category. These people must be interested in the proposed process experiments
and have the necessary skills to run them. For a change that proves to be val-
uable, this team can help other groups adopt it so it “crosses the chasm”
within the wider organization until it becomes the standard way to work.
However, process improvement does not stop here. As we discuss in Chapter 6,
all teams will still make continuous, incremental process improvements,
known as kaizen, as part of their daily work to reduce waste and increase
throughput and quality. Organizational culture will be discussed in more detail
in Chapter 11.

Exploiting Validated Business Models
Enterprises are optimized to exploit business models that have crossed the
chasm—it’s what they are designed to do. However, it’s very common for engi-
neering work to be the bottleneck when evolving existing products and intro-
ducing new products within the category being exploited.

Projects form the basis of the traditional paradigm for carrying out work in the
enterprise. A project typically requires a business case to be written to gain a
budget allocation, which in turn leads to a large amount of upfront planning,
design, and analysis. The various departments must then coordinate the work
and execute the plan. Success of a project is measured by completing the origi-
nal plan on time and budget. Sadly, however, whether the project “succeeds”
according to these criteria is irrelevant and insignificant when compared to
whether we actually created value for customers and for our organization.

Data gathered from evolving web-based systems reveals that the plan-based
approach to feature development is very poor at creating value for customers
and the organization. Amazon and Microsoft (along with many startups) use a
technique called A/B testing to gather data on whether a feature will actually
deliver value to users before it gets built in full. Ronny Kohavi, who directed
Amazon’s Data Mining and Personalization group before joining Microsoft as
General Manager of its Experimentation Platform, reveals the “humbling sta-
tistics”: 60%–90% of ideas do not improve the metrics they were intended to
improve. Based on experiments at Microsoft, 1/3 of ideas created a statistically
significant positive change, 1/3 produced no statistically significant difference,

LEAN ENTERPRISE32

12 [kohavi]

13 [kahneman], p. 252. The planning fallacy is relied upon by many service providers who submit
rock-bottom bids for the initial, predefined, contractual services (especially when contracts are
awarded to the lowest bidder) and then make their profit through change requests for which
customers pay a premium.

14 Reinertsen devotes a whole chapter ([reinertsen], Chapter 5) of his book to the case for reducing
batch sizes.

and 1/3 created a statistically significant negative change.12 All of the ideas tes-
ted were thought to be good ones—but neither intuition nor expert opinion are
good gauges of the value our ideas have for users.

The project paradigm exacerbates this problem. Projects typically take so long
to go from start to finish that stakeholders try and ram as many features as
possible into each one, mindful of the fact that it will be hard to get features
added once the project is complete. Furthermore, the planning process happens
when we have the least information and understanding of project risks—right
at the beginning. Due to a cognitive bias known as the planning fallacy, execu-
tives tend to “make decisions based on delusional optimism rather than on a
rational weighing of gains, losses, and probabilities. They overestimate benefits
and underestimate costs. They spin scenarios of success while overlooking the
potential for mistakes and miscalculations. As a result, they pursue initiatives
that are unlikely to come in on budget or on time or to deliver the expected
returns—or even to be completed.”13

As we execute the project, we discover new information—but since nobody
wants their features cut, new information generally leads to more work, which
is known as “scope creep.” Donald Reinertsen describes the vicious cycle of
adding more scope as we run projects and discover more information as the
“large batch death spiral”—which, combined with the planning fallacy, means
projects will overrun both their budget and due date in proportion to their
size. This is an important argument for working in small batches.14

All of these features and added scope means that projects typically add a tre-
mendous amount of complexity to production environments, which—as we
discuss in Chapter 14—is not typically accounted for as part of the project
planning process. This complexity leads to higher costs and unplanned work in
the operations department, and adds significantly to the cost and effort
required to execute future projects.

Finally, because the project approach judges people according to whether work
is completed on time and on budget, not based on the value delivered to cus-
tomers, productivity gets measured based on output rather than outcomes.
This drives several damaging behaviors. Product people become judged on

33CHAPTER 2: MANAGE THE DYNAMICS OF THE ENTERPRISE PORTFOLIO

their ability to create comprehensive specification documents and well-crafted
business cases, not on whether the products and features they come up with
deliver value to users. Developers are rewarded for having code completed on
their developer workstations, but not for integrating it into a working, tested
system that can survive real-world usage at scale. We create an unsustainable
“hero culture” that rewards overwork and high utilization (making sure every-
body is busy) rather than doing the least possible work to achieve the desired
outcomes.

High utilization means work involving collaboration takes longer to complete,
because the people you need to work with are always busy with other priori-
ties. In order to meet ever more serious deadlines, people fail to carry out
maintenance and process improvement work (such as automation) that would
increase quality and throughput. This, in turn, drives up the cost of doing fur-
ther work, increasing the pressure on the organization to “work harder” and
fueling a vicious cycle of overwork.

John Seddon, author of Freedom from Command & Control (Productivity
Press), states that “dysfunctional behavior is ubiquitous and systemic, not
because people are wicked, but because the requirement to serve the hierarchy
competes with the requirement to serve customers…people’s ingenuity is
engaged in survival, not improvement.”

How do we extricate ourselves from this downward spiral? In Part III of this
book, we describe how to run large-scale programs of work in the exploit
domain, using the following principles:

1. Define, measure, and manage outcomes rather than output. Applying the
Principle of Mission, we specify “true north” for our program of work—
our ideal stakeholder outcomes. Then, at the program level, we work itera-
tively, specifying for each iteration the measurable program-level outcomes
we want to achieve. How to achieve these outcomes is delegated to teams
working within the program. Based on the feedback from real customers
after each iteration, we work to improve quality of demand, improve
speed, and improve quality of outcomes.

2. Manage for throughput rather than capacity or utilization. We implement
Kanban principles by making all work visible and limiting work in pro-
cess. We then aim to stop starting work and start finishing it as soon as
possible. We continuously undertake process improvement work to reduce
lead time—the time it takes to deliver work—throughout the system. We
use continuous delivery and work in small increments to make it cheap
and low risk to deliver work in small batches with easier feedback loops.

3. Ensure people are rewarded for favoring a long-view system-level perspec-
tive over pursuing short-term functional goals. People should be rewarded

LEAN ENTERPRISE34

15 This term was coined by Ronny Kohavi, partner architect at Microsoft.

for continuous and effective (win-win) collaboration, for minimizing the
amount of work required to achieve the desired outcomes, and for reduc-
ing the complexity of the systems we create to enable these outcomes. Peo-
ple should not be punished when failures occur; rather, we must build a
culture of experimentation and collaboration, design systems which make
it safe to fail, and put in place processes so we can learn from our mistakes
and use this information to make our systems more resilient.

Balancing the Enterprise Portfolio
The key to managing an enterprise business portfolio, as with any financial
investment, is to use an economic model. However, this is not a widespread
practice. In a survey of 161 global business decision makers shown in
Figure 2-6, only 24% of respondents reported using an economic model to
make investment decisions in products and services. Astonishingly, 13% admit-
ted that the most highly paid person’s opinion (known as the HiPPO method)
is the primary deciding factor.15 47% reported using the only slightly less
embarrassing method of decision by committee.

Figure 2-6. How do enterprises make investment decisions?

35CHAPTER 2: MANAGE THE DYNAMICS OF THE ENTERPRISE PORTFOLIO

16 [moore]

In Escape Velocity: Free Your Company’s Future from the Pull of the Past,16

Geoffrey Moore presents a “growth/materiality matrix” for visualizing existing
investment decisions, shown in Figure 2-7, and describes how it allows us to
distinguish between companies which have an effective portfolio strategy and
those which do not. The y axis of the diagram measures whether a particular
business is material to you relative to others, where “material” means that it
generates 5–10% or more of the total revenue or profit. The x axis measures
the growth rate of the business in absolute terms.

Figure 2-7. The growth/materiality matrix for portfolio management, from Escape Velocity:
Free your Company’s Future from the Pull of the Past by Geoffrey A. Moore, 2011 (used by per-

mission of HarperCollins Publishers LLC)

Many organizations—in 2014, think Microsoft, IBM, and HP—have market-
leading franchises in quadrant 3, corresponding to stage C (a mature market)
in Figure 2-3. But, as shown in Figure 2-7, none has been able to develop
(rather than acquire) a major franchise in stage B (corresponding to quadrant
2) despite substantial R&D investments which have led to new businesses in
quadrant 1. In contrast, Amazon, Google, and Apple have each created busi-

LEAN ENTERPRISE36

nesses in the past decade which have grown rapidly to become material to the
enterprise.

In order to understand why so many companies fail to create businesses in
quadrant 2, we must understand the dynamics of the enterprise portfolio. This
is described in the three horizon model presented in [baghai], shown in
Figure 2-8. Horizon 1 consists of your set of core product categories and busi-
nesses (corresponding to quadrant 3 in Figure 2-7).

Figure 2-8. Three Horizons, from Escape Velocity: Free your Company’s Future from the Pull of
the Past by Geoffrey A. Moore, 2011 (used by permission of HarperCollins Publishers LLC)

Investments in horizon 1 businesses will deliver results in the same year, and
typically take the form of developing existing products and launching new
ones within the existing categories. Horizon 2 is the set of emerging businesses
which will form the core business of the future. These require significant
investment and the attention of sales and marketing divisions to succeed, but
will not deliver the same levels of returns as horizon 1 investments.

Horizon 3 is the domain of the Lean Startup where we experiment with new
business models and attempt to create a product/market fit for new businesses.
We aim to invest enough time and money to create a runway to discover a

37CHAPTER 2: MANAGE THE DYNAMICS OF THE ENTERPRISE PORTFOLIO

17 Steve Jobs, The Lost Interview.

18 http://bit.ly/1v6YwGv

product/market fit before making further investments. We then either move the
idea into horizon 2 or shelve it, perhaps until market conditions or advances in
technology make it favorable to try again.

There are three significant problems conspiring to kill businesses that make it
into horizon 2. First, they require substantial investment in terms of research,
sales, and marketing resources without delivering corresponding revenue
returns—the metric by which these departments are usually measured. Second,
each of the three horizons requires very different management and support
practices in order to succeed, as shown in Table 2-2. Blindly applying a consis-
tent approach to each will result in failure. Finally, as Clayton Christiensen dis-
cusses in The Innovator’s Dilemma (Harper Business), profitable enterprises
are often reluctant to cannibalize their profits and market share by launching
disruptive new products—those that might threaten their existing bottom line
and market valuation.

Table 2-2. Three horizons

Horizon 1 (0-12 months) Horizon 2 (12-36 months) Horizon 3 (36-72 months)

Goals Maximize economic
returns

Cross the chasm, start
contributing significant
revenues

Create a new business

Key
metrics

Revenue versus plan,
market share, profitability

Rate of sales, target accounts Buzz / word-of-mouth
popularity (consumer), name-
brand customers (enterprise)

We frequently see these forces conspiring to prevent businesses from making it
through horizon 2, even in enterprises which do an excellent job of both
exploring and exploiting business models. Often, other companies eventually
bring them to market with devastating results. Xerox PARC invented the
modern GUI (as well as many other elements of modern computing), but the
“toner heads” at Xerox’s head office “had no clue about a computer or what it
could do” and so it was ultimately Apple and Microsoft who brought comput-
ers into people’s living rooms instead.17

Photography giant Kodak, which filed for bankruptcy in 2012, actually inven-
ted the digital camera. Steve Sasson and his team from the Kodak Apparatus
Division Research Laboratory created the breakthrough innovation in 1975.18

However, the team was met with puzzled managers who could not compre-

LEAN ENTERPRISE38

http://bit.ly/1v6YwGv

19 http://for.tn/11ixTko

20 http://www.cnbc.com/id/100801531

hend why customers would ever want to view photographs on a monitor.
Their business was optimized for developing photographs—making paper,
film, and other supplies—not capturing memories.

WARNING

Why You Cannot Simply Hire or Acquire Your Way to Innovation
A number of enterprises have been acquiring startups in an attempt to pick on a
current trend and accelerate innovation—perhaps to diversify and balance their
portfolio, to turn themselves into “innovation labs,” or to tick a box in stage A,
quadrant 1, or horizon 3. We have seen at close hand the poor outcomes this cre-
ates, with these acquisitions failing to produce the expected return and the senior
staff leaving as soon as they could exercise their options. The problems occur
when the acquired company—working on a horizon 3 or 2 product—is subjected
to the horizon 1 governance, financial targets, and management structures of the
acquiring enterprise, completely destroying its ability to innovate. Sometimes
people from the parent organization are rotated through the innovation lab in
the hope this will magically teach them how to innovate in a different horizon,
instead of simply giving them culture shock. Acqui-hiring frequently fails for the
same reason: taking great people and putting them into a pathological or bureau-
cratic culture does not change the culture—it breaks the people. The solution is
to do the hard work to transform the culture of your own organization and grow
effective leadership and management appropriate to each horizon—which will,
incidentally, remove the need to hire in or acquire innovators.

Our hypothesis is that organizations survive and grow in the medium and long
term by balancing the ability to continuously explore potential new business
models with effective exploitation of existing ones. Indeed, one of the
hallmarks of a truly adaptive and resilient organization is that it continually
disrupts its own existing business models in search of future opportunities and
new markets and customers.

For example, Amazon’s pursuit of electronic books and the production of the
Kindle disrupted what was then its primary business model of selling physical
books. The development of the Amazon Marketplace enabled other vendors to
leverage Amazon’s infrastructure and potentially undercut products sold by
Amazon. 3M defines its strategy as constant new product innovation and sets
targets for the percentage of revenue from products introduced in the past five
years at 30%, which it exceeded in 2008.19 Inge G. Thulin, President and CEO
of 3M, expects that number to reach 40% by 2017.20

39CHAPTER 2: MANAGE THE DYNAMICS OF THE ENTERPRISE PORTFOLIO

http://for.tn/11ixTko
http://www.cnbc.com/id/100801531

21 http://cnnmon.ie/1v6YHBA

22 http://bit.ly/1v6YI8Q

Intuit uses a simple model to balance horizons 1, 2, and 3, as shown in
Table 2-3. Google follows a similar model, but with different allocations: 70%
to Horizon 1, 20% to Horizon 2, and 10% to Horizon 3.21

Table 2-3. Intuit innovation horizons and metrics22

Existing businesses Adolescent businesses Ideas

Investment 60% 30% 10% of operating
expenses, funded
quarterly based on
validated learning

Metrics Growing category, share,
net promoter, revenue

Growth, increasing efficiency
(will lead to profitability)

Love metrics based on
delivering customer
benefit, active product
usage, proactive word of
mouth

Example products TurboTax, Mint QuickBooks Online
Accounting

SnapTax

The most important point to bear in mind when balancing horizons is that
unless senior leadership takes an active role in managing investments, includ-
ing putting in place appropriate management practices for different horizons
and paying attention to how management is incentivized, core businesses will
always find a way to use their corporate clout to sideline and ultimately neu-
tralize the other horizons. If the cultural and management barriers are simply
too strong for this kind of “ambidextrous” approach, the alternative is to spin
off a maximally independent business unit.

How Aetna Created New Companies to Disrupt Its Core
Businesses

Aetna, like all the players in the US healthcare market, knew that the Obama adminis-
tration’s Affordable Care Act represented both a serious risk and a significant opportu-
nity. 160 years old at the time the bill was signed into law, Aetna decided to create a
new company called Healthagen, “a separate organization, separately capitalized, sep-
arately compensated, and separately managed, so they’re not subject to the same
management process at Aetna” with the purpose of disrupting the healthcare provider

LEAN ENTERPRISE40

http://cnnmon.ie/1v6YHBA
http://bit.ly/1v6YI8Q

23 http://bit.ly/1v6YM8m

market with new technology and business models. Healthagen has a goal to drive
$1.5bn–$2bn of revenue per year initially.23

Aetna has also created another subsidiary along similar lines to create a consumer mar-
ketplace and drive private exchange models. Mark Bertolini, Aetna’s Chairman, Presi-
dent, and CEO, states that his goal is to build a techology-based competitive ecosystem
that will disrupt Aetna’s own core business.

Conclusion
Every idea has its own lifecycle, with successful ideas creating competitive
advantage for early adopters and ultimately becoming the building blocks for
higher-level innovations. Enterprises must ensure they have a pipeline of new
ideas to provide the basis for growth in future years. Effective enterprise port-
folio management requires that we create and apply an economic model to bal-
ance investments across all three horizons. For further reading on portfolio
management, we recommend Geoffrey Moore’s Escape Velocity: Free Your
Company’s Future from the Pull of the Past.

We expect that there will be several ideas for new businesses incubating in
horizon 3. Since we cannot predict which ones will be successful, we apply the
Principle of Optionality and assume that many will fail but a few will succeed.
We apply the Lean Startup methodology to rapidly pivot through business
models for these businesses until the teams exploring them run out of resources
or discover a product/market fit and gain traction. Most ideas will never make
it to horizon 2, but those that do require a fundamentally different manage-
ment approach. In horizon 3, we care mainly about finding a product/market
fit, but in horizon 2 we need to identify and manage to a wider set of risks
specific to our business. Instead of business model innovation, we switch to
incremental innovation, which requires a different set of skills.

Too many enterprises kill innovation by trying to manage horizon 2 and 3
investments using the strategies of horizon 1. In the rest of this book we will
mainly ignore horizon 1 (although many of the principles and techniques
described in Part III can be usefully applied to that domain). Part II of this
book deals with the explore domain that we will leverage within horizon 3
investments. Part III discusses how to move fast at scale in the exploit domain,
using the same lean principles that have been applied in manufacturing for dec-
ades to continuously drive higher quality and lower costs. In Part IV we dis-
cuss how to transform your enterprise, staring with growing an innovation
culture.

41CHAPTER 2: MANAGE THE DYNAMICS OF THE ENTERPRISE PORTFOLIO

http://bit.ly/1v6YM8m

Questions for readers:

• What framework does your organization use to balance your portfolio of
exploring new business models, exploiting validated ones, and developing
core businesses?

• Is there a place where you can see this portfolio at a glance?

• What performance metrics are used to measure the health of activities in
each of these domains?

• What is the percentage ratio for investments in horizons 1, 2, and 3 in
your organization? Is it intentional or accidental? What do you think
should it be?

• How does senior leadership ensure that investments in horizons 2 and 3
are nurtured, and that transitions between horizons are managed in a way
that will maximize the relevant performance metrics for each individual
investment?

LEAN ENTERPRISE42

PART II

EXPLORE

The best lack all conviction, while the worst / Are full of passionate
intensity.

W. B. Yeats

When faced with a new opportunity or a problem to be solved, our human
instinct is to jump straight to a solution without adequately exploring the
problem space, testing the assumptions inherent in the proposed solution, or
challenging ourselves to validate the solution with real users.

We can see this instinct at work when we design new products, add new fea-
tures to existing products, address process and organizational problems, begin
projects, or replace existing systems. It is the force that leads us towards buy-
ing expensive tools that purport to solve all of our use cases, rolling out a new
methodology or organizational refresh across the whole company, or investing
in “bet the company” programs of work.

Worse, we often fall in love with our own solutions, and then fall prey to the
sunk cost fallacy when we ignore evidence that should cause us to question
whether we should continue to pursue them. When combined with a position
of power, these forces can have catastrophic consequences—one of our collea-
gues was nearly fired by a client for having the temerity to ask about the busi-
ness case behind a particular project.

43

If we had one superpower, it would be to magically appear whenever a prob-
lem or new opportunity was under discussion. Our mission would be to pre-
vent anybody from commencing a major program to solve the problem or pur-
sue the opportunity until they do the following:

• Define the measurable business outcome to be achieved

• Build the smallest possible prototype capable of demonstrating measurable
progress towards that outcome

• Demonstrate that the proposed solution actually provides value to the
audience it is designed for

Since we are only mortal, we trust that you will keep a copy of this book to
hand to wield at the appropriate moment.

In this part, we discuss how to explore opportunities and problem spaces by
taking a scientific and systematic approach to problem solving. By taking an
experimental approach, we can effectively manage the risks and enable teams
to make better decisions and judgements under the uncertainty that is inherent
in innovation.

LEAN ENTERPRISE44

C H A P T E R 3

Model and Measure Investment Risk

Doubt is not a pleasant condition, but certainty is absurd.
Voltaire

For enterprises experimenting with new business models and products, as for
startups, the biggest risk is a failure to create something that actually delivers
value to users. The Lean Startup framework allows us to rapidly discard ideas
that do not deliver value or will not be adopted sufficiently quickly so we don’t
waste our resources on them. However, the principles behind the Lean Startup
can be applied to all kinds of activities within the enterprise, such as building
internal tools, process improvement, organizational change, systems replace-
ment, and GRC (governance, risk, and compliance) programs.

In this chapter we present the principles and concepts that enable us to take a
systematic approach to managing the risk of planned work, by gathering infor-
mation to reduce uncertainty. This framework forms the basis of a practical
approach to exploring new opportunities we present throughout the rest of
Part II.

Model Investment Risk
Typically in enterprises we must build a business case along with a plan to sup-
port it before we can get approval to proceed. This usually involves a team of
people creating a detailed document that estimates the value the proposed ini-
tiative will create. The business case describes the required resources, depen-
dencies, and finally a beautifully crafted set of numbers detailing the planned
work with costs, key metrics, a resource plan, and timeframes. Depending on

45

1 Definitions are taken from [hubbard], p. 50.

2 [hubbard], p. 111.

3 http://www.cio.com/article/119059/The_IT_Measurement_Inversion

the level of detail and the estimated investment required, this process can take
weeks or months to complete.

An important goal of the planning process is to support an investment deci-
sion. In order to make this decision, we need to have a good understanding of
the risks involved with the investment. Following Douglas Hubbard, we define
risk as “a state of uncertainty where some of the possibilities involve a loss,
catastrophe, or other undesirable outcome,” and the measurement of risk as “a
set of possibilities, each with quantified probabilities and quantified losses.”1

For example, “We believe there is a 50% chance the project will be cancelled,
with a loss of $2m in development work.”

In How to Measure Anything, Hubbard discusses his work analyzing business
cases for IT investments:2

Each of these business cases had 40 to 80 variables, such as initial
development costs, adoption rate, productivity improvement, revenue
growth, and so on. For each of these cases, I ran a macro in Excel that
computed the information value for each variable. I used this value to
figure out where to focus measurement efforts. When I ran the macro
that computed the value of information for each of these variables, I
began to see this pattern: 1) The vast majority of variables had an
information value of zero…2) The variables that had high information
values were routinely those that the client never measured. 3) The
variables that clients used to spend the most time measuring were usu-
ally those with a very low…information value.

Take the example of estimating development costs in order to put together
business cases to obtain project approval. This usually involves analyzing
months’ worth of future work, breaking it into small pieces, and estimating the
effort required for each piece. However, as Hubbard notes, “Even in projects
with very uncertain development costs, we haven’t found that those costs have
a significant information value for the investment decision…The single most
important unknown is whether the project will be canceled…The next most
important variable is utilization of the system, including how quickly the sys-
tem rolls out and whether some people will use it at all.”3

Thus the business case essentially becomes a science fiction novel based in an
universe that is poorly understood—or which may not even exist! Meanwhile
significant time is wasted on detailed planning, analysis, and estimation, which

LEAN ENTERPRISE46

http://www.cio.com/article/119059/The_IT_Measurement_Inversion

4 [reinertsen]

5 See http://www.howtomeasureanything.com for an example. For an introduction to Monte
Carlo simulation for business models, see http://bit.ly/1vKoXBE.

provides large amounts of information with extremely limited value. Accord-
ing to research by Donald Reinertsen, author of The Principles of Product
Development Flow: Second Generation Lean Product Development,4 it’s typi-
cal for 50% of total product development time to be spent in such “fuzzy front
end” activities. Naturally, this leads to poor investment decisions and need-
lessly long product development cycles. This creates multiple negative
outcomes:

• Long product development cycles dramatically reduce the potential return
on investment we can achieve from successful new products.

• Most perniciously, long development cycles delay the time it takes to get
customer feedback on whether we are building something valuable.

• Typical market research activities are poor at predicting a product/market
fit, especially in new product categories. Research said that minivans and
iPods would not be successful.

• In the absence of good data, people tend to get their pet projects funded.
Particularly in enterprise IT, we often see spectacular amounts of money
poured down the drain on systems replacement projects—even (perhaps
especially?) in organizations operating in highly regulated sectors.

There are two factors we care about in a business plan. The first is the sensitiv-
ity of the key metric to the various variables in the business case. The second is
the level of uncertainty in the variables to which the key metric is sensitive.
Given distributions and ranges for the key variables, a simple but powerful
approach is to perform a Monte Carlo simulation to work out the possible
outcomes. This will allow us to find the variables to which we need to pay
attention in order to make good investment decisions.

To run a Monte Carlo simulation, we use a computer to create thousands of
randomized scenarios based on the distribution shape and ranges for the input
variables, and then compute the value of the metric we are interested in for
each scenario. The output of a Monte Carlo simulation is a histogram, with
the number of scenarios for each range on the y-axis, and the ranges on the x-
axis. You can perform a Monte Carlo simulation using Excel, or use one of a
number of existing custom tools.5 The output of a Monte Carlo simulation for
a business case might look something like Figure 3-1. As Hubbard notes, the
uncertainty in ROI for IT programs tends to be very high and increases with
the duration of the program.

47CHAPTER 3: MODEL AND MEASURE INVESTMENT RISK

http://www.howtomeasureanything.com
http://bit.ly/1vKoXBE

Figure 3-1. Output of a Monte Carlo simulation

As you can verify by doing a Monte Carlo simulation on your own business
cases, ROI in IT programs is not very sensitive to cost, but rather to whether
the program will be cancelled and to the utilization of the resulting system.
These variables depend primarily on whether we have built the right thing.
However, the standard enterprise planning process provides almost no valida-
tion of this.

Let us be absolutely clear. In most enterprises, around 30%–50% of the total
time to market is spent on activity which provides almost zero value in terms
of mitigating the risks of our investments. This near-zero-value activity is
mostly driven by financial management and planning processes. In our experi-
ence, the fuzzy front end presents the biggest opportunity for radical process
improvement (kaikaku) in enterprises. We can drastically reduce the required
time, and make better decisions, by taking a systematic approach to risk man-
agement. In this chapter, we discuss how to attack the fuzzy front end for new
businesses and new products. In Chapter 7, we show how to change the way
program-level feature backlogs are managed.

Applying the Scientific Method to Product Development

The way the world tells you whether what you are doing is valuable is
whether they send you money.

Donald Reinertsen

When there is a large amount of uncertainty in the key metric we care about,
we begin by identifying the variables with the highest information value—the
riskiest assumptions. These are the ones to which our outcome metric is most
sensitive. In the case of both business model innovation and product develop-

LEAN ENTERPRISE48

6 [bell], p. 48.

ment, Donald Reinertsen comments that “unit sales are where the bodies are
buried.”

The most inefficient way to test a business model or product idea is to plan
and build a complete product to see whether the predicted market for it really
exists. Yet this is exactly what we do once we have an approved business case.
Part of the problem is the language we use to describe the product develop-
ment process. For example, consider the term “requirements.” Whose require-
ments are they? Are they user requirements? In Lean IT, Steve Bell and Mike
Orzen comment that “users are often unable to articulate exactly what they
need, yet they often seem insistent about what they don’t want…once they see
it.”6

We should stop using the word “requirements” in product development, at
least in the context of nontrivial features. What we have, rather, are hypothe-
ses. We believe that a particular business model, or product, or feature, will
prove valuable to customers. But we must test our assumptions. We can take a
scientific approach to testing these assumptions by running experiments.

In the case of business model and product innovation, the Lean Startup move-
ment provides us with a framework for operating in conditions of extreme
uncertainty. In Running Lean (O’Reilly), Ash Maurya explains how to execute
a Lean Startup model:

• Do not spend a lot of time creating a sophisticated business model.
Instead, design a simplified business model canvas which captures and
communicates the key operating assumptions of your proposed business
model.

• Gather information to determine if you have a problem worth solving—
meaning that it is both solvable and people will pay for it to be solved. If
both of these conditions obtain, we have achieved a problem/solution fit.

• Then, design a minimum viable product (MVP)—an experiment designed
to maximize learning from potential early adopters with minimum effort.
In the likely case that the results of the MVP invalidate your product
hypothesis, pivot and start again. Continue this process until you decide to
abandon the initial problem, run out of resources, or discover a product/
market fit. In the latter case, exit the explore phase and proceed to exploit
the validated model.

• Throughout this process, update the business model canvas based on what
you learn from talking to customers and testing MVPs.

49CHAPTER 3: MODEL AND MEASURE INVESTMENT RISK

7 [hubbard], p. 23.

8 Ibid.

We present this approach in detail in Chapter 4.

There are two key innovations in this model. First, we stop using detailed plan-
ning as a way to manage risk. Instead, we find customers and run cheap
experiments to discover if our proposed business model or product is actually
valuable to them. Second, rather than creating only one plan, we iterate by
running a series of experiments in order to discover a product/market fit, since
we expect that in conditions of uncertainty our first idea is very unlikely to
bear fruit.

A common objection to these principles is that such experiments cannot possi-
bly be representative of a complete product. This objection is based on a false
understanding of measurement. The purpose of measurement is not to gain
certainty but to reduce uncertainty. The job of an experiment is to gather
observations that quantitatively reduce uncertainty.7 The key principle to bear
in mind is this: when the level of uncertainty of some variable is high, we need
very little information to significantly reduce that uncertainty.

NOTE

Definition of Measurement
Measurement: A quantitively expressed reduction of uncertainty based on
one or more observations.8

This definition may seem counterintuitive unless you have experience running
experiments in a scientific context. In experimental science, the result of a meas-
urement is never simply a single value. It is, rather, a probability distribution which
represents the range of possible values, as shown in Figure 3-2. Any measurement
that doesn’t indicate the precision of the result is considered practically meaning-
less. For example, a measurement of my position with a precision of 1 meter is far
more valuable than that same position with a precision of 500 miles. The point of
investing in measurement in a scientific context is to reduce our uncertainty about
the actual value of some quantity. Thus, in particular, if we express our estimates
as precise numbers (as opposed to ranges), we are setting ourselves up for failure:
the chance of us meeting a date 6 months in the future precisely to the day is prac-
tically zero.

LEAN ENTERPRISE50

Figure 3-2. Accuracy and precision

A minimum viable product can be thought of as a way to conduct a relatively
cheap measurement so as to reduce our uncertainty concerning our key metric.
This is what makes an MVP such a good investment. Typically, putting
together a business plan and requirements for a significant initiative takes
weeks or months in an enterprise context. In the same amount of time, by fol-
lowing the Lean Startup model, we could run multiple experiments, learn from
real customers, and emerge with a superior, battle-tested plan based on evi-
dence. Let’s examine the differences between these two approaches when we
need to make an investment decision, as show in Table 3-1.

Table 3-1. Traditional product lifecycle versus Lean Startup lifecycle

Traditional project-planning process Lean Startup discovery process

What data do we have to
make the investment
decision?

A business plan based on a set of
untested hypotheses and assumptions,
backed by case studies and market
research.

Real data based on evidence
compiled from a working product or
service tested with real customers.

What happens next? We must create detailed requirements,
if we haven’t already, and then start a
project to build, integrate, test, and
finally release the system.

We already have a validated MVP
which we can build upon
immediately with new features and
enhancements based on customer
feedback.

When do we find out if the
idea is any good (i.e., will it
get a good return on
investment)?

Once the project is complete and the
product or service is live.

We already have this evidence based
on the data we have collected.

51CHAPTER 3: MODEL AND MEASURE INVESTMENT RISK

9 [hubbard], Chapter 7.

As discussed in Chapter 2, an important factor in the success of the Lean
Startup approach is to limit the size of the explore team and the resources
available to them (including time). This encourages people to apply their crea-
tivity and focus on learning rather than pursuing “perfect” solutions. There are
no awards for elegance of software design or automated test coverage in an
MVP—the more skeletal, the better, provided we can gather the information
we need. Many of the “war stories” exchanged by Lean Startup practitioners
describe the ingenious shortcuts they took in the pursuit of validated learning.

Of course a reasonable question is: given that product development is effec-
tively a form of discovery, how much time and money should we spend on
validated learning? Game theory actually provides a formula for the expected
value of information (EVI). A detailed discussion of how to calculate this num-
ber is beyond the scope of this book, but it is covered in Hubbard’s How to
Measure Anything.9 The EVI gives us an upper bound on how much we should
be prepared to pay to gather the information in question. If the cost of per-
forming a measurement is much less than the EVI (say, an order of magnitude
less), it is clearly worth performing the measurement. Thus, the more risky and
expensive the project in question, the more value you get for your money by
pursuing a Lean Startup approach.

LEAN ENTERPRISE52

10 http://bit.ly/1v6YRcp

11 On his website, http://howtomeasureanything.com, Hubbard provides a spreadsheet that helps
you calculate the value of information.

NOTE

Expected Value of Information
Hubbard defines the value of information as follows: “Roughly put, the value of
information equals the chance of being wrong times the cost of being wrong. The
cost of being wrong—that is, what is lost if your decision doesn’t work out—is
called an opportunity loss. For a simplistic example, say you’re considering invest-
ing $1 million in a new system. It promises a net $3 million gain over three years.
(For our example’s sake, it’ll either be completely successful or a total bomb.) If
you invest but the system fails, your mistake costs you $1 million. If you decide
not to invest and you should have, the mistake costs you $3 million. When we
multiply the opportunity loss by the chance of a loss, we get the expected oppor-
tunity loss (EOL). Calculating the value of information boils down to determining
how much it will reduce EOL.”10

In reality, the success of a product is rarely a binary outcome. If we return to the
example of the predicted ROI for a business case illustrated in Figure 3-1, we get
the EOL by calculating the area of the shaded part of the curve, which represents
the scenarios in which we lose money on our investment. In other words, we sum
up the ROI at each point multiplied by the probability of that outcome. Assuming
we had perfect information on the exact outcome in ROI, that could potentially
be worth as much as the EOL we have just calculated. Since an MVP will typically
provide less than perfect information, the EOL represents an upper bound on
what we should spend on the runway for discovering a product/market fit.11

Applying the Lean Startup Approach Internally Within
Enterprises

The Lean Startup model isn’t limited to new product development. It can be used for
any kind of new work in an enterprise context, including systems replacement, build-
ing internal tools and products, process innovation, and evaluating commercial off-
the-shelf software (COTS). In all cases, we begin by stating the measurable customer
outcome that we wish to achieve. We can define our goal in terms of our immediate
downstream customer, such as our colleague who will use the tool, process, or COTS.
For example, for an internal test automation tool, we might aim to reduce the lead time
for full regression testing to 8 hours.

To determine if we have a problem/solution fit, we look for a customer willing to work
with us to pilot the new system, tool, process, or software. This is a critical step which is
often skipped by enterprises. Indeed for internal tools it’s common to mandate their
use—a disastrous policy which often results in enormous amounts of waste, unhappy
users, and little value to the organization. The process of finding customers and figur-
ing out a real problem they will pay you to solve (even if the payment takes the form of

53CHAPTER 3: MODEL AND MEASURE INVESTMENT RISK

http://bit.ly/1v6YRcp
http://howtomeasureanything.com

time and feedback rather than money)—thereby obtaining a problem/solution fit—is
essential to developing internal tools, purchasing COTS, or internal systems replace-
ment. Mandating the use of a particular solution makes it much harder to gather feed-
back on whether that solution actually provides value.

Once we have a pilot team, we design and execute a minimum viable product. This
may be a prototype of a tool designed to help just one team, or an implementation of
a COTS package to solve a problem for just one team or for a single business process
for that team. The hardest part here is to limit scope so as to solve a real problem but
deliver something in the space of days or weeks, rather than months. The worst thing
we can do is disappear to design the perfect tool or adoption strategy, without contin-
ually delivering value to real users and gathering feedback from them throughout the
process. It’s essential to be disciplined about time-boxing this activity and to focus on
solving a real and an urgent problem as soon as possible.

The measure of success—and whether or not we should proceed—is whether our
users find the MVP good enough to use of their own free will and whether we actually
meet the measurable customer outcome we set out to achieve. If not, we need to pivot
and return to the beginning.

Principles for Exploration
In Chapter 1, we showed how small, highly motivated forces were able to
defeat larger, better trained enemies through a style of war known as maneuver
warfare. “Disruption” is a word that is currently ubiquitous to the point of cli-
ché, but in the context of maneuver warfare, the chief exponent of the idea of
disrupting your opponent’s decision-making process was Colonel John Boyd of
the US Air Force. In his career as a fighter pilot and instructor, Boyd was
famous for never losing his bet that he could win any dogfight—from a posi-
tion of disadvantage—within 40 seconds, and also for co-creating the energy-
maneuverability theory of aircraft performance that led to the design of the
F-16 fighter jet. However, his best-known creation is the “OODA loop,” a
model (shown in Figure 3-3) of how humans interact with their environment
which forms the basis of Boyd’s theory of maneuver warfare. OODA stands
for observe, orient, decide, act, the four activities that comprise the loop.

LEAN ENTERPRISE54

12 [kahneman], pp. 20–21. These names were coined by Stanovich and West in [stanovich].

Figure 3-3. The OODA loop

A common misconception (primarily by people who have not actually seen the
diagram) is that these activities are carried out one after the other in a loop,
and that disruption is achieved by going through the cycle faster than your
opponent. There are two important flaws with this interpretation. First, in
reality both humans and organizations are performing all of these activities
simultaneously, and there are multiple feedback and feed-forward loops
between each of them. Second, it is often advantageous to delay making deci-
sions until the “last responsible moment” (which we can analyze using option-
ality and Cost of Delay, see Chapter 7).

To truly understand the diagram, we must start with orientation. Boyd’s
insight here is that our observations, decisions, and actions are all contingent
upon our current orientation, which is in turn determined by a complex series
of factors including our genetics, our habits and experiences, and the cultures
within which we grew up and are currently operating, as well as the informa-
tion we have to hand. The second thing to note about the diagram is that there
are two mechanisms of influence: one is the feedback and feed-forward loops,
and the other is “implicit guidance and control.”

Psychology tells us that our actions can be shaped either by IGT (implicit guid-
ance and control) or by feed-forward from a conscious decision. Implicit guid-
ance and control in humans is provided by a system in the mind, called System
1, which “operates automatically and quickly, with little or no effort and no
sense of voluntary control.” Conscious decisions are made by System 2 which
“allocates attention to the effortful mental activities that demand it, including
complex computations. The operations of System 2 are often associated with
the subjective experience of agency, choice, and concentration.”12 Equally, IGT

55CHAPTER 3: MODEL AND MEASURE INVESTMENT RISK

13 This quote and the OODA loop diagrams in this section were taken from Chet Richards’ excel-
lent discussion of the OODA loop: http://www.jvminc.com/boydsrealooda_loop.pdf. Chinese
words have been updated to use pinyin.

affects how we observe things, for example our tendency to ignore information
that contradicts our beliefs (this is known as confirmation bias).

Both of these mechanisms exist at the organizational level. In terms of action,
organizations use the implicit guidance and control mechanism when they del-
egate decision-making using decentralized command and the Principle of Mis-
sion, relying on a shared understanding of their goals along with alignment
across the organization to ensure that people act in the interests of the wider
organization. However, some actions (particularly those involving compliance)
must be taken using the explicit feed-forward mechanism.

Implicit guidance and control also govern how organizations observe. Genera-
tive cultures create monitoring systems and visible displays that enable people
throughout the organization to rapidly access relevant information—which, in
turn, changes their orientation. Changes in orientation will cause us to update
what we measure and how information flows through the organization. In
pathological and bureaucratic organizational cultures, measurement is used as
a form of control, and people hide information that challenges existing rules,
strategies, and power structures. As Deming said, “whenever there is fear, you
get the wrong numbers.”

When Boyd talks about “operating inside” an opponent’s OODA loop, he
means understanding our opponent’s loop and how it determines their actions.
Then you can use that knowledge against them:

The basic pattern is simple: An organization uses its better under-
standing of—clearer awareness of—the unfolding situation to set up
its opponent by employing actions that fit with the opponent’s expect-
ations, which Boyd, following Sun Tzu, called the zheng. When the
organization senses (viz. from its previous experiences, including train-
ing) that the time is ripe, it springs the qi, the unexpected, extremely
rapidly. The primary reason for implicit guidance when engaged with
opponents is that explicit instructions—written orders, for example—
would take too much time. As Boyd put it, “The key idea is to empha-
size implicit over explicit in order to gain a favorable mismatch in fric-
tion and time (i.e., ours lower than any adversary’s) for superiority in
shaping and adapting to circumstances.”13

The OODA model can also be applied in the context of customer engagement:
“Instead of surprise → shock → exploitation, as in war and the martial arts,

LEAN ENTERPRISE56

http://www.jvminc.com/boydsrealooda_loop.pdf

14 Chet Richards, op. cit.

zheng/qi could operate as something more like surprise → delight → fascina-
tion → become more committed customers. Apple plays this game, the ‘pursuit
of wow!’ as Tom Peters once described it, very well.”14

Boyd refers to the implicit guidance and control pathways within an organiza-
tion, determined by its culture and existing institutional knowledge and pro-
cesses, as its repertoire. We have discussed how organizations apply their exist-
ing repertoire to disrupt competitors, but in order to improve performance and
avoid disruption, we must be constantly creating new repertoire of our own.
This can take the form of process improvement, evolution of existing products,
or creation of new businesses and new products. This loop is also represented
in the OODA model, as shown in Figure 3-4.

Figure 3-4. Creating new repertoire

The repertoire generation loop is more or less a statement of the scientific
method, in which we create new hypotheses based on observation and synthe-
sis, design experiments to test these hypotheses, and then update or discard our
theories (which form part of our orientation) based on the results of the
experiment. This loop, in turn, inspired Eric Ries’ build-measure-learn loop
(Figure 2-4) which shows how to create new repertoire in the form of new
business models, products, and features. The build-measure-learn loop seems
straightforward, but is hard to adopt in practice due to its combination of a
scientific approach (building to learn) with an engineering mindset (learning to
build).

For process improvement (discussed in Chapter 6) and for changing organiza-
tional culture (discussed in Chapter 11), we can use a loop known as the
Deming cycle, shown in Figure 3-5.

57CHAPTER 3: MODEL AND MEASURE INVESTMENT RISK

Figure 3-5. The Deming cycle

The key to being successful with these cycles (and the scientific method in gen-
eral) is to use them systematically and continuously. Applying them systemati-
cally means using them as a general tool to explore all types of risk, ensuring
that the expense of running an experiment is commensurate with the value of
the information we will discover. Applying them continuously means doing it
as often as possible (as Mike Roberts says, “Continuous means much more
often than you think”), with a focus on getting through the loop in the shortest
possible time. The most important question to ask in the context of repertoire
generation is: how fast can we learn? While we may not immediately release
the results of our learning exercises to the wider world—when to launch your
product is a matter of strategy—we should learn and test our assumptions with
real users as frequently as possible.

When everybody in the organization has been trained to employ the scientific
approach to innovation as part of their daily work, we will have created a gen-
erative culture. We achieve this by practicing the experimental approach until
it becomes habitual, part of our repertoire, using the Improvement Kata
described in Chapter 6. That is what allows an organization to adapt rapidly

LEAN ENTERPRISE58

15 [liker]

to its changing environment. Toyota calls this “building people before building
cars.”15

Scientific Management Versus the
Scientific Method
It’s essential to distinguish between Taylor’s scientific management, discussed
in Chapter 1, and the experimental approach we describe here. In scientific
management, analysis is performed and decisions are taken by management,
with the people who do the work functioning more or less as automatons. In
the experimental approach, the job of leadership and management is to design,
evolve, and operate a system in which the people doing the work have the nec-
essary skills and resources to run their own experiments, thus individually and
collectively learning, developing, and growing their knowledge.

As shown in Table 3-2, applying the scientific method to product development
is fundamentally different from the traditional plan-based approach and
requires different skills and behaviors. It is not that the traditional project life-
cycle is bad—it can be effective in projects where the thing to be built has been
built many times before and the risks are well understood. But traditional
project management is the wrong model for conditions of uncertainty, such as
new product development or any kind of custom software development.

59CHAPTER 3: MODEL AND MEASURE INVESTMENT RISK

Table 3-2. Traditional project planning versus Lean Startup

Skill or behavior Traditional planning approach Experimental approach

Changes to the
plan

Changes to the plan once it has
been agreed upon are considered
problematic and indicate a failure in
the process.

We expect that the initial plan will not survive
contact with real customers, and aim to invalidate
it and pivot as quickly as possible.

Skills required Requirements gathering, analysis,
determination of costs, resource and
dependency planning, ability to
gain political support

Designing experiments and performing
measurements, data collection and analysis,
ability to work effectively in cross-functional
teams and communicate with wider organization

How success is
measured

Whether the plan is approved and
funded

How fast we can go through learning cycles and
exit the explore phase, either by deprioritizing or
canceling the work, or proceeding to the exploit
phase

How we achieve
compliance

Were the appropriate processes
correctly followed and have the
necessary signoffs been gathered?

Did we identify the actual risks to stakeholders
and gather the relevant information to effectively
manage them?

The biggest obstacles to taking a scientific approach to product development
and organizational change are cultural and organizational, as we discuss in
Part IV. In most cases, organizations have simply never taken an experiment-
based approach and lack the skills and experience to implement it. In the con-
text of product development, understanding how to design and execute experi-
ments and analyze data is both hard and critically important—and yet they are
not part of the core curriculum in most MBA programs or courses in software
design and analysis. In bureaucratic and pathological organizations, an experi-
mental approach may also challenge existing power structures and cultural
norms.

Conclusion
We have laid out the foundations of a scientific approach to exploring new
work—whether it’s new business models and products, internal enterprise
work such as building new tools, or adopting new processes. When we have a
shared understanding of what we mean by risk, measurement, and uncertainty,
we can apply the principles and practices of the Lean Startup movement. These
provide a superior way to manage the investment decision risks than tradi-
tional planning activities.

LEAN ENTERPRISE60

Our ability to compete is based on creating a common orientation across the
organization and enabling the people doing the work to constantly create and
practice new repertoire through a process of experimentation. These activities
enable us to more effectively detect and analyze changes in our environment,
to get inside the decision-making processes of other organizations, and to act—
to better serve our customers and shape our environment. Boyd’s OODA
model shows that adaptation to our environment is a continuous and ongoing
process—for organizations as much as for people.

Questions for readers:

• How does your organization or department model investment risks in your
business plan? What data is it based on?

• What are the variables in the plan with the highest information value?
What measurements have been made to reduce the uncertainty in these
variables?

• How confident are you that people will find the work you are currently
doing valuable? What evidence do you have to support your decision?

• How often have you tried out the product you are working on with any of
its intended users? What did you change as a result?

61CHAPTER 3: MODEL AND MEASURE INVESTMENT RISK

C H A P T E R 4

Explore Uncertainty to Detect
Opportunities

It was darkness which produced the lamp. It was fog that produced
the compass. It was hunger that drove us to exploration.

Victor Hugo

In this chapter we will cover practices to support the principles, discussed in
Chapter 3, of exploring opportunities in conditions of extreme uncertainty,
especially when considering new business models or products. We introduce
the concept of Discovery to show how to quickly map out a business hypothe-
sis to create a shared understanding of a problem and engage stakeholders
from across the organization to buy in and align to our vision.

We will share concrete tools and techniques to safely create and test hypothe-
ses to solve real business problems identified and validated in our customer
development process.

Then, we will describe how to use a disciplined, scientific, evidence-based
approach to experimentation to answer the fundamental question—not “can
we build it?” but “should we build it?”

We will discuss how to test the riskiest assumptions of our hypothesis and gen-
erate empirical data to support our decision to pivot, persevere, or stop by cre-
ating safe-to-fail experiments using MVPs. Our purpose is to base further
investment and portfolio management decisions on evidence, not science fic-
tion. We will execute on opportunities by building the right thing at the right
time and stop wasting people’s time on ideas that are not valuable.

63

1 [gothelf], Preface.

Discovery
Discovery is a rapid, time-boxed, iterative set of activities that integrates the
practices and principles of design thinking and Lean Startup. We use it inten-
sively at the beginning of the explore phase of a new initiative.

In Lean UX: Applying Lean Principles to Improve User Experience, Jeff Goth-
elf and Josh Seiden state, “Design thinking takes a solution-focused approach
to problem solving, working collaboratively to iterate an endless, shifting path
toward perfection. It works towards product goals via specific ideation, proto-
typing, implementation, and learning steps to bring the appropriate solution to
light.”1

By combining the principles of design thinking with Lean Startup practices, we
can build a continuous feedback loop with real users and customers into our
development cycle. The principle is to invest the minimum amount of effort to
get the maximum amount of learning, and to use the outcomes of our experi-
ments as the base for our decision to pivot, persevere, or stop.

NOTE

Customers and Users
Although we often use the terms interchangeably, it is useful to distinguish
between the customers of a product or service, who pay for it or invest in its devel-
opment, and the users. Users do not pay for the product, but they contribute a
great deal of value to the organization that builds the product, and often to the
product itself (social networks are one obvious example). In an enterprise, people
are required to use particular systems in order to get their work done, and organi-
zations suffer real negative consequences when systems are hard to use. It’s
essential to engage both customers and users as key stakeholders in the co-
creation of products, services, or improvement opportunities.

During Discovery, we create a collaborative and inclusive environment for a
small cross-functional, multidisciplinary team to explore a business, product,
or improvement opportunity. The team should be fully dedicated and co-
located to maximize the speed of learning and the effectiveness of real-time
decision making. It must assume ownership of delivery and be empowered to
make the necessary decisions to meet the objectives of the initiative.

When forming a team, it is key to keep the group small, including only the
competencies required to explore the problem domain. Large teams are ill-
equipped for rapid exploration and cannot learn at the speed required to be
successful. The group must know their limitations and boundaries, taking

LEAN ENTERPRISE64

2 [pink]

responsibility to reach out and engage others outside the group for input and
collaboration when appropriate.

The final—and too often forgotten—members of the team are customers and
users. It is easy to fall into the trap of seeing them as simply a consumer of the
solution we have created. In fact, they are critical stakeholders. Their input is
the key ingredient and the most objective measure of how valuable our solu-
tion is or can be. Through the feedback they provide, customers and users are
co-creators of value for any solution. Their needs must always be the focal
point for everything we do.

Creating a Shared Understanding

When you want to build a ship, do not begin by gathering wood, cut-
ting boards, and distributing work, but awaken within the heart of
man the desire for the vast and endless sea.

Attributed to Antoine de Saint-Exupéry

When starting a new piece of work, it is imperative that the group creates an
environment maximizing the potential of everyone involved. Based on the new
information they are discovering, people learn, change, and improve when they
are involved in a process that is energizing, interactive, and adaptive.

As Dan Pink argues in Drive,2 there are three key elements to consider when
building an engaged and highly motivated team. First, success requires a
shared sense of purpose in the entire team. The vision needs to be challenging
enough for the group to have something to aspire to, but clear enough so that
everyone can understand what they need to do. Second, people must be
empowered by their leaders to work autonomously to achieve the team objec-
tives. Finally, people need the space and opportunity to master their discipline,
not just to learn how to achieve “good enough.”

The process of shaping the vision begins by clearly articulating the problem
that the team will try to solve. This essential step is often overlooked, or we
assume everyone knows what the problem is. The quality of a problem state-
ment increases our team’s ability to focus on what really matters—and, more
importantly, ignore what does not. By developing our team’s shared under-
standing of our goals and what we aim to accomplish, we improve our ability
to generate better solutions.

65CHAPTER 4: EXPLORE UNCERTAINTY TO DETECT OPPORTUNITIES

3 [gray]

4 Go Gamestorming Wiki, http://www.gogamestorm.com

Figure 4-1. Building a shared understanding as a team

TIP

Go Gamestorming
Gamestorming by David Gray et al.,3 and the supporting Go Gamestorming Wiki,4

contain numerous games that encourage engagement and creativity while bring-
ing structure and clarity to collaborative ideation, innovation, and improvement
workshops.

One of the fundamental techniques of Discovery is the use of visual artefacts,
models, and information radiators to communicate and capture group learn-
ings. Using graphical templates and exercises to externalize ideas helps our
team to articulate, debate, and evolve concepts and ideas to form consensus
(see Figure 4-1). It also helps to depersonalize and anonymize thoughts so we
can safely debate ideas, not individuals—minimizing egos, HiPPOs (highest
paid person’s opinions), and extroverts’ attempts to run the show.

Structured Exploration of Uncertainty

If you want to have good ideas you must have many ideas.
Linus Pauling

When exploring uncertainty, it is important to start broad—to generate as
many ideas as possible to cycle through before narrowing our focus on where
we will start.

lastminute.com is a travel retailer in Europe, operating in a highly competitive
industry with major players and new startups trying to disrupt the travel mar-
ketplace every day. In order to stay relevant, the company needs to innovate
faster and smarter than their competitors. They invited their customers to
become part of the innovation process. For two days, they ran co-creation

LEAN ENTERPRISE66

http://www.gogamestorm.com

5 lastminute.com Innovation Lab, https://www.youtube.com/watch?v=r64rrgbcEHo

workshops that generated over 80 new ideas for online products aligned to
their business goals. The team then set up an innovation lab in a hotel lobby
for a week, rapidly experimenting with each idea to discard it or validate it as
a viable customer problem to implement. Within days, the team identified
three winning ideas to invest further effort in developing—resulting in an over
100 percent increase in conversion for their product.5

Divergent thinking is the ability to offer different, unique, or variant ideas
adherent to one theme; convergent thinking is the ability to identify a potential
solution for a given problem. We start exploration with divergent thinking
exercises designed to generate multiple ideas for discussion and debate. We
then use convergent thinking to identify a possible solution to the problem.
From here, we are ready to formulate an experiment to test it (see Figure 4-2).

Figure 4-2. Structured exploration with divergent and convergent thinking

What Business Are We In?
Business models are transient and prone to disruption by changes in the com-
petitive environment, advances in design and technology, and wider social and
economic change. Organizations that misjudge their purpose, or cannot sense
and adapt to these changes, will perish.

Organizations can be rendered obsolete by competitors that solve the same
problem with an alternate or superior offering for their customers. Business
definition and identification of future opportunities must be continually chal-
lenged and ever evolving. Allowing complacency to sneak in due to current

67CHAPTER 4: EXPLORE UNCERTAINTY TO DETECT OPPORTUNITIES

https://www.youtube.com/watch?v=r64rrgbcEHo

6 [blank]

7 Steve Blank, http://steveblank.com/2012/03/05/search-versus-execute

success is the quickest path to failure for tomorrow. We only need to cite
examples such as Blockbuster versus Netflix or HMV and Tower Records ver-
sus iTunes, YouTube, and Spotify to illustrate the point that no business model
or competitive advantage is indefinitely sustainable.

Winning organizations continually experiment and test theories to learn what
works and what does not, recognizing that the ones that do could have a mas-
sive impact on the business’ future fortunes.

Understanding Our Business Problem to Inform Our Business Plan
As Steve Blank, author of The Four Steps to the Epiphany6 and The Startup
Owner’s Manual (K & S Ranch), says:

A business plan is the execution document that existing companies
write when planning product-line extensions where customer, market,
and product features are known. The plan is an operating document
and describes the execution strategy for addressing these “knowns.”

The primary objective of a new business initiative is to validate its
business model hypotheses (and iterate and pivot until it does). Search
versus execution is what differentiates a new venture from an existing
business unit. Once a business model is validated, then it should move
into execution mode. It’s at this point the business needs an operating
plan, financial forecasts, and other well-understood management
tools.7

It is critical to consider many different business models in the early stages of a
new initiative. We don’t want to commit to a plan until we test the business
model hypothesis and have evidence that we are on the correct path. The team
must identify the riskiest assumptions of our hypothesis, devise experiments to
test those assumptions, and increase the information we can gain to reduce
uncertainty. The only assumption that always holds true is that no business
plan survives first contact with customers.

The Business Model Canvas, shown in Figure 4-3, was created by Alex Oster-
walder and Yves Pigneur along with 470 co-creators as a simple, visual busi-
ness model design generator. It is a strategic management and entrepreneurial
tool that enables teams to describe, design, challenge, invent, and pivot
business models. Instead of writing a business plan, which can become a

LEAN ENTERPRISE68

http://steveblank.com/2012/03/05/search-versus-execute

lengthy process, we outline multiple possible models—each time-boxed to 30
minutes—on a canvas.

Figure 4-3. The Business Model Canvas

The Business Model Canvas, freely available at http://www.businessmodelgen
eration.com/canvas, outlines nine essential components of an organization’s
conceptual business model:

Customer segment
Who are we targeting to create value for? Who are our customers?

Value proposition
What problems are we going to solve to create value for our customers?

Channels
Through what channels are we aiming to reach out to our target
customers?

Customer relationships
What type of relationship does each of our customers expect us to create
and maintain with them?

Activities
What activities will be required to support our value propositions?

69CHAPTER 4: EXPLORE UNCERTAINTY TO DETECT OPPORTUNITIES

http://www.businessmodelgeneration.com/canvas
http://www.businessmodelgeneration.com/canvas

Resources
What resources, people, technology, and support will be needed for the
business to operate?

Partnerships
Who do we need to build partnerships with? Who are our key suppliers or
who could be needed to provide support resources or activities for our
value proposition?

Cost
What are the most important inherent costs with our business?

Revenue
For what value are our customers willing to pay? How much and how
often?

By populating the individual elements of the template, we are prompted to
consider any potential idea in terms of the entire business’ component building
blocks. By populating the entire template, we are encouraged to think in a
holistic manner about how these pieces fit together to support the greater
opportunity. It is key to remember that each component of the canvas repre-
sents a set of hypotheses and associated assumptions that require validation to
prove that our business model is sound.

Beyond the template itself, Osterwalder also came up with four levels of strate-
gic mastery of competing on business models to reflect the strategic intent of
an organization:

Level 0 Strategy
The Oblivious focus on product/value propositions alone rather than the
value proposition and the business model.

Level 1 Strategy
The Beginners use the Business Model Canvas as a checklist.

