Learn
PostgreSQL

Build and manage high-performance database
solutions using PostgreSQL 12 and 13

Luca Ferrari | Enrico Pirozzi

Learn PostgreSQL

Build and manage high-performance database solutions
using PostgreSQL 12 and 13

Luca Ferrari
Enrico Pirozzi

BIRMINGHAM - MUMBAI

Learn PostgreSQL

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amey Varangaonkar
Acquisition Editor: Siddarth Mandal
Content Development Editor: Joseph Sunil
Senior Editor: David Sugarman

Technical Editor: Sonam Pandey

Copy Editor: Safis Editing

Project Coordinator: Aishwarya Mohan
Proofreader: Safis Editing

Indexer: Manju Arasan

Production Designer: Alishon Mendonca

First published: October 2020
Production reference: 1081020
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-83898-528-8

www.packt.com

http://www.packt.com

To my beautiful wife, Emanuela; I love her like Santa loves his reindeer.
To my great son, Diego, who has changed our lives on 1283788200.
To my parents, Miriam and Anselmo; my greatest fans since day one.

— Luca Ferrari

In loving memory of my father, Ilario.

- Enrico Pirozzi

About Packt

Packh

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the authors

Luca Ferrari has been passionate about computer science since the Commodore 64 era, and
today holds a master's degree (with honors) and a Ph.D. from the University of Modena
and Reggio Emilia. He has written several research papers, technical articles, and book
chapters. In 2011, he was named an Adjunct Professor by Nipissing University. An avid
Unix user, he is a strong advocate of open source, and in his free time, he collaborates with
a few projects. He met PostgreSQL back in release 7.3; he was a founder and former
president of the Italian PostgreSQL Community (ITPUG). He also talks regularly at
technical conferences and events and delivers professional training.

Enrico Pirozzi has been passionate about computer science since he was a 13-year-old, his
first computer was a Commodore 64, and today he holds a master's degree from the
University of Bologna. He has participated as a speaker at national and international
conferences on PostgreSQL. He met PostgreSQL back in release 7.2, he was a co-founder of
the first PostgreSQL Italian mailing list and the first Italian PostgreSQL website, and he
talks regularly at technical conferences and events and delivers professional training. Right
now, he is employed as a PostgreSQL database administrator at Nexteam (Zucchetti Group

S.p.a.).

About the reviewers

Marcelo Diaz is a software engineer with more than 15 years of experience, and with a
special focus on PostgreSQL. He is passionate about open source and has promoted its
application in critical and high-demand environments where he has worked as a software
developer and consultant for both private and public companies. He currently works very
happily at Cybertec and as a technical reviewer for Packt Publishing. He enjoys spending
his leisure time with his daughter, Malvina, and his wife, Romina. He also likes playing
football.

Ilja Everili is a software developer and consultant with over a decade of experience in
various projects. He has done both frontend and backend work, along with database
administration, in PostgreSQL. All in all, he is very much into database work and found
this book an interesting read on an important subject.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface

Section 1: Getting Started

Chapter 1: Introduction to PostgreSQL
Technical requirements
PostgreSQL at a glance
A brief history of PostgreSQL
What's new in PostgreSQL 127?
What's new in PostgreSQL 13?
PostgreSQL release policy, version numbers, and life cycle
Exploring PostgreSQL terminology
Installing PostgreSQL 12 or higher
What to install
Installing PostgreSQL 12 from binary packages
Installing PostgreSQL 12 on GNU/Linux Debian, Ubuntu, and derivatives
Installing PostgreSQL 12 on Linux Fedora
Installing PostgreSQL 12 on FreeBSD
Installing PostgreSQL from sources
Installing PostgreSQL via pgenv
Summary
References

Chapter 2: Getting to Know Your Cluster
Technical requirements
Managing your cluster
g_ctl
PostgreSQL processes
Connecting to the cluster
The template databases
The psgl command-line client
Entering SQL statements via psql
A glance at the psql commands
Introducing the connection string
Solving common connection problems
Database "foo" does not exist
Connection refused
No pg_hba.conf entry
Exploring the disk layout of PGDATA
Objects in the PGDATA directory
Tablespaces

10
10
12
12
13
14
15
18
19
20

21
23
25
27
30
30

31
31
32
32
37
39
40
41

45
46
46
47
47
48
48
50
52

Table of Contents

Exploring configuration files and parameters 53
Summary 55
References 55
Chapter 3: Managing Users and Connections 56
Introduction to users and groups 57
Managing roles 58
Creating new roles 58
Role passwords, connections, and availability 59
Using a role as a group 60
Removing an existing role 62
Inspecting existing roles 63
Managing incoming connections at the role level 65
The syntax of pg_hba.conf 66
Order of rules in pg_hba.conf 67
Merging multiple rules into a single one 68
Using groups instead of single roles 69
Using files instead of single roles 70
Summary 71
References 71
Section 2: Interacting with the Database
Chapter 4: Basic Statements 73
Technical requirements 73
Setting up our developing environment 74
Creating and managing databases 75
Creating a database 75
Managing databases 75
Listing all databases 76
Making a new database from a modified template 76
Dropping tables and databases 78
Dropping tables 78
Dropping databases 78
Making a database copy 79
Confirming the database size 79
The psql method 80
The SQL method 80
Creating a database 81
Managing tables 83
The EXISTS option 85
Managing temporary tables 86
Managing unlogged tables 88
Creating a table 88
Understanding basic table manipulation statements 89
Inserting and selecting data 89

[ii]

Table of Contents

NULL values
Sorting with NULL values
Creating a table starting from another table
Updating data
Deleting data
Summary
References

Chapter 5: Advanced Statements
Exploring the SELECT statement
Using the like clause
Using ilike
Using distinct
Using limit and offset
Using subqueries
Using the IN/NOT IN condition
Using the EXISTS/NOT EXISTS condition
Learning joins
Using INNER JOIN
INNER JOIN versus EXISTS/IN
Using LEFT JOINS
Using RIGHT JOIN
Using FULL OUTER JOIN
Using SELF JOIN
Aggregate functions
UNION/UNION ALL
EXCEPT/INTERSECT
Using UPSERT
UPSERT - the PostgreSQL way
Learning the RETURNING clause for INSERT
Returning tuples out of queries
UPDATE related to multiple tables
Exploring UPDATE RETURNING
DELETE RETURNING
Exploring CTEs
CTE concept
CTE in PostgreSQL 12
CTE - some examples
Query recursion
Recursive CTEs
Summary
References

Chapter 6: Window Functions
Using basic statement window functions
Using the PARTITION BY function and WINDOW clause
Introducing some useful functions
The ROW_NUMBER function

93
95
96
97
98
100

100

101
101
102
103
104
106
108
108
110
111
113
114
114
117
118
120
121
124
126
127
128
130
131
131
133
134
134
135
136
137
139
140
141
142

143
144
145

146
147

[iii]

Table of Contents

The ORDER BY clause
FIRST_VALUE
LAST_VALUE
RANK
DENSE_RANK
The LAG and LEAD functions
The CUME_DIST function
The NTILE function
Using advanced statement window functions
The frame clause
ROWS BETWEEN start_point and end_point
RANGE BETWEEN start_point and end_point

Summary
References

Chapter 7: Server-Side Programming
Exploring data types
The concept of extensibility
Standard data types
Boolean data type
Numeric data type
Integer types
Numbers with a fixed precision data type
Numbers with an arbitrary precision data type
Character data type
Chars with fixed-length data types
Chars with variable length with a limit data types
Chars with a variable length without a limit data types
Date/timestamp data types
Date data types
Timestamp data types
The NoSQL data type
The hstore data type
The JSON data type
Exploring functions and languages
Functions
SQL functions
Basic functions
SQL functions returning a set of elements
SQL functions returning a table
Polymorphic SQL functions
PL/pgSQL functions
First overview
Declaring function parameters
IN/OUT parameters
Function volatility categories
Control structure
Conditional statements
IF statements
CASE statements

147
148
149
149
150
151
153
153
154
155
155
161

165
166

167
168
168
168
169
170
171
171
171
173
173
174
175
176
176
179
182
182
184
188
188
189
189
190
191
192
193
194
195
196
198
200
200
201
202

[iv]

Table of Contents

Loop statements
The record type
Exception handling statements
Summary

References

Chapter 8: Triggers and Rules
Exploring rules in PostgreSQL
Understanding the OLD and NEW variables
Rules on INSERT
The ALSO option
The INSTEAD OF option
Rules on DELETE / UPDATE
Creating the new_tags table
Creating two tables

Managing rules on INSERT, DELETE, and UPDATE events

INSERT rules
DELETE rules
UPDATE rules

Managing triggers in PostgreSQL

Trigger syntax

Triggers on INSERT

The TG_OP variable

Triggers on UPDATE / DELETE
Event triggers

An example of an event trigger
Summary
References

Chapter 9: Partitioning
Basic concepts
Range partitioning
List partitioning
Hash partitioning
Table inheritance
Dropping tables
Exploring partitioning using inheritance
An example of list partitioning
Creating tables
Creating triggers and functions, and inserting data
Creating triggers and functions and updating data
Exploring declarative partitioning
List partitioning
Range partitioning
Partition maintenance
Summary
References

205
206
208
209

210

211
212
212
214
214
215
217
218
219
220
220
222
224
226
227
228
233
234
240
242
243
244

245
245
246
247
248
249
253
253
253
254
257
259
261
261
264
267
269
270

[v]

Table of Contents

Section 3: Administering the Cluster

Chapter 10: Users, Roles, and Database Security
Understanding roles
Properties related to new objects
Properties related to superusers
Properties related to replication
Properties related to row-level security
Changing properties of existing roles: the ALTER ROLE statement
Renaming an existing role
SESSION_USER versus CURRENT_USER
Per-role configuration parameters
Inspecting roles
Roles that inherit from other roles
Understanding how privileges are resolved
Role inheritance overview
Access control lists
Default ACLs
Knowing default ACLs
Granting and revoking permissions
Permissions related to tables
Column-based permissions
Permissions related to sequences
Permissions related to schemas
ALL objects in the schema
Permissions related to languages
Permissions related to routines
Permissions related to databases
Other GRANT and REVOKE statements
Assigning the object owner
Inspecting ACLs
Row-level security
Role password encryption
SSL connections
Configuring the cluster for SSL
Connecting to the cluster via SSL
Summary
References

Chapter 11: Transactions, MVCC, WALs, and Checkpoints
Technical requirements
Introducing transactions
Comparing implicit and explicit transactions
Time within transactions
More about transaction identifiers — the XID wraparound problem
Virtual and real transaction identifiers

272
273
273
274
274
274
275
276
276
277
279
281
283
286
286
291
293
294
295
296
299
301
303
303
304
305
306
306
307
308
313
313
314
314
316
316

318
319
319
321
326
327
328

[vil

Table of Contents

Multi-version concurrency control
Transaction isolation levels
Read uncommitted
Read Committed
Repeatable Read
Serializable
Explaining MVCC
Savepoints
Deadlocks

How PostgreSQL handles persistency and consistency: WALs

Write-Ahead Logs (WALS)
WALSs as a rescue method in the event of a crash
Checkpoints
Checkpoint configuration parameters
checkpoint_timeout and max_wal_size
Checkpoint throttling
Manually issuing a checkpoint
VACUUM
Manual VACUUM
Automatic VACUUM
Summary
References

Chapter 12: Extending the Database - the Extension Ecosystem

Introducing extensions
The extension ecosystem
Extension components
The control file
The script file
Managing extensions
Creating an extension
Viewing installed extensions
Finding out available extension versions
Altering an existing extension
Removing an existing extension
Exploring the PGXN client
Installing pgxnclient on Debian GNU/Linux and derivates
Installing pgxnclient on Fedora Linux
Installing pgxnclient on FreeBSD
Installing pgxnclient from sources
The pgxnclient command-line interface
Installing extensions
Installing the extension via pgxnclient
Installing the extension manually
Using the installed extension
Removing an installed extension

330
335
337
338
338
338
340
343
345
347
348
351
351
353
353
354
355
355
356
361
363
364

365
366
367
368
369
370
370
371
372
373
373
375
376
377
378
378
379
380
381
382
383
386
387

[vii]

Table of Contents

Removing an extension via pgxncliet
Removing a manually installed extension
Creating your own extension
Defining an example extension
Creating extension files
Installing the extension
Creating an extension upgrade
Performing an extension upgrade
Summary
References

Chapter 13: Indexes and Performance Optimization
Technical requirements
Execution of a statement

Execution stages
The optimizer
Nodes that the optimizer uses
Sequential nodes
Sequential Scan
Index nodes
Join nodes
Parallel nodes
Gather nodes
Parallel scans
Parallel joins
Parallel aggregations
When does the optimizer choose a parallel plan?
Utility nodes
Node costs
Indexes
Index types
Creating an index
Inspecting indexes
Dropping an index
Invalidating an index
Rebuilding an index
The EXPLAIN statement
EXPLAIN output formats
EXPLAIN ANALYZE
EXPLAIN options
An example of query tuning
ANALYZE and how to update statistics
Auto-explain
Summary
References

Chapter 14: Logging and Auditing

388
388
389
389
390
391
392
394
395
396

397
398
398
399
401
402
402
402
403
404
407
407
407
408
408
408
409
410
411
412
413
415
417
417
418
419
421
422
424
427
433
436
440

440
441

[viii]

Table of Contents

Technical requirements
Introduction to logging
Where to log
When to log
What to log
A complete example of logging configuration
Extracting information from logs — PgBadger
Installing PgBadger
Configuring PostgreSQL logging for PgBadger usage
Using PgBadger
Scheduling PgBadger
Implementing auditing
Installing PgAudit
Configuring PostgreSQL to exploit PgAudit
Configuring PgAudit
Auditing by session
Auditing by role
Summary
References

Chapter 15: Backup and Restore
Technical requirements
Introducing various types of backups and restores
Exploring logical backups
Dumping a single database
Restoring a single database
Limiting the amount of data to back up
Dump formats and pg_restore
Performing a selective restore
Dumping a whole cluster
Parallel backups
Backup automation
Exploring physical backups
Performing a manual physical backup
pg_verifybackup
Starting the cloned cluster
Restoring from a physical backup
Summary
Further reading

Chapter 16: Configuration and Monitoring
Technical requirements
Cluster configuration
Inspecting all the configuration parameters
Finding configuration errors

441
442
443
445
448
449
453
454
455
456
459
462
464
465
465
466
468
470
470

471
471
472
473
474
477
480
481
485
487
487
489
491
492
493
494
495
496
496

497
498
498
499
501

[ix]

Table of Contents

Nesting configuration files 502
Configuration contexts 503
Main configuration settings 504
WAL settings 504
Memory-related settings 505
Process information settings 507
Networking-related settings 507
Archive and replication settings 508
Vacuum andautovacuum-related settings 508
Optimizer settings 509
Statistics collector 509
Modifying the configuration from a live system 509
Configuration generators 510
Monitoring the cluster 514
Information about running queries 514
Inspecting locks 515
Inspecting databases 517
Inspecting tables and indexes 517
More statistics 519
Advanced statistics with pg_stat_statements 520
Installing the pg_stat_statements extension 520
Using pg_stat_statements 521
Resetting data collected from pg_stat_statements 521
Tuning pg_stat statements 522
Summary 522
Further Reading 523

Section 4: Replication
Chapter 17: Physical Replication 525
Exploring basic concepts 526
WAL 526
The wal_level directive 527
Preparing the environment setup for streaming replication 527
Learning WAL archiving and PITR 529
PITR — the manual way 530
The WAL archive 530
Basebackup 532
Recovery 534
Managing streaming replication 536
Basic concept 537
Replication environment 538
The wal_keep_segments option 539
The slot way 540
The pg_basebackup command 541
Asynchronous replication 542
Replica monitoring 544

[x]

Table of Contents

Cascading replication 545
Synchronous replication 548
PostgreSQL settings 548
Master server 548
Standby server 549
Summary 550
References 550
Chapter 18: Logical Replication 551
Understanding basic concepts 551
Comparing logical replication and physical replication 554
Exploring logical replication setup 554
Logical replication environment settings 555
The replica role 555
Master server — postgresql.conf 556
Replica server — postgresql.conf 557
The pg_hba.conf file 557
Logical replication setup 558
Monitoring logical replication 559
Comparing physical replication and logical replication 561
Simulating on test versus bloating elimination 561
Read-only versus write allowed 562
DDL commands 567
Disabling logical replication 569
Summary 570
References 571
Section 5: The PostegreSQL Ecosystem
Chapter 19: Useful Tools and Extensions 573
Exploring the pg_trgm extension 574
Using foreign data wrappers and the postgres_fdw extension 577
Exploring the btree_gin extension 579
Managing the pgbackrest tool 582
Basic concepts 583
Environment setting 583
The exchange of public keys 583
Installing pgbackrest 586
Configuring pgbackrest 587
The repository configuration 587
The PostgreSQL server configuration 589
The postgresql.conf file 590
The pgbackrest.conf file 590
Creating and managing continuous backups 591
Creating the stanza 591
Checking the stanza 592
Managing basebackups 592
Managing PITR 595

[xil

Table of Contents

Summary 597
References 597
Chapter 20: Toward PostgreSQL 13 598
Introducing PostgreSQL 13's new features 599
Replication 599
Administration 600

psql 601
Performance 602
Backup tools 602
Upgrading to PostgreSQL 13 603
Summary 604
References 604
Other Books You May Enjoy 605
Index 608

[xii]

Preface

PostgreSQL is one of the fastest-growing open source object-relational Database
Management Systems (DBMS) in the world. As well as being easy to use, it’s scalable and
highly efficient. In this book, you’ll explore PostgreSQL 12 and 13 and learn how to build
database solutions using it. Complete with hands-on tutorials, this guide will teach you
how to achieve the right database design required for a reliable environment.

You'll learn how to install and configure a PostgreSQL server and even manage users and
connections. The book then progresses to key concepts of relational databases, before taking
you through the Data Definition Language (DDL) and commonly used DDL commands.
To build on your skills, you'll understand how to interact with the live cluster, create
database objects, and use tools to connect to the live cluster. You'll then get to grips with
creating tables, building indexes, and designing your database schema. Later, you'll explore
the Data Manipulation Language (DML) and server-side programming capabilities of
PostgreSQL using PL/pgSQL, before learning how to monitor, test, and troubleshoot your
database application to ensure high-performance and reliability.

By the end of this book, you'll be well-versed in the Postgres database and be able to set up
your own PostgreSQL instance and use it to build robust solutions.

Who this book is for

This Postgres book is for anyone interested in learning about the PostgreSQL database from
scratch. Anyone looking to build robust data warehousing applications and scale the
database for high-availability and performance using the latest features of PostgreSQL will
also find this book useful. Although prior knowledge of PostgreSQL is not required,
familiarity with databases is expected.

What this book covers

Chapter 1, Introduction to PostgreSQL, explains what the PostgreSQL database is, the
community and development behind this great and robust relational database, as well as
how to get help and recognize different PostgreSQL versions and dependencies. You will
also learn how to get and install PostgreSQL through either binary packages or by
compiling it from sources. A glance at how to manage the cluster with your operating
system tools (systemd and rc scripts) will be taken.

Preface

Chapter 2, Getting to Know Your Cluster, shows you the anatomy of a PostgreSQL cluster
by specifying what is on the file system, where the main configuration files are, and how
they are used. The psql command-line utility will be described in order to make you
connect to the database cluster and check it's working.

Chapter 3, Managing Users and Connections, provides a complete description of how users
and connections are managed by a running instance and how you can prevent or limit user
connections. The architecture and terminology of the database will be detailed. The concept
of "role" will be described, and you will learn how to create single-user accounts, as well as
groups.

Chapter 4, Basic Statements, shows how to create and destroy main database objects, such
as databases, tables, and schemas.

The chapter also takes a glance at basic statements, such as SELECT, INSERT, UPDATE, and
DELETE.

Chapter 5, Advanced Statements, introduces the advanced statements PostgreSQL
provides, such as common table expressions, UPSERTs, and queries with RETURNING rows.
This chapter will provide practical examples of when and how to use them.

Chapter 6, Window Functions, introduces a powerful set of functions that provide
aggregation without having to collapse the result in a single row. In other words, thanks to
window functions, you can perform aggregation on multiple rows (windows) and still
present all the tuples in the output. Window functions allow the implementation of
business intelligence and make reporting easy.

Chapter 7, Server-Side Programming, tackles the fact that while SQL is fine for doing most of
the day-to-day work with a database, you could end up with a particular problem that
requires an imperative approach. This chapter shows you how to implement your own
code within the database, how to write functions and procedures in different languages,
and how to make them interact with transaction boundaries.

Chapter 8, Triggers and Rules, presents both triggers and rules with practical examples,
showing advantages and drawbacks.

Chapter 9, Partitioning, explores partitioning — the capability to split a table into smaller
pieces. PostgreSQL has supported partitioning for a long time, but with version 10 it
introduced so-called "declarative partitioning." After having a quick lock at old-school
inheritance-based partitioning, the chapter focuses on all the features related to declarative
partitioning and its tuning parameters.

[2]

Preface

Chapter 10, Users, Roles, and Database Security, first glances at user management: roles,
groups, and passwords.