Level 2 Strategy
The Masters outcompete others with a superior business model where all
building blocks reinforce each other (e.g., Toyota, Walmart, Dell).

Level 3 Strategy
The Invincible continuously self-disrupt while their business models are
still successful (e.g., Apple, Amazon).

Our ability to recognize what strategy we are pursuing when creating business
models is the first step towards creating a shared understanding of what inno-
vation approach will be most effective in helping us achieve our goals.

LEAN ENTERPRISE70

8 The Lean Canvas, http://www.leancanvas.com

9 The Opportunity Canvas, http://comakewith.us/tag/opportunity-canvas

10 Value Proposition Canvas, http://bit.ly/1v6Z5Ae

The primary objective of the Business Model Canvas is to externalize the busi-
ness hypothesis and make its assumptions clear so we can identify and validate
the main risks. The canvas provides a framework for understanding of each
business model, in terms that are understood by all, thus building a shared
sense of ownership and enabling collaboration throughout the organization.
The Business Model Canvas differs from other canvases listed in Table 4-1 in
that it doesn’t assume that product/market fit is the riskiest hypothesis that
must be tested first.

There are a number of canvas created by others that focus on product develop-
ment, as shown in Table 4-1.

Table 4-1. Visual ideation canvases

Name Purpose

The Lean Canvas8 Makes the assumption that product/market fit is the riskiest hypothesis that must be
tested.

The Opportunity
Canvas9

Focuses discussions about what we’re building and why, then helps you understand
how satisfying those specific customers and users furthers the organization’s overall
strategy.

Value Proposition
Canvas10

Describes how our products and services create customer gains and how they create
benefits our customers expect, desire, or would be interesting in using.

Understanding Our Customers and Users

The single most important thing to remember about any enterprise is
that there are no results inside its walls. The result of a business is a
satisfied customer.

Peter Drucker

In order for any product or solution to be successful, people must want to use
it, and indeed pay money for it. For a team to build a solution that addresses a

71CHAPTER 4: EXPLORE UNCERTAINTY TO DETECT OPPORTUNITIES

http://www.leancanvas.com
http://comakewith.us/tag/opportunity-canvas
http://bit.ly/1v6Z5Ae

11 IDEO: Empathy on the Edge, http://bit.ly/1v6ZlPI

real problem or need, it is essential to understand who we are trying to reach
and why we are targeting them.

Put a Face to Your Customer and User
A persona is a representation of the problems, needs, goals, and behavior of a hypothe-
sized group of customers or users. Personas are based on relevant information and
insight known to the creators. They are essentially collections of assumptions that
must be tested and refined throughout our customer development process.

When creating a persona, remember the following points:

• Define and brainstorm your initial persona very quickly to get alignment across
the team.

• Iteratively redefine your persona based on evidence from user research, testing,
and feedback during the customer development cycle.

• Continually realign the persona and the business/product vision as the product
starts to emerge.

Personas are just a starting point that we use to create a shared understanding of our
customers or users. They are never truly objective or empirical; that is not their pur-
pose. We use personas to create empathy with our targeted group’s problems and
move the conversation from what our own individual preferences may be to what the
selected persona would perceive to be valuable—their Jobs-To-Be-Done.

Having empathy for customers and users is a powerful force. When we empa-
thize, we enhance our ability to receive and process information.11 Empathy in
design requires deliberate practice. We must design experiments and interac-
tion opportunities to connect with our customers and users in meaningful ways
and challenge our assumptions, preconceptions, and prejudices. We need to
assume the role of an interested inquirer, trying to understand the challenges
they experience.

Creating a balance between empathizing with an experience and analyzing the
situation allows us to understand our customers’ and users’ feelings and per-
spectives. We can then use that understanding to guide our identification of
solution hypotheses and commence the experimentation process.

LEAN ENTERPRISE72

http://bit.ly/1v6ZlPI

12 IDEO, http://www.ideo.com

TIP

Go, Look, See
The design company IDEO,12 famous for creating the original Apple mouse, runs
workshops in which teams completely immerse themselves in the context where
the envisioned product or service will be used. Their developers read everything
of interest about the markets, observe and interview future users, research offer-
ings that will compete with the new product, and synthesize everything they
have learned into pictures, models, and diagrams. The result is insights into cus-
tomers and users that are tested, improved, or abandoned throughout the itera-
tive development process.

At Toyota, genchi genbutsu (“go and see”) allows leaders to identify existing safety
hazards, observe machinery and equipment conditions, ask about the practiced
standards to gain knowledge about the work status, and build relationships with
employees. The objective of genchi genbutsu is to go to the gemba (workplace)
to understand the value stream and its problems rather than review reports or
make superficial comments.

Similarly, getting out of the building (a phrase popularized by entrepreneur and
author Steve Blank) is a customer development technique to get feedback and
focus early product development efforts around the early adopters through fre-
quent qualitative inquiry (including structured interviews) with multiple potential
customers.

People who cannot temporarily let go of their role and status, or set aside their
own expertise and opinions, will fail to develop empathy with others’ conflicting
thoughts, experiences, or mental models. The ability to listen and ask the right
questions becomes a powerful skill, and the insights it brings are the foundation
of effective problem solving and experimentation.

Turning Insights and Data into Unfair Advantage
The ability to discover and leverage critical insights is essential to high-
performing organizations. We used to live in a relatively small data universe
with high costs associated with collection, storage, and processing of data. The
big data movement has provided technologies and techniques for reviewing,
processing, and correlating large existing data sets. Organizations can gain
additional value from insights into how and why their customers are interact-
ing with their products and solutions. We can detect weak signals that tell us
what is working well—or not so well—and use that information to improve
existing services or create new offerings. When combined, software, analytics,
and data form a key pillar of our organization’s intellectual capital.

Access to, and understanding of, existing customers is a significant competitive
advantage that established organizations have over startups. Startups face the

73CHAPTER 4: EXPLORE UNCERTAINTY TO DETECT OPPORTUNITIES

http://www.ideo.com

13 http://onforb.es/1v6ZqCZ

challenge of gaining market reach and traction due to the lack of access to
known customer data. On the other hand, established organizations have
existing market and customer data that can be reused and leveraged to unearth
new opportunities.

Organizations are now able to ask questions such as, “Why are customers can-
celing their memberships?” or “How are customers related to one another?”,
and run quick and inexpensive experiments to test their hypotheses based on
existing data. This is a powerful technique to remove decision bias from our
prioritization process and enable data-driven decisions.

Data analytics enables us to invert the discovery process—to look at how cus-
tomers are using existing services and to do forward projections for new busi-
ness model, product, or service opportunities.

NOTE

How Companies Mine Data to Discover Your Secrets
In The Power of Habit (Random House), Charles Duhigg writes: “Almost every
major retailer, from grocery chains to investment banks to the U.S. Postal Service,
has a ‘predictive analytics’ department devoted to understanding not just con-
sumers’ shopping habits but also their personal habits, so as to more efficiently
market to them.”

Target used this data to a particularly discomfiting effect in order to identify and
market to pregnant women. When you’re pregnant, you need to prepare for your
new child by buying lots of stuff. Target wanted to encourage pregnant families
to do most of their shopping at Target, potentially capturing them as major cus-
tomers for life. They analyzed their existing customer data to find a way to identify
women in their second trimester of pregnancy who could be targeted for offers.

Target was able to identify changes in buying patterns for 25 key products, includ-
ing nutritional supplements, cotton balls, and unscented lotion, that accurately
predicted not only pregnancy but also due date. As a result, they were able to
send pregnant women relevant coupons—advertently disguised amongst other
vanilla offers so the women wouldn’t realize they were being targeted—to
encourage them to do their pre-baby shopping at Target.13

Big data is a tool, not a solution. Crucially, it does not replace empathy. We
still need human intuition and innovation to improve the problem definition
and identify customer and user needs and problems, so as to form hypotheses
that can be tested against the data. Cross-functional teams, personas, and user
interviews are all powerful tools that enable us to design experiments more
effectively and rapidly. We need to learn how to listen and learn from data

LEAN ENTERPRISE74

http://onforb.es/1v6ZqCZ

14 Scott Berkun, http://scottberkun.com/2013/danger-of-faith-in-data

through unbiased analysis—otherwise our data is useless: “Data, like a flash-
light, is only as useful as the person wielding it and the person interpreting
what it shows.”14

Using Insight to Inform Hypotheses and Experiments
During Discovery, numerous members of the cross-functional team will have—
and should be encouraged to share—interesting and valuable insights into the
organization, customers, business, channels, or markets. By sharing these
insights with the team, we can generate new perspectives and inspiration for
new products or solutions.

Ask those involved in Discovery to share whatever interesting insights and data
they have to inform, create, or challenge problem statements based on a num-
ber of perspectives, using the canvas shown in Figure 4-4. For example:

Customer
What specific information does the group have about existing customers?
What are their usage and engagement behaviors? How can those insights
help to shape future opportunities within existing product offers?

Market trends
Industry trends of the market we are attempting to enter are key to under-
standing how and where opportunities exist—for example, mobile technol-
ogies, location-based services, mobile payments. What are the market
trends for the product we are creating? How do we measure against them?

Organization
What specific information does the group have about our organization?
Where is the organization focusing its efforts? What is the impact of those
efforts? How much of the wider competitive landscape does it cover?
Where is the organization most effective?

You will not believe!
Every company has individuals that are willing to share interesting and
astounding facts about the business or its customer base. How can we test
if they are true and/or offer opportunities to create new value propositions
as a result?

75CHAPTER 4: EXPLORE UNCERTAINTY TO DETECT OPPORTUNITIES

http://scottberkun.com/2013/danger-of-faith-in-data

Figure 4-4. The Problem Statement Canvas

By making this information visible and discussing it, we can attempt to identify
new business models and value propositions appropriate for the business,
given its current constraints and identified problem statements.

Accelerate Experimentation with MVPs
The Lean Startup movement challenges the assumption that customers must
have all imaginable features available in a product before they will start to use
it. Eric Ries coined the term minimum viable product (MVP) to describe a
strategy of investing a minimal amount of resources to test the underlying
assumptions of our hypotheses with customers. The objective is to eliminate
the waste generated by overengineered solutions and accelerate our learning by
testing a solution with early customers as soon as possible.

An MVP enables us to use a minimum amount of effort to generate the maxi-
mum amount of learning when experimenting with customers. The goal of
using an MVP is to execute an experiment that tests the assumptions of our
hypotheses as cheaply, quickly, and effectively as possible, in order to learn if
our solution addresses the customer problem we have identified. It eliminates

LEAN ENTERPRISE76

15 Diagram inspired by Jussi Pasanen, with acknowledgments to Aarron Walter, Ben Tollady, Ben
Rowe, Lexi Thorn, and Senthil Kugalur.

16 [cagan]

those parts of the solution hypothesis that create unnecessary complexity and
consume excessive resources when experimenting with our initial targeted cus-
tomers. The outcome of the experiment is learning, which enables us to make
an evidence-based decision to persevere with our existing business model, pivot
to explore a new way to achieve our vision, or stop.

It’s important to distinguish between an MVP in Eric Ries’ sense and the initial
public release of a product, which increasingly takes the form of a public
“beta” (Figure 4-5).

Figure 4-5. Minimum Viable Product: build a slice across instead of one layer at a time15

Confusingly, people often refer to any validation activity anywhere along on
this spectrum as an MVP, overloading the term and understanding of it in the
organization or wider industry. Marty Cagan, author of Inspired: How to Cre-
ate Products Customers Love and ex-SVP for eBay,16 notably uses the term
“MVP test” to refer to what Eric Ries calls an MVP. Cagan defines an MVP as
“the smallest possible product that has three critical characteristics: people
choose to use it or buy it; people can figure out how to use it; and we can
deliver it when we need it with the resources available—also known as valua-
ble, usable, and feasible,” to which we add “delightful,” since design and aes-
thetics are also as essential for an MVP as for a finished product, as shown in

77CHAPTER 4: EXPLORE UNCERTAINTY TO DETECT OPPORTUNITIES

17 http://www.svpg.com/minimum-viable-product

18 Yes In My Back Yard, https://www.justgiving.com/yimby

Figure 4-5.17 Make sure that your team and stakeholders are clear on their def-
inition of MVP.

Should We Build It, Not Can We Build It?
JustGiving is an online fundraising platform that has raised over £2 billion for charities.
JustGiving wanted to explore new business models to fund community initiatives that
are not necessarily affiliated with a charity.

They formed a small co-located team to rapidly experiment with customers, running
sessions with a prototyped version of a crowdfunding platform complete with real
community projects that were seeking support. Based on the positive reaction from
customers, they proceeded to create a concierge MVP, launching the same trusted
community projects with real customers while manually handling back-office tasks
such as project setup, payment processing, and collection, to see how the product
would perform in the market.

Within seven weeks from the start of the initiative, JustGiving had validated a repeata-
ble business model that they could start to scale into a business in its own right. The
product has now become YIMBY18 with success stories that include purchasing basket-
ball wheelchairs for teams, tools to expand a community garden, and saving the 140-
year-old Kettering Town Football Club.

MVPs, as shown in Table 4-2, do not guarantee success; they are designed to
test the assumptions of a problem we wish to solve without overinvesting. By
far the most likely outcome is that we learn our assumptions were invalid and
we need to pivot or stop our approach. Our ultimate goal is to minimize
investment when exploring solutions until we are confident we have discovered
the right product—then, exploit the opportunity by adding further complexity
and value to build the product right.

Table 4-2. An example set of types of MVPs

Name What it is Pros Cons Examples

Paper Throwaway hand-
sketched drawings of
an interface to use as
prototypes, or
illustrative examples of
a design

Speed, visual, creates
shared understanding

Limited interaction,
does not test
usability or
hypothesis

Diagrams,
wireframes,
sketches

LEAN ENTERPRISE78

http://www.svpg.com/minimum-viable-product
https://www.justgiving.com/yimby

19 Paul Graham, http://paulgraham.com/ds.html

Name What it is Pros Cons Examples

Interactive
prototype

Clickable, interactive
mockup of a prototype
or design

Tests design and
usability, iterates
solutions at speed,
uses qualitative
customers interviews

Does not test
hypothesis or
supporting
technology

HTML or clickable
mockups, videos

Concierge A personal service
instead of a product,
which manually guides
the customer through a
process using the same
proposed steps to solve
the customer problem
in the digital product.
The name is derived
from hotel concierge.

Reduces complexity,
supports generative
research, validates
assumptions
qualitatively with a
small investment

Limited scalability,
is manual and
resource intensive,
customer is aware
of human
involvement

AirBnB founders
offering air beds
to customers
during a
Democratic
National
convention;
Collision
installation for
Stripe19

Wizard of Oz Real working product
however behind the
scenes all product
functions are carried
out manually unknown
to person using the
product

A working solution
from customer
perspective, a person
in the role of the
wizard can gain
valuable insights
from the close
involvement; enables
evaluative research
for price points and
validation of value
proposition

Limited scalability
due to a higher
commitment of
resources; person in
the role of the
wizard must
appreciate the
functionality of the
proposed solution;
difficult to evaluate
systems with a
large graphical
interface
component

Tony Hsieh
purchasing shoes
for initial
customers of
Zappos.com

79CHAPTER 4: EXPLORE UNCERTAINTY TO DETECT OPPORTUNITIES

http://paulgraham.com/ds.html

20 Marty Cagan, http://svpg.com/product-market-fit-vs-product-vision

Name What it is Pros Cons Examples

Micro-niche Reduce all product
features to the bare
minimum, socialize and
drive paid-for traffic to
the product to find out
if customers are
interested or willing to
pay for it

A highly focused test
dedicated to any
specific topic, takes
minimal effort

Needs financial
investment to drive
traffic, there is
competition for
keywords and
customer click-
throughs

http://whatkatew
ore.com

Working
software

Fully functioning
working product to
address a customer
problem, instrumented
to measure customer
behavior and
interactions

Tests hypothesis in a
real environment,
validates
assumptions
qualitatively

Expensive, needs
investment in
people and tools

A/B testing,
conversion
funnels, referral
optimization

How Do Our Vision and MVP Work Together?
Cagan stresses that vision and MVP are intimately related but not the same.
Cagan defines vision as the shared understanding that “describes the types of
services you intend to provide, and the types of customers you intend to serve,
typically over a 2–5 year timeframe.”20 As such, it provides a roadmap and
context for MVPs, and we should be prepared to create many MVPs as we
search for a repeatable and scalable customer development process aligned
with our vision.

Early evangelists, particularly in enterprises, should buy into our entire vision,
not just our first MVP experiment. They will need to hear what our organiza-
tion plans to deliver over the next 6 to 18 months. They are bought into the
vision of what we are trying to achieve and so are able to fill in the gaps in our
solution as they feel the pain of the problem we are trying to solve. By offering
a taste of the solution we are aiming to build, we give them evidence that it
works and provide an opportunity for feedback on the solution we are
building.

Leveraging business interaction and engagement is very important at the early
stages of a new initiative. Feedback and evidence gained through the use of an
MVP provide better insight and learning into customer behavior than aggre-
gate measures of success such as total revenue or total transaction value. The

LEAN ENTERPRISE80

http://svpg.com/product-market-fit-vs-product-vision
http://whatkatewore.com
http://whatkatewore.com

MVP allows us to focus on the right thing to build and provides valuable infor-
mation on how to evolve, adapt, and pivot to meet customer needs discovered
through experimenting, as shown in Figure 4-6.

Figure 4-6. The MVP mindset and experiment evaluation loop

Starting with the question of what we want to learn from the experiment, we
can define how we will observe and measure it, and finally create the cheapest,
quickest, and simplest MVP to test our assumptions, measure the effect, and
use that learning to formulate next steps.

A fundamental point with new initiatives is preserving cash and iterating rap-
idly while teams are testing hypotheses to identify a repeatable solution. Once
those fundamentals are understood, and we achieve a product/market fit, cash
preservation becomes less important than spending and we can begin to create
a scaleable solution.

The One Metric That Matters
When designing MVPs to experiment, it is important to identify one key metric
that will tell us if the assumptions in our hypothesis are valid. Lean Analytics
(O’Reilly) authors Alistair Croll and Benjamin Yoskovitz introduced the con-
cept of One Metric That Matters (OMTM). OMTM is a single metric that we
prioritize as the most important to drive decisions depending on the stage of
our product lifecycle and our business model. It is not a single measure that we

81CHAPTER 4: EXPLORE UNCERTAINTY TO DETECT OPPORTUNITIES

will use throughout our product lifetime: it will change over time depending on
the problem area we wish to address.

We focus on One Metric That Matters to:

• Answer the most pressing question we have by linking it to the assump-
tions in the hypothesis we want to test

• Create focus, conversation, and thought to identify problems and stimulate
improvement

• Provide transparency and a shared understanding across the team and
wider organization

• Support a culture of experimentation by basing it on rates or ratios, not
averages or totals, relevant to our historical dataset

It should not be a lagging metric such as return on investment (ROI) or cus-
tomer churn, both of which measure output after the fact. Lagging indicators
become interesting later when we have achieved a product/market fit. By ini-
tially focusing on leading metrics, we can get an indication of what is likely to
happen—and address a situation quicker to try and change the outcomes going
forward. For example, customer complaints are often a leading indicator of
churn. If customer complaints are rising, we can expect that customers will
leave and the churn will increase. Our OMTM should always evolve as we
learn more about the problem we want to solve.

The purpose of the OMTM is to gain objective evidence that the changes we
are making to our product are having a measurable impact on the behavior of
our customers. Ultimately we are seeking to understand:

• Are we making progress (the what)?

• What caused the change (the why)?

• How do we improve (the how)?

Founder of Intuit Scott Cook says that founders should focus on “love met-
rics,” for example, how much people love the product, or how often they come
back, or how delighted they are in the early stages. “If you’re not getting high
activity from the users you already have, it’s time to pivot.” Choosing OMTM
provides clarity, alignment, and focus for teams, thus enabling effective
decision-making, especially during early stage initiatives.

LEAN ENTERPRISE82

21 [sobek]

22 http://www.gogamestorm.com/?p=125

TIP

Use A3 Thinking as a Systematic Method for Realizing Improvement
Opportunities
A3 Thinking is a logical problem-solving tool to capture critical information and
define the focus and constraints of the team. Later, it becomes a measure to test
our outcomes against. An A3 report (so called because it fits on a piece of A3-size
paper), composed of seven elements, embodies the Plan-Do-Check-Act cycle of
experimentation:

Background
Capture the critical information to understand the extent and importance of
the problem. Tying the background to the goal statement reduces waste by
limiting opportunities to focus on wrong areas.

Current condition and problem statement
This is the problem the business stakeholder wants to address, in simple
understandable terms and not as a lack-of-solution statement. For example,
avoid statements like “Our problem is we need a Content Management
System.”

Goal statement
How will we know that our efforts were successful at the end of implementa-
tion? Ideally we need one key metric for success. For example, “Our goal is to
reduce system failures compared to the previous test results of 22 major
issues; our target is to reduce this by 20%.”

Root-cause analysis
Detail the hypothesis and assumptions, or a set of experiments performed to
test for cause and effect.

Countermeasures
List the steps of an experiment to be implemented to test the hypothesis.

Check/confirmation effect
Define a method for assessing if the countermeasures have had an effect.

Follow up actions and report
Identify further steps and share what you learned with the team and wider
organization.

For more on A3 Thinking, read Understanding A3 Thinking: A Critical Component of
Toyota’s PDCA Management System by Durward K. Sobek II and Art Smalley.21

Other examples include the elevator pitch22 and the Five Ws and One H (Who,
What, Where, When, Why, and How).

83CHAPTER 4: EXPLORE UNCERTAINTY TO DETECT OPPORTUNITIES

http://www.gogamestorm.com/?p=125

23 https://medium.com/what-i-learned-building/ab24a585b5ea

Remember, metrics are meant to hurt—not to make us feel like we are win-
ning. They must be actionable and trigger a change in our behavior or under-
standing. We need to consider these two key questions when deciding on what
our OMTM will be:

What is the problem we are trying to solve?

Product development
Are we attempting to create new products or services that involve custom-
ers? How will we know that we are engaging them and they are interested
in our product?

Tool selection
Are we attempting to select a tool for using in the organization? How will
we know that it is the best tool for the process?

Process improvement
Are we attempting to improve our internal capability and efficiency? How
will we know if our changes are having the desired impact?

What stage of the process are we at?

Problem validation
Are we trying to identify that a problem exists by talking to people to see
if they are experiencing the pain of the issue we’re trying to solve?

Solution validation
Are our people demonstrating alignment and buy-in for the problem we
are aiming to solve through qualitative interviews?

MVP validation
Are we creating experiments to quantitatively prove that our solution is
working to solve the problem we have identified?

OMTM is a helpful tool for simplifying the complexity of analytics. It specifi-
cally tells us if our solution is succeeding or not. Once we have defined the key
metric on which to focus, we can identify supporting metrics that provide
insight into other areas and support decision-making.

As a good example of OMTM, at LinkedIn, the team does not talk about
“total page views” but only “profile views”—the number of people using
LinkedIn who search for and find other people, and the number of LinkedIn
profiles they viewed.23

LEAN ENTERPRISE84

https://medium.com/what-i-learned-building/ab24a585b5ea

Conclusion
Discovery allows us to safely explore opportunities in conditions of extreme
uncertainty—especially in new product development and business model inno-
vation. Discovery concepts and tools let us invest the minimum amount of
effort to obtain the maximum amount of learning to make measurable pro-
gress towards exploiting validated opportunities. Discovery creates a clear
vision and a shared understanding of the problem we are trying to solve within
our organization.

We must adopt the mindset in which all our ideas are hypotheses based on
assumptions that must be tested, and that most of these assumptions will be
proved wrong. By basing our decision-making on information gleaned from
fast, inexpensive experiments using MVPs, we can make better investment
decisions. The earlier we can pivot or fold on bad ideas, the less time and
resources we waste, and the more we can devote to ideas that will deliver value
to our customers—or create new ones.

Questions for readers:

• What is your current business hypothesis and how would you create an
experiment using an MVP to test it?

• Do you ask “should we build it” before pursuing “can we build it”?

• What experiments would your team perform and what evidence would
they gather to decide when to pivot, persevere, or stop?

• What is your One Metric That Matters?

85CHAPTER 4: EXPLORE UNCERTAINTY TO DETECT OPPORTUNITIES

C H A P T E R 5

Evaluate the Product/Market Fit

The Edge…there is no honest way to explain it because the only peo-
ple who really know where it is are the ones who have gone over it.

Hunter S. Thompson

In this chapter we will discuss how to identify when a product/market fit has
been achieved and how to exit the explore stage and start exploiting our prod-
uct with its identified market. We’ll show how to use customized metrics to
understand whether we are achieving measurable business outcomes while
continuing to solve our customers’ problems by engaging them throughout our
development process.

We will cover how organizations set themselves up for success with the right
strategy, structure, and support, and how they find internal and external cus-
tomers to provide valuable feedback and insight as they grow their product.
We will address how to leverage existing capabilities, services, and practices to
scale our product while seeking internal advocates within the organization to
collaborate with. Finally, we’ll describe the metrics and the engines of growth
that help us manage the transition between business model horizons as we
begin to scale our solution.

87

Innovation Accounting

It is not enough to do your best; you must know what to do, and then
do your best.

W. Edwards Deming

We live in a world of data overload, where any argument can find supporting
data if we are not careful to validate our assumptions. Finding information to
support a theory is never a problem, but testing the theory and then taking the
correct action is still hard.

As discussed in Chapter 3, the second largest risk to any new product is build-
ing the wrong thing. Therefore, it is imperative that we don’t overinvest in
unproven opportunities by doing the wrong thing the right way. We must
begin with confidence that we are actually doing the right thing. How do we
test if our intuition is correct, especially when operating in conditions of
extreme uncertainty?

Eric Ries introduced the term innovation accounting to refer to the rigorous
process of defining, experimenting, measuring, and communicating the true
progress of innovation for new products, business models, or initiatives. To
understand whether our product is valuable and hold ourselves to account, we
focus on obtaining admissible evidence and plotting a reasonable trajectory
while exploring new domains.

Traditional financial accounting measures such as operating performance, cash
flow, or profitability indicator ratios like return on investment (ROI)—which
are not designed for innovation—often have the effect of stifling or killing new
products or initiatives. They are optimized, and more effective, for exploiting
well-understood domains or established business models and products. By defi-
nition, new innovations have a limited operating history, minimal to no reve-
nue, and require investment to start up, as shown in Figure 5-1. In this con-
text, return on investment, financial ratio analysis, cash flow analysis, and sim-
ilar practices provide little insight into the value of a new innovation nor
enable its investment evaluation against the performance of well-established
products through financial data comparison alone.

LEAN ENTERPRISE88

1 “The Balanced Scorecard—Measures That Drive Performance,” p. 70, http://bit.ly/1vt3X2Q

Figure 5-1. Profitability-to-sales ratios for early-stage innovations

When exploring, accounting must not be ignored or deemed irrelevant. It sim-
ply needs to be interpreted differently to measure the outcomes of innovation
and early-stage initiatives. Our principles of accounting and measurement for
innovation must address the following goals:

• Establish accountability for decisions and evaluation criteria

• Manage the risks associated with uncertainty

• Signal emerging opportunities and errors

• Provide accurate data for investment analysis and risk management

• Accept that we will, at times, need to move forward with imperfect
information

• Identify ways to continuously improve our organization’s innovation
capability

WARNING

Measurement Fallacy
“What you measure is what you get”—Kaplan and Norton.1

89CHAPTER 5: EVALUATE THE PRODUCT/MARKET FIT

http://bit.ly/1vt3X2Q

2 [croll], p. 13.

3 Ash Maurya, http://bit.ly/1v6ZG4L

4 Dan McClure, http://bit.ly/1vt4925

5 Ronny Kohavi, http://bit.ly/1v6ZHpn

One of the key ideas of Eric Ries’ The Lean Startup is the use of actionable
metrics. He advocates that we should invest energy in collecting the metrics
that help us make decisions. Unfortunately, often what we tend to see collected
and socialized in organizations are vanity metrics designed to make us feel
good but offering no clear guidance on what action to take.

In Lean Analytics, Alistair Croll and Benjamin Yoskovitz note, “If you have a
piece of data on which you cannot act, it’s a vanity metric…A good metric
changes the way you behave. This is by far the most important criterion for a
metric: what will you do differently based on changes in the metric?”2 Some
examples of vanity metrics and corresponding actionable metrics are shown in
Table 5-1.3 4 5

Table 5-1. Examples of vanity versus actionable metrics

Vanity Actionable

Number of visits. Is this one person who visits a
hundred times, or a hundred people visiting once?

Funnel metrics, cohort analysis. We define the
steps of our conversion funnel, then group users
and track their usage lifecycle over time.

Time on site, number of pages. These are a poor
substitute for actual engagement or activity unless
your business is tied to this behavior. They address
volumes, but give no indication if customers can find
the information they need.

Number of sessions per user. We define an
overall evaluation criterion for how long it should
take for a session (or action) to complete on the
site, then measure how often users perform it
successfully.

Emails collected. A big email list of people
interested in a new product may be exciting until we
know how many will open our emails (and act on
what’s inside).

Email action. Send test emails to a number of
registered subscribers and see if they do what we
tell them to do.

Number of downloads. While it sometimes affects
your ranking in app stores, downloads alone don’t
lead to real value.

User activations. Identify how many people have
downloaded the application and used it. Account
creations and referrals provide more evidence of
customer engagement.

Tool usage reflects the level of standardization and
reuse in the enterprise tool chain.

Tooling effect is the cycle time from check-in to
release in production for a new line of code.

LEAN ENTERPRISE90

http://bit.ly/1v6ZG4L
http://bit.ly/1vt4925
http://bit.ly/1v6ZHpn

6 [hubbard], p. 37.

7 Pirate Metrics, http://slidesha.re/1v6ZL8B

Vanity Actionable

Number of trained people counts those who have
been through Kanban training and successfully
obtained certification.

Higher throughput measures that high-value
work gets completed faster leading to increased
customer satisfaction.

In How to Measure Anything, Douglas Hubbard recommends a good techni-
que for deciding on a given measure: “If you can define the outcome you really
want, give examples of it, and identify how those consequences are observable,
then you can design measurements that will measure the outcomes that matter.
The problem is that, if anything, managers were simply measuring what
seemed simplest to measure (i.e., just what they currently knew how to meas-
ure), not what mattered most.”6

By combining the principle of actionable metrics with Hubbard’s recommenda-
tion for how to create the measures that matter most, we can go beyond tradi-
tional internal efficiency and financial measurement to focus on value from the
perspective of the stakeholders that matter most—our customers.

Dan McClure’s “pirate metrics”7 are an elegant way to model any service-
oriented business, as shown in Table 5-2 (we have followed Ash Maurya in
putting revenue before referral). Note that in order to use pirate metrics effec-
tively, we must always measure them by cohort. A cohort is a group of people
who share a common characteristic—typically, the date they first used your ser-
vice. Thus when displaying funnel metrics like McClure’s, we filter out results
that aren’t part of the cohort we care about.

91CHAPTER 5: EVALUATE THE PRODUCT/MARKET FIT

http://slidesha.re/1v6ZL8B

8 Ash Maurya has a good blog post on pirate metrics, cohorts, and problem/solution fits: http://
bit.ly/1v6ZG4L.

9 By David Binetti, http://slidesha.re/1v6ZQZZ

Table 5-2. Pirate metrics: AARRR!

Name Purpose

Acquisition Number of people who visit your service

Activation Number of people who have a good initial experience

Retention Number of people who come back for more

Revenue Number of people from the cohort who engage in revenue-creating activity

Referral Number of people from the cohort who refer other users

Measuring pirate metrics for each cohort allows you to measure the effect of
changes to your product or business model, if you are pivoting. Activation and
retention are the metrics you care about for your problem/solution fit. Reve-
nue, retention, and referral are examples of love metrics—the kind of thing
you care about for evaluating a product/market fit.8 In Table 5-3 we reproduce
the effect on pirate metrics of both incremental change and pivoting for Voti-
zen’s product.9 Note that the order and meaning of the metrics are subtly dif-
ferent from Table 5-2. It’s important to choose metrics suitable for your prod-
uct (particularly if it’s not a service). Stick to actionable ones!

Table 5-3. Effect of incremental change and pivots on
Votizen’s pirate metrics

Metric Interpretation v.1 v.1.1 v.2 v.3 v.4

Acquisition Created account 5% 17% 42% 43% 51%

Activation Certified authenticity 17% 90% 83% 85% 92%

Referrals Forwarded to friends — 4% 54% 52% 64%

Retention Used system at least thrice — 5% 21% 24% 28%

Revenue Supported causes — — 1% 0% 11%

In order to determine a product/market fit, we will also need to gather other
business metrics, such as those shown in Table 5-4. As always, it’s important

LEAN ENTERPRISE92

http://bit.ly/1v6ZG4L
http://bit.ly/1v6ZG4L
http://slidesha.re/1v6ZQZZ

10 The standard definition of CLV and many other sales and marketing metrics are given in
[farris].

11 Thanks to Aaron Severs, founder of hirefrederick.com, for inspiration and permission to use this
diagram.

not to aim for unnecessary precision when gathering these metrics. Many of
these growth metrics should be measured on a per-cohort basis, even if it’s just
by week.

Table 5-4. Horizon 3 growth metrics

Measure Purpose Example calculation

Customer
acquisition cost

How much does it cost to acquire a new
customer or user?

Total sales and marketing expenses divided
by number of customers or users acquired

Viral coefficient
(K)

A quantitative measure of the virality of
a product

Average number of invitations each user
sends multiplied by conversion rate of each
invitation

Customer lifetime
value (CLV)

Predicts the total net profit we will
receive from a customer

The present value of the future cash flows
attributed to the customer during his/her
entire relationship with the company10

Monthly burn rate The amount of money required to run
the team, a runway for how long we can
operate

Total cost of personnel and resources
consumed

Which metrics we care about at any given time will depend on the nature of
our business model and which assumptions we are trying to validate. We can
combine the metrics we care about into a scorecard, as shown in Figure 5-2.11

Customer success metrics provide insight into whether customers believe our
product to be valuable. Business metrics, on the other hand, focus on the suc-
cess of our own business model. As we noted before, collecting data is never an
issue for new initiatives; the difficulties lie in getting actionable ones, achieving
the right level of precision, and not getting lost in all the noise.

To help us improve, our dashboard should only show metrics that will trigger
a change in behavior, are customer focused, and present targets for improve-
ment. If we are not inspired to take action based on the information on our
dashboard, we are measuring the wrong thing, or have not drilled down
enough to the appropriate level of actionable data.

93CHAPTER 5: EVALUATE THE PRODUCT/MARKET FIT

Figure 5-2. Example innovation scorecard

In terms of governance, the most important thing to do is have a regular
weekly or fortnightly meeting which includes the product and engineering
leads within the team, along with some key stakeholders from outside the team
(such as a leader in charge of the Horizon 3 portfolio and its senior product
and engineering representatives). During the meeting we will assess the state of
the chosen metrics, and perhaps update on which metrics we choose to focus
on (including the One Metric That Matters). The goal of the meeting is to
decide whether the team should persevere or pivot, and ultimately to decide if
the team has discovered a product/market fit—or, indeed, if it should stop and
focus on something more valuable. Stakeholders outside the team need to ask
tough questions in order to keep the team honest about its progress.

Energizing Internal Advocates in the Enterprise
Innovation in large, bureaucratic organizations is challenging because they are inher-
ently designed to support stability, compliance, and precedence over risk taking. Lead-
ers that have risen to the top could do it because they have worked the system as it has
existed to date. Therefore, we need to be careful that any critiques do not become
focused on individuals or their behavior within the system. We need to seek out collab-
orators and co-creators across the organization without causing alienation, to gain fur-
ther support for our efforts, and to cross the chasm to the next stage of the adoption
curve within the organization. Ultimately, we will need to identify change agents in the
areas where we need change to be successful. The best ammunition here is demonstra-
ble evidence that our efforts are achieving measurable business outcomes.

LEAN ENTERPRISE94

Without doubt there are people in our organization who are frustrated and curious for
change. However, they seek safety, context, and cover to act before they are willing to
become champions of an initiative. Energizing and engaging these people is key. As
they become early adopters of our ideas and initiatives, they will provide a feedback
loop enabling us to iterate and improve our product. They are also our sponsors within
the wider organization. In bureaucratic environments, people tend to protect their per-
sonal brand and not back the losing horse. Our goal is to give them the confidence,
resources, and evidence that encourages them to be advocates for our initiative
throughout the organization.

Do Things That Don’t Scale
Even when we have validated the most risky assumptions of our business
model, it is important that we continue to focus on the same principles of sim-
plicity and experimentation. We must continue to optimize for learning and
not fall into simply delivering features. The temptation, once we achieve trac-
tion, is to seek to automate, implement, and scale everything identified as
“requirements” to grow our solution. However, this should not be our focus.

In the early stages, we must spend less time worrying about growth and focus
on significant customer interaction. We may go so as far as to only acquire cus-
tomers individually—too many customers too early can lead to a lack of focus
and slow us down. We need to focus on finding passionate early adopters to
continue to experiment and learn with. Then, we seek to engage similar cus-
tomer segments to eventually “cross the chasm” to wider customer acquisition
and adoption.

This is counterintuitive to the majority of initiatives in organizations. We are
programmed to aim for explosive growth, and doing things that don’t scale
doesn’t fit with what we have been trained to do. Also, we tend to measure our
required level of service, expenses, and success in relation to the revenue, size,
and scope of more mature products in our environment or competitive
domain.

We must remember that we are still in the formative stage of our discovery
process, and don’t want to overinvest and commit to a solution too early. We
continually test and validate the assumptions from our business model through
market experiments at every step. If we have identified one key customer with
a problem and can act on that need, we have a viable opportunity to build
something many people want. We don’t need to engage every department, cus-
tomer segment, or market to start. We just need a focused customer to co-
create with.

Once leaders see evidence of rampant growth with us operating with unscala-
ble processes, we’ll easily be able to secure people, funding, and support to

95CHAPTER 5: EVALUATE THE PRODUCT/MARKET FIT

build robust solutions to handle the flow of demand. Our goal should to be to
create a pull system for customers that want our product, service, or tools, not
push a mandated, planned, and baked solution upon people that we must
“sell” or require them to use.

Customer Intimacy
By deliberately narrowing our market to prioritize quality of engagement and
feedback from customers, we can build intimacy, relationships, and loyalty
with our early adopters. People like to feel part of something unique and
special.

Developing Empathy with Customers: Sometimes the Answer
Is Inside the Building

The Royal Pharmaceutical Society knew that their clinical drug database was the best
in the world. They also knew that there must be many more uses for it than just a stack
of printed books. But where should they start? Instead of guessing, or building an
expensive platform for products, or trying to sign a deal without a product, they used
their other major asset: a building full of pharmacists. Through rapid prototyping, user
testing with pharmacists working for the society, and product research with nearby
pharmacies, they were quickly able to focus on an app to check for potential interac-
tions between prescribed drugs. There are huge opportunities in licensing the data for
international use. By starting with an app that they themselves would use, they were
able to understand what international customers might want and to build a great mar-
keting tool.

By keeping our initial customer base small—not chasing vanity numbers to get
too big too fast—we force ourselves to keep it simple and maintain close con-
tact with our customers every step of the way. This allows teams more time
with customers to listen, build trust, and ensure early adopters that we’re
ready to help. Remember, reaching big numbers is not a big win; meeting
unmet needs and delighting customers is.

Build a Runway of Questions, Not Requirements
The instinct of product teams, once a problem or solution validation is
achieved, is to start building all the requirements for a scalable, fully function-
ing, and complete solution based on the gaps in their MVPs. The danger with
this approach is that it prevents us from evolving the product based on feed-
back from customers.

In the early stage we are still learning, not earning. Therefore it is important
that we do not limit our options by committing time, people, and investment
to building features that may not produce the desired customer outcomes. We

LEAN ENTERPRISE96

must accept that everything is an assumption to be tested, continually seek to
identify our area of most uncertainty, and formulate experiments to learn
more. To hedge our bets with this approach, leverage things that don’t scale—
build a runway with scenarios for how we may continue to build out our
product.

Our runway should be a list of hypotheses to test, not a list of requirements to
build. When we reward our teams for their ability to deliver requirements, it’s
easy to rapidly bloat our products with unnecessary features—leading to
increased complexity, higher maintenance costs, and limited ability to change.
Features delivered are not a measure of success, business outcomes are. Our
runway is a series of questions that we need to test to reduce uncertainty and
improve our understanding of growth opportunities.

Create a Story Map to Tell the Narrative of the Runway of Our
Vision

Story maps are tool developed by Jeff Patton, explained in his book, User Story Map-
ping. As Patton states, “Your software has a backbone and a skeleton—and your map
shows it.”

Story maps help with planning and prioritizing by visualizing the solution as a whole
(see Figure 5-3). Story mapping is not designed to generate stories or create a release
plan—it is about understanding customers’ objectives and jobs-to-be-done. Story
maps provide an effective means to communicate the narrative of our solution to
engage the team and wider stakeholders and get their feedback. By going through
story maps and telling the story of the solution, we ensure that we have not missed
any major components. At the same time, we maximize learning by identifying the
next riskiest hypothesis to test while minimizing waste and overengineered solutions
that do not fit customer needs as defined in our MVP.

97CHAPTER 5: EVALUATE THE PRODUCT/MARKET FIT

Figure 5-3. A user story map

When we start to harden, integrate, and automate our product, it impacts our
ability to rapidly adapt to what we are discovering, often limiting our respon-
siveness and ability to change. Within Horizon 3, we must continuously work
to avoid product bloat by leveraging existing services, capabilities, or manual
processes to deliver value to users. Our aim is not to remove ourselves from
users. We want to ensure that we are constantly interacting. If we optimize
only for building without constantly testing our assumptions with our custom-
ers, we can miss key pain points, experiences, and successes—and that is often
where the real insights are.

If we want to learn, we must have empathy for our users and experience their
pain. When we find a customer with a problem that we can solve manually, we
do so for as long as possible. When our customers’ quality of service is com-
promised or we cannot handle the level of demand, we consider introducing
features to address the bottlenecks that have emerged through increased use of
the product.

NOTE

Leverage Frugal Innovation
Unscalable techniques and practices are not only a necessity—they can be a cata-
lyst for change in an organization’s culture. Proving it is possible to test our ideas
quickly, cheaply, and safely gives others in the organization encouragement and
confidence that experimentation is possible, the result being a lasting change for
the better in our culture.

LEAN ENTERPRISE98

12 http://martinfowler.com/bliki/TechnicalDebtQuadrant.html

Engineering Practices for Exploring
In general, we favor the principles of The Toyota Production System by “build-
ing quality into” software, discussed at length in Chapter 8. However, when
exploring, there is a tension between the need to experiment by building
MVPs, and building at high levels of quality through practices such as test
automation.

When we start working on validating a new product idea or a new feature in
an existing product, we want to try out as many ideas as fast as possible. Ide-
ally we will do this without writing any software at all. But for the software
we do write, we don’t want to spend a ton of time building acceptance tests
and refactoring our code. We will (as Martin Fowler puts it) deliberately and
prudently accumulate technical debt in order to run experiments and get
validation.12

However, if our product is successful, we will hit a brick wall with this
approach. Perhaps a year or two in (depending on our pain threshold), changes
will become onerous and time consuming and the product will become infested
with defects and suffer from poor performance. We may even get to the stage
where we consider a Big Rewrite.

Our advice is this. There are two practices that should be adhered to from the
beginning that will allow us to pay down technical debt later on: continuous
integration and a small number of basic unit and user-journey tests. The
moment a product (if we are in Horizon 3) or feature (in Horizon 2) goes from
being an experiment to validated, we need to start aggressively paying down
technical debt. Typically that means adding more user-journey tests, employing
good architectural practices such as modularization, and making sure all new
code written on the feature uses test-driven development (good engineers will
already use TDD).

Having forced ourselves to do something that should be unnatural to engineers
—hack out embarrassingly crappy code and get out of the building to get vali-
dation from early on—we must then pull the lever hard in the other direction,
kill the momentum, and transition our focus from building the right thing to
building the thing right. Needless to say, this requires extreme discipline.

Choosing at what point in the lifecycle of our product or feature to pay down
our technical debt is an art. If you find (as many do) that you’ve gone too far
down the path of accumulating technical debt, consider the alternatives to the
Big Rewrite described in Chapter 10.

99CHAPTER 5: EVALUATE THE PRODUCT/MARKET FIT

http://martinfowler.com/bliki/TechnicalDebtQuadrant.html

Engines of Growth
In The Lean Startup, Eric Ries argues that there are three key strategies for
growth—choose one:

Viral
Includes any product that causes new customers to sign up as a necessary
side effect of existing customers’ normal usage: Facebook, MySpace, AIM/
ICQ, Hotmail, Paypal. Key metrics are acquisition and referral, combined
into the now-famous viral coefficient.

Pay
Is when we use a fraction of the lifetime value of each customer and flow
that back into paid acquisition through search engine marketing, banner
ads, public relations, affiliates, etc. The spread between your customer life-
time value and blended customer acquisition cost determines either your
profitability or your rate of growth, and a high valuation depends on bal-
ancing these two factors. Retention is the key goal in this model. Examples
are Amazon and Netflix.

Sticky
Means something causes customers to become addicted to the product,
and no matter how we acquire a new customer, we tend to keep them. The
metric for sticky is the “churn rate”—the fraction of customers in any
period who fail to remain engaged with our product or service. This can
lead to exponential growth. For eBay, stickiness is the result of the incredi-
ble network effects of their business.

For enterprises, however, there are further growth options to consider:

Expand
Is building an adaptive initial business model that we could simply evolve
and expand further by opening up new geographies, categories, and adja-
cencies. Amazon has executed this strategy excellently, moving from selling
books to an e-commerce store offering new retail categories. With this
growth strategy, the initial targeted market should be large enough to sup-
port multiple phases of growth over time.

Platform
Once we have a successful core product, we transform it into a platform
around which an “ecosystem” of complementary products and services is
developed by both internal and external providers. Microsoft did this with
Windows by creating MS Office, Money, and other support packages,
including those developed by external vendors. Other platform examples
include Apple’s AppStore, Salesforce’s Force.com, and Amazon’s Market-
place and Web Services offerings.

LEAN ENTERPRISE100

Great products, tools, and practices, both internal and external, have always
spread by word of mouth due to their truly compelling value proposition and a
brand that customers are proud to advocate. If our growth is derived from our
customers, then it will happen without us having to invest. If not, we will be
limited by the effort required to manually discover, convert, and service our
customers.

Ultimately, our product is the key driver of growth. If we build a truly compel-
ling solution that addresses a customer need and that they really love, they will
use it. More impressively, they will become advocates and encourage others to
use it—creating the best sales team we could wish to hope for to enable
success.

Transitioning Between Horizons to Grow and Transform
In Chapter 2, we mentioned that organizations must manage all three horizons
concurrently. The ability to recognize, transition, and convert initiatives
through these cycles, as shown in Figure 5-4, holds the key for the future suc-
cess, relevance, and longevity of the organization.

Figure 5-4. Percentage of product portfolio for the three innovation horizons over time

As we describe in Chapter 3, it is Horizons 2 and 3 that need the most leader-
ship support. These horizons contain much more uncertainty and lower reve-
nue, so they can be easily crushed if not managed independently of Horizon 1.

101CHAPTER 5: EVALUATE THE PRODUCT/MARKET FIT

13 Although Lean originated in manufacturing, it has evolved into most sectors, including health-
care, financial services, transportation, construction, education, and the public sector.

We must be aware of the pitfalls at each stage, including transitioning at a
wrong time and selecting a wrong strategy for each horizon.

Lean Development and Lean Operations, by Steve Bell
Lean thinking is usually associated with operations, as it originated with the Toyota
Production System (TPS) and has been widely adopted in manufacturing settings.13

But Toyota’s long-term success is equally due to their application of lean principles to
quickly and efficiently develop desirable new products of high quality and a reason-
able cost. Toyota has demonstrated that an enterprise that adopts lean thinking seam-
lessly across development and operations can gain a lasting competitive advantage.

Lean development and operations are interrelated and complementary, but very differ-
ent in nature. Lean operations emphasizes standardization and reduction of waste,
uncertainty, and variation in order to create efficient processes that produce consis-
tent, quality products. In contrast, lean development utilizes uncertainty and variation
early in the design process to learn from experiments, especially from failures—which
is the most effective way to solve problems and drive innovation.

Yet here is the paradox: lean development, which requires variation and uncertainty,
relies on standardized work methods to formulate hypothesis for innovation and run
consistent and repeatable experiments that minimize waste and time, while maximiz-
ing creativity and value.

For example, lean development rigorously and continuously engages the Voice of the
Customer at the gemba (the place, both physical and virtual, where the work is done)
utilizing iterative, often set-based design to accelerate learning and quickly create a
product with a valid value hypothesis. Other standardized lean practices like A3 prob-
lem solving, visual management, and value stream mapping are useful in a develop-
ment setting, improving speed to market while reducing R&D cost and enterprise risk.

Once there is a viable new product or service, the enterprise may utilize its lean opera-
tions capabilities to quickly and efficiently bring it to market, validating the growth
hypothesis. This is where many lean startups either lose the market to fast followers or
are acquired by larger enterprises with lean operations capability to rapidly reach the
market, exploit early profits, and achieve brand domination. While acquiring startups
as a source of innovation is certainly a viable strategy for larger enterprises, most
would also like to enhance their internal innovation capability as well.

Lean development thus creates innovative products and services that flow through
lean operations and into the hands of the customer as a continuous value stream, in
the same spirit as continuous delivery (DevOps) does in a software context. When an
enterprise is able to integrate and exploit this rapid flow of ideas to value, profits from
mature products can fund continuous innovation, creating a virtuous cycle illustrated
in Figure 5-5.

LEAN ENTERPRISE102

Figure 5-5. The virtuous cycle of innovation, by Steve Bell

When attempting to cross Horizon 3, indicators of customer satisfaction and
continued engagement are important signals to monitor for future growth.
Once we have found customers, learned how to address their needs, and are
confident of meeting their demand, we should seek to expand the customer
market by geography, channel, or offerings.

While exploring, we are testing a fit between product and market, typically
through bespoke solutions for our initial customers. Exploiting is about finding
an offering and business model that appeals to a broader customer set.

The five critical enablers of growth when transitioning from explore to exploit
are:

Market
It is imperative to select the right market. Ideally, there are plenty of poten-
tial customers that will support our growth aspirations; we must identify
the elements that made us successful with our early adopters, and then
seek to find similar but larger groups to engage with. The insights we have
learned by working with our early adopters are key to informing this deci-
sion. Early adopters are also likely to spread their experiences with our
product by word of mouth, eventually driving the product to “cross the
chasm” to wider adoption.

103CHAPTER 5: EVALUATE THE PRODUCT/MARKET FIT

Monetization model
We must decide what is the best way to capture the value created by our
offering, as it essentially defines what will drive revenue for our business
model. It is also difficult to change later.

Customer adoption
How will we get customers on board with the product? We must be care-
ful not to make major product or pricing concessions to any individual
group to win over a large account. We must remain true to our product
vision and manage the tension and demands of any single customer group
that could limit further growth.

Forget “big bang” launches
Play it safe: continue to test and validate the product, contain the fire,
work with smaller samples of customers. Build momentum through alpha
and beta product launches with targeted customer segments. As we gain
more confidence, understanding, and success, we broaden our customer
base. Ideally, we want customers to come to us with problems to solve so
we don’t have to push new products on them.

Team engagement
We must do all we can to keep the team together to protect culture, learn-
ing speed, and acquired knowledge. We do not want to build a wall
between innovation and operation teams. Collaboration, directed towards
organization learning and development, is key to making an innovation
culture stick as we start to scale and hire new team members.

When considering process improvements and tool selection, similar principles
apply to identifying target users, evaluation and capture of benefit, user adop-
tion, avoiding “big bang” rollouts, and team engagement.

Innovation Takes Time: From Auction to Marketplace
Amazon auctions (later known as zShops) were launched in March 1999 in response to
the success of eBay. The site was promoted heavily from the home, category, and indi-
vidual product pages. Despite the promotion, one year after launch it had only
achieved a 3.2% share of the online auction market compared to 58% for eBay, and
subsequently declined.

In November 2000, zShops was renamed to “Amazon Marketplace,” offering competi-
tive prices on products available through third-party sellers alongside the standard
product listings. The strategy, initially driven by the need to compete with eBay, was
adjusted to align to Amazon’s strategic focus on low pricing.

Extending the model further, Amazon introduced selling used products through the
seller marketplace, providing another revenue stream without any impact to its supply

LEAN ENTERPRISE104

14 http://bit.ly/1v700QY

15 http://bit.ly/1v701og

chain. Advertising, packing, and shipping are handled exclusively by sellers, with Ama-
zon taking a cut of the transaction for providing the sales channel with minimal cost.

In 2012, Amazon’s Marketplace service produced 12% of revenues14 with total unit
sales increasing 32% from the previous year.15

By reconsidering how we define and measure validated learning, we can start
to test and communicate if and when our initiatives are getting traction. By
continually experimenting with our customers and moving our One Metric
That Matters as cheaply and quickly as possible, we can limit our investment,
reduce associated risks, and maximize learning. An evidence-based approach
to product development provides safety, context, and cover to act for stake-
holders—and is a catalyst for change in the larger organization.

Conclusion
Innovation accounting provides a framework to measure progress in the con-
text of Horizon 3—that is, under conditions of extreme uncertainty. It is
designed to gather leading indicators of the future growth of the idea, so that
we can eliminate those that will not succeed in Horizon 2.

We have identified the three key areas to consider during this stage. First, we
must find customers to act as co-creators of value. We use their feedback to
experiment and refine our value proposition before aiming for a wider market.
Second, we focus on learning rather than revenue by taking a narrow customer
focus and validating each assumption our solution makes. We do not need to
build requirements; we need to answer questions about the desired functional-
ity of our product. Finally, we focus on user engagement over quick financial
gain—with more satisfied users there will come revenue (or whatever value we
hope to create for our organization). As we improve our understanding of our
users and the product opportunity, we can decide on a monetization model to
ensure the ongoing success for the product.

Most ideas will not achieve a product/market fit. For those that do, a meta-
morphosis is required. The behaviors and management principles required to
succeed in Horizon 2 are fundamentally different from those that govern Hori-
zon 3. Part III presents how to grow an organization focused on building the
product right, now that we have confidence that we are building the right
product.

Questions for readers:

105CHAPTER 5: EVALUATE THE PRODUCT/MARKET FIT

http://bit.ly/1v700QY
http://bit.ly/1v701og

• What customer and business metrics would be on your innovation
scorecard?

• Who are the key stakeholders, and what is their influence for each stage of
the adoption curve for your product? How do you plan to engage them
and create alignment?

• What experiments do you plan to run to test and validate your business
model hypothesis with customers? How will you visualize and prioritize
them?

• How can you gather data to test with your identified market as cheaply
and quickly as possible?

• What are your criteria for moving a product from Horizon 3 to
Horizon 2?

LEAN ENTERPRISE106

PART III

EXPLOIT

Prediction is difficult, especially about the future.
Niels Bohr

In Part II, we showed how to explore new opportunities—whether potential
products or internal tools and services. In this part, we discuss how to exploit
validated ideas. As discussed in Chapter 2, these two domains demand a com-
pletely different approach for management and execution. However, both are
necessary—and indeed complementary—if we are to effectively balance our
enterprise portfolio and adapt to a constantly changing business environment.

We hope you are reading this part because you have successfully exited the
explore domain—but it’s just as likely that you are here because you partici-
pate in a large program of work in an enterprise which has been set up in the
traditional way. Thus, this part of the book primarily describes how to change
the way we lead and manage such large-scale programs of work in a way that
empowers employees and dramatically increases the rate at which we can
deliver valuable, high-quality products to customers. But before we can begin,
we must understand our current condition.

In an enterprise context, planned work is usually prioritized through a central-
ized or departmental planning and budgeting process. Approved projects then
go through the development process before going live or being released to
manufacturing. Even in organizations which have adopted “agile” develop-
ment methods, the value stream required to deliver a project often resembles

107

1 The term “water-scrum-fall” was coined by Forrester Research. A value stream is defined as
“the sequence of activities an organization undertakes to deliver on a customer request” [mar-
tin], p. 2. We cover value streams in Chapter 7.

2 http://homepages.cs.ncl.ac.uk/brian.randell/NATO

Figure III-1, which we describe as “water-scrum-fall.”1 In cases where one or
more of these phases are outsourced, we must also go through a procurement
process before we can proceed to the design and development phases following
approval. Because this process is so onerous, we tend to batch up work, creat-
ing large programs which further exacerbate the problems with the project
paradigm.

Figure III-1. Water-scrum-fall

This project-based paradigm for carrying out software development at scale
has its origins in the post-WWII United States military-industrial complex,
where software was crucial for building a new generation of airplanes, missile
systems, and spacecraft that had essentially one customer: the US government.
It’s no coincidence that the term “software engineering” was coined at a 1968
NATO conference which was convened to work out how to formalize large-
scale software development.2

The traditional centralized phase-gate project paradigm was designed in a sim-
pler era. Products could not deliver value until they were fully manufactured,
they didn’t need to change substantially over the course of their lifecycle, and
we had a high level of confidence that we would not need to change the specifi-
cation significantly in response to new information discovered in the course of
building the product.

None of these criteria apply to software-based systems today, and the power of
software derives from the fact that it’s cheap to prototype and change. In par-
ticular, since we are so frequently wrong about what users of our products and
systems will find valuable, planning out big programs of work months in

LEAN ENTERPRISE108

http://homepages.cs.ncl.ac.uk/brian.randell/NATO

3 This is a key claim of Nassim Taleb’s body of work.

advance leads to an enormous amount of waste and bad blood. Instead of try-
ing to get better at predicting the future, we should improve our ability to
adapt rapidly and effectively to new information.3

The modern, lean-agile paradigm we present for running large-scale programs
of work discussed in this part is the result of working with and studying a
number of organizations that need to get software development off the critical
path. They want to move fast at scale, detect weak signals in the market, and
exploit them rapidly. This is what allows them to provide better customer ser-
vice, to reduce the cost of creating and evolving products, and to increase qual-
ity and stability of their services.

There are several frameworks that deal with scaling agile software develop-
ment methods. In general, these frameworks take small teams practicing Scrum
and add more structures on top to coordinate their work. However, these
teams are still embedded within a phase-gate program and portfolio manage-
ment process that is more or less unchanged from the traditional project man-
agement paradigm. They still apply top-down thinking and tend to batch up
work into releases with long cycle times, thus limiting the use of the informa-
tion collected to guide future decisions. Our approach differs in several impor-
tant respects from these frameworks, as well as from more traditional phase-
gate frameworks.

The most important difference is that instead of presenting a particular set of
processes and practices to implement, we focus on implementing continuous
improvement at the senior leadership level to drive the evolution of your orga-
nization and the processes you use. Continuous improvement cannot be at the
edges of our “big diagram”: we put it front and center. This reflects the fact
that there is no one-size-fits-all solution and that every organization faces a dif-
ferent set of circumstances. Every organization will take its own path to
address changes, aligned to its own business objectives; to create lasting
results, we must enable teams to try things out and learn what works and what
doesn’t for themselves.

In the following chapters, we will present the following principles for lean-
agile product development at scale:

• Implement an iterative continuous improvement process at the leadership
level with concise, clearly specified outcomes to create alignment at scale,
following the Principle of Mission.

• Work scientifically towards challenging goals, which will lead you to iden-
tifying and removing—or avoiding—no-value-add activity.

109PART III: EXPLOIT

• Use continuous delivery to reduce the risk of releases, decrease cycle time,
and make it economic to work in small batches.

• Evolve an architecture that supports loosely coupled customer-facing
teams which have autonomy in how they work to achieve the program-
level outcomes.

• Reduce batch sizes and take an experimental approach to the product
development process.

• Increase and amplify feedback loops to make smaller, more frequent deci-
sions based on the information we learn from performing our work to
maximize customer value.

We’ll also provide several examples of enterprises that have leveraged these
principles to create a lasting competitive advantage, and describe how they
transformed themselves in the process.

LEAN ENTERPRISE110

C H A P T E R 6

Deploy Continuous Improvement

The paradox is that when managers focus on productivity, long-term
improvements are rarely made. On the other hand, when managers
focus on quality, productivity improves continuously.

John Seddon

In most enterprises, there is a distinction between the people who build and
run software systems (often referred to as “IT”) and those who decide what
the software should do and make the investment decisions (often called “the
business”). These names are relics of a bygone age in which IT was considered
a cost necessary to improve efficiencies of the business, not a creator of value
for external customers by building products and services. These names and the
functional separation have stuck in many organizations (as has the relationship
between them, and the mindset that often goes with the relationship). Ulti-
mately, we aim to remove this distinction. In high-performance organizations
today, people who design, build, and run software-based products are an inte-
gral part of business; they are given—and accept—responsibility for customer
outcomes. But getting to this state is hard, and it’s all too easy to slip back into
the old ways of doing things.

Achieving high performance in organizations that treat software as a strategic
advantage relies on alignment between the IT function and the rest of the orga-
nization, along with the ability of IT to execute. It pays off. In a report for the
MIT Sloan Management Review, “Avoiding the Alignment Trap in Informa-
tion Technology,” the authors surveyed 452 companies and discovered that

111

1 [schpilberg]

2 This case study is taken from [gruver], supplemented by numerous discussions with Gary
Gruver.

high performers (7% of the total) spent a little less than average on IT while
achieving substantially higher rates of revenue growth.1

However, how you move from low performance to high performance matters.
Companies with poor alignment and ineffective IT have a choice. Should they
pursue alignment first, or try to improve their ability to execute? The data
shows that companies whose IT capabilities were poor achieve worse results
when they pursue alignment with business priorities before execution, even
when they put significant additional investment into aligned work. In contrast,
companies whose engineering teams do a good job of delivering their work on
schedule and simplifying their systems achieve better business results with
much lower cost bases, even if their IT investments aren’t aligned with business
priorities.

The researchers concluded that to achieve high performance, companies that
rely on software should focus first and foremost on their ability to execute,
build reliable systems, and work to continually reduce complexity. Only then
will pursuing alignment with business priorities pay off.

However, in every team we are always balancing the work we do to improve
our capability against delivery work that provides value to customers. In order
to do this effectively, it’s essential to manage both kinds of work at the pro-
gram and value stream levels. In this chapter we describe how to achieve this
by putting in place a framework called Improvement Kata. This is the first step
we must take to drive continuous improvement in our execution of large scale
programs. Once we have achieved this, we can use the tools in the following
chapters to identify and remove no-value-add activity in our product develop-
ment process.

The HP LaserJet Firmware Case Study
We will begin with a case study from the HP LaserJet Firmware team, which
faced a problem with both alignment and execution.2 As the name suggests,
this was a team working on embedded software, whose customers have no
desire to receive software updates frequently. However, it provides an excellent
example of how the principles described in the rest of Part III work at scale in
a distributed team, as well as of the economic benefits of adopting them.

HP’s LaserJet Firmware division builds the firmware that runs all their scan-
ners, printers, and multifunction devices. The team consists of 400 people dis-
tributed across the USA, Brazil, and India. In 2008, the division had a

LEAN ENTERPRISE112

3 The distinction between failure demand and value demand comes from John Seddon, who
noticed that when banks outsourced their customer service to call centers, the volume of calls
rose enormously. He showed that up to 80% of the calls were “failure demand” of people call-
ing back because their problems were not solved correctly the first time [seddon].

problem: they were moving too slowly. They had been on the critical path for
all new product releases for years, and were unable to deliver new features:
“Marketing would come to us with a million ideas that would dazzle the cus-
tomer, and we’d just tell them, ‘Out of your list, pick the two things you’d like
to get in the next 6–12 months.’” They had tried spending, hiring, and out-
sourcing their way out of the problem, but nothing had worked. They needed
a fresh approach.

Their first step was to understand their problem in greater depth. They
approached this by using activity accounting—allocating costs to the activities
the team is performing. Table 6-1 shows what they discovered.

Table 6-1. Activities of the HP LaserJet
Firmware team in 2008

% of costs Activity

10% Code integration

20% Detailed planning

25% Porting code between version control branches

25% Product support

15% Manual testing

~5% Innovation

This revealed a great deal of no-value-add activity in their work, such as port-
ing code between branches and detailed upfront planning. The large amount
spent on current product support also indicated a problem with the quality of
the software being produced. Money spent on support is generally serving fail-
ure demand, as distinct from value demand, which was only driving 5% of the
team’s costs.3

The team had a goal of increasing the proportion of spending on innovation by
a factor of 10. In order to achieve that goal, they took the bold but risky deci-
sion to build a new firmware platform from scratch. There were two main
architectural goals for the new “FutureSmart” platform. The first goal was to
increase quality while reducing the amount of manual testing required for new

113CHAPTER 6: DEPLOY CONTINUOUS IMPROVEMENT

firmware releases (a full manual testing cycle required six weeks). The team
hoped that this goal could be achieved through:

• The practice of continuous integration (which we describe in Chapter 8)

• Significant investment in test automation

• Creating a hardware simulator so that tests could be run on a virtual
platform

• Reproduction of test failures on developer workstations

Three years into the development of the new firmware, thousands of automa-
ted tests had been created.

Second, they wanted to remove the need for the team to spend time porting
code between branches (25% of total costs on the existing system). This was
caused by the need to create a branch—effectively a copy of the entire code-
base—for every new line of devices under development. If a feature or bug-fix
added to one line of devices was required for any others, these changes would
need to be merged (copied back) into the relevant code branches for the target
devices, as shown in Figure 6-1. Moving away from branch-based development
to trunk-based development was also necessary to implement continuous inte-
gration. Thus the team decided to create a single, modular platform that could
run on any device, removing the need to use version control branches to han-
dle the differences between devices.

The final goal of the team was to reduce the amount of time its members spent
on detailed planning activities. The divisions responsible for marketing the var-
ious product lines had insisted on detailed planning because they simply could
not trust the firmware team to deliver. Much of this time was spent performing
detailed re-plans after failing to meet the original plans.

Furthermore, the team did not know how to implement the new architecture,
and had not used trunk-based development or continuous integration at scale
before. They also understood that test automation would require a great deal
of investment. How would they move forward?

LEAN ENTERPRISE114

4 [rother-2010]

Figure 6-1. Branching versus trunk-based development

It’s all too easy to turn a sequence of events into a story in an attempt to
explain the outcome—a cognitive bias that Nassim Taleb terms the narrative
fallacy. This is, arguably, how methodologies are born. What struck us when
studying the FutureSmart case were the similarities between the program man-
agement method of FutureSmart’s engineering management team and the
approach Toyota uses to manage innovation as described in Mike Rother’s
Toyota Kata: Managing People for Improvement, Adaptiveness, and Superior
Results.4

Drive Down Costs Through Continuous Process
Innovation Using the Improvement Kata
The Improvement Kata, as described by Mike Rother, is a general-purpose
framework and a set of practice routines for reaching goals where the path to
the goal is uncertain. It requires us to proceed by iterative, incremental steps,
using very rapid cycles of experimentation. Following the Improvement Kata
also increases the capabilities and skills of the people doing the work, because
it requires them to solve their own problems through a process of continuous
experimentation, thus forming an integral part of any learning organization.

115CHAPTER 6: DEPLOY CONTINUOUS IMPROVEMENT

5 [rother]

Finally, it drives down costs through identifying and eliminating waste in our
processes.

The Improvement Kata needs to be first adopted by the organization’s manage-
ment, because it is a management philosophy that focuses on developing the
capabilities of those they manage, as well as on enabling the organization to
move towards its goals under conditions of uncertainty. Eventually, everybody
in the organization should be practicing the Improvement Kata habitually to
achieve goals and meet challenges. This is what creates a culture of continuous
improvement, experimentation, and innovation.

To understand how this works, let’s examine the concept of kata first. A kata is
“a routine you practice deliberately, so its pattern becomes a habit.”5 Think of
practicing scales to develop muscle memory and digital dexterity when learn-
ing the piano, or practicing the basic patterns of movement when learning a
martial art (from which the term derives), or a sport. We want to make contin-
uous improvement a habit, so that when faced with an environment in which
the path to our goal is uncertain, we have an instinctive, unconscious routine
to guide our behavior.

In Toyota, one of the main tasks of managers is to teach the Improvement Kata
pattern to their teams and to facilitate running it (including coaching learners)
as part of everyday work. This equips teams with a method to solve their own
problems. The beauty of this approach is that if the goal or our organization’s
environment changes, we don’t need to change the way we work—if everybody
is practicing the Improvement Kata, the organization will automatically adapt
to the new conditions.

The Improvement Kata has four stages that we repeat in a cycle, as shown in
Figure 6-2.

LEAN ENTERPRISE116

6 [poppendieck-09], Frame 13, “Visualize Perfection.”

Figure 6-2. The Improvement Kata, courtesy of Mike Rother

Understand the Direction
We begin with understanding the direction. Direction is derived from the
vision set by the organization’s leadership. A good vision is one that is inspir-
ing—and, potentially, unattainable in practice. For example, the long-term
vision for Toyota’s production operations is “One-piece flow at lowest possible
cost.” In Leading Lean Software Development, Mary and Tom Poppendieck
describe Paul O’Neill setting the objective for Alcoa to be “Perfect safety for
all people who have anything to do with Alcoa” when he became CEO in
1987.6

People need to understand that they must always be working towards the
vision and that they will never be done with improvement. We will encounter
problems as we move towards the vision. The trick is to treat them as obstacles
to be removed through experimentation, rather than objections to experimen-
tation and change.

Based on our vision and following the Principle of Mission, we must under-
stand the direction we are working in, at the level of the whole organization
and at the value stream level. This challenge could be represented in the form
of a future-state value stream map (see Chapter 7 for more on value stream
mapping). It should result in a measurable outcome for our customers, and we
should plan to achieve it in six months to three years.

117CHAPTER 6: DEPLOY CONTINUOUS IMPROVEMENT

7 [rother]

Planning: Grasp the Current Condition and Establish a Target
Condition
After we have understood the direction at the organizational and value stream
levels, we incrementally and iteratively move towards it at the process level.
Rother recommends setting target conditions with a horizon between one week
and three months out, with a preference for shorter horizons for beginners. For
teams that are using iterative, incremental methods to perform product devel-
opment, it makes sense to use the same iteration (or sprint) boundaries for
both product development and Improvement Kata iterations. Teams that use
flow-based methods such as the Kanban Method (for which see Chapter 7) and
continuous delivery (described in Chapter 8) can create Improvement Kata iter-
ations at the program level.

As with all iterative product development methods, Improvement Kata itera-
tions involve a planning part and an execution part. Here, planning involves
grasping the current condition at the process level and setting a target condi-
tion that we aim to achieve by the end of the next iteration.

Analyzing the current condition “is done to obtain the facts and data you need
in order to then describe an appropriate next target condition. What you’re
doing is trying to find the current pattern of operation, so you can establish a
desired pattern of operation (a target condition).” The target condition
“describes in measurable detail how you want a process to function…[It is] a
description and specification of the operating pattern you want a process or
system to have on a future date.”7

The team grasps the current condition and establishes a target condition
together. However, in the planning phase the team does not plan how to move
to the target condition. In the Improvement Kata, people doing the work strive
to achieve the target condition by performing a series of experiments, not by
following a plan.

A target condition identifies the process being addressed, sets the date by
which we aim to achieve the specified condition, and specifies measurable
details of the process as we want it to exist. Examples of target conditions
include WIP (work in progress) limits, the implementation of Kanban or a con-
tinuous integration process, the number of good builds we expect to get per
day, and so forth.

LEAN ENTERPRISE118

8 [rother]

Getting to the Target Condition
Since we are engaging in process innovation in conditions of uncertainty, we
cannot know in advance how we will achieve the target condition. It’s up to
the people doing the work to run a series of experiments using the Deming
cycle (plan, do, check, act), as described in Chapter 3. The main mistakes peo-
ple make when following the Deming cycle are performing it too infrequently
and taking too long to complete a cycle. With Improvement Kata, everybody
should be running experiments on a daily basis.

Each day, people in the team go through answering the following five
questions:8

1. What is the target condition?

2. What is the actual condition now?

3. What obstacles do you think are preventing you from reaching the target
condition? Which one are you addressing now?

4. What is your next step? (Start of PDCA cycle.) What do you expect?

5. When can we go and see what we learned from taking that step?

As we continuously repeat the cycle, we reflect on the last step taken to intro-
duce improvement. What did we expect? What actually happened? What did
we learn? We might work on the same obstacle for several days.

This experimental approach is already central to how engineers and designers
work. Designers who create and test prototypes to reduce the time taken by a
user to complete a task are engaged in exactly this process. For software devel-
opers using test-driven development, every line of production code they write
is essentially part of an experiment to try and make a unit test pass. This, in
turn, is a step on the way to improving the value provided by a program—
which can be specified in the form of a target condition, as we describe in
Chapter 9.

The Improvement Kata is simply a generalization of this approach to improve-
ment, combined with applying it at multiple levels of the organization, as we
discuss when presenting strategy deployment in Chapter 15.

How the Improvement Kata Differs from Other Methodologies
You can think of the Improvement Kata as a meta-methodology since it does
not apply to any particular domain, nor does it tell you what to do. It is not a
playbook; rather, as with the Kanban Method, it teaches teams how to evolve

119CHAPTER 6: DEPLOY CONTINUOUS IMPROVEMENT

9 [argyris], pp. 2–3.

their existing playbook. In this sense, it differs from other agile frameworks
and methodologies. With the Improvement Kata, there is no need to make
existing processes conform to those specified in the framework; process and
practices you use are expected to evolve over time. This is the essence of agile:
teams do not become agile by adopting a methodology. Rather, true agility
means that teams are constantly working to evolve their processes to deal with
the particular obstacles they are facing at any given time.

NOTE

Single-Loop Learning and Double-Loop Learning
Changing the way we think and behave in reaction to a failure is crucial to effec-
tive learning. This is what distinguishes single-loop learning from double-loop
learning (see Figure 6-3). These terms were coined by management theorist Chris
Argyris, who summarizes them as follows: “When the error detected and correc-
ted permits the organization to carry on its present policies or achieve its present
objectives, then that error-and-correction process is single-loop learning. Single-
loop learning is like a thermostat that learns when it is too hot or too cold and
turns the heat on or off. The thermostat can perform this task because it can
receive information (the temperature of the room) and take corrective action.
Double-loop learning occurs when error is detected and corrected in ways that
involve the modification of an organization’s underlying norms, policies and
objectives.”9 Argyris argues that the main barrier to double-loop learning is defen-
siveness when confronted with evidence that we need to change our thinking,
which can operate at both individual and organizational levels. We discuss how to
overcome this anxiety and defensiveness in Chapter 11.

LEAN ENTERPRISE120

Figure 6-3. Single-loop and double-loop learning

When you practice the Improvement Kata, process improvement becomes
planned work, similar to building product increments. The key is that we don’t
plan how we will achieve the target condition, nor do we create epics, features,
stories, or tasks. Rather, the team works this out through experimentation over
the course of an iteration.

Deploying the Improvement Kata
Rother’s work on the Improvement Kata was a direct result of his enquiry into how
people become managers at Toyota. There is no formal training program, nor is there
any explicit instruction. However, to become a manager at Toyota, one must have first
worked on the shop floor and therefore participated in the Improvement Kata.
Through this process, managers receive implicit training in how to manage at Toyota.

This presents a problem for people who want to learn to manage in this way or adopt
the Improvement Kata pattern. It is also a problem for Toyota—which is aiming to scale
faster than is possible through what is effectively an apprenticeship model for
managers.

Consequently, Rother presents the Coaching Kata in addition to the Improvement Kata.
It is part of deploying the Improvement Kata, but it is also as a way to grow people
capable of working with the Improvement Kata, including managers.

Rother has made a guide to deploying the Improvement Kata, The Improvement Kata
Handbook, available for free on his website at http://bit.ly/11iBzlY.

121CHAPTER 6: DEPLOY CONTINUOUS IMPROVEMENT

http://bit.ly/11iBzlY

10 [gruver], p. 144.

11 [gruver], p. 40.

12 Ibid.

How the HP LaserJet Team Implemented the
Improvement Kata
The direction set by the HP LaserJet leadership was to improve developer pro-
ductivity by a factor of 10, so as to get firmware off the critical path for prod-
uct development and reduce costs.10 They had three high-level goals:

1. Create a single platform to support all devices

2. Increase quality and reduce the amount of stabilization required prior to
release

3. Reduce the amount of time spent on planning

They did not know the details of the path to these goals and didn’t try to
define it. The key decision was to work in iterations, and set target conditions
for the end of each four-week iteration. The target conditions for Iteration 30
(about 2.5 years into the development of the FutureSmart platform) are shown
in Figure 6-4.

The first thing to observe is that the target conditions (or “exit criteria” as they
are known in FutureSmart) are all measurable conditions. Indeed, they fulfill
all the elements of SMART objectives: they are specific, measurable, achieva-
ble, relevant, and time bound (the latter by virtue of the iterative process). Fur-
thermore, many of the target conditions were not focused on features to be
delivered but on attributes of the system, such as quality, and on activities
designed to validate these attributes, such as automated tests. Finally, the
objectives for the entire 400-person distributed program for a single month
was captured in a concise form that fit on a single piece of paper—similar to
the standard A3 method used in the Toyota Production System.

How are the target conditions chosen? They are “aggressive goals the team
feels are possible and important to achieve in 4 weeks…We typically drive
hard for these stretch goals but usually end up hitting around 80% of what we
thought we could at the beginning of the month.”11 Often, target conditions
would be changed or even dropped if the team found that the attempt to ach-
ieve them results in unintended consequences: “It’s surprising what you learn
in a month and have to adjust based on discovery in development.”12

LEAN ENTERPRISE122

13 Gruver, Gary, Young, Mike, Fulghum, Pat. A Practical Approach to Large-Scale Agile Develop-
ment: How HP Transformed LaserJet FutureSmart Firmware, 1st Edition, (c) 2013. Reprinted
by permission of Pearson Education, Inc. Upper Saddle River, NJ.

Figure 6-4. Target conditions for iteration 3013

123CHAPTER 6: DEPLOY CONTINUOUS IMPROVEMENT

14 [gilb-88], p. 91.

WARNING

What Happens When We Do Not Achieve Our Target Conditions?
In bureaucratic or pathological organizational cultures, not achieving 100% of the
specified target conditions is typically considered a failure. In a generative culture,
however, we expect to not be able to achieve all our target conditions. The pur-
pose of setting aggressive target conditions is to reveal obstacles so we can over-
come them through further improvement work. Every iteration should end with a
retrospective (described in Chapter 11) in which we investigate how we can get
better. The results form part of the input for the next iteration’s target conditions.
For example, if we fail to achieve a target condition for the number of good builds
of the system per day, we may find that the problem is that it takes too long to
provision test environments. We may then set a target condition to reduce this in
the next iteration.

This approach is a common thread running through all of Lean Thinking. The sub-
title of Mary and Tom Poppendieck’s book Leading Lean Software Development
reads: “Results are not the point.” This is a provocative statement that gets to the
heart of the lean mindset. If we achieve the results by ignoring the process, we do
not learn how to improve the process. If we do not improve the process, we can-
not repeatably achieve better results. Organizations that put in place unmodifia-
ble processes that everybody is required to follow, but which get bypassed in a
crisis situation, fail on both counts.

This adaptive, iterative approach is not new. Indeed it has a great deal in com-
mon with what Tom Gilb proposed in his 1988 work Principles of Software
Engineering Management:14

We must set measurable objectives for each next small delivery step.
Even these are subject to constant modification as we learn about real-
ity. It is simply not possible to set an ambitious set of multiple quality,
resource, and functional objectives, and be sure of meeting them all as
planned. We must be prepared for compromise and trade-off. We must
then design (engineer) the immediate technical solution, build it, test
it, deliver it—and get feedback. This feedback must be used to modify
the immediate design (if necessary), modify the major architectural
ideas (if necessary), and modify both the short-term and the long-term
objectives (if necessary).

LEAN ENTERPRISE124

15 http://folklore.org/StoryView.py?story=Macintosh_Prototypes.txt

16 [gruver], p. 89.

17 [gruver], p. 67.

Designing for Iterative Development
In large programs, demonstrating improvement within an iteration requires ingenuity
and discipline. It’s common to feel we can’t possibly show significant progress within
2–4 weeks. Always try to find something small to bite off to achieve a little bit of
improvement, instead of trying to do something you think will have more impact but
will take longer.

This is not a new idea, of course. Great teams have been working this way for decades.
One high-profile example is the Apple Macintosh project where a team of about 100
people—co-located in a single building—designed the hardware, operating system,
and applications for what was to become Apple’s breakthrough product.

The teams would frequently integrate hardware, operating system, and software to
show progress. The hardware designer, Burrell Smith, employed programmable logic
chips (PALs) so he could prototype different approaches to hardware design rapidly in
the process of developing the system, delaying the point at which it became fixed—a
great example of the use of optionality to delay making final decisions.15

After two years of development, the new firmware platform, FutureSmart, was
launched. As a result, HP had evolved a set of processes and tools that sub-
stantially reduced the cost of no-value-add activities in the delivery process
while significantly increasing productivity. The team was able to achieve “pre-
dictable, on-time, regular releases so new products could be launched on
time.”16 Firmware moved off the critical path for new product releases for the
first time in twenty years. This, in turn, enabled them to build up trust with the
product marketing department.

As a result of the new relationship between product marketing and the firm-
ware division, the FutureSmart team was able to considerably reduce the time
spent on planning. Instead of “committing to a final feature list 12 months in
advance that we could never deliver due to all the plan changes over the
time,”17 they looked at each planned initiative once every 6 months and did a
10-minute estimate of the number of months of engineering effort required for
a given initiative, broken down by team. More detailed analysis would be per-
formed once work was scheduled into an iteration or mini-milestone. An
example of the output from one of these exercises is shown in Figure 6-5.

125CHAPTER 6: DEPLOY CONTINUOUS IMPROVEMENT

http://folklore.org/StoryView.py?story=Macintosh_Prototypes.txt

18 Gruver, Gary, Young, Mike, Fulghum, Pat. A Practical Approach to Large-Scale Agile Develop-
ment: How HP Transformed LaserJet FutureSmart Firmware, 1st Edition, (c) 2013. Reprinted
by permission of Pearson Education, Inc. Upper Saddle River, NJ.

Figure 6-5. Ballpark estimation of upcoming initiatives18

This is significantly different from how work is planned and estimated in large
projects that often create detailed functional and architectural epics which
must be broken down into smaller and smaller pieces, analyzed in detail, esti-
mated, and placed into a prioritized backlog before they are accepted into
development.

Ultimately the most important test of the planning process is whether we are
able to keep the commitments we make to our stakeholders, including end
users. As we saw, a more lightweight planning process resulted in firmware
development moving off the critical path, while at the same time reducing both
development costs and failure demand. Since we would expect failure demand
to increase as we increase throughput, this is doubly impressive.

LEAN ENTERPRISE126

Three years after their initial measurements, a second activity-accounting exer-
cise offered a snapshot of the results the FutureSmart team had achieved with
their approach, shown in Table 6-2.

Table 6-2. Activity of the HP LaserJet Firmware
Team in 2011

% of costs Activity Previously

2% Continuous integration 10%

5% Agile planning 20%

15% One main branch 25%

10% Product support 25%

5% Manual testing 15%

23% Creating and maintaining automated test suites 0%

~40% Innovation ~5%

Overall, the HP LaserJet Firmware division changed the economics of the soft-
ware delivery process by adopting continuous delivery, comprehensive test
automation, an iterative and adaptive approach to program management, and
a more agile planning process.

Economic Benefits of HP FutureSmart’s Agile Transformation

• Overall development costs were reduced by ~40%.

• Programs under development increased by ~140%.

• Development costs per program went down 78%.

• Resources driving innovation increased eightfold.

The most important point to remember from this case study is that the enor-
mous cost savings and improvements in productivity were only possible on the
basis of a large and ongoing investment made by the team in test automation
and continuous integration. Even today, many people think that Lean is a
management-led activity and that it’s about simply cutting costs. In reality, it
requires investing to remove waste and reduce failure demand—it is a worker-
led activity that, ultimately, can continuously drive down costs and improve
quality and productivity.

127CHAPTER 6: DEPLOY CONTINUOUS IMPROVEMENT

Managing Demand
Up to now, we’ve been discussing how to improve the throughput and quality
of the delivery process. However, it is very common for this kind of improve-
ment work to get crowded out by business demands, such as developing new
features. This is ironic, given that the whole purpose of improvement work is
to increase the rate at which we can deliver as well as the quality of what gets
delivered. It’s often hard to make the outcome of improvement work tangible
—which is why it’s important to make it visible by activity accounting, includ-
ing measuring the cycle time and the time spent serving failure demand such as
rework.

The solution is to use the same mechanism to manage both demand and
improvement work. One of the benefits of using the Improvement Kata
approach is that it creates alignment to the outcomes we wish to achieve over
the next iteration across the whole program. In the original Improvement
Kata, the target conditions are concerned with process improvement, but we
can use them to manage demand as well.

There are two ways to do this. In organizations with a generative culture (see
Chapter 1), we can simply specify the desired business goals as target condi-
tions, let the teams come up with ideas for features, and run experiments to
measure whether they will have the desired impact. We describe how to use
impact mapping and hypothesis-driven development to achieve this in Chap-
ter 9. However, more traditional enterprises will typically have a backlog of
work prioritized at the program level by its lines of business or by product
owners.

We can take a few different approaches to integrating a program-level backlog
with the Improvement Kata. One possibility is for teams working within the
program to deploy the Kanban Method, as described in Chapter 7. This
includes the specification of work in process (WIP) limits which are owned and
managed by these teams. New work will only be accepted when existing work
is completed (where “completed” means it is at least integrated, fully tested
with all test automation completed, and shown to be deployable).

TIP

Managing Cross-Cutting Work
Implementing some features within a program will involve multiple teams work-
ing together. To achieve this, the HP FutureSmart division would set up a small,
temporary “virtual” feature team whose job is to coordinate work across the rele-
vant teams.

LEAN ENTERPRISE128

The HP FutureSmart program, some of whose teams were using Scrum, took
the approach of specifying a target velocity at the program level. Work adding
up to the target velocity was accepted for each iteration, approximating a WIP
limit. In order to implement this approach, all work was analyzed and estima-
ted at a high level before being accepted. Analysis and estimation was kept to
the bare minimum required to be able to consistently meet the overall
program-level target conditions, as shown in Figure 6-5.

WARNING

Do Not Use Team Velocity Outside Teams
It is important to note that specifying a target velocity at the program level does
not require that we attempt to measure or manage velocity at the team level, or
that teams must use Scrum. Program-level velocity specifies the expected work
capacity of all teams based on high-level estimates, as shown in Figure 6-5. If a
team using Scrum accepts work based on these high-level feature specifications,
they then create lower-level stories with which to work.

Scrum’s team-level velocity measure is not all that meaningful outside of the con-
text of a particular team. Managers should never attempt to compare velocities of
different teams or aggregate estimates across teams. Unfortunately, we have seen
team velocity used as a measure to compare productivity between teams, a task
for which it is neither designed nor suited. Such an approach may lead teams to
“game” the metric, and even to stop collaborating effectively with each other. In
any case, it doesn’t matter how many stories we complete if we don’t achieve the
business outcomes we set out to achieve in the form of program-level target
conditions.

In this and the next chapter, we describe a much more effective way to measure
progress and manage productivity—one that does not require all teams to use
Scrum or “standardize” estimates or velocity. We use activity accounting and value
stream mapping (described in Chapter 7) to measure productivity, and we use
value stream mapping combined with the Improvement Kata to increase it—cru-
cially, at the value stream level rather than at the level of individual teams. We
measure and manage progress through the use of target conditions at the pro-
gram level, and if we need to increase visibility, we reduce the duration of
iterations.

Creating an Agile Enterprise
Many organizations look to try and adopt agile methods to improve the pro-
ductivity of their teams. However, agile methods were originally designed
around small, cross-functional teams, and many organizations have struggled
to use these methods at scale. Some frameworks for scaling agile focus on cre-
ating such small teams and then adding structures to coordinate their work at
the program and portfolio level.

129CHAPTER 6: DEPLOY CONTINUOUS IMPROVEMENT

19 [gruver], Chapter 15.

20 [gruver], p. 38.

21 Perhaps it’s better characterized as “Management by Wandering Around and Asking Questions.”
In the Toyota Production System, this is known as a gemba walk.

Gary Gruver, Director of Engineering for FutureSmart, contrasts this approach
of “trying to enable the efficiencies of small agile teams in an enterprise” with
the FutureSmart team’s approach of “trying to make an enterprise agile using
the basic agile principles.”19 In the FutureSmart approach, while the teams ran
within tight guide rails in terms of engineering practices (which we discuss in
more detail in Chapter 8), there was relatively little attention paid to whether
they had, for example, implemented Scrum at the team level. Instead, teams
have relative autonomy to choose and evolve their own processes, provided
they are able to meet the program-level target conditions for each iteration.

This required that engineering management had the freedom to set their own
program-level objectives. That is, they didn’t have to get budget approval to
pay for process improvement work such as test automation or building out the
toolchain for continuous integration. Indeed, the business wasn’t even consul-
ted on this work. All business demand was also managed at the program level.
Notably, product marketing requests always went through the program-level
process, without feeding work directly to teams.

Another important consideration is the way enterprises treat metrics. In a con-
trol culture, metrics and targets are often set centrally and never updated in
response to the changes in behavior they produce. Generative organizations
don’t manage by metrics and targets. Instead, the FutureSmart management
“use[s] the metrics to understand where to have conversations about what is
not getting done.”20 This is part of the strategy of “Management by Wandering
Around” pioneered by HP founders Bill Hewlett and Dave Packard.21 Once we
discover a problem, we ask the team or person having a hard time what we
can do to help. We have discovered an opportunity to improve. If people are
punished for failing to meet targets or metrics, one of the fallouts is that they
start manipulating work and information to look like they are meeting the tar-
gets. As FutureSmart’s experience shows, having good real-time metrics is a
better approach than relying on scrums, or scrums of scrums, or Project Man-
agement Office reporting meetings to discover what is going on.

Conclusion
The Improvement Kata provides a way to align teams and, more generally,
organizations by taking goals and breaking them down into small, incremental
outcomes (target conditions) that get us closer to our goal. The Improvement

LEAN ENTERPRISE130

Kata is not just a meta-methodology for continuous improvement at the enter-
prise and program level; it is a way to push ownership for achieving those
outcomes to the edges of the organization, following the Principle of Mission.
As we show in Chapter 9, it can also be used to run large programs of work.

The key characteristics of the Improvement Kata are its iterativeness and the
ability to drive an experimental approach to achieve the desired target condi-
tions, which makes it suitable for working in conditions of uncertainty. The
Improvement Kata is also an effective way to develop the capabilities of people
throughout the enterprise so they can self-organize in response to changing
conditions.

The FutureSmart case study shows how a large, distributed team applied the
Improvement Kata meta-method to increase productivity eightfold, improving
quality and substantially reducing costs. The processes and tools the team used
to achieve this transformation changed and evolved substantially over the
course of the project. This is characteristic of a truly agile organization.

Implementing an enterprise-level continuous improvement process is a prereq-
uisite for any ongoing large-scale transformation effort (such as adopting an
agile approach to software delivery) at scale. True continuous improvement
never ends because, as our organization and environment evolve, we find that
what works for us today will not be effective when conditions change. High-
performance organizations are constantly evolving to adapt to their environ-
ment, and they do so in an organic way, not through command and control.

Questions for readers:

• Do you know how much time your engineering organization is spending
on no-value-add activities and servicing failure demand versus serving
value demand, and what the major sources of waste are?

• Must engineering teams get permission to invest in work that reduces
waste and no-value-add activity across the value stream as a whole, such
as build, test, and deployment automation and refactoring? Are such
requests denied for reasons such as “there is no budget” or “we don’t have
time”?

• Does everyone within the organization know the short- and long-term out-
comes they are trying to achieve? Who decides these outcomes? How are
they set, communicated, reviewed, and updated?

• Do teams in your organization regularly reflect on the processes they use
and find ways to experiment to improve them? What feedback loops are in
place to find out which ideas worked and which didn’t? How long does it
take to get this feedback?

131CHAPTER 6: DEPLOY CONTINUOUS IMPROVEMENT

1 [womack]

C H A P T E R 7

Identify Value and Increase Flow

There is nothing so useless as doing efficiently that which should not
be done at all.

Peter Drucker

The measure of execution in product development is our ability to
constantly align our plans to whatever is, at the moment, the best eco-
nomic choice.

Donald Reinertsen and Stefan Thomke

Most enterprises are drowning in a sea of overwork, much of which provides
little value to customers. In addition to improving existing products and deliv-
ering new ones, every enterprise has several initiatives and strategic projects in
play at any given time, and every day unplanned work arrives to distract us
from achieving our goals. A common response to this problem is attempting to
increase utilization (work harder), improve efficiency (work faster), and cut
costs using outdated and counterproductive management processes. Lean
Thinking provides a proven alternative which “can be summarized in five prin-
ciples: precisely specify value by specific product, identify the value stream for
each product, make value flow without interruptions, let the customer pull
value from the producer, and pursue perfection.”1

In the previous chapter we showed how to implement a program-level continu-
ous improvement strategy to improve productivity and quality and reduce
costs. In this chapter we show how the five lean principles were adopted by

133

2 http://costofdelay.com; [arnold].

Maersk to reduce the cycle time of new features by over 50% while simultane-
ously increasing quality and return on investment.

The Maersk Case Study
In “Black Swan Farming using Cost of Delay,”2 Joshua J. Arnold and Özlem
Yüce discuss how they approached reducing cycle time in Maersk Lines, the
world’s largest shipping company. Maersk’s IT department had an annual IT
budget of over $150m, with much of its development carried out by globally
distributed outsourcing vendors. They faced a large amount of demand and
slow time-to-market: in 2010, median lead time for a feature was 150 days,
with 24% of requirements taking over a year to deliver (from conception to
software in production). At the point of analysis, in October 2010, more than
2/3 of the 4,674 requirements identified as being in process were in the “fuzzy
front end,” waiting to be analyzed in detail and funded. In one case, “a feature
that took only 82 hours to develop and test took a total of 46 weeks to deliver
end-to-end. Waiting time consumed over 38 weeks of this,” mostly in the fuzzy
front end (Figure 7-1).

Figure 7-1. Value stream map of a single feature delivered through a core system at Maersk
(courtesy of Joshua J. Arnold and Özlem Yüce)

Based on the desired outcomes of “more value, faster flow, and better quality,”
Arnold and Yüce chose eight goals for all teams:

1. Get to initial prioritization faster

2. Improve prioritization using Cost of Delay

3. Pull requirements from Dynamic Priority List

4. Reduce the size of requirements

5. Quickly get to the point of writing code

6. Actively manage work in progress

LEAN ENTERPRISE134

http://costofdelay.com

7. Enable faster feedback

8. Enable smooth, sustainable flow

Previously, features had always been batched up into projects, resulting in
many lower-value features being delivered along with a few high-value ones.
The HiPPO method (highest paid person’s opinion) was used to decide which
features were high-value, and a great deal of effort was spent trying to find the
“right ideas” and analyzing them in detail so as to create projects, get appro-
val, and justify funding.

Arnold and Yüce implemented a new process for managing requirements. They
created a backlog of features—initially at the project level, but later at the pro-
gram and portfolio levels—called the Dynamic Priority List. When new fea-
tures were proposed, they would be quickly triaged, causing the backlog to be
reprioritized. When development capacity became available, the highest prior-
ity feature would be “pulled” from the list.

Features were prioritized using the Cost of Delay method (described in detail
later in the chapter) which estimates the value of a feature in dollars by calcu-
lating how much money we lose by not having the feature available when we
need it. Using this approach, we can determine the impact of time on value and
make prioritization decisions on an economic basis. For example, the cost of
delay for the feature shown in Figure 7-1 was roughly $210,000 per week,
meaning that the delay incurred by having the feature wait in queues for 38
weeks cost $8M. Putting in the extra effort to calculate a dollar value is essen-
tial to reveal assumptions, come to a shared understanding, and move away
from relying on the most senior person in the room making the prioritization
call.

The actual number used to prioritize features is known as cost of delay divided
by duration (or “CD3”). It is calculated as cost of delay for a feature divided
by the amount of time we estimate it will take to develop and deliver that fea-
ture. This takes into account the fact that we have limited people and resources
available to complete work, and that if a particular feature takes a long time to
develop it will “push out” other features. Logically, if we have two features
with the same cost of delay but one will take twice as long as another to
develop, we should develop the shorter-duration feature first. One of the
impacts of accounting for duration is that it encourages people to break work
down into smaller, more valuable pieces, which in turn increases the CD3
score.

Implementing the Dynamic Priority List and using CD3 to schedule work hel-
ped the team to achieve several other goals on their list, such as faster initial
prioritization, reducing the size of requirements, writing code more quickly,
and creating a smoother flow. By July 2011, median cycle time had been

135CHAPTER 7: IDENTIFY VALUE AND INCREASE FLOW

reduced by about 50% on the two services piloted. (One of the pilot services
was a centralized SAP accounting system.) Arnold and Yüce present two fac-
tors causing the reduction in cycle time: increased urgency generated by the
Cost of Delay calculation exercises, and decreased batch size caused by people
breaking work into smaller chunks to increase the CD3. Furthermore, cus-
tomer satisfaction increased significantly on the pilot projects.

Perhaps most interestingly, calculating the cost of delay clarified which work
was most important. In the two systems analyzed, the distribution of cost of
delay followed a power law curve. The cost of delay per week numbers for the
features in the pilot service, shown in Figure 7-2, make it abundantly clear
which three requirements should be prioritized above others. These require-
ments were not identified as being of the highest priority before the cost of
delay was calculated.

Figure 7-2. CD3 per feature (courtesy of Joshua J. Arnold and Özlem Yüce)

The Maersk case study demonstrates the importance of using a flow-based
approach to product development instead of large batches of work delivered in
projects, and of using the Cost of Delay—not intuition or HiPPO—to measure
the relative priority of work to be done.

Increase Flow
As we discussed in Chapter 6, we want to improve the performance of the
delivery process before we tackle improving alignment. However, if we want to
see substantial improvements in performance, we need to start by choosing the

LEAN ENTERPRISE136

3 Value stream mapping was first described in [rother-2009] and is the subject of an excellent
book by Karen Martin and Mike Osterling [martin].

right places to focus our efforts. It’s common to see large organizations waste a
lot of effort making changes to processes or behaviors that are highly visible or
easy to change but not a major contributor to the overall problem. We need to
begin any improvement effort by understanding where the problems arise and
making sure they are understood at all levels of the organization. Only then
will we have the right context to determine what to do next.

Map Your Product Development Value Streams
The best way to understand where problems start is by performing an activity
called value stream mapping.3 Every organization has many value streams,
defined as the flow of work from a customer request to the fulfillment of that
request. Each value stream will cross multiple functions within an organiza-
tion, as shown in Figure 7-3.

Figure 7-3. Value streams passing through departments

In the context of exploiting validated ideas for software, the value streams we
care about are related to product development, from taking an idea or
customer request for a feature or bug fix to delivering it to users. Every prod-
uct or service will have its own value stream.

137CHAPTER 7: IDENTIFY VALUE AND INCREASE FLOW

To begin, we select the product or service we want to study, and map the exist-
ing value stream to reflect the current condition. To avoid the common mistake
of trying to improve through local optimization, it’s essential to create a
future-state value stream that represents how we want the value stream to flow
at some future point—typically in one to three years. This represents our target
condition. The current and future value streams can then be used as the basis
for improvement work by applying the Improvement Kata across the scope of
the entire value stream, as shown in Figure 7-4.

Figure 7-4. Value stream mapping in the context of the Improvement Kata

To run a value stream mapping exercise, we must gather people from every
part of the organization involved in the value stream. In the case of product
design and delivery, this might include the product’s business unit, product
marketing, design, finance, development, QA, and operations. Most impor-
tantly, the value stream mapping team must include those who are able to
authorize the kind of change required to achieve the future-state value stream.
Often, getting all the stakeholders to commit to spending 1–3 days together in
a single room at the same time is the hardest part of the process. Aim for the
smallest possible team that fulfills these criteria—certainly no more than 10
people.

Performing value stream mapping involves defining, on a large surface
(Figure 7-5), the various process blocks of the product’s delivery. How you
slice and dice the value stream into process blocks (also known as value stream
loops) is a bit of an art. We want enough detail to be useful, but not so much

LEAN ENTERPRISE138

4 [martin], p. 63.

that it becomes unnecessarily complex and we get lost arguing about minutiae.
Martin and Osterling suggest aiming for between 5 and 15 process blocks.4

For each process block within the value stream, we record the activity and the
name of the team or function that performs it.

Figure 7-5. Outline of a value stream map showing process blocks

Once we have a block diagram, we gather the data necessary to understand the
state of work within the value stream. We want to know the number of people
involved in each process and any significant barriers to flow. We also note the
amount of work within each process block, as well as queues between blocks.
Finally, we record three key metrics: lead time, process time, and percent com-
plete and accurate, as shown in Table 7-1.

Table 7-1. Metrics for value stream mapping

Metric What it measures

Lead time (LT) The time from the point a process accepts a piece of work to the point it
hands that work off to the next downstream process

Process time (PT) The time it would take to complete a single item of work if the person
performing it had all the necessary information and resources to complete
it and could work uninterrupted

139CHAPTER 7: IDENTIFY VALUE AND INCREASE FLOW

Metric What it measures

Percent complete and accurate
(%C/A)

The proportion of times a process receives something from an upstream
process that it can use without requiring rework

When mapping a value stream, we always record the state of the processes as
they are on the day we perform the exercise. It’s extremely tempting to record
numbers representing an ideal or best case state rather than the typical state—
but looking at what the numbers are right now helps to keep people on track.
Wherever possible, the team should actually go to the places where the work is
done and ask the people doing it for the real numbers. This helps the team to
experience the different environments where works take place across the value
stream.

The output of a simple value stream mapping exercise for a single feature that
goes through a relatively straightforward product development value stream is
shown in Figure 7-6. If it proves useful, we could go into more detail on each
of the stages of the process and state what happens when a process rejects
input as incomplete or inaccurate. This is particularly important when the
ratio of lead time to process time is large or when the downstream process has
an unusually poor %C/A.

Figure 7-6. Example value stream map of a feature

Running this exercise for the first time in an organization is always enlighten-
ing. People are invariably surprised—and often shocked—by how processes in
which they do not participate actually work and are impacted by their work.

LEAN ENTERPRISE140

We have seen arguments break out! Ultimately, by producing a better idea of
how work moves through the organization, value stream mapping increases
alignment, empathy, and shared understanding between the stakeholders.

Perhaps the most valuable metric when performing this exercise is %C/A. It’s
very common to discover that a great deal of time is wasted on failure demand
such as rework: developers discover flaws in the design, testers are given builds
that cannot run or be deployed, customers ask for changes when they see fea-
tures showcased, and critical defects or performance problems are discovered
in production or reported by users. Facilitators of these exercises should come
armed with questions to discover and capture rework, such as:

• At which points do we discover problems in the design?

• What happens in this case?

• Who is involved in that step?

• How do handoffs work?

• At what point do we discover whether the feature actually delivers the
expected value to customers?

• Where are architectural problems (such as performance and security)
discovered?

• What is the effect on lead time and quality?

These issues should be captured on the value stream map, their probability
recorded in the form of %C/A in the processes that discover them and (where
possible) attributed to the part of the value stream where they were actually
caused.

The total amount of waste in an enterprise value stream is usually very sober-
ing. While everybody has an intuitive grasp that enterprise value streams are
inefficient, seeing the whole value stream from idea to measurable customer
outcome often reveals staggering amounts of waste. This waste manifests itself
in the percentage of time that is not value-adding, in how often work is sitting
idle in queues, and crucially in the %C/A numbers that show us where we have
failed to build in quality during upstream processes.

Finally, value stream mapping reveals the folly of local optimizations. In
almost every case we have seen, making one process block more efficient will
have a minimal effect on the overall value stream. Since rework and wait times
are some of the biggest contributors to overall delivery time, adopting “agile”
processes within a single function (such as development) generally has little
impact on the overall value stream, and hence on customer outcomes.

141CHAPTER 7: IDENTIFY VALUE AND INCREASE FLOW

5 [martin], p. 101.

In most cases we need to rethink our whole approach to delivering value by
transforming the entire value stream, starting by defining the measurable cus-
tomer and organizational outcomes we wish to achieve through our redesign.
In order to mitigate the disruption of this kind of change, we usually limit our
efforts to a single product or set of capabilities within a product—one which
would most benefit customers and the organization as a whole.

We then create a future-state value stream map which describes how we want
the value stream to function in the future. The goal of this design activity is to
improve performance. Martin and Osterling define optimal performance as
“delivering customer value in a way in which the organization incurs no
unnecessary expense; the work flows without delays; the organization is 100
percent compliant with all local, state and federal laws; the organization meets
all customer-defined requirements; and employees are safe and treated with
respect. In other words, the work should be designed to eliminate delays,
improve quality, and reduce unnecessary cost, effort, and frustration.”5

There is of course no “right answer” to creating a future-state value stream
map, but a good rule of thumb is to aim to significantly reduce lead time and
improve rolled %C/A (indicating we have done a better job of building in
quality). It’s important for participants in this exercise to be bold and consider
radical change (kaikaku). Achieving the future state will almost certainly
require some people to learn new skills and change the work they are doing,
and some roles (but not the people who perform them) will become obsolete.
For this reason, as we discuss in Chapter 11, it’s essential to provide support
for learning new skills and behaviors, and to communicate widely and fre-
quently that nobody will be punished for carrying out improvement work—
otherwise you are likely to experience resistance.

At this stage, don’t try to guess how the future state will be achieved: focus on
the target conditions to achieve. Once the current and future-state value stream
maps are ready, we can use the Improvement Kata to move towards the future
state. In Chapter 6 we described the use of the Improvement Kata to drive con-
tinuous improvement at the program level. The target conditions for the
future-state value stream map should be fed into program-level Improvement
Kata cycles. However, where value streams extend beyond the teams involved
in programs of work—perhaps into IT operations and business units—we need
to also establish Improvement Kata cycles at the value stream level, with own-
ers who establish and track key performance indicators and monitor progress.

LEAN ENTERPRISE142

6 [anderson]

WARNING

Organizations using the phase-gate paradigm (described in Figure III-1 at the
beginning of Part III) will find the principles described in the following chapters
increasingly hard to implement without fundamentally changing their organiza-
tional structure. The Improvement Kata described in Chapter 6 can (and should)
be implemented everywhere as it makes almost no presuppositions about organ-
izational structure. We have just discussed how to map and improve the flow of
work through your organization, which will enable you to begin incrementally
changing the form of your organization and the roles of your people. Chapter 8
discusses lean engineering practices that enable faster, higher-quality delivery at
lower cost. If your organization outsources software engineering, your outsourc-
ing partners will need to implement these practices, and this is likely to require
changes to your relationship, including potentially contractual changes. Chap-
ter 9, which describes an experimental approach to product development,
requires that designers, engineers, testers, infrastructure specialists, and product
people work collaboratively in very short iterations. This is extremely hard to do
when any of these functions are outsourced; it’s marginally easier when all teams
are internal, but still requires everyone to work in a coordinated way.

Everyone can, and should, begin the journey we describe in Part III. Be forwarned:
implementing the entire program will be disruptive to most organizations and
take years of investment and experimentation to achieve. Do not try to imple-
ment the entire program across all of your organization quickly—use value
stream mapping and break down future-state value stream maps into blocks to
do it iteratively and incrementally, value stream by value stream.

Limit Work in Process
If our goal is to increase the flow of high-value work through the product
development value stream, value stream mapping represents an essential first
step. However, we must take further steps to manage the flow of work through
the system so as to decrease lead times and increase predictability.

In the context of product development, the Kanban Method provides princi-
ples and practices to support this goal, as described in David J. Anderson’s
Kanban: Successful Evolutionary Change for your Technology Business.6 First,
we must visualize the flow of work through the value stream: we take the
current-state value stream map and translate it to a physical or virtual board
with columns representing process blocks and queues between blocks. We then
create a card for each piece of work currently passing through the value
stream, as shown in Figure 7-7. These cards are moved across the board as
work progresses through the value stream.

143CHAPTER 7: IDENTIFY VALUE AND INCREASE FLOW

7 These two quantities are in fact causally related; in the mathematical field called Queue Theory
this is known as Little’s Law.

Figure 7-7. An example of a Kanban board

We can visualize the dynamics of the value stream by creating a cumulative
flow diagram that shows the amount of work in each queue and process block
over time. An example of a cumulative flow diagram is shown in Figure 7-8. It
clearly shows the relationship between work in process (WIP) and lead time: as
we reduce WIP, lead time falls.7

In the Maersk case study, we discussed two ways to reduce the size of the
batches of work that move through the product development value stream:
reduce the size of requirements and unbundle projects into requirements that
can be prioritized independently. Limiting WIP is another powerful way to
reduce batch size. Since reducing batch sizes is the most important factor in
systemically increasing flow and reducing variability, and has important
second-order effects such as improving quality and increasing trust between
stakeholders, we should pursue these practices relentlessly, and measure our
progress.

LEAN ENTERPRISE144

Figure 7-8. A cumulative flow diagram

The Kanban Method offers a comprehensive way to manage the flow of work
through the product development value stream by using the following
practices:

• Visualize workflow by creating a board showing the current work in pro-
cess within the value stream in real time.

• Limit work in process by setting WIP limits for each process block and
queue within a value stream, and updating them in order to trade off lead
time against utilization (how busy people are).

• Define classes of service for different types of work and the processes
through which they will be managed, to ensure that urgent or time-
sensitive work is prioritized appropriately.

• Create a pull system by agreeing on how work will be accepted into each
process block when capacity becomes available—perhaps by setting up a
regular meeting where stakeholders decide what work should be priori-
tized based on available capacity.

145CHAPTER 7: IDENTIFY VALUE AND INCREASE FLOW

• Hold regular “operational reviews” for the stakeholders within each pro-
cess block to analyze their performance and update WIP limits, classes of
service, and the method through which work is accepted.

WARNING

WIP Limits Should Hurt
Part of the purpose of WIP limits is to reveal opportunities for improvement.
Imposing WIP limits will focus attention on work which is blocked or hard to com-
plete, since our inability to complete it prevents us picking up new work. At this
point, it’s tempting to relax WIP limits to make sure “something is getting done.”
It’s essential to avoid this temptation and address the sources of the problem
instead.

The Kanban Method follows four principles of continuous improvement
designed to minimize resistance to change:

• Start with what you do now

• Agree to pursue incremental, evolutionary change

• Initially, respect current roles, responsibilities, and job titles

• Encourage acts of leadership at all levels

The Kanban Method is a powerful tool to improve performance and increase
quality and trust at the team level in an environment where there is no buy-in
for continuous improvement at the senior management level. In such a situa-
tion, we strongly recommend that teams deploy the Kanban Method as their
first step to get better. Once you have demonstrated measurable improvement,
you still need to pursue enterprise-level continuous improvement since, in a
typical enterprise context, adopting Kanban at the team level is likely to lead
only to incremental improvements.

LEAN ENTERPRISE146

8 Pawel Brodzinski has a good article on WIP limits for portfolio management: http://brodzin
ski.com/2014/06/portfolio-management.html.

9 The concept of Cost of Delay was invented by Don Reinertsen—see [reinertsen].

TIP

Managing Work in Process at the Enterprise Level
The primary goal of limiting WIP is to finish work to a sufficiently high level of
quality so as to increase throughput. Reducing lead times in this way requires that
there be sufficient slack in the system to manage the WIP effectively. Slack is also
essential to provide time for process improvement work. Since 20th-century Tay-
lorist theories of management emphasize maximizing employee utilization, this
requires a significant change in thinking for many organizations.

In enterprises, one indicator of too much WIP is the number of people assigned to
more than one project. This pernicious practice inevitably leads to longer lead
times and lower quality due to constant context switching. Instead of assigning
people to multiple projects, have a centralized team that can provide extra spe-
cialist support to teams on demand, but do not assign these people to any teams
and carefully monitor their utilization to keep it well below 100%.8

Cost of Delay: A Framework for Decentralizing Economic
Decisions
One of the biggest problems in product development is delivering valuable fea-
tures so late that they no longer provide a competitive advantage. As the
Maersk case study shows, a major contributor to this problem is batching up
features into projects and delivering the results to customers after months of
waiting. Value stream mapping often reveals—as it did at Maersk—that much
of the time spent waiting was in the analysis phase, with features sitting in the
product backlog waiting to be analyzed, estimated, approved, and prioritized
for development.

As we saw in Chapter 3, the information provided by these activities is of very
low value. Frameworks such as Scrum recommend to prioritize the backlog by
business value but offer very little guidance on how to calculate it. Prioritizing
by business value also fails to make explicit the time sensitivity of work. How-
ever, a powerful framework for making rational prioritization decisions based
on economics exists in the form of Cost of Delay.9 The team at Maersk
reduced cycle times for high-value features through a combination of unbun-
dling features from projects and using Cost of Delay as a lightweight method
to identify and prioritize the work with the highest opportunity cost.

To use Cost of Delay, we begin by deciding on the metric we are trying to opti-
mize across our value stream. For organizations engaged in product

147CHAPTER 7: IDENTIFY VALUE AND INCREASE FLOW

http://brodzinski.com/2014/06/portfolio-management.html
http://brodzinski.com/2014/06/portfolio-management.html

development, this is typically lifecycle profit, but a logistics company might use
a metric such as cost per ton mile (the amount it costs to move one ton a mile).
When presented with a decision, we look at all the pieces of work affected by
that decision and calculate how to maximize our One Metric That Matters (see
Chapter 4) given the various options we have. For this, we have to work out,
for each piece of work, what happens to our key metric when we delay that
work (hence “cost of delay”).

Let’s start with a naively simple example to outline the mechanics. Say we have
two pieces of work that we could begin when we arrive on Monday morning.
We are assured (quite forcefully) that they are both of the highest priority.
What should we do?

We start by calculating how much it will cost us if we do not do the work.
Task A is to upgrade a core piece of software to a new version that supports
encrypting credit card data to meet a compliance deadline, which is two weeks
from now. We will be fined $50,000 per working day that we are not in com-
pliance. The cost of not doing this work is zero up until the point at which the
penalty kicks in, and the cost of delay for the work is $250,000 per week after
the deadline. Task A will take two weeks.

Task B is to complete a key feature required by prospective customers, which
we have already advertised will be ready one week from now. We expect we
will close $100,000 of business per week when we release this new feature.
Furthermore, one of our competitors is right behind us, and we believe they
will release a new version of their software with this feature one month from
now. Task B takes one week to complete.

The arithmetic is simple, and our options are shown in Figure 7-9. If we per-
form Task A first, then we delay Task B by two weeks, costing us $200,000. If
we perform Task B first, we delay Task A by a week, costing us $250,000.
Thus we should perform Task A first.

LEAN ENTERPRISE148

Figure 7-9. How do we prioritize Tasks A and B with Cost of Delay?

We can also calculate what happens if we try and do both tasks simultane-
ously. Assuming we assign half our capacity to each, it will take us two weeks
to complete Task B and three weeks to complete Task A. That leads to a total
delay cost of $350,000. This shows we should still perform Task A first before
Task B.

149CHAPTER 7: IDENTIFY VALUE AND INCREASE FLOW

TIP

Use CD3 to Encourage Smaller Blocks of Work
Applying the CD3 method as described in the Maersk case study, Task A’s CD3 is
125,000, whereas Task B’s CD3 is 100,000, which tells us that Task A is higher prior-
ity. Suppose we have an alternative to Task B: Task C. Task C will provide the same
value to 80% of the customers who wanted the feature delivered by Task B
($80,000 per week), but we estimate that completing C will take half of the time of
B (.5 week). Task C’s CD3 will be 160,000, making it higher priority than Task A.
Using CD3 consistently has an important side effect—it encourages us to break
work into smaller and more valuable chunks.