You will learn how to constrain users to access only particular databases and from
particular machines, as well as how to constrain the usage of database objects such as
tables. You then will see how row-level security can harden your table contents and
prevent users from modifying tuples that do not belong to them.

Chapter 11, Transactions, MVCC, WALs, and Checkpoints, presents a very fundamental
concept in PostgreSQL: the Write-Ahead Log. You will learn why such a log is so
important, how it deals with transactions, and how you can interact with transactions from
a SQL point of view. The chapter also presents you with the concept of transaction
isolation, ACID rules, and how the database can implement them. Then you will discover
how the WAL can speed up database work and, at the very same time, can protect it
against crashes. You will understand what MVCC is and why it is important. Lastly, the
chapter provides insight into checkpoints and related tunables.

Chapter 12, Extending the Database, introduces a handy way to plug new functionalities into
your cluster — extensions. This chapter will show you what an extension is, how to get and
install an extension, and how to search for already available extensions in the PostgreSQL
ecosystem.

Chapter 13, Indexes and Performance Optimization, addresses the fact that optimizing for
performance is an important task for every database administrator. Indexes are fast ways to
let the database access the most commonly used data, but they cannot be built on top of
everything because of their maintenance costs. The chapter presents the available index
types, then it explains how to recognize tables and queries that could benefit from indexes
and how to deploy them. Thanks to tools such as explain and autoexplain, you will keep
your queries under control.

Chapter 14, Logging and Auditing, tackles questions such as What is happening in the database
cluster? What happened yesterday?

Having a good logging and auditing ruleset is a key point in the administration of a
database cluster. The chapter presents you with the main options for logging, how to
inspect logs with external utilities such as pgFouine, and how to audit your cluster (in a
way that can help you make it compliant with GDPR).

Chapter 15, Backup and Restore, broaches the fact that things can go wrong, and in such
cases, you need a good backup to promptly restore in order for your database to always be
available. The chapter presents the basic and most common ways to back up a single
database or a whole cluster, as well as how to do archiving and point-in-time

recovery. External tools such as Barman and pgBackRest will be introduced.

[3]

Preface

Chapter 16, Configuration and Monitoring, presents the cluster catalog, the way in which
PostgreSQL exports its own internal status. It does not matter how finely you tuned your
cluster, you need to monitor it to understand and promptly adjust it to incoming

needs. Knowing the catalog is fundamental for a database administrator, in order to be able
to see what is going on in the live system. Thanks to special extensions, such as
pg_stat_activity, you will be able to monitor in real time what your users are doing
against the database.

Chapter 17, Physical Replication, covers built-in replication, a mechanism that allows you to
keep several instances up and in sync with a single master node, which PostgreSQL has
supported since version 9. Replication allows scalability and redundancy, as well as many
other scenarios such as testing and comparing databases. This chapter presents so-called
"physical replication," a way to fully replicate a whole cluster over another instance that
will continuously follow its leader. Both asynchronous and synchronous replication, as well
as replication slots, will be presented.

Chapter 18, Logical Replication, covers logical replication, which allows very fine-grained
replication specifying which tables have to be replicated and which don't — supported by
PostgreSQL since version 10. This, of course, allows a very new and rich scenario of data
sharing across different database instances. The chapter presents how logical replication
works, how to set it up, and how to monitor the replication.

Chapter 19, Useful Tools and Useful Extensions, is to be considered as an appendix to the
book. In this chapter, we will talk about some tools and some extensions that allow the
DBA to maximize the work done while minimizing the effort.

Chapter 20, Toward PostgreSQL 13, looks at the latest version of the database — PostgreSQL
13, which at the time of writing is in the beta-2 state. This chapter presents the main
changes and highlights the differences between PostgreSQL 12 and version 13, and looks at
how to upgrade to the new production-ready version once it is available.

[4]

Preface

To get the most out of this book

For this book to be useful, basic knowledge of the Linux operating system in any
distribution or knowledge of the FreeBSD operating system is required. All the SQL
examples can be run using the psql program or using the GUI tool pdAdmin. This makes
them applicable to most platforms. Some scripts will be executed using the bash scripting
language.

Software/Hardware covered in the book|OS Requirements
PostgreSQL 12 - 13 Linux OS / FreeBSD

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from your account at
www.packt . com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the Support tab.
Click on Code Downloads.

Enter the name of the book in the Search box and follow the onscreen
instructions.

LN =

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WIinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Learn-PostgresQL. In case there's an update to the code, it will be
updated on the existing GitHub repository.

[5]

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL

Preface

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://static.packt-cdn.com/downloads/
9781838985288_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "psql is a powerful environment in which to manage our data and our
databases."

A block of code is set as follows:

CREATE DATABASE databasename

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

postgres=# \c forumdb
You are now connected to database "forumdb" as user "postgres".
forumdb=#

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"The first field is an object identifier (OID), which is a number that uniquely identifies the
database called forumdb."

[6]

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf

Preface

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[7]

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

Section 1: Getting Started

In this section, you will learn what PostgreSQL is, what is new in version 12 (and version
13), and how to install and run this great open source database.

This section contains the following chapters:

o Chapter 1, Introduction to PostgreSQL
o Chapter 2, Getting to Know Your Cluster
o Chapter 3, Managing Users and Connections

Introduction to PostgreSQL

PostgreSQL is a well-known open-source relational database, and its motto states what the
project intends to be: the most advanced open-source database in the world.

The main qualities that attract masses of new users every year and keep current users
enthusiastic about their projects are its rock-solid stability, scalability, and safeness, as well
as the features that an enterprise-level database management system provides.

But PostgreSQL is not just a database; it has grown to be a whole ecosystem of extensions,
tools, and languages tied together by communities spread around the world.

PostgreSQL is an open-source project and is fully developed in the open-source world. That
means that there is no single entity in charge of the project and the result is that PostgreSQL
is not a commercial product. In other words, PostgreSQL belongs to everyone, and anyone
can contribute to it. Thanks to a very permissive BSD-style license, PostgreSQL can be used
in any project or scenario, either open or closed source.

Of course, contributing to a project of that size requires experience in software
development, database concepts, and, of course, a positive attitude to open source and
collaborative efforts. But it does also mean that PostgreSQL will continue to live pretty
much forever without the risk of a single company going out of business and sinking with
the database.

PostgreSQL 12 is the latest release of this great database, and at the time of writing, efforts
for PostgreSQL 13 have already begun. This book will focus on PostgreSQL, starting from
the basics and moving toward the most exciting and complex tasks (such as replicating
your datasets to prevent disasters). Of course, given that PostgreSQL is a project of this size
with so many features, a single book cannot cover it all in detail, so our aim is to introduce
the whole set of qualities PostgreSQL provides to you, giving practical use cases and
examples, as well as external resources to help you learn more about particular aspects.

Introduction to PostgreSQL Chapter 1

This book covers PostgreSQL 12 and 13, but the concepts explained in this
book can apply also to later versions (as well as to previous ones when the
same features are present). At the time of writing, PostgreSQL 12 is the
stable release, while PostgreSQL 13 is in its second beta public release and
is expected, therefore, to be stable enough for testing its features.

This chapter will introduce you to this great open source database starting from the project
history and goals, which is very important to help you decide whether you want to use
PostgreSQL in the first place. You will learn basic PostgreSQL terminology, which is very
important to help you search the documentation and understand the main error messages,
in case you need to. Finally, you will see how to install PostgreSQL in different ways so that
you will get a basic knowledge of how to install it on different platforms and contexts.

The following topics are covered in this chapter:

e PostgreSQL at a glance
¢ Exploring PostgreSQL terminology
e Installing PostgreSQL 12 or higher

Technical requirements

You can find the code for this chapter at the following GitHub repository: https://github.
com/PacktPublishing/Learn-PostgreSQL.

PostgreSQL at a glance

As a relational database, PostgreSQL provides a lot of features, and it is quite difficult to
"scare" a PostgreSQL instance. In fact, a single instance can contain more than 4 billion
individual databases, each with unlimited total size and capacity for more than 1 billion
tables, each containing 32 TB of data. Moreover, if there's any concern that those upper
limits won't suffice, please consider that a single table can have 1,600 columns, each 1 GB in
size, with an unlimited number of multi-column (up to 32 columns) indexes. In short,
PostgreSQL can store much more data than you can possibly think of!

Therefore, there is no amount of data that PostgreSQL cannot handle, but of course, in
order to perform well with certain big databases, you need to understand PostgreSQL and
its features.

[10]

https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL

Introduction to PostgreSQL Chapter 1

PostgreSQL is fully ACID-compliant and has a very strong foundation in data integrity and
concurrency. It ships with a procedural language, named PL/pgSQL, which can be used to
write reusable pieces of code, such as functions and routines, and it supports before and
after triggers, views, materialized views, and partitioned tables.

ACID is an acronym of the properties used to indicate that the database
engine provides atomicity, consistency, isolation, and durability.
Atomicity means that a complex database operation is processed as a
single instruction even when it is made up of different operations.
Consistency means that the data within the database is always kept
consistent and that is it is not corrupted due to partially performed
operations. Isolation allows the database to handle concurrency in the
"right way"—that is, without having corrupted data from interleaved
changes. Lastly, durability means that the database engine is supposed to
protect the data it contains, even in the case of software and hardware
failures, as much as it can.

PostgreSQL can be extended with other embedded languages, such as Perl, Python, Java,
and even Bash! And if you think the database does not provide you with enough features,
you can plug in extensions to obtain different behaviors and enhancements—for

instance, geospatial references (GIS), scheduled jobs, esoteric data types, and utilities in
general.

PostgreSQL runs on pretty much every operating system out there, including Linux, Unix,
Mac OS X, and Microsoft Windows, and can even run on commodity hardware such as
Raspberry Pi boards. There are also several cloud computing providers that list PostgreSQL
in their software catalog.

Thanks to its extensive tuning mechanism, it can be adapted very well to the hosting
platform. The community is responsible for keeping the database and documentation at a
very high-quality level, and also the mailing lists and IRC channels are very responsive and
a valuable source for solutions and ideas.

In the experience of the authors, there has never been a case where PostgreSQL has not
been able to adapt to an application scenario.

The PostgreSQL project has a very rich and extensive set of a mailing lists

that range from general topics to very specific details. It is a good habit to

search for problems and solutions on the mailing list archives; see the web
page at https://www.postgresql.org/list/ to geta better idea.

[11]

https://www.postgresql.org/list/
https://www.postgresql.org/list/
https://www.postgresql.org/list/
https://www.postgresql.org/list/
https://www.postgresql.org/list/
https://www.postgresql.org/list/
https://www.postgresql.org/list/
https://www.postgresql.org/list/
https://www.postgresql.org/list/
https://www.postgresql.org/list/
https://www.postgresql.org/list/
https://www.postgresql.org/list/

Introduction to PostgreSQL Chapter 1

A brief history of PostgreSQL

PostgreSQL takes its name from its ancestor: Ingres. Ingres was a relational database
developed by professor Michael Stonebraker. In 1986, Professor Stonebraker started a post-
Ingres project to develop new cool features in the database landscape and named this
project POSTGRES (POST-Ingres). The project aimed to develop an object-relational
database, where "object" means the user would have the capability to extend the database
with their own objects, such as data types, functions, and so on.

In 1994, POSTGRES was released with version 4.2 and an MIT license, which opened up
collaboration from other developers around the world. At that time, POSTGRES was using
an internal query language named QUEL.

Two Berkeley students, Andrew Yu and Jolly Chen, replaced the QUEL query language
with the hot and cool SQL language, and the feature was so innovative that the project
changed its name to Postgre95 to emphasize the difference compared to other preceding
versions.

Eventually, in 1996, the project gained a public server to host the code, and five developers,
including Marc G. Fournier, Tom Lane, and Bruce Momjan, started the development of the
new branded project named PostgreSQL. Since then, the project has been kept in good
shape and up to date.

This also means that PostgreSQL has been developed for over 30 years, again emphasizing
the solidity and openness of the project itself. If you are curious, it is also possible to dig
into the source code down to the initial commit in the open source world:

$ git log 'git rev-list —--max-parents=0 HEAD'
commit d31084e9d1118b25£d16580d9d8c2924b5740dff
Author: Marc G. Fournier <scrappy@hub.org>
Date: Tue Jul 9 06:22:35 1996 +0000

Postgres95 1.01 Distribution - Virgin Sources

What's new in PostgreSQL 12?

PostgreSQL 12 was released on October 3, 2019. It includes a rich set of new features with
regard to its predecessor versions, including the following:

¢ Several performance optimizations, ranging from inlining Common Table
Expressions to huge table partition management and an improved user-defined
statistic hint for multi-column selections

[12]

Introduction to PostgreSQL Chapter 1

¢ A few administrative optimizations, including the concurrent rebuilding of
indexes, off-line check-summing, and, most notably, reporting about
maintenance processes' progress

e Security features including multi-factor authentication and TCP/IP encryption
via GSSAPI

e Support for the SQL JSON path language
e Stored generated columns

PostgreSQL 12 also contains a set of changes aimed to make the database administrator
(DBA)'s life easier—for instance, removing conflicting options and obsolete SQL terms and
types. This emphasizes the fact that PostgreSQL developers do always take care of the
database and its adherence to the current SQL standard.

What's new in PostgreSQL 13?

PostgreSQL 13 will contain a very rich set of optimizations under the hood, with particular
regard to the following;:

e Partitioning, which now includes the ability to execute before triggers on
partitioned tables, the capability to prune partitions in particular edge cases to
speed up query execution, and a better way to join partitions in queries (referred
to as partition-wise joins).

¢ Replication, which can now work at the logical level even on partitioned tables,
automatically publishing all the partitions. Also, there is now no automatic
promotion of a server if it does not reach the specific target to recovery and a
slave server can be promoted without cancelling any pending pause requests. It
is worth noting that it is possible to change the settings of a streaming replication
without having to restart the cluster, therefore having a no-downtime impact.

¢ Indexes, which are now more efficient in general for storing data and accepting
operators with parameters.

e Statistics, with particular regard to improvements in the extended statistics, the
data collected and used by the optimizer and a few changes in the monitoring
catalogs.

There are a lot more changes that will be discussed in an appropriate chapter at the end of
the book, but as usual, a new release of PostgreSQL contains performance improvements as
well as security improvements and, as always, a better configuration system.

[13]

Introduction to PostgreSQL Chapter 1

PostgreSQL release policy, version numbers, and
life cycle

PostgreSQL developers release a new major release once per year, usually near October. A
major release is a stable version that introduces new features and possible incompatibilities
with previous versions. During its life cycle, a major release is constantly improved by
means of minor releases, which are usually bug-fixing and maintenance releases.

The PostgreSQL version number identifies the major and minor release. Since PostgreSQL
10 (released in 2011), the version number is specified as major.minor; so, for

instance, 12 . 0 indicates the first major release, 12, while 12 .1 indicates the minor

release, 1, of major release 12. In short, the greater the number, the more recent the version
you are managing.

However, before PostgreSQL 10, the version number was made by three different groups of
digits—brand.year.minor—where the brand is the main development topic (for

instance, "replication”), the year represents the year of development of that brand, and the
minor is the minor version. What is important to keep in mind is that the brand and

year pair made a major number in PostgreSQL versions prior to 10. So, for instance,
PostgreSQL 9. 6. 16 is the 16" minor release done on brand 9 during the 6" year of
development, and therefore could be incompatible with 9.5.20 because the two major
versions are 9.6 and 9.5.

But what does it mean, in a practical sense, that two major versions are possibly
incompatible?

PostgreSQL stores its own data on the storage system, often the hard disk. This data is
stored in binary format, for optimization of performances and space consumption, and this
format could possibly change between major versions. This means that, while you are able
to upgrade PostgreSQL between minor versions on the fly, you probably will have to dump
and restore your database content between major version upgrades. As you will see in this
book, PostgreSQL provides ad hoc tools to support you even in the worst case of a major
upgrade with a lot of incompatibilities, but keep in mind that while a minor version
upgrade is something you usually do without any ahead planning, a major version
upgrade could imply downtime.

[14]

Introduction to PostgreSQL Chapter 1

The recommendation, as for much other software, is to run the most recent version of
PostgreSQL available to you: PostgreSQL developers put in a lot of effort in order to
provide bug-free products, but new features could introduce new bugs, and regardless of
the very extensive testing platform PostgreSQL has, it is software after all, and software
could have bugs. Despite internal bugs, new releases also include fixes for security exploits
and performance improvements, so it is a very good habit to keep up to date with your
running PostgreSQL server.

Last but not least, not all PostgreSQL versions will live forever. PostgreSQL provides
support and upgrades for 5 years after a new release is issued; after this length of time, a
major release will reach its end of life (EOL) and PostgreSQL developers will no longer
maintain it. This does not mean you cannot run an ancient version of PostgreSQL, it simply
means this version will not get any upgrades from the official project and, therefore, will be
out of date. As an example, since PostgreSQL 12 was released in 2019, it will reach its EOL
in 2024.

With that in mind, we'll now introduce the main PostgreSQL terminology, as well
as further useful-to-understand concepts.

Exploring PostgreSQL terminology

A PostgreSQL instance is called a cluster because a single instance can serve and handle
multiple databases. Every database is an isolated space where users and applications can
store data.

A database is accessed by allowed users, but users connected to a database cannot cross the
database boundaries and interact with data contained in another database, unless they
explicitly connect to the latter database too.

A database can be organized into namespaces, called schemas. A schema is a mnemonic
name that the user can assign to organize database objects, such as tables, into a more
structured collection. Schemas cannot be nested, so they represent a flat namespace.

Database objects are represented by everything the user can create and manage within the
database—for instance, tables, functions, triggers, and data types. Every object belongs to
one and only one schema that, if not specified, is the default public schema.

Users are defined at a cluster-wide level, which means they are not tied to a particular
database in the cluster. A user can connect with and manage any database in the cluster
they have been allowed to.

[15]

Introduction to PostgreSQL Chapter 1

PostgreSQL splits users into two main categories:

e Normal users: These users are the ones who can connect to and handle databases
and objects depending on their privilege set.

e Superusers: These users can do anything with any database object.

PostgreSQL allows the configuration of as many superusers as you need, and every
superuser has the very same permissions: they can do everything with every database and
object and, most notably, can also control the life cycle of the cluster (for instance, they can
terminate normal user connections, reload the configuration, stop the whole cluster, and so
on).

PostgreSQL internal data, such as users, databases, namespaces, configuration, and
database runtime status, is provided by means of catalogs: special tables that present
information in a SQL-interactive way. Many catalogs are trimmed depending on the user
who is inspecting them, with the exception that superusers usually see the whole set of
available information.

PostgreSQL stores the user data (for example, tables) and its internal status on the local
filesystem. This is an important point to keep in mind: PostgreSQL relies on the underlying
filesystem to implement persistence, and therefore tuning the filesystem is an important
task in order to make PostgreSQL perform well. In particular, PostgreSQL stores all of its
content (user data and internal status) in a single filesystem directory known as PGDATA.
The PGDATA directory represents what the cluster is serving as databases, so it is possible
for you to have a single installation of PostgreSQL and make it switch to

different PGDATA directories to deliver different content. In effect, this is a possible way to
implement quick upgrades between major versions. As you will see in the next sections,
the PGDATA directory needs to be initialized before it can be used by PostgreSQL; the
initialization is the creation of the directory structure within PGDATA itself and is, of course,
a one-time operation.

The detailed content of PGDATA will be explained later in the next chapter, but for now, it
will suffice for you to remember that the PGDATA directory is where PostgreSQL expects to
find data and configuration files. In particular, the PGDATA directory is made by at least
the write-ahead logs (WALs) and the data storage. Without either of those two parts, the
cluster is unable to guarantee data consistency and, in some critical circumstances, even
start.

[16]

Introduction to PostgreSQL Chapter 1

WALs are a technology that many database systems use, and even some transaction
filesystems (such as ZFS, ReiserFS, UFS with Soft Updates, and so on) provide. The idea is
that, before applying any change to a chunk of data, an intent log will be made persistent.
In this case, if the cluster crashes, it can always rely on the already-written intent log to
understand what operations have been completed and what must be recovered (more
details on this in later chapters). Please note that with the term "crash," we refer to any
possible disaster that can hit your cluster, including a software bug, but more likely the lack
of electrical power, hard disk failures, and so on. PostgreSQL does commit to providing to
you the best data consistency it can, and therefore, it makes a great effort to ensure that the
intent log (WAL) is as secure as possible.

Internally, PostgreSQL keeps track of the tables structures, indexes, functions, and all the
stuff needed to manage the cluster in dedicated storage named the catalog. The PostgreSQL
catalog is fundamental for the life cycle of the cluster and reflects pretty much every action
the database does on the user's structures and data. PostgreSQL provides access to the
catalog from database superusers by means of an SQL interface, which means the catalog is
totally explorable and, to some extent, manipulable, via SQL statements.

The SQL standard defines a so-called information schema, a collection of
tables common to all standard database implementations, including
PostgreSQL, that the DBA can use to inspect the internal status of the
database itself. For instance, the information schema defines a table that
collects information about all the user-defined tables so that it is possible
to query the information schema to see whether a specific table exists or
not.

The PostgreSQL catalog is what some call an "information schema on
steroids": the catalog is much more accurate and PostgreSQL-specific that
the general information schema, and the DBA can extract a lot more
information about the PostgreSQL status from the catalog. Of course,
PostgreSQL does support the information schema, but throughout the
whole book, you will see references to the catalogs because they provide
much more detailed information.

When the cluster is started, PostgreSQL launches a single process called the postmaster. The
aim of the postmaster is to wait for incoming client connections, often made over a TCP/IP
connection, and fork another process named the backend process, which in turn is in charge
of serving one and only one connection.

[17]

Introduction to PostgreSQL Chapter 1

This means that every time a new connection against the cluster is opened, the cluster
reacts by launching a new backend process to serve it until the connection ends and the
process is, consequently, destroyed. The postmaster usually starts also some utility
processes that are responsible to keep PostgreSQL in good shape while it is running; these
processes will be discussed later in this process.

To summarize, PostgreSQL provides you with executables that can be installed wherever
you want on your system and can serve a single cluster. The cluster, in turn, serves data out
of a single PGDATA directory that contains, among other stuff, the user data, the cluster
internal status, and the WALs. Every time a client connects to the server, the postmaster
process forks a new backend process that is the minion in charge of serving the connection.

This is a quick recap of the main terms used within PostgreSQL:

¢ Cluster: Cluster refers to the whole PostgreSQL service.

e Postmaster: This is the first process the cluster executes, and this process is
responsible for keeping track of the activities of the whole cluster. The
postmaster forks itself into a backend process every time a new connection is
established.

¢ Database: The database is an isolated data container to which users (or
applications) can connect to. A cluster can handle multiple databases. A database
can be made by different objects, including schemas (namespaces), tables,
triggers, and other objects you will see as the book progresses.

® PGDATA: PGDATA is the name of the directory that, on persistent storage, is fully
dedicated to PostgreSQL and its data. PostgreSQL stores the data within such a
directory.

e WALs: WALSs contains the intent log of database changes, used to recover data
from a critical crash.

Now that we've discussed the basic terminology related to PostgreSQL, it is time to get it
installed on your machine.

Installing PostgreSQL 12 or higher

PostgreSQL can run on several Unix and Unix-like operating systems, such as Linux, as
well as on Microsoft Windows. So far, the most supported platform remains Linux because
most PostgreSQL developers work on this platform, and so it is the one with the most
tested use cases. However, deploying on other platforms should not present any problems
and, most importantly, is not going to put your data at any risk.

[18]

Introduction to PostgreSQL Chapter 1

This section will focus on installing PostgreSQL 12, since it is the latest stable version
available worldwide. You will learn, however, how to build your own version of
PostgreSQL, and this may also be the way to install PostgreSQL 13 on your system.

Before installing PostgreSQL 12, you need to choose, or at least evaluate, how to install it.
There are two main ways to get PostgreSQL 12 up and running, as follows:

e Compiling from sources
¢ Using a binary package

Binary packages are provided by the PostgreSQL community or the operating system, and
using them has the advantage that it can provide you with a PostgreSQL installation very
quickly. Moreover, binary packages do not require a compilation toolchain, and therefore
are much easier to adopt. Lastly, a binary package adheres to the operating system
conventions it has been built for (for instance, on where to place configuration files) and
upgrades can be managed by the operating system as well. Since binary packages need to
be pre-built from vendors, they could possibly not be the very latest released version.

On the other hand, installing from sources requires a compilation toolchain, as well as
much more time and CPU consumption to build the PostgreSQL executables. You have full
control over which components will be available in the final product, and can trim and
optimize your instance for very high performances and shrink resource consumption to a
minimum. In the long term, however, you will be responsible for maintaining the
installation and upgrading it in a similar manner.

What to install

PostgreSQL is split across several components to install:

e The PostgreSQL server is the part that can serve your databases to applications
and users and is required to store your data.

¢ The PostgreSQL client is the library and client tool to connect to the database
server. It is not required if you don't need to connect to the database on the very
same machine, while it is required on client machines.

¢ The PostgreSQL contrib package is a set of well-known extensions and utilities
that can enhance your PostgreSQL experience.

e The PostgreSQL docs is the documentation related to the server and the client.

e PostgreSQL PL/Perl, PL/Python, and PL/Tcl are three components to allow the
usage of programming languages— Perl, Python, and Tcl, respectively—directly
within the PostgreSQL server.

[19]

Introduction to PostgreSQL Chapter 1

The recommended set of components is the server, the client, and the contrib modules;
these modules will be used across the book. You are free to decide whether to install the
other components as you wish.

Installing PostgreSQL 12 from binary packages

In the following sections, you will see how to install PostgreSQL 12 on a few popular Linux
and Unix operating systems, namely the following:

e GNU/Linux Debian, Ubuntu, and derivatives
e Fedora
e FreeBSD

It is not possible to provide detailed instructions for every operating system out there, but
the concepts presented in the following sections should prove insightful regardless.

Installing PostgreSQL 12 on GNU/Linux Debian,

Ubuntu, and derivatives

The PostgreSQL Global Developers Group (PGDG) provides binary packages for Debian
and its derivatives, including the Ubuntu operating system family. In order to use the
PGDG repositories, it is required for you to first install the source and signature of the
repository:

1. To import the repository on an Ubuntu 19.10 disc, you need to run the following
commands:

$ sudo /bin/sh -c '/bin/echo "deb
http://apt.postgresql.org/pub/repos/apt/ $(lsb_release -cs)-pgdg
main" > /etc/apt/sources.list.d/pgdg.list’

$ wget --quiet -0 -
https://www.postgresql.org/media/keys/ACCCACF8.asc | sudo apt-key
add -

$ sudo apt-get update

This will ensure the repository sources for your operating system are up to date
so that you can install the PostgreSQL 12 packages. In the Debian/Ubuntu
repositories, the packages are named after the component and the version, and
the postgresqgl-12 package includes the server and the cont rib module.

[20]

Introduction to PostgreSQL Chapter 1

2. Install the modules needed:

$ sudo apt install postgresql-12 postgresgl-client-12 postgresql-
contrib-12

Debian and Ubuntu provide their own command to control the

cluster, pg_ctlcluster (1). The rationale for that is that on a Debian/Ubuntu
operating system, every PostgreSQL version is installed in its own directory with
separate configuration files, so there is a way to run different versions
concurrently and manage them via the operating system. For example,
configuration files are under the /etc/postgresgl/12/main directory, while
the data directory is set by default to /var/lib/postgresql/12/main.

3. Enable PostgreSQL 12 at boot time by executing the following command:

$ sudo update-rc.d postgresql enable

4. Start the cluster immediately using the service (1) command:
$ sudo service postgresql start

You have thus installed PostgreSQL on GNU/Linux Debian, Ubuntu, and derivatives.

Installing PostgreSQL 12 on Linux Fedora

Fedora PostgreSQL packages are provided by the PostgreSQL community. In order to
allow dnf (8) to find PostgreSQL packages, you need to install the PGDG repository, and
then proceed with the installation as a distribution package:

1. Add the repository using the following command:

$ sudo dnf install
https://download.postgresql.org/pub/repos/yum/reporpms/F-30-x86_64/
pgdg-fedora-repo—-latest.noarch.rpm

The list of available repositories can be obtained by the PostgreSQL official
website at the download page (see the References section).

2. Install the PostgreSQL packages using the following command. Please note that
the postgresql12 package installs only the client part of the product, not the
server:

$ sudo dnf -y install \
postgresqgll2-server \

[21]

Introduction to PostgreSQL Chapter 1

postgresqll2-contrib \
postgresqll2-docs \

postgresqll2
Installed:
postgresqgll2-contrib-12.1-2PGDG.£30.x86_64 postgresqll2-
docs-12.1-2PGDG. £30.x86_64 postgresqll2-

server—12.1-2PGDG. £30.x86_64
postgresqll2-12.1-2PGDG.£30.x86_64

Complete!

3. Configure the system specifying the PGDATA directory and enabling the option to
start the service at boot time. In order to specify the PGDATA directory, you need
touse systemd (1) to edit an overriding configuration file for the
postgresgl-12 service:

$ sudo systemctl edit postgresql-12

The preceding command will open your default text editor with an empty file;
you can, therefore, set the PGDATA variable as follows and then save and exit the

editor to apply changes:

[Service]
Environment=PGDATA=/postgres/12

4. Initialize the database directory; this can be done with a specific Fedora
installation command named postgresql-12-setup, as follows:

$ sudo /usr/pgsql-12/bin/postgresql-12-setup initdb
Initializing database ... OK

5. Enable PostgreSQL 12 to start at boot time and launch the server immediately:
$ sudo systemctl enable postgresql-12
Created symlink /etc/systemd/system/multi-
user.target.wants/postgresgl-12.service

— /usr/lib/systemd/system/postgresql-12.service.

$ sudo systemctl start postgresql-12.service

[22]

Introduction to PostgreSQL Chapter 1

If your Fedora installation contains the service (8) command, you can also start
the service with the following:

$ sudo service postgresql-12 start

Redirecting to /bin/systemctl start postgresqgl-12.service

You have now successfully installed PostgreSQL 12 on Linux Fedora.

Installing PostgreSQL 12 on FreeBSD

PostgreSQL 12 is available on FreeBSD by means of ports and packages. Thanks to
the pkg (1) command, it is very easy to install PostgreSQL 12 here, as shown in the
following steps:

1. Search for available packages (execute an update command in order to scan for
new packages):

$ pkg update

$ pkg search postgresqll2

pgtcl-postgresqllz2-2.1.1_2 TCL extension for accessing a
PostgreSQL server (PGICL-NG)

postgresgll2-client-12.1 PostgreSQL database (client)
postgresqgll2-contrib-12.1 The contrib utilities from the
PostgreSQL distribution

postgresqgll2-docs-12.1 The PostgreSQL documentation set
postgresqgll2-plperl-12.1 Write SQL functions for PostgreSQL
using Perl5

postgresqgll2-plpython-12.1 Module for using Python to write SQL
functions

postgresqgll2-pltcl-12.1 Module for using Tcl to write SQL
functions

postgresqgll2-server-12.1 PostgreSQL is the most advanced

open-source database available anywhere

2. Install packages by executing pkg (1) and specify the set of packages you need.
Of course, the installation must be executed as a user with administrative
privileges, as follows:

$ sudo pkg install postgresqll2-server-12.1 \
postgresqgll2-client-12.1 \
postgresqgll2-contrib-12.1 \
postgresqgll2-docs-12.1

[23]

Introduction to PostgreSQL Chapter 1

3. Initialize the directory to serve the database and to enable the server startup at
the machine boot. The minimal parameters to set are postgresgl_enable and
postgresgl_data. For example, to edit (as an administrative user)
the /etc/rc.conf file, add the options as follows:

to enable PostgreSQL at boot time
postgresqgl_enable="YES"

PGDATA to use
postgresqgl_data="/postgres/12"
4. Then, run the following command to create and initialize the directory where
PostgreSQL 12 will store the data:
$ sudo /usr/local/etc/rc.d/postgresql initdb
The files belonging to this database system will be owned by user
"postgres".

This user must also own the server process.

The database cluster will be initialized with locale "C".
The default text search configuration will be set to "english".

Data page checksums are disabled.

creating directory /postgres/12 ... ok

creating subdirectories ... ok

selecting dynamic shared memory implementation ... posix
selecting default max_connections ... 100

selecting default shared_buffers ... 128MB

selecting default time zone ... Europe/Rome

creating configuration files ... ok

running bootstrap script ... ok

performing post-bootstrap initialization ... ok

syncing data to disk ... ok

initdb: warning: enabling "trust" authentication for local
connections

You can change this by editing pg_hba.conf or using the option -A,
or

——auth-local and --auth-host, the next time you run initdb.

Success. You can now start the database server using:

/usr/local/bin/pg_ctl -D /postgres/12 -1 logfile start

[24]

Introduction to PostgreSQL Chapter 1

5. Start the PostgreSQL 12 instance with the following command:

$ sudo service postgresql start

2019-12-09 14:20:50.344 CET [67267] LOG: starting PostgreSQL 12.1
on amdé64-portbld-freebsdl12.0, compiled by FreeBSD clang version
6.0.1 (tags/RELEASE_601/final 335540) (based on LLVM 6.0.1), 64-bit
2019-12-09 14:20:50.344 CET [67267] LOG: listening on IPv6 address
"::1", port 5432

2019-12-09 14:20:50.344 CET [67267] LOG: listening on IPv4 address
"127.0.0.1", port 5432

2019-12-09 14:20:50.345 CET [67267] LOG: listening on Unix socket
"/tmp/.s.PGSQL.5432"

2019-12-09 14:20:50.352 CET [67267] LOG: ending log output to
stderr

2019-12-09 14:20:50.352 CET [67267] HINT: Future log output will
go to log destination "syslog".

If the server cannot be started, for any reason, the command output will print out an error
message that should help you to understand what went wrong.

Installing PostgreSQL from sources

Installing PostgreSQL from sources requires downloading a tarball, which is a compressed
package with all the source code files, and starting the compilation. Usually, this takes
several minutes, depending on the power of the machine and the I/O bandwidth. In order
to compile PostgreSQL from source, you will need tar (1), GNU make (1) (at least at
version 3.80), and a C compiler compliant to the C99 standard (or higher). Usually, you
already have these tools on a Linux or Unix system; otherwise, please refer to your
operating system documentation on how to install these tools.

Once you have all the dependencies installed, follow the steps given here to compile and
install PostgreSQL:

1. The very first step is to download the PostgreSQL tarball related to the version
you want to install, verifying that it is correct. For instance, to download version
12.1, you can do the following;:

$ wget
https://ftp.postgresql.org/pub/source/v12.1/postgresql-12.1.tar.bz2
$ wget
https://ftp.postgresql.org/pub/source/v12.1/postgresql-12.1.tar.bz2
.md5

[25]

Introduction to PostgreSQL Chapter 1

If you want to install the available second beta version of PostgreSQL 13, you can
repeat the preceding steps with a different tarball URL:

$ wget
https://ftp.postgresql.org/pub/source/vl13beta2/postgresql-13beta2.t
ar.bz2

$ wget
https://ftp.postgresql.org/pub/source/vl13beta2/postgresql-13beta2.t
ar.bz2.md5

2. Before starting the compilation, check that the downloaded tarball is intact:

$ md5sum —--check postgresql-12.1.tar.bz2.md5
postgresqgl-12.1.tar.bz2: OK

3. Once you are sure that the downloaded tarball is not corrupt, you can extract its
content and start the compilation (please consider that the extracted archive will
take around 200 MB of disk space, and the compilation will add some more extra
space):

$ tar xjvf postgresql-12.1.tar.bz2
$ cd postgresql-12.1
$./configure --prefix=/usr/local

$ make && sudo make install
PostgreSQL installation complete.

If you want or need the systemd (1) service file, add the ——with-
systemd option to the configure line.

4. Once the database has been installed, you need to create a user to run the
database with, usually named postgres, and initialize the database directory:

sudo useradd postgres

sudo mkdir /postgres/12

sudo chown postgres:postgres /postgres/12
/usr/local/bin/initdb -D /postgres/12

vr r r

[26]

Introduction to PostgreSQL Chapter 1

Installing PostgreSQL via pgenv

pgenv is a nice and small tool that allows you to download and manage several instances
of different versions of PostgreSQL on the same machine. The idea behind pgenv is to let
you explore different PostgreSQL versions—for instance, to test your application against
different major versions. pgenv does not aim to be an enterprise-class tool to manage in-
production instances; rather, it is a tool to let developers and DBAs experiment with
different versions of PostgreSQL and keep them under control easily.

Of course, being an external tool, pgenv must be installed before it can be used. The
installation, however, is very simple, since the application is made by a single Bash script:

1. The fastest way to get pgenv installed is to clone the GitHub repository and set
the PATH environment variable to point to the executable directory, as follows:

$ git clone https://github.com/theory/pgenv

Cloning into 'pgenv'...

remote: Enumerating objects: 79, done.

remote: Counting objects: 100% (79/79), done.

remote: Compressing objects: 100% (34/34), done.

remote: Total 642 (delta 34), reused 72 (delta 29), pack-reused 563
Receiving objects: 100% (642/642), 173.78 KiB | 801.00 KiB/s, done.
Resolving deltas: 100% (300/300), done.

$ export PATH=$PATH:./pgenv/bin

2. Now, the pgenv command is at your fingertips, and you can run the command to
get a help prompt and see the available commands:
$ pgenv
Using PGENV_ROOT /home/luca/git/pgenv

Usage: pgenv <command> [<args>]

The pgenv commands are:

use Set and start the current PostgreSQL version
clear Stop and unset the current PostgreSQL version
start Start the current PostgreSQL server

stop Stop the current PostgreSQL server

restart Restart the current PostgreSQL server

build Build a specific version of PostgreSQL
rebuild Re-build a specific version of PostgreSQL
remove Remove a specific version of PostgreSQL
version Show the current PostgreSQL version

current Same as 'version'

versions List all PostgreSQL versions available to pgenv

[27]

Introduction to PostgreSQL Chapter 1

help Show this usage statement and command summary
available Show which versions can be downloaded

check Check all program dependencies

config View, edit, delete the program configuration

For full documentation, see: https://github.com/theory/pgenvi#readme
This is 'pgenv' version [72fafla]

The idea behind pgenv is pretty simple: it is a tool to automate the "boring"
stuff—that is, downloading, compiling, installing, and start/stopping a cluster. In
order to let pgenv manage a specific instance, you have to "use" it. When you use
an instance, pgenv detects whether the instance has been initialized or not, and in
the latter case, it does the initialization for you.

3. In order to install versions 12.0 and 12.1 of PostgreSQL, you simply have to run
the following commands:

$ pgenv build 12.0

PostgreSQL 12.0 built
$ pgenv build 12.1

PostgreSQL 12.1 built

The preceding commands will download and compile the two versions of
PostgreSQL, and the time required for the operations to complete depends on the
power and speed of the machine you are running on.

4. After that, you can decide which instance to start with the use command:
$ pgenv use 12.0
server started
PostgreSQL 12.0 started

Logging to /home/luca/git/pgenv/pgsgl/data/server.log

pgenv is smart enough to see whether the instance you are starting has been
already initialized, or it will initialize (only the first time) for you.

[28]

Introduction to PostgreSQL Chapter 1

5. Once you have started the instance, you can connect to it with any client tool you
like, most notably psql (you will learn more about psql in the next chapters):

S psql -U postgres -h localhost templatel

psgl (12.1 (Ubuntu 12.1-1.pgdgl8.04+1), server 12.0)
Type "help" for help.

templatel=#

6. If you need to stop and change the PostgreSQL version to use, you can issue
a stop command followed by a use command with the targeted version. For

instance, to stop running the 12.0 instance and start a 12.1 instance, you can use
the following:

$ pgenv stop
PostgreSQL 12.0 stopped
$ pgenv use 12.1

PostgreSQL 12.1 started
Logging to /home/luca/git/pgenv/pgsgl/data/server.log

7. pgenv allows you to see which instances are currently installed and which one is
currently active—that is, "in use"—and this does not mean it is running;

$ pgenv versions
Using PGENV_ROOT /home/luca/git/pgenv

11.5 pgsgl-11.5
11lbetad pgsgl-1lbeta4d
12.0 pgsgl-12.0

* 12.1 pgsgl-12.1

If you are searching for a quick way to test and run different PostgreSQL versions on the
same machine, pgenv is a good tool.

Installing PostgreSQL 13 beta 2 using pgenv is really simple—just repeat the preceding
process, changing the version number of the cluster you want to build:

$ pgenv build 13beta2
PostgreSQL 13beta2 built
$ pgenv use 1l3betal

server started
PostgreSQL 13betal started

[29]

Introduction to PostgreSQL Chapter 1

$ psql -U postgres —-c "SELECT version();" templatel
version

PostgreSQL 13beta2 on x86_64-unknown-freebsdl2.1, compiled by gcc (FreeBSD
Ports Collection) 9.2.0, 64-bit
(1 row)

You now know how to use your preferred method to install the version of PostgreSQL that
you need.

Summary

This chapter has introduced you to PostgreSQL, its history, and its main features. You have
learned about PostgreSQL terminology, as well as how to install a cluster on Unix-like
operating systems, such as GNU/Linux Debian, Fedora, and FreeBSD, as well as installing
the tool from various sources.

In the following chapters, you will start using this great database engine and learn details
about every main single feature it provides.

References

° POStgreSQL 12 release note: https://www.postgresqgl.org/docs/12/release—
12.html

° Upgrading documentation: https://www.postgresql.org/docs/current/
upgrading.html

. PostgreSQL version pOliCy: https://www.postgresqgl.org/support/versioning/

e PostgreSQL initdb official documentation: https://www.postgresql.org/
docs/12/app—-initdb.html

e PostgreSQL pg_ct1l official documentation: https://www.postgresqgl.org/
docs/12/app-pg-ctl.html

¢ pgenv GitHub repository and documentation: https://github.com/theory/
pgenv

[30]

https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://github.com/theory/pgenv
https://github.com/theory/pgenv
https://github.com/theory/pgenv
https://github.com/theory/pgenv
https://github.com/theory/pgenv
https://github.com/theory/pgenv
https://github.com/theory/pgenv
https://github.com/theory/pgenv
https://github.com/theory/pgenv
https://github.com/theory/pgenv

Getting to Know Your Cluster

In order to be a proficient user and administrator of a PostgreSQL cluster, you first have to
know and understand how PostgreSQL works. A database system is a very complex beast,
and PostgreSQL, being an enterprise-level Database Management System (DBMS), is in
no way a simple software system. However, thanks to a very good design and
implementation, once you understand the basic concepts and terminology of PostgreSQL,
things will quickly become comprehensive and clear.