There are several consequences to using Cost of Delay. By calculating cost of
delay for each feature, we no longer rely solely on a product owner to estimate
the business value for the stories in the backlog, which is a poor way to priori-
tize since this person must constantly recalculate in order to take into account
the time sensitivity of business value. Instead, given that we have limited
capacity, we think of prioritization as choosing what to delay.

When development capacity becomes available, the team simply picks the item
with the highest delay cost at that time. This is a key advantage of using Cost
of Delay: following the Principle of Mission, it allows everybody in the organi-
zation to make rational, transparent economic decisions without the need for
command-and-control mechanisms such as onerous reviews, approvals, and
prioritization by the most senior person in the room. We separate out several
concerns which can each be addressed independently at the correct level of the
organization:

1. What is the economic metric we are trying to optimize? (Remember the
One Metric That Matters from Chapter 4.) Communicating this metric is
the responsibility of leadership.

2. What is the impact on this metric of delaying each piece of work? Calcu-
lating this delay cost is the key goal of analysis.

3. How should we schedule and prioritize work? This can be determined
autonomously by teams given the information from points 1 and 2 above.

Furthermore, Cost of Delay provides us with an economic argument for limit-
ing work in process. As we saw in the example above, the delay cost of trying
to perform both A and B simultaneously was greater than completing the indi-
vidual tasks sequentially.

Of course, the example above is very simplistic. First of all, we assumed that
the cost of delay would remain constant over time. This is rarely the case in
real life. For example, the cost of delay for Task A rises to $50,000 per day
right after the last day we can start the upgrade work to complete it in time to

LEAN ENTERPRISE150

meet the external deadline. But for Task B, the amount of business we can
close is likely to be time sensitive, given that our competitors will soon have a
similar feature.

The time sensitivity of the cost of delay is captured in an urgency profile.
Urgency profiles that might be used in real life for Task A and Task B are
shown in Figure 7-10. Cost of delay, on the y axis, represents the amount of
money it costs per unit time to delay the work. To calculate the total delay
cost, we measure the shaded area under the graph. Although in theory there
are many possible urgency profiles, in general almost all tasks in a given orga-
nization will fit a handful of standard profiles. These can be modeled within a
Kanban system by using classes of service.

Figure 7-10. Urgency profiles for Task A and Task B

The second problem we face is that in many cases, it is extremely hard to get a
precise dollar number for cost of delay. To arrive at a number, we typically
make several assumptions and include multiple factors. For example, not com-
pleting Task A on time might lead to a loss of customers’ confidence in our
ability to keep their data safe, which could impact future sales. It’s important
to make these assumptions explicit, visible, and recorded alongside the work
being discussed so we can validate them. The most important thing to bear in
mind is that we are aiming for accuracy, not precision, in our estimates. If the
uncertainty around the cost of delay is very high, this means we are in the
“explore” domain and must test our assumptions, perhaps using one of the
techniques, such as modeling a key metric with Monte Carlo simulations or
testing business hypothesis with MVPs, discussed in Part II.

One of the major benefits of Cost of Delay is that instead of arguing about
answers to the questions we pose, we can reason about the assumptions we
make in our models and focus on validating them. Cost of Delay enables a key
cultural change—from political fights over whose work is more important to
exposing and validating our assumptions and their effect on economic

151CHAPTER 7: IDENTIFY VALUE AND INCREASE FLOW

variables. This does require a certain level of organizational maturity. As with
all process changes, we recommend starting off with a product where people
actually want to try using Cost of Delay, and providing the necessary support
to experiment with it.

Applying Cost of Delay across the enterprise allows us to decentralize decision
making and bring decisions under economic control. To do this, we have to
change the way we think about managing work, particularly the role of the
group responsible for prioritizing decisions at the portfolio and program level
(often known as the project management office, or PMO). In the Cost of Delay
model, the key responsibility of this group changes from making the actual
decisions to creating and updating the framework for making decisions: work-
ing with finance and individual projects to create standard urgency profiles and
templates, gathering and analyzing data, rolling out cost of delay across the
organization, and creating feedback loops to continuously improve the quality
of the decision-making process. The actual decisions can then made by teams
on the ground, based on the cost of delay information updated when there is
new work or when the assumptions underlying existing calculations change.
This is a large change that will require executive support, a pilot, and improve-
ments based on learning before it is ready to be adopted by the organization as
a whole.

Finally, there are things that you should not do with Cost of Delay. Avoid sim-
ply adding cost of delay on top of existing prioritization methods. Its purpose
is to improve the quality of demand by enabling us to identify and avoid
lower-value work whilst shortening lead times for high-value work. If we turn
Cost of Delay into a heavyweight process that sits alongside existing processes,
we will not achieve that goal. Cost of Delay provides the biggest payoff when
queues are large—in other words, when there is a long lead time. It is essen-
tially a countermeasure that becomes valuable when there is too much work in
the system. If you don’t have large queues and too much work, using Cost of
Delay will likely provide little overall value.

In the context of software-based products and services, implementing lean
engineering practices is essential to reducing lead times overall and gathering
rapid customer feedback as early as possible in the product lifecycle. The ulti-
mate solution for the deficit of throughput—and thus productivity—is to
reduce lead times overall by reducing batch sizes, managing work in process,
and reducing the cost of delivering value to customers. In terms of measuring
value, there is no substitute for shipping and getting real customer feedback.

Conclusion
In high-performing organizations, leadership and management has a sharp
focus on the value the organization is creating for its customers. Working

LEAN ENTERPRISE152

scientifically toward challenging goals, which leads to identifying and remov-
ing or avoiding no-value-add activity, is the essence of Lean Thinking, and this
requires a significant mindset change for most organizations. Value stream
mapping is a powerful tool to visualize our work, so we know our current con-
ditions and create a shared understanding of where we are and where we want
to get to. An effective value stream mapping exercise can be truly eye-opening
by allowing teams to see, for the first time, the flow of work through the orga-
nization in response to customer demand, and their true contribution within it.
The output of a value stream mapping exercise is then used to set target condi-
tions for the Improvement Kata described in Chapter 6. We can then use the
Kanban Method to manage the flow of work through the value stream, set and
update WIP limits and classes of service, and create a pull system to increase
flow.

Improving the flow of work through the organization is one side of the coin.
The other is making sure we are working on the right things. Cost of Delay
provides a way to measure the value of time, enabling teams to make transpar-
ent prioritization decisions. By quantifying the value of the work we are doing,
we can avoid doing low-value work. If we limit work in process across the
value stream and only work on the highest-value tasks, we can rapidly reduce
time-to-market for work which is the highest value to our customers.

Questions for readers:

• How is work prioritized in your team or organization? Do you use an eco-
nomic model or do HiPPOs decide?

• How would you try to implement an economic model for your current
backlog? Why not look at the items within your current iteration queue
and estimate the Cost of Delay for each?

• What is your current lead time for changes? How could you reduce batch
sizes in order to decrease lead time?

• How do you discover the economic impact of your work once it is deliv-
ered? Do the team only focus on input and output metrics, such as veloc-
ity? How could you work with finance, product management, or other
departments to understand business outcomes and bottom-line impacts of
your work?

• Do you batch features up into projects as part of your planning and fund-
ing processes? How might you unbundle projects and move to a model
where you incrementally fund and deliver only the high-value work (we
discuss financial management in Chapter 13)? How would you coordinate
work across value streams?

153CHAPTER 7: IDENTIFY VALUE AND INCREASE FLOW

1 http://bit.ly/1v70zdR

C H A P T E R 8

Adopt Lean Engineering Practices

Cease dependence on mass inspection to achieve quality. Improve the
process and build quality into the product in the first place.

W. Edwards Deming

An effective innovation capability relies on being able to frequently test ideas
with real users. Crucially, the rate at which we can learn, update our product
or prototype based on feedback, and test again, is a powerful competitive
advantage. This is the value proposition of the lean engineering practices we
describe in this chapter. Andy Hertzfeld, one of the engineers who worked on
the original Apple Macintosh, notes that “instead of arguing about new soft-
ware ideas, we actually tried them out by writing quick prototypes, keeping
the ideas that worked best, and discarding the others. We always had some-
thing running that represented our best thinking at the time.”1

In many organizations, getting software deployed in an integrated production-
like environment is a process that still takes days or even weeks. But organiza-
tions that treat software as a competitive advantage rather than a necessary
evil invest substantially in reducing this lead time. For a sense of what’s possi-
ble at scale, in May of 2011, Amazon achieved a mean time between deploy-
ments to production systems of 11.6 seconds, with up to 1,079 such deploy-
ments in a single hour, aggregated across the thousands of services that com-
prise Amazon’s platform. Some of these deployments affected upwards of

155

http://bit.ly/1v70zdR

2 According to Jon Jenkins’ talk at Velocity 2011, “Velocity Culture (the unmet challenge in
Ops).”

10,000 hosts.2 Amazon, of course, is subject to regulations such as Sarbanes-
Oxley and PCI-DSS.

A major reason Amazon has invested in this capability is to make it extremely
cheap and low-risk for employees to design and run safe-to-fail online experi-
ments of the type we describe in Chapter 9 to gather data from real users. In
many cases, running an experiment doesn’t require going through a bureau-
cratic change request process. This gives Amazon’s cross-functional delivery
teams the ability to test out wild ideas—safe in the knowledge that if some-
thing goes wrong, the experiment can be turned off with only a tiny percentage
of users impacted for a very short time.

Despite the name, continuous delivery is not about deploying to production
multiple times a day. The goal of continuous delivery is to make it safe and
economic to work in small batches. This in turn leads to shorter lead times,
higher quality, and lower costs. It’s for these reasons that the HP FutureSmart
team rearchitected their firmware from scratch to minimize the lead time
between code check-in and validated, releasable software. Finally, continuous
delivery results in boring, safe, push-button deployments rather than long,
painful ordeals that must be performed outside of business hours.

This chapter is aimed at readers who wish to understand the principles and
practices behind continuous delivery. For those who want just the high-level
picture, we present an executive summary of lean engineering practices in the
next section. Readers may then skip to the final section of this chapter.

The Fundamentals of Continuous Delivery
Continuous delivery is the ability to get changes—experiments, features, con-
figuration changes, bug fixes—into production or into the hands of users safely
and quickly in a sustainable way. Let’s examine each of those requirements.

Safely
In order to ensure deployments are safe, we construct a deployment pipe-
line which subjects each proposed change to a battery of automated tests
of several different types, followed by manual validations such as explora-
tory testing and usability testing. We then enable push-button deployments
of validated builds to downstream test and staging environments, and ulti-
mately to production, release to manufacturing, or an app store (depend-
ing on the type of software). A major goal of the deployment pipeline is to
detect and reject changes that are risky, contain regressions, or take us out-
side the envelope of acceptable performance. As a byproduct of

LEAN ENTERPRISE156

3 [poppendieck-06], p. 59.

implementing a deployment pipeline, we get an audit trail of where each
change has been introduced, what tests have been run against it, which
environments it has passed through, who deployed it, and so forth. This
information is invaluable as evidence for compliance.

Quickly
We must constantly monitor and reduce the lead time for getting changes
into the hands of users. Mary and Tom Poppendieck ask, “How long
would it take your organization to deploy a change that involves just one
single line of code?”3 We reduce lead time by working to simplify and
automate the build, deploy, test, and release process. We must be able to
spin up test environments on demand, deploy software packages to them,
and run comprehensive automated tests of several varieties rapidly in par-
allel on a grid of compute resources. Using this process, it is possible to get
a high level of confidence that our software is releasable. Typically this
involves architecting (or rearchitecting) with testability and deployability
in mind. An important side effect of this work is that the product team can
get rapid feedback on the quality of their work, and problems are found
soon after they are introduced rather than in later integration and testing
phases when they are more expensive to fix.

Sustainably
The point of all this is to make it economically viable to work in small
batches. The reason large batches of work are released infrequently is
because corralling releases is painful and expensive. The mantra of contin-
uous delivery is: “If it hurts, do it more often, and bring the pain forward.”
If integration, testing, and deployment are painful, we should aim to per-
form them every time anybody checks anything into version control. This
reveals the waste and inefficiency in our delivery process so we can address
it through continuous improvement. However, to make it economic to
work in small batches, we need to invest in extensive test and deployment
automation and an architecture that supports it.

There are two golden rules of continuous delivery that must be followed by
everybody:

1. The team is not allowed to say they are “done” with any piece of work
until their code is in trunk on version control and releasable (for hosted
services the bar is even higher—“done” means deployed to production). In
The Lean Startup, Eric Ries argues that for new features that aren’t simple

157CHAPTER 8: ADOPT LEAN ENGINEERING PRACTICES

4 This is the concept of jidoka in the Toyota Production System as applied to software delivery.

5 [gruver], p. 60.

user requests, the team must also have run experiments on real users to
determine if the feature achieves the desired outcome.

2. The team must prioritize keeping the system in a deployable state over
doing new work. This means that if at any point we are not confident we
can take whatever is on trunk in version control and deliver it to users
through an automated, push-button process, we need to stop working and
fix that problem.4

We should emphasize that following these steps consistently will be hard and
require discipline—even for small, experienced teams.

TIP

Enforcing Your Definition of “Done”
The HP FutureSmart managers had a simple rule to help enforce these golden
rules. Whenever anybody wanted to demonstrate a new feature (which was
required to be able to declare it “done”), they would ask if the code had been inte-
grated into trunk, and if the new functionality was going to be demonstrated
from a production-like environment by running automated tests. The demonstra-
tion could only proceed if the answer was “yes” to both questions.

In Chapter 6 we discussed the enormous increases in quality, productivity, and
reductions in cost the HP FutureSmart team was able to achieve. These
improvements were made possible by the team putting continuous delivery
principles at the heart of their rebuild. The FutureSmart team eliminated the
integration and testing phases from their software development process by
building integration and testing into their daily work. It was also possible to
shift priorities rapidly in response to the changing needs of product marketing
and users:5

We know our quality within 24 hours of any fix going into the sys-
tem…and we can test broadly even for small last-minute fixes to
ensure a bug fix doesn’t cause unexpected failures. Or we can afford to
bring in new features well after we declare “functionality complete”—
or in extreme cases, even after we declare a release candidate.

Let’s look at the engineering patterns that enabled the HP FutureSmart team to
achieve their eightfold productivity increase.

LEAN ENTERPRISE158

6 http://bit.ly/1v70LcY

Continuous Integration and Test Automation
In many development teams, it is common for developers to work on long-
lived branches in version control. On small, experienced co-located teams this
can be made to work. However, the inevitable outcome of scaling this process
is “integration hell” where teams spend days or weeks integrating and stabiliz-
ing these branches to get the code released. The solution is for all developers to
work off trunk and to integrate their work into trunk at least once per day. In
order to be able to do this, developers need to learn how to break down large
pieces of work into small, incremental steps that keep trunk working and
releasable.

We validate that trunk is working by building the application or service every
time a change to it is made in version control. We also run unit tests against
the latest version of the code, and give the team feedback within a few minutes
if the build or test process fails. The team must then either fix the problem or
—if the problem cannot be fixed in a few minutes—revert the change. Thus we
ensure that our software is always in a working state during the development
process.

Continuous integration is the practice of working in small batches and using
automated tests to detect and reject changes that introduce a regression. It is,
in our opinion, the most important technical practice in the agile canon, and it
forms the foundation of continuous delivery, for which we require in addition
that each change keeps the code on trunk releasable. However, that can be
hard to adopt for teams that are not used to it.

In our experience, people tend to fall into two camps: those who can’t under-
stand how it is possible (particularly at scale) and those who can’t believe peo-
ple could work in any other way. We assure you that it is possible, both at
small scale and large scale, whatever your domain.

Let’s first address the scale problem with two examples. First, the HP
FutureSmart case study demonstrates continuous integration being effective
with a distributed team of 400 people working on an embedded system. Sec-
ond, we’ll note that almost all of Google’s 10,000+ developers distributed over
40 offices work off a single code tree. Everyone working off this tree develops
and releases from trunk, and all builds are created from source. 20 to 60 code
changes are submitted every minute, and 50% of the codebase changes every
month.6 Google engineers have built a powerful continuous integration system

159CHAPTER 8: ADOPT LEAN ENGINEERING PRACTICES

http://bit.ly/1v70LcY

7 http://bit.ly/1v70NBG

8 We recommend [freeman] and [crispin].

that, in 2012, was running over 4,000 builds and 10 million test suites
(approximately 60 million tests) every day.7

Not only is continuous integration possible on large, distributed teams—it is
the only process that is known to scale effectively without the painful and
unpredictable integration, stabilization, or “hardening” phases associated with
other approaches, such as release trains or feature branches. Continuous deliv-
ery is designed to eliminate these activities.

Fundamentals of Test Automation
As can be seen from the Google and HP FutureSmart examples, continuous integration
relies on comprehensive test automation. Test automation is still controversial in some
organizations, but it is impossible to achieve short lead times and high-quality releases
without it. Test automation is an important and complex topic about which many good
books have been written,8 but here are some of the most important points:

• Test automation is emphatically not about reducing the number of testers—but
test automation does change the role and the skills required of testers. Testers
should be focused on exploratory testing and working with developers to create
and curate suites of automated tests, not on manual regression testing.

• It is impossible to evolve high-quality automated test suites unless testers collabo-
rate with developers in person (irrespective of team or reporting structures). Cre-
ating maintainable suites of automated tests requires strong knowledge of soft-
ware development. It also requires that the software be designed with test auto-
mation in mind, which is impossible when developers aren’t involved in testing.

• Test automation can become a maintenance nightmare if automated test suites
are not effectively curated. A small number of tests that run fast and reliably
detect bugs is better than a large number of tests that are flaky or constantly bro-
ken and which developers do not care about.

• Test automation must be designed with parallelization in mind. Running tests in
parallel enables developers to get fast feedback and prevents bad practices such
as dependencies between tests.

• Automated tests complement other types of testing such as exploratory testing,
usability testing, and security testing. The point of automated testing is to validate
core functionality and detect regressions so we don’t waste time trying to man-
ually test (or deploy) versions of the software that contain serious problems.

• Reliable automated tests require comprehensive configuration and infrastructure
management. It should be possible to create a production-like virtual test envi-
ronment on demand, either within the continuous integration environment or on
a developer workstation.

LEAN ENTERPRISE160

http://bit.ly/1v70NBG

9 James Shore’s Continuous Integration on a Dollar a Day.

• Only spend time and effort on test automation for products or features once they
have been validated. Test automation for experiments is wasteful.

The main objection to continuous integration comes from developers and their
managers. Breaking every new feature or rearchitecturing effort into small
steps is harder than completing it in isolation on a branch, and takes longer if
you are not used to the discipline of working in small batches. That means it
may take longer, at first, to declare stories “dev complete.” This may, in turn,
drive the development velocity down and create the impression that the team’s
efficiency has decreased—raising the blood pressure of development managers.

However, we should not be optimizing for the rate at which we declare things
“done” in isolation on a branch. We should optimize for the overall lead time
—the time it takes us to deliver valuable software to users. Optimizing for
“dev complete” time is precisely what causes “integration hell.” A painful and
unpredictable “last mile” of integration and testing, in turn, perpetuates the
long release cycles that are a major factor in project overruns, poor quality
software, higher overall costs, and dissatisfied users.

Are You Really Doing Continuous Integration?
Continuous integration (CI) is hard, and in our experience most teams that say they are
practicing it actually aren’t. Achieving CI is not simply a case of installing and running a
CI tool; it is a mindset. One of our favorite papers on CI discusses how to do it without
any CI tool at all—using just an old workstation, a rubber chicken, and a bell (of course
you’ll need more than that on a large development team, but the principles are the
same at scale).9

To find out if you’re really doing CI, ask your team the following questions:

• Are all the developers on the team checking into trunk (not just merging from
trunk into their branches or working copies) at least once a day? In other words,
are they doing trunk-based development and working in small batches?

• Does every change to trunk kick off a build process, including running a set of
automated tests to detect regressions?

• When the build and test process fails, does the team fix the build within a few
minutes, either by fixing the breakage or by reverting the change that caused the
build to break?

If the answer to any of these questions is “no,” you aren’t practicing continuous integra-
tion. In particular, reverting bad changes is an insufficiently practiced technique. At

161CHAPTER 8: ADOPT LEAN ENGINEERING PRACTICES

Google, for example, anyone is empowered to revert a bad change in version control,
even if it was made by someone on a different team: they prioritize keeping the system
working over doing new work.

Of course if you are in-flight working on a large application and using lots of branches,
it’s not easy to move to continuous integration. In this situation, the goal should be to
push teams towards working on trunk, starting with the most volatile branches. In one
large organization, it took a year to go from 100 long-lived branches down to about
10–15.

The Deployment Pipeline
Recall the second golden rule of continuous delivery: we must prioritize keep-
ing the system working over doing new work. Continuous integration is an
important step towards this goal—but, typically, we wouldn’t feel comfortable
exposing to users software that has only passed unit tests.

The job of the deployment pipeline is to evaluate every change made to the sys-
tem, to detect and reject changes which carry high risks or negatively impact
quality, and to provide the team with timely feedback on their changes so they
can triage problems quickly and cheaply. It takes every check-in to version con-
trol, creates packages from that version that are deployable to any environ-
ment, and performs a series of tests against that version to detect known
defects and to verify that the important functionality works. If the package
passes these tests, we should feel confident deploying that particular build of
the software. If any stage of the deployment pipeline fails, that version of the
software cannot progress any further, and the engineers must immediately tri-
age to find the source of the problem and fix it.

Even the simplest deployment pipeline, such as that shown in Figure 8-1 (a
more complex deployment pipeline is shown in Figure 8-2), enables members
of the team to perform push-button deployments of builds that have passed CI
to production-like exploratory testing or user acceptance testing environments.
It should be possible to provision test environments and deploy any good CI
build to them using a fully automated process. This same process should be
used to deploy to production.

LEAN ENTERPRISE162

Figure 8-1. Changes moving through a simple deployment pipeline

The deployment pipeline connects together all the steps required to go from
check-in to deployment to production (or distribution to an app store). It also
connects all the people involved in delivering software—developers, testers,
release engineers, and operations—which makes it an important communica-
tion tool.

163CHAPTER 8: ADOPT LEAN ENGINEERING PRACTICES

Figure 8-2. A more complex deployment pipeline

The FutureSmart Deployment Pipeline
The FutureSmart team’s deployment pipeline allows a 400-person distributed team to
integrate 100–150 changes—about 75–100 thousand lines of code—into trunk on
their 10-million-line codebase every day. Each day, the deployment pipeline produces
10–14 good builds of the firmware out of Level 1. All changes—including feature
development and large-scale changes—are made on trunk. Developers commit into
trunk several times every week.

All changes to any system—or the environments it runs in—should be made
through version control and then promoted via the deployment pipeline. That
includes not just source and test code but also database migrations and deploy-
ment and provisioning scripts, as well as changes to server, networking, and
infrastructure configurations.

The deployment pipeline thus becomes the record of which tests have been run
against a given build and what the results were, what builds have been
deployed to which environments and when, who approved promotion of a par-
ticular build and when, what exactly the configuration of every environment is
—indeed the whole lifecycle of code and infrastructure changes as they move
through various environments.

This, in turn, means that a deployment pipeline implementation has several
other important uses besides rejecting high-risk or problematic changes to the
system:

LEAN ENTERPRISE164

10 See http://puppetlabs.com/blog/a-deployment-pipeline-for-infrastructure/

11 [forsgren]

• You can gather important information on your delivery process, such as
statistics of the cycle time of changes (the mean, the standard deviation),
and discover the bottlenecks in your process.

• It provides a wealth of information for auditing and compliance purposes.
Auditors love the deployment pipeline because it allows them to track
every detail of exactly which commands were run on which boxes, what
the results were, who approved them and when, and so forth.

• It can form the basis of a lightweight but comprehensive change manage-
ment process. For example, Australia’s heavily regulated National Broad-
band Network telco used a deployment pipeline to automatically submit
change management tickets when changes were made to the production
infrastructure, and to automatically update their CMDB when provision-
ing new systems and performing deployments.10

• It enables team members to perform push-button deployments of the build
of their choice to the environment of their choice. Tools for implementing
deployment pipelines typically allow for such approvals to be issued on
per-environment basis and for workflows around build promotion to be
enforced.

Continuous Delivery and Change Control
Many enterprises have traditionally used change advisory boards or similar change
control systems as a way to reduce the risk of changes to production environments.
However, the 2014 State of Devops Report,11 which surveyed over 9,000 individuals
across many industries, discovered that approval processes external to development
teams do little to improve the stability of services (measured in terms of time to restore
service and percentage of failed changes), while acting as a significant drag on
throughput (measured in terms of lead time for changes and change frequency). The
survey compared external change approval processes with peer-review mechanisms
such as pair programming or the use of pull requests. Statistical analysis revealed that
when engineering teams held themselves accountable for the quality of their code
through peer review, lead times and release frequency improved considerably with
negligible impact on system stability. Further data from the report, which supports the
use of the techniques discussed in this chapter, is presented in Chapter 14.

The data suggests that it is time to reconsider the value provided by heavyweight
change control processes. Peer review of code changes combined with a deployment
pipeline provide a powerful, safe, auditable, and high-performance replacement for
external approval of changes. The National Broadband Network case study (referenced

165CHAPTER 8: ADOPT LEAN ENGINEERING PRACTICES

http://puppetlabs.com/blog/a-deployment-pipeline-for-infrastructure/

above) shows one method to implement a lightweight change control process which is
compatible with frameworks such as ITIL in a regulated environment. For more on
compliance and risk management, see Chapter 12.

Implementing continuous delivery requires thinking carefully about systems
architecture and process and doing a certain amount of upfront planning. Any
manual activities which are repeated should be considered potential waste and
thus candidates for simplification and automation. This includes:

Build
It should be possible to create packages from source, deployable to any
environment, in a single step using a script that is stored in version control
and can be run by any developer.

Provisioning
Anybody should be able to self-service a test environment (including net-
work configuration, host configuration, any required software and applica-
tions) in a fully automated fashion. This process should also use informa-
tion and scripts that are kept in version control. Changes to environment
configuration should always be made through version control, and it
should be cheap and painless to kill existing boxes and re-provision from
source.

Deploy
Anybody should be able to deploy application packages to any environ-
ment they have access to using a fully automated process which uses
scripts kept in version control.

Test
It should be possible for any developer to run the complete automated test
suite on their workstation, as well as any selected set of tests. Test suites
should be comprehensive and fast, and contain both unit and acceptance-
level tests.

We require, as a foundation for automation, excellent configuration manage-
ment. In particular, everything required to reproduce your production system
and to build, test, and deploy your services needs to be in version control. That
means not just source code but build, test, and deployment scripts, infrastruc-
ture and environment configuration, database schemas and migration scripts,
as well as documentation.

LEAN ENTERPRISE166

Decouple Deployment and Release
The most important principle for doing low-risk releases is this: decouple
deployment and release. To understand this principle, we must first define these
terms.

Deployment is the installation of a given version of a piece of software to a
given environment. The decision to perform a deployment—including to pro-
duction—should be a purely technical one. Release is the process of making a
feature, or a set of features, available to customers. Release should be a purely
business decision.

Often, these two terms are treated as synonyms—that is, we use deployment as
our primary mechanism for performing releases. This has a very serious nega-
tive consequence: it couples the technical decision to deploy to the business
decision to release. This is a major reason why organizational politics gets
injected into the deployment process, to the detriment of all.

There are a number of techniques for deploying software to a production envi-
ronment safely without making its functionality available to users—so we can
validate that our system behaves correctly. The simplest—and one of the most
powerful—is blue-green deployments (sometimes known as black-red deploy-
ments). This pattern requires two separate production environments, code-
named blue and green. At any time, only one of these is live; in Figure 8-3, it’s
green.

Figure 8-3. Blue-green deployments

When we want to release a new version of our service, we deploy the packages
with the new features to the environment that is not currently live (blue in this
example) and test it at our leisure. The release process then simply changes the
router to point to the blue environment; to roll back, we point the router back
to the green environment. A more sophisticated variation gradually ramps up
traffic to the blue environment over time.

Crucially for companies with painful deployment process who cannot release
during peak hours, blue-green deployments allow the deployment process to be
done safely during normal business hours, days before a planned release if
necessary. The much simpler release process (and rollback, if necessary) can

167CHAPTER 8: ADOPT LEAN ENGINEERING PRACTICES

then be performed at off-peak hours remotely by a much smaller group of
people.

Some organizations use their main and backup data centers for their blue and
green environments, thus verifying that they can perform a hot disaster-
recovery process every time they deploy. However, the blue and green environ-
ments do not have to be physically segregated. They can be virtual or logical
environments running on the same physical infrastructure (especially since the
non-live environment typically consumes very little resources).

Deployment and release can also be decoupled at the feature or component
level, instead of the system level, using a technique known as “dark launch-
ing.” In his talk on the Facebook release process, release manager Chuck Rossi
says that all the major features that will launch in the next six months are
already in production—you just can’t see them yet. Developers protect new
features with “feature flags” so that administrators can dynamically grant
access to particular sets of users on a per-feature basis. In this way, features can
be made available first to Facebook staff, then to a small set of users as part of
an A/B test (see Chapter 9). Validated features can then be slowly ramped up
to 100% of the user base—and switched off under high load or if a defect is
found. Feature toggles can also be used to make different feature sets available
to different groups of users from a single platform.

TIP

Dark Launching for Mobile Apps
Instead of launching new mobile apps directly to an app store, create a separate
brand to deploy and validate them before launching them under your official
brand.

Conclusion
Continuous delivery represents an alternative to large-batch development and
release processes. It has been adopted by many large engineering organizations
across different domains, including heavily regulated industries such as finan-
cial services. Despite its origins in web services, this engineering paradigm has
been successfully applied to packaged software, firmware, and mobile develop-
ment. It enables organizations to respond rapidly to changing customer needs
and increase software quality while reducing both the risk of release and the
cost of software development.

Culture also plays an important role in enabling continuous delivery. A culture
in which interactions between development, operations, and information secu-
rity teams are generally win-win is highly correlated with high performance, as
is a culture that is at the “generative” end of Westrum’s typology (Chapter 1).

LEAN ENTERPRISE168

12 This diagram is adapted from one by Paul Hammant, http://paulhammant.com/2013/03/13/
facebook-tbd-take-2.

As organizations work to implement continuous delivery, they will have to
change the way they approach version control, software development, archi-
tecture, testing, and infrastructure and database management. Figure 8-4 is
synthesized from our study of a number of different organizations.12

Figure 8-4. Deployment g-forces, courtesy of Paul Hammant

Of course all these areas are interrelated. For example, building a maintaina-
ble, comprehensive, automated test suite requires an architecture which allows
software to be deployed on local developer workstations, which in turn
requires that production-like environments can be set up by version-controlled
scripts. Working out what to attack first, in the case of existing systems, can be
complex. We discuss evolutionary architectural change in Chapter 10.

We strongly recommend that you start by implementing comprehensive config-
uration management, continuous integration, and trunk-based development.
Also important is creating a culture of test automation with developers, which
in turn requires that test environments can be provisioned on demand. In our
experience, attempts to attack problems in release or operations, discussed in

169CHAPTER 8: ADOPT LEAN ENGINEERING PRACTICES

http://paulhammant.com/2013/03/13/facebook-tbd-take-2
http://paulhammant.com/2013/03/13/facebook-tbd-take-2

Chapter 14, cannot produce significant improvement without continuous inte-
gration, test automation, and automated environment provisioning.

Questions for readers:

• What is your definition of “done” in order for a feature to be accepted?
Must it—at the very least—be integrated into trunk and demonstrated
from a production-like environment by running automated tests?

• Are you practicing continuous integration as we define it in this book?
How would you work to introduce it?

• Are the relationships between developers, testers, and IT operations per-
sonnel collaborative or adversarial? What steps might you take to improve
them?

• Are your production deployments painful, “big bang” events that involve
planned outages outside of business hours? How could you change them
so as to perform more of the work within normal business hours?

LEAN ENTERPRISE170

C H A P T E R 9

Take an Experimental Approach to
Product Development

The difficulty in defining quality is to translate future needs of the user
into measurable characteristics, so that a product can be designed and
turned out to give satisfaction at a price the user will pay.

Walter Shewhart

Up to now, we have spent the whole of Part III showing how to improve the
speed at which we can deliver value to customers. In this chapter, we switch
focus to discuss alignment—how to use the capability we have developed to
make sure we are building the right things for customers, users, and our
organization.

In Chapter 7, we showed how to use the Cost of Delay to prioritize work. In
an organization where IT is essentially a service provider, this is an effective
way to avoid working on low-value tasks that consume precious time and
resources. However, in high-performance organizations, projects and require-
ments are not tossed over the wall to IT to build. Rather, engineers, designers,
testers, operations staff, and product managers work in partnership on creat-
ing high-value outcomes for customers, users, and the organization as a whole.
Furthermore, these decisions—made locally by teams—take into account the
wider strategic goals of the organization.

In Chapter 6 we described the Improvement Kata, an iterative approach to
process improvement in which we set target conditions for the next iteration
and then let teams decide what work to do in order to achieve those target
conditions. The key innovation we present in this chapter is to use the same
process to manage product development. Instead of coming up with

171

1 [anderson]

requirements or use cases and putting them into a backlog so that teams build
them in priority order, we describe, in measurable terms, the business out-
comes we want to achieve in the next iteration. It is then up to the teams to
discover ideas for features which will achieve these business outcomes, test
them, and build those that achieve the desired outcomes. In this way, we har-
ness the skill and ingenuity of the entire organization to come up with ideas for
achieving business goals with minimal waste and at maximum pace.

As an approach to running agile software development at scale, this is different
from most frameworks. There’s no program-level backlog; instead, teams cre-
ate and manage their own backlogs and are responsible for collaborating to
achieve business goals. These goals are defined in terms of target conditions at
the program level and regularly updated as part of the Improvement Kata pro-
cess (see Chapter 6). Thus the responsibility for achieving business goals is
pushed down to teams, and teams focus on business outcomes rather than
measures such as the number of stories completed (team velocity), lines of code
written, or hours worked. Indeed, the goal is to minimize output while maxi-
mizing outcomes: the fewer lines of code we write and hours we work to ach-
ieve our desired business goals, the better. Enormous, overly complex systems
and burned-out staff are symptoms of focusing on output rather than
outcomes.

One thing we don’t do in this chapter (or indeed this book) is prescribe what
processes teams should use to manage their work. Teams can—and should—be
free to choose whatever methods and processes work best for them. Indeed, in
the HP FutureSmart program, different teams successfully used different meth-
odologies and there was no attempt to impose a “standard” process or meth-
odology across the teams. What is important is that the teams are able to work
together effectively to achieve the target conditions.

Therefore, we don’t present standard agile methods such as XP, Scrum, or
alternatives like Kanban. There are several excellent books that cover these
methods in great detail, such as David Anderson’s Kanban: Successful Evolu-
tionary Change for Your Technology Business,1 Kenneth S. Rubin’s Essential
Scrum: A Practical Guide to the Most Popular Agile Process (Addison-Wesley),
and Mitch Lacey’s The Scrum Field Guide: Practical Advice for Your First Year
(Addison-Wesley). Instead, we discuss how teams can collaborate to define
approaches to achieve target conditions, then design experiments to test their
assumptions.

The techniques described in this chapter require a high level of trust between
different parts of the organization involved in the product development value

LEAN ENTERPRISE172

2 [gilb-88], p. 23.

stream, as well as between leaders, managers, and those who report to them.
They also require high-performance teams and short lead times. Thus, unless
these foundations (described in previous chapters in this part) are in place,
implementing these techniques will not produce the value they are capable of.

Using Impact Mapping to Create Hypotheses for the
Next Iteration
The outcome of the Improvement Kata’s iteration planning process (described
in Chapter 6) is a list of measurable target conditions we wish to achieve over
the next iteration, describing the intent of what we are trying to achieve and
following the Principle of Mission (see Chapter 1). In this chapter, we describe
how to use the same process to drive product development. We achieve this by
creating target conditions based on customer and organizational outcomes as
part of our iteration planning process, in addition to process improvement tar-
get conditions. This enables us to use program-level continuous improvement
for product development too, by adopting a goal-oriented approach to require-
ments engineering.

Our product development target conditions describe customer or business
goals we wish to achieve, which are driven by our product strategy. Examples
include increasing revenue per user, targeting a new market segment, solving a
given problem experienced by a particular persona, increasing the performance
of our system, or reducing transaction cost. However, we do not propose solu-
tions to achieve these goals or write stories or features (especially not “epics”)
at the program level. Rather, it is up to the teams within the program to decide
how they will achieve these goals. This is critical to achieving high perfor-
mance at scale, for two reasons:

• The initial solutions we come up with are unlikely to be the best. Better
solutions are discovered by creating, testing, and refining multiple options
to discover what best solves the problem at hand.

• Organizations can only move fast at scale when the people building the
solutions have a deep understanding of both user needs and business strat-
egy and come up with their own ideas.

A program-level backlog is not an effective way to drive these behaviors—it
just reflects the almost irresistible human tendency to specify “the means of
doing something, rather than the result we want.”2

173CHAPTER 9: TAKE AN EXPERIMENTAL APPROACH TO PRODUCT DEVELOPMENT

3 See [yu], [lapouchnian], and [gilb-05] for more on goal-oriented requirements engineering.

4 This is an old trick used by Taiichi Ohno, called “the five whys.”

5 [adzic], l. 146.

TIP

Getting to Target Conditions
Goal-oriented requirements engineering has been in use for decades,3 but most
people are still used to defining work in terms of features and benefits rather than
measurable business and customer outcomes. The features-and-benefits
approach plays to our natural bias towards coming up with solutions, and we
have to think harder to specify the attributes that an acceptable solution will have
instead.

If you have features and benefits and you want to get to target conditions, one
simple approach is to ask why our customers care about a particular benefit. You
may need to ask “why” several times to get to something that looks like a real tar-
get condition.4 It’s also essential to ensure that target conditions have measurable
acceptance criteria, as shown in Figure 9-1.

Gojko Adzic presents a technique called impact mapping to break down high-
level business goals at the program level into testable hypotheses. Adzic
describes an impact map as “a visualization of scope and underlying assump-
tions, created collaboratively by a cross-functional group of stakeholders. It is
a mind-map grown during a discussion facilitated by answering the following
questions: 1. Why? 2. Who? 3. How? 4. What?”5 An example of an impact
map is shown in Figure 9-1.

Figure 9-1. An example of an impact map

We begin an impact map with a program-level target condition. By stating a
target condition, including the intent of the condition (why we care about it

LEAN ENTERPRISE174

from a business perspective), we make sure everyone working towards the goal
understands the purpose of what they are doing, following the Principle of
Mission. We also provide clear acceptance criteria so we can determine when
we have reached the target condition.

The first level of an impact map enumerates all the stakeholders with an inter-
est in that target condition. This includes not only the end users who will be
affected by the work, but also people within the organization who will be
involved or impacted, or can influence the progress of the work—either posi-
tively or negatively.

The second level of an impact map describes possible ways the stakeholders
can help—or hinder—achieving the target condition. These changes of behav-
ior are the impacts we aim to create.

So far, we should have said nothing about possible solutions to move us
towards our target condition. It is only at the third level of the impact map
that we propose options to achieve the target condition. At first, we should
propose solutions that don’t involve writing code—such as marketing activities
or simplifying business processes. Software development should always be a
last resort, because of the cost and complexity of building and maintaining
software.

The possible solutions proposed in the impact map are not the key deliverable.
Coming up with possible solutions simply helps us refine our thinking about
the goal and stakeholders. The solutions we come up with at this stage are
unlikely to be the best—we expect, rather, that the people working to deliver
the outcomes will come up with better options and evaluate them to determine
which ones will best achieve our target condition. The impact map can be con-
sidered a set of assumptions—for example, in Figure 9-1, we assume that
standardizing exception codes will reduce nonstandard orders, which will
reduce the cost of processing nonstandard transactions.

For this tool to work effectively, it’s critical to have the right people involved in
the impact-mapping exercise. It might be a small, cross-functional team includ-
ing business stakeholders, technical staff, designers, QA (where applicable), IT
operations, and support. If the exercise is conducted purely by business stake-
holders, they will miss the opportunity to examine the assumptions behind the
target conditions and to get ideas from the designers and engineers who are
closest to the problem. One of the most important goals of impact mapping is
to create a shared understanding between stakeholders, so not involving them
dooms it to irrelevance.

Once we have a prioritized list of target conditions and impact maps created
collaboratively by technical and business people, it is up to the teams to deter-
mine the shortest possible path to the target condition.

175CHAPTER 9: TAKE AN EXPERIMENTAL APPROACH TO PRODUCT DEVELOPMENT

This tool differs in important ways from many standard approaches to think-
ing about requirements. Here are some of the important differences and the
motivations behind them:

There are no lists of features at the program level
Features are simply a mechanism for achieving the goal. To paraphrase
Adzic, if achieving the target condition with a completely different set of
features than we envisaged won’t count as success, we have chosen the
wrong target condition. Specifying target conditions rather than features
allows us to rapidly respond to changes in our environment and to the
information we gather from stakeholders as we work towards the target
condition. It prevents “feature churn” during the iteration. Most impor-
tantly, it is the most effective way to make use of the talents of those who
work for us; this motivates them by giving them an opportunity to pursue
mastery, autonomy, and purpose.

There is no detailed estimation
We aim for a list of target conditions that is a stretch goal—in other
words, if all our assumptions are good and all our bets pay off, we think it
would be possible to achieve them. However, this rarely happens, which
means we may not achieve some of the lower-priority target conditions. If
we are regularly achieving much less, we need to rebalance our target con-
ditions in favor of process improvement goals. Keeping the iterations short
—2–4 weeks initially—enables us to adjust the target conditions in
response to what we discover during the iteration. This allows us to
quickly detect if we are on a wrong path and try a different approach
before we overinvest in the wrong things.

There are no “architectural epics”
The people doing the work should have complete freedom to do whatever
improvement work they like (including architectural changes, automation,
and refactoring) to best achieve the target conditions. If we want to drive
out particular goals which will require architectural work, such as compli-
ance or improved performance, we specify these in our target conditions.

Performing User Research
Impact mapping provides us with a number of possible solutions and a set of
assumptions for each candidate solution. Our task is to find the shortest path
to the target condition. We select the one that seems shortest, and validate the
solution—along with the assumptions it makes—to see if it really is capable of
delivering the expected value (as we have seen, features often fail to deliver the
expected value). There are multiple ways to validate our assumptions.

LEAN ENTERPRISE176

6 [gothelf], p. 23.

7 This diagram was developed by Janice Fraser; see http://slidesha.re/1v715bL.

First, we create a hypothesis based on our assumption. In Lean UX, Josh
Seiden and Jeff Gothelf suggest the template shown in Figure 9-2 to use as a
starting point for capturing hypotheses.6

Figure 9-2. Jeff Gothelf’s template for hypothesis-driven development

In this format, we describe the parameters of the experiment we will perform
to test the value of the proposed feature. The outcome describes the target con-
dition we aim to achieve.

As with the agile story format, we summarize the work (for example, the fea-
ture we want to build or the business process change we want to make) in a
few words to allow us to recall the conversation we had about it as a team. We
also specify the persona whose behavior we will measure when running the
experiment. Finally, we specify the signal we will measure in the experiment. In
online controlled experiments, discussed in the next section, this is known as
the overall evaluation criterion for the experiment.

Once we have a hypothesis, we can start to design an experiment. This is a
cross-functional activity that requires collaboration between design, develop-
ment, testing, techops, and analysis specialists, supported by subject matter
experts where applicable. Our goal is to minimize the amount of work we
must perform to gather a sufficient amount of data to validate or falsify the
assumptions of our hypothesis. There are multiple types of user research we
can perform to test our hypothesis, as shown in Figure 9-3.7 For more on dif-
ferent types of user research, read UX for Lean Startups (O’Reilly) by Laura
Klein.

177CHAPTER 9: TAKE AN EXPERIMENTAL APPROACH TO PRODUCT DEVELOPMENT

http://slidesha.re/1v715bL

8 In many ways, this approach is just an extension of test-driven development. Chris Matts came
up with a similar idea he calls feature injection.

Figure 9-3. Different types of user research, courtesy of Janice Fraser

The key outcome of an experiment is information: we aim to reduce the uncer-
tainty as to whether the proposed work will achieve the target condition.
There are many different ways we can run experiments to gather information.
Bear in mind that experiments will often have a negative or inconclusive result,
especially in conditions of uncertainty; this means we’ll often need to tune,
refine, and evolve our hypotheses or come up with a new experiment to test
them.

The key to the experimental approach to product development is that we do
no major new development work without first creating a hypothesis so we can
determine if our work will deliver the expected value.8

Online Controlled Experiments
In the case of an internet-based service, we can use a powerful method called
an online controlled experiment, or A/B test, to test a hypothesis. An A/B test

LEAN ENTERPRISE178

is a randomized, controlled experiment to discover which of two possible ver-
sions of a web page produces better outcome. When running an A/B test, we
prepare two versions of a page: a control (typically the existing version of the
page) and a new treatment we want to test. When a user first visits our web-
site, the system decides which experiments that user will be a subject for, and
for each experiment chooses at random whether they will view the control (A)
or the treatment (B). We instrument as much of the user’s interaction with the
system as possible to detect any differences in behavior between the control
and the treatment.

Most Good Ideas Actually Deliver Zero or Negative Value
Perhaps the most eye-opening result of A/B testing is how many apparently great ideas
do not improve value, and how utterly impossible it is to distinguish the lemons in
advance. As discussed in Chapter 2, data gathered from A/B tests by Ronny Kohavi,
who directed Amazon’s Data Mining and Personalization group before joining Micro-
soft as General Manager of its Experimentation Platform, reveal that 60%–90% of ideas
do not improve the metric they were intended to improve.

Thus if we’re not running experiments to test the value of new ideas before completely
developing them, the chances are that about 2/3 of the work we are doing is of either
zero or negative value to our customers—and certainly of negative value to our organi-
zation, since this work costs us in three ways. In addition to the cost of developing the
features, there is an opportunity cost associated with more valuable work we could
have done instead, and the cost of the new complexity they add to our systems (which
manifests itself as the cost of maintaining the code, a drag on the rate at which we can
develop new functionality, and often, reduced operational stability and performance).

Despite these terrible odds, many organizations have found it hard to embrace run-
ning experiments to measure the value of new features or products. Some designers
and editors feel that it challenges their expertise. Executives worry that it threatens
their job as decision makers and that they may lose control over the decisions.

Kohavi, who coined the term “HiPPO,” says his job is “to tell clients that their new baby
is ugly,” and carries around toy rubber hippos to give to these people to help lighten
the mood and remind them that most “good” ideas aren’t, and that it’s impossible to
tell in the absence of data which ones will be lemons.

By running the experiment with a large enough number of users, we aim to
gather enough data to demonstrate a statistically significant difference between
A and B for the business metric we care about, known as the overall evaluation
criterion, or OEC (compare the One Metric That Matters from Chapter 4).
Kohavi suggests optimizing for and measuring customer lifetime value rather
than short-term revenue. For a site such as Bing, he recommends using a
weighted sum of factors such as time on site per month and visit frequency per

179CHAPTER 9: TAKE AN EXPERIMENTAL APPROACH TO PRODUCT DEVELOPMENT

9 http://www.infoq.com/presentations/controlled-experiments

user, with the aim being to improve the overall customer experience and get
them to return.

Unlike data mining, which can only discover correlations, A/B testing has the
power to show a causal relationship between a change on a web page and a
corresponding change in the metric we care about. Companies such as Amazon
and Microsoft typically run hundreds of experiments in production at any one
time and test every new feature using this method before rolling it out. Every
visitor to Bing, Microsoft’s web search service, will be participating in about
15 experiments at a time.9

Using A/B Testing to Calculate the Cost of Delay for
Performance Improvements

At Microsoft, Ronny Kohavi’s team wanted to calculate the impact of improving the
performance of Bing searches. They did it by running an A/B test in which they intro-
duced an artificial server delay for users who saw the “B” version. They were able to
calculate a dollar amount for the revenue impact of performance improvements, dis-
covering that “an engineer that improves server performance by 10 msec more than
pays for his fully-loaded annual costs.” This calculation can be used to determine the
cost of delay for performance improvements.

When we create an experiment to use as part of A/B testing, we aim to do
much less work than it would take to fully implement the feature under con-
sideration. We can calculate the maximum amount we should spend on an
experiment by determining the expected value of the information we will gain
from running it, as discussed in Chapter 3 (although we will typically spend
much less than this).

In the context of a website, here are some ways to reduce the cost of an
experiment:

Use the 80/20 rule and don’t worry about corner cases
Build the 20% of functionality that will deliver 80% of the expected
benefit.

Don’t build for scale
Experiments on a busy website are usually only seen by a tiny percentage
of users.

LEAN ENTERPRISE180

http://www.infoq.com/presentations/controlled-experiments

Don’t bother with cross-browser compatibility
With some simple filtering code, you can ensure that only users with the
correct browser get to see the experiment.

Don’t bother with significant test coverage
You can add test coverage later if the feature is validated. Good monitor-
ing is much more important when developing an experimentation
platform.

An A/B Test Example
Etsy is a website where people can sell handcrafted goods. Etsy uses A/B test-
ing to validate all major new product ideas. In one example, a product owner
noticed that searching for a particular type of item on somebody’s storefront
comes up with zero results, and wanted to find out if a feature that shows simi-
lar items from somebody else’s storefront would increase revenue. To test the
hypothesis, the team created a very simple implementation of the feature. They
used a configuration file to determine what percentage of users will see the
experiment.

Users hitting the page on which the experiment is running will be randomly
allocated either to a control group or to the group that sees the experiment,
based on the weighting in the configuration file. Risky experiments will only be
seen by a very small percentage of users. Once a user is allocated to a bucket,
they stay there across visits so the site has a consistent appearance to them.

Making It Safe to Fail
A/B testing allows teams to define the constraints, limits, or thresholds to create a safe-
to-fail experiment. The team can define the control limit of a key metric before testing
so they can roll back or abort the test if this limit is reached (e.g., conversion drops
below a set figure). Determining, sharing, and agreeing upon these limits with all
stakeholders before conducting the experiment will establish the boundaries within
which the team can experiment safely.

Users’ subsequent behavior is then tracked and measured as a cohort—for
example, we might want to see how many then make it to the payment page.
Etsy has a tool, shown in Figure 9-4, which measures the difference in behav-
ior for various endpoints and indicates when it has reached statistical signifi-
cance at a 95% confidence interval. For example, for “site—page count,” the
bolded “+0.26%” indicates the experiment produces a statistically significant
0.26% improvement over the control. Experiments typically have to run for a
few days to produce statistically significant data.

181CHAPTER 9: TAKE AN EXPERIMENTAL APPROACH TO PRODUCT DEVELOPMENT

Generating a change of more than a few percent in a business metric is rare,
and can usually be ascribed to Twyman’s Law: “If a statistic looks interesting
or unusual it is probably wrong.”

Figure 9-4. Measuring changes in user behavior using A/B testing

If the hypothesis is validated, more work can be done to build out the feature
and make it scale, until ultimately the feature is made available to all users of
the site. Turning the visibility to 100% of users is equivalent to publicly releas-
ing the feature—an important illustration of the difference between deploy-
ment and release which we discussed in Chapter 8. Etsy always has a number
of experiments running in production at any time. From a dashboard, you can
see which experiments are planned, which are running, and which are comple-
ted, which allows people to dive into the current metrics for each experiment,
as shown in Figure 9-5.

LEAN ENTERPRISE182

10 [gothelf]

Figure 9-5. Experiments currently running at Etsy

Alternatives to A/B Testing
Although we spend a lot of time on A/B testing in this chapter, it is just one of a wide
range of experimental techniques for gathering data. User experience designers have a
variety of tools to get feedback from users, from lo-fi prototypes to ethnographic
research methods such as contextual enquiry, as shown in Figure 9-3. Lean UX: Applying
Lean Principles to Improve User Experience discusses a number of these tools and how to
apply them in the context of hypothesis-driven development.10

Prerequisites for an Experimental Approach to Product
Development
Convincing people to gather—and then pay attention to—real data from
experimentation, such as A/B testing, is hard enough. But an experimental, sci-
entific approach to creating customer value has implications for the way we do
work, as well as for the way we think about value. As Dan McKinley of Etsy

183CHAPTER 9: TAKE AN EXPERIMENTAL APPROACH TO PRODUCT DEVELOPMENT

11 http://slidesha.re/1v71gUs

points out,11 experimentation can’t be bolted on to a waterfall product devel-
opment process. If we get to the end of several weeks (or months) of work and
attempt an experiment, there’s a very good chance we’ll find the huge batch of
work we did either has zero effect or makes things worse. At that point we’ll
have to throw it all away because there is no way to accurately identify the
effect of each specific change introduced.

This is an extremely painful decision, and in practice many teams succumb to
the sunk cost fallacy by giving undue weight to the investment made to date
when taking this decision. They ignore the data and deploy the product as is
because shelving the work is considered a total failure, whereas successful
deployment of anything into production is perceived as success—so long as it
is on time and on budget.

If we’re going to adopt a thorough experimental approach, we need to change
what we consider to be the outcome of our work: not just validated ideas but
the information we gain in the course of running the experiments. We also
need to change the way we think about developing new ideas; in particular, it’s
essential to work in small batches and test every assumption behind the idea
we are validating. This, in turn, requires that we implement continuous deliv-
ery, as described in Chapter 8.

Working in small batches creates flow—a key element of Lean Thinking. But
small batches are hard to achieve, for both philosophical and technical rea-
sons. Some people have a problem with taking an incremental approach to cre-
ating products. A common objection to an experimental approach is that it
leads to locally optimal but globally suboptimal decisions, and that it compro-
mises the overall integrity of the product, murdering a beautiful holistic vision
by a thousand A/B tests.

While it is certainly possible to end up with an ugly, overcomplex product
when teams fail to take a holistic approach to user experience, this is not an
inevitable outcome of A/B testing. Experimentation isn’t supposed to replace
having a vision for your product. Rather, it enables you to evolve your strategy
and vision rapidly in response to real data from customers using your products
in their environment. A/B testing will not be effective in the absence of a vision
and strategy. Product managers, designers, and engineers need to collaborate
and apply the lessons of design thinking in order to take a long-term view of
the needs of users and establish a direction for the product.

LEAN ENTERPRISE184

http://slidesha.re/1v71gUs

12 http://bit.ly/1v71kmW

TIP

What Is Design Thinking?
Tim Brown, CEO and President of IDEO and one of the key figures in design think-
ing, says, “As a style of thinking, it is generally considered the ability to combine
empathy for the context of a problem, creativity in the generation of insights and
solutions, and rationality to analyze and fit solutions to the context.” We discuss
design thinking and Lean UX further in Chapter 4.

There are two further obstacles to taking an experimental approach to product
development. First, designing experiments is tricky: we have to prevent them
from interfering with each other, apply alerts to detect anomalies, and design
them to produce valid results. At the same time, we want to minimize the
amount of work we must do to gather statistically significant data.

Finally, taking a scientific approach to customer and product development
requires intensive collaboration between product, design, and technical people
throughout the lifecycle of every product. This is a big cultural change for
many enterprises where technical staff do not generally contribute to the over-
all design process.

These obstacles are the reason why we strongly discourage people from adopt-
ing the tools discussed in this chapter without first putting in place the founda-
tions described in the earlier chapters in Part III.

Innovation Requires a Culture of Experimentation
Greg Linden, who developed Amazon’s first recommendations engine, came up with a
hypothesis that showing personalized recommendations at checkout time might con-
vince people to make impulse buys—similar to the rack at the checkout lane in a gro-
cery store but compiled personally for each customer by an algorithm. However, a
senior vice-president who saw Greg’s demo was convinced it would distract people
from checking out. Greg was forbidden to do any further work on the feature.12

Linden disobeyed the SVP and put an A/B test into production. The A/B test demon-
strated such a clear increase in revenue when people received personalized recom-
mendations at check-out that the feature was built out and launched with some
urgency.

Is it even conceivable that an engineer at your company could push an A/B test into
production in the face of censure by a senior executive? If the experiment’s data
proved the executive wrong, how likely is it that the feature would be picked up rather
than buried? As Linden writes, “Creativity must flow from everywhere. Whether you are
a summer intern or the CTO, any good idea must be able to seek an objective test,

185CHAPTER 9: TAKE AN EXPERIMENTAL APPROACH TO PRODUCT DEVELOPMENT

http://bit.ly/1v71kmW

preferably a test that exposes the idea to real customers. Everyone must be able to
experiment, learn, and iterate. Position, obedience, and tradition should hold no
power. For innovation to flourish, measurement must rule.”

A culture based on measurement and experimentation is not antithetical to crazy
ideas, divergent thinking, and abductive reasoning. Rather, it gives people license to
pursue their crazy ideas—by making it easy to gather real data to back up the good
crazy and reject the bad crazy. Without the ability to run cheap, safe-to-fail experi-
ments, such ideas are typically trampled by a passing HiPPO or by the mediocrity of
decision-by-committee.

One of the most common challenges encountered in software development is
the focus of teams, product managers, and organizations on managing cost
rather than value. This typically manifests itself in undue effort spent on zero-
value-add activities such as detailed upfront analysis, estimation, scope man-
agement, and backlog grooming. These symptoms are the result of focusing on
maximizing utilization (keeping our expensive people busy) and output (meas-
uring their work product)—instead of focusing on outcomes, minimizing the
output required to achieve them, and reducing lead times to get fast feedback
on our decisions.

Conclusion
Most ideas—even apparently good ones—deliver zero or negative value to
users. By focusing on the outcomes we wish to achieve, rather than solutions
and features, we can separate what we are trying to do from the possible ways
to do it. Then, following the Principle of Mission, teams can perform user
research (including low-risk, safe-to-fail online experiments) to determine what
will actually provide value to customers—and to our organization.