This chapter will introduce you to the main PostgreSQL terminology and concepts, as well
as teach you how to connect to the cluster. This chapter will also introduce you to the psqgl
client, which ships with PostgreSQL and is the recommended way to connect to your
database. You can, of course, use any client that supports PostgreSQL to connect to the
database, and the rules explained here will also be valid for other clients supporting
PostgreSQL. The main free graphical client available for PostgreSQL is pgAdmin4, but you
can really choose the one you like the most.

This chapter covers the following topics:

e Managing your cluster

¢ Connecting to the cluster

¢ Exploring the disk layout of PGDATA

¢ Exploring configuration files and parameters

Technical requirements

What you need to know for this chapter is as follows:

e How to install binary packages on your Unix machine
¢ Basic Unix command-line usage
¢ Basic SQL statements

Getting to Know Your Cluster Chapter 2

You can find the code for this chapter in the following GitHub repository: https://github.
com/PacktPublishing/Learn-PostgreSQL.

Managing your cluster

From an operating system point of view, PostgreSQL is a service that can be started,
stopped, and, of course, monitored. As you saw in the previous chapter, usually when you
install PostgreSQL, you also get a set of operating system-specific tools and scripts to
integrate PostgreSQL with your operating system service management (for example,
systemd service files).

In particular, PostgreSQL ships with a tool called pg_ct1 that helps in managing the
cluster and the related running processes. This section introduces you to the basic usage of
pg_ctl and to the processes that you can encounter in a running cluster.

pg_ctl

The pg_ct1 command-line utility is a tool that allows you to perform different actions on a
cluster, mainly initialize it, start it, restart and stop it, and so on. pg_ct1 accepts the
command to execute as the first argument, followed by other specific arguments—the main
commands are as follows:

e start, stop, and restart execute the corresponding actions on the cluster.

e status reports the current status (running or not) of the cluster.

e initdb (or init for short) executes the initialization of the cluster, possibly
removing any previously existing data.

e reload causes the PostgreSQL server to reload the configuration, which is useful
when you want to apply configuration changes.

e promote is used when the cluster is running as a subordinate
server (named standby) in a replication setup and, from now on, must be
detached from the original master and become independent (replication will be
explained in later chapters).

Let's see a possible usage of each of these commands now.

[32]

https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL

Getting to Know Your Cluster Chapter 2

The status command just queries the cluster to get information, so it is pretty safe as a
starting point to understand what is happening:

S pg_ctl status
pg_ctl: no server running

As we can see, it's not currently running, which in hindsight makes sense given that we
haven't started it up explicitly. We can then start the cluster with the start command:

S pg_ctl start
waiting for server to start....

2019-12-17 19:31:48.421 CET [96724] LOG: starting PostgreSQL 12.1 on
amd64-portbld-freebsdl12.0, compiled by FreeBSD clang version 6.0.1
(tags/RELEASE_601/final 335540) (based on LLVM 6.0.1), 64-bit

2019-12-17 19:31:48.421 CET [96724] LOG: 1listening on IPv6 address "::1",
port 5432

2019-12-17 19:31:48.422 CET [96724] LOG: 1listening on IPv4 address
"127.0.0.1", port 5432

2019-12-17 19:31:48.423 CET [96724] LOG: listening on Unix socket
"/tmp/.s.PGSQL.5432"

2019-12-17 19:31:48.429 CET [96724] LOG: ending log output to stderr
2019-12-17 19:31:48.429 CET [96724] HINT: Future log output will go to log
destination "syslog".

done

server started

The pg_ct1 command launches the postmaster process, which prints out a few log lines
before redirecting the logs to the appropriate log file, and the server started message at
the end confirms that the server is started. Now, if you run pg_ct1 again to check the
server, you will see that it has been started:

$ pg_ctl status
pg_ctl: server is running (PID: 96724)
/usr/local/bin/postgres

As you can see, the server is now running and pg_ct1 shows the Process Identifier (PID)
of the running process, as well as the command line that launched the process—in this
case,/usr/local/bin/postgres. This process is the postmaster, which is the "root" of
all PostgreSQL processes. But wait a minute: why is it called postmaster if the launched
process is a postgres executable? The name postmaster is just that: a name used to
identify a process among the others. Both backend processes and the postmaster are run
starting from the postgres executable, and the postmaster is just the root of all
PostgreSQL processes, with the main aim of keeping all the other processes under control.

[33]

Getting to Know Your Cluster Chapter 2

Now that the cluster is running, let's stop it. As you can imagine, stop is the command
used to instruct pg_ct1 about which action to perform:

$ pg_ctl stop
waiting for server to shut down.... done
server stopped

However, stopping a cluster can be much more problematic than starting it, and for that
reason, it is possible to pass extra arguments to the st op command in order to let pg_ct1
act accordingly. In particular, there are three ways of stopping a cluster:

e The smart mode means that the PostgreSQL cluster will gently wait for all the
connected clients to disconnect and only then it will shut the cluster down.

¢ The fast mode will immediately disconnect every client and will shut down the
server without having to wait.

¢ The immediate mode will abort every PostgreSQL process, including client
connections, and shut down the cluster in a dirty way, meaning that data
integrity is not guaranteed and the server needs a crash recovery at start up time.

Once you issue a stop command through pg_ct1, the server will not accept any new
incoming connections from clients, and depending on the stop mode you have selected,
existing connections will be terminated. The default stop mode, if none is specified, is fast,
which forces an immediate disconnection of the clients but ensures data integrity.

If you want to change the stop mode, you can use the -m flag, specifying the mode name, as
follows:

$ pg_ctl stop -m smart
waiting for server to shut down............ ... i done
server stopped

In the preceding example, the pg_ct1 command will wait, printing a dot every second
until all the clients disconnect from the server. In the meantime, if you try to connect to the
same cluster from another client, you will receive an error, because the server has entered
the stopping procedure:

$ psql templatel
psgl: error: could not connect to server: FATAL: the database system is
shutting down

[34]

Getting to Know Your Cluster Chapter 2

It is possible to specify just the first letter of the stop mode instead of the whole word; so,
for instance, s for smart, i for immediate, and £ for fast. Interacting with a cluster status,
for example, to stop it is an action that not every user must be able to perform; usually, only
an operating system administrator must be able to interact with services including
PostgreSQL.

pg_ctl must be run by the same unprivileged operating system user that is going to run
the cluster. PostgreSQL does not allow a cluster to be run by privileged users, such as root,
in order to mitigate the side effects of privilege escalation. Therefore, PostgreSQL is run by
a "normal” user, usually named postgres on all the operating systems. This unprivileged
user will own the PGDATA directory and run the postmaster process, and therefore also all
the processes launched by the postmaster itself.

pg_ctl, having to interact with PostgreSQL processes, must be run by the very same
unprivileged user, and in fact, if you try to run pg_ct1 as a privileged user, you get a
warning message:

$ sudo pg_ctl stop

pg_ctl: cannot be run as root

Please log in (using, e.g., "su") as the (unprivileged) user that will
own the server process.

A better approach is to either log in as the postgres user or ask sudo to use this user—for
instance, specifying the user to run the command via the —u flag and keeping the
environment with -E:

$ sudo -E -u postgres pg_ctl stop
waiting for server to shut down.... done
server stopped

On the other hand, if you are going to manage the PostgreSQL cluster without pg_ct1 and
with operating system tools (such as service scripts), you will need to run the commands
as a privileged user:

$ sudo service postgresql start

2019-12-17 19:24:43.928 CET [28738] LOG: starting PostgreSQL 12.1 on
amd64-portbld-freebsdl12.0, compiled by FreeBSD clang version 6.0.1
(tags/RELEASE_601/final 335540) (based on LLVM 6.0.1), 64-bit
2019-12-17 19:24:43.929 CET [28738] LOG: 1listening on IPv6 address "::1",
port 5432

2019-12-17 19:24:43.929 CET [28738] LOG: listening on IPv4 address
"127.0.0.1", port 5432

2019-12-17 19:24:43.930 CET [28738] LOG: listening on Unix socket
"/tmp/.s.PGSQL.5432"

2019-12-17 19:24:43.935 CET [28738] LOG: ending log output to stderr

[35]

Getting to Know Your Cluster Chapter 2

2019-12-17 19:24:43.935 CET [28738] HINT: Future log output will go to log
destination "syslog".

Therefore, it is important to keep in mind that while pg_ct1 provides you with all of the
possible interactions with your cluster, you need to use the same unprivileged user that the
cluster is running. This is particularly important when dealing with your own automation
scripts and programs that can control the cluster.

Every tool that interacts with the cluster must know something about the latter—in
particular, it must know where the data and the configuration is stored on the disk. So, how
can pg_ct1 know where the PGDATA directory is? The trick is that almost every
PostgreSQL-related command searches for the value of PGDATA as an environmental
variable or as a -D command-line option.

If a command cannot find the PGDATA directory, it will display it clearly:

S pg_ctl status

pg_ctl: no database directory specified and environment variable PGDATA
unset

Try "pg_ctl —--help" for more information.

S export PGDATA=/postgres/12

$ pg_ctl status

pg_ctl: server is running (PID: 91393)
/usr/local/bin/postgres "-D" "/postgres/12"

As you can see from the preceding example, once you erase the PGDATA environment
variable, the command is no longer able to operate and asks for a PGDATA variable either on
the command line or in the environment. The command-line argument, specified with -D,
always has precedence against any environment variable, so if you don't set or
misconfigure the PGDATA variable, but instead pass the right value on the command line,
everything works fine:

$ export PGDATA=/postgres/11 # wrong PGDATA!
$ pg_ctl status -D /postgres/12

pg_ctl: server is running (PID: 91393)
/usr/local/bin/postgres "-D" "/postgres/12"

The same concepts of PGDATA and the -D optional argument is true for pretty much any
"low-level" commands that act against a cluster and makes clear that with the same set of
executables, you can run multiple instances of PostgreSQL on the same machine, as long as
you keep the PGDATA directory of each one separate.

[36]

Getting to Know Your Cluster Chapter 2

Do not use the same PGDATA directory for multiple versions of
PostgreSQL. While it could be tempting to have, on your own test
machine, a single PGDATA directory that can be used in turn by a
PostgreSQL 12 and a PostgreSQL 13 instance, this will not work and you
risk losing all your data. Luckily, PostgreSQL is smart enough to see that
PGDATA has been created and used by a different version and refuses to
operate, but please be careful in not sharing the same PGDATA directory
with different instances.

It is worth reiterating one more time: the PGDATA directory can be named whatever you like
and it is a common habit to have it named after the PostgreSQL major version it is used by.
However, this is not mandatory, and the choice of name and location is up to you.

PostgreSQL processes

You have already learned how the postmaster is the root of all PostgreSQL processes, but as
explained in chapter 1, Introduction to PostgreSQL, PostgreSQL will launch multiple
different processes at startup. These processes are in charge of keeping the cluster in good
health, as well as observing and instructing the cluster. This section provides a glance at the
main processes you can find in a running cluster, allowing you to recognize each of them
and their respective purposes.

If you inspect a running cluster from the operating system point of view, you will see a
bunch of processes tied to PostgreSQL:

S pstree
-+= 00001 root /sbin/init --

+= 91393 postgres /usr/local/bin/postgres -D /postgres/12

| —

| |-—= 91839 postgres postgres: checkpointer (postgres)

| |-—= 92351 postgres postgres: background writer (postgres)

| |-—= 92752 postgres postgres: walwriter (postgres)

| |-—= 92978 postgres postgres: autovacuum launcher (postgres)

| |-—= 93359 postgres postgres: stats collector (postgres)

| \-—= 93739 postgres postgres: logical replication launcher (postgres)

[371]

Getting to Know Your Cluster Chapter 2

As you can see, the postmaster process with PID 91393 is one that owns all other
subprocesses. The maintenance processes are as follows:

e checkpointer is a process responsible for executing the checkpoints, which are
points in time where the database ensures that all the data is actually stored
persistently on the disk.

® background writer is responsible for helping to push the data out of the
memory to permanent storage.

* walwriter is responsible for writing out the Write-Ahead Logs (WALs), the
logs that are needed to ensure data reliability even in the case of a database crash.

e stats collector is a process that monitors the amount of data PostgreSQL is
handling, storing it for further elaboration, such as deciding on which indexes to
use to satisfy a query.

® logical replication launcher isa process responsible for handling logical
replication.

Depending on the exact configuration of the cluster, there could be other processes active:

* Background workers: These are processes that can be customized by the user to
perform background tasks.

e WAL receiver or WAL sender: These are processes involved in receiving from or
sending data to another cluster in replication scenarios.

Many of the concepts and aims of the preceding process list will become clearer as you
progress through the book's chapters, but for now, it is sufficient that you know that
PostgreSQL has a few other processes that are always active without any regard to
incoming client connections.

When a client connects to your cluster, a new process is spawned: this process, named
the backend process, is responsible for serving the client requests (meaning executing the
queries and returning the results). You can see and count connections by inspecting the
process list:

S pstree
-+= 00001 root /sbin/init --
./
|-+= 91393 postgres /usr/local/bin/postgres -D /postgres/12
| |-—= 14530 postgres postgres: postgres templatel [local] (postgres)
| |-—= 91839 postgres postgres: checkpointer (postgres)
| |-—= 92351 postgres postgres: background writer (postgres)
| |-—= 92752 postgres postgres: walwriter (postgres)
| |-—= 92978 postgres postgres: autovacuum launcher (postgres)

[38]

Getting to Know Your Cluster Chapter 2

| |-—= 93359 postgres postgres: stats collector (postgres)
| \-—= 93739 postgres postgres: logical replication launcher (postgres)

If you compare the preceding list with the previous one, you will see that there is another
process with PID 14530: this process is a backend process. In particular, this process
represents a client connection to the database named templatel.

PostgreSQL uses a process approach to concurrency instead of a multi-
thread approach. There are different reasons, most notably the isolation
and portability that a multi-process approach offers. Moreover, on
modern hardware and software, forking a process is no longer so much of
an invasive operation.

Therefore, once PostgreSQL is running, there is a tree of processes that root at postmaster.
The aim of the latter is to spawn new processes when there is the need to handle new
database connections, as well as to monitor all maintenance processes to ensure that the
cluster is running fine.

Connecting to the cluster

Once PostgreSQL is running, it awaits incoming database connections to serve; as soon as a
connection comes in, PostgreSQL serves it by connecting the client to the right database.
This means that in order to interact with the cluster, you need to connect to it. However,
you don't connect to the whole cluster; rather, you ask PostgreSQL to interact with one of
the databases the cluster is serving. Therefore, when you connect to the cluster, you need to
connect to a specific database. This also means that the cluster must have at least one
database from the very beginning of its life. That is the role of the so-called template
databases, which, among other duties, serve as a common database to which you can
connect on a freshly installed cluster.

When you initialize the cluster with the initdb command, PostgreSQL builds the
filesystem layout of the PGDATA directory and builds two template databases, named
template0 and templatel. The aim of these databases is to provide an initialization point
for later operations—for instance, to allow users to connect to one of them in order to
interact with the cluster.

[39]

Getting to Know Your Cluster Chapter 2

In order to connect to one of the databases, either a template or a user-defined one, you
need a client to connect with. PostgreSQL ships with psql, a command-line client that
allows you to interact with, connect, and administer databases and the cluster itself.
However, other clients do exist, but they will not be discussed in this chapter. You could
also connect your own applications to a database, which is an important task in a day-to-
day database activity: to this end, you also need a set of parameters that can be "composed"
into a connection string (something similar to a URL, for what it matters) that your
application can use to gain access to PostgreSQL.

This section will explain all of the preceding concepts, starting from the template databases
and then showing the basic usage of psql and the connection string.

The template databases

The templatel database is the first database created when the system is initialized, and
then it is cloned into template0. This means that the two databases are, at least initially,
identical, and the aim of template0 is to act as a safe copy for rebuilding in case it is
accidentally damaged or removed.

You can inspect available databases using the psgql -1 command:

$ psql -1 List of databases
Name | Owner | Encoding | Collate | Ctype | Access privileges
——————————— s s s s Rt
postgres | postgres | UTFS8 | C | C |
templateO | postgres | UTFS8 | C | C | =c/postgres +
| | | | | postgres=CTc/postgres
templatel | postgres | UTFS | C | C | =c/postgres +

It is interesting to note that there's a third database that is created during the installation
process: the postgres database. That database belongs to the postgres user, which is, by
default, the only database administrator created during the initialization process. This
database is a common space to be used for connections instead of the template databases.

The name template indicates the real aim of these two databases: when you create a new
database, PostgreSQL clones a template database as a common base. This is somewhat
similar to creating a user home directory on Unix systems: the system clones a

skeleton directory and assigns the new copy to the user. PostgreSQL does the same—it
clones templatel and assigns the newly created database to the user that requested it.

[40]

Getting to Know Your Cluster Chapter 2

What this also means is that whatever object you put into templatel, you will find the
very same object in freshly created databases. This can be really useful for providing a
common base database and having all other databases brought to life with the same set of
attributes and objects.

Nevertheless, you are not forced to use templatel as the base template and, in fact, you
can create your own databases and use them as templates for other databases. However,

please keep in mind that by default (and most notably on a newly initialized system), the
templatel database is the one that is cloned for the first databases you will create.

Another difference between templatel and template0, apart from the former being the
default for new databases, is that you cannot connect to the latter. This is in order to
prevent accidental damage to template0 (the safety copy).

It is important to note that the cluster (and all user-defined databases) can work even
without the template databases—the templatel and template0 databases are not
fundamental for the other databases to run. However, if you lose the templates, you will be
required to use another database as a template every time you perform an action that
requires it, such as creating a new database.

The psql command-line client

The psql (1) command is the command-line interface that ships with every installation of
PostgreSQL. While you can certainly use a graphical user interface to connect and interact
with the databases, a basic knowledge of psql is mandatory in order to administer the
cluster. In fact, as psgl (1) is shipped with PostgreSQL, it is the most updated client,
especially when a new major version is released, and therefore provides a consistent way to
access your cluster. Moreover, the client is lightweight and useful even in emergency
situations when a GUI is not available. psql accepts several options to connect to a
database, mainly the following;:

e —d: The database name
e —U: The username
e —h: The host (either an IPv4 or IPv6 address or a hostname)

If no option is specified, psgl assumes your operating system user is trying to connect to a
database with the same name, and a database user with a name that matches the operating
system on a local connection. Take the following connection:

$ id

uid=770 (postgres) gid=770 (postgres) groups=770 (postgres)

[41]

Getting to Know Your Cluster Chapter 2

$ psql
psgl (12.1)
Type "help" for help.

postgres=#

This means that the current operating system user (postgres) has required psql to
connect to a database named postgres via the PostgreSQL user named postgres on the
local machine. Explicitly, the connection could have been requested as follows:

S psql -U postgres —-d postgres
psgl (12.1)
Type "help" for help.

postgres=#

The first thing to note is that once a connection has been established, the command prompt
changes: psql reports the database to which the user has been connected (postgres) and a
sign to indicate they are a superuser (#). In the case that the user is not a database
administrator, a > sign is placed at the end of the prompt.

If you need to connect to a database that is named differently by your operating system
username, you need to specify it:

S psql -d templatel
psgl (12.1)
Type "help" for help.

templatel=#

Similarly, if you need to connect to a database that does not correspond to your operating
username with a PostgreSQL user that is different from your operating system username,
you have to explicitly pass both parameters to psql:

$ id

uid=770 (postgres) gid=770 (postgres) groups=770 (postgres)

$ psql -d templatel -U luca
psgl (12.1)
Type "help" for help.

templatel=>

As you can see from the preceding example, the operating system user postgres has
connected to the templatel database with the PostgreSQL user luca. Since the latter is not
a system administrator, the command prompt ends with the > sign.

[42]

Getting to Know Your Cluster Chapter 2

In order to quit from psgl and close the connection to the database, you have to type \g or
quit and press Enter (you can also press CTRL + D to exit on any Unix and Linux
machines):

$ psql -d templatel -U luca
psgl (12.1)
Type "help" for help.

templatel=> \q
$

Entering SQL statements via psql

Once you are connected to a database via psql, you can issue any statement you like.
Statements must be terminated by a semicolon, indicating that the next Enter key will
execute the statement. The following is an example where the Enter key has been
emphasized:

$ psql -d templatel -U luca
psgl (12.1)
Type "help" for help.

templatel=> SELECT current_date; <ENTER>
current_date

2019-12-23
(1 row)

Another way to execute the statement is to issue a \g command, again followed
by <ENTER>. This is useful when connecting via a terminal emulator that has keys
remapped:

templatel=> SELECT current_date \g <ENTER>
current_date

2019-12-23
(1 row)

Until you end a statement with a semicolon or \g, psql will keep the content you are
typing in the query buffer, so you can also edit multiple lines of text as follows:

templatel=> SELECT

templatel-> current_date

templatel-> ;
current_date

[43]

Getting to Know Your Cluster Chapter 2

2019-12-23
(1 row)

Note how the psql command prompt has changed on the lines following the first one: the
difference is there to remind you that you are editing a multi-line statement and psq1l has
not (yet) found a statement terminator.

One useful feature of the psql query buffer is the capability to edit the content of the query
buffer in an external editor. If you issue the \e command, your favorite editor will pop up
with the content of the last-edited query. You can then edit and refine your SQL statement
as much as you want, and once you exit the editor, psql will read what you have produced
and execute it. The editor to use is chosen with the EDITOR operating system environment
variable.

It is also possible to execute all the statements included in a file or edit a file before
executing it. As an example, assume the test . sql file has the following content:

S cat test.sql

SELECT current_date;
SELECT current_time;
SELECT current_role;

The file has three very simple SQL statements. In order to execute all of the file at once, you
can use the \i special command followed by the name of the file:

templatel=> \i test.sql
current_date

2019-12-23
(1 row)

current_time

17:56:05.015434+01
(1 row)

current_role

As you can see, the client has executed, one after the other, every statement within the file.
If you need to edit the file without leaving psql, you can issue \e test.sql to open your
favorite editor, make changes, and come back to the psql connection.

[44]

Getting to Know Your Cluster Chapter 2

SQL is case-insensitive and space-insensitive: you can write it in all
uppercase or all lowercase, with however many horizontal and vertical
spaces you want. In this book, SQL keywords will be written in uppercase
and the statements will be formatted to read cleanly.

A glance at the psql commands

Every command specific to psql starts with a backslash character (\). It is possible to get
some help about SQL statements and PostgreSQL commands via the special \h command,
after which you can specify the specific statement you want help for:

templatel=> \h SELECT

Command: SELECT
Description: retrieve rows from a table or view
Syntax:

[WITH [RECURSIVE] with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...]) 1 1
[* | expression [[AS] output_name] [, ...]]

URL: https://www.postgresqgl.org/docs/12/sgl-select.html

The displayed help is, for space reasons, concise. You can find much more
verbose description and usage examples in the online documentation. For
this reason, at the end of the help screen, there is a link reference to the
online documentation.

If you need help with the psgl commands, you can issue a \ ? command:

templatel=> \?

General
\copyright show PostgreSQL usage and distribution terms
\crosstabview [COLUMNS] execute query and display results in crosstab
\errverbose show most recent error message at maximum
verbosity
\g [FILE] or ; execute query (and send results to file or |pipe)
\gdesc describe result of query, without executing it

There are also a lot of introspection commands, such as, for example, \d to list all user-
defined tables. These special commands are, under the hood, a way to execute queries
against the PostgreSQL system catalogs, which are in turn registries about all objects that
live in a database. The introspection commands will be shown later in the book, and are
useful as shortcuts to get an idea of which objects are defined in the current database.

[45]

Getting to Know Your Cluster Chapter 2

Many psql features will be detailed as you move on through the book, but it is worth
spending some time trying to get used to this very efficient and rich command-line client.

Introducing the connection string

In the previous section, you learned how to specify basic connection options, such as —d
and -U for a database and user, respectively. psql also accepts a LibPQ connection string.

LibPQ is the underlying library that every application can use to connect to a PostgreSQL
cluster and is, for example, used in C and C++ clients, as well as non-native connectors.

A connection string in LibPQ is a URI made up of several parts:
postgresqgl://usernamelhost :port/database
Here, we have the following:

* postgresql is a fixed string that specifies the protocol the URI refers to.

e username is the PostgreSQL username to use when connecting to the database.
¢ host is the hostname (or I? address) to connect to.

e port is the TCP/IP port the server is listening on (by default, 5432).

® database is the name of the database to which you want to connect.

The username, port, and database parts can be omitted if they are set to their default (the
username is the same as the operating system username).

The following connections are all equivalent:

$ psgl -d templatel -U luca -h localhost
$ psgl postgresqgl://luca@localhost/templatel

$ psgl postgresqgl://luca@localhost:5432/templatel

Solving common connection problems

There are a few common problems when dealing with database connections, and this
section explains them in order to ease your task of getting connected to your cluster.

Please note that the solutions provided here are just for testing purposes and not for
production usage. All the security settings will be explained in later chapters, so the aim of
the following subsection is just to help you get your test environment usable.

[46]

Getting to Know Your Cluster Chapter 2

Database "foo" does not exist

This means either you misspelled the name of the database in the connection parameter or
you are trying to connect without specifying the database name.

For instance, the following connection fails because, by default, X is assuming that user
luca is trying to connect to a database with the same name (meaning, 1uca) since none has
been explicitly set:

$ psql

psqgl: error: could not connect to server: FATAL: database "luca" does not

exist

The solution is to provide an existing database name via the ~-d~ option or to create a
database with the same name as the user.

Connection refused

This usually means there is a network connection problem, so either the host you are trying
to connect to is not reachable or the cluster is not listening on the network.

As an example, imagine PostgreSQL is running on a machine named miguel and we are
trying to connect from another host on the same network:

$ psgql -h miguel -U luca templatel
psgl: error: could not connect to server: could not connect to server:

Connection refused
Is the server running on host "miguel" (192.168.222.123) and

accepting
TCP/IP connections on port 54327

In this case, the database cluster is running on the remote host but is not accepting
connections from the outside. Usually, you have to fix the server configuration or connect
(via SSH, for instance) to the remote machine and open a local connection from there.

In order to quickly solve the problem, you have to edit the postgresql . conf file and
ensure the 1isten_address option has an asterisk (or the name of your external network
card) so that the server will listen on any available network address:

listen_addresses = '*'

[47]

Getting to Know Your Cluster Chapter 2

After a restart of the service, the client will be able to connect. Please note that enabling the
server to listen on any available network address could not be the optimal solution and can
expose the server to risks in a production environment. However, you will learn later in the
book how to specifically configure the connection properties for your server.

No pg_hba.conf entry

This error means the server is up and running and able to accept your request, but the
Host-Based Access (HBA) control does not permit you to enter.

As an example, the following connection is refused:

$ psqgl -h localhost -U luca templatel
psqgl: error: could not connect to server: FATAL: no pg_hba.conf entry for
host "127.0.0.1", user "luca", database "templatel", SSL off

The reason for this is that, inspecting the pg_hba . conf file, there is no rule to let the
user luca in on the localhost interface. So, for instance, adding a single line such as the
following to the pg_hba . conf file can fix the problem:

host all luca 127.0.0.1/32 trust

You need to reload the configuration in order to apply changes. The format of every line in
the pg_hba. conf file will be discussed later, but for now, please assume that the preceding
line instruments the cluster to accept any connection incoming from localhost by means
of user luca.

Exploring the disk layout of PGDATA

In the previous sections, you have seen how to install PostgreSQL and connect to it, but we
have not looked at the storage part of a cluster. Since the aim of PostgreSQL, as well as the
aim of any relational database, is to permanently store data, the cluster needs some sort of
permanent storage. In particular, PostgreSQL exploits the underlying filesystem to store its
own data. All of the PostgreSQL-related stuff is contained in a directory known as PGDATA.

The PGDATA directory acts as the disk container that stores all the data of the cluster,
including the users' data and cluster configuration.

[48]

Getting to Know Your Cluster Chapter 2

The following is an example of the content of PGDATA for a running PostgreSQL 12 cluster
(it looks the same for a PostgreSQL 13 instance):

$ sudo 1ls -1 /postgres/12
PG_VERSION

base

global
pg_commit_ts
pg_dynshmem
pg_hba.conf
pg_ident.conf
pg_logical
pg_multixact
pg_notify
pg_replslot
pg_serial
pg_snapshots
pg_stat
pg_stat_tmp
pg_subtrans
pg_tblspc
pg_twophase
pg_wal

pg_xact
postgresqgl.auto.conf
postgresqgl.conf
postmaster.opts
postmaster.pid

The PGDATA directory is structured in several files and subdirectories. The main files are as
follows:

® postgresqgl.conf is the main configuration file, used as default when the
service is started.

® postgresqgl.auto.conf is the automatically included configuration file used to
store dynamically changed settings via SQL instructions.

® pg_hba.conf is the HBA file that provides the configuration regarding available
database connections.

e PG_VERSION is a text file that contains the major version number (useful when
inspecting the directory to understand which version of the cluster has managed
the PGDATA directory).

® postmaster.pid is the PID of the running cluster.

[49]

Getting to Know Your Cluster Chapter 2

The main directories available in PGDATA are as follows:

¢ base is a directory that contains all the users' data, including databases, tables,
and other objects.

e global is a directory containing cluster-wide objects.

* pg_wal is the directory containing the WAL files.

* pg_stat and pg_stat_tmp are, respectively, the storage of the permanent and
temporary statistical information about the status and health of the cluster.

Of course, all files and directories in PGDATA are important for the cluster to work properly,
but so far, the preceding is the "core" list of objects that are fundamental in PGDATA itself.
Other files and directories will be discussed in later chapters.

Objects in the PGDATA directory

PostgreSQL does not name objects on disk, such as tables, in a mnemonic or human-
readable way; instead, every file is named after a numeric identifier. You can see this by
having a look, for instance, at the base subdirectory:

$ sudo 1ls -1 /postgres/12/base
1

13777

13778

As you can see from the preceding, the base directory contains three objects, named 1,
13777, and 13778, respectively. In particular, each of the preceding is a directory that
contains other files, as shown here:

$ sudo ls -1 /postgres/12/base/13777 | head
112

113

1247
1247_fsm
1247_vm
1249
1249_fsm
1249_vm
1255
1255_fsm

[50]

Getting to Know Your Cluster Chapter 2

As you can see, each file is named with a numeric identifier. Internally, PostgreSQL holds a
specific catalog that allows the database to match a mnemonic name to a numeric identifier
and vice versa. The integer identifier is named 0ID (Object Identifier); this name is a
historical term that today corresponds to the so-called filenode. The two terms will be used
interchangeably in this section.

There is a specific utility that allows you to inspect a PGDATA directory and extract
mnemonic names: oid2name. For example, if you executed the oid2name utility, you'd get
a list of all available databases:

$ oid2name
All databases:
0Oid Database Name Tablespace

13778 postgres pg_default
13777 template0 pg_default
1 templatel pg_default

As you can see, the 0id numbers in the oid2name output reflect the same directory names
listed in the base directory; every subdirectory has a name corresponding to the database.
You can even go further and inspect a single file going into the database directory,

specifying the database where you are going to search for an object name with the -d flag:

$ ecd /postgres/12/base/1
$ oid2name -d templatel -f 3395
From database "templatel":
Filenode Table Name

As you can see from the preceding, the 3395 file in the
/postgres/12/base/1 directory corresponds to the table named
pg_init_privs_o_c_o_index. Therefore, when PostgreSQL needs to interact with a table

like this, it will seek the disk to the /postgres/12/base/1/3395 file.

From the preceding, it should be clear that every SQL table is stored as a file with a numeric
name. However, PostgreSQL does not allow a single file to be greater than 1 GB in size, so
what happens if a table grows beyond that limit? PostgreSQL "attaches" another file with a
numeric extension that indicates the next chunk of 1 GB of data. In other words, if your
table is stored in the 123 file, the second gigabyte will be stored in the 123. 1 file, and if
another gigabyte of storage is needed, another file, 123. 2, will be created. Therefore, the
filenode refers to the very first file related to a specific table, but more than one file can be
stored on disk.

[51]

Getting to Know Your Cluster Chapter 2

Tablespaces

PostgreSQL pretends to find all its data within the PGDATA directory, but that does not
mean that your cluster is "jailed" to this directory. In fact, PostgreSQL allows "escaping" the
PGDATA directory by means of tablespaces. A tablespace is a storage space that can be outside
the PGDATA directory. Tablespaces are dragged into the PGDATA directory by means of
symbolic links stored in the pg_tblspc subdirectory. In this way, the PostgreSQL
processes do not have to seek outside PGDATA, still being able to access "external" storage. A
tablespace can be used to achieve different aims, such as enlarging the storage data or
providing different storage performances for specific objects. For instance, you can create a
tablespace on a slow disk to contain infrequently accessed objects and tables, keeping fast
storage within another tablespace for frequently accessed objects.

You don't have to make links by yourself: PostgreSQL provides the TABLESPACE feature to
manage this and the cluster will create and manage the appropriate links under the
pg_tblspc subdirectory.

For instance, the following is a PGDATA directory that has three different tablespaces:

$ sudo ls -1 /postgres/12/pg_tblspc/

total O

lrwx—————- 1 postgres postgres 22 Dec 23 19:47 16384 —>
/data/tablespaces/ts_a

lrwx—————- 1 postgres postgres 22 Dec 23 19:47 16385 —>
/data/tablespaces/ts_b

lrwx—————- 1 postgres postgres 22 Dec 23 19:47 16386 —>
/data/tablespaces/ts_c

lrwx—————- 1 postgres postgres 22 Dec 23 19:47 16387 —>

/data/tablespaces/ts_d

As you can see from the preceding example, there are four tablespaces that are attached to
the /data storage. You can inspect them with oid2name and the -s flag:

$ oid2name -s
All tablespaces:
0id Tablespace Name

1663 pg_default
1664 pPg_global
16384 ts_a
16385 ts_b
16386 ts_c
16387 ts_d

[52]

Getting to Know Your Cluster Chapter 2

As you can see, the numeric identifiers of the symbolic links are mapped to mnemonic
names of the tablespaces. From the preceding example, you can observe that there are also
two particular tablespaces:

® pg_default is the default tablespace corresponding to "none," the default
storage to be used for every object when nothing is explicitly specified. In other
words, every object stored directly under the PGDATA directory is attached to the
pg_default tablespace.

® pg_global is the tablespace used for system-wide objects.

By default, both of the preceding tablespaces refer directly to the PGDATA directory,
meaning any cluster without a custom tablespace is totally contained within the PGDATA
directory.

Exploring configuration files and parameters

The main configuration file for PostgreSQL is postgresqgl.conf, a text-based file that
drives the cluster when it starts.

Usually, when changing the configuration of the cluster, you have to edit the
postgresqgl.conf file to write the new settings and, depending on the context of the
settings you have edited, to issue a cluster SIGHUP signal (that is, reload the configuration)
or restart it.

Every configuration parameter is associated with a context, and depending on the context,
you can apply changes with or without a cluster restart. In particular, available contexts are
the following:

e internal: A group of parameters that are set at compile-time and therefore
cannot be changed at runtime.

¢ postmaster: All the parameters that require the cluster to be restarted (that is, to
kill the postmaster process and start it again) to activate them.

¢ sighup: All the configuration parameters that can be applied with a SIGHUP
signal sent to the postmaster process, which is equivalent to issuing a
reload signal in the operating system service manager.

® backend and superuser-backend: All the parameters that can be set at run
time but will be applied to the next normal or administrative connection.

e user and superuser: A group of settings that can be changed at run time and
are immediately active for normal and administrative connection.

[53]

Getting to Know Your Cluster Chapter 2

The configuration parameters will be explained later in the book, but the following is an
example of a minimal configuration file with some different settings:

$ cat postgresql.conf
shared_buffers = 512MB
maintenance_work_mem = 128MB
checkpoint_completion_target = 0.7
wal_buffers = 16MB

work_mem = 1310kB

min_wal_size = 1GB

max_wal_size = 2GB

The postgrsqgl.auto.conf file has the very same syntax of the main postgresql.conf
file but is automatically overwritten by PostgreSQL when the configuration is changed at
run time directly within the system, by means of specific administrative statements such
as ALTER SYSTEM.

You are not tied to having a single configuration file, and, in fact, there are specific
directives that can be used to include other configuration files. The configuration of the
cluster will be detailed in a later chapter.

The PostgreSQL HBA file (pg_hba . conf) is another text file that contains the connection
allowance: it lists the databases, the users, and the networks that are allowed to connect to
your cluster. As an example, the following is an excerpt from a pg_hba. conf file:

hosts all luca 192.168.222.1/32 md5
hostssl all enrico 192.168.222.1/32 md5

In short, the preceding lines mean that user 1uca can connect to any database in the cluster
by the machine with IPv4 address 192.168.222. 1, while user enrico can connect to any
database from the same machine but only on an SSL-encrypted connection. All the
available pg_hba. conf rules will be detailed in a later chapter, but for now, it is sufficient
to know that this file acts as a "firewall" for incoming connections.

[54]

Getting to Know Your Cluster Chapter 2

Summary

PostgreSQL can handle several databases within a single cluster, served out of disk storage
contained in a single directory named PGDATA. The cluster runs many different processes;
one, in particular, is named postmaster and is in charge of spawning other processes, one
per client connection, and keeping track of the status of maintenance processes.

The configuration of the cluster is managed via text-based configuration files, the main one
being postgresqgl.conf. Itis possible to drive the cluster, by means of postmaster, to
recognize allowed user connections by means of rules placed in the pg_hba . conf text file.

You can interact with the cluster status by means of the pg_ct1 tool or, depending on your
operating system, by other provided programs, such as service.

This chapter has presented you with all of the preceding information so that you are able
not only to install PostgreSQL but also to start and stop it regularly, integrate it with your
operating system, connect to the cluster.

In the following chapter, you will learn how to manage users and connections.

References

° PostgreSQL PGDATA disk Iayout: https://www.postgresqgl.org/docs/12/
storage-file-layout.html

e PostgreSQL initdb official documentation: https://www.postgresql.org/
docs/12/app-initdb.html

¢ PostgreSQL pg_ct1 official documentation: https://www.postgresql.org/
docs/12/app-pg-ctl.html

¢ The pgAdmin4 graphical client for PostgreSQL: https://www.pgadmin.org/

[551]

https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.pgadmin.org/
https://www.pgadmin.org/
https://www.pgadmin.org/
https://www.pgadmin.org/
https://www.pgadmin.org/
https://www.pgadmin.org/
https://www.pgadmin.org/
https://www.pgadmin.org/
https://www.pgadmin.org/
https://www.pgadmin.org/

Managing Users and
Connections

PostgreSQL is a complex system that includes users, databases, and data. In order to be able
to interact with a database in the cluster, you need to have at least one user. By default,
when installing a new cluster, a single administrator user (named postgres) is created.
While it is possible to handle all the connections, applications, and databases with that
single administrative user, it is much better to create different users with different
properties and privileges, as well as login credentials, for every specific task.

PostgreSQL provides a very rich user-management structure, and single users can be
grouped into a variety of different groups at the same time. Moreover, groups can be
nested within other groups, so that you can have a very accurate representation of your
account model. Thanks to this accurate representation, and thanks to the fact that every
user and group can be assigned different properties and privileges, it is possible to apply
fine-grained permissions to each user in the database, depending on the specific task and
activity involved.

This chapter introduces you to the concepts behind users and groups and their
relationships. The chapter will focus mainly on the login properties of roles (either users or
groups) and how PostgreSQL can prevent specific users from connecting to specific
databases.

This chapter covers the following main topics:

e Introduction to users and groups
e Managing roles
¢ Managing incoming connections at the role level

Managing Users and Connections Chapter 3

Introduction to users and groups

In order to connect interactively or via an application to a PostgreSQL database, you need
to have login credentials. In particular, a database user, a user who is allowed to connect to
that specific database, must exist.

Database users are somewhat similar to operating system users: they have a username and
a password (usually encrypted) and are known to the PostgreSQL cluster. Similarly to
operating system users, database users can be grouped into user groups in order to ease the
massive administration of users.

In SQL, and therefore even in PostgreSQL, both concepts of a single user account and a
group of accounts are encompassed by the concept of a role.

A role can be a single account, a group of accounts, or even both depending on how you
configure it; however, in order to ease management, a role should express one and only one
concept at a time: that is, it should be either a single user or a single group, but not both.

While a role can be used simultaneously as a group or a single user, we
strongly encourage you to keep the two concepts of user and group
separated—it will simplify the management of your infrastructure.

Every role must have a unique name or identifier, usually called the username.

A role represents a collection of database permissions and connection properties. The two
elements are orthogonal. You can set up a role simply as a container for other roles,
configuring the contained roles to hold the assigned permissions, or you can have a role
that holds all the permissions for contained roles, or mix and match these two approaches.

It is important to understand that a role is defined at the cluster level. This means that the
same role can have different privileges and properties depending on the database it is using
(for instance, being allowed to connect to one database and not to another).

Since a role is defined at a cluster level, it must have a unique name
within the entire cluster, not just the group!

[571

Managing Users and Connections Chapter 3

Managing roles

Roles can be managed by means of three main SQL statements: CREATE ROLE to create a
role from scratch, ALTER ROLE to change some role properties (for example, the login
password), and DROP ROLE to remove an existing role.

In order to use the SQL statements to create new roles and then manage them, it is
necessary to connect to a database in the cluster. The superuser role postgres can be used
to that aim, at least initially; such a role is created when the database cluster is initialized.
Using the postgres role and a template database is the most common way to create your
initial roles.

PostgreSQL ships with a set of shell scripts that can be used to create,
modify, and delete roles without connecting directly to the cluster. Under
the hood, those scripts connect to the template database and perform the
same SQL commands found in this section.

A role is identified by a string that represents the role name, or better, the account name of
that role. Such a name must be unique across the system, meaning that you cannot have
two different roles with identical names, and must consist of letters, digits, and some
symbols, such as underscore.

Creating new roles

In order to create a new role, either a single user account or a group container, you need to
use the CREATE ROLE statement. The statement has the following short synopsis and
requires a mandatory parameter that is the role username:

CREATE ROLE name [[WITH] option [...]]