By combining impact mapping and user research with the Improvement Kata
framework presented in Chapter 6, we can scale agile software delivery and
combine it with design thinking and an experimental approach to product
development. This allows us to rapidly discover, develop, and deliver
high-value, high-quality solutions to users at scale, harnessing the skill and
ingenuity of everybody in the organization.

Questions for readers:

• What happens at your organization when a substantial amount of effort
has been invested in an idea that turns out to provide little value to users
or the organization, or even to make things worse?

• Have the expected customer outcomes for the features you are working on
been quantified? Do you have a way to measure the actual outcomes?

LEAN ENTERPRISE186

• What kind of user research do you perform on prototypes before releasing
them more widely? How might you get that feedback more quickly and
cheaply?

• When was the last time you personally observed your product used or dis-
cussed in real life?

• Can you think of a cheap way to test the value of the next piece of work in
your backlog?

187CHAPTER 9: TAKE AN EXPERIMENTAL APPROACH TO PRODUCT DEVELOPMENT

1 http://slidesha.re/1v71niI

C H A P T E R 1 0

Implement Mission Command

The more alignment you have, the more autonomy you can grant. The
one enables the other.

Stephen Bungay

The best managers figure out how to get great outcomes by setting the
appropriate context, rather than by trying to control their people.

Reed Hastings

In his 2009 presentation on Netflix culture, Freedom and Responsibility,1 CEO
Reed Hastings describes a dynamic common to many growing organizations.
As organizations get larger, they become more complex in terms of the systems
they are evolving and running, the business environment in which they oper-
ate, and their ability to “get things done.” Eventually the business becomes too
complex to run informally, and formal processes are put in place to prevent it
from descending into chaos. Processes provide a certain level of predictability,
but they slow us down and do little to prevent bad outcomes from events that
cannot be managed through process (for example, work that goes according to
plan but does not deliver customer value).

Management through process control is acceptable in certain contexts within
manufacturing processes (the kind of systems for which Six Sigma makes
sense), but not in product development—where its result is optimizing for effi-
ciency and predictability at the expense of innovation and ability to adapt to
changing conditions. Geoff Nicholson, the father of the Post-It Note, claims

189

http://slidesha.re/1v71niI

2 http://zd.net/1v71quY

3 Steve Yegge’s legendary “platform rant” is required reading for technical leaders: https://
plus.google.com/+RipRowan/posts/eVeouesvaVX.

that 3M’s adoption of Six Sigma at the behest of CEO James McNerney (for-
merly of GE and now of Boeing) “killed innovation.”2 Prescriptive, rule-based
processes also act as a brake on continuous improvement unless people operat-
ing the process are allowed to modify them. Finally, an overreliance on process
tends to drive out people who tinker, take risks, and run safe-to-fail experi-
ments. These kind of people tend to feel suffocated in a process-heavy environ-
ment—but they are essential drivers of an innovation culture.

Similarly, as organizations grow, the systems they build and operate increase in
complexity. To get new features to market quickly, we often trade off quality
for higher velocity. This is a sensible and rational decision. But at some point,
the complexity of our systems becomes a limiting factor on our ability to
deliver new work, and we hit a brick wall. Many enterprises have thousands of
services in production, including mission-critical systems running on legacy
platforms. These systems are often interconnected in ways that make it very
hard to change any part of the system without also changing others, which acts
as a significant drag on their ability to innovate at scale.

These organizational and architectural concerns are often the biggest barriers
to executing the strategy for moving fast at scale based on the principles of
Mission Command described in Chapter 1. We will start by presenting a virtu-
oso execution of a strategy to manage organizational and systems complexity
in the web age: Amazon. We’ll then present organizational, architectural, and
leadership principles that enable organizations to grow successfully.

Amazon’s Approach to Growth
In 2001, Amazon had a problem: the huge, monolithic “big ball of mud” that
ran their website, a system called Obidos, was unable to scale. The limiting
factor was the databases. CEO Jeff Bezos turned this problem into an opportu-
nity. He wanted Amazon to become a platform that other businesses could lev-
erage, with the ultimate goal of better meeting customer needs. With this in
mind, he sent a memo to technical staff directing them to create a service-
oriented architecture, which Steve Yegge summarizes thus:3

1. All teams will henceforth expose their data and functionality through ser-
vice interfaces.

2. Teams must communicate with each other through these interfaces.

LEAN ENTERPRISE190

http://zd.net/1v71quY
https://plus.google.com/+RipRowan/posts/eVeouesvaVX
https://plus.google.com/+RipRowan/posts/eVeouesvaVX

4 Werner Vogel’s article on Amazon’s move to an SOA is also required reading: http://
queue.acm.org/detail.cfm?id=1142065.

3. There will be no other form of interprocess communication allowed: no
direct linking, no direct reads of another team’s data store, no shared-
memory model, no back-doors whatsoever. The only communication
allowed is via service interface calls over the network.

4. It doesn’t matter what technology they use. HTTP, Corba, Pubsub, custom
protocols—doesn’t matter. Bezos doesn’t care.

5. All service interfaces, without exception, must be designed from the
ground up to be externalizable. That is to say, the team must plan and
design to be able to expose the interface to developers in the outside
world. No exceptions.

6. Anyone who doesn’t do this will be fired.

Bezos hired West Point Academy graduate and ex-Army Ranger Rick Dalzell
to enforce these rules. Bezos mandated another important change along with
these rules: each service would be owned by a cross-functional team that
would build and run the service throughout its lifecycle. As Werner Vogels,
CTO of Amazon, says, “You build it, you run it.”4 This, along with the rule
that all service interfaces are designed to be externalizable, has some important
consequences. As Vogels points out, this way of organizing teams “brings
developers into contact with the day-to-day operation of their software. It also
brings them into day-to-day contact with the customer. This customer feed-
back loop is essential for improving the quality of the service.”

Each team is thus effectively engaged in product development—even the people
working on the infrastructural components that comprise Amazon Web Serv-
ices, such as EC2. It’s hard to overemphasize the importance of this transition
from a project-based funding and delivery paradigm to one based on product
development.

One of the biggest problems as organizations grow is maintaining effective
communication between people and between teams. Once you move people to
a different floor, a different building, or a different timezone, communication
bandwidth becomes drastically limited and it becomes very hard to maintain
shared understanding, trust, and effective collaboration. To control this prob-
lem, Amazon stipulated that all teams must conform to the “two pizza” rule:
they should be small enough that two pizzas can feed the whole team—usually
about 5 to 10 people.

191CHAPTER 10: IMPLEMENT MISSION COMMAND

http://queue.acm.org/detail.cfm?id=1142065
http://queue.acm.org/detail.cfm?id=1142065

5 http://blog.jasoncrawford.org/two-pizza-teams

This limit on size has four important effects:

1. It ensures the team has a clear, shared understanding of the system they are
working on. As teams get larger, the amount of communication required
for everybody to know what’s going on scales in a combinatorial fashion.

2. It limits the growth rate of the product or service being worked on. By lim-
iting the size of the team, we limit the rate at which their system can
evolve. This also helps to ensure the team maintains a shared understand-
ing of the system.

3. Perhaps most importantly, it decentralizes power and creates autonomy,
following the Principle of Mission. Each two-pizza team (2PT) is as auton-
omous as possible. The team’s lead, working with the executive team,
would decide upon the key business metric that the team is responsible for,
known as the fitness function, that becomes the overall evaluation criteria
for the team’s experiments. The team is then able to act autonomously to
maximize that metric, using the techniques we describe in Chapter 9.

4. Leading a 2PT is a way for employees to gain some leadership experience
in an environment where failure does not have catastrophic consequences
—which “helped the company attract and retain entrepreneurial talent.”5

An essential element of Amazon’s strategy was the link between the organiza-
tional structure of a 2PT and the architectural approach of a service-oriented
architecture.

A Brief Introduction to Service-Oriented Architectures
A key principle of a service-oriented architecture (SOA) is decomposing systems into
components or services. Each component or service provides an interface (also known
as an Application Programming Interface, or API) so that other components can com-
municate with it. Other parts of the system—and the teams that create them—don’t
need to know the details of how the components or services they consume are built.
Instead, they simply need to know the interface. This also means that there doesn’t
need to be a lot of communication between the teams that use a service or compo-
nent and the team that builds and maintains it. Indeed, if the API is sufficiently well
designed and documented, no communication is required.

Any system can be decomposed in multiple ways. Understanding how to decompose a
system is an art—and, as the system evolves, the ideal decomposition is likely to
change. There are two rules of thumb architects follow when decomposing systems.
First, ensure that adding a new feature tends to change only one service or a

LEAN ENTERPRISE192

http://blog.jasoncrawford.org/two-pizza-teams

6 See [parnas] for the original work on this subject.

component at a time. This reduces interface churn.6 Second, avoid “chatty” or fine-
grained communication between services. Chatty services scale poorly and are harder
to impersonate for testing purposes.

All well-designed systems are split into components. What differentiates a service-
oriented architecture is that its components can be deployed to production independ-
ently of each other. No more “big bang” releases of all the components of the system
together: each service has its own independent release schedule. This architectural
approach is essential to continuous delivery of large-scale systems. The most impor-
tant rule that must be followed is this: the team managing a service has to ensure that
its consumers don’t break when a new version is released.

To avoid the communication overhead that can kill productivity as we scale
software development, Amazon leveraged one of the most important laws of
software development—Conway’s Law: “Organizations which design sys-
tems…are constrained to produce designs which are copies of the communica-
tion structures of these organizations.” One way to apply Conway’s Law is to
align API boundaries with team boundaries. In this way we can distribute
teams all across the world. So long as we have each service developed and run
by a single, co-located, autonomous cross-functional team, rich communica-
tion between teams is no longer necessary.

Organizations often try to fight Conway’s Law. A common example is splitting
teams by function, e.g., by putting engineers and testers in different locations
(or, even worse, by outsourcing testers). Another example is when the front
end for a product is developed by one team, the business logic by a second,
and the database by a third. Since any new feature requires changes to all
three, we require a great deal of communication between these teams, which is
severely impacted if they are in separate locations. Splitting teams by function
or architectural layer typically leads to a great deal of rework, disagreements
over specifications, poor handoffs, and people sitting idle waiting for some-
body else.

Amazon’s approach is certainly not the only way to create velocity at scale, but
it illustrates the important connection between communication structures,
leadership, and systems architecture.

Create Velocity at Scale Through Mission Command
As organizations grow, informal processes and communication channels
become increasingly ineffective at achieving the system-level outcomes we
desire. Indeed it is easy for people to lose sight of system-level outcomes in the

193CHAPTER 10: IMPLEMENT MISSION COMMAND

7 If we take this idea to its logical conclusion, we end up with what is known as holacracy (see
http://holacracy.org/constitution). The Brazilian company Semco is an example of an enterprise
that follows a radically decentralized model, see [semler].

face of rapid growth. As organizations grow, they move into the complex
domain. In particular, two characteristics of complex adaptive systems begin to
matter. First, there is no privileged perspective from which the system as a
whole can be understood—not even the CEO’s office. Second, nobody can
hope to understand more than a small part of the whole, depending on the
information and context available to them.

Thus if we are not careful in the way we grow our organization, we will end
up with a system where people optimize for what is visible to them and for the
feedback they get, which is more or less determined by which people they
interact with on a day-to-day basis. Thus each department or division optimi-
zes for its own benefit—not because people are stupid or evil but because they
simply have insufficient visibility into the effects of their actions on the wider
organization. A simplified diagram of a traditionally structured enterprise is
shown in Figure 10-1.

Figure 10-1. An example of a traditional enterprise organization

The key to moving fast at scale is to create many small, decentralized, autono-
mous teams, based on the model of Mission Command described in Chapter 1.
In truly decentralized organizations, we follow the principle of subsidiarity: by
default, decisions should be made by the people who are directly affected by
those decisions. Higher levels of bureaucracy should only perform tasks that
cannot be performed effectively at the local level—that is, the authority of
higher levels of bureaucracy should be subsidiary to that of the local levels.7

Several successful large organizations have followed this principle for many

LEAN ENTERPRISE194

http://holacracy.org/constitution

years—for example, the Gore Company, Southwest Airlines, and the Swedish
bank Handelsbanken, all of which have consistently demonstrated better than
average performance in their markets.

Our starting point is to define the basic organizational unit—a team of up to
10 people (following Amazon’s two-pizza rule). Once you get beyond 10 peo-
ple, group dynamics and coordination become hard to manage, and it becomes
difficult to make consensus decisions and achieve a shared understanding of
the context for everybody in the team.

In an enterprise context, teams usually collaborate to achieve program-level
goals, and larger products and services will require multiple teams, perhaps
including dedicated marketing and support people. As Reed Hastings says, our
goal is to create teams that are highly aligned but loosely coupled. We ensure
teams are aligned by using the Improvement Kata as described in Chapter 6
and Chapter 9—that is, by having iterations at the program level with defined
target conditions and having teams collaborate to work out how to achieve
them.

Here are some strategies enterprises have successfully applied to create
autonomy for individual teams:

Give teams the tools and authority to push changes to production
In companies such as Amazon, Netflix, and Etsy, teams, in many cases, do
not need to raise tickets and have changes reviewed by an advisory board
to get them deployed to production. In fact, in Etsy this authority is
devolved not just to teams but to individual engineers. Engineers are
expected to consult with each other before pushing changes, and certain
types of high-risk changes (such as database changes or changes to a
PCI-DSS cardholder data environment) are managed out of band. But in
general, engineers are expected to run automated tests and consult with
other people on their team to determine the risk of each change—and are
trusted to act appropriately based on this information. ITIL supports this
concept in the form of standard changes. All changes that launch dark
(and which thus form the basis of A/B tests) should be considered standard
changes. In return, it’s essential that teams are responsible for supporting
their changes; for more on this, see Chapter 14.

Ensure that teams have the people they need to design, run, and evolve
experiments

Each team should have the authority and necessary skills to come up with
a hypothesis, design an experiment, put an A/B test into production, and
gather the resulting data. Since the teams are small, this usually means they
are cross-functional with a mix of people: some generalists with one or

195CHAPTER 10: IMPLEMENT MISSION COMMAND

8 David Guest, “The hunt is on for the Renaissance Man of computing,” The Independent (Lon-
don), September 17, 1991.

two deep specialisms (sometimes known as “T-shaped” people8), along
with specialist staff such as a database administrator, a UX expert, and a
domain expert. This does not preclude having centralized teams of special-
ists who can provide support to product teams on demand.

Ensure that teams have the authority to choose the their own toolchain
Mandating a toolchain for a team to use is an example of optimizing for
the needs of procurement and finance rather than for the people doing the
work. Teams must be free to choose their own tools. One exception to this
is the technology stack used to run services in production. Ideally, the team
will use a platform or infrastructure service (PaaS or IaaS) provided by
internal IT or an external provider, enabling teams to self-service deploy-
ments to testing and (where applicable) production environments on
demand through an API (not through a ticketing system or email). If no
such system exists, or it is unsuitable, the team should be allowed to
choose their own stack—but must be prepared to meet any applicable reg-
ulatory constraints and bear the costs of supporting the system in produc-
tion. We cover this thorny topic in more detail in Chapter 14.

Ensure teams do not require funding approval to run experiments
The techniques described in this book make it cheap to run experiments,
so funding should not be a barrier to test out new ideas. Teams should not
require approval to spend money up to a certain limit (for example, a per-
transaction and per-month limit).

Ensure leaders focus on implementing Mission Command
In a growing organization, leaders must continuously work to simplify
processes and business complexity, to increase the effectiveness, autonomy,
and capabilities of the smallest organizational units, and to grow new lead-
ers within these units.

An example of how this might look is shown in Figure 10-2. In the case of
user-installed products, mobile apps, and embedded systems, PaaS/IaaS is used
for testing purposes, but the release process happens on demand rather than
continuously. Note that this structure does not require a change in who people
report to. People can still report up the traditional functional lines (for exam-
ple, testers to a Director of Testing) even if they work on cross-functional
teams on a day-to-day basis. Enterprises often waste a great deal of time on
unnecessary, disruptive reorganizations—when they would do better simply by
having people who work on the same product or service sit all in the same
room (or, for larger products, on the same floor).

LEAN ENTERPRISE196

Figure 10-2. Product teams working together, with a service layer for performing deployments

WARNING

Ensure Rewards Are Aligned with Desired Behavior
Although it’s not necessary for reporting structures to reflect team organization,
poor management can easily destroy collaboration by rewarding people for
behavior that optimizes for their function at the expense of customer outcomes
or wider organizational goals. Examples of this include rewarding developers for
features that are “dev complete” but not production ready, or rewarding testers
for the number of bugs they find. In general, rewarding people for output rather
than system-level outcomes leads to dysfunction, and in any case monetary
rewards or bonuses have been demonstrated to reduce performance in the con-
text of knowledge work. We cover the topic of incentives and culture in more
detail in Chapter 1 and Chapter 11.

Creating small, autonomous teams makes it economic for them to work in
small batches. When done correctly, this combination has several important
benefits:

Faster learning, improved customer service, less time spent on work that does
not add value

Autonomy—combined with an enterprise architecture that supports it—
reduces dependencies between teams so they can get changes out faster.
This is a key component in enabling teams to create prototypes of new
products and features to gather customer feedback, run A/B tests, and
improve customer service by responding quickly to user requests for
improvements and bug fixes. If we can quickly learn what users actually
value, we can stop wasting time building things that don’t add value. The
most important metric is: how fast can we learn? Change lead time is a
useful proxy variable for this metric, and autonomous teams are essential
to improving it.

197CHAPTER 10: IMPLEMENT MISSION COMMAND

Better understanding of user needs
In organizations where work moves through functional silos, the feedback
loop from users to the designers and engineers who create the product is
often slow and has low fidelity. When everybody on the team can build
small experiments, push them into production, and analyze the metrics,
the entire team comes into contact with users on a day-to-day basis.

Highly motivated people
When we can design an experiment or push a bug fix or enhancement to
users and see the results almost immediately, it’s an incredibly empowering
experience—a proof of your autonomy, mastery, and purpose. Nobody we
know who has ever worked in this way wants to go back to the old way of
doing things.

Easier to calculate profit and loss
Cross-functional customer-facing teams that own a service over its lifecycle
make it much easier to calculate profit and loss (P&L) for the service. The
cost of the service is simply the cost of the resources consumed by the
team, plus their salaries. This allows us to use simple dollar numbers to
identify teams generating the highest margins for the company. Note that
this is independent of the idea of internal chargeback, which if imple-
mented dogmatically often requires high levels of business complexity to
determine costs with unnecessary precision.

It’s one thing to adopt the principles of Mission Command in a growing
startup—but another thing entirely in an enterprise with a more traditional,
centralized approach to management and decision making. Mission Command
drastically changes the way we think about management—in particular, man-
agement of risk, cost, and other system-level outcomes. Many organizations
adopt a one-size-fits-all approach to risk and cost management, with central-
ized processes for software release management (by the IT department) and
budgeting (by the finance department). In Mission Command, teams have the
authority and responsibility to manage cost and risk appropriately in their par-
ticular context. The role of finance, the project management office, enterprise
architects, GRC teams, and other centralized groups changes: they specify tar-
get outcomes, help to make the current state transparent, and provide support
and tools where requested, but do not dictate how cost, processes, and risk are
managed. We discuss lean approaches to governance and finance in Part IV.

Evolving Your Architecture Using the Strangler
Application Pattern
Autonomous teams will make little difference to customer outcomes if the
enterprise architecture prevents teams from running experiments and respond-
ing quickly to customer needs. To enable both continuous delivery and decen-

LEAN ENTERPRISE198

9 http://bit.ly/1v71DOH, following Chris Stevenson and Andy Pols’ paper, http://bit.ly/1v71GtR.

tralization, teams must be able to get changes out quickly and safely. Unfortu-
nately, the reality is that in many enterprises there are thousands of tightly
coupled systems, and it is very hard to make changes to any of them without
navigating a web of dependencies. Too often, one of the dependencies is a sys-
tem of record maintained by a team which releases updates every few months
at the cost of significant heroics.

TIP

Architecting for Continuous Delivery and Service Orientation
Architecting for continuous delivery and service orientation means evolving sys-
tems that are testable and deployable. Testable systems are those for which we can
quickly gain a high level of confidence in the correctness of the system without
relying on extensive manual testing in expensive integrated environments.
Deployable systems are those that are designed to be quickly, safely, and inde-
pendently deployed to testing and (in the case of web-based systems) production
environments. These “cross-functional” requirements are just as important as per-
formance, security, scalability, and reliability, but they are often ignored or given
second-class status.

A common response to getting stuck in a big ball of mud is to fund a large sys-
tems replacement project. Such projects typically take months or years before
they deliver any value to users, and the switchover from the old to the new sys-
tem is often performed in “big bang” fashion. These projects also run an
unusually high risk of running late and over budget and being cancelled. Sys-
tems rearchitecture should not be done as a large program of work funded
from the capital budget. It should be a continuous activity that happens as part
of the product development process.

Amazon did not replace their monolithic Obidos architecture in a “big bang”
replacement program. Instead, they moved to a service-oriented architecture
incrementally, while continuing to deliver new functionality, using a pattern
known as the “strangler application.” As described by Martin Fowler, the pat-
tern involves gradual replacement of a system by implementing new features in
a new application that is loosely coupled to the existing system, porting
existing functionality from the original application only where necessary.9 Over
time, the old application is “strangled”—just like a tree enveloped by a tropi-
cal strangler fig (Figure 10-3).

199CHAPTER 10: IMPLEMENT MISSION COMMAND

http://bit.ly/1v71DOH
http://bit.ly/1v71GtR

Figure 10-3. The evolution of stranglers

Strangling applications should use the methods described earlier in this book.
There are some important rules to follow when implementing the strangler
pattern:

Start by delivering new functionality—at least at first
Always find ways to satisfy a need that is not served by the existing soft-
ware, and prioritize features using the cost of delay divided by duration
(CD3), as described in Chapter 7, to ensure you deliver the largest amount
of value in the shortest possible time.

Do not attempt to port existing functionality unless it is to support a business
process change

The biggest mistake people make is porting existing features over as-is.
This generally means reproducing complexity created to serve business
processes as they looked years ago, which is enormously wasteful. When-
ever you are asked to add a feature which represents a change to a busi-
ness process, go and observe the process from scratch and look for ways to
simplify it before implementing the code to support it. You will find that
much accidental complexity in business processes actually comes from
being forced to use the old software you are replacing!

Deliver something fast
Make the initial release of your new application small enough that you can
get it deployed and providing value in a few weeks to a few months. When
building the first module, it’s hard—but essential—to resist feature creep.
The measure of success for the first release is how quickly you can do it,
not how much functionality is in it. Typically, this is achieved by using the

LEAN ENTERPRISE200

“vertical slice” approach in which we build small increments of functional-
ity end-to-end across the whole technology stack.

Design for testability and deployability
Functionality in the new application must always be built using good soft-
ware development practices: test-driven development, continuous integra-
tion, a well-encapsulated, loosely coupled modular design. Strangler appli-
cations are an opportunity to test out such practices, so make sure the
team working on it is enthusiastic about these methods and has enough
experience to have a good chance at succeeding.

Architect the new software to run on a PaaS
Work with operations to drive the design of the software hand in hand
with the platform as a service, as we describe in Chapter 14. If the opera-
tions team is not ready to do this, work with them to ensure that the sys-
tem doesn’t drive up the complexity of the existing operational
environment.

There is of course a trade-off to migrating in an incremental way. Overall, it
takes longer to do a replacement incrementally compared to a hypothetical
“big bang” rearchitecture delivering the same functionality. However, since a
strangler application delivers customer value from early on, evolves in response
to changing customer needs, and can advance at its own rate, it is almost
always to be preferred.

Enterprise architecture is usually driven by expensive, top-down plans to
“rationalize” the architecture, move from legacy systems to a modern plat-
form, and remove duplication to create a single source of truth. Often, the end
state is represented by a good-looking diagram that fits on a single (large) sheet
of paper. However, the end state is rarely achieved because the ecosystem
which the architecture serves always changes too fast, and it is even rarer for
the promised benefits to materialize. Typically, what happens is that new struc-
tures are added, but the systems that were supposed to be replaced never
actually get turned off, leading to ever-increasing complexity which makes it
even harder to change things in future.

201CHAPTER 10: IMPLEMENT MISSION COMMAND

TIP

Create Architectural Alignment Through Specifying Target Conditions,
Not Standardization and Architectural Epics
Our experience is that standardization on a particular toolchain or technology
stack is neither necessary nor sufficient for achieving enterprise architecture goals
such as enabling teams to respond rapidly to changing requirements, creating
high-performance systems at scale, or reducing the risk of intrusion or data theft.
Just like we drive product and process innovation through the Improvement Kata,
we can drive architectural alignment through it too. Architectural goals—for
example, desired performance, availability, and security—should be approached
by iteratively specifying target conditions at the program level. Following the
Principle of Mission, set out a clear vision of the goals of your enterprise architec-
ture without specifying how the goals are to be achieved, and create a context in
which teams can determine how to achieve them through experimentation and
collaboration. We cover alternatives to standardization and related issues in more
detail in Chapter 14.

We do much better by accepting that we will always be in a state of change,
and working slowly and incrementally to reduce complexity through the stran-
gler application pattern. Find a way to measure the surface area of the systems
that you aim to retire, and make it visible so that teams can work to reduce it
—and ultimately eliminate such systems—as they continue to deliver value to
customers. Accept that evolving enterprise architecture—and reducing unnec-
essary complexity—is a continuing, unending process.

Conclusion
Moving quickly at scale requires implementing the Mission Command. One
commonly used approach is to create small teams that are highly aligned but
loosely coupled. However, given the strong coupling between systems architec-
ture and communication flows observed by Melvin Conway and codified in his
eponymous law, we also need to evolve a systems architecture that supports
this kind of decentralized organization.

Moving from a more traditional centralized model to the kind of structure
described in this chapter is hard. We must proceed slowly and incrementally. It
requires changes to the existing centralized processes—in particular, budgeting,
procurement, risk management, governance, and release management. These
are discussed in the last part of this book, Part IV.

Even though change is hard and takes time, we should not be dissuaded. The
key is to find ways to make small, incremental changes that deliver improved
customer outcomes—and then keep going. Just as we apply the strangler pat-
tern to enterprise architecture, we can also apply it to our organizational

LEAN ENTERPRISE202

culture and processes—this is the topic of the final chapter of this book, Chap-
ter 15.

Questions for readers:

• Can your teams run experiments and achieve customer outcomes inde-
pendently, or are they dependent on other teams in order to get anything
done?

• Can you deploy pieces of your system independently of each other, or must
you release everything at once?

• What is the smallest possible amount of work you could do to enable
either experimentation or independent deployment for a single team or
component/service?

• How are people on your teams rewarded? Does this encourage or discour-
age them from collaborating with other people on your team or with other
teams?

203CHAPTER 10: IMPLEMENT MISSION COMMAND

PART IV

TRANSFORM

Everyone thinks of changing the world, but no one thinks of changing
himself.

Leo Tolstoy

If you’ve made it from the beginning of this book to here, you should have a
pretty good idea of how to apply lean concepts and principles to make great
software products, and of the importance of strategy and culture in enabling
the discovery and exploitation of new businesses. But to reap the maximum
reward for all our efforts, lean principles and concepts need to be scaled
throughout the entire organization. Only when this happens will we realize the
full value of the work we have invested in, exploring new ideas and exploiting
those that deliver value to customers.

We readily grasp that these concepts work well to address the needs of rapidly
changing environments and fierce competition. However, it is hard to extend
lean concepts to process improvement, COTS applications, and the evolution
and support of internal systems, particularly systems of record. Supplier and
vendor relationships present a further obstacle. The nature of our relationship
with suppliers of proprietary, specialized, or customized solutions often inhib-
its collaboration, fast feedback, or small incremental change. We need to seek
suppliers who are willing to treat us as we expect to treat our own customers.
We must encourage suppliers to listen to us, understand what we need, and

205

experiment. They have to be willing to go on the journey of improvement
with us.

To add further complexity to this problem, many of our traditional approaches
to governance, risk, and compliance (GRC), financial management, procure-
ment, vendor/supplier management, and human resources (recruiting, promo-
tion, compensation) create additional waste and bottlenecks. These can only be
eliminated when the entire organization embraces lean concepts and everyone
works together in the same direction.

Making an enterprise lean is not a one-person or one-department show. It
won’t work through a special tactical task force. We can’t mandate that from
now on, everyone will work this way and expect them to adjust as per our
implementation plan. Real lean transformation is the result of committed, fear-
less leaders who encourage and enable lean thinking to propagate throughout
the entire fabric of the organization—not just customer-facing products. Those
at the top need to walk the talk and be role models for everyone. They need to
set aside egos, listen and respect contrary opinions, and build trusting relation-
ships at all levels of the organization. This is essential for new leaders to
emerge and for lean concepts and practices to become woven into the organi-
zation’s culture.

People must feel empowered to make decisions that involve risk and try out
new ideas, while recognizing their responsibilities to customers and maintain-
ing alignment with the overall organization strategy. As leaders, we need to set
limitations and context for everyone, but ensure they are not unduly restric-
tive. When everyone is united in pursuit of a common purpose, and we have
empathy with our customers and put serving their needs first, most people can
figure out what risks are acceptable and what are not.

Conflict arises when our espoused values do not match up with actual practice.
This is where modeling the behavior we hope to see in everyone is most impor-
tant. There are no formulas, instructions, or rituals that will work for every-
one. Each of us needs to take time daily, maybe even several times a day, to
reflect on our own actions and decide if they support our stated values and
work to move us in the right direction.

A lean mindset cannot thrive in an organization with a centralized, command-
and-control management style. Nevertheless, we still need to maintain visibility
and transparency into what everyone is doing. It is not easy for large organiza-
tions to find this balance, and we must recognize that constant adjustment will
be required. Many people within our organization will perceive this cultural
shift as threatening and will push back on it. Command and control is easy; I
follow the rules and if it doesn’t work, it is not my fault. However, if you ask
me to make decisions and take responsibility for them, someone might hold me

LEAN ENTERPRISE206

accountable for the mistakes I am very likely to make. Give me command and
control!

If we are successful at creating a lean enterprise, we will have failures and set-
backs, at all levels and by all people. If we don’t, it means we haven’t created a
high-trust, high-performance culture and are continuing to judge our perfor-
mance by vanity metrics, not real outcomes. We’ll never have the culture of a
learning organization if we can’t be allowed to make mistakes and get worse at
something before we get better.

In this part, we concentrate our discussion on how to pursue the never-ending
work of transforming the enterprise. We will address some of the most com-
mon areas where we see a mismatch between lean concepts and the prevailing
leadership and management principles, practices, and processes. These gaps are
revealed when we face obstacles that prevent us doing better at delivering
value to customers, or when we are robbed of satisfaction and fulfilment in our
daily work. Our hope is that readers will be inspired to find ways to overcome
these obstacles, and to share their successes—and their failures—with others.

207PART IV: TRANSFORM

1 The Economist, 410, no. 8869, p. 72.

C H A P T E R 1 1

Grow an Innovation Culture

The ability of your company to be competitive and survive lies not so
much in solutions themselves, but in the capability of the people in
your organization to understand a situation and develop solutions.

Mike Rother

We now accept the fact that learning is a lifelong process of keeping
abreast of change. And the most pressing task is to teach people how
to learn.

Peter Drucker

You know, I’m all for progress. It’s change I object to.
Mark Twain

Culture is the most critical factor in an organization’s ability to adapt to its
changing environment. However, being intangible, it is hard to analyze and
even harder to change. Every organization has its own unique culture, and
there are “as many successful cultures as there are successful companies.”1 In
Chapter 1 we presented the characteristics of a high-performance, generative
culture. In this chapter, we discuss how to understand your organization’s cul-
ture and what you can do to change it.

Culture is constantly changing in every organization. New employees and lead-
ers join, people quit, strategies and products evolve and die, and the market

209

2 [schein]

3 [kane], “Five Tools for Analyzing Dysfunction in Engineering Culture” and “Values Towards
Ethical and Radical Management.”

constantly shifts. The most important question is: can we mindfully evolve our
organizational culture in response to these changes in environment?

To understand how to influence organization culture, we need to understand
its foundations. We introduce a model of organizational culture and discuss
how to measure it. We follow with strategies to kick-start organizational
change, with the goal of making these strategies self-sustaining. Finally, we
examine the relationship between individuals and organizations, and discuss
how to hire and retain “good” people.

Model and Measure Your Culture

CEOs can talk and blab all day about culture, but the employees
know who the jerks are.

Jack Welch

In The Corporate Culture Survival Guide, Schein defines culture as “a pattern
of shared tacit assumptions that was learned by a group as it solved its prob-
lems of external adaptation and internal integration, that has worked well
enough to be considered valid and, therefore, to be taught to new members as
the correct way to perceive, think, and feel in relation to those problems.”2 The
“tacit” part of this definition is important—and it is what makes culture so
intangible. Shanley Kane, author of Your Startup Is Broken: Inside the Toxic
Heart of Tech Culture, provides another perspective, commenting that “our
true culture is made primarily of the things no one will say…Culture is about
power dynamics, unspoken priorities and beliefs, mythologies, conflicts,
enforcement of social norms, creation of in/out groups and distribution of
wealth and control inside companies.”3

Even though culture is intangible, it is measureable, and there is a large body
of work dedicated to precisely this task. Of course every methodology is based
on an underlying model, and all models are limited to a different extent. Nev-
ertheless, such measurements are important as a way of making culture visible
and encouraging people to pay attention to it. Here are examples of work that
has been done to measure culture:

• Karen E. Watkins and Victoria J. Marsick developed the Dimensions of the
Learning Organization Questionnaire (DLOQ), which has been exten-
sively studied in the academic literature. You can take the questionnaire
for free at http://www.partnersforlearning.com/instructions.html.

LEAN ENTERPRISE210

http://www.partnersforlearning.com/instructions.html

• Gallup’s Q12 survey asks what they believe are “the only 12 questions that
matter” to measure employee engagement. You can find the questions,
along with more information, at http://q12.gallup.com/.

• In Chapter 1, we discussed how the 2014 State of DevOps Report meas-
ured both job satisfaction and culture (using the Westrum model) and their
impact on organizational performance. Analysis showed that Westrum’s
model predicted both job satisfaction and organizational performance in
the context of knowledge work. Read more at http://bit.ly/1v71SJL.

TIP

Practicalities of Running Cultural Surveys
Whether you use a service or come up with your own survey, be careful about
how much information is collected. To obtain honest answers, don’t ask people to
disclose identifying information. Present results only in aggregate. It may be use-
ful to capture some demographic information so you can see, for example, how
results vary between genders or roles, but only when you have numbers large
enough to provide anonymity. Be mindful of how the information can work
against the respondents. At one large enterprise, managers reacted to poor sur-
vey results in their department by ordering their own reports to paint them in a
better light next time.

Disassociate culture surveys from pay and performance reviews. Make the aggre-
gated results available to all employees and ensure executives set up meetings to
discuss the findings and plan next steps. Run surveys annually or semiannually to
provide a baseline for comparison and measurement of change over time.

Measuring organizational culture and making problems visible is the first step.
Next, we must investigate why a culture is the way it is. For this inquiry, it is
helpful to use Schein’s model, which divides culture into three layers: artifacts,
espoused values, and underlying assumptions (Figure 11-1).

211CHAPTER 11: GROW AN INNOVATION CULTURE

http://q12.gallup.com/
http://bit.ly/1v71SJL

4 A sophisticated and entertaining exploration of a Theory X organization and its lifecycle, based
on the work of Ricky Gervais, can be found at http://bit.ly/1v71WJq.

5 [schein], p. 64.

Figure 11-1. Layers of organizational culture

Inconsistencies between espoused values and observed behaviors within an
organization are common. Observed behaviors are better indicators of real val-
ues. Who gets rewarded for what behavior? Who gets hired, promoted, or
fired? In order to understand the nature and source of the real values, we have
to descend to the level of underlying assumptions. This level is hard to unpack,
but it is the most important to understand.

Schein presents an exhaustive typology of tacit assumptions, of which the most
important are the beliefs leaders and managers hold about workers. In his
management classic The Human Side of Enterprise, Douglas McGregor
describes two contrasting sets of beliefs held by managers he observed, which
he calls Theory X and Theory Y. Managers who hold Theory X assumptions
believe that people are inherently lazy and unambitious and value job security
more than responsibility; extrinsic (carrot-and-stick) motivation techniques are
the most effective to deal with workers.4 In contrast, Theory Y managers
believe “that employees could and would link their own goals to those of the
organization, would delegate more, function more as teachers and coaches,
and help employees develop incentives and controls that they themselves
would monitor.”5

LEAN ENTERPRISE212

http://bit.ly/1v71WJq

6 http://www.danpink.com/drive-the-summaries. Pink also references a number of studies which
demonstrate conclusively that extrinsic motivation reduces performance in knowledge work.

7 [mcgregor], p. 42.

8 [mcgregor], p. 49.

9 [schein], pp. 27–28.

As we saw in Chapter 1, while extrinsic motivators such as bonuses are effec-
tive in a Taylorist world of routine, mechanical work, they actually reduce per-
formance in the context of knowledge work. People involved in nonroutine
work are motivated by intrinsic factors summarized by Dan Pink as “1.
Autonomy—the desire to direct our own lives. 2. Mastery—the urge to get bet-
ter and better at something that matters. 3. Purpose—the yearning to do what
we do in the service of something larger than ourselves.”6

What is especially problematic is that, by generating behavioral responses that
align with their management style, both types of managers believe their style
works best. People whose management strategy is consistent with Theory X
end up with employees who are passive, resistant to change, unwilling to
accept responsibility, and make “unreasonable demands for economic bene-
fits.”7 This is a rational response by employees to not having their higher needs
satisfied through work. Work becomes something to be endured in order to get
a paycheck.

In an organization whose leaders share Theory Y assumptions, their job is “the
creation of conditions such that the members of the organization can achieve
their own goals best by directing their efforts towards the success of the enter-
prise,”8 delivering value to customers and the organization while growing their
own capabilities. Until leaders and managers with Theory X attitudes work to
adopt a Theory Y mindset and demonstrate it consistently over time through
their actions, they will not be able to achieve a perceptible difference in peo-
ple’s behavior. The story of NUMMI in Chapter 1 is a good example of this
shift in mindset and behavior.

Culture is hard to change by design. As Schein says, “Culture is so stable and
difficult to change because it represents the accumulated learning of a group—
the ways of thinking, feeling, and perceiving the world that have made the
group successful.”9

Change Your Culture
In his revolutionary work Pedagogy of the Oppressed, published in 1970,
Paulo Freire describes what is still the dominant model of teaching today. In
this model, students are viewed as empty “bank accounts” to be filled with
knowledge by teachers—not as participants who have a say in what and how

213CHAPTER 11: GROW AN INNOVATION CULTURE

http://www.danpink.com/drive-the-summaries

10 The key concept here is the idea that workers are fungible—that is, essentially interchangeable—
resources. Any time you hear people referred to as “resources,” this is what is implied.

11 [rother-2010], p. 236.

12 http://bit.ly/1v720ZH

they learn. This model is not designed to enable students to learn—especially
not to learn to think for themselves—but rather to control the learning pro-
cess, students’ access to information, and their ability to critically analyze it. In
this way, the education system perpetuates existing social structures and power
hierarchies.

Similarly, most companies seem to treat their employees as filled-up bank
accounts to be drained of skills and knowledge in service of the company’s
goals. This is the implication when we speak of employees as “resources” and
wonder how to increase their utilization and productivity with little regard for
their personal development. This kind of behavior indicates an environment in
which employees exist primarily as providers of labor, not as active partici-
pants in creating value.10 In contrast, high-performance organizations are effec-
tive at both developing and harnessing the unique capabilities of their people.

Organizations with a “bank account” attitude to employees tend to treat
change in a transactional way. This all too common and flawed approach
involves funding a change program which is expected to “fix” the organization
so it is fit for purpose. Organizational change is treated as a product—sold by
consultants, paid for by leadership, and consumed by the rest of the organiza-
tion as directed.

These change programs commonly focus on reorganizing teams and reporting
structures, sending employees on short training courses, and rolling out tools
and methodologies across the organization. These strategies usually don’t work
because they are ineffective at changing people’s patterns of behavior. As Mike
Rother points out in Toyota Kata, “what is decisive is not the form of the
organization, but how people act and react.”11 This is determined primarily by
the actions of leadership and management. To pick some examples: are people
given the autonomy to act and trusted to take risks? Is failure punished or does
it lead to enquiry and improvements of our systems? Is cross-functional com-
munication rewarded or discouraged?

We began this book by discussing the case of NUMMI, in which a broken
organization was reformed under a new leadership and management para-
digm. Despite rehiring the same people, NUMMI achieved extraordinary levels
of quality and productivity and reduced costs. In an article for MIT Sloan
Management Review, John Shook, Toyota City’s first US employee, reflected
on how that cultural change was achieved:12

LEAN ENTERPRISE214

http://bit.ly/1v720ZH

13 [schein], p. 106.

What my NUMMI experience taught me that was so powerful was
that the way to change culture is not to first change how people think,
but instead to start by changing how people behave—what they do.
Those of us trying to change our organizations’ culture need to define
the things we want to do, the ways we want to behave and want each
other to behave, to provide training and then to do what is necessary
to reinforce those behaviors. The culture will change as a result…
What changed the culture at NUMMI wasn’t an abstract notion of
“employee involvement” or “a learning organization” or even “cul-
ture” at all. What changed the culture was giving employees the means
by which they could successfully do their jobs. It was communicating
clearly to employees what their jobs were and providing the training
and tools to enable them to perform those jobs successfully.

Shook offers his own interpretation of Schein’s model, showing how people
normally approach cultural change in contrast to the approach taken at
NUMMI, in Figure 11-2.

NUMMI had an advantage in achieving their cultural change. The entire
workforce was newly hired—with many workers having been freshly fired
from their jobs at Fremont Assembly. It’s hard to achieve sustained, systemic
change without any crisis. In The Corporate Culture Survival Guide, Schein
asks if crisis is a necessary condition of successful transformations; his answer
is, “Because humans avoid unpredictability and uncertainty, hence create cul-
tures, the basic argument for adult learning is that indeed we do need some
new stimulus to upset the equilibrium. The best way to think about such a
stimulus is as disconfirmation: something is perceived or felt that is not
expected and that upsets some of our beliefs or assumptions…disconfirmation
creates survival anxiety—that something bad will happen if we don’t change—
or guilt—we realize that we are not achieving our own ideals or goals.”13

215CHAPTER 11: GROW AN INNOVATION CULTURE

14 [schein], p. 114.

Figure 11-2. Old and new approaches to cultural change (2010 from MIT Sloan Management
Review/Massachusetts Institute of Technology, all rights reserved, distributed by Tribune Con-

tent Agency, LLC)

Disconfirmation can come naturally from a number of sources that may
threaten our survival: economic, political, technological, legal, moral, or sim-
ply a realization that we are not achieving our purpose. A common cause of
unplanned disconfirmation is leaders acting in a way that contradicts their sta-
ted values. It is also possible to create disconfirmation in a controlled way
through joint ventures, planned leadership activity, or by creating an artificial
crisis.

Once people accept the need for change, they are confronted with the fear that
they may fail at learning the new skills and behavior required of them, or that
they may lose status or some significant part of their identity—a phenomenon
Schein calls learning anxiety.

Schein postulates that for change to succeed, survival anxiety must be greater
than learning anxiety, and to achieve this, “learning anxiety must be reduced
rather than increasing survival anxiety.”14 Many leaders and managers make
the mistake of trying to achieve change by increasing survival anxiety. This cre-
ates an environment of fear which, in turn, results in significant amounts of
energy spent on diverting blame, avoiding responsibility, or playing political
games.

LEAN ENTERPRISE216

15 http://youtu.be/MzS5V5-0VsA?t=6m

The most powerful systematic tool to reduce survival anxiety that we have
encountered is the Improvement Kata, described in Chapter 6. It is designed
for people to safely learn new skills and experiment with new ideas in the pur-
suit of clearly defined, measurable organizational goals. Essential to creating a
high-performance culture is an environment in which mistakes are accepted as
learning opportunities to build systems and processes that reduce the impact of
future mistakes.

Make It Safe to Fail
Your organization’s attitude to failure—whether of a change effort or simply a
decision—is critical in creating an adaptive, resilient organization. Organiza-
tional theorist Professor Russell L. Ackoff noted, “It’s our treatment of error
that leads to a stability which prevents significant change.” If people are told
that making mistakes is bad, and if people are punished for them, the inevita-
ble outcome is that they will avoid taking any risky decisions.15

In a complex, adaptive system such as an enterprise, nobody has perfect infor-
mation. Every decision will have unintended consequences whose causes may
be clear looking back, but are almost impossible to predict looking forward.
Whenever it appears that one person is responsible for a given outcome, we
should be honest and ask ourselves, “If I had been in the same situation, is it
possible I would have made the same decisions?” Usually, the answer is “yes.”

Rather than punishing mistakes, we must ensure that people have the neces-
sary information to make effective decisions, find ways to limit the possible
negative outcomes of decisions, and be disciplined about learning from mis-
takes. For example, how do managers and leaders in your organization
respond to failures? Do they lead to scapegoating, justice, or enquiry?

One practice often used by organizations with high-performance cultures is a
blameless postmortem run after every incident or accident. The goal of the
postmortem is to improve the system so that, in similar situations in the future,
people have better information and tools at their disposal and the negative
impact is limited.

At the beginning of every postmortem, every participant should read aloud the
following words, known as the Retrospective Prime Directive: “Regardless of
what we discover, we understand and truly believe that everyone did the best
job they could, given what they knew at the time, their skills and abilities, the

217CHAPTER 11: GROW AN INNOVATION CULTURE

http://youtu.be/MzS5V5-0VsA?t=6m

16 [kerth]

17 These two points are John Allspaw’s: http://bit.ly/1e9idko. And if you’re interested in how
Knight Capital lost $460m in 30 minutes, this post is worth reading in full.

18 [dekker], p. 6.

19 You can find a short guide to failure in complex systems at http://bit.ly/1F7O3Mg.

resources available, and the situation at hand.”16 A postmortem should aim to
provide:17

• A description and explanation of how the incident happened, from the per-
spective of those involved and affected, including a timeline of events and
a list of contributing factors

• Artifacts (recommendations, remediations, checklists, runbook updates,
etc.) for better prevention, detection, and response to improve the handling
of similar events in the future

Postmortems should not attempt to identify a single root cause. The idea that a
single event can be identified as the cause of a failure is a misunderstanding of
the nature of complex adaptive systems. As safety experts Sidney Dekker, Erik
Hollnagel, David Woods, and Richard Cook point out:18

Our understanding of how accidents happen has undergone a dra-
matic development over the last century. Accidents were initially
viewed as the conclusion of a sequence of events (which involved
“human errors” as causes or contributors). This is now being increas-
ingly replaced by a systemic view in which accidents emerge from the
complexity of people’s activities in an organizational and technical
context. These activities are typically focused on preventing accidents,
but also involve other goals (throughput, production, efficiency, cost
control) which means that goal conflicts can arise, always under the
pressure of limited resources (e.g., time, money, expertise). Accidents
emerge from a confluence of conditions and occurrences that are usu-
ally associated with the pursuit of success, but in this combination—
each necessary but only jointly sufficient—able to trigger failure
instead.

Every failure is the result of multiple things going wrong—often invisibly (Dek-
ker refers to complex adaptive systems “drifting into failure”).19 Every post-
mortem should result in multiple ideas for incremental improvement. We must
also schedule a follow-up to test whether these improvements were effective,
ideally by running an exercise simulating a similar failure, as we describe in
Chapter 14.

LEAN ENTERPRISE218

http://bit.ly/1e9idko
http://bit.ly/1F7O3Mg

20 The title of this section is taken from a presentation by Andrew Shafer: https://
www.youtube.com/watch?v=P_sWGl7MzhU.

21 The original reference is from [sackman], and a robust discussion and defense of the claim can
be found at http://bit.ly/1v72hvu.

22 [bossavit], in Chapters 5 and 6, does an effective job at demolishing the existing studies and
data.

There Is No Talent Shortage
In the tech industry it’s common to hear about a “talent shortage” and the dif-
ficulty of finding “good people.”20 In this section we’ll dismantle the assump-
tions behind these kinds of remarks. We will examine what we mean by “good
people” by looking at one particular role—software engineers—and then pro-
gress to the general case.

It’s a widely held belief that there is an order-of-magnitude difference between
the best and the worst engineers.21 In reality, the 10x figure is (to put it mildly)
“poorly supported by empirical evidence.”22 However, once you get to the bot-
tom of the debate over the claim, it is really about the validity, or usefulness, of
individual productivity measurements in the context of an organization.

Individual productivity is most commonly measured by throughput—the time
it takes to complete a standardized task under controlled conditions. This
approach is premised upon a Taylorist view of work where managers define
the tasks to be done and workers try to complete these tasks as rapidly as pos-
sible. Thus, old-school metrics such as lines of code per day and number of
hours worked are used to measure individual productivity of software engi-
neers. The flaws in these measures are obvious if we consider the ideal out-
comes: the fewest lines of code possible in order to solve a problem, and the
creation of simplified, common processes and customer interactions that
reduce complexity in IT systems. Our most productive people are those that
find ingenious ways to avoid writing any code at all.

In many organizations, worrying unduly about variations between individuals
is futile. If there’s one thing we should learn from the NUMMI case study in
Chapter 1, it’s that organizational culture and leadership dwarf differences
between individuals. As journalist and author Malcolm Gladwell writes, “The
talent myth assumes that people make organizations smart. More often than
not, it’s the other way around…Our lives are so obviously enriched by individ-
ual brilliance. Groups don’t write great novels, and a committee didn’t come
up with the theory of relativity. But companies work by different rules. They
don’t just create; they execute and compete and coordinate the efforts of many
different people, and the organizations that are most successful at that task are

219CHAPTER 11: GROW AN INNOVATION CULTURE

https://www.youtube.com/watch?v=P_sWGl7MzhU
https://www.youtube.com/watch?v=P_sWGl7MzhU
http://bit.ly/1v72hvu

23 http://bit.ly/1v72nmV

the ones where the system is the star.” As W. Edwards Deming noted, “A bad
system will beat a good person every single time.”

The rate at which we can understand and solve complex problems—the key
skill for which we still need people, rather than machines—is determined as
much by our environment as our own skills and abilities. We can hardly blame
people for failing to learn and solve problems if we limit their opportunities by
organizational silos that insulate workers from each other and from customers,
by long cycle times that delay feedback, by focusing on completing assigned
work rather than achieving customer outcomes, and by working long hours so
we have no time to try out new ideas and technologies or even talk to each
other!

Given that the culture of an organization has such a dominant effect on the
performance of individuals, should we care at all about the particular skills
and attitudes of individuals? Instead of taking a “bank account” view that
focuses on people’s existing capabilities, it’s more important to consider their
ability to acquire new skills—particularly in the field of technology where use-
ful knowledge and skills change rapidly.

Carol Dweck, Professor of Psychology at Stanford, has spent years researching
the psychology of learning, development, and motivation. Her research reveals
there is a way to judge how good people will be at learning new skills. Dweck
discovered that our ability to learn is determined by our beliefs concerning the
question: is ability innate, or can it be learned? We can observe, based on peo-
ple’s behavior, where they fall on a continuum between two extremes:23

In a fixed mindset, students believe their basic abilities, their intelli-
gence, their talents are just fixed traits. They have a certain amount
and that’s that, and then their goal becomes to look smart all the time
and never look dumb. In a growth mindset, students understand that
their talents and abilities can be developed through effort, good teach-
ing, and persistence. They don’t necessarily think everyone’s the same
or anyone can be Einstein, but they believe everyone can get smarter if
they work at it.

Dweck showed through a series of experiments that our mindset determines
how we decide our goals, how we react to failure, what are our beliefs about
effort and strategies, and what is our attitude towards the success of others
(Figure 11-3). Our mindset is particularly important in terms of our attitude to
failure. People with a fixed mindset fear failure as they believe it makes their
innate limitations visible to others, whereas those with a growth mindset are

LEAN ENTERPRISE220

http://bit.ly/1v72nmV

24 http://gladwell.com/the-talent-myth is an article well worth reading in its entirety. Dweck’s
research also has important implications for how we bring up our children, particularly girls
who are often praised for being “good” or “pretty,” creating a fixed mindset. This is just one
way in which implicit biases reinforce each other. See http://bit.ly/1zkRLOK.

less risk averse by seeing failure as an opportunity to learn and develop new
skills.

Figure 11-3. Dweck’s two mindsets, courtesy of Nigel Holmes

The good news is that we can change our beliefs, as shown by one of Dweck’s
most interesting experiments.24 Dweck’s work shows that if we reward people
for the effort they put into solving problems that they find challenging, it shifts
them towards a growth mindset. If, in contrast, we praise and reward people
for their ability to deploy their existing skills, we create a fixed mindset. This
has important implications both for people managers and for HR departments,
particularly in the context of performance reviews.

221CHAPTER 11: GROW AN INNOVATION CULTURE

http://gladwell.com/the-talent-myth
http://bit.ly/1zkRLOK

25 http://bit.ly/1v72nmV

You can be sure that the behavior and attitudes of the people in your organiza-
tion—your organization’s culture—affect the mindsets of the individuals
within it, and thus their ability to learn. Thus, organizational culture deter-
mines not just the productivity and the performance of the people working in
it, but also their ability to gain new skills, their attitude to failure and new
challenges, and their goals. Setting people stretch goals that require them to
learn new skills, while providing them with support, training, and slack time to
reduce learning anxiety, and creating a culture in which collaboration is rewar-
ded and failure leads to reflection and improvement rather than blame—all this
works to instill a growth mindset in employees and must be a key goal of
organizational change.

Dweck’s work tells us there are indeed “A-players” and “B-players.” A-players
are simply people with a growth mindset who, upon joining a team, will try to
discover how to make the team successful, working to acquire the necessary
skills in the process. In contrast, people with a fixed mindset—the true
B-players—are the biggest barrier to organizational change and continuous
improvement. These are the kind of people who resist experimentation saying
that others’ approaches “can’t work here.” They are also likely to hire people
they perceive as worse than them so as to avoid challenges to their status and
identity. While such people are capable of changing their mindset, they can
also poison attempts to change culture, holding back high-performing teams.
To reduce learning anxiety during change efforts, it must be widely publicized
that support and resources will be available to help people acquire new skills,
that no one will lose their job if they are willing to learn, and that those wish-
ing to leave will receive a generous severance package.

Ultimately, the most important responsibility of an organization’s leaders is for
its culture, demonstrated by the way they treat others. For example, Dweck
argues that while Steve Jobs possessed a growth mindset when it came to his
own abilities, he had a fixed mindset attitude towards others: “He wanted
them to be perfect and they lived in fear of coming to him and getting his dis-
approval, instead of his approval.”25

How Google Recruits
Dweck’s work demands that we rethink recruiting. We should not hire people solely on
the basis of the skills they already possess. This is particularly short-sighted in the soft-
ware industry where technology, and thus the needed skills, change so rapidly. Neither
should we be using brainteasers or test scores, which Laszlo Bock, senior vice president
of people operations at Google, describes as “worthless as a criteria for hiring…They

LEAN ENTERPRISE222

http://bit.ly/1v72nmV

26 http://nyti.ms/1v72xuz

27 Quotations are from http://nyti.ms/1v72sHl.

28 http://bit.ly/1v72zTg

don’t predict anything.”26 Google has done a great deal of research into what makes for
an effective recruiting process in the context of technology. The top three criteria are:27

• Learning ability, including the ability to “process on the fly” and “pull together dis-
parate bits of information.”

• Leadership, “in particular emergent leadership as opposed to traditional leader-
ship. Traditional leadership is, were you president of the chess club? Were you vice
president of sales? How quickly did you get there? We don’t care. What we care
about is, when faced with a problem and you’re a member of a team, do you, at
the appropriate time, step in and lead. And just as critically, do you step back and
stop leading, do you let someone else? Because what’s critical to be an effective
leader in this environment is you have to be willing to relinquish power.”

• Mindset. “Successful bright people rarely experience failure, and so they don’t
learn how to learn from that failure…They, instead, commit the fundamental attri-
bution error, which is if something good happens, it’s because I’m a genius. If
something bad happens, it’s because someone’s an idiot or I didn’t get the resour-
ces or the market moved.”

Bock goes on to observe that the most successful people at Google “will have a fierce
position. They’ll argue like hell. They’ll be zealots about their point of view. But then
you say, here’s a new fact, and they’ll go, Oh, well, that changes things; you’re right.” This
reflects the advice of Paul Saffo, Director of the Palo Alto Institute for the Future, who
says that “to deal with an uncertain future and still move forward,” people should have
“strong opinions, which are weakly held.”28

Google’s recruiting strategy is liberating because it enormously expands the pool of
qualified applicants. Instead of looking for “purple squirrels” with precisely the skills
and experience required for a job, we should look for people who can rapidly acquire
the necessary skills and then invest in an environment that enables them to do so.

Growing Talent
The “talent shortage” problem is solved by creating an environment in which
people can learn on the job, and hiring people with a growth mindset. Invest-
ing in employee development is one of the few opportunities enterprises have
to create a competitive advantage over startups (the others being research and
development, and the pursuit of optionality in Horizon 3, as described in
Chapter 2). There are many ways in which enterprises can invest in people:

223CHAPTER 11: GROW AN INNOVATION CULTURE

http://nyti.ms/1v72xuz
http://nyti.ms/1v72sHl
http://bit.ly/1v72zTg

29 http://solutions.3m.com/innovation/en_US/stories/time-to-think

Help employees create and update personal development plans
To help employees take control of their own development and ensure that
managers know how to help them, it’s essential that they, their managers,
and people that give them feedback understand their career goals. Creating
and regularly updating a simple personal development plan is the founda-
tion of employee development.

Separate performance reviews from compensation reviews
The goal of performance reviews is to provide an opportunity for employ-
ees to get feedback on their progress towards their personal development
goals, update their goals, and discuss them with their line manager. Cou-
pling performance reviews with compensation reviews, and particularly
the practice of “stack-ranking” employees, is based on outmoded ideas of
extrinsic motivation which encourage employees to compete rather than
cooperate with each other, and reduce employee engagement.