The options that you can specify in the statement range from the account password, the
ability to log in interactively, and the superuser privileges. Please remember that, unlike
other systems, in PostgreSQL, you can have as many superusers as you want, and everyone
has the same live-or-die rights on the cluster.

Almost every option of the CREATE ROLE statement has a positive form that adds the
ability to the role, and a negative form (with a NO prefix) that excludes the ability from the
role. As an example, the SUPERUSER option adds the ability to act as a cluster superuser,
while the NOSUPERUSER option removes it from the role.

[581]

Managing Users and Connections Chapter 3

In this chapter, we will focus on the login abilities, which is a restricted set of options that
allows a role to log in to the cluster. Other options will be discussed in Chapter 10, Users,
Roles, and Database Security, since they are more related to the security features of the role.

What if you forgot an option at the CREATE ROLE time? And what if you
changed your mind and want to remove an option from an existing role?
There is an ALTER ROLE statement that allows you (as a cluster superuser)
to modify an existing role without having to drop and recreate it. The
statement will be shown in chapter 10, Users, Roles, and Database Security,
along with some other interesting options for roles.

Role passwords, connections, and availability

Connecting to a database in the cluster means that the role must authenticate itself, and
therefore there must be an authentication mechanism, the username and password being
the most classical ones.

When a user attempts to connect to a database, PostgreSQL checks the login credentials and
a few other properties of the user to ensure that it is allowed to log in and has valid
credentials.

The main options that allow you to manipulate and manage the login attempts are as

follows:

e PASSWORD or ENCRYPTED PASSWORD are equivalent options and allow you to set

the login password for the role. Both options exist for backward compatibility
with older PostgreSQL versions, but nowadays, the cluster always stores role
passwords in an encrypted form, so the use of ENCRYPTED PASSWORD does not
add any value to the PASSWORD option.

PASSWORD NULL explicitly forces a null (not empty) password, preventing the
user from logging in with any password. This option can be used to deny
password-based authentication.

CONNECTION LIMIT <n> allows the user to open no more than <n>
simultaneous connections to the cluster, without any regard to a specific
database. This is often useful to prevent a user from wasting resources on the
cluster.

VALID UNTIL allows you to specify an instant (in the future) when the role will
expire.

[591]

Managing Users and Connections Chapter 3

Setting the password for a specific role does not mean that that role will be able to connect
to the cluster: in order to be allowed to interactively log in, the role must also have the
LOGIN option. In other words, the following statement will not allow the user to log in:

templatel=# CREATE ROLE luca
WITH PASSWORD 'xxx';

The default option is NOLOGIN (which prevents interactive login). Therefore, in order to
define interactive users, remember to add the LOGIN option when creating the role:

templatel=# CREATE ROLE luca
WITH LOGIN PASSWORD 'xxx';

Multiple options can be written in any order, so the preceding code represents the same
statement, but in a form that is less human readable:

templatel=# CREATE ROLE luca
WITH PASSWORD 'xxx' LOGIN;

The VALID UNTIL option allows you to define a date or even a timestamp (that is, an
instant) in the future when the role password will expire, and will no longer be allowed to
log in to the cluster.

Of course, this option only makes sense for interactive roles, meaning those who have the
LOGIN capability. As an example, the following role will be prevented from logging in after
Christmas 2020:

templatel=# CREATE ROLE luca
WITH LOGIN PASSWORD 'xxx'
VALID UNTIL '2020-12-25 23:59:59';

Using a role as a group

A group is a role that contains other roles. It's that simple!

Usually, when you want to create a group, all you need to do is create a role without the
LOGIN option and then add all the members one after the other to the containing role.
Adding a role to a containing role makes the latter a group.

[60]

Managing Users and Connections Chapter 3

In order to create a role as a member of a specific group, the IN ROLE option can be used.
This option accepts the name of the group (which, in turn, is another role) to which the
newly created role will become a member. As an example, in the following code block, you
can see the creation of the book_authors group and the addition of the role members 1uca
and enrico:

templatel=# CREATE ROLE book_authors
WITH NOLOGIN;

CREATE ROLE

templatel=# CREATE ROLE luca

WITH LOGIN PASSWORD 'xxx'

IN ROLE book_authors;

CREATE ROLE

templatel=# CREATE ROLE enrico
WITH LOGIN PASSWORD 'xxx'
IN ROLE book_authors;

CREATE ROLE

The IN GROUP clause of CREATE ROLE is an obsolete synonym for the IN
ROLE clause.

It is also possible to add members to a group using the special GRANT statement. The GRANT
statement is the general SQL statement that allows for fine privilege tuning (more on this in
Chapter 10, Users, Roles, and Database Security); PostgreSQL extends the SQL syntax
allowing the granting of a role to another role. When you grant a role to another, the former
becomes a member of the latter. In other words, assuming that all roles already exist
without any particular association, the following adds the role enrico to the
book_authors group:

templatel=# GRANT ROLE book_authors
TO enrico;

Every group can have one or more admin members, which are allowed to add new
members to the group. The ADMIN option allows a user to specify the member that will be
associated as an administrator of the newly created group. For instance, in the following
code block, you can see the creation of the new group called book_reviewers with luca
as administrator; this means that the user luca, even if they are not a cluster superuser, will
be able to add new members to the book_reviewers group:

templatel=# CREATE ROLE book_reviewers
WITH NOLOGIN
ADMIN luca;

CREATE ROLE

[61]

Managing Users and Connections Chapter 3

As you can see, the ADMIN option can be used in CREATE ROLE only if the administrator
role already exists; in the example, the 1uca role must have been created before the group,
as he is going to be the administrator.

The GRANT statement can solve the problem—the WITH ADMIN OPTION clause allows the
membership of a role with administrative privileges.

As an example, the following piece of code shows how to make the user enrico also an
administrator of the book_reviewers group. Please note that the full WITH ADMIN
OPTION has to be spelled out:

templatel=# GRANT book_reviewers
TO enrico
WITH ADMIN OPTION;
GRANT ROLE

What happens if a group role has the LOGIN option? The group will still be a role container,
but it can act also as a single user account with the ability to log in. While this is possible, it
is a more common practice to deny group roles access to login to avoid confusion.

Removing an existing role

In order to remove an existing role, you need to use the DROP ROLE statement. The
statement has a very simple synopsis:

DROP ROLE [IF EXISTS] name [, ...]

You need to specify only the role name you want to delete, or, if you need to delete
multiple roles, you can specify them as a comma-separated list.

In order to be deleted, the role must exist; therefore, if you try to remove a nonexistent role,
you will receive an error:

templatel=# DROP ROLE this_role_does_not_exists;
ERROR: 1role "this_role_does_not_exists" does not exist

As you can see, PostgreSQL warns you that it cannot delete a role if the role does not exist.

You cannot break PostgreSQL! PostgreSQL will protect itself from your
mistakes, and does a very good job of keeping your data safe! The
preceding example about the deletion of a nonexistent role is an example
of how PostgreSQL protects itself from your own mistakes in order to
ensure an always-stable service.

[62]

Managing Users and Connections Chapter 3

The DROP ROLE statement supports the IF EXISTS clause, which stops PostgreSQL from
complaining about the deletion of a role that is missing:

templatel=# DROP ROLE IF EXISTS this_role_does_not_exists;
NOTICE: role "this_role_does_not_exists" does not exist, skipping
DROP ROLE

As you can see, this time PostgreSQL does not raise an error; instead, it displays a notice
about the fact that the role does not exist. However, it executes the statement, doing
nothing, but reporting success instead of failure. Why could this be useful? Imagine that
you have an automated task that is in charge of deleting several roles: if the DROP ROLE
reports a failure, your task could be interrupted, while with IF EXISTS, you will rest
assured that PostgreSQL will not cause an abort due to a missing role.

There are several statements that support the IF EXISTS clause, as you
will see in later chapters. The idea is to avoid reporting an error when you
are not interested in catching it, and you should use, whenever possible,
this clause in automating programs.

What happens if you drop a group? Member roles will stay in place, but of course, the
association with the group will be lost (since the group has been deleted). In other words,
deleting a group does not cascade to its members.

Inspecting existing roles

Now that you know how to manage roles, how can you inspect existing roles, including
yours? There are different ways to get information about existing roles, and all rely on the
PostgreSQL catalogs, the only source of introspection into the cluster.

In order to get information about what role you are running, use the special keyword
CURRENT_ROLE: you can query it via a SELECT statement (such statements will be
presented in later chapters, so for now, just blindly use it as shown here):

templatel=# SELECT current_role;
current_role

postgres
(1 row)

If you connect to the database with another user, you will see different results:

$ psql -U luca templatel
psgl (12.1)
Type "help" for help.

[63]

Managing Users and Connections Chapter 3

templatel=> SELECT current_role;
current_role

Knowing your own role is important, but getting information about existing roles and their
properties can be even more illuminating. psql provides the special \ du (describe users)
command to list all the available roles within the system:

S psql -U postgres templatel
psgl (12.1)
Type "help" for help.
templatel=# \du
List of roles
Role name | Attributes
| Member of

______________ +__
+ ________________

book_authors | Cannot login

I {}

enrico |

| {book_authors}

luca | 1 connection

| {book_authors}

postgres | Superuser, Create role, Create DB, Replication, Bypass RLS

I {}

The Attributes column shows the options and properties of the role, many of which will
be discussed in chapter 10, Users, Roles, and Database Security. With regard to the login
properties, if a role is prevented from connecting interactively to the cluster, a Cannot
login information will be displayed in the book_authors line in the preceding example.

You can get information about a specific role by directly querying the pg_roles catalog, a
catalog that contains information about all PostgreSQL roles. For example, to get the basic
connection information for the 1uca role, you can execute the following query:

templatel=# SELECT rolname, rolcanlogin, rolconnlimit, rolpassword
FROM pg_roles

WHERE rolname = 'luca';
-[RECORD 1]-——4-————————-—
rolname | luca
rolcanlogin | t
rolconnlimit |1
rolpassword | *kkokokok

[64]

Managing Users and Connections Chapter 3

As you can see, the password is not displayed for security reasons, even if the cluster
superuser is asking for it. It is not possible to get the password in plain text; as we have
already explained, the passwords are always stored encrypted. The special catalog
pg_authid represents the backbone for the pg_roles information, and can be queried
with the very same statement, but reports the user password (as encrypted text). The
following code shows the result of querying pg_authid for the very same user as in the
fourth listing; note how the rolpassword field contains some more useful information this
time:

templatel=# SELECT rolname, rolcanlogin, rolconnlimit, rolpassword

FROM pg_authid WHERE rolname = 'luca';
—[RECORD 1 J—=d——m——mmmmm e
rolname | luca
rolcanlogin |t
rolconnlimit | 1
rolpassword | md5bdl18b4163ec8a322833d8d7a6633c8ec

The password is represented as a hash and the initial part specifies the encryption
algorithm used—MD?5. You will learn more about password encryption in Chapter 10,
Users, Roles, and Database Security.

Managing incoming connections at the role
level

When a new connection is established to a cluster, PostgreSQL validates the incoming
request at the role level. The fact that the role has the LOGIN property is not enough for it to
open a new connection to any database within the cluster. This is because PostgreSQL
checks the incoming connection request against a kind of firewall table, formerly know as
host-based access, that is defined within the pg_hba.conf file.

If the table states that the role can open the connection to the specified database, the
connection is granted (assuming it has the LOGIN property); otherwise, it is rejected.

Every time you modify the pg_hba. conf file, you need to instruct the cluster to reload the
new rules via a HUP signal or by means of a reload command in pg_ct 1. Therefore, the
usual workflow when dealing with pg_hba . conf is similar to the following:

$ SEDITOR $PGDATA/pg_hba.conf
. modify the file as you wish ...

$ sudo -u postgres pg_ctl reload -D S$PGDATA

[65]

Managing Users and Connections Chapter 3

The syntax of pg_hba.conf

The pg_hba. conf file contains the firewall for incoming connections. Every line within the
file has the following structure:

<connection-type> <database> <role> <remote-machine> <auth-method>

Here, we see the following values:

connection-type is the type of connection supported by PostgreSQL, and is
either 1ocal (meaning via operating system sockets), host (TCP/IP connection),
or hostssl (TCP/IP encrypted connection).

database is a name of a specific database that the line refers to or the special
keyword all, which means every available database.

role is the specific role username that the line refers to or the special keyword
all, which means all available roles (and groups).

remote-machine is the hostname, IP address, or subnet from which the
connection is expected. The special keyword a1l matches with any remote
machine that the connection is established from, while the special keywords
samehost and samenet match the localhost or the whole network that the
PostgreSQL cluster is running within, respectively.

auth-method dictates how the connection must be handled; more generally, it
deals with how the login credentials have to be checked. The main methods are
scram-sha-256 (the most robust method, available since PostgreSQL 10), md5
(the method used in older versions), reject to always refuse the connection, and
trust to always accept the connection without any regard to supplied
credentials.

In order to better understand how the system works, the following is an excerpt of a
possible pg_hba . conf file:

host all luca carmensita scram-sha-256
hostssl all test 192.168.222.1/32 scram-sha-256
host digikamdb pgwatch2 192.168.222.4/32 trust
host digikamdb enrico carmensita reject

The first line indicates that the user 1uca can connect to every database within the cluster
(all clause) via a TCP/IP connection (host clause) coming from a host named
carmensita, but he must provide a valid username/password to verify the SCRAM
authentication method.

[66]

Managing Users and Connections Chapter 3

The second line states that the user test can connect to every database in the system over
an SSL-encrypted connection (see the hostss1 clause), but only from a machine that has
the IPv4 address of 192.168.222. 1; again, the credentials must pass the SCRAM
authentication method.

The third line states that access to the digikamdb database is granted only to the pgwatch2
user over a nonencrypted connection from the host 192.168.222. 4; this time, the access is
granted (t rust) without any credential being required.

Finally, the last line rejects any incoming connection from the host named carmensita,
opened by the user enrico against the digikamdb; in other words, enrico is not able to
connect to digikamdb from the carmensita host.

The authentication method t rust should never be used; it allows any role
to connect to the database if the HBA has a rule that matches the incoming
connection. This is the method that is used when the cluster is initialized
in order to enable the freshly created superuser to connect to the cluster.
You can always use this trick as a last resort if you get yourself locked out
of your own cluster.

Order of rules in pg_hba.conf

The order by which the rules are listed in the pg_hba . conf file matters. The first rule that
satisfies the logic is applied, and the others are skipped. In order to better understand this,
imagine that we want to allow luca to connect to any database in the cluster except
forumdb. The following does not make this happen:

host all luca all scram-sha-256
host forumdb luca all reject

Why does the preceding code not work?

Imagine that the user luca tries to open a connection to the forumdb database: the machine
from which the connection is attempted is matched against the a11 keyword with the line
containing luca, and then the database name is matched against the a11 keyword for the
database field.

[671]

Managing Users and Connections Chapter 3

Since both the remote machine and the database name are subsets of al1, the connection is
passed through the SCRAM-256 authentication method; if the user succeeds in the
authentication, the connection is opened. The reject line is therefore skipped because the
first line matches. On the other hand, exchanging the order of the rules as shown in the
following code does work:

host forumdb luca all reject
host all luca all scram-sha-256

In this way, when luca tries to connect to a database, he gets rejected if the database is
forumdb; otherwise, he can connect (if he passes the required authentication method).

Merging multiple rules into a single one

One line declares at least one rule, but it is possible to merge multiple lines into a single
one. In fact, the role, database, and remote-machine fields allow for the definition of
multiple matches, each one separated by a , (comma).

As an example, suppose we want to give access to both 1uca and enrico roles (from the
same network that the cluster is running into) to the forumdb and digikamdb databases, so
that pg_hba. conf looks like the following:

host forumdb luca samenet scram-sha-256
host forumdb enrico samenet scram-sha-256
host digikamdb luca samenet scram-sha-256

host digikamdb enrico samenet scram-sha-256

Since the database and the role fields can list more than one item, the preceding code can be
compressed into the following one:

host forumdb,digikamdb luca samenet scram-sha-256
host forumdb,digikamdb enrico samenet scram-sha-256

We can shrink the rules one step further since the machine from which the database
connection can be established is literally the same for both the rules, and therefore the final
code is as follows:

host forumdb,digikamdb luca, enrico samenet scram-sha-256

It should now be clear to you that if more rules have the same authentication method and
connection protocol, then it is possible to collapse them into an aggregation. This can help
you manage the host-based access configuration.

[68]

Managing Users and Connections Chapter 3

Using groups instead of single roles

The role field in every pg_hba. conf rule can be substituted by the name of a group
(remember that a group is itself a role); however, in order to make the rule valid for every
member of the group, you have to prefix the group name with a + (plus) sign.

To better understand this, consider the example of the forum_stats group that includes
the 1uca member. The following rule will not allow the luca role to access the forumdb
database:

host forumdb forum_stats all scram—-sha-256

Even if the user is a member the forum_stats role, it will be denied the ability to log in to
the database; the cluster host-based access policy requires the forum_stats role to be
exactly matched by a rule, and in the following, the 1uca role does not match any rule:

$ psql -U luca forumdb

psqgl: error: could not connect to server:

FATAL: no pg_hba.conf entry for host "192.168.222.1", user "luca",
database "forumdb", SSL off

On the other hand, if we clearly state that we want to use the forum_stat role as a group
name, and therefore allow all of its members, the connection can be established by any role
that is a member of the group, including luca. Therefore, we change the rule to the

following;:
host forumdb +forum_stats all scram-sha-256
This, in turn, (bearing in mind the plus sign) makes the connection possible, as shown here:
$ psql -U luca forumdb
psgl (12.1)
Type "help" for help.

forumdb=>

The pg_hba. conf rules, when applied to a group name (that is, with the + preceding the
role name) include all the direct and indirect members.

[69]

Managing Users and Connections Chapter 3

What if we want to allow every group member except one to access the database?
Remembering that the rule engine stops at the first match, it is possible to place a reject rule
before the group acceptance rule. For example, to allow every member of the forum_stats
group to access the database while preventing the single 1uca role from connecting, you
can use the following;:

host forumdb luca all reject
host forumdb +forum_stats all scram-sha-256

The first line will prevent the 1uca role from connecting, even if the following one allows
every member of the forum_stats (including luca) to connect: the first match wins and
so luca is locked out the database.

Using files instead of single roles

The role field of a rule can also be specified as a text file, both line or comma-separated.
This is handy when you deal with long usernames or group names, or with lists produced
automatically from batch processes.

If you specify the role field with an at sign prefix (@), the name is interpreted as a line-
separated text file (as a relative name to the PGDATA directory). For instance, in order to
reject connections to all the users and groups listed in the file rejected_users.txt, while
allowing connection to all the usernames and groups specified in the allowed_users.txt
file, the pg_hba . conf file has to look like the following snippet:

host forumdb @rejected_users.txt all reject
host forumdb @allowed_users.txt all scram-sha-256

The following is the content of the rejected_users. txt file, followed by the
allowed_users.txt file:

$ sudo cat $PGDATA/rejected_users.txt
luca
enrico

$ sudo cat $PGDATA/allowed_users.txt
+forum_stats, postgres

As you can see, it is possible to specify the file contents as either a line-separated list of
usernames or a comma-separated list. It is also possible to specify which roles to use as a
group by placing a + sign in front of the role name.

[70]

Managing Users and Connections Chapter 3

Summary

Roles are a powerful tool to represent both single users and a group of users. When a
database connection attempt is made, PostgreSQL processes the connection credential
information through the host-based access control so that it can immediately establish or
reject the connection depending on firewall-like rules. Moreover, single users and groups
can have other limitations to the number of connections they can open against a database or
against the whole cluster.

In this chapter, you have seen how to create and manage roles, as well as how to allow
single roles to connect to the cluster and to specific databases. In chapter 10, Users, Roles,
and Database Security, you will see how to deal with the security properties of users and
groups, but before you proceed further, you need to know how PostgreSQL objects can be
created and managed.

In the following chapter, you will learn how to interact with the PostgreSQL database
using SQL statements.

References

e CREATE ROLE statement official documentation: https://www.postgresql.org/
docs/12/sgl-createrole.html

e DROP ROLE statement official documentation: https://www.postgresqgl.org/
docs/12/sgl-droprole.html

o PostgreSQL pg_roles catalog details: https://www.postgresql.org/docs/12/

view-pg-roles.html

o POStgreSQL pg_authid Catalog details: https://www.postgresql.org/docs/12/
catalog-pg-authid.html

o PostgreSQL host-based access rule details: https://www.postgresql.org/docs/
12/auth-pg-hba-conf.html

[71]

https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html

Section 2: Interacting with the
Database

In this section, you will learn how to interact with a live cluster, creating database objects
and using tools to connect to it. You will also learn about various basic and advanced
commands that can be used for managing databases.

This section contains the following chapters:

o Chapter 4, Basic Statements
Chapter 5, Advanced Statements
Chapter 6, Window Functions

Chapter 7, Server-Side Programming

Chapter 8, Triggers and Rules

Chapter 9, Partitioning

Basic Statements

In this chapter, we will discuss basic SQL commands for PostgreSQL; these are Data
Definition Language (DDL) commands and Data Manipulation Language (DML)
commands. In basic terms, DDL commands are used to manage databases and tables, and
DML commands are used to insert, delete, update, and select data inside databases. In this
chapter, we will also discuss the psql environment, which refers to the interactive terminal
for working with PostgreSQL. psqgl can be described as PostgreSQL's shell environment; it
is the gate we have to go through in order to start writing commands natively in
PostgreSQL. We have to remember that psql is always present in any PostgreSQL
installation we work with. psql is a powerful environment in which to manage our data
and our databases.