Facilitate regular feedback
Employees should share informal feedback on a regular basis to help each
other move towards their personal goals. Good feedback is timely,
designed for the benefit of the receiver, and given with permission. In a for-
mal process (such as during a performance review, official reprimand, or
exit interview), nobody should hear feedback that they have not already
received informally.

Give employees access to training funds
Employees learn through different channels and should have easy access to
funds that enable them to buy books, attend conferences and training, or
engage in other activities that help them move towards their personal
development goals. The conditions for spending should be as liberal as
possible, within the limitations of applicable tax regulations.

Give employees time to pursue their own goals
Many innovative organizations reserve time for people to work on what-
ever they want. 3M has allowed employees to spend 15% of their time on
their own projects since 1948. The Post-It Note is just one of the
innovations created as a result of this initiative.29 In 2004 Founders’ IPO
Letter, Google’s Sergey Brin and Larry Page write, “We encourage our
employees, in addition to their regular projects, to spend 20% of their time
working on what they think will most benefit Google. This empowers
them to be more creative and innovative. Many of our significant advances
have happened in this manner. For example, AdSense for content and Goo-
gle News were both prototyped in ‘20% time.’ Most risky projects fizzle,

LEAN ENTERPRISE224

http://solutions.3m.com/innovation/en_US/stories/time-to-think

30 http://investor.google.com/corporate/2004/ipo-founders-letter.html

31 [bodek], p. 29.

32 See [ceci] for the most recent of a number of studies cited in [moss-racusin].

33 [moss-racusin]

often teaching us something. Others succeed and become attractive
businesses."30

Norman Bodek tells a story about Taiichi Ohno closing down a warehouse at a
Toyota subsidiary: “Get rid of this warehouse and in one year I will come back
and look! I want to see this warehouse made into a machine shop and I want
to see everyone trained as machinists.”31 Bodek reports that Ohno’s orders
were carried out, and within one year the warehouse had been replaced with a
machine shop and the workers retrained. In line with the standard post-World
War II Japanese corporate policy of providing people with jobs for life, Toyota
expects to retrain people to do different types of work throughout their
careers. Employees at Toyota understand that part of their job is to learn new
skills. Toyota provides the necessary training and support for this, removing a
great deal of the learning anxiety that is the most serious barrier to creating a
learning organization and organizational change. Most importantly, when peo-
ple are treated with respect and are given opportunities to pursue autonomy,
mastery, and purpose, they become highly motivated to deliver value.
Employee job satisfaction is the best predictor of organizational performance.

Eliminate Hidden Bias
Another major contributor to the “talent shortage” in technology is the large
number of qualified people who decide not to enter the field or quit prema-
turely. Look at your technology teams and notice that women, in particular,
are strongly underrepresented, as are non-white people in the US and the EU.
Given that “biological sex differences in inherent aptitude for math and science
are small or nonexistent,”32 and the same holds true for differences between
races, what is the cause of this underrepresentation?

A number of studies done on recruitment processes aiming to hire on merit
universally show that our implicit gender bias plays a strong role in rejecting
suitably qualified women. In a study performed in 2012, researchers took 127
biology, chemistry, and physics professors from across the USA and gave them
job application materials for an undergraduate science student applying for a
job as a science laboratory manager. The materials were all identical, but were
randomly assigned either a male or female name. Participants were asked to
rate the student’s “competence and hire-ability, as well as the amount of salary
and the amount of mentoring they would offer the student.”33 The results are

225CHAPTER 11: GROW AN INNOVATION CULTURE

http://investor.google.com/corporate/2004/ipo-founders-letter.html

34 See, for example, [bertrand] and http://www.eurofound.europa.eu/ewco/2008/02/
FR0802019I.htm which references [cediey] on implicit race bias and http://bit.ly/1v72MG7
which references [goldin] on the effect of blind auditions in increasing the number of women in
orchestras.

35 University of California, Berkeley, recently redesigned its introductory computer science course,
leading to the enrollment of 106 women and 104 men: http://bit.ly/1v72O0L.

36 In general, highly compensated professions tend to be male dominated.

37 [klein], pp. 7–8.

reproduced in Figure 11-4. Perhaps most interestingly, both male and female
professors demonstrated the same bias, showing that it is not intentional or
explicit but rather “shaped by implicit or unintended biases, stemming from
repeated exposure to pervasive cultural stereotypes that portray women as less
competent.” Other studies have shown the same effects in different domains, as
well as a similar effect with regard to race.34

Figure 11-4. The effects of implicit gender bias on hiring

These implicit biases aren’t limited to recruitment or gender. Implicit bias and
unequal access to resources act at every stage of our educational35 and profes-
sional lives, resulting in white male domination in science, technology, engi-
neering, and mathematics (STEM) fields.36 A representative survey of 19,000
people carried out in the USA by the Level Playing Field Institute between
2001 and 2006 found that the annual cost to US businesses attributable to vol-
untary turnover of managers and professionals due solely to unfairness was
$64 billion. Respondents cited the following behaviors: rudeness, having
coworkers at a similar or higher level who are less educated or less experi-
enced, others taking credit for your work, being given assignments that are
usually considered below your job level, feeling excluded from the team, and
being stereotyped.37

LEAN ENTERPRISE226

http://www.eurofound.europa.eu/ewco/2008/02/FR0802019I.htm
http://www.eurofound.europa.eu/ewco/2008/02/FR0802019I.htm
http://bit.ly/1v72MG7
http://bit.ly/1v72O0L

38 An excellent summary of why women leave the tech industry and what to do about it can be
found at http://bit.ly/1toep4k.

39 http://www.slideshare.net/reed2001/culture-1798664

40 http://bit.ly/1v72Rtt

What can we do about this? Here is a selection of strategies that have proven
useful.38 For further reading, consult Freada Kapor Klein’s Giving Notice: Why
the Best and Brightest are Leaving the Workplace and How You Can Help
them Stay:

Ensure equitable pay
It’s impossible to make exact comparisons between individuals, so instead
examine salaries by role. Compare the average salary for white men within
a particular role (such as UX analyst or senior engineer) with the average
salary of people from underrepresented groups. Correct any discrepancies
you find. Netflix’ annual compensation review process follows a simple
rule: every employee’s salary is adjusted to “top of market” by ensuring
they are paid “more than [any other company] likely would; as much as a
replacement would cost; as much as we would pay to keep them if they
had a higher offer for elsewhere.”39 If implemented comprehensively, this
practice has the effect of redressing pay inequality for historically disad-
vantaged groups.

Create target conditions for recruitment and promotion
The Improvement Kata can and should be used as part of efforts to
increase diversity. Target conditions for hiring and promotion of underre-
presented groups are one example of an appropriate use of this tool. One
large enterprise wanted to improve the number of women in senior man-
agement positions. To avoid accusations of positive discrimination, they
didn’t create a quota for the positions, but they did impose a target condi-
tion for the proportion of women on the list of candidates (for example,
“50% of the candidates for the post must be women”).40 A similar
approach can be used for recruiting and team mix.

Monitor tenure, rate of advancement, and job satisfaction
Gather data on the average tenure of white men compared to people from
underrepresented groups. Look to see how long it takes different groups to
receive promotions. Find out what proportion of each underrepresented
group has at least one other person reporting to them. Analyze your job
satisfaction survey to reveal differences between demographics. Higher
employee churn from underrepresented groups, longer time to promotion,
and lower job satisfaction are clear indicators of (at best) an implicit bias
within your organization.

227CHAPTER 11: GROW AN INNOVATION CULTURE

http://bit.ly/1toep4k
http://www.slideshare.net/reed2001/culture-1798664
http://bit.ly/1v72Rtt

41 See http://bit.ly/1v72Q8Rs and http://bit.ly/1v72WNz.

42 [kotter], p. 51.

Regularly review policies, interactions, and HR processes
Implicit bias doesn’t just play a role in recruiting—it pervades the corpo-
rate environment. To take just one example, women are much more likely
to receive critical feedback in performance reviews (the word “abrasive” is
almost exclusively used in feedback to women). Similar patterns are appa-
rent in feedback to other underrepresented groups.41 It’s essential to create
clear policies, have leaders publicly and regularly set expectations for
acceptable behavior, and ensure they model appropriate behavior and are
seen to take action in the event of inappropriate behavior. Hire an external
expert to review interactions, policies, and HR processes, make recommen-
dations, and return regularly to monitor implementation and review
progress.

Conclusion
In a high-performance organization, employees enjoy and take pride in their
daily work, and leaders and managers are dedicated to supporting employees
in their pursuit of the organization’s purpose. No organization does this per-
fectly, and those that do best are constantly working to get better.

To create this kind of environment, we must address the behavior of everyone
in the organization, starting with executives. As John Kotter observes, “a
majority of employees, perhaps 75 percent of management overall, and virtu-
ally all of the top executives, need to believe that considerable change is abso-
lutely essential.”42 The essence of a lean mindset is understanding that this
should be the case not just in a crisis but all the time. Change, improvement,
and development are habitual in a truly lean organization.

Changing culture is achieved by the deliberate, repeated, mindful practice of
everyone in the organization. Leaders and managers must facilitate this by
investing in employees’ development and creating conditions to support people
working together to continuously improve processes, knowledge, and the value
delivered to customers. Finally, it’s essential that leaders model the behaviors
they expect the rest of the organization to adopt. Leaders whose actions
contradict their words—particularly when their status is threatened or in times
of stress—will lose the trust of their people.

Questions for readers:

• Does your organization send out an anonymous survey (at least annually)
to measure job satisfaction and other indicators of culture? Are aggregated

LEAN ENTERPRISE228

http://bit.ly/1v72Q8Rs
http://bit.ly/1v72WNz

results published to estimate progress towards targets for job satisfaction,
diversity, and real cultural change? Are the results discussed and acted
upon?

• What happens when something goes wrong? Is there a systematic process
to learn from accidents in order to improve the systems, or do managers
focus on assigning blame?

• What does your organization do to invest in the long-term growth of
employees?

• Does you company see culture change as continuous or event based? What
practices could you start to move to a continuous model?

• Does your organization hire those with particular skills and experience, or
people with the capability and attitude to learn the relevant skills to help
their team succeed?

• Has your organization invested in reducing and eliminating the effects of
systematic implicit biases? How are you measuring your progress?

229CHAPTER 11: GROW AN INNOVATION CULTURE

C H A P T E R 1 2

Embrace Lean Thinking for
Governance, Risk, and Compliance

All things are subject to interpretation. Whichever interpretation pre-
vails at a given time is a function of power and not truth.

Friedrich Nietzsche

Trust is not simply a matter of truthfulness, or even constancy. It is
also a matter of amity and goodwill. We trust those who have our best
interest at heart, and mistrust those who seem deaf to our concerns.

Gary Hammel

We often hear that Lean Startup principles and the techniques and practices we
suggest in this book would never work in large enterprises because of gover-
nance. “This won’t meet regulatory requirements.” “That doesn’t fit in our
change management process.” “Our team can’t have access to servers or pro-
duction.” These are just a few examples of the many reasons people have given
for dismissing the possibility of changing the way they work.

When we hear these objections, we recognize that people aren’t really talking
about governance; they are referring to processes that have been put in place to
manage risk and compliance and conflating them with governance. Like any
other processes within an organization, those established for managing

231

1 Typical GRC processes include access control, solution delivery (project management), change
management, and related activities to reduce risks with the use of IT.

governance, risk, and compliance (GRC)1 must be targets for continuous
improvement to ensure they contribute to overall value.

There are many large enterprise organizations that have been able to apply
lean engineering practices and develop a culture of experimentation as we have
described earlier. They are subject to the same level of regulatory compliance
and review as others. So we know it can be done.

In this chapter, we aim to guide you through the maze that is GRC, particu-
larly as it relates to managing the concepts and practices required to be a lean
enterprise. This area is sometimes poorly understood by those who have not
made GRC their career focus, so we present some background to help you
reach a common understanding with GRC teams. With that, it should be easier
to discuss how GRC processes and controls can be improved to allow product
teams to continuously explore and improve their work. We provide some
examples of how lean concepts and principles can be applied to improve GRC
processes, resulting in better governance and reduced overall risk, while still
meeting compliance.

Throughout this chapter, we refer to “GRC teams.” For clarity, our discussion
and examples focus on teams that strongly influence how technology can be
used within organizations; the more common ones are the PMO, technical
architecture, information security, risk and compliance, and internal audit
teams.

Understanding Governance, Risk, and Compliance
In the introduction to Part I, we stated that the primary responsibility of lead-
ers is to steer the larger organization towards its goals, adjusting course as nec-
essary. This is governance. Unfortunately, within organizations the term gover-
nance is often misused and conflated with management theories, models, and
processes designed to meet the needs of a bygone era.

Governance is about keeping our organization on course. It is the primary
responsibility of the board of directors, but it applies to all people and other
entities working for the organization. It requires the following concepts and
principles to be applied at all levels:

Responsibility
Each individual is responsible for the activities, tasks, and decisions they
make in their day-to-day work and for how those decisions affect the over-
all ability to deliver value to stakeholders.

LEAN ENTERPRISE232

Authority or accountability
There is an understanding of who has the power and responsibility to
influence behaviors within the organization and of how it works.

Visibility
Everyone at all times can view the outcomes achieved by the organization
and its components, based on current and real data. This, in turn, can be
mapped to the organization’s strategic goals and objectives.

Empowerment
The authority to act to improve the delivery of value to stakeholders is
granted at the right level—to the people who will deal with the results of
the decision.

Risk is the exposure we run for the possibility of something unpleasant occur-
ring. We all manage risks daily, at work, home, and play. As it is impossible to
eliminate every risk, the question to be answered in managing risk is, “Which
risks are you willing to live with?” As you take steps to mitigate risk in one
area, you inevitably introduce more risk in another area. A classic example of
this is restricting development team access to hardware and forcing them to
rely on a separate centralized infrastructure team to set up access and environ-
ments for testing or experiments. This may be effective for the server support
team’s goal of reducing the risk of instability within systems, but it increases
the risk of delayed delivery as teams have to submit requests to other teams
and wait for them to be fulfilled.

Compliance is obedience to laws, industry regulations, legally binding con-
tracts, and even cultural norms. The intention of mandated compliance is
usually to protect the interest of stakeholders with regard to privacy of infor-
mation, physical safety, and financial investments. When bound by law, regula-
tion, or contract, compliance is not optional. If we choose not to comply, we
increase our risk of fines, operational shutdowns, or damage to our reputation.
In extreme cases, jail terms can be the outcome of knowingly and systemati-
cally misrepresenting an organization’s compliance.

233CHAPTER 12: EMBRACE LEAN THINKING FOR GOVERNANCE, RISK, AND COMPLIANCE

2 As set out in [COBIT5], COBIT formally stands for Control Objectives for Information and
Related Technology. It strives to provide an end-to-end business view of the governance of enter-
prise IT. Auditors as well as risk and compliance teams use the framework and related tools to
create and assess governance over the use of technology in delivering value. For more informa-
tion, see http://www.isaca.org/cobit/pages.

Management Is Not Governance
COBIT 52 clearly explains the difference between governance and management.

Governance ensures that stakeholder needs, conditions, and options are evaluated to
determine balanced agreed-on enterprise objectives to be achieved; sets direction
through prioritization and decision making; and monitors performance and compli-
ance against agreed-on direction and objectives.

Management plans, builds, runs, and monitors activities in alignment with the direc-
tion set by the governance body to achieve the enterprise objectives.

For example, governance involves creating the vision and goals for implement-
ing technology changes at a rate that will allow the business to succeed. It
defines what should be measured to determine if we are headed in the right
direction to achieve our goals. Management determines how the organization
will achieve that vision. In the case of technology changes, that includes struc-
turing of the delivery teams, their boundaries, and what level of decision they
are empowered to exercise. Will it be a single, one-size-fits-all, top-down
driven process, or will teams be granted autonomy and empowered to make
decisions without having to wait for high-level approvals? Good GRC manage-
ment maintains a balance between implementing enough control to prevent
bad things from happening and allowing creativity and experimentation to
continuously improve the value delivered to stakeholders.

Take an Evolutionary Approach to Risk Management
A struggle we often experience when implementing GRC structures and pro-
cesses for compliance is thinking of them as something carved in stone, rather
than something that should be changed, modified, and improved. To enable
good governance, changes to GRC processes must happen over time in
response to the changing needs of the organization and the market environ-
ment within which it exists.

When done well, GRC management processes improve value delivery through
effective risk management. The intent is to improve communication, visibility,
and understanding of who is doing what, when, how, and why, as well as the
outcomes of the work that is done. This is strongly aligned with what product

LEAN ENTERPRISE234

http://www.isaca.org/cobit/pages

3 ITIL (Information Technology Infrastructure Library, see http://www.itil-officialsite.com) is a
framework, evolving over 20 years, providing recommended sets of practices for managing IT
based on experience from both public and private sectors. It is largely used by IT management
and practitioners.

delivery teams are trying to achieve. The question then becomes: why are GRC
processes viewed as blockers when looking for ways to improve our productiv-
ity and the value we deliver to customers and our organization?

Unfortunately, many GRC management processes within enterprises are
designed and implemented within a command-and-control paradigm. They are
highly centralized and are viewed as the purview of specialized GRC teams,
who are not held accountable for the outcomes of the processes they mandate.
The processes and controls these teams decree are often derived from popular
frameworks without regard to the context in which they will be applied and
without considering their impact on the entire value stream of the work they
affect. They often fail to keep pace with technology changes and capabilities
that would allow the desired outcomes to be achieved by more lightweight and
responsive means. This forces delivery teams to complete activities adding no
overall value, create bottlenecks, and increase the overall risk of failure to
deliver in a timely manner.

Apply Lean Principles to GRC Processes
As with everything else we address in this book, the journey to apply lean prin-
ciples to GRC processes—and the ensuing results—will look different in every
organization, depending on the nature of our business and where we operate.
There is no cookbook recipe that fits all circumstances (as reputable frame-
works like ITIL3 and COBIT explain). However, lean principles and concepts
can be applied to any GRC management process: visualizing the value stream,
increasing feedback, amplifying learning, empowering teams, reducing waste
and delays, limiting work in process, making small incremental changes, and
continuously improving to achieve better outcomes.

A natural tension exists between GRC teams—charged with recommending
and advising on how to reduce risks and meet compliance for applicable laws
and regulations—and the rest of the organization who just want to get work
done, the sooner the better. Tension can be good, though. It sparks creativity,
but that creativity is only good if all parties involved know and strive to meet
common objectives and are ultimately measured by the same standard. When
tension is bad, the result is less collaboration, visibility, and compliance as indi-
viduals and teams develop secret ways to circumvent GRC processes. This
leads to decisions based on inadequate or inaccurate information, which weak-
ens overall governance.

235CHAPTER 12: EMBRACE LEAN THINKING FOR GOVERNANCE, RISK, AND COMPLIANCE

http://www.itil-officialsite.com

4 Jesse Robbins, http://www.infoq/presentations/Hacking-Culture

The GRC teams’ goals and objectives usually result in more work for all teams.
Some of this is good. Upfront attention to risks, threats, and controls can save
a lot of pain during the final steps towards production. Being able to prove we
have adequate control measures in place is important during audits and helps
keep us in compliance. The challenge is to find the correct balance of control
that allows teams to move forward quickly and keeps risks related to compli-
ance down to an acceptable level.

Define the Value of GRC Processes from the Customer Perspective
To get value out of GRC processes such as access control, technical change
management, and solution delivery lifecycle, we must always start with a
shared understanding of our organization’s goals, values, and the intended out-
comes of the process. We need a common view of how our daily work contrib-
utes to these at the organizational level, no matter with which team we asso-
ciate ourselves. This means our GRC teams need to take responsibility for the
outcomes (good and bad) of compliance and risk management activities and
their impact on the ability of teams to deliver in a timely manner. As well,
product delivery teams need to understand the language, intent, and purpose
of the processes and controls established for compliance and governance. Only
then will these teams, who are usually viewed as working at cross-purposes, be
able to “stop fighting stupid and make more awesome.”4

Thus, GRC teams must view themselves as members of the product delivery
team, learn about the capabilities of the technology and techniques used in
lean engineering, and help teams leverage them to provide evidence of being in
compliance without creating waste and bottlenecks. At the same time, the
entire delivery team needs to start paying attention to the language and frame-
works used by GRC teams to understand what exactly it is that the GRC teams
are trying to achieve.

We have seen a lot of waste and destructive tension between GRC and delivery
teams because many GRC processes and management practices are disconnec-
ted from how teams work. Typically, GRC teams focus on performing and
measuring compliance (for example, by asking, “Did everyone follow the
activity as described in our framework?”), not on improving the outcomes
(“Are we doing what will allow us to meet compliance and continue to deliver
value in a timely fashion?”).

LEAN ENTERPRISE236

http://www.infoq/presentations/Hacking-Culture

5 [hubbard], p. 188.

TIP

Avoid the “Wouldn’t It Be Horrible If” Approach to Risk Management
In How to Measure Anything, Douglas Hubbard reports Peter Tippet of Cybertrust
discussing “what he finds to be a predominant mode of thinking about [IT secu-
rity]. He calls it the ‘wouldn’t it be horrible if…’ approach. In this framework, IT
security specialists imagine a particularly catastrophic event occurring. Regardless
of its likelihood, it must be avoided at all costs. Tippet observes: ‘since every area
has a “wouldn’t it be horrible if…” all things need to be done. There is no sense of
prioritization.’”5

When prioritizing work across our portfolio, there must be no free pass for work
mitigating “bad things” to jump to the front of the line. Instead, quantify risks by
considering their impacts and probabilities using impact mapping (see Chap-
ter 9), and then use Cost of Delay (see Chapter 7) to balance the mitigation work
against other priorities. In this way we can manage security and compliance risks
using an economic framework instead of fear, uncertainty, and doubt.

GRC teams are measured by “Are we compliant?”; product teams are meas-
ured by “How fast can we deliver value through use of technology?” Both of
these are wrong because they measure a team’s performance from an isolated
functional perspective and not as the net value for the organization. It is easy
to be compliant with laws when GRC teams are allowed to mandate processes
and force all boxes to be ticked. However, when team performance measures
are not aligned at the organizational level, we can be compliant and still make
remarkably bad decisions about delivering value to stakeholders. This is truly
ironic, as most related laws and regulations have been established with the
intent to protect and improve value to stakeholders.

Rules-based Approaches Lead to Risk Management Theater
When GRC teams do not take a principles-based approach and instead prescribe the
rules that teams must blindly follow, the familiar result is risk management theater: an
expensive performance that is designed to give the appearance of managing risk but
actually increases the chances of unintended negative consequences.

At one large European enterprise we worked at, the change approval process involved
developers filling in a spreadsheet with seven tabs, which was emailed to a change
manager in another country who then decided whether or not to approve it. The
change could not proceed without this approval, and if the form was not filled out
completely it got sent back. The change manager did not really understand the con-
tents of the spreadsheet; before approving, he relied on conversations with the devel-
opers to determine what were the risks and whether the planned mitigation activities
were appropriate. The developers knew this and did the minimum possible amount of

237CHAPTER 12: EMBRACE LEAN THINKING FOR GOVERNANCE, RISK, AND COMPLIANCE

6 Segregation of duties is a concept that seeks to prevent errors and malicious activities by an
individual by requiring at least two people to complete any end-to-end transaction. Another way
to approach it is to ensure no one person can complete a transaction without it being detected or
controlled by at least one other person.

work to fill in the spreadsheet, often just changing the date and title on a previous sub-
mission and sending it back as a new request. The change manager knew the develop-
ers were doing this, but it made no difference to him so long as the documented pro-
cess was followed to the letter. It added zero value in terms of risk management, while
making it unnecessarily painful for the team to get their changes live. However, compli-
ance was being met through the “evidence” documented on the change request. The
real value was realized in the conversations and completing mitigation activities before
the change proceeded.

When product teams push back on risk management theater, a common response is
that it is required by some popular framework such as ITIL or COBIT, or by a law or regu-
lation such as Sarbanes-Oxley. However, with a few exceptions, neither frameworks nor
laws prescribe particular processes. For example, many people think that segregation
of duties6 is required by Sarbanes-Oxley section 404, so organizations set up elaborate
controls over access to IT systems and environments to meet their interpretation of
what this means. In fact, nowhere in the act—nor in the SEC rules that were created
through the act—is segregation of duties mentioned.

If you find that you are expected to follow a process that compromises your ability to
do a good job, it’s worth actually reaching out to the people who created the process
to discuss its intent. Return to the Principle of Mission discussed in Chapter 1 and use it
as an opportunity to collaborate, build relationships, and develop a shared under-
standing. You may be surprised to discover that you are able to have a productive con-
versation about how to meet their goals in a different way, or indeed to see if your
work is even in scope for the law or regulation in question. If you are told that a partic-
ular process is “required” by some regulation, politely ask where you can find more
information about that requirement. In many cases, onerous rules and GRC processes
that are put in place are simply somebody’s interpretation of what is required, not man-
dated by the regulation in question.

Map the Value Stream, Create Flow, and Establish a Pull
System
With a shared understanding of GRC processes and product delivery team
goals and methods, the collaboration to achieve organization-level goals can
really begin. As discussed in Chapter 7, value stream mapping is a powerful
tool that can be used to provide us with a view of the current state and identify
areas for improvement. In the context of GRC processes, it is important to
layer these on top of the delivery team activities and understand how they
influence the ability of the team to get their work done.

LEAN ENTERPRISE238

Most GRC processes are designed in isolation to apply controls such as
required approvals, limited access, segregation of duties, monitoring, and
review of activity. These are meant to provide visibility and transparency into
who does what, when, and with what authority. More importantly, the frame-
works commonly used by GRC teams to create the processes emphasize
improving overall efficiency and effectiveness for the organization. Unfortu-
nately, many of the processes and controls do the exact opposite when consid-
ered in the larger end-to-end value chain.

The Wrong Control Interrupts Flow
Controls can be preventive in nature by the application of a barrier. Alterna-
tively, they can be detective—monitoring and reviewing events after they occur,
and eliciting an appropriate response to the discovery of potential exceptions
such as errors, omissions, or malicious actions.

Many of us make the mistake of thinking that preventive controls are more
effective: if we can create barriers or take away people’s ability to do things, it
won’t happen. The reality is, people need to get things done. If you try to stop
them, many will get creative and figure out ways to work around whatever
barriers have been put in place. The reactive response is then to lock every-
thing down even more, which emboldens further creative underground solu-
tions to get the work done, fomenting a subversive culture of risky behavior. A
good example is teams who will share an elevated user ID and password to
access different environments. It would be far better to give each team member
access under their own IDs and then monitor their use of those privileges.

An even more tragic outcome of too many preventive controls is when teams
just stop caring and assume an automaton mode of operation, abandoning all
efforts to make things better.

Preventive controls, when executed on the wrong level, often lead to unneces-
sarily high costs, forcing teams to:

• Wait for another team to complete menial tasks that can be easily automa-
ted and run when needed

• Obtain approvals from busy people who do not have a good understand-
ing of the risks involved in the decision and thus become bottlenecks

• Create large volumes of documentation of questionable accuracy which
becomes obsolete shortly after it is finished

• Push large batches of work to teams and special committees for approval
and processing and then wait for responses

If preventive controls are not executed properly and consistently, they are no
longer effective. They must be continuously monitored to ensure they have

239CHAPTER 12: EMBRACE LEAN THINKING FOR GOVERNANCE, RISK, AND COMPLIANCE

7 This saying, popularized by Ronald Reagan, is originally a Russian proverb.

been applied correctly and are still relevant. Without monitoring and resulting
corrective actions, preventive controls are less effective than well-executed
detective controls such as ongoing monitoring, early and frequent testing and
review, and highly visible measurement of outcomes.

Although relying on preventive controls may contribute to a false sense of
security, they are extremely valuable when applied at the right level, and are
the best solution in certain circumstances. However, they should never be
applied unilaterally but only in conjunction with other controls and to the cor-
rect level of granularity, and we must always consider their effect on the ability
of teams to get their work done.

Therefore, when we perform value mapping of governance processes on top of
delivery team processes, we need to look carefully at all of the controls and ask
two questions:

• Is the intent of the control being met?

• Is it truly contributing to overall effectiveness and efficiency of the
organization?

We need to look carefully at the level of authority granted to our teams. The
goal is to bring the approval decisions to the right level and give teams as
much authority as possible to enable them to keep moving. This involves defin-
ing boundaries and making sure the team knows how and when to escalate
decisions that fall outside their authority. We also need to make sure documen-
tation is kept to a sane level and, when done, make sure it is accessible, easy to
understand, and updated as required, preferably automatically.

“Trust, but verify”7 is a concept that is gaining acceptance in GRC circles.
Instead of preventing teams from accessing environments and hardware so
they can’t do anything bad, we trust people to do the right thing and give the
team access and control on the systems and hardware they need to use daily.
We then verify the team is not abusing their authority by developing good
monitoring and frequent review processes to ensure the established boundaries
are observed and there is complete visibility and transparency built into the
team’s work.

LEAN ENTERPRISE240

Reducing Feedback Loops on Compliance Activities
Meeting compliance for Information Security has been a thorn in the side of many
delivery teams. In the spirit of the big bang project delivery methodology, the security
team is brought in at the latest possible moment—days before we go live—to run a
final code review for security vulnerabilities and required compliance.

The Information Security community now realizes this approach doesn’t work. On most
products, there is just too much complexity and volume to complete a meaningful
review. When vulnerabilities or other breaches in compliance are discovered this way, it
is generally too late to do much about it. It becomes more risky to fix the vulnerabilities
in a fragile system, or wait for the changes, than it is to allow the vulnerabilities to go to
production with a promise to fix them later.

To meet compliance and reduce security risks, many organizations now include infor-
mation security specialists as members of cross-functional product teams. Their role is
to help the team identify what are the possible security threats and what level of con-
trols will be required to reduce them to an acceptable level. They are consulted from
the beginning and are engaged in all aspects of product delivery:

• Contributing to design for privacy and security

• Developing automated security tests that can be included in the deployment
pipeline

• Pairing with developers and testers to help them understand how to prevent
adding common vulnerabilities to the code base

• Automating the process of testing security patches to systems

They also create their own environments for performing mandatory code reviews and
security testing so they don’t block the team from performing other work while this is
done.

As working members of the team, information security specialists help shorten feed-
back loops related to security, reduce overall security risks in the solution, improve col-
laboration and the knowledge of information security issues in other team members,
and themselves learn more about the context of the code and the delivery practices.
Everybody wins.

As we become better at creating flow for teams by changing governance pro-
cesses, GRC teams benefit as well. Using controls designed in collaboration
with GRC teams, product delivery teams are able to embed evidence of true
compliance into daily work and tools, and do away with risk management the-
ater. As we do with functional and performance quality, we build evidence of
compliance into our daily work so we don’t have to resort to large batch
inspections after most of the work has been done.

241CHAPTER 12: EMBRACE LEAN THINKING FOR GOVERNANCE, RISK, AND COMPLIANCE

The net effect for GRC teams is that they can now pull information related to
compliance from product delivery teams at any time without interrupting the
team’s overall workflow, unless something untoward or unaccountable seems
to be happening. Annual audits are less painful because the delivery teams
understand the intent of the controls the auditors are asking for and can give
evidence of meeting that intent through their processes.

By using an economic framework (such as Cost of Delay, discussed in Chap-
ter 7) we can quantify the economic trade-offs we make when we implement
controls to mitigate risk. This allows us to prioritize GRC work against the
other kinds of work we do—and thus pull additional work required for com-
pliance at the right time for the business.

Case Study: PCI-DSS Implementation at Etsy
Etsy is an online handmade and vintage marketplace with over $1bn in gross merchan-
dise sales in 2013. In Etsy’s high-trust culture, developers normally push their own
changes live—indeed, as part of onboarding new engineers, developers use the auto-
mated deployment system to update their profile on the live site within their first few
days. Engineers are also allowed to work on—and have access to—all parts of the
system.

However, since Etsy processes credit-card transactions, it is subject to PCI-DSS, an
industry standard that is quite prescriptive in how to manage systems that store or
transmit payment cardholder data (these systems are known as the cardholder data
environment, or CDE). For example, the CDE must be physically segregated, and there
must be segregation of duties for people who work on systems within the CDE.

Segregation of duties is usually interpreted to mean (among other things) that devel-
opers should not have access to the production database and should not be able to
push their own changes live. Both of these requirements conflict with the way Etsy typ-
ically operates. Here’s how they approached PCI-DSS compliance.

1. Minimize the fallout of the required compliance. Understand there is no one-
size-fits-all compliance solution, and architect systems to separate the concerns
related to different compliance demands.

Etsy’s mainstream engineering culture is optimized for speed of innovation. However,
credit card processing is an area where user data security is paramount. Etsy recognizes
that different parts of their system have different concerns and need to be treated
differently.

Etsy’s most important architectural decision was to decouple the CDE environment
from the rest of the system, limiting the scope of the PCI-DSS regulations to one segre-
gated area and preventing them from “leaking” through to all their production sys-
tems. The systems that form the CDE are separated (and managed differently) from the
rest of Etsy’s environments at the physical, network, source code, and logical infrastruc-
ture levels.

LEAN ENTERPRISE242

8 http://bit.ly/1v732EU

Furthermore, the CDE is built and operated by a cross-functional team that is solely
responsible for the CDE. Again, this limits the scope of the PCI-DSS regulations to just
this team.

2. Establish and limit the blast radius of frameworks and regulations.

Always start by asking, “What’s the smallest possible set of changes we can make to
our ideal architecture and culture while still achieving compliance with regulations we
are subject to?” Then take an incremental, iterative approach to implementing and vali-
dating those changes.

For example, while PCI-DSS mandates segregation of duties, that doesn’t prevent the
cross-functional CDE team from working together in a single space. When members of
the CDE team want to push a change, they create a ticket to be approved by the tech
lead; otherwise, the code commit and deployment process is fully automated as with
the main Etsy environment. There are no bottlenecks and delays, as the segregation of
duties is kept local: a change is approved by a different person than the one doing it.

3. Use compensating controls.

It’s essential to respect the outcomes the regulations are trying to achieve, while recog-
nizing there are many ways to achieve those outcomes. For example, PCI-DSS allows
organizations to implement “compensating controls”—a workaround designed to cre-
ate the same outcome—where there is a legitimate technical or business constraint
preventing implementation of a particular control.8

In the case of PCI-DSS, you should talk to your qualified security auditor (QSA) and
acquiring bank to discuss possible alternatives to controls that have an unacceptable
technical or business impact. For example, the deployment pipeline described in Chap-
ter 8 and used by Etsy provides a powerful set of compensating controls that can pro-
vide an alternative to segregation of duties in their other systems.

The advantage of using lean principles and continuous delivery in product
development is that it enables a fine-grained, adaptive approach to risk man-
agement. As we work in small batches and are able to trace each change to our
systems from check-in to deployment, we can quantify the risk of each change
and manage it appropriately.

The best way to achieve the objectives of good GRC is by embedding compli-
ance and risk management into the daily activities of product teams, including
systems and UX design and testing. As organizations move away from the
command and control paradigm and GRC teams adopt a collaborative
approach to risk management, we begin to value them as trusted advisors and
experts in their knowledge domain. For many GRC teams, this requires a
major shift in their roles, responsibilities, and behavior within an enterprise

243CHAPTER 12: EMBRACE LEAN THINKING FOR GOVERNANCE, RISK, AND COMPLIANCE

http://bit.ly/1v732EU

organization. This is the move from a policing role to that of a contributing
team member who is measured on the same outcomes as the product team, not
solely a compliance perspective.

Conclusion
Good governance requires everyone to focus on discovering ways to improve
value and provide accurate information on which to base our decisions. We
start with leadership and direction from the Board and Executives, and rely on
the ability of employees to embrace their responsibility to make good decisions
at work. A culture of openness, trust, and transparency is required for good
governance.

GRC structures and processes must be developed collaboratively by both GRC
teams and the product teams that work day to day to deliver value to custom-
ers. By identifying the intent of the laws and regulations we must comply with,
our GRC teams can collaborate with product teams to determine local
approaches that fit best with improving value delivery. We start by exploring,
with GRC teams, how we can minimize the negative effects of relying on
restrictive controls through creative use of system architecture, process
improvement, containment of scope, applying compensating controls, and lev-
eraging new technologies. We can then exploit our learning to continuously
improve our processes to provide both better governance and better outcomes
for all stakeholders.

Questions for readers:

• How do your product teams view your current GRC processes? To what
extent is your organization engaged in risk management theater?

• What actions do leaders take to develop a shared understanding of GRC
language and frameworks throughout the organization?

• Do your GRC structures (policies, organization, and processes) prevent
product teams from performing process improvement or require them to
seek approval for any process change? If so, how might you support teams
improving their processes while maintaining compliance?

• How might you enable GRC teams to collaborate with your product deliv-
ery teams as trusted team members throughout the value creation process?

LEAN ENTERPRISE244

C H A P T E R 1 3

Evolve Financial Management to Drive
Product Innovation

Adhering to budgeting rules shouldn’t trump good decision-making.
Emily Oster

Right now, your company has 21st-century Internet-enabled business
processes, mid-20th century management processes, all built atop
19th-century management principles.

Gary Hamel

Introduction
In many large enterprises, financial management processes (FMPs) are designed
around the project paradigm. This presents an obstacle to taking a product-
based approach to innovation. It is relatively easy for small teams to work and
collaborate amongst themselves. However, on an enterprise scale, we eventu-
ally reach a point where evolution is blocked by rigid, centralized FMPs that
drive the delivery and procurement processes that limit the options for inno-
vating at scale. We will address some of the problems created by these FMPs,
with particular emphasis on the budgeting process. We emphasize that to work
through the issues your organization experiences as a result of financial man-
agement processes, you will need the help of your finance team. Start building
good relationships with them and work collaboratively to improve outcomes
for customers and the business.

Recognition of the interdependence of all management processes, the detrimen-
tal behaviors they can enforce, and the barriers they present to continuous
improvement and innovation is essential to success at becoming lean. It is hard

245

1 [hope]

2 [bogsnes]

3 http://www.bbrt.org

to let go of the long-held belief that strong, centralized control provides valua-
ble efficiencies. However well it may have served us in an era of lower com-
plexity and slower technical advances, it now creates barriers that prevent us
from adapting quickly to emerging opportunities. In this context, the resources
and efforts required to gather information, communicate, and monitor rigid
centralized processes outweigh any efficiencies gained. As well, a strongly con-
trolled centralized budget process encourages competitive, rather than collabo-
rative, internal behavior. This is counter-productive to innovation, which
requires teamwork.

Many large multinational organizations have transformed themselves by drop-
ping the long-held belief that command and control is the best way to manage
their financial processes. As further reading on this topic, we recommend
Beyond Budgeting1 and Implementing Beyond Budgeting,2 as well as the
Beyond Budgeting Round Table website.3

Dancing to the Beat of the Financial Drum Slows
Innovation
Planning, budgeting, forecasting, and monitoring are essential for defining our
success, in particular our commitment to shareholders. Relatively new or
revised regulations and standards, such as Sarbanes-Oxley and International
Financial Reporting Standards, have intensified the perceived need to centralize
and control these processes. However, the intent of these regulations is to
improve transparency and visibility into financial reporting, as well as our abil-
ity to make better decisions. Centralized control and decision making through
annual budgets can easily create the opposite outcomes.

In this chapter, we consider the organizational financial management practices
within enterprises that are typically identified as deterrents to innovation:

• Basing business decisions on a centralized annual budget cycle, with excep-
tions considered only under extreme circumstances. This combines fore-
casting, planning, and monitoring into a single centralized process, per-
formed once a year, which results in suboptimal output from each of these
important activities.

• Using the capability to hit budget targets as a key indicators of perfor-
mance for individuals, teams, and the organization as a whole, which

LEAN ENTERPRISE246

http://www.bbrt.org

merely tells you how well people play the process but not the outcomes
they have achieved over the past year.

• Basing business decisions on the financial reporting structure of capital
versus operating expense. This limits the ability to innovate by starting
with a minimal viable product that grows gradually or can be discarded at
any time. The CapEx/OpEx model of reporting costs is largely based on
physical assets and is project based; it does not translate well to the use of
information to experiment, learn, and continually improve products over
time.

Combined, these practices force us to time key business decisions and annual
work plans for the optimization of the finance department and reporting
cycles, which in turn restricts when and how business innovation within the
organization occurs. They are out of step with our ability and need to continu-
ally deliver value to customers. Large, fully funded, bloated programs of work
that deliver questionable value grind on whilst new, unanticipated opportuni-
ties drift by because there is no funding available for exploring and testing our
hypotheses about them. Time that could be spent on innovation is instead
spent on managing and reporting on “the budget.”

Liberating Ourselves from the Annual Budget Cycle
Centralized budgeting processes are typically used to plan, forecast, monitor,
and report on the financial position and overall performance of an organiza-
tion. They drive everything from revenue target reporting to tax planning and
resource allocation. However, in the context of product development, the tra-
ditional annual budget cycle can easily:

• Reduce transparency into the actual costs of delivering value—costs are
allocated by functional cost centers or by which bucket the money comes
from, without an end-to-end product view.

• Remove decisions from the people doing the work—the upper manage-
ment establishes and mandates detailed targets.

• Direct costs away from value creation by enforcing exhaustive processes
for approving, tracking, and justifying costs.

• Measure performance by the ability to please the boss or produce output—
not by actual customer outcomes—by rewarding those who meet budget
targets, no matter what the overall and long-range cost may be.

However, many large enterprises have found alternatives to the traditional cen-
tralized budget process to achieve the goals of good financial management.
Figure 13-1 emphasizes the importance of separating out the goals of budget-
ing and suggests possible approaches.

247CHAPTER 13: EVOLVE FINANCIAL MANAGEMENT TO DRIVE PRODUCT INNOVATION

Figure 13-1. Approaches to achieving the goals of budgeting, courtesy of Bjarte Bogsnes,
author of Implementing Beyond Budgeting: Unlocking the Performance Potential

Stop Conflating Good Financial Management with “The Budget”

I hate the yearly budget with a fire of a thousand suns.
Anonymous

A budget should be viewed as the total sum of funds set aside, or needed, for a
purpose: “What is the ceiling for how much we may spend on this activity?” It
does not define what we are actually going to do—that is strategy. It is not a
plan for how to achieve the strategy, nor does it forecast or measure our suc-
cess in delivering value to customers. When we roll all of these essential activi-
ties into the budgeting process, we lose our focus.

Having a budget is a good thing, especially when we have set some stretch
financial targets for ourselves. Financial constraints can be a strong catalyst for
creativity, collaboration, and innovation. Particularly in the explore domain,
we can spur innovation if we purposefully reduce funding to localized areas or
products and allow teams to decide how they can best utilize available funds,
as we describe in Part II of this book. However, this approach will not work if
we simply reduce funding and tell teams what their targets are and how to ach-
ieve them.

Following the principle of subsidiarity described in Chapter 10, the responsi-
bility to manage allocated funds should be pushed to the lowest appropriate
level—generally, the people who are performing the work. We still need to pro-
vide teams with clear definitions of what is off-limits, but the teams need to be
trusted and given the chance to make decisions. As described in Implementing

LEAN ENTERPRISE248

4 [bogsnes], p. 90.

5 Activity-based accounting is an approach to costing and monitoring activities that involves trac-
ing resource consumption and costing final outputs [CIMA].

6 Ambition to Action, presented in Chapter 4 of [bogsnes] from p. 114 onwards, is derived from
Kaplan and Norton’s Balanced Scorecard approach.

Beyond Budgeting, when European petrochemicals giant Borealis took this
approach, they expected that costs would go up. Instead, they went down.4

Although Borealis was well positioned and prepared for the change with a cul-
ture that supported the move, CFO Bjarte Bogsnes attributes most of the out-
come to better visibility into cost drivers through the use of activity-based
accounting principles:5 those responsible for the activities that generate costs
report on their finances, and teams assume responsibility for better manage-
ment of costs.

The great planning fallacy, evident in the centralized budget process, is that if
we develop a detailed upfront financial plan for the upcoming year, it will sim-
ply happen—if we stick to the plan. The effort to develop these kinds of plans
is a waste of time and resources, because product development is as much
about discovery as it is about execution. Costs will change, new opportunities
will arise, and some planned work will turn out not to generate the desired
outcomes. In today’s world of globalization, rapid technology growth, and
increasing unpredictability it is foolish to think that accurate, precise plans are
achievable or even desirable.

A better approach is to set high-level long-term goals, carefully manage the
more predictable near future, and constantly adjust our shorter-range plans to
get closer to our targets. We can adopt this approach by implementing strategy
deployment described in Chapter 15. Strategy deployment takes the Improve-
ment Kata meta-method presented in Chapter 6 and makes it cascade through
the whole organization, following the Principle of Mission described in Chap-
ter 1. Bjarte Bogsnes presents a similar approach called “Ambition to Action”
in Implementing Beyond Budgeting.6

249CHAPTER 13: EVOLVE FINANCIAL MANAGEMENT TO DRIVE PRODUCT INNOVATION

7 Personal communication.

TIP

Replace Annual Budgets with Rolling Forecasts
Rolling forecasts are one tool that can be useful to help improve financial plan-
ning and decrease dependency on the budget. As every period is completed,
another is appended to the far end of the forecast so that it always covers the
same length of time into the future. The far end doesn’t provide great detail, but
does include known cost line items with estimates on what they will be for the
period in question. In rolling forecasts, attention is focused on the near future,
based on current and accurate information. We don’t spend as much time chasing
details further out into the future that are likely to change in an unknown way.

In adopting this approach, remember that the forecasts are not meant to define
targets or manage resources. Unless you use an approach such as strategy
deployment or Ambition to Action to set targets and manage resources and per-
formance, you will end up with a rolling budget instead of rolling forecasts, which
Bogsnes describes as “a bit more dynamic but also four times more work.”7

As we separate activities required to perform good financial management from
the annual budget process, we improve our ability to understand our current
condition. We focus on developing flow in decisions and adjustments required
to meet the targets we have set for ourselves. The shift is from “Do I have the
funding to do what I am told to do?” to “Is this really necessary?”

Disassociate Funding Decisions from the Annual Fiscal Cycle
The use of the traditional annual fiscal cycle to determine resource allocation
encourages a culture that thwarts our ability to experiment and innovate. It
perpetuates spending on wasteful activities and ideas that are unlikely to
deliver value. We must recognize innovation has an ongoing cost that can’t be
defined and fully planned a year in advance. We need practical lightweight pro-
cesses to fund innovation, and to be disciplined about stopping work on any-
thing that’s not generating the desired outcomes.

When an annual process is the only avenue for obtaining funds tied to specific
line items or new initiatives, it is nearly impossible to change direction in
response to new information. Instead, every year we must spend a great deal of
effort to present the best business plan to get as much funding as we possibly
can, instead of being honest about what we think we need. Of all the submis-
sions made during this annual event, only those with the most compelling story
make it through unchanged. The rest get cut, or put on the backlog for consid-
eration next year, accumulating delay cost.

LEAN ENTERPRISE250

Instead, some companies are taking an approach known as dynamic resource
allocation shown in Figure 13-2. This creates more frequent checkpoints for
funding decisions, and each decision has less risk associated with it. All deci-
sions are based on the empirical evidence, so they become easier to make.
When done correctly, access to funding expands to more teams, gets more fre-
quent, has less associated risks, and brings better results. We thus encourage
more innovation and reduce financial risks associated with large initiatives.

Figure 13-2. Dynamic resource allocation, courtesy of Bjarte Bogsnes, author of Implementing
Beyond Budgeting: Unlocking the Performance Potential

The product development model we discuss in this book works well with
dynamic resource allocation. When we have a new idea, we must begin with
an explore phase. The cost of exploring the idea can be measured in terms of
the product team’s operating costs. Boundaries are defined: you can have a
small team for a defined period, and the maximum amount to spend is X.
Once the team has evidence the idea will deliver value, we can provide further
funding to move into the exploit domain. Across Horizon 3 as a whole, we
aim to use the Principle of Optionality to manage our investments (see Chap-
ter 2 for more on the three horizons and optionality). Our goal is to invest
limited resources in a number of possible options, with the expectation that
most will fail but a few will show a large upside.

Teams that successfully exit the explore domain and scale up will begin to
practice continuous improvement, as described in Chapter 6, to constantly

251CHAPTER 13: EVOLVE FINANCIAL MANAGEMENT TO DRIVE PRODUCT INNOVATION

remove waste in the delivery process. It’s essential to avoid “rewarding” teams
that achieve performance improvements by reducing their operating costs, cut-
ting team size, or breaking teams apart. This instantly demotivates teams and
kills the innovation mindset. Instead, the team should get to spend more time
on exploring new ideas without onerous documentation, reviews, and appro-
vals—as long as they maintain their high performance and keep costs within
established boundaries. By creating lightweight processes to approve small
blocks of additional funding to support the exploitation of ideas, we keep the
momentum going.

By using a product paradigm rather than a project paradigm, it becomes much
easier to calculate profit and loss on a per-product or per-service basis. We can
calculate the costs of delivering and running a product or service simply
through the operating costs of the team building and running it. This makes it
much easier to see when the costs associated with a product or service exceed
the value it provides, or when we are not obtaining the expected margin. When
we want to build features that cut across multiple products, we can use Cost of
Delay to make an investment decision (see Chapter 7).

As the value proposition and development and support costs of a product
change over its lifecycle, we can change the composition of the team running
and enhancing it. Finally, when the product starts delivering a negative value,
we should retire it sooner rather than later. Often, an investment is required in
order to retire products and services—and, again, Cost of Delay can be used to
make an investment decision. This can require buy-in from executives: we
know of one Fortune 500 company that gave bonuses to its VPs based on the
number of services retired during the year, aiming to reduce system complexity
and encourage innovation.

Smaller, simpler, local initiatives involving less risk should go through less
review and a lighter approval process than complex, enterprise-level initiatives.
Hand-in-hand with this, we need an ongoing process and defined criteria for
when funding will cease. Review and oversight can be decentralized by creat-
ing local teams responsible for reporting the outcomes of their funding deci-
sions. This can be rolled up for enterprise-level reporting. We still want to
maintain high-level centralized control over larger enterprise initiatives, but
there should be very few of these at any point in time. See Table 13-1 for some
sample funding models.

LEAN ENTERPRISE252

8 http://www.slideshare.net/LESSConf/11-12-what-is-bb

Table 13-1. Sample funding models

Relationship
complexity

Focus Rate of change
required

Funding model

Simple, one to one Customer-facing Fast—multiple
times a day, daily,
or weekly

Short duration—2 weeks. Small
teams. Small funding blocks. Use
temporary infrastructure.

Interdependence
between two or three
product teams

Middle value—
orchestration of
business value
between product
teams

Moderate—2
weeks to 3 months

Short duration—2 to 4 weeks. Small,
mixed product teams. Small funding
blocks. Use temporary infrastructure
initially.

Enterprise-level Core operations—
e.g., ERPs, CRMs, Big
Data, reporting

Slower—less than
4 times a year

Longer duration—3 to 6 months. Start
with small teams and build up over
time. Continued funding decision every
4 to 6 weeks. Larger funding blocks to
support core infrastructure changes.

Getting rid of a highly centralized annual budget cycle does not mean we are
shirking our responsibilities for good financial management. Many large global
companies, including Handelsbanken, Maersk, and Southwest Airlines, have
started journeys to escape large centralized budgets and manage costs through
other means.8 They start by decentralizing financial responsibility for opera-
tions and moving it down to individual business units:

• Senior management doesn’t set the targets for all costs and revenues for
the upcoming fiscal year.

• Critical business decisions are not based on the budget.

• Teams and individuals are not measured by their ability to stay within
budget.

Everyone still has targets and is held responsible for improving the value they
deliver. However, these targets are not mandated from the top but set by teams
themselves, aligned with the organization-level goals and targets.

Explore Activity-Based Accounting Principles
Resource consumption should be directly tied to activities that generate value.
Traditionally, costs are tracked solely by functional cost centers, such as IT,

253CHAPTER 13: EVOLVE FINANCIAL MANAGEMENT TO DRIVE PRODUCT INNOVATION

http://www.slideshare.net/LESSConf/11-12-what-is-bb

and there is little visibility into what drives these costs. IT departments and
teams engaged in product development are often viewed as cost centers that
can be managed and controlled independently from the business. Tradition
thinking is that sourcing cheaper supply of IT services will reduce costs and
provide equally good outcomes. If it were that easy, you probably wouldn’t be
reading this book. The reality is that our business drives our IT and product
development costs, and we can’t manage them independently.

Activity-based accounting (or costing) allows us to allocate the total costs of
services and activities to the business activity or product that drives those
costs. It provides us with a better picture of the true financial value being deliv-
ered by the product. However, like all models and approaches to business,
activity accounting is not a panacea. We need to be careful that we do not pur-
sue unnecessary precision, creating complicated models and processes that out-
weigh the value we aim to provide. The goal is simply to get better information
for adjusting plans and activities to improve value—starting small and stop-
ping when we have enough empirical evidence on which to base our decisions.

Making Better Decisions with Activity-Based Costing
Here is a story from work at a former employer that shows how activity-based account-
ing gives clarity into how technology supports value to customers.

In an attempt to cut costs, our executive finance committee had mandated unrealistic
targets for the upcoming fiscal year. They had difficulties relating to the established
budget line items, such as cost of servers, and didn’t understand why we just couldn’t
reduce our staffing levels and support more people and systems at the same time. To
give them a picture they could relate to, we turned to activity-based accounting princi-
ple of allocating costs to business activities (operations, revenue management, market-
ing, customer relations, supply chain management, etc.), rather than the line items in
our budget (IT people, software, hardware, IPS, servers, etc.). Our financial manage-
ment system was not set up to provide this view, and we had a tight deadline, so we
used what we had at hand: spreadsheets, current operational numbers, two people,
two days, full access to IT senior management for information, and plenty of food and
beverages.

We didn’t focus on being 100% accurate or precise: we figured 90–95% accuracy was
good enough. Our goal was to give the executives the big picture of how IT costs were
related to servicing our customers and the growth of our organization.

Fortunately, we already had a clear understanding of our IT services and costs related
to the business activities. We were able to link many costs directly to a business prod-
uct or service. For example, our customer support center got all of the costs associated
with interactive voice recognition software. Other costs, such as email services, had to
be divided between business units, so we took their number of people as a measure
and divided those costs proportionately. We also allocated specific costs to our own

LEAN ENTERPRISE254

department—those related to department service management and our own con-
sumption of common services.

The output from this effort was a series of graphs and charts that showed how business
activities drove the IT costs. When presented with this information, rather than the tra-
ditional budget expense line items, executives were more comfortable making deci-
sions on what to support (or not) in our budget submission. Most importantly,
everyone got a better picture of the true cost of ownership of business products and
services and we were able to better calculate the cost of delay for retirement and
replacement of systems.

Avoid Using Budgets as the Basis for Performance
Measurement
Perhaps the biggest mistake we can make with budgets is to use them as a key
indicator of performance—to base reward and recognition on the capability of
an individual, a team, or the organization as a whole to adhere to a budget.
Staying within an assigned budget only tells us if we spent or earned as much
as we said we would. If we tell teams they are going to spend more or less than
they need to do their work, they will find a way to make it happen or spend a
great deal of time justifying why they couldn’t. However, this prevents us from
paying attention to the most important questions: did we plan at the right
level, set good targets, get more efficient, or improve customer satisfaction?
Are our products improving or dying? Are we in a better financial position
than we were before?

Bonuses and rewards for good bottom-line financial results work better when
they are shared equally—not just with upper management and executives but
with every employee within the organization. Working teams will eventually
cripple the organization by inertia and subterfuge when their contributions are
not acknowledged and rewards are based on a process perceived as unfair.
Conversely, people tend follow good leaders and make the organization great
when recognition and incentives are shared equally with all.

255CHAPTER 13: EVOLVE FINANCIAL MANAGEMENT TO DRIVE PRODUCT INNOVATION

9 http://www.westjet.com/pdf/greatWestJetJobs.pdf, https://www.westjet.com/pdf/global-
reporting.pdf, WestJet Management Discussion and Analysis of Financial Results 2013, http://
bit.ly/1v73i6N.

Financial Incentives with Positive Impact: The Case of WestJet
WestJet has been one of the most financially successful airlines in North America over
the past 15 years. WestJet’s founders knew that, if they were to succeed, it was essential
to create a culture of responsibility and ownership for all employees. To create this cul-
ture, they clearly stated their strategy and goals, screened and trained employees for a
good culture and values fit, and established financial incentives that benefit all
employees.

Twice a year, a portion of the company profits are distributed to all employees, prora-
ted on their base salary. All employees are invited to attend the profit share party
where physical cheques are handed to team members by their managers—face-to-
face whenever possible, so managers can personally recognize every employee for
their contribution.

In addition, WestJet allows employees to voluntarily purchase up to 20% of their base
gross pay in WestJet shares, and then matches the employee’s contribution in shares
under the employee’s name. In 2012, over 85% of employees participated in this pro-
gram, becoming part owners of WestJet.

These financial incentives have helped to establish a true sense of responsibility and
ownership for all employees, from call center agents to executives. Everyone knows
that the decisions they make in their day-to-day work and the way they treat their
guests will have a direct effect on the overall earnings of WestJet; they will personally
share the rewards, or sorrows, resulting from those decisions.

This approach has helped WestJet remain profitable in a tough, highly regulated indus-
try for close to two decades. As of the end of 2013, WestJet has reported an annual
profit in 17 of the 18 years of its operation.9

Stop Basing Business Decisions on Capital Versus
Operational Expense
Concern over capital (CapEx) versus operating (OpEx) expense reporting is
important for organizations. There are tax advantages and positive financial
impacts from reporting organization expenditures appropriately in these differ-
ent buckets, so a lot of attention is paid to it. The basic premise of capitalizing
software systems is they are viewed as an asset that creates future benefits for
our organization. This can have significant impact on balance sheets and, in
turn, on the market value of an organization.

LEAN ENTERPRISE256

http://www.westjet.com/pdf/greatWestJetJobs.pdf
https://www.westjet.com/pdf/global-reporting.pdf
https://www.westjet.com/pdf/global-reporting.pdf
http://bit.ly/1v73i6N
http://bit.ly/1v73i6N

Unfortunately, this distinction is often used as the foundation on which critical
business decisions are made. It injects another element of complexity into deci-
sion making and funding for innovation. All costs associated with any work
must be categorized into one of the two buckets, and the traditional process
for managing the buckets assumes that a team’s work is one or the other but
can’t be both at the same time.

The traditional process also serves to obscure the true cost of ownership and
escalates operating costs. A project will be fully capitalized, allowing us to
spread out the reporting of that cost over an extended period, so it has less
short-term impact on our profit. However, many of the items that are being
capitalized during the initial project have an immediate negative impact on our
OpEx, starting before or immediately after the project dissipates. The long-
term operating costs required to support the increasing complexity of systems
created by projects are not calculated when capitalized projects are approved
(because they don’t come out of the same bucket). Ongoing support and retire-
ment of products and services is an OpEx problem. In the end, OpEx teams
are stuck with justifying their ever growing costs caused by the bloat and com-
plexity created by CapEx decisions.

If we are serious about innovation, it shouldn’t really matter which bucket
funding comes from. Open, frank discussion, based on real evidence of the
total end-to-end cost of the product, is what we should use as the basis of busi-
ness decisions. Funding allocation of a product’s development into CapEx or
OpEx should be performed by accountants after the business decisions are
made.

Let’s look at the explore domain first. Most ideas turn out to deliver zero or
negative value—but CapEx applies to assets that deliver long-term value. It
therefore makes sense to consider all explore activities to be OpEx. We still
need teams to define the amount of resources they intend to consume on
exploring, but they shouldn’t need to obtain further funding approvals every
time they want to try something new within their defined boundaries.

Moving to the exploit domain, finance and product teams need to talk to each
other frequently to determine how to allocate funding. We want to avoid
adding complexity and unnecessary waste when we decide on the tracking
methods to determine CapEx versus OpEx allocation. It should be easy enough
for everyone to understand how it works and provide a fairly accurate repre-
sentation of the long-term value proposition. In the end, allocating costs into
CapEx could be as simple as defining that a fixed percentage of this teams’
resources (or time) are spent on developing assets that have a lifespan long
enough to be capitalized. Here are some topics to discuss with Finance regard-
ing CapEx funding decisions:

257CHAPTER 13: EVOLVE FINANCIAL MANAGEMENT TO DRIVE PRODUCT INNOVATION

10 [deming]

• How can we build a flexible model for allocating funds based on CapEx
and OpEx principles but avoid using rules and rigid processes that require
everyone to compete for all funding at the same time?

• What elements, other than projected project costs, should affect the
amount of scrutiny and rigor we apply to funding decisions: complexity,
time estimates, team size, net effect of operating costs, anything else?

• How can we manage local initiatives versus enterprise-level initiatives to
reduce delays and overall response time for local opportunities?

• How can we structure funding decisions to accommodate shorter time
frames and improve availability to more teams?

• How do we base further funding decisions on demonstrated delivery of
working products, as opposed to the amount of activity?

In these discussions, it is important to consider the projected lifespan of the
product. Technically, software assets should be capitalized only if the projected
lifespan of the product matches or exceeds the current depreciation term for
software products—most businesses currently use three years. However, it
seems unrealistic to believe that all of these systems have a valuable lifespan of
three years if left unchanged. This presents an interesting question. Which is
less risky and more responsible:

• Categorize software product development entirely in OpEx, or

• Capitalize costs and claim a write-down in the future if the product is
retired before it is totally depreciated?

There’s probably no single definitive answer; you will need to consider many
variables that are different for each organization.

Modify Your IT Procurement Processes to Gain Greater
Control over Value Delivery
In his 1982 book Out of the Crisis,10 W. Edwards Deming proposed 14 princi-
ples of management required for American companies to improve the effective-
ness of their businesses. Number 4 on the list reads, “End the practice of
awarding business on the basis of price tag. Instead, minimize total cost. Move
toward a single supplier for any one item, on a long-term relationship of loy-
alty and trust.”

LEAN ENTERPRISE258

11 In the NUMMI story in Chapter 1, some of the problems GM faced in adopting the TPS related
to the fact that suppliers were not used to the idea of working collaboratively to improve the
quality and specification of parts in response to results in the field. This is a direct analog to the
problems we face when we outsource development and, at the end of the contract, find that the
product delivered is not fit for its purpose.

More than 30 years later, we see many organizations that have not grasped the
true meaning of this principle. We fail to quantify the total cost, and we treat
products and services as fungible commodities that can be easily produced by
any supplier. While procurement processes used to award contracts may result
in long-term relationships, they are seldom built on collaboration and trust.11

The net result is that procurement policies, processes, and practices conspire to
prevent us from improving the value we provide through software delivery.

The first mistake we make is thinking that with large amounts of upfront plan-
ning, we can manage the risk of getting something that doesn’t deliver the
expected value. In many large enterprises, the manager engaging any third
party for software delivery services must define all expected outputs up front,
in the form of a request for proposal (RFP). This is followed by detailed
responses from suppliers as to how they would deliver the exact expected out-
puts and at what cost, often derived from hourly rates and expenses plus a
desired margin. Award decisions are then based on the responses received and
presentations made by the groups that make it to the short list.

This painful, highly detailed contractual process has several negative side
effects:

It is a poor way to manage the risks of product development
It is based on the misconception that we can know exactly what we need
up front—in other words, that while building the system we won’t make
any significant discoveries about what users find valuable nor encounter
any significant unexpected complexities.

It favors incumbents
Suppliers who already have a presence in the organization have easier
access to its people so can better understand its budgets and targets that
need to be matched. As the procurement process for new suppliers is so
painful, it’s easier to automatically renew established contracts even with
mediocre suppliers. The perceived costs and risks associated with finding a
new supplier are often thought to be greater than renewing existing
contracts.

259CHAPTER 13: EVOLVE FINANCIAL MANAGEMENT TO DRIVE PRODUCT INNOVATION

It favors large service providers
Large companies employ people who specialize in responding to RFPs,
which can be filled with minutiae and check boxes but have little or no
bearing on outcomes.

It inhibits transparency
Success is usually awarded on cost of delivery, with little regard for the
related costs of integration, business process change, or ongoing opera-
tional costs. Rarely do we see consideration for how the products provided
will affect end-to-end value delivery. Offshore delivery, for example, usu-
ally looks inexpensive in terms of unit cost. However, when we take into
account increased communication and travel costs, as well as delays in
response and rework due to time differences, it can easily take longer than
co-located delivery—at similar overall costs.

It is inaccurate
Due to the planning fallacy (see Chapter 2), both suppliers and managers
tend to be overly optimistic in their estimates of the number of people and
the amount of work required because they know that contract price has
the most weight in the decision. Suppliers know they can make up the
money with change requests.

It ignores outcomes
Contract performance is measured on the ability to supply services as con-
tracted, at the rate contracted, for the period of time contracted. There is
usually no mention of how well the delivered services work. Regardless of
outcomes, the suppliers are usually rewarded with further contracts for
supporting, fixing, and improving the service.

TIP

If you are stuck with a long term, project-based contract that specifies delivery of
a solution at the end of the term, mitigate your risks by offering to pay the sup-
plier in advance, based on the delivery of incremental working software. This
incentivizes them to provide you with working software that you can put into
production so you can get feedback from your customers on the value of the sol-
ution. In turn, you can adjust the direction of the product’s development, based
on your test outcomes.

The second mistake in the typical procurement process is that is assumes all
services are equal in both the quality of the people working on the delivery and
the quality of the software delivered. Through painful experience, many of us
know this is not the case. There are many factors that determine how success-
ful the outcome of engaging a supplier will be, the least of which is cost. What
is their error occurrence and fix rate? What is the maintenance effort

LEAN ENTERPRISE260

12 http://bit.ly/1v73rXY

associated with their solutions? How many lines of code are in the solution
(less is better)? How closely can we work with them? Can we trust them?
Although we may gain some insights by talking to other customers of the sup-
plier, the acid test is experimentation. We need to test out the relationship and
measure the result—which requires modifying the processes we use to engage
third-party service providers.

UK Government Changes Its IT Procurement Process to
Encourage Innovation

Early in 2014, the UK government announced dramatic changes to the rules applied to
awarding and managing contracts for IT services.12 These changes aimed to encourage
competition in the IT service sector and help the government become a more intelli-
gent customer of the service providers. They believe they will achieve better outcomes
in their IT services by limiting big IT contracts and by broadening their source of poten-
tial suppliers.

To make it easier for small- to medium-size enterprises to bid on government IT con-
tracts, four major changes were announced in the UK government’s IT services pro-
curement process:

• No contracts over £100m would be rewarded except under exceptional
circumstances.

• Companies with a contract for service provision will not be allowed to provide sys-
tem integration in the same part of the government.

• New hosting contracts will be for a maximum period of two years.

• No contracts will be automatically renewed.

The UK government hopes to create more efficient and responsive services meeting
public demands by getting better access to innovative and cost-effective digital solu-
tions. They are expanding the range of suppliers and creating more opportunities to
assess and negotiate contracts that may be based on outdated and expensive technol-
ogies or are just not delivering value.

261CHAPTER 13: EVOLVE FINANCIAL MANAGEMENT TO DRIVE PRODUCT INNOVATION

http://bit.ly/1v73rXY

The agile manifesto says we should prefer customer collaboration over con-
tract negotiation. We need to continuously work with our suppliers to produce
high-quality results. The best relationships and results are achieved when we
don’t throw requirements over the wall and then expect a product or service to
magically appear months later. We have to be engaged, manage contracts and
relationships, encourage flexibility, and seek opportunities to experiment with
different providers so we can assess their competence and capability to deliver
value.

Conclusion
Organizations that continue to structure funding decisions around financial
cycles will face serious obstacles to improving their innovation capabilities. We
need to move beyond the centralized budget paradigm and introduce flow into
the processes of financial forecasting, planning, and reporting. This is essential
if we want to see more than incremental benefits from applying lean principles.

We should disassociate funding decisions from the annual budget cycle, and
stop worrying if it is capital or operational expense. This is how we can make
better decisions on what and when should be funded to create the outcomes
we want. We still need to manage our costs carefully, but better results can be
achieved through shorter cycles of planning, forecasting, and monitoring,
along with relating costs back to the business activities that drive them.
Restricting resources and time frames for testing ideas helps us to gracefully
cut investing in ideas that don’t pan out. Resources can then be channeled into
exploring new ideas for products and services.

Finally, to support innovation and experimentation, we need to modify our
procurement processes and rules. Without long-term trust relationships based
on a mutual desire to get better at delivering value, large organizations will for-
ever be hampered by legacy systems and products that are often outdated
before they are even deployed.

Questions for readers:

• Can your product teams openly experiment with new ideas and technology
without spending large amounts of time on seeking approval and funding?
Can you easily obtain funds for new technology-related work at any time
of the year, or are you restricted to an annual cycle?

• What are your criteria for a successful investment? Is it enough for projects
to come in on time and on budget, or do you attempt to measure customer
and organizational outcomes?

• How much time is spent managing your team’s budget throughout the
year, including reviewing reports and justifying variances?

LEAN ENTERPRISE262

• How far out and how often are you expected to plan for detailed costs? Is
there an easy process for continuous adjustments and reporting within the
plan?

• Does the process for allocating capital expenditure versus operational
expenditure prevent people from making responsible investment decisions?
If so, is there a simple, low-risk way to experiment with a different
approach?

263CHAPTER 13: EVOLVE FINANCIAL MANAGEMENT TO DRIVE PRODUCT INNOVATION

C H A P T E R 1 4

Turn IT into a Competitive Advantage

The cost-center pattern fills the vacuum of our inability to define,
model, and measure the value most workers create for their
organization.

Ken H. Judy

Enterprise IT departments face powerful and conflicting forces. Their first pri-
ority is to keep the existing business-critical systems running, even as they age
and grow in complexity. There is also an increasing pressure to up the speed at
which new products and features can be delivered. Finally, IT has traditionally
been seen as a cost center, so there is constant pressure to increase efficiency
(which normally plays out as cost-cutting).

These apparently conflicting goals often lead to a downward spiral. Reducing
complexity and replacing legacy systems requires investment. However, invest-
ment often comes in the form of large, multiyear projects that often get aban-
doned or deployed uncompleted due to spiraling costs and/or personnel
changes at the executive level. This increasing complexity, along with the need
for further efficiency gains, reduces the capacity of IT to manage planned work
effectively. The increasing demand for changes, when combined with a brittle
IT environment, leads to proliferation of unplanned work that further reduces
IT capacity.

In this chapter, we discuss some strategies to increase the responsiveness of IT
to changing business needs, improve the stability of IT services, and reduce the
complexity of our IT systems and infrastructure. Many of these strategies come
from the DevOps movement whose goal is to enable us to work safely at scale
in a high-tempo and high-consequence environment.

265

1 The original article is at https://hbr.org/2003/05/it-doesnt-matter with further commentary and
discussion by Nicholas Carr at http://www.nicholascarr.com/?page_id=99.

2 [cagan]

3 These problems are described in more detail in Evan Bottcher’s poetically named blog post
“Projects Are Evil and Must Be Destroyed,” http://bit.ly/1v73umC.

Rethinking the IT Mindset
IT has historically been seen as a cost center and an internal enabler of the
business, not a creator of competitive advantage. For years the orthodoxy has
been that, as Nicholas Carr infamously said, “IT doesn’t matter.”1 Even
amongst lean practitioners, IT is sometimes seen as “just a department.” This
has created what Marty Cagan, author of Inspired: How to Create Products
Customers Love,2 calls an “IT mindset” in which IT is simply a service pro-
vider to “the business” (Figure 14-1).

Figure 14-1. What business leaders think about the business-IT relationship

This problem is exacerbated by the typical project model through which IT
projects are funded and managed. The work created in IT projects is typically
handed over (or thrown over) to IT operations to run, so the people managing
the projects have little incentive to think about the long-term consequences of
their design decisions—and large incentives to ship as much functionality as
possible in what is typically an extremely tight timeframe. This leads to soft-
ware that is hard to operate, change, deploy, maintain, and monitor, and which
adds complexity to operational environments which, in turn, makes further
projects harder to deliver.3 As Charles Betz, author of Architecture and Pat-

LEAN ENTERPRISE266

https://hbr.org/2003/05/it-doesnt-matter
http://www.nicholascarr.com/?page_id=99
http://bit.ly/1v73umC

4 [betz], p. 300.

5 [forsgren]; the report can be downloaded from http://bit.ly/2014-devops-report.

terns for IT Service Management, Resource Planning, and Governance: Mak-
ing Shoes for the Cobbler’s Children, says:4

Because it is the best-understood area of IT activity, the project phase
is often optimized at the expense of the other process areas, and there-
fore at the expense of the entire value chain. The challenge of IT
project management is that broader value-chain objectives are often
deemed “not in scope” for a particular project, and projects are not
held accountable for their contributions to overall system entropy.

IT operations—a department within the IT department and perhaps the ulti-
mate cost center—experiences the consequences of these decisions on a daily
basis. In particular, the integrated systems they must keep running are incredi-
bly complex and crufty, built up over years, and often fragile, so they tend to
avoid changing them. Since stability is their first priority, IT operations has
developed a reputation as the department that says “no”—an entirely rational
response to the problems they face.

IT operations departments have two primary mechanisms they use to stem the
tide: the change management process and standardization. The change man-
agement process is used to mitigate the risk of changes to production environ-
ments and meet regulatory requirements, and it usually requires every change
to production to be reviewed by a team (known as the Change Advisory Board
in ITIL terminology) before it can be deployed. Standardization is used to
manage the heterogeneity of production environments, reduce cost, and pre-
vent security breaches; it also requires that all software used in production
(and often in development environments as well) is approved for usage.

The result of these processes is that the rate of change slows down enormously
in production environments and teams cannot use the tools they choose. Under
certain circumstances, this might be an acceptable trade-off if these limitations
could actually improve the stability of production environments. However, the
data shows that they do not. In fact, many of the assumptions that underlie IT
departments’ operations and their relationships to other parts of the organiza-
tion are no longer valid.

In the 2014 State of DevOps Report, over 9,000 people worldwide were pol-
led about what creates high-performance organizations, whether IT does in
fact matter to the business, and what factors impact the performance of IT
departments.5 The first major result from the survey was a statistically valid
way to measure IT performance. High-performing IT organizations are able to

267CHAPTER 14: TURN IT INTO A COMPETITIVE ADVANTAGE

http://bit.ly/2014-devops-report

achieve both high throughput, measured in terms of change lead time and
deployment frequency, and high stability, measured as the time to restore ser-
vice after an outage or an event that caused degraded quality of service. High-
performing IT organizations also have 50% lower change fail rates than
medium- and low-performing IT organizations.

The data shows that organizations with high-performing IT are able to achieve
higher levels of both throughput and stability. Furthermore, firms with high-
performing IT organizations are also twice as likely to exceed their profitabil-
ity, market share, and productivity goals as those with low IT performance.

The practices most highly correlated with high IT performance (increasing
both throughput and stability) are:

• Keeping systems configuration, application configuration, and application
code in version control

• Logging and monitoring systems that produce failure alerts

• Developers breaking up large features into small, incremental changes that
are merged into trunk daily (as discussed in Chapter 8)

• Developers and operations regularly achieving win/win outcomes when
they interact

There are two other factors that strongly predict high performance in IT. The
first is a high-trust organizational culture as described in Chapter 1. The sec-
ond is a lightweight peer-reviewed change approval process. Many organiza-
tions have an independent team to approve changes that go to production.
However, the data shows that while such external processes significantly
decrease throughput, they have negligible positive impact on stability. Peer-
reviewed change approval mechanisms (such as pair programming or code
review by other developers) are as effective at creating stable systems as change
advisory boards—but have a drastically better throughput.

While this data supports the existing practices of high-performing companies
such as Amazon and Google, it directly contradicts the received wisdom that
segregation of duties is an effective way to manage risk. However, Westrum’s
work on safety culture shows that no process or control can compensate for an
environment in which people do not care about customer and organizational
outcomes. Instead of creating controls to compensate for pathological cultures,
the solution is to create a culture in which people take responsibility for the
consequences of their actions—in particular, customer outcomes.

There is a simple but far-reaching prescription to enable this behavior:

1. You build it, you run it. Teams that build new products and services must
take responsibility for the operation and support of those services, at least

LEAN ENTERPRISE268

6 Tom Limoncelli, https://www.youtube.com/watch?v=iIuTnhdTzK0. See also [limoncelli].

until they are stable and the operation and support burden becomes pre-
dictable. By doing this, we also ensure that it is easy to measure the cost of
running the service and the value it delivers.

2. Turn central IT into a product development organization. The product
development lifecycle and strategies described in this book should be used
to deliver internal products and services as well as customer-facing ones.

3. Invest in reducing the complexity of existing systems. Use the capacity
gained from step 1 to invest in ongoing improvement work with the goal
of reducing the cost and risk of making changes to existing services.

Freedom and Responsibility
In order to reduce the burden on IT operations, it’s essential that we shift sup-
porting new products, services, and features to the teams that build them. To
do this, we need to give them both the autonomy to release and operate new
products and features and the responsibility for supporting them.

In Google, teams working on a new product must pass a “production readi-
ness review” before they can send any services live. The product team is then
responsible for its service when it initially goes live (similarly to ITIL’s concept
of early life support). After a few months, when the service has stabilized, the
product team can ask operations—called Google’s Site Reliability Engineers, or
SREs—to take over the day-to-day running of the service, but not before it
passes a “handover readiness review” to ensure the system is ready for hand-
over. If the service encounters a serious problem after the handover, responsi-
bility for supporting it is transferred back to the product team until they can
pass another handover readiness review.6

As discussed in Chapter 12, this model requires that product teams work with
other parts of the organization responsible for compliance, information secu-
rity, and IT operations throughout the development process. In particular, cen-
tralized IT departments are responsible for:

• Providing clear and up-to-date documentation on which processes and
approvals are necessary for new services to go live and on how teams can
access them

• Monitoring lead time and other SLAs for these services, such as approving
software packages, provisioning infrastructure (such as testing environ-
ments), and working to constantly reduce them

269CHAPTER 14: TURN IT INTO A COMPETITIVE ADVANTAGE

https://www.youtube.com/watch?v=iIuTnhdTzK0

7 Adapted from a post by John Allspaw: https://gist.github.com/jallspaw/2140086.

8 This term was coined by Forrester’s Mike Gualtieri: http://bit.ly/1v73wLd; responses from John
Allspaw of Etsy and Adrian Cockcroft of Netflix can be found at https://gist.github.com/jall
spaw/2140086.

For live services under active development, developers share equal responsibil-
ity with operations for:7

• Responding to outages and being on call

• Designing and evolving monitoring and alerting systems, and the metrics
they rely on

• Application configuration

• Architecture design and review

Engineers building new features should be able to push code changes live
themselves, following peer review, except in the case of high-risk changes.
However, they must be available when their changes go live so they can sup-
port them. Many new code changes (particularly high-risk ones) should be
launched “dark” (as described in Chapter 8) and either switched off in produc-
tion or made part of an A/B test.

Some people describe this model as “no-ops,”8 since (if successful) we drasti-
cally reduce the amount of reactive support work that operations staff must
perform. Indeed teams running all their services in the public cloud can take
this model to its logical conclusion where product teams have complete control
over—and responsibility for—building, deploying, and running services over
their entire lifecycle (a model pioneered at scale by Netflix). This has lead to a
great deal of resistance from operations folks who are concerned about losing
their jobs. The “no-ops” label is clearly provocative, and we find it problem-
atic; in the model we describe, demand for operations skills is in fact increased,
because delivery teams must take responsibility for operating their own serv-
ices. Many IT staff will move into the teams that build, evolve, operate, and
support the organization’s products and services. It is true that traditional
operations people will have to go through a period of intense learning and
cultural change to succeed in this model—but that is true for all roles within
adaptive organizations.

It must be recognized and accepted that this will be scary for many people.
Support and training must be provided to help those who wish to make the
transition. It must be made clear that the model we describe is not intended to
make people redundant—but everyone needs to be willing to learn and change
(see Chapter 11). Generous severance packages should be offered to those who

LEAN ENTERPRISE270

https://gist.github.com/jallspaw/2140086
http://bit.ly/1v73wLd
https://gist.github.com/jallspaw/2140086
https://gist.github.com/jallspaw/2140086

are not interested in learning new skills and taking on new roles within the
organization.

Removing the burden of creating and supporting new products and services
frees up central IT organizations so they can focus on operating and evolving
existing services and building tools and platforms to support product teams.

Creating and Evolving Platforms
The most important role of central IT is supporting the rest of the organiza-
tion, including management of assets such as computers and software licenses,
and the provision of services such as telephony, user management, and infra-
structure. This is as true for high-performing organizations as it is for the low
performers. The difference lies in how these services are managed and
provided.

Traditionally, companies have relied on packages supplied by external vendors
(such as Oracle, IBM, and Microsoft) to provide infrastructure components
such as databases, storage, and computing power. Nobody could have missed
the move to the utility computing paradigm known as “cloud.” However,
while few companies can avoid the move, many are failing to execute it
correctly.

To succeed, IT organizations must take one of the two paths: either outsource
to external suppliers of infrastructure or platform as a service (IaaS or PaaS),
or build and evolve their own.

While moving to external cloud suppliers carries different risks compared to
managing infrastructure in-house, many of the reasons commonly provided for
creating a “private cloud” do not stand up to scrutiny. Leaders should treat
objections citing cost and data security with skepticism: is it reasonable to sup-
pose your company’s information security team will do a better job than Ama-
zon, Microsoft, or Google, or that your organization will be able to procure
cheaper hardware?

Given that break-ins into corporate networks are now routine (and sometimes
state-sponsored), the idea that data is somehow safer behind the corporate fire-
wall is absurd. The only way to effectively secure data is strong encryption
combined with rigorous hygiene around key management and access controls.
This can be done as effectively in the cloud as within a corporate network.
Many organizations have been outsourcing IT operations for years; even the
CIA has outsourced the building and running of some of its data centers to

271CHAPTER 14: TURN IT INTO A COMPETITIVE ADVANTAGE

9 http://theatln.tc/1v73AuB

10 http://bit.ly/1v73C5K

11 [limoncelli]

Amazon.9 Many countries are now updating their regulations to explicitly
allow for data to be stored in infrastructure that is externally managed.

There are two good reasons to be cautious about public clouds. The first risk is
vendor lock-in, which can be mitigated through careful architectural choices.
The second is the issue of data sovereignty. Any company storing its data in the
cloud “is subject both to the laws of the nation hosting the server and to their
own local laws regarding how that data should be protected, leading to a
potential conflict of laws over data sovereignty. The implications of these over-
lapping legal obligations depend on the specific laws of the nation and the rela-
tionship and agreements between governments.”10

Nevertheless, there are compelling reasons to move to public cloud vendors,
such as lower costs and faster development. In particular, public clouds enable
engineering teams to self-service their own infrastructure instantly on demand.
This significantly reduces the time and cost of developing new services and
evolving existing ones. Meanwhile, many companies that claim to have imple-
mented “private clouds” still require engineers to raise tickets to request test
and production environments, and take days or weeks to provision them.

Any cloud implementation project not resulting in engineers being able to self-
service environments or deployments instantly on demand using an API must
be considered a failure. The only criterion for the success of a private cloud
implementation should be a substantial increase in overall IT performance
using the throughput and stability metrics presented above: change lead time,
deployment frequency, time to restore service, and change fail rate. This, in
turn, results in higher quality and lower costs, as well as freeing up capital to
invest in new product development and improving of the existing services and
infrastructure.

The alternative to using an external vendor is developing your own service
delivery platform in-house. A service delivery platform (SDP) lets you auto-
mate all routine activity associated with building, testing, and deploying serv-
ices, including the provisioning and ongoing management of infrastructure
services. It is also the foundation on which deployment pipelines for building,
testing, and deploying individual services run. The Practice of Cloud System
Administration: Designing and Operating Large Distributed Systems is an
excellent guide to designing and running a service delivery platform.11

LEAN ENTERPRISE272

http://theatln.tc/1v73AuB
http://bit.ly/1v73C5K

12 This reflects the way Toyota approaches buying machinery. Norman Bodek reports that “Toyota
and the major suppliers, instead of buying machines, which would do ‘everything possible
needed in the future,’ would build over 90% of their own machines themselves to do the specific
job needed at the time” [bodek], p. 37.

However, companies who have succeeded at creating their own SDP (per the
criteria above) have not typically done so through the traditional IT route of
buying, integrating, and operating commercial packages.12 Instead, they have
used the product development paradigm described in this book to create and
evolve an SDP, preferring to use open source components as a foundation. This
approach requires a substantial retooling and realignment of IT to focus on
exploring new platforms by testing them with a subset of internal customers
(as we discuss in Part II) with the goal of delivering early value and providing
performance superior to that of the external vendors. Validated products
should be evolved using the principles described in Part III, using cross-
functional product teams measuring their success by the IT performance met-
rics above.

Preparing for Disasters
Organizations that do choose to manage their own SDP must take business
continuity extremely seriously. Amazon, Google, and Facebook inject faults
into their production systems on a regular basis to test their disaster recovery
processes. In these exercises, called Game Days at Amazon and Disaster
Recovery Testing (DiRT) at Google, a dedicated team is put together to plan
and execute a disaster scenario.

Typically, this includes physically powering down data centers and disconnect-
ing the fiber connections to offices or data centers. This has real consequences
but is reversible in the event of an uncontrollable failure. People running affec-
ted services are expected to meet their service-level agreements (SLAs), and the
disruptions are carefully planned to not exceed the limits of what is necessary
to run the service. Crucially, a blameless postmortem is held after every exer-
cise (see Chapter 11), and the proposed improvements are tested some time
later.

Kripa Krishnan, Google’s program manager for DiRT exercises, comments that
“for DiRT-style events to be successful, an organization first needs to accept
system and process failures as a means of learning. Things will go wrong.
When they do, the focus needs to be on fixing the error instead of reprimand-
ing an individual or team for a failure of complex systems…we design tests
that require engineers from several groups who might not normally work
together to interact with each other. That way, should a real large-scale disaster

273CHAPTER 14: TURN IT INTO A COMPETITIVE ADVANTAGE

13 http://queue.acm.org/detail.cfm?id=2371297

14 [martin], p. 101.

ever strike, these people will already have strong working relationships
established.”13

Netflix takes this idea to its logical extreme by running a set of services known
as the Simian Army, led by Chaos Monkey, a service that shuts down produc-
tion servers at regular intervals to test the resilience of the production environ-
ment. Like many Netflix systems, the software behind the Simian Army is open
source and available on Github. Organizations that do not have the intestinal
fortitude to perform real failure injection exercises on at least an annual basis
should not be in the business of developing their own infrastructure services—
at least, not for mission-critical systems.

Finally, organizations that develop their own infrastructure services must give
their internal customers the choice of whether or not to use them. Enterprises
rely on standardization of the services and assets provided by IT operations to
manage support costs, for example by maintaining a list of approved tools and
infrastructure components from which teams may choose. However, trends
such as employees bringing their own devices to work (BYOD) and product
development teams using nonstandard open source components such as
NoSQL databases, present a challenge to this model. We have seen cases in
which open source components were necessary to achieve the levels of perfor-
mance, maintainability, and security required by their customers, but were
resisted by IT operations departments—resulting in a great deal of wasted time
and money trying to force the products to run on existing packages.

The correct way to address this problem is to allow product teams to use the
tools and components they want, but to require them to take on the risks and
costs of managing and operating the products and services they build—to
repeat Amazon CTO Werner Vogels’ dictum, “You build it, you run it.” Recall
the Lean definition of optimal performance from Chapter 7: “Delivering cus-
tomer value in a way in which the organization incurs no unnecessary expense;
the work flows without delays; the organization is 100 percent compliant with
all local, state and federal laws; the organization meets all customer-defined
requirements; and employees are safe and treated with respect. In other words,
the work should be designed to eliminate delays, improve quality, and reduce
unnecessary cost, effort, and frustration.”14 Processes inhibiting optimal perfor-
mance should be a target for improvement.

LEAN ENTERPRISE274

http://queue.acm.org/detail.cfm?id=2371297

Managing Existing Systems
A service delivery platform, whether created in-house or provided by a vendor,
must ensure standardization and reduced cost to run new systems. However, it
will not help reduce the complexity of existing ones. The large number of
existing systems is one of the biggest factors limiting the ability of enterprise IT
departments to move fast.

In operations departments that must maintain hundreds or thousands of exist-
ing services, delivering even an apparently simple new feature can involve
touching multiple systems, and any kind of change to production is fraught
with risk. Obtaining integrated test environments for such changes is expensive
—even a part of the production environment cannot be reproduced without a
lot of work (and it’s usually hard to tell how much we need to reproduce, and
at what level of detail, for testing purposes). Combine this with functional
silos, outsourcing, and distributed teams juggling multiple priorities, and we
swiftly find that our feet are encased in concrete.

In this section we present three strategies for mitigating this problem. The
short-term strategy is to create transparency of priorities and improve commu-
nication between the teams working on these systems. The medium-term solu-
tion is to build abstraction layers over systems that are hard to change, and
create test doubles for systems that have to integrate with them. The long-term
solution is to incrementally rearchitect systems with the ability to move fast at
scale as an architectural goal.

The short-term solution—creating transparency of priorities and improving
communication—is important and can be extremely effective. IT has to serve
multiple stakeholders with often conflicting priorities. Who wins often depends
on who is shouting loudest or has the best political connections, not on an eco-
nomic model such as Cost of Delay (discussed in Chapter 7). It’s important to
have a shared understanding at all levels of the organization on what the cur-
rent priorities are. This can be as simple as a weekly or monthly meeting of the
key stakeholders, including all customers of IT, to issue a one-page prioritized
list. Regular communication between those responsible for systems that are
coupled is also essential.

275CHAPTER 14: TURN IT INTO A COMPETITIVE ADVANTAGE

15 For more on this, see http://martinfowler.com/bliki/SelfInitializingFake.html.

Coupling Requires Frequent Communication
A major travel company wanted to continuously deliver new features to their website.
However, the website needed to talk to a legacy booking system. Often new features
were delayed due to dependencies on changes to the booking system, which was
updated every six months. This was costing the company large amounts of money in
lost opportunity costs.

One simple way they eased the problem was by improving communication between
the teams. The product manager for the website would regularly meet up with the pro-
gram manager for the booking system, and they would compare notes on upcoming
releases, noting dependencies. They’d find ways to shift their schedules around to help
each other deliver features on time, or to push back features that couldn’t be delivered.

The medium-term solution is to find ways to simulate the infrequently chang-
ing systems we must integrate with. One technique is to use virtualized ver-
sions of these systems. Another is to create a test double that simulates the
remote system for testing purposes (Figure 14-2).15 The important thing to
bear in mind is that we’re not aiming to faithfully reproduce the real produc-
tion environment. We’re attempting to discover and fix most of the big integra-
tion problems early on, before we go to a full staging environment.

By faking out remote systems or running them in a virtual environment, we
can integrate and run system-level tests to validate our changes on a regular
basis (say, once per day). This reduces the amount of work we have to do in a
properly integrated environment.

The long-term solution is to architect our systems in such a way that we can
move fast. In particular, this means being able to independently deploy parts of
our system at will, without having to go through complex orchestrated deploy-
ments. However, this requires careful rearchitecture using the strangler applica-
tion pattern described in Chapter 10.

LEAN ENTERPRISE276

http://martinfowler.com/bliki/SelfInitializingFake.html

16 http://blog.gardeviance.org/2013/09/why-map.html

Figure 14-2. Simulating remote systems for test purposes

When starting on this process, an important first step is to map your services
and the connections between them. Based on the lifecycle of innovations (see
Chapter 2) and the value each service provides to our organization, we can
draw value and lifecycle on two axes, and then create a value chain map to vis-
ualize each product and its dependencies (Figure 14-3). To create a value chain
map, take a product and put it in the appropriate position at the top of a new
diagram. Then map the services it depends on and the connections between
them. This exercise can be performed quickly and cheaply on a whiteboard
using sticky notes.16

277CHAPTER 14: TURN IT INTO A COMPETITIVE ADVANTAGE

http://blog.gardeviance.org/2013/09/why-map.html

Figure 14-3. Value chain map, courtesy of Simon Wardley

The next step is to create a “to-be” version of this diagram, following these
principles:

• Use software-as-a-service providers for all “utility” services, such as pay-
roll, vendor management, email, version control, and so forth. If there are
systems we can’t move to the cloud, we should use commercial off-the-
shelf software packages (COTS).

• For strategic services and applications that provide a competitive advan-
tage, we should be doing custom software development as described in the
rest of the book. Avoid at all costs the temptation to use packages for these
capabilities.

• Systems of record will typically be the hardest to change, and will be a
combination of COTS and older systems including mainframes. These
often require consolidation and some amount of abstraction so as to
reduce the cost of maintaining and integrating with them. Over time, they
can be strangled if necessary.

LEAN ENTERPRISE278

17 http://bit.ly/1v73C5K

When using COTS, it is crucial not to customize the packages. We can’t
emphasize strongly enough the problems and risks associated with customizing
COTS. When organizations begin customizing, it’s hard to stop—but customi-
zations of COTS packages are extremely expensive to build and maintain over
time. Once you get beyond a certain amount of customization, the original
vendor will often no longer support the package. Upgrading customized pack-
ages is incredibly painful, and it’s hard to make changes quickly and safely to a
customized COTS system.

Instead, make changes to your business processes to match what the COTS
packages can do out of the box. Any time you choose a solution based on
COTS, you’ll have a list of features to implement or bugs to fix. These should
always be treated as the input to a business process change management activ-
ity. Business process changes are much cheaper and more effective than chang-
ing COTS packages to match an existing process. If you have gone down the
road of customization, take the next major release of your COTS package as
an opportunity to migrate to a new, uncustomized version of the package, as
Telstra (Australia’s biggest telco) did when it moved from a heavily customized
install of Remedy to a completely vanilla one.17

Moving from your current state to your to-be state will likely take years. As
with all large-scale changes, the correct way to proceed is incrementally, break-
ing down large programs of work into small steps that provide the biggest
bang for the buck in terms of improving customer and business outcomes.

279CHAPTER 14: TURN IT INTO A COMPETITIVE ADVANTAGE

http://bit.ly/1v73C5K

The Suncorp Simplification Program
by Scott Buckley and John Kordyback

Australia’s Suncorp Group has ambitious plans to decommission their legacy general
insurance policy systems, improve their core banking platform, and start an opera-
tional excellence program. “By decommissioning duplicate or dated systems, Suncorp
aims to reduce operating costs and reinvest those savings in new digital channels,” says
Matt Pancino, now CEO of Suncorp Business Systems.

Lean practices and continuous improvement are necessary strategies to deliver the
simplification program. Suncorp is investing successfully in automated testing frame-
works to support developing, configuring, maintaining, and upgrading systems
quickly. These techniques are familiar to people using new technology platforms, espe-
cially in the digital space, but Suncorp is successfully applying agile and lean
approaches to the “big iron” world of mainframe systems.

Delivery Practices

In their insurance business, Suncorp is combining large and complex insurance policy
mainframe systems into a system to support common business processes across the
organization and drive more insurance sales through direct channels. Some of the key
pieces were in place from the “building blocks” program which provided a functional
testing framework for the core mainframe policy system, agile delivery practices, and a
common approach to system integration based on web services.

During the first year of the simplification program, testing was extended to support
integration of the mainframe policy system with the new digital channels and the pric-
ing systems. Automated acceptance criteria were developed while different systems
were in development. This greatly reduced the testing time for integrating the newer
pricing and risk assessment system with multiple policy types. Automated testing also
supported management and verification of customer policies through different chan-
nels, such as online or call center.

Nightly regression testing of core functionality kept pace with development and sup-
ported both functional testing and system-to-system integration. As defects were
found in end-to-end business scenarios, responsive resolutions were managed in hours
or days, not weeks typical for larger enterprise systems.

Outcomes

In the process, Suncorp has reduced 15 complex personal and life insurance systems to
2 and decommissioned 12 legacy systems. Technical upgrades are done once and rol-
led out across all brands. They have a single code base for customer-facing websites for
all their different brands and products. This enables faster response to customer needs
and makes redundant separate teams each responsible for one website.

From a business point of view, the simpler system has allowed 580 business processes
to be redesigned and streamlined. Teams can now provide new or improved services
according to demand, instead of improving each brand in isolation. It has reduced the

LEAN ENTERPRISE280

18 http://bit.ly/1v73OC3

time to roll out new products and services, such as health cover for APIA customers or
roadside assistance for AAMI customers.

The investment in simplification and management of Suncorp’s core systems means
they can increase their investment in all their touch points with customers. In both
technology and business practices, Suncorp increased their pace of simplification, with
most brands now using common infrastructure, services, and processes.

Suncorp’s 2014 annual report notes that “simplification has enabled the Group to oper-
ate a more variable cost base, with the ability to scale resources and services according
to market and business demand. Simplification activity is anticipated to achieve sav-
ings of $225 million in 2015 and $265 million in 2016.”18

Conclusion
If we want to compete in a world of ever shorter product cycles, central IT
needs to be business units’ trusted partner, not an order-taking cost center. In
turn, IT needs to achieve higher levels of throughput while improving stability
and quality and reducing costs. The complexity of existing enterprise IT envi-
ronments, combined with the amount of planned and unplanned work that
must be done to keep them running, are the chief barriers to achieving these
outcomes.

We can only begin to address these problems when we consider the effects of
new work on IT operations and treat it as an integral part of the product
development lifecycle. To manage the additional complexity introduced by new
products, services, and features, we must start by moving from a project-based
model to a product-centric model, as described in Chapter 10. Product teams
must own the costs and service-level agreements of the systems they build; in
return for this responsibility, they have the freedom to choose the technologies
to use, and to manage their own changes. In this way, we free up people and
resources within central IT to focus on reducing the complexity of their sys-
tems and infrastructure and building a toolchain and platform that enables the
product development lifecycle we describe in this book.

We often treat throughput and stability as opposing forces—increase through-
put and you will reduce quality and stability. However, these goals can be com-
plementary if the correct strategy is in place. As with any improvement effort,
we must start by clearly articulating our goal and identifying the key perfor-
mance indicators we care about. Then, we use the Improvement Kata to work
towards our goal.

281CHAPTER 14: TURN IT INTO A COMPETITIVE ADVANTAGE

http://bit.ly/1v73OC3

Questions for readers:

• Does IT consider itself to be a service provider, a partner to business units,
or a driver of innovation? What do other leaders in the organization
think?

• Are you measuring change lead time, release frequency, time to restore ser-
vice, and change fail rate across all your products and services? Are you
making them visible to all teams?

• How many services did you retire in the last year? And how many did you
add? How long would it take you to find out how many products and
services you are managing? How certain would you be of the answer?
How many of them are running on systems that are no longer officially
supported by the vendor?

• How long does it take to approve a change request? How long does it take
to get a new open source component approved for use in a production
environment?

• How often do you perform a realistic disaster recovery exercise on your
production systems? What is your process for following up on recommen-
dations for improvement that come out of these exercises?

• Do all developers, development leads, and architects rotate through pager
duty and support on a regular basis for the systems they build?

LEAN ENTERPRISE282

C H A P T E R 1 5

Start Where You Are

If you do something and it turns out pretty good, then you should go
do something else wonderful, not dwell on it for too long. Just figure
out what’s next.

Steve Jobs

A year from now you will wish you had started today.
Karen Lamb

Our goal with this book is to inspire you to envision an alternative future for
large organizations. A future that puts employees, customers, and products at
the heart of its strategy. A future where a renewed culture and environment
enable the organization to adapt rapidly to changing market demands.

We have shared stories and lessons learned from a diverse set of organizations
with varied backgrounds and circumstances to highlight that even in complex
environments, you can thrive and address the most challenging problems.
However, the path to success is not likely to be linear, with defined instruc-
tions, milestones, and KPIs. Organizations needed to get comfortable moving
forward with uncertainty and imperfect information, while learning, adjusting,
and developing their people along the way.

The biggest barrier to success in changing the way you work is a conviction
that your organization is too big or bureaucratic to change, or that your spe-
cial context prevents adopting the particular practices we discuss. Always
remember that each person, team, and business that started this journey was
unsure of what paths to take and how it would end. The only accepted truth
was that if they failed to take action, a more certain, negative ending lay
ahead.

283

Principles of Organizational Change
All change is risky, particularly organizational change which inherently
involves cultural change—the hardest change of all, since you are playing with
the forces that give the organization its identity. We are still amazed when lead-
ers plan “organizational change” programs that they expect to complete in
months. Such programs fail to recognize that turning innovation or change
into an event rather than part of our daily work can never produce significant
or lasting results. Periodically funding a new change program in response to
current issues, leadership changes, or market trends without instilling a culture
of experimentation will only achieve short-term incremental change, if any at
all (Figure 15-1). Organizations will quickly slip back to their previous state.
Instead, we must create a culture of continuous improvement through the
deliberate, ongoing practice of everyone in the organization.

Figure 15-1. The reality of “event-based” change programs

If your organization is waiting for an event to stimulate change, you’re already
in trouble. In the current environment and competitive economy, a sense of
urgency should be a permanent state. Survival anxiety always exists in leading
organizations, as we describe in Chapter 11. However, as Schein noted, using it
as a motivator for ongoing change is ineffective. The only path to a culture of
continuous improvement is to create an environment where learning new skills
and getting better at what we do is considered valuable in its own right and is
supported by management and leadership, thus reducing learning anxiety. We
can use the Improvement Kata presented in Chapter 6 to create this culture
and drive continuous improvement (Figure 15-2).

LEAN ENTERPRISE284

1 For free materials on the Improvement Kata and Coaching Kata, see http://bit.ly/1v73SSg.

Figure 15-2. Continuous evolution and adaption to change

In order to propagate the Improvement Kata through organizations, managers
must learn and deploy a complementary practice known as the Coaching Kata1

To start the journey, an advance team including an executive sponsor—ideally,
the CEO—should pilot the Coaching Kata and the Improvement Kata. As this
team will guide wider adoption within the organization, it is imperative that
they understand how it works.

Watch out for the following obstacles:

• Adopting the Improvement Kata requires substantial changes in behavior
at all levels of the organization. The Coaching Kata is used to teach people
the Improvement Kata, but the problem of how to deploy the Coaching
Kata within an organization remains significant.

• Running experiments is hard and requires great discipline. Coming up
with good experiments requires ingenuity and thought. By nature, people
tend to jump straight to solutions instead of first agreeing on measurable
target objectives (outcomes) and then working in rapid cycles—and by
rapid, we mean hours or days—to create hypotheses, test, and learn from
the results. The body of knowledge on how to design and run experiments

285CHAPTER 15: START WHERE YOU ARE

http://bit.ly/1v73SSg

in the context of product development is still in its early stages, and the
necessary skills and techniques are not widely known or understood.

• Ensure there is capacity to run the Improvement Kata. One of the biggest
obstacles teams face when trying to schedule improvement work is that it
is often seen as a distraction from delivery work. This is a fallacy, and the
point must be made early and forcefully. In the HP FutureSmart case, the
reason delivery work was progressing so slowly was that no-value-add
work was driving 95% of their costs. It is vital for executives at the direc-
tor or VP level to ensure that teams limit their work in process as
described in Chapter 7 to create time for improvement work.

• As with all methods, progress is likely to be bumpy at the beginning as
people learn how to work in new ways. Things will get worse before they
get better. Resistance is likely as people learn the new skills, and some will
become frustrated when it conflicts with their existing habits and
behaviors.

Aim Towards Strategy Deployment
Although we discussed the Improvement Kata as a way to drive continuous
improvement at the program level, it can be used at every level from individual
teams up to strategic planning. To apply the Improvement Kata at the strategic
planning level, start by agreeing on the purpose of the organization. What is it
that we aim to do for our customers? Then, those participating in the strategic
planning exercise must define and agree upon the overall direction of the com-
pany—identify our “true north.”

The next step is to understand and clarify our organization’s current situation.
Participants in the strategic planning exercise should identify which problems
need to be addressed and gather data to better understand each problem. Typi-
cally, even large organizations have limited capacity and can manage only a
handful of initiatives at any one time; choosing what not to focus on and mak-
ing sure the team sticks to its decision is critical. An economic framework such
as Cost of Delay (see Chapter 7) is useful to stimulate discussion about priori-
tizing work.

Once we have decided what problems to focus on, we need to define our target
conditions. These target conditions should clearly communicate what success
looks like; they must also include KPIs so we can measure our progress
towards the goal. The traditional balanced scorecard approach to KPIs has
four standard perspectives: finance, market, operations, and people and orga-
nization. Statoil, borrowing from the balanced scorecard approach in their
Ambition to Action framework (Chapter 13), added HSE (health, safety, and
environment). The lean movement teaches us to focus on reducing cost and

LEAN ENTERPRISE286

2 [bogsnes], pp. 125–126.

3 For a detailed description of Ambition to Action, see [bogsnes], pp. 114–169.

4 [bogsnes], p. 124.

5 Find out more about strategy deployment in Chapter 3 of Karen Martin’s The Outstanding
Organization [martin-12], and read a case study at http://www.lean.org/Search/Documents/
54.pdf.

improving quality, delivery, morale, and safety (these five “lean metrics” are
sometimes abbreviated as QCDMS). Bjarte Bogsnes, vice president of Perfor-
mance Management Development at Statoil, recommends choosing 10–15
KPIs and preferring relative targets that connect input with outcomes (for
example, unit cost rather than absolute cost) and are based on comparison
with a baseline (for example, “10% higher return on capital investment than
our leading competitor”).2

The target objectives at the strategic level form the direction for the next
organizational level, which then goes through its own Improvement Kata pro-
cess. The target objectives at this level then form the direction for the next
organizational level down, as shown in Figure 15-3. This process, allowing us
to set targets and manage resources and performance by creating alignment
between levels in the organization, is called strategy deployment (otherwise
known as Hoshin or Hoshin Kanri; Ambition to Action is a variation of strat-
egy deployment).3

The process of creating alignment and consensus between levels is critical. In
strategy deployment, this process is described as catchball, a word chosen to
evoke a collaborative exercise. The target conditions from one level should not
be transcribed directly into the direction for teams working at the level below;
catchball is more about translation of strategy, with “each layer interpreting
and translating what objectives from the level above mean for it.”4 We should
expect that feedback from teams will cause the higher-level plan to be updated.
Don’t subvert Hoshin by using it to simply cascade targets down through the
organization: the key to Hoshin is that it is a mechanism for creating align-
ment based on collaboration and feedback loops at multiple levels.

The time horizons for each level should be clearly defined, and regular review
meetings scheduled, with target objectives updated based on the progress of
the next-level teams. To be truly effective, this conversation must also be cross-
functional, promoting cooperation along value streams, within and between
business units. It’s not easy, as it requires honest listening to the ideas and con-
cerns of the people responsible for results—and responding by adjusting the
plans based on feedback.5

287CHAPTER 15: START WHERE YOU ARE

http://www.lean.org/Search/Documents/54.pdf
http://www.lean.org/Search/Documents/54.pdf

Figure 15-3. Using catchball to drive strategic alignment of objectives and initiatives

A top-level strategy planning exercise can have a horizon of six months to a
few years, depending on what is appropriate to your business. Review meet-
ings should be held at least monthly where the team, along with the leaders of
all teams that report to them, gather to monitor progress and update target
conditions in response to what they discover. Teams at lower levels will typi-
cally work to a shorter horizon, with more frequent review meetings.

Strategy deployment is an advanced tool that depends on the aligned culture
and behaviors, as we describe in Chapter 11. The main goal is to create con-
sensus and alignment and enable autonomy across the organization, following
the Mission Command paradigm presented in Chapter 1. Let’s look at how the
UK government applied a version of strategy deployment to transform its use
of digital platforms to provide services to citizens, starting small and growing
iteratively and incrementally.

LEAN ENTERPRISE288

6 [lane-fox]

7 http://bit.ly/1F7yvbs

8 [lane-fox]

The UK Government Digital Service
The UK government, like many others, has recognized the potential of the
Internet “both to communicate and interact better with citizens and to deliver
significant efficiency savings.”6 However, government projects involving soft-
ware development have a checkered past. The UK government had several
large IT projects go enormously over budget while failing to deliver the
expected benefits, culminating in the “National Programme for IT” debacle.
The world’s biggest civil information technology program, supposed to deliver
a completely new IT infrastructure for the British National Health Service and
a computerized patient record system, was projected to cost £2.3bn at its
inception in 2002. Its delivery was outsourced to multiple private sector pro-
viders including Accenture, Computer Sciences Corporation, Fujitsu, and Brit-
ish Telecom. Despite the cancellation of the programme in 2011, it is expected
to end up costing over £10bn.

The government procurement process for large IT projects involved writing a
complete specification for the product, creating several business cases at
increasing levels of detail, and then putting the contract out for bidding—a
process that required one to two years before work could even start on the
product. “By which time,” comments Francis Maude, Minister for the UK’s
Cabinet Office, “it will almost certainly be out of date. You’re locked into a
supplier, it’s really expensive to make changes.”7

As a result of the outsourcing of IT projects, every government department had
their own independently designed and operated web presence, with dissimilar
user experiences that reflected each department’s internal organization. It was
complicated and extremely painful for citizens to use, so they preferred to use
more expensive channels of service such as walk-in, mail, and phone services.

In 2010, Martha Lane Fox, co-founder of UK startup lastminute.com, was
commissioned to advise the UK government on its strategy for online delivery
of public services. Her report recommended creating a central team of civil
servants responsible for designing and delivering the government’s online pres-
ence, implementing an open data policy whereby all government data was
made available through public APIs, and appointing a CEO “with absolute
authority over the user experience across all government online services (web-
sites and APIs) and the power to direct all government online spending.”8 Thus
the UK’s Government Digital Service (GDS) was born. Martha Lane Fox

289CHAPTER 15: START WHERE YOU ARE

http://bit.ly/1F7yvbs

described her goals for the GDS as follows: “For me, the acid test…is whether
it can empower, and make life simpler for, citizens and at the same time allow
government to turn other things off. A focus on vastly increasing the range,
usage, and quality of online transactions will deliver the greatest impact: less
hassle for citizens & businesses, and greater efficiency.”

Government Digital Service Case Study, by Gareth Rushgrove
GOV.UK is the new single domain for all central government services in the UK. It was
launched in October 2012 and replaced two of the largest existing government web-
sites on day one, going on to replace all central government department sites over the
next few months. By 2014 we will have closed thousands of websites and built a single
service that is simpler, clearer, and faster, covering everything from information about
benefits you may be eligible for to how to apply for a passport.

One aspect of GOV.UK that sets it apart from a typical government project is that it was
developed nearly completely in-house, by civil servants working for the newly formed
Government Digital Service (GDS), part of the UK Cabinet Office. It was also built itera-
tively, cheaply, and using agile methods and technologies more commonly associated
with startups than large organizations. Here is a description of how that was done.

Alpha and Beta

By late 2013 the team running GOV.UK had over 100 people—but it didn’t start that
way. In fact, the first version wasn’t even called GOV.UK. An Alpha version was built by
14 people working from a small back room in a large government building. Its aim
wasn’t to be a finished product but to provide a snapshot of what a single government
website could be, and how it could be built quickly and cheaply. In total, the Alpha
took 12 weeks and cost £261,000.

The feedback from users of the Alpha led directly to work on a Beta, which scaled up
the Alpha proposition and involved more people from across government. The first
release of the Beta was six months after the Alpha project shipped, but this included
time to build up the team. The first public Beta release was a real government website,
but at the time it lacked all the content and features needed to replace the existing
main government sites. Eight months of constant iterations later, with the team up to
140 people and with new content and features added daily, traffic was redirected from
two of the largest government websites to the new GOV.UK.

All this work paid off. During the financial year 2012–2013, GDS saved £42 million by
replacing the Directgov and BusinessLink websites with GOV.UK. In 2013–2014, it is
estimated GDS will save £50 million by closing more websites and bringing them onto
the single domain.

LEAN ENTERPRISE290

Multidisciplinary Teams

The Government Digital Service is made up of specialists in software development,
product management, design, user research, web operations, content design, and
more, as well as specialists in government policy and other domain-specific areas. From
this group of specialists, teams were formed to build and run GOV.UK. Those teams did
not have a narrow focus, however; most of them were multidisciplinary, made up of
people with the right mix of skills for the tasks at hand.

As an example, the team that worked on the initial stages of the Beta of GOV.UK consis-
ted of seven developers, two designers, a product owner, two delivery managers, and
five content designers. Even within these disciplines, a wide range of skills existed. The
developers had skills ranging from frontend engineering to systems administration.

By employing multidisciplinary teams, the end-to-end responsibility for entire prod-
ucts or individual tasks could be pushed down to the team, removing the need for
large-scale command and control. Such small self-contained teams had few dependen-
cies on other teams so could move much more quickly.

This multidisciplinary model also helped to minimize problems typical in large organi-
zations with siloed organizational structures. For instance, the Government Digital Ser-
vice has grown over time, adding experts in government information assurance, pro-
curement, and IT governance to avoid bottlenecks and improve the prioritization of
resources.

Continuous Delivery

An important aspect of the success of GOV.UK has been constant improvement based
on user feedback, testing, and web analytics data. The GOV.UK team releases new soft-
ware on average about six times a day—with all kinds of improvements, from small
bug fixes to completely new features, to the site and supporting platforms.

After the launch of the Beta of GOV.UK, one of the product managers, with bad memo-
ries of releasing software at other organizations, asked whether the software deploy-
ment mechanism was really going to work. The answer was “yes”: at that point, GDS
had done more than 1,000 deployments, so there was a high level of confidence. Prac-
ticed automation makes perfect.

This rate of releases is not typical for large organizations where existing processes
sometimes appear designed to resist all change. The development teams working on
GOV.UK worked extensively on automation, and they had in-depth conversations with
people concerned about such rapid change. The key term when discussing this
approach was risk—specifically, how regular releases can manage and minimize the
risks of change.

Most people are bad at undertaking repetitive tasks, but computers are perfect for
automating these tasks away. Deployment of software, especially if you are going to do
it regularly, is a great candidate for automation. With the development and operation
of GOV.UK, this was taken even further: provisioning of virtual machines, network con-
figuration, firewall rules, and the infrastructure configuration were all automated. By
describing large parts of the entire system in code, developers used tools like version
control and unit testing to build trust in their changes, and focused on a smaller set of

291CHAPTER 15: START WHERE YOU ARE

9 http://bit.ly/1v73X8w

10 Reuters: “As Obamacare tech woes mounted, contractor payments soared,” http://reut.rs/
1v741oJ.

11 http://bit.ly/1v742ZT

well-practiced processes rather than a separate process (and requisite specialist skills)
for each type of change.

Other techniques helped too. A relentless focus on users and a culture of trust from the
very top of the organization have put GDS in a position to take much of what it learned
building and running GOV.UK and use that to transform the rest of the UK government.

The GDS approach has been adopted by all arms of the government, with
transformative results for citizens. To take just one example, the UK Ministry
of Justice Digital Team recently worked with the National Offender Manage-
ment Service and HM Prison Service to change the way people book prison
visits. Previously, visitors had to request paper forms to be mailed out and then
got on the phone to book a visit. Requests were often rejected because the date
was unavailable, forcing people to start over. Now, prison visits can be booked
online in 5 minutes, selecting from up to three dates.9

Not everybody is thrilled with the idea of governments growing their own IT
capabilities. Tim Gregory, the UK president of CGI, the biggest contractor for
the US HealthCare.gov website that received a contract valued at $292 million
through 2013 before being replaced by Accenture in January 2014,10 argues
that the GDS approach will make it unprofitable for large outsourcing vendors
to bid for government projects. GDS Executive Director Mike Bracken
describes Gregory’s view as “beyond parody.”11

There are several observations to be made from the GDS case study.