Basic statements and psql are therefore the foundations on which we will build our
knowledge of PostgreSQL. Therefore, reading and understanding this chapter is essential if
you are going to understand some of the more complex topics we are going to talk about
later.

Let's show a list of what we're going to learn in this chapter:

e Setting up our developing environment

Creating and managing databases
e Managing tables

Understanding basic table manipulation statements

Technical requirements

You can find the code for this chapter in the following GitHub repository: https://github.
com/PacktPublishing/Learn-PostgreSQL.

https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL

Basic Statements Chapter 4

Setting up our developing environment

At this point in the book, we have learned how to install PostgreSQL and how to configure
users. Let's now see how to connect to our database. In the next four steps, we will see how
easy it is to do this:

1. Start by connecting to your psql environment:
postgres@pgdev:~$ psql
psgl (12.1 (Debian 12.1-1.pgdgl00+1))
Type "help" for help.
postgres=#

2. Next, switch on the expanded mode using the \x command:

postgres=# \x
Expanded display is on.

3. Then list all the databases that are present in the cluster:

postgres=# \1
List of databases

-[RECORD 1 J-———-— +-—-—————————
Name | forumdb
Owner | postgres
Encoding | UTFES8
Collate | en_US.UTF-8
Ctype | en_US.UTF-8
|

Access privileges
4. Finally, connect to the forumdb database:
postgres=# \c forumdb
You are now connected to database "forumdb" as user "postgres".

forumdb=#

Now, that we have finished setting up our developing environments, we can move on to
creating databases in them.

[74]

Basic Statements Chapter 4

Creating and managing databases

In this section, we will start by creating our first database, then we will learn how to delete
a database and, finally, how to create a new database from an existing one. We will also
analyze the point of view of the DBA. We will see what happens behind the scenes when
we create a new database and learn some basic functions useful to the DBA to get an idea of
the real size of the databases.

Let's see how to create a database from scratch and what happens behind the scenes when a
database is created.

Creating a database

To create the forumdb database from scratch, you will need to execute this simple
statement:

CREATE DATABASE databasename

SQL is a case insensitive language, so we can write all the commands with
uppercase or lowercase letters.

Now, let's see what happens behind the scenes when we create a new database.
PostgreSQL performs the following steps:

1. Makes a physical copy of the template database, templatel.
2. Assigns the database name to the database just copied.

The templatel database is a database that is created by the initdb process during the
initialization of the PostgreSQL cluster.

Managing databases

In the previous section, we created a new database called forumdb. In this section, we will
see how to manage databases, how to list all the databases present on a cluster, how to
create a database starting from an existing database, how to drop a database, and what
happens internally, behind the scenes, when we create and drop the database.

[75]

Basic Statements Chapter 4

Listing all databases

To list all the tables present in the database forumdb, we have to use the psql
command \d. The \d command makes a list of all the tables present in the forumdb
database:

forumdb=# \d
List of relations

Schema | Name | Type | Owner
———————— -t
public | categories | table | postgres
public | categories_pk_seq | sequence | postgres
public | j_posts_tags | table | postgres
public | posts | table | postgres
public | posts_pk_seq | sequence | postgres
public | tags | table | postgres
public | tags_pk_seq | sequence | postgres
public | users | table | postgres
public | users_pk_seq | sequence | postgres

(9 rows)

Making a new database from a modified template

Now that we've learned how to list all tables in a database, let's see that any changes made
to the templatel database will be seen by all the databases that will be created later. Now
we will perform these steps:

1. Connect to the templatel database.
2. Create a table called dummytable inside the templatel database.
3. Create a new database called dummydb.

So let's start making the database using the following steps:

1. Connect to the templatel database:

forumdb=# \c templatel
You are now connected to database "templatel"” as user "postgres".

2. Create a table called dummytable. For now, we don't need to worry about the
exact syntax for creating tables; this will be explained in more detail later on:

templatel=# create table dummytable (dummyfield integer not null
primary key);
CREATE TABLE

[76]

Basic Statements Chapter 4

3. Use the \d command to show a list of tables that are present in
the templatel database:

templatel=# \d
List of relations

Schema | Name Type Owner
77777777 -
public | dummytable | table | postgres

(1 row)

4. So, we have successfully added a new table to the templatel database. Now
let's try to create a new database called dummydb and make a list of all the tables

in the dummydb database:

templatel=# create database dummydb;
CREATE DATABASE

templatel=# \c dummydb
You are now connected to database "dummydb" as user "postgres".

The dummydb database contains the following tables:

dummydb=# \d

Schema | Name Type Owner
———————— - =
public | dummytable table postgres

(1 row)

As expected, in the dummydb database, we can see the table created previously in
the templatel database.

It is important to remember that any changes made to the templatel
database will be present in all databases created after this change.

Now we will delete the dummydb database and the dummy table in the templatel

database.

[77]

Basic Statements Chapter 4

Dropping tables and databases

In the next section, you will learn how to delete tables and databases. The commands we
are going to learn are the following:

e DROP TABLE: This is used to drop a table in the database.
e DROP DATABASE: This is used to drop a database in the cluster.

Dropping tables

In PostgreSQL, the command needed to drop a table is simply DROP TABLE tablename.
To do this, we have to connect to the database to which the table belongs, and then run the
command DROP TABLE tablename.

For example, if we want to drop the dummytable table from database templatel, we have
to take the following steps.

We connect to database templatel using the following command:

dummydb=# \c templatel
You are now connected to database "templatel" as user "postgres".

And we can drop the table using the following command:

templatel=# drop table dummytable;
DROP TABLE

Dropping databases

In PostgreSQL the command needed to drop a table is simply DROP DATABASE
databasename; for example, if we want to drop the dummydb database, we have to execute
the following command:

templatel=# drop database dummydb ;
DROP DATABASE

With this, everything has now been returned to how it was at the beginning of the chapter.

[78]

Basic Statements Chapter 4

Making a database copy

The following steps show you how to make a new database out of a template database:

1. Make a copy of the forumdb database on the same PostgreSQL cluster by
performing the following command:

templatel=# create database forumdb2 template forumdb;
CREATE DATABASE

By using this command, you are simply telling PostgreSQL to create a new
database called forumdb2 using the forumdb database as a template.

2. Connect to the forumdb?2 database:

templatel=# \c¢ forumdb2
You are now connected to database "forumdb2" as user "postgres".

3. List all the tables in the forumdb?2 database:

forumdb2=4# \d
List of relations

Schema | Name | Type | Owner
———————— ——_—
public | categories | table | postgres
public | categories_pk_seqg | sequence | postgres
public | j_posts_tags | table | postgres
public | posts | table | postgres
public | posts_pk_seq | sequence | postgres
public | tags | table | postgres
public | tags_pk_seq | sequence | postgres
public | users | table | postgres
public | users_pk_seq | sequence | postgres

(9 rows)

You can see that the same tables that are present in the forumdb database are now present
in this database.

Confirming the database size

We are now going to address the question of how one can determine the real size of a
database. There are two methods you can use to do this: psql and SQL. Let's compare the
two in the following sections.

[79]

Basic Statements Chapter 4

The psql method
We can check the database size using the psql method, using the following steps:
1. First, we return to expanded mode:

forumdb=# \x
Expanded display is on.

2. Then, execute the following command:

forumdb=# \1l+ forumdb
List of databases

-[RECORD 1]-——- -
Name | forumdb
Owner | postgres
Encoding | UTFS8
Collate | en_US.UTF-8
Ctype | en_US.UTF-8
Access privileges |

Size | 8369 kB
Tablespace | pg_default
Description |

As you can see, in the Size field, you can now see the real size of the database at that
moment.

The SQL method

When trying to use the method outlined above, you may find that you cannot connect to
your database through the psql command. This happens when we only have web access to
the database; for example, if we only have pgadmin4 server-side installation access. If this
happens, the SQL method is an alternative approach that will allow you to find the same
information. To use this method, complete the following steps:

1. Execute the following command:

forumdb=# select pg_database_size('forumdb');
—[RECORD 1]-———4-———————
pg_database_size | 8569711

The pg_database_size (name) function returns the disk space used by the
database called forumdb. This means that the result is the number of bytes used
by the database.

[80]

Basic Statements Chapter 4

2. If you wanted a more readable result in "human" terms, you could use the
pg_size_pretty function and write the following:

forumdb=# select pg_size_pretty(pg_database_size('forumdb'));
-[RECORD 1]-—4-——————-
Pg_size_pretty | 8369 kB

As you can see, both methods give the same result.

Creating a database

We have just learned what commands are used to create a new database, but what happens
behind the scenes when a database is created? In this section, we will see the relationships
that exist between what we perform at the SQL level and what happens physically in the

filesystem.

To understand this, we need to introduce the pg_database system table:

1. Go back to the expanded mode and execute the following;:

forumdb=# select * from pg _database where datname='forumdb';

—[RECORD 1]—4————————————
oid | 16630
datname | forumdb
datdba | 10

encoding | 6
datcollate | en_US.UTF-8
datctype | en_US.UTF-8
datistemplate | £
datallowconn |t
datconnlimit [
datlastsysoid | 14049
datfrozenxid | 479
datminmxid |1
dattablespace | 1663

datacl

This query gives us all the information about the forumdb database. The first
field is an object identifier (OID), which is a number that uniquely identifies the
database called forumdb.

[81]

Basic Statements Chapter 4

2. Exit the psql environment and go to the $PGDATA directory (as shown in
previous chapters). In a Linux Debian environment, we have to execute the
following;:

cd /var/lib/postgresql/12/main/
For the PostgreSQL 13 version, the path is as follows:
cd /var/lib/postgresql/13/main/
3. Use the 1s command to see what is inside the main directory:

postgres@pgdev:~/12/main$ 1s -1

total 84

drwx—————— 6 postgres postgres 4096 Dec 8 20:28 base
drwx—————— 2 postgres postgres 4096 Dec 10 11:05 global
drwx—————— 2 postgres postgres 4096 Dec 6 18:47 pg_commit_ts
drwx—————— 2 postgres postgres 4096 Dec 6 18:47 pg_dynshmem
drwx—————— 4 postgres postgres 4096 Dec 10 11:09 pg_logical
drwx—————— 4 postgres postgres 4096 Dec 6 18:47 pg_multixact
drwx—————— 2 postgres postgres 4096 Dec 10 11:04 pg_notify
drwx—————— 2 postgres postgres 4096 Dec 6 18:47 pg_replslot
drwx—————— 2 postgres postgres 4096 Dec 6 18:47 pg_serial
drwx—————— 2 postgres postgres 4096 Dec 6 18:47 pg_snapshots
drwx—————— 2 postgres postgres 4096 Dec 10 11:04 pg_stat
drwx—————— 2 postgres postgres 4096 Dec 6 18:47 pg_stat_tmp
drwx—————— 2 postgres postgres 4096 Dec 6 18:47 pg_subtrans
drwx—————— 2 postgres postgres 4096 Dec 6 18:47 pg_tblspc
drwx—————— 2 postgres postgres 4096 Dec 6 18:47 pg_twophase
—rW——————— 1 postgres postgres 3 Dec 6 18:47 PG_VERSION
drwx—————— 3 postgres postgres 4096 Dec 6 18:47 pg_wal
drwx—————— 2 postgres postgres 4096 Dec 6 18:47 pg_xact
—rW——————— 1 postgres postgres 88 Dec 6 18:47 postgresgl.auto.conf
—rW——————— 1 postgres postgres 130 Dec 10 11:04 postmaster.opts
—rW——————— 1 postgres postgres 107 Dec 10 11:04 postmaster.pid

As you can see, the first directory is called base. It contains all the databases that
are in the cluster.

4. Go inside the base directory in order to see the contents:

postgres@pgdev:~/12/main$ cd base
postgres@pgdev:~/12/main/base$

5. List all files that are present in the directory:

postgres@pgdev:~/12/main/base$ 1ls -1
total 40

[82]

Basic Statements Chapter 4

drwx—————— 2 postgres postgres 12288 Dec 10 11:04 1
drwx—————— 2 postgres postgres 4096 Dec 6 18:47 14049
drwx—————-— 2 postgres postgres 12288 Dec 10 11:05 14050
drwx—————-— 2 postgres postgres 12288 Dec 10 11:05 16630

As you can see, there is a directory called 16630; its name is exactly the same as the OID in
the pg_database catalog.

When PostgreSQL creates a new database, it copies the directory relative
to the database templatel and then gives it a new name. In
PostgreSQL, databases are directories.

In this section, we have learned how to manage databases. In the next section, we will learn
how to manage tables.

Managing tables

In this section, we will learn how to manage tables in the database.
PostgreSQL has three types of tables:

e Temporary tables: Very fast tables, visible only to the user who created them

¢ Unlogged tables: Very fast tables to be used as support tables common to all
users

¢ Logged tables: Regular tables
We will now use the following steps to create a user table from scratch:

1. Create a new database using the following command:

forumdb=# create database forumdb2;
CREATE DATABASE

2. Execute the following command:

forumdb=# \c¢ forumdb2
You are now connected to database "forumdb2" as user "postgres".

forumdb2=# CREATE TABLE users (

pk int GENERATED ALWAYS AS IDENTITY
, username text NOT NULL

, gecos text

, email text NOT NULL

[83]

Basic Statements Chapter 4

, PRIMARY KEY(pk)

, UNIQUE (username)
)i

CREATE TABLE

The CREATE TABLE command creates a new table. The command GENERATED AS
IDENTITY, automatically assigns a unique value to a column.

3. Observe what was created on the database using the /d command:

forumdb2=# \d users
Table "public.users"
Column | Type | Collation | Nullable | Default

—————————— Bt st e et
pk | integer | | not null | generated always as
identity

username | text | | not null |

gecos | text | | |

email | text | | not null |

Indexes:

"users_pkey" PRIMARY KEY, btree (pk)
"users_username_key" UNIQUE CONSTRAINT, btree (username)

Something to note is that PostgreSQL has created a unique index. Later in this
book, we will analyze indexes in more detail and address what they are, what
kind of indexes exist, and how to use them. For now, we will simply say that a
unique index is an index that does not allow the insertion of duplicate values for
the field where the index was created.

In PostgreSQL, primary keys are implemented using unique indexes.

4. Use the following command to drop a table:
forumdb=# drop table users ;

The preceding command simply drops the table users. The CREATE TABLE command, as
we've seen before, has some useful options:

e TF NOT EXISTS
e TEMP
e UNLOGGED

[84]

Basic Statements Chapter 4

We'll cover each of these in the following subsections.

The EXISTS option

The EXISTS option can be used in conjunction with entity create or drop commands to
check whether the object already exists or the object doesn't exist. An example of its use
may be combined with the CREATE TABLE or CREATE DATABASE command. We can use
also this option when we create or drop sequences, indices, roles, and schemas. The use
case is very simple — the create or drop command is executed if the EXISTSs clause is true;
for example, if we want to create a table named users, if the table exists, we have to
execute this SQL statement:

forumdb=# create table if not exists users (
pk int GENERATED ALWAYS AS IDENTITY
,username text NOT NULL
,gecos text
,email text NOT NULL
,PRIMARY KEY(pk)
,UNIQUE (username)
)i
NOTICE: relation "users" already exists, skipping
CREATE TABLE

The command described above will only create the users table if the users table does not
exist already, otherwise, the command will be skipped. The DROP command works
similarly; the DROP table command is used to drop tables; the if exists option also
exists for the DROP table command; for example, if we want to drop the users table, if it
exists, we have to execute the following:

forumdb=# drop table if exists users;
DROP TABLE

This command will delete the users table if the users table exists in the database. Now if
we run it for the second time, we will have the following;:

forumdb=# drop table if exists users;
NOTICE: table "users" does not exist, skipping
DROP TABLE

You can see that the command is skipped because the table does not exist. This option can
be useful because, if the table does not exist, PostgreSQL does not block any other
subsequent instructions.

[85]

Basic Statements Chapter 4

Managing temporary tables

Later in this book, we will explore sessions, transactions, and concurrency in more depth.
For now, you simply need to know that a session is a set of transactions, each session is
isolated, and that a transaction is isolated from everything else. In other words, anything
that happens inside the transaction cannot be seen from outside the transaction until the
transaction ends. Due to this, we might need to create a data structure that is visible only
within the transaction that is running. In order to do this, we have to use the temp option.

We will now explore two possibilities. The first possibility is that we could have a table
visible only in the session where it was created. The second is that we might have a table
visible in the same transaction where it was created.

The following is an example of the first possibility where there is a table visible within the
session:

forumdb=# create temp table if not exists temp_users (
pk int GENERATED ALWAYS AS IDENTITY
,username text NOT NULL
,gecos text
,email text NOT NULL
,PRIMARY KEY(pk)
,UNIQUE (username)
)
CREATE TABLE

The preceding command will create the temp_users table, which will only be visible
within the session where the table was created.

If instead, we wanted to have a table visible only within our transaction, then we would
have to add the on commit drop options. To do this, we would have to do the following;:

1. Start a new transaction.
2. Create the table temp_users.
3. Commit or rollback the transaction started at point one.

Let's start from the first point:

1. Start the transaction with the following code:

forumdb=# begin work;
BEGIN

[86]

Basic Statements Chapter 4

2. Create a table visible only inside the transaction:

forumdb# create temp table if not exists temp_users (
pk int GENERATED ALWAYS AS IDENTITY

,username text NOT NULL

,gecos text

,email text NOT NULL

,PRIMARY KEY(pk)

,UNIQUE (username)
) on commit drop;

Now check that the table is present inside the transaction and not outside the
transaction:

forumdb=# \d temp_users;
Table "pg_temp_4.temp_users"

Column | Type | Collation | Nullable | Default
—————————— e H e
pk | integer | | not null | generated always as
identity
username | text | | not null |
gecos | text | | |
email | text | | not null |
Indexes:

"temp_users_pkey" PRIMARY KEY, btree (pk)
"temp_users_username_key" UNIQUE CONSTRAINT, btree (username)

3. You can see the structure of the temp_users table, so now commit the
transaction:

forumdb=# commit work;
COMMIT

If you re-execute the DESCRIBE command \d temp_users, PostgreSQL responds
in this way :

forumdb=# \d temp_users;
Did not find any relation named "temp_users".

This happens because the on commit drop option drops the table once the transaction is
completed.

[871]

Basic Statements Chapter 4

Managing unlogged tables

We will now address the topic of unlogged tables. For now, we will simply note that
unlogged tables are much faster than classic tables (also known as logged tables) but are
not crash-safe. This means that the consistency of the data is not guaranteed in the event of

a crash.
The following snippet shows how to create an unlogged table:

forumdb=# create unlogged table if not exists unlogged_users (
pk int GENERATED ALWAYS AS IDENTITY
,username text NOT NULL
,gecos text
,email text NOT NULL
,PRIMARY KEY(pk)
,UNIQUE (username)

)i
CREATE TABLE

Unlogged tables are a fast alternative to permanent and temporary tables.
This performance increase comes at the expense of losing data in the event
of a server crash, however. This is something you may be able to afford
under certain circumstances.

Creating a table

We will now explore what happens behind the scenes when a new table is created. Also, for
tables, PostgreSQL assigns an object identifier called OID. An OID is simply a number that
internally identifies an object inside a PostgreSQL cluster. Let's now see the relationship
between the tables created at the SQL level and what happens behind the scenes in the

filesystem:

1. To do this, we will use the OIDs and a system table called pg_class,
which collects information about all the tables that are present in the database. So

let's run this query:

forumdb=# select oid, relname from pg_class where relname='users';

oid | relname
,,,,,,, I,
16630 | users

(1 row)

[881]

Basic Statements Chapter 4

Here, the oid field is the object identifier field, and relname represents the
relation name of the object. As seen here, the forumdb database is stored in the
16630 directory.

2. Now, let's see where the users table is stored. To do this, go to the 16630
directory using the following code:

postgres@pgdev:~/12/main/base/16630$ cd
/var/lib/postgresql/12/main/base/16630

3. Once here, execute the following command:

postgres@pgdev:~/12/main/base/16630$ 1s -1 | grep 16633
—rTW——————— 1 postgres postgres 0 Dec 6 23:33 16633

As you can see, in the directory 16630, there is a file called 16633. In PostgreSQL, each
table is stored in one or more files. If the table size is less than 1 GB, then the table will be
stored in a single file. If the table has a size greater than 1 GB, then the table will be stored
in two files and the second file will be called 16633. 1. If the users table has a size greater
than 2 GB, then the table will be stored in three files, called 16633, 16633.1, 16633.2, and
so on; the same thing happens for the index users_username_key.

In PostgreSQL, each table or index is stored in one or more files. When a
table or index exceeds 1 GB, it is divided into gigabyte-sized segments.

In this section, we've learned how to manage tables, and we've seen what happens
internally. In the next section, we will learn how to manipulate data inside tables.