First, starting small with a cross-functional team and gradually growing the
capability of the product, while delivering value iteratively and incrementally,
is an extremely effective way to mitigate the risks of replacing high-visibility
systems, while simultaneously growing a high-performance culture. It provides
a faster return on investment, substantial cost savings, and happier employees
and users. This is possible even in a complex, highly regulated environment
such as the government.

Second, instead of trying to replace existing systems and processes in a “big
bang,” the GDS replaced them incrementally, choosing to start where they
could most quickly deliver value. They took the “strangler application” pat-
tern presented in Chapter 10 and used it to effect both architectural and organ-
izational change.

LEAN ENTERPRISE292

http://bit.ly/1v73X8w
http://reut.rs/1v741oJ
http://reut.rs/1v741oJ
http://bit.ly/1v742ZT

12 GDS Governance principles, http://bit.ly/1v747fT.

13 In fact, the relatively low probability of a startup “exiting” successfully means that, for purely
financial reasons, you’d be crazy to prefer a job at a startup over a solid position at (say) Goo-
gle, as shown on slides 6–15 at http://slidesha.re/1v6ZQZZ.

14 These principles are partly inspired by John Kotter’s eight-step process described in [kotter]:
establish a sense of urgency, create the guiding coalition, develop a vision and strategy, commu-
nicate the change vision, empower broad-based action, generate short-term wins, consolidate
gains and produce more change, anchor new approaches in the culture.

Third, the GDS pursued principle-based governance. The leadership team at
GDS does not tell every person what to do but provides a set of guiding princi-
ples for people to make decisions aligned to the objectives of the organization.
The GDS governance principles state:12

1. Don’t slow down delivery.

2. Decide, when needed, at the right level.

3. Do it with the right people.

4. Go see for yourself.

5. Only do it if it adds value.

6. Trust and verify.

People are trusted to make the best decisions in their context, but are account-
able for those decisions—in terms of both the achieved outcomes and knowing
when it is appropriate to involve others.

Finally, the GDS shows that extraordinary levels of compensation and using a
private sector model are not decisive for creating an innovation culture. GDS is
staffed by civil servants, not Silicon Valley entrepreneurs with stock options.13

An innovation culture is created by harnessing people’s need for mastery,
autonomy, and purpose—and making sure people are deeply committed to the
organization’s purpose and the users they serve.

Begin Your Journey
Use the following principles for getting started:14

Ensure you have a clearly defined direction
The direction should succinctly express the business or describe organiza-
tional outcomes you wish to achieve in measurable terms, even if they look
like an unachievable ideal. Most importantly, it should inspire everyone in
the organization. Think of HP FutureSmart’s goal of 10x productivity
improvement.

293CHAPTER 15: START WHERE YOU ARE

http://bit.ly/1v747fT
http://slidesha.re/1v6ZQZZ

15 [manns]

Define and limit your initial scope
Don’t try to change the whole organization. Choose a small part of the
organization—people who share your vision and have the capability to
pursue it. As with the GDS, start with a single, cross-functional slice, per-
haps a single product or service. Make sure you have support at all levels
from executives down and from shop floor up. Create target objectives,
but don’t overthink them or plan how to achieve them. Ensure the team
has what they need to experiment, follow the Improvement Kata, and
iterate.

Pursue a high-performance culture of continuous improvement
Perhaps the most important outcome of deploying the Improvement Kata
is to create an organization in which continuous improvement is a habit.

Start with the right people
New ways of working diffuse through organizations in the same way other
innovations do, as we describe at the beginning of Chapter 2. The key is to
find people who have a growth mindset (see Chapter 11) and are comfort-
able with trying out new ideas. Once you have achieved positive results,
move on to the early adopters, followed by the early majority. The rest is
relatively easy, because there’s nothing the late majority hates more than
being in the minority. This approach can be applied for each of the three
horizons described in Chapter 2.

Find a way to deliver valuable, measurable results from early on
Although lasting change takes time and is never completed, it is essential
to demonstrate real results quickly, as the GDS team did. Then, keep doing
so to build momentum and credibility. In fact, the Improvement Kata
strategy is designed to achieve this goal, which we hope will make it
attractive to executives who typically have to demonstrate results quickly
and consistently on a tight budget.

As you experiment and learn, share what works and what doesn’t. Run regular
showcases inviting key stakeholders in the organization and your next adop-
tion segment. Hold retrospectives to reflect on what you have achieved and use
them to update and refine your vision. Always, keep moving forward. Fear,
uncertainty, and discomfort are your compasses toward growth. You can start
right now by filling out the simple one-page form shown in Figure 15-4 (see
Chapter 11 for more details on target conditions). For more on how to create
sustainable change, particularly in the absence of executive support, we recom-
mend Fearless Change: Patterns for Introducing New Ideas by Mary Lynn
Manns and Linda Rising.15

LEAN ENTERPRISE294

Figure 15-4. Draft transformation plan

Conclusion
Creating a resilient, lean enterprise that can adapt rapidly to changing condi-
tions relies on a culture of learning through experimentation. For this culture
to thrive, the whole organization must be aware of its purpose and work con-
tinuously to understand the current conditions, set short-term target condi-
tions, and enable people to experiment to achieve them. We then reassess our
current conditions, update our target conditions based on what we learned,
and keep going. This behavior must become habitual and pervasive. That is
how we create a mindset of continuous improvement focused on ever higher
levels of customer service and quality at ever lower costs.

These principles are the threads that link all scientific patterns together.
Whether you’re seeking a repeatable business model through the Lean Startup
learning loop, working to improve your product through user research and
continuous delivery, or driving process innovation and organizational change
using PDCA cycles of the Improvement Kata—all that is based on a disci-
plined, rigorous pursuit of innovation in conditions of uncertainty. That the
same principles are at the heart of both lean product development and effective
process and cultural change was an epiphany for the authors of this book, but
perhaps it should not be a surprise—in both cases we face uncertainty and
have to deal with a complex adaptive system whose response to change is

295CHAPTER 15: START WHERE YOU ARE

unpredictable. Both these situations call for iterative, incremental progress,
achieved through human creativity harnessed by the scientific method.

Organizations must continually revisit the question: “What is our purpose, and
how can we organize to increase our long-term potential and that of our cus-
tomers and employees?” The most important work for leaders is to pursue the
high-performance culture described in this book. In this way, we can prosper in
an environment of constant advances in design and technology and wider
social and economic change.

LEAN ENTERPRISE296

Bibliography

• [adzic] Adzic, G. (2012). Impact Mapping: Making a Big Impact with
Software Products and Projects. Provoking Thoughts.

• [anderson] Anderson, D. (2010). Kanban: Successful Evolutionary Change
for Your Technology Business. Blue Hole Press.

• [argyris] Argyris, C. and Schön, D. (1978). Organizational Learning: A
Theory of Action Perspective. Addison Wesley.

• [arnold] Arnold, J. and Yüce, Ö. (2013). “Black Swan Farming Using Cost
of Delay: Discover, Nurture and Speed Up Delivery of Value.” Agile Con-
ference, 2013: 101–116.

• [baghai] Baghai, M., Coley, S., and White, D. (1999). The Alchemy of
Growth. Texere.

• [bell] Bell, S. C. and Orzen, M. A. (2011). Lean IT. Productivity Press.

• [bertrand] Bertrand, M. and Mullainathan, S. (2004). “Are Emily and
Greg More Employable Than Lakisha and Jamal? A Field Experiment on
Labor Market Discrimination?” American Economic Review, vol. 94, no.
4: 991–1013.

• [betz] Betz, C. (2006). Architecture and Patterns for IT Service Manage-
ment, Resource Planning, and Governance: Making Shoes for the Cob-
bler’s Children. Morgan Kaufmann.

• [blank] Blank, S. (2005). The Four Steps to the Epiphany: Successful
Strategies for Products That Win. K&S Ranch Press.

• [bodek] Bodek, N. (2004). Kaikaku: The Power and Magic of Lean. PCS
Press.

297

• [bogsnes] Bogsnes, B. (2009). Implementing Beyond Budgeting. John
Wiley & Sons.

• [bossavit] Bossavit, L. (2013). The Leprechauns of Software Engineering:
How Folklore Turns into Fact, and What to Do About It. Leanpub.
https://leanpub.com/leprechauns, 2013-11-20 edition.

• [bungay] Bungay, S. (2010). The Art of Action: How Leaders Close the
Gaps Between Plans, Actions, and Results. Nicholas Brealey Publishing.

• [cagan] Cagan, M. (2008). Inspired: How to Create Products Customers
Love. SVPG Press.

• [ceci] Ceci, S. J. and Williams, W. M. (2010). “Gender Differences in
Math-Intensive Fields.” Current Directions in Psychological Science, 19:
275–279.

• [cediey] Cédiey, E., Foroni, F., and Garner, H. (2008). “Discrimination à
l’embauche fondée sur l’origine à l’encontre des jeunes français(e)s peu
qualifié(e)s.” Premières Infos Premières Synthèses, 06.3.

• [creveld] Creveld, M. van, Brower, K., and Canby, S. (1994). Air Power
and Maneuver Warfare. Air University Press. Freely available at https://
archive.org/details/airpowermaneuver00mart.

• [crispin] Crispin, L. and Gregory, J. (2009). Agile Testing: A Practical
Guide for Testers and Agile Teams. Addison-Wesley.

• [croll] Croll, A. and Yoskovitz, B. (2012). Lean Analytics: Use Data to
Build a Better Startup Faster. O’Reilly.

• [dekker] Dekker, S., Hollnagel, E., Woods, D., and Cook, R. (2008). Resil-
ience Engineering: New Directions for Measuring and Maintaining Safety
in Complex Systems. Lund University School of Aviation.

• [deming] Deming, W. E. (2000). Out of the Crisis. MIT Press.

• [CIMA] Edwards, S. (2008). Activity Based Costing: Topic Gateway Series
No 1. CIMA.

• [farris] Farris, P. W., Bendle, N. T., Pfeifer, P. E., and Reibstein, D. J.
(2010). Marketing Metrics: The Definitive Guide to Measuring Marketing
Performance. 2nd ed. Pearson.

• [forrester] Forrester Consulting (2013). “Continuous Delivery: A Maturity
Assessment Model.” Can be accessed at http://thght.works/1zkLGlz.

• [forsgren] Forsgren, N., Kim, G., Kersten, N., and Humble, J. (2014).
2014 State of DevOps Report. PuppetLabs.

• [freeman] Freeman, S. and Price N. (2009). Growing Object-Oriented
Software, Guided by Tests. Addison-Wesley.

BIBLIOGRAPHY298

https://leanpub.com/leprechauns
https://archive.org/details/airpowermaneuver00mart
https://archive.org/details/airpowermaneuver00mart
http://thght.works/1zkLGlz

• [gilb-88] Gilb, T. (1988). Principles of Software Engineering Management.
Addison-Wesley.

• [gilb-05] Gilb, T. (2005). Competitive Engineering: A Handbook for Sys-
tems Engineering, Requirements Engineering, and Software Engineering
Using Planguage. Butterworth-Heinemann.

• [goldin] Goldin C. and Rouse C. (2000). “Orchestrating Impartiality: The
Impact of ‘Blind’ Auditions on Female Musicians.” American Economic
Review, 90, no. 4: 715–741.

• [gothelf] Gothelf, J. and Seiden, J. (2013). Lean UX: Applying Lean Princi-
ples to Improve User Experience. O’Reilly.

• [gray] Gray, D., Brown, S., and Macanufo, J. (2010). Gamestorming.
O’Reilly.

• [groysberg] Groysberg, B. (2010). Chasing Stars: The Myth of Talent and
the Portability of Performance. Princeton University Press.

• [gruver] Gruver, G. (2012). A Practical Approach to Large-Scale Agile
Development: How HP Transformed LaserJet FutureSmart Firmware.
Addison-Wesley.

• [hope] Hope, J. and Fraser, R. (2003). Beyond Budgeting: How Managers
Can Break Free from the Annual Performance Trap. Harvard Business
School Press.

• [hubbard] Hubbard, D. (2010). How to Measure Anything: Finding the
Value of “Intangibles” in Business. 2nd ed. Wiley.

• [humble] Humble, J. and Farley, D. (2010). Continuous Delivery: Reliable
Software Releases through Build, Test and Deployment Automation.
Addison-Wesley.

• [isaac] Isaac, C., Lee, B., and Carnes, M. (2009). “Interventions That
Affect Gender Bias in Hiring: A Systematic Review.” Academic Medicine,
84: 1440–1446.

• [COBIT5] ISACA (2012). COBIT 5 Framework. ISACA and ITGI.

• [kahneman] Kahneman, D. (2011). Thinking, Fast and Slow. Farrar, Straus
and Giroux.

• [kane] Kane, S. (2014). Your Startup Is Broken: Inside the Toxic Heart of
Tech Culture. Model, View, Culture.

• [kerth] Kerth, N. (2001). Project Retrospectives: A Handbook for Team
Reviews. Dorset House.

• [kim] Kim, G., Behr, K., and Spafford, G. (2013). The Phoenix Project: A
Novel about IT, DevOps, and Helping Your Business Win. IT Revolution
Press.

BIBLIOGRAPHY 299

• [klein] Klein, F. K. (2007). Giving Notice: Why the Best and Brightest Are
Leaving the Workplace and How You Can Help Them Stay. Jossey-Bass.

• [kohavi] Kohavi, R. (2009). “Online Experimentation at Microsoft.”
http://stanford.io/130uW6X.

• [kotter] Kotter, J. (2012). Leading Change. Harvard Business Review
Press.

• [lane-fox] Lane-Fox, M. (2010). “DirectGov 2010 and Beyond: Revolu-
tion Not Evolution.” Letter to Francis Maude. http://bit.ly/11iByi9.

• [lapouchnian] Lapouchnian, A. (2005). “Goal-Oriented Requirements
Engineering: An Overview of the Current Research.” University of Toronto
Department of Computer Science.

• [liker] Liker, J. (2003). The Toyota Way: 14 Management Principles from
the World’s Greatest Manufacturer. McGraw-Hill.

• [limoncelli] Limoncelli, T. A., Chalup, S. R., and Hogan, C. J. (2014). The
Practice of Cloud System Administration: Designing and Operating Large
Distributed Systems, vol. 2. Addison-Wesley.

• [manns] Manns, M. L. and Rising, L. (2004). Fearless Change: Patterns for
Introducing New Ideas. Addison-Wesley.

• [march] March, J. (1991). “Exploration and Exploitation in Organiza-
tional Learning.” Organizational Science, 2: 71–87.

• [martin-12] Martin, K. (2012). The Outstanding Organization: Generate
Business Results by Eliminating Chaos and Building the Foundation for
Everyday Excellence. McGraw-Hill.

• [martin] Martin, K. and Osterling, M. (2014). Value Stream Mapping:
How to Visualize Work and Align Leadership for Organizational Transfor-
mation. McGraw-Hill.

• [mcgregor] McGregor, D. (1985). The Human Side Of Enterprise: 25th
Anniversary Printing. McGraw-Hill.

• [michaels] Michaels, E., Handfield-Jones, H., and Axelrod, B. (2001). The
War for Talent. Harvard Business School Press.

• [moore] Moore, G. A. (2011). Escape Velocity: Free Your Company’s
Future from the Pull of the Past. HarperCollins.

• [moss-racusin] Moss-Racusin, C. A., Dovidio, J. F., Brescoll, V. L., Gra-
ham, M. J., and Handelsman, J. (2012). “Science Faculty’s Subtle Gender
Biases Favor Male Students.” Proceedings of the National Academy of Sci-
ences of the United States of America, 109, no. 41: 16474–16479.

• [OCG] OCG (2007). ITIL V3, Service Design. TSO.

BIBLIOGRAPHY300

http://stanford.io/130uW6X
http://bit.ly/11iByi9

• [ohno12] Ohno, T. (2012). Taiichi Ohnos Workplace Management: Special
100th Birthday Edition. McGraw-Hill Professional.

• [osterwalder] Osterwalder, A., Pigneur, Y., Smith, A., and 470 practitioners
from 45 countries (2010). Business Model Generation: A Handbook for
Visionaries, Game Changers, and Challengers. Wiley.

• [parnas] Parnas, D. L. (1972). “On the Criteria to Be Used in Decompos-
ing Systems into Modules.” Communications of the ACM, 15, no. 12:
1053–1058.

• [patton] Patton, J. (2014). User Story Mapping: Discover the Whole Story,
Build the Right Product. O’Reilly.

• [pink] Pink, D. H. (2009). Drive: The Surprising Truth About What Moti-
vates Us. Penguin Group.

• [poppendieck-06] Poppendieck, M. and Poppendieck, T. (2006). Imple-
menting Lean Software Development: From Concept to Cash. Addison-
Wesley.

• [poppendieck-09] Poppendieck, M. and Poppendieck, T. (2009). Leading
Lean Software Development: Results Are Not the Point. Addison-Wesley.

• [poppendieck-14] Poppendieck, M. and Poppendieck, T. (2014). The Lean
Mindset: Ask the Right Questions. Addison-Wesley.

• [raynor] Raynor, M. and Ahmed, M. (2013). The Three Rules: How
Exceptional Companies Think. Portfolio.

• [reinertsen] Reinertsen, D. (2009). The Principles of Product Development
Flow: Second Generation Lean Product Development. Celeritas.

• [rogers] Rogers, E. (2003). Diffusion of Innovations, 5th Edition. Free
Press.

• [rother-2010] Rother, M. (2010). Toyota Kata: Managing People for
Improvement, Adaptiveness, and Superior Results. McGraw-Hill.

• [rother] Rother, M. (2014). Improvement Kata Handbook. Available from
http://bit.ly/11iBzlY.

• [rother-2009] Rother, M. and Shook, J. (2009). Learning to See: Value-
Stream Mapping to Create Value and Eliminate Muda. Lean Enterprise
Institute.

• [sackman] Sackman, H., Erikson W. J., and Grant E. E. (1968). “Explora-
tory Experimental Studies Comparing Online and Offline Programming
Performance.” Communications of the ACM, 11, no. 1: 3–11.

• [schein] Schein, E. H. (2009). The Corporate Culture Survival Guide: New
and Revised Edition. Jossey-Bass.

BIBLIOGRAPHY 301

http://bit.ly/11iBzlY

• [schpilberg] Schpilberg, D., Berez, S., Puryear, R., and Shah, S. (2007).
“Avoiding the Alignment Trap in Information Technology.” MIT Sloan
Management Review Fall 2007.

• [seddon] Seddon, J. (1992). I Want You to Cheat!: The Unreasonable
Guide to Service and Quality in Organisations. Vanguard Consulting.

• [semler] Semler, R. (1995). Maverick: The Success Story Behind the
World’s Most Unusual Workplace. Grand Central Publishing.

• [senge] Senge, P. (2010). The Fifth Discipline: The Art & Practice of the
Learning Organization. Doubleday.

• [sobek] Sobek, D. K., II and Smalley, A. (2008). Understanding A3 Think-
ing: A Critical Component of Toyota’s PDCA Management System. Pro-
ductivity Press.

• [stanovich] Stanovich, K. and West, R. (2000). “Individual Differences in
Reasoning: Implications for the Rationality Debate?” Behavioral and
Brain Sciences, 23: 645–726.

• [stewart] Stewart, P., Murphy, K., Danford, A., Richardson, T., Richard-
son, M., and Wass, V. (2009). We Sell Our Time No More: Workers’
Struggles Against Lean Production in the British Car Industry. Pluto Press.

• [taleb] Taleb, N. N. (2012). Antifragile: Things That Gain From Disorder.
Random House.

• [westrum] Westrum, R. (2004). “A Typology of Organizational Cultures.”
Quality & Safety in Health Care, 13: ii22–ii27.

• [westrum-2014] Westrum, R. (2014). “The Study of Information Flow: A
Personal Journey.” Safety Science, 67: 58–63.

• [widener] Widener, S. K. (2007). “An Empirical Analysis of the Levers of
Control Framework.” Accounting, Organizations and Society, 32, no. 7–8:
757–788.

• [williams] Williams, B. and Chuvakin, A. (2012). PCI Compliance, Third
Edition: Understand and Implement Effective PCI Data Security Standard
Compliance. Syngress.

• [womack] Womack, J. P. and Jones, D. T. (2010). Lean Thinking: Banish
Waste and Create Wealth in Your Corporation. 2nd ed. Simon and Schus-
ter.

• [yu] Yu, E., Giorgini, P., Maiden, N., and Mylopoulos, J. (2010). Social
Modeling for Requirements Engineering. MIT Press.

BIBLIOGRAPHY302

Index

Symbols
3D printing, xiv
3M, 39, 190, 224

A
A/B testing, 32, 178-186, 270
A3 Thinking, 83, 102, 122
AAMI, 281
Accenture, 289, 292
access control, 232, 236
accountability, 89, 233
Ackoff, Russell L., 217
acqui-hiring, 39
acquisition, 100
actionable metrics, 90
activation, 92
activity accounting, 113, 129, 249,

253-255
Adzic, Gojko, 174, 176
Aetna, 40
affiliates, 100
Affordable Care Act, 40
Alcoa, 117
alignment gap, 14
Allspaw, John, 218, 270
Amazon

A/B testing at, 32, 180
Data Mining and Personalization

group, 179

deployments at, 155-156, 195
Game Days, 273
growth strategy of, 70, 100, 104,

190-193
innovations at, 39
Marketplace, 39, 100, 104
performance of, 19, 268
portfolio management at, 36
recommendations engine, 185
security at, 271
systems replacement at, 199
Web Services, 100, 191

Ambition to Action, 249, 286
Anderson, David J., 143
andon cord, 6, 9
AOL Instant Messenger (AIM), 100
APIA (Australian Pipeline Industry Asso-

ciation), 281
Apple, xiv

AppStore, 100
creating mouse for, 73
growth strategy of, 70, 100
Macintosh, 125, 155
portfolio management at, 36

Application Programming Interfaces
(APIs), 192

architectural epics, 176
Argyris, Chris, 120
ARM CPU, 29

INDEX 303

Arnold, Joshua J., 134-136
artifacts, 211
auditing, 165
Auftragstaktik, 12-15
authority, 195, 198, 233
autonomy, 213-214

B
backlog grooming, 186
Balanced Scorecard, 249
banner ads, 100
batches

releasing, 157
size of, 144, 156, 159, 184, 197

Bell, Steve, 49
Bertolini, Mark, 41
Betz, Charles, 266
Bezos, Jeff, 190-191
big bang approach, 32, 104, 170, 193,

199, 201, 241
Big Rewrite, 99
Bing, 179
Blank, Steve, 24, 26, 68, 73
Blockbuster, 68
Bock, Laszlo, 222
Bodek, Norman, 225, 273
Boeing, 190
Bogsnes, Bjarte, 287
Borealis, 249
Bottcher, Evan, 266
Boyd, John, 54-57
Bracken, Mike, 292
branch-based development, 114-115
Brin, Sergey, 224
bring your own device (BYOD), 274
British National Health Service, 289
British Telecom, 289
Brodzinski, Pawel, 147
Brown, Tim, 185
Buckley, Scott, 280
budgeting

annual cycles for, 31, 246-250
approaches to, 17, 247
basing business decisions on, 246, 253
measuring performance against, 247,

253-256
replacing with rolling forecasts, 250

build-measure-learn loop, 57
building the right thing, 48, 63, 81, 88,

171
Bungay, Stephen, 13-15, 17
bureaucratic organizations, 9

acqui-hiring in, 39
experimental approach in, 60
hiding information in, 16, 56
innovations in, 94
not achieving target conditions in, 124

business cases, 45-53
Business Model Canvas, 68-71
business models

disrupting, 67, 70
evaluating, 28-32
exploiting, 26, 32-39
measuring changes in, 92
new, experimenting with, 37, 68, 88
simplified, 49
testing, 49-50, 78

business plans, 17, 68, 250
business process changes, 279

C
Cagan, Marty, 77, 80, 266
CapEx/OpEx model, 247, 256-258
cardholder data environment (CDE),

242-243
Carr, Nicholas, 266
catchball, 287
CCS Insight, xiv
Change Advisory Board, 267
change approval processes, 165, 237, 268
change control systems, 165-166
change management process, 232, 267
Chaos Monkey, 274
chasm, 22, 103
chatty services, 193
Christiensen, Clayton, 38
churn rate, 100
CIA (Central Intelligence Agency), 271
Clausewitz, Carl von, 12-14
clouds, 271-272
Coaching Kata, 121, 285
COBIT (Control Objectives for Informa-

tion and Related Technology),
234-235, 238

INDEX304

Cockcroft, Adrian, 270
cohort, 91
collaboration, 104

and financial constraints, 248
effective, 191
improving, 241
reduced, 197, 235
rewarding for, 35, 222

command and control, 11, 17, 235
commercial off-the-shelf (COTS), 278

customizing, 279
evaluating, 53
implementing, 30

compensating controls, 243
compensation reviews, 224
competitive advantages, 8, 10, 102

and IT, 266-281
for enterprises, 19, 73
from innovations, 22, 66
limited timeframe for, 68

competitors
acquiring, 23
disrupting, 57
opening information to, 8, 18

complex adaptive systems, 14-16, 194,
218

compliance, 233
different demands for, 242
feedback on, 241-242
measuring, 236-237
monitoring, 234
reduced, 235
smallest possible changes for, 243

Computer Sciences Corporation, 289
confirmation bias, 56
conscious decisions, 55
continuous delivery, 34, 118, 156-166,

291
and change control, 165-166
and service-oriented architecture, 193,

199
goal of, 156

continuous improvement, 6, 9, 17, 34,
109, 111-130
and financing, 251
and process control, 190
for GRC processes, 232
for organizational changes, 284

continuous integration (CI), 99, 114,
127, 159-162, 201
budgeting for, 130
objections to, 161
scaling effectively, 160

contract performance, 260
convergent thinking, 67
Conway, Melvin, 202
Conway’s Law, 193
Cook, Richard, 218
Cook, Scott, 82
Cost of Delay, 135-136, 147-152, 237,

242, 252, 286
assumptions for, 151
consequences of, 150
for performance improvements, 180
time sensitivity of, 151

cost of delay divided by duration (CD3),
135-136, 150, 200

costs
approving, 247
managing, 186
of delivering value, 247, 260
operating, 251-252, 256-258
reducing, 272
visibility of, 249

creativity, 235
crisis, 215
Croll, Alistair, 90
culture, 17-19, 209-228

and differences between individuals,
219

constantly changing, 209
definition of, 210
evolving, 2
high-performance, 10-11, 19, 73,

111-112, 217
high-trust, 6, 30, 240, 242, 248, 268
layers of, 211
measuring, 11, 210-213
of continuous improvement, experi-

mentation, and innovation, 9, 35,
104, 116

of fear, 9, 56, 216
of responsibility and ownership, 256
transforming, 39, 98, 213-218

cumulative flow diagram, 144
customer acquisition cost, 93

INDEX 305

customer churn, 82
customer lifetime value (CLV), 93, 179
customer success metrics, 93
customers

access to, 73
acquiring new, 23, 26, 95, 100
addicted to the product, 100
delivering value to, 30, 32, 91
empathy for, 72, 98
engaged, 103
feedback from, 73, 82, 95, 184, 191
in a mature market, 24
personal habits of, 74-75
satisfaction of, 136
understanding, 72-74
vs. users, 64

Cybertrust, 237
Cynefin framework, 14

D
Dalzell, Rick, 191
dark launching, 168, 270
data sovereignty, 272
Dekker, Sidney, 218
delivery teams

and compliance, 236-238, 241-242
cross-functional, 156
managing, 234
no-value-add activities of, 235

Dell, 70
demand, managing, 128
Deming cycle, 57, 119
Deming, W. Edwards, 56, 220, 258
deployment pipeline, 156, 162-166

developed in-house, 272
security tests in, 241

deployments
blue-green, 167
by teams, autonomous, 195
decoupled from releases, 167-168, 182
frequency of, 268
of a failed product, 184
push-button, 156-158, 162, 165

design thinking, xiv, 185
combined with Lean Startup, 64

dev complete, 161, 197
development costs

estimating, 46
reducing, 126-127

DevOps movement, 265, 267
digital cameras, inventing, 38
Dimensions of the Learning Organization

Questionnaire (DLOQ), 210
directed opportunism, 15
direction, 117, 293
disasters, testing for, 273-274
Discovery, 64-76
disruption, 54

avoiding with new repertoire, 57
of business models, 67

divergent thinking, 67
double-loop learning, 120
Duhigg, Charles, 74
Dweck, Carol, 220-222
Dynamic Priority List, 135
dynamic resource allocation, 251-251

E
eBay

competitors for, 104
growth strategy of, 100

EC2, 191
effects gap, 14
elevator pitch, 83
email, software for, 278
empathy

for coworkers, 141
for customers and users, 72-74, 98

empowerment, 233
enterprises

acquiring startups, 19, 39, 102
agile, 129
and big bang approach, 31
architecture of, 198-202
as human systems, 9
balancing portfolio in, 35-40
change control in, 165-166
decentralizing decision making in, 152
definition of, 1
disrupting, 12, 38-41
growth strategies for, 26, 100
interactions between components in,

14
investing in people, 223-225

INDEX306

kaikaku in, 48
long-term survival of, xiv
performance of, 141
reorganizations in, 196
structuring, 194-198
successful, 1, 26
vs. startups, 73, 223

environment, impact on, 2
espoused values, 206, 211
estimation, 186
Etsy, 181-184, 270

deployments at, 195
PCI-DSS compliance in, 242-243

executives
controlling business decisions, 179,

185
delusional optimism of, 33
responsibilities of, 2

exit criteria, 122
expand growth strategy, 100
expected opportunity loss (EOL), 53
expected value of information (EVI), 52
experimental approach, 50-60
experiments

by autonomous teams, 195
cheap and quick, 27, 29, 74, 98, 156,

180, 196
designing, 177, 185, 285
funding approval for, 196
key outcome for, 178
on real users, 158
online controlled, 177-181
overall evaluation criteria for, 177,

179
reducing uncertainty with, 50
running series of, 49-50
safe to fail, 28, 181, 186
testing, 161, 233

exploit phase, 25, 32-39, 109-202
growth strategies for, 103

exploratory testing, 156
explore phase, 24-32, 43-105, 251

costs of, 251, 257
extrinsic motivation, 7, 212

F
F-16 fighter jet, 54

Facebook
release process at, 168
testing at, 273
viral growth of, 100

failure demand, 113, 126
failures, 217-218

attitude to, 220
identifying causes of, 217-218
learning from, 102, 223, 273
punishing for, 11, 35, 130, 214
responsibility for, 206-207
testing for, 273-274

fear
in pathological culture, 9, 56
increasing, 216

feature branches, 160
feature churn, 176
feature injections, 178
features

batched up into projects, 33, 135, 147
breaking into incremental changes,

135, 159, 268
estimating value of, 135
granting access to, 168
new, vs. legacy systems, 276
prioritizing, 135, 145, 148-150
releasing, 182, 270
rewarding for, 197
testing, 179-181, 275

FedEx, xiv
feedback loops

and organizational culture, 9
delays in, 16
effective, 31, 198
on compliance activities, 241-242
to improve quality of service, 191
via MVPs, 80
with continuous delivery, 34

financial management processes (FMPs),
17, 245-262
decentralizing, 253

fitness function, 192
Five Ws and One H, 83
fixed mindset, 222
flow, 184
Forbes, xiv
Force.com, 100
Ford, xiv

INDEX 307

forecasting, 246
Forrester, 270
Fortune 500 companies, xiii, 252
Foster, Richard, xiii
Fowler, Martin, 99, 199
Fox, Martha Lane, 289
Fraser, Janice, 177
Freire, Paulo, 213
Fremont Assembly plant, 5, 18, 215
friction, 14
Fujitsu, 289
Furber, Steve, 29
future-state value streams, 138, 142-143
fuzzy front end, 47-48, 134

G
Gallup, 211
Gamestorming, 66
GE (General Electric), xv, 190
gemba, 73, 102, 130
genchi genbutsu, 73
gender bias, 225-228
generative organizations, 10, 58

managing demand in, 128
not achieving target conditions in, 124
observing IGT in, 56
using metrics in, 130

Gervais, Ricky, 212
getting out of the building, 73
Gilb, Tom, 124
Github, 274
Gladwell, Malcolm, 219
GM (General Motors), xv, 5-9, 259
goal-oriented requirements engineering,

174
Google, 293

AdSense, 224
continuous integration at, 159
Disaster Recovery Testing (DiRT), 273
innovations at, 40, 224
News, 224
performance of, 19, 268
portfolio management at, 36
product teams at, 269
recruiting at, 222
reverting bad changes at, 162
security at, 271

Site Reliability Engineers (SREs), 269
Gore Company, 195
Gothelf, Jeff, 64, 177
GOV.UK, 290-292
governance, risk, and compliance (GRC),

232-244
applying lean principles to, 235-238
changes to, 234-235
measuring, 237
responsibility of outcomes for, 236
vs. management, 234

Government Digital Service (GDS),
289-294

Gray, David, 66
Gregory, Tim, 292
growth hypothesis, 26, 102
growth metrics, 93
growth mindset, 220-223, 294
growth strategies, 100

in mature market, 23, 103
growth/materiality matrix, 36
Gruver, Gary, 112, 130
Gualtieri, Mike, 270
Guest, David, 196

H
Hammant, Paul, 169
Handelsbanken, 195, 253
handover readiness review, 269
Hastings, Reed, 189, 195
Hauser, Herman, 30
health, safety, and environment (HSE),

286
Healthagen, 40
HealthCare.gov, 292
Hertzfeld, Andy, 155
Hewlett, Bill, 130
high utilization, 34
highest paid person’s opinion (HiPPO),

35, 135, 179
HM Prison Service, 292
HMV, 68
holacracy, 194
Hollnagel, Erik, 218
horizon model, 37-40

and optionality, 251
growth metrics for, 93

INDEX308

transitioning between horizons in,
101-104

Hoshin Kanri, 287
Hotmail, 100
HP (Hewlett-Packard), 36
HP FutureSmart platform, 113, 122,

125-130, 156, 158, 286
continuous integration in, 159
deployment pipeline in, 164
goal of, 293
team autonomy in, 130

HP LaserJet Firmware team, 112-129,
122-127

Hubbard, Douglas, 46, 53, 91, 237
human errors, 9, 218
hypotheses, 49

capturing, 177
pivoting, 49, 82
refining, 178
testing, 27, 76, 97, 178, 285
validating, 68

hypothesis-driven development, 177-178

I
IAG (Insurance Australia Group Limited),

2
IBM

as package supplier, 271
mature market for, 23
portfolio management at, 36

ICQ Messenger, 100
ideas

crazy, 186
generating, 67
testing, 179, 185
validating, 184

IDEO, 73, 185
impact mapping, 174-176, 237
implicit guidance and control (IGT), 55
Improvement Kata, 17, 58, 112-128,

217, 284-294
and recruitment, 227
deploying, 121
for team alignment, 195
length of iterations in, 118
planning, 118
stages of, 116

target conditions for, 118-119,
128-129, 172

with value stream mapping, 138, 142
impulse buys, 185
incentives, 197

for reducing system complexity, 252
shared equally, 255

individual productivity, 219
industry trends, 75
information security teams, 232, 241,

271
infrastructure as a service (IaaS), 196,

271
infrastructure components

approved list of, 274
outsourcing, 271

innovation accounting, 88
innovation labs, 19, 67
innovations

and financial constraints, 248, 250,
257

and process control, xv, 190
and simplicity, 95-98
creating new customers with, 18
disruptive, 23, 41
early-stage, 89
encouraging, 252, 261
in bureaucratic organizations, 94
lifecycle of, 21
responding to, 22, 32
risks of, 2, 28-29
scientific approach to, 58
time spent on, 113
virtuous cycle of, 102

Institute for the Future (IFTF), 223
integration hell, 159, 161
Intel, xiv, 30
interfaces, 190
internal audit teams, 232
internal tools

chosen by teams, 196, 274
Lean Startup approach for, 30, 53
mandating, 53, 64
reorganizing, 214

International Financial Reporting Stand-
ards, 246

Internet, xiv
intrinsic motivation, 7, 11, 213

INDEX 309

Intuit, 82
investments

managing, 251
risks of, 46-60
versus profits, 2

IT mindset, 266
IT operations, 267-272

performance of, 267-274
IT Revolution Press, 10
iterative development, 125
ITIL (Information Technology Infrastruc-

ture Library, 235, 238, 267, 269
iTunes, 68

J
Jenkins, Jon, 156
Jensen, Michael C., 2
jidoka, 158
job satisfaction, 11, 211, 215, 227
job security, 212
Jobs, Steve, 222
JustGiving, 78

K
kaikaku, 32, 48, 142
kaizen, 6, 32
Kanban board, 9, 144
Kanban Method, 118, 128, 143-146
Kane, Shanley, 210
Kaplan, Robert, 249
kata, 116
Kay, John, 2
Kellogg, 2
Kenny, Graham, 1
Kettering Town Football Club, 78
key performance indicators (KPIs), 286
Kindle, 39
Klein, Freada Kapor, 227
Klein, Laura, 177
Knight Capital, 218
knowledge gap, 14
Kodak, 38
Kohavi, Ronny, 32, 179-180
Kordyback, John, 280
Kotter, John, 228, 293
Krishnan, Kripa, 273

L
last responsible moment, 55
lastminute.com, 66, 289
lead time

and WIP, 144
in value stream mapping, 139
monitoring, 157, 269
reducing, 34, 134-136, 142, 156-157
with peer review, 165

leadership, 223
Lean Canvas, 71
lean development, 102
lean operations, 102
Lean Startup, 26-38

combined with design thinking, 64
executing, 49
lifecycle of, 51

Lean Thinking, 184
learning anxiety, 216, 222, 225, 284
legacy systems, 275-281

rearchitecting, 275
testing, 275-276

Level Playing Field Institute, 226
Limoncelli, Tom, 269
Linden, Greg, 185
LinkedIn, 84
Little’s Law, 144
love metrics, 40, 82, 92

M
Madrid, Rick, 7
Maersk, 134-136, 144, 147

budgeting in, 253
Management by Wandering Around, 130
managers

beliefs about workers, of, 212
cooperating with workers, 6
in experimental approach, 59
privileges of, 7
responding to failures, 217
training for, 121
under conditions of uncertainty, 116

maneuver warfare, 12, 54
Manns, Mary Lynn, 294
markets

mature, 23
researching, 47

INDEX310

selecting, 103
Marsick, Victoria J., 210
Martin, Karen, 137, 139, 142, 287
mastery, 213
Matts, Chris, 178
Maude, Francis, 289
Maurya, Ash, 49, 91
McClure, Dan, 91
McGregor, Douglas, 212
McKinley, Dan, 183
McNerney, James, 190
measurable customer outcome, 53
measurements

as probability distribution, 50
cost of performing, 52
from deployment pipeline, 165
that matter most, 91
with MVP, 27, 30

Meckling, William H., 2
Microsoft

A/B testing at, 32, 180
acquisition of Nokia, xv
as package supplier, 271
Excel, 47
growth strategy of, 100
Money, 100
Office, 100
portfolio management at, 36
security at, 271
Windows, 100

military training, 12-13
minimum viable product (MVP), 76-82

designing, 49
executing, 54
key metric for, 81
measurements with, 27, 30, 51
shortcuts in, 52
types of, 78

mission, 1
Mission Command, 12-15, 190, 288

implementing, 194-202
in business, 16-17

mistakes, tolerance for, 18
mobile apps, dark launching for, 168
mobile technologies, 75
Moltke, Helmuth von
monitoring, 240, 246
monitoring systems, 268, 270

Monte Carlo simulations, 47-48
monthly burn rate, 93
Moore, Geoffrey, 22, 36
Moore, Gordon, xiv
Motorola, 30
Mott, Randy, xv
Musk, Elon, 2
MySpace, 100

N
Napoleon Bonaparte, 12
narrative fallacy, 115
National Broadband Network, 165
National Offender Management Service,

292
National Programme for IT, 289
NATO, 13, 108
Netflix, 270

annual compensation reviews in, 227
culture of, 189
deployments at, 195
growth strategy of, 100
performance of, 19, 68
Simian Army, 274

Nicholson, Geoff, 189
no-ops model, 270
no-value-add activities, 112-113, 125,

186, 235, 286
Nokia, xiv
Norton, David, 249
NoSQL databases, 274
NUMMI (New United Motor Manufac-

turing, Inc.), 5-9, 18, 213-215, 219,
259

O
Obamacare, 292
Obidos, 190, 199
observe, orient, decide, act (OODA) loop,

54, 56
Ohno, Taiichi, xvi, 174, 225
One Metric That Matters (OMTM),

81-84, 94, 105, 148
operating costs, 251-252, 256-258
Opportunity Canvas, 71
options, 27
Oracle, 271

INDEX 311

organizational change programs, 284-288
organizations

acqui-hiring in, 39
adaptive, 217
changing structure of, 7, 143
creating value for, 32
decentralized, 194-195
evolving, 109
existing repertoire of, 57
growing, 189-198
infrastructure components for, 271
interactions between components in,

14
observed behaviors within, 212
purpose of, 1-2, 286, 293
reorganizing, 19
strategy of, 2
under conditions of uncertainty, 6, 13,

26-29
winning, 68

orientation, 55-56
Orzen, Mike, 49
Osterling, Mike, 137, 139, 142
Osterwalder, Alex, 68, 70
outages, responding to, 268, 270
outcomes, 172, 177, 285

focusing on, 186, 236
highly visible measurement of, 240
rewarding for, 197, 247

outsourcing, xv, 289
in banks, 113
of IT operations, 271
of software engineering, 143
of testers, 193
profitability of, 292

overall evaluation criterion (OEC), 177,
179

O’Neill, Paul, 117

P
Packard, Dave, 130
Page, Larry, 224
pair programming, 9, 165, 268
Pancino, Matt, 280
patents, 18
pathological organizations, 9

acqui-hiring in, 39

control in, 268
experimental approach in, 60
hiding information in, 16, 56
not achieving target conditions in, 124

Patton, Jeff, 97
pay growth strategy, 100
Paypal, 100
payroll, software for, 278
PCI-DSS, 156, 242-243
percent complete and accurate (%C/A),

139-142
performance

and bureaucracy, 195
and rewards, 197, 255-256
and size of organization, 19
improving, 111-112, 136-146, 180
in enterprises, 141
measuring, 10, 211, 237, 247,

253-256
monitoring, 234
of IT departments, 267-274
optimal, 142, 274
reducing, 7, 213

performance reviews, 211, 221, 224
gender bias in, 228

personal development plans, 224
personas, 72-74
Peters, Tom, 57
phase-gate paradigm, 108-109, 143
Pigneur, Yves, 68
Pink, Dan, 65, 213
pirate metrics, 91-92
planning, 246

performed annually, 246
strategic, 286
upfront, 17, 31-32, 113, 249, 259

planning fallacy, 33, 249, 260
platform as a service (PaaS), 196, 201,

271
platform growth strategy, 100
platform, developing vs. outsourcing,

271-272
Pols, Andy, 199
Poppendieck, Mary and Tom, 117, 124,

157
Post-It Note, 189, 224
postmortem, 217-218, 273
Prasad, Venkatesh, xiv

INDEX312

pregnant women, 74
preventive controls, 239-240
Principle of Mission, 16, 34, 56, 117,

150, 175, 192, 202, 238
Principle of Optionality, 27, 251
principle-based governance, 293
prison visits, booking, 292
probability distribution, 50
problem/solution fit, 49, 53

metrics for, 92
problems

articulating, 65
discovering and resolving, 6
exploring solution first, 43, 273
identifying potential solutions for, 67

process control, 189
product development

creating hypotheses first, 178
engaging all teams in, 191
experimental approach to, 171-186
long cycles of, 47
oursourcing, 259
risks of, 259
target conditions for, 173

product paradigm, 252
product/market fit, 49, 88-105

metrics for, 92-94
productivity

improving, 125, 127, 158, 235
measuring, 33, 129

products
complementary, 100
creating new, 37, 59, 88
customized on demand, xiv
declining, 23
disruptive, xiv, 2, 38
evaluating, 28
feedback on, 31
fully functioning, 96
in a mature market, 24
inspiration for, 75
launching, 77, 104
lifecycle of, 21, 51
requirements for, 49
retiring, 252, 257, 258
successful, 23
support for, 257, 268-271
testing, 49-50, 99

validated, 99
virality of, 93
vulnerabilities in, 241

profit and loss (P&L), 198, 252
profit-seeking paradox, 2
profits

distributed to all employees, 256
maximizing, 2
using for continuous innovation, 102

program management, 17
program-level backlogs, 173
programmable logic chips (PALs), 125
project management office (PMO) teams,

232
projects

and productivity, 33
batching features up into, 33, 135,

147
capitalized costs of, 257
discovering new information during,

33
in enterprises, 32
planning, 33, 107-108
successful, 32

promotions, 227
Prussian Army, 12-14
public relations, 100
pull requests, 165
PuppetLabs, 10
purpose, 213
push-button deployments, 156-158, 162,

165

Q
Q12 survey, 211
qi, 56
qualified security auditor (QSA), 243
quality, cost, delivery, morale, safety

(QCDMS), 287
Queue Theory, 144

R
Reagan, Ronald, 240
recommendations engine, 185
recruiting, 222
referral, 92, 100
Reinertsen, Donald, 16, 33, 47, 49, 147

INDEX 313

release trains, 160
releases

big bang, 104, 170, 193, 241
decoupled from deployment, 167-168,

182
frequency of, 157, 161, 165
regular, 125

Remedy, 279
repertoire, 57
request for proposal (RFP), 259
resources, allocating dynamically, 17
responsibility, 212, 232
retention, 92
Retrospective Prime Directive, 217
return on investment (ROI)

and long development cycles, 47
and profits, 2
for IT programs, 47

revenue, 92
optimizing for, 179

rewards, for desired behavior, 197, 255
rework time, 141
Richards, Chet, 56
Ries, Eric, 25, 57, 76, 88, 90, 100, 157
Rising, Linda, 294
risk and compliance teams, 232-234
risks, 46-60

associated with larger initiatives, 251
managing, 28-29, 233-238, 259
measuring, 46, 237
mitigating, 292
modelling, 46-48

Roberts, Mike, 58
Rogers, Everett, 21
rolling forecasts, 250
Rossi, Chuck, 168
Rother, Mike, 115-118, 121, 214
Royal Pharmaceutical Society, 96
runway, 27, 37, 97
Rushgrove, Gareth, 290

S
safety hazards, 73
Saffo, Paul, 223
Salesforce, 100
SAP accounting system, 136
Sarasvathy, Saras, 29

Sarbanes-Oxley, 156, 238, 246
Sasson, Steve, 38
Schaefer, Ernie, 8
Scharnhorst, David, 12
Schein, Edgar, 210-216, 284
scientific management, 6, 59

and friction, 16
scope management, 186
Scrum framework, 109, 129-130, 147
search engine marketing, 100
security, preventing breaches of, 267
Seddon, John, 34, 113
segregation of duties, 238, 242-243, 268
Seiden, Josh, 64, 177
Semco, 194
service delivery platform (SDP), 272
service-level agreements (SLAs), 273
service-oriented architecture (SOA), 192,

199-199
services

chatty, 193
complementary, 100
costs of, 272
disruptive, xiv, 2
documentation on, 269
handover readiness review for, 269
location-based, 75
retiring, 252, 257
stability of, 165, 265
support for, 257, 268-271

shadow IT, 30
Shafer, Andrew, 219
shared understanding, 65
Shook, John, 6, 214
Simian Army, 274
single-loop learning, 120
Six Sigma, 189
Smith, Burrell, 125
Snowden, Dave, 14, 28
software development, 108-109

agile, 109, 172
as a last resort, 175
in-house, xv, 290
scaling, 193

solution delivery, 232, 236
Southwest Airlines, 195, 253
SpaceX, 2
Spiegel, Larry, 8

INDEX314

Spotify, 68
stability, 267-268, 272
stand-up meetings, 9
standardization, 267
startups

A/B testing in, 32
acquiring, 19, 39, 102
exploring new opportunities in, 24
growth strategies for, 100
survival rate of, 26
vs. enterprises, 12, 73, 223

Statoil, 286
Stevenson, Chris, 199
sticky growth strategy, 100
story maps, 97
strangler application pattern, 199-201,

276-278, 292
Strategic Factors, 1
strategic planning, 286
strategy deployment, 249, 287-288
subsidiarity, 194, 248
Sun Tzu, 56
Suncorp Group, 280-281
sunk cost fallacy, 184
suppliers, 258-262

incremental delivery of working soft-
ware by, 260

locking into, 289
working collaboratively, 7, 259

survival anxiety, 215, 284
systems replacement, 47

big bang, 199, 201
incremental, 292
Lean Startup approach for, 53

T
T-shaped people, 196
Taleb, Nassim, 28, 115
talent, 223-228
Target, 74
target conditions, 171-178

acceptance criteria for, 175
defining, 286
focusing on, 142
for architectural alignment, 202
for each iteration, 122
for recruitment, 227

in value stream mapping, 138
intent of, 174
not achieved, 124
people affected by, 175
program-level, 129-130, 174-175
relative, 287
translated to different levels, 287
updating, 288

Taylor, Frederick Winslow, 6
Taylorism, 6, 59, 147, 213, 219

and friction, 16
teams

agile, 120
articulating problems to, 65, 175
authority of, 240
autonomous, 130, 195-198, 234
capturing information for, 83
communication between, 191-193,

275-276
comparing productivity of, 129
coordinating work across, 128
cross-functional, 27, 32, 74, 175, 191,

193, 195, 291
engagement of, 104
motivating, 65, 252
practices used by, 9
reorganizing, 214
running experiments, 195
security specialists in, 241
setting targets themselves, 253
size of, 31, 52, 64
two-pizza (2PT), 191-192
velocity of, 129, 172
work scheduling for, 135

technical architecture teams, 232
technical change management, 236
technical debt, 99
technologies

adopting, 23
lifecycle of, 21

Telstra, 279
tenure, 227
Tesla Motors, 2, 18
test automation, 114, 127, 156, 159-161

budgeting for, 130
for experiments, 161
in parallel, 160

test doubles, 275-276

INDEX 315

test-driven development (TDD), 99, 119,
201

testing
automated acceptance criteria for, 280
for security, 241
frequent, 240
regression, 280
with a subset of internal customers,

273
ThoughtWorks, 10
throughput, 268, 272

and change approval processes, 268
Thulin, Inge G., 39
tinkering, 28
Tippet, Peter, 237
Tower Records, 68
Toyoda, Kiichiro, 18
Toyota, 5-9

and patents, 18
business model of, 70
competitive advantages of, 102
genchi genbutsu in, 73
Improvement Kata in, 116
innovations in, 115
long-term vision of, 117
managing at, 121
retraining workers in, 225
suppliers for, 273

Toyota Production System (TPS), xvi,
5-9, 102
A3 Thinking in, 122
engineering practices in, 99
jidoka in, 158
organizational culture for, 8, 59

traditional project management, 59
training courses, 214, 270
trunk-based development, 114, 157-162
two-pizza team (2PT), 191-192
Twyman’s Law, 182

U
UK government, xv, 261, 289-293
UK Ministry of Justice Digital Team, 292
uncertainty, 26-29

early in the design process, 102
exploring, 63-84
project management for, 59

reducing, 50, 178
working under conditions of, 115

underlying assumptions, 211
University of California, 226
urgency profiles, 151
US Air Force, 54
US government, 8, 108
US Marine Corps, 13
usability testing, 156
user experience (UX) design, xiv, 183
user-journey tests, 99
users

empathy for, 72, 98
feedback from, 156
interviewing, 74
understanding, 72-74
vs. customers, 64

V
validated learning, 27, 52
value chain mapping, 277
value demand, 113
value hypothesis, 26
Value Proposition Canvas, 71
value stream loops, 138
value stream mapping, 102, 129,

137-148
for governance processes, 238-240
future-state, 117
in enterprises, 141
process blocks in, 138, 143
process time in, 139
state of processes in, 140
visualizing, 143-145
with Improvement Kata, 138

Van Nuys plant, 8
vanity metrics, 90, 207
vendor management, software for, 278
version control, 162, 164

and high performance, 268
changes to environment configuration

via, 166
running builds from, 166
software for, 278

viral coefficient, 93, 100
viral growth strategy, 100
visibility, 233

INDEX316

reduced, 235
vision statement, 1, 117, 234

evolving rapidly, 184
Visual Management, 102
Vogels, Werner, 191, 274
Voice of the Customer, 102
Votizen, 92

W
waiting time, 134-135, 141
Walmart, 70
Wardley, Simon, 278
water-scrum-fall, 108
Watkins, Karen E., 210
websites

A/B testing for, 179-180
delivering new features for, 276
replacing, 290-292

Welch, John, 3
WestJet, 256
Westrum, Ron, 9, 211, 268
Wilson, Sophie, 29
Wood, Ben, xiv
Woods, David, 218
word of mouth, 40, 101, 103
work in process (WIP), 118, 128

limiting, 144-147, 150, 286
workers

acquiring new skills, 142, 220-225,
286

cooperating, 6, 224
feedback from, 224
frustrated, 30, 286
motivating, 7, 11, 223-225, 255
responsibility of, 18
rewarding, 34
rotating through jobs, 7, 225
unambitious, 212

workshops
generating new ideas with, 67
immersing in context, 73

wouldn’t it be horrible if…, 237

X
Xerox PARC, 38

Y
Yale University, xiii
Yegge, Steve, 190
YIMBY, 78
Yoskovitz, Benjamin, 90
YouTube, 68
Yüce, Özlem, 134-136

Z
Zanca, David, xiv
zheng, 56
zShops, 104

INDEX 317

	Table of Contents
	Preface
	Why Did We Write This Book?
	Who Should Read This Book?
	Conspectus
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. Orient
	Chapter 1. Introduction
	A Lean Enterprise Is Primarily a Human System
	Mission Command: An Alternative to Command and Control
	Create Alignment at Scale Following the Principle of Mission
	Your People Are Your Competitive Advantage

	Chapter 2. Manage the Dynamics of the Enterprise Portfolio
	Exploring New Ideas
	Exploiting Validated Business Models
	Balancing the Enterprise Portfolio
	Conclusion

	Part II. Explore
	Chapter 3. Model and Measure Investment Risk
	Model Investment Risk
	Applying the Scientific Method to Product Development
	Principles for Exploration
	Conclusion

	Chapter 4. Explore Uncertainty to Detect Opportunities
	Discovery
	Creating a Shared Understanding
	Structured Exploration of Uncertainty

	What Business Are We In?
	Understanding Our Business Problem to Inform Our Business Plan
	Understanding Our Customers and Users
	Turning Insights and Data into Unfair Advantage
	Using Insight to Inform Hypotheses and Experiments

	Accelerate Experimentation with MVPs
	How Do Our Vision and MVP Work Together?
	The One Metric That Matters

	Conclusion

	Chapter 5. Evaluate the Product/Market Fit
	Innovation Accounting
	Do Things That Don’t Scale
	Customer Intimacy
	Build a Runway of Questions, Not Requirements
	Engineering Practices for Exploring

	Engines of Growth
	Transitioning Between Horizons to Grow and Transform
	Conclusion

	Part III. Exploit
	Chapter 6. Deploy Continuous Improvement
	The HP LaserJet Firmware Case Study
	Drive Down Costs Through Continuous Process Innovation Using the Improvement Kata
	Understand the Direction
	Planning: Grasp the Current Condition and Establish a Target Condition
	Getting to the Target Condition
	How the Improvement Kata Differs from Other Methodologies

	How the HP LaserJet Team Implemented the Improvement Kata
	Managing Demand
	Creating an Agile Enterprise
	Conclusion

	Chapter 7. Identify Value and Increase Flow
	The Maersk Case Study
	Increase Flow
	Map Your Product Development Value Streams
	Limit Work in Process

	Cost of Delay: A Framework for Decentralizing Economic Decisions
	Conclusion

	Chapter 8. Adopt Lean Engineering Practices
	The Fundamentals of Continuous Delivery
	Continuous Integration and Test Automation
	The Deployment Pipeline
	Decouple Deployment and Release
	Conclusion

	Chapter 9. Take an Experimental Approach to Product Development
	Using Impact Mapping to Create Hypotheses for the Next Iteration
	Performing User Research
	Online Controlled Experiments
	An A/B Test Example
	Prerequisites for an Experimental Approach to Product Development
	Conclusion

	Chapter 10. Implement Mission Command
	Amazon’s Approach to Growth
	Create Velocity at Scale Through Mission Command
	Evolving Your Architecture Using the Strangler Application Pattern
	Conclusion

	Part IV. Transform
	Chapter 11. Grow an Innovation Culture
	Model and Measure Your Culture
	Change Your Culture
	Make It Safe to Fail

	There Is No Talent Shortage
	Growing Talent
	Eliminate Hidden Bias

	Conclusion

	Chapter 12. Embrace Lean Thinking for Governance, Risk, and Compliance
	Understanding Governance, Risk, and Compliance
	Take an Evolutionary Approach to Risk Management

	Apply Lean Principles to GRC Processes
	Define the Value of GRC Processes from the Customer Perspective

	Map the Value Stream, Create Flow, and Establish a Pull System
	The Wrong Control Interrupts Flow

	Conclusion

	Chapter 13. Evolve Financial Management to Drive Product Innovation
	Introduction
	Dancing to the Beat of the Financial Drum Slows Innovation
	Liberating Ourselves from the Annual Budget Cycle
	Stop Conflating Good Financial Management with “The Budget”
	Disassociate Funding Decisions from the Annual Fiscal Cycle
	Explore Activity-Based Accounting Principles

	Avoid Using Budgets as the Basis for Performance Measurement
	Stop Basing Business Decisions on Capital Versus Operational Expense
	Modify Your IT Procurement Processes to Gain Greater Control over Value Delivery
	Conclusion

	Chapter 14. Turn IT into a Competitive Advantage
	Rethinking the IT Mindset
	Freedom and Responsibility
	Creating and Evolving Platforms
	Preparing for Disasters

	Managing Existing Systems
	Conclusion

	Chapter 15. Start Where You Are
	Principles of Organizational Change
	Aim Towards Strategy Deployment

	The UK Government Digital Service
	Begin Your Journey
	Conclusion

	Bibliography
	Index