Understanding basic table manipulation
statements

Now that you have learned how to create tables, you need to understand how to insert,
view, modify, and delete data in the tables. This will help you update any incorrect entries,
or update existing entries, as needed. There are a variety of commands that can be used for
this, which we will look at now.

[891]

Basic Statements Chapter 4

Inserting and selecting data

In this section, we will learn how to insert data into tables. To insert data into tables, you
need to use the INSERT command. The INSERT command inserts new rows into a table. It
is possible to insert one or more rows specified by value expressions, or zero or more rows
resulting from a query. We will now go through some use cases as follows:

1. To insert a new user in the users table, execute the following command:

forumdb=# insert into users (username,gecos,email) values
('myusername', 'mygecos', 'myemail');
INSERT 0 1

This result shows that PostgreSQL has inserted one record into the users table.

2. Now, if we want to see the record that we have just entered into the users table,
we have to perform the SELECT command:

forumdb=# select * from users;
pk | username gecos email
————te Fo— Fom
mygecos myemail

1 | myusername
(1 row)
The select command is executed in order to retrieve rows from a table. With
this SQL statement, PostgreSQL returns all the data present in all the fields of the
table. The value * specifies all the fields present. The same thing can be expressed
in this way:

forumdb=# select pk,username,gecos,email from users;

pk | username gecos email
—_——t—— - -
1 | myusername mygecos myemail
(1 row)

3. Let's now insert another user into the users table; for example, insert the user
'scotty' with all their own fields:
forumdb=# insert into users (username,gecos,email) values

('scotty', 'scotty_gecos', 'scotty_email');
INSERT 0 1

[90]

Basic Statements Chapter 4

4. If we want to perform the same search as before, ordering data by the username
field, we have to execute the following;:

forumdb=# select pk,username,gecos,email from users order by

username;
pk | username | gecos | email
————tem o o ——
1 | myusername | mygecos | myemail
2 | scotty | scotty_gecos | scotty_email
(2 rows)

The SQL language, without the ORDER BY option, does not return the data
in an orderly manner.

In PostgreSQL, this could also be written as follows:

forumdb=# select pk,username,gecos,email from users order by 2;

pk | username | gecos | email

————tem o o ——
1 | myusername | mygecos | myemail
2 | scotty | scotty_gecos | scotty_email

(2 rows)

PostgreSQL also accepts field positions on a query as sorting options.

5. Let's now see how to insert multiple records using a single-row statement. For
example, the following statement will insert three records in the categories
table:

forumdb=# insert into categories (title,description) values
('apple', 'fruits'), ('orange', 'fruits'), ('lettuce', 'vegetable');
INSERT 0 3

[91]

Basic Statements Chapter 4

This is a slight variation of the INSERT command. Our categories table will
now contain the following values:

forumdb=# select * from categories;

pk | title | description
e e
10 | apple | fruits

11 | orange | fruits

12 | lettuce | vegetable

(3 rows)

6. Now if we want to select only the tuples where the description is equal to
vegetable, use the WHERE condition:

forumdb=# select * from categories where description ='vegetable';

pk | title | description
o b
12 | lettuce| vegetable

(1 row)

7. The where condition filters on one or more fields of the table. For example, if we
wanted to search for all those topics with title as orange and description as
fruits, we would have to write the following;:

forumdb=# select * from categories where description ='fruits' and
title='orange';

pk | title | description
S e
11 | orange | fruits

(1 row)

8. Now, if for example, we want to select all the tuples that have both a
description field equal to fruits and are sorted by title in reverse order,
execute the following:

forumdb=# select * from categories where description ='fruits'
order by title desc;

pk | title | description
S e
11 | orange | fruits

10 | apple | fruits

(2 rows)

Or we could also write this:

forumdb=# select * from categories where description ='fruits'
order by 2 desc;

[92]

Basic Statements Chapter 4

pk | title | description
e e
11 | orange | fruits

10 | apple | fruits

(2 rows)

The ASC or DESC options sort the query in ascending or descending
order; if nothing is specified, ASC is the default.

NULL values

In this section, we will talk about NULL values. In the SQL language, the value NULL is
defined as follows:

Null (or NULL) is a special marker used in Structured Query Language to indicate that a
data value does not exist in the database. Introduced by the creator of the relational
database model, E. F. Codd, SQL Null serves to fulfill the requirement that all true
relational database management systems (RDBMS) support a representation of missing
information.

Now let's check out how it is used in PostgreSQL:

1. Let's start by inserting a tuple in this way:

forumdb=# insert into categories (title) values ('lemon');
INSERT 0 1

2. Let's see now which tuples are present in the categories table:

forumdb=# select * from categories;

pk | title | description
e S
10 | apple | fruits

11 | orange | fruits

12 | lettuce | vegetable

13 | lemon |

(4 rows)

3. So now, if we want to select all the tuples in which the description is not present,
we use the following:

forumdb=# select * from categories where description ='"';
pk | title | description

[93]

Basic Statements Chapter 4

As you can see, PostgreSQL does not return any tuples. This happens because the
last insert has entered a NULL value in the description field.

4. In order to see the NULL values present in the tables, let's execute the following
command:

forumdb=# \pset null NULL
Null display is "NULL".

5. This tells psgl to show NULL values that are present in the table as NULL, as
shown here:

forumdb=# select * from categories;

pk | title | description
____+ ________ + _____________
10 | apple | fruits

11 | orange | fruits

12 | lettuce| vegetable

13 | lemon | NULL

(4 rows)

As you can see, the description value associated with the title lemon is not
an empty string; it is a NULL value.

6. Now, if we want to see all records that have NULL values in the description
field, we have to use the IS NULL operator:

forumdb=# select title,description from categories where
description is null;

title description
,,,,,,, b
lemon | NULL

(1 row)

The preceding query looks for all tuples for which there is no value in the
description field.

7. Now, we will search for all tuples for which there is a value in the description
field using the following query:

forumdb=# select title,description from categories where
description is not null;

title | description

________ +_____________

[94]

Basic Statements Chapter 4

apple | fruits
orange | fruits
lettuce| vegetable
(3 rows)

To perform searches on NULL fields, we have to use the operators Is
NULL /IS NOT NULL. The empty string is different from a NULL value.

Sorting with NULL values

Now let's see what happens when ordering a table where there are NULL values present:

1. Before we do this, let's insert another tuple into the table:

insert into categories (title,description) values
('apricot', 'fruits');

2. Now let's repeat the sorting query that you performed previously:

forumdb=# select * from categories order by description NULLS last;

pk | title | description
I, T,
10 | apple | fruits

11 | orange | fruits

14 | apricot | fruits

12 | lettuce | vegetable

13 | lemon | NULL

(5 rows)

As you can see, all description values are sorted and NULL values are
positioned at the end of the result set. The same thing can be achieved by running

the following;:
forumdb=# select * from categories order by description;
pk | title | description
e P
10 | apple | fruits
11 | orange | fruits
14 | apricot | fruits
12 | lettuce | vegetable
13 | lemon | NULL
(5 rows)

[95]

Basic Statements Chapter 4

3. If we want to place NULL values at the beginning, we have to perform the
following;:

forumdb=# select * from categories order by description NULLS

first;

pk | title | description
e T
13 | lemon | NULL

10 | apple | fruits

11 | orange | fruits

14 | apricot | fruits

12 | lettuce | vegetable

(5 rows)

If not specified, the default action for ORDER BY type queries are: ORDER BY
NULLS LAST is the default for Asc (which also is the default), and NULLS
FIRST for DESC.

Creating a table starting from another table

We will now examine how to create a new table using data from another table.

To do this, you need to create a temporary table with the data present in the categories
table as follows:

forumdb=# create temp table temp_categories as select * from categories;
SELECT 5

This command creates a table called temp_data with the same data structure and data as
the table called categories:

forumdb=# select * from temp_categories ;

pk | title | description
e b
10 | apple | fruits

11 | orange | fruits

12 | lettuce | vegetable

13 | lemon | NULL

14 | apricot | fruits

(5 rows)

[961]

Basic Statements Chapter 4

Updating data

Now let's try updating some data:

1. If you wanted to change the apricot value to the peach value, you would need
to run the following statement:

forumdb=# update temp_categories set title='peach' where pk = 14;
UPDATE 1

This statement will modify the value apricot to the value peachinthe title
field for all rows of the temp_categories table that have pk=14, as seen here:

forumdb=# select * from temp_categories where pk=14;
pk | title | description
e S
14 | peach | fruits
(1 row)

2. If you wanted to change the tit1le value of all the lines for which the
description valueis vegetable, you would need to run the following

statement:
forumdb=# update temp_categories set title = 'no title' where
description = 'vegetable';
UPDATE 1

UPDATE 1 means that only 1 row has been modified, as shown here:

forumdb=# select * from temp_categories order by description;

pk | title | description
I o
10 | apple | fruits

11 | orange | fruits

14 | peach | fruits

12 | no title | vegetable

13 | lemon | NULL

(5 rows)

You must be careful when using the UPDATE command. If you work in auto-commit mode,
there is no chance of turning back after the update is complete.

[97]

Basic Statements Chapter 4

Deleting data

In this section, we will see how to delete data from a table. The command needed to delete
datais delete. Let's get started:

1. If we want to delete all records in the temp_categories table that have pk=10,
we have to perform the following command:

forumdb=# delete from temp_categories where pk=10;
DELETE 1

The preceding statement deletes all the records that have pk=10. DELETE 1
means that one record has been deleted. As you can see here, the row with the
value of pk=10 is no longer present in temp_categories:

forumdb=# select * from temp_categories order by description;

pk | title | description
e S
11 | orange | fruits

14 | peach | fruits

12 | no title | vegetable

13 | lemon | NULL

(4 rows)

2. Now if we want to delete all rows that have a description value equal to NULL,
we have to execute this statement:

forumdb=# delete from temp_categories where description is null;
DELETE 1

The preceding statement used a DELETE command combined with the IS NULL
operator.

3. If you want to delete all records from a table, you have to execute the following:

forumdb=# delete from temp_categories ;
DELETE 3

Be very careful when you use this command - all records present in the
table will be deleted!

[981]

Basic Statements Chapter 4

Now the temp_categories table is empty, as shown here:

forumdb=# select * from temp_categories order by description;
pk | title | description

4. If we want to reload all the data from the categories table to the
temp_categories table, we have to execute this statement:

forumdb=# insert into temp_categories select * from categories;
INSERT 0 5

The preceding statement takes all values from the categories table and puts
them in the temp_categories table, as you can see here:

forumdb=# select * from temp_categories order by description;

pk | title | description
U, T,
10 | apple | fruits

11 | orange | fruits

14 | apricot | fruits

12 | lettuce | vegetable

13 | lemon | NULL

(5 rows)

5. Another way to delete data is by using the TRUNCATE command. When we want
to delete all the data from a table without providing a where condition, we can
use the TRUNCATE command:

forumdb=# truncate table temp_categories ;
TRUNCATE TABLE

The TRUNCATE command deletes all data in a table. As you can see here, the
temp_categories table is now empty:

forumdb=# select * from temp_categories order by description;
pk | title | description

Here is some key information about the TRUNCATE command:

e TRUNCATE deletes all the records in a table similar to the DELETE command.
e In the TRUNCATE command, it is not possible to use WHERE conditions.
e The TRUNCATE command deletes records much faster than the DELETE command.

[991]

Basic Statements

Chapter 4

Summary

This chapter introduced you to the basic SQL/PostgreSQL statements and some basic SQL
commands. You learned how to create and delete databases, how to create and delete
tables, what types of tables exist, which basic statements to use to insert, modify, and delete

data, and the first basic queries to query the database.

In the next chapter, you will learn how to write more complex queries that relate to

multiple tables in different ways.

References

e The CREATE DATABASE official documentation: https://www.PostgreSQL.org/

docs/12/sgl-createdatabase.html

e The CREATE TABLE official documentation: https://www.PostgreSQL.org/docs/

12/sgl-createtable.html

e The SELECT official documentation: https://www.PostgreSQL.

sgl-select.html

e The INSERT official documentation: https://www.PostgreSQL
sgl-insert.html

e The DELETE official documentation: https://www.PostgreSQL
sgl-delete.html

e The UPDATE official documentation: https://www.PostgreSQL
sgl-update.html

org/docs/12/

.org/docs/12/

.org/docs/12/

.org/docs/12/

e The TRUNCATE official documentation: https://www.PostgreSQL.org/docs/12/

sgl-truncate.html

[100]

https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html

Advanced Statements

In the previous chapter, we started taking our first steps with PostgreSQL. In this chapter,
we will analyze the SQL language more deeply and write more complex queries. We will
talk about SELECT/INSERT/UPDATE again, but this time, we will use the more advanced
options surrounding them. We will then cover JOIN and common table expressions
(CTEs) in depth.

The topics we will talk about will be the following:

¢ Exploring the SELECT statement
e Using UPSERT
e Exploring CTEs

Exploring the SELECT statement

As we saw in the previous chapter, we can use the SELECT statement to filter our datasets
using the equality condition. In the same way, we can filter records using > or
< conditions, such as in the following example:

forumdb=# select * from categories where pk > 12 order by title;
pk | title | description

____+ _________ + _____________

14 | apricot | fruits

13 | lemon |

(2 rows)

The preceding query returns all records that have pk> 12.

Another condition that we can use with the SELECT statement is the 1ike condition. Let's
take a look at this next.

Advanced Statements Chapter 5

Using the like clause
Suppose we wanted to find all records that have a tit1le field value starting with the

letter 'a".
To do this, we would have to use the 1ike condition:

forumdb=# select * from categories where title like 'a$%';

pk | title | description
e b
10 | apple | fruits
14 | apricot | fruits
(2 rows)

As shown, the preceding query returns all records that have a title beginning with the letter
a. In a similar vein, if we wanted to find all records with titles ending with the letter e, we

would have to write the following:

forumdb=# select * from categories where title like '%e';

pk | title | description
____+ ________ + _____________
10 | apple | fruits

11 | orange | fruits

(2 rows)

The two kinds of searches can also be combined. For example, if we wanted to search all
records that contain the letters 'ap', we would write the following;:

forumdb=# select * from categories where title like '%ap%';

pk | title | description
____+ _________ + _____________
10 | apple | fruits

14 apricot | fruits

(2 rows)

The query given here will return all records whose titles contain the string ap.

Now let's try to run the following query and see what happens:

forumdb=# select * from categories where title like 'A%';
pk title description

As we can see, the search does not return any results. This happens because 1ike searches

are case-sensitive.

[102]

Advanced Statements Chapter 5

Now let's introduce the upper (text) function. The upper function, given an input
string, returns the same string with all characters in uppercase, as here:

forumdb=# select upper ('orange');
upper

ORANGE
(1 row)

In PostgreSQL, it is possible to call functions without writing FROM.
PostgreSQL does not need dummy tables to perform the SELECT function.
If we were in Oracle, the same query would have to be written this way:
select upper ('orange') from DUAL;.

Returning to our preceding example, if we wanted to perform a 1ike case-insensitive
search, we would have to write this statement:

forumdb=# select * from categories where upper (title) like 'A%';

pk | title | description
____+ _________ + _____________
10 | apple | fruits

14 | apricot | fruits

(2 rows)

We have now covered all of the functions that can be performed using the 1ike operator.

Using ilike
In PostgreSQL, it is possible to perform a case-insensitive 1ike query by using the i1ike
operator. In this situation, our query would become the following;:

forumdb=# select * from categories where title ilike 'A%';

pk | title | description
e b
10 | apple | fruits

14 | apricot | fruits

(2 rows)

This is the PostgreSQL way of solving the case-insensitive 1ike query issue that we
encountered previously.

[103]

Advanced Statements Chapter 5

Using distinct
We will now discuss another kind of query: the distinct query. Firstly, however, we need

to introduce another very useful function for the DBA called the coalesce function. The
coalesce function, given two or more parameters, returns the first value that is not NULL.

For example, let's use the coalesce function for the test value:

forumdb=# select coalesce (NULL, 'test');
coalesce

In the preceding query, the coalesce function returns test because the first argument is
NULL and the second argument is not NULL.

In the following query, we can see that the coalesce function returns orange because the
first argument is not NULL:

forumdb=# select coalesce('orange', 'test');
coalesce

orange
(1 row)

Now let's perform the following query:

forumdb=4# \pset null (NULL)
Null display is " (NULL)".

forumdb=# select description, coalesce(description, 'No description') from
categories order by 1;

description | coalesce
_____________ o
fruits | fruits

fruits | fruits

fruits | fruits
vegetable | vegetable
(NULL) | No description

(5 rows)

[104]

Advanced Statements Chapter 5

In the preceding code, the coalesce function transforms any NULL value into the string No
description. Another thing that isn't very user-friendly about the coalesce function is
that the name of the field that is given when a function is called is not the name we would
want for our query. In this case, the second field of the result set is called coalesce, which

is not the name we would prefer.

In PostgreSQL, an alias can be assigned to any field in a query. For example, we can assign
an alias to the coalesce field as follows:

forumdb=# select coalesce(description, 'No description') as description from

categories order by 1;
description

fruits

fruits

fruits

No description
vegetable

(5 rows)

Now the result set has the description field instead of the coalesce field.

If we want to use an alias with spaces or capital letters, we have to quote the alias using ",
as in the following example:

forumdb=# select coalesce (description, 'No description') as Description from
categories order by 1;

description

fruits

fruits

fruits

No description

vegetable

(5 rows)

The resultset doesn't have an alias of Description but does have an alias
of description, which doesn't seem right. The correct way to perform this is as follows:

forumdb=# select coalesce(description, 'No description') as "Description"
from categories order by 1;

Description

fruits

fruits

fruits

No description

[105]

Advanced Statements Chapter 5

vegetable
(5 rows)

Now let's perform the following query:

forumdb=# select distinct coalesce(description, 'No description') as
description from categories order by 1;
description

fruits

No description
vegetable

(3 rows)

In the preceding query, we have used the select distinct statement. The select
distinct statement is used to return only distinct (different) values. Internally, the
distinct statement involves a data sort for large tables, which means that if a query uses
the DISTINCT statement, the query may become slower as the number of records increases.

Using limit and offset

The 1imit clause is the PostgreSQL way to limit the number of rows returned by a query,
whereas the offset clause is used to skip a specific number of rows returned by the query.

limit and offset are used to return a portion of data from a resultset generated by a
query; the 1imit clause is used to limit the number of records in output and the offset
clause is used to provide PostgreSQL with the position on the resultset from which to start
returning data.

They can be used independently or together.
Now let's test 1imit and of £set using the following queries:

forumdb=# select * from categories order by pk limit 1;
pk | title | description
S o
10 | apple | fruits
(1 row)

The preceding query returns only the first record that we have inserted; this is because the
pk field is an integer type with a default value generated always as the identity.

[106]

Advanced Statements Chapter 5

If we want the two first records that were inserted, we have to perform the following query:

forumdb=# select * from categories order by pk limit 2;

pk | title | description
e P
10 | apple | fruits

11 | orange | fruits

(2 rows)

If we only want the second record that was inserted, we have to perform the following
query:

forumdb=# select * from categories order by pk offset 1 limit 1;

pk | title | description
e I
11 | orange | fruits

(1 row)

offset and limit are very useful when we want to return data in a
paged way.

Another valuable function of 1imit is that it can create a new table from an existing table.
For example, if we want to create a table called new_categories starting from the
categories table, we have to perform the following statement:

forumdb=# create table new_categories as select * from categories limit O;
SELECT O

This statement will copy into the new_categories table only the data structure of the table
categories.

The SELECT 0 clause means that no data has been copied into the new_categories table;
only the data structure has been replicated, as we can see here:

forumdb=# \d new_categories
Table "public.new_categories"

Column | Type | Collation | Nullable | Default
————————————— e H e e e
rk | integer | | |

title | text | | \
description | text | | |

[107]

Advanced Statements Chapter 5

Using subqueries

Subqueries can be described as nested queries — they are where we can nest a query inside
another query using parentheses. Subqueries can return a single value or a recordset, just
like regular queries. We will start by introducing subqueries using the IN/NOT IN operator.

Using the IN/NOT IN condition

Let's start with the IN operator; we can use the IN operator inside a where clause instead of
using multiple OR conditions. For example, if you wanted to search for all categories that
have the value pk=10 or the value pk=11, we would have to perform the following
statement:

forumdb=# select * from categories where pk=10 or pk=11;

pk | title | description
____+ ________ + _____________
10 | apple | fruits

11 | orange | fruits

(2 rows)

Another way to reach the same outcome is the following;:

forumdb=# select * from categories where pk in (10,11);

pk | title | description
e B
10 | apple | fruits

11 | orange | fruits

(2 rows

If we wanted to return the records that don't have pk=10 or pk=11, we would have to
perform the following;:

forumdb=# select * from categories where not (pk=10 or pk=11);

pk | title | description
e e
12 tomato | vegetable

13 | lemon |

14 | apricot | fruits

(3 rows)

[108]

Advanced Statements Chapter 5

An operator similar to the IN operator but with reverse functionality is the NOT IN
operator. For example, if we wanted to search for all categories that do not have pk=10 or
pk=11, we would have to execute the following:

forumdb=# select * from categories where pk not in (10,11);
pk | title | description
e e
12 | tomato | vegetable
13 | lemon |
14 | apricot | fruits
(3 rows)

Now, we can insert some data into the posts table:

forumdb=# insert into posts(title,content,author,category) values('my
orange', 'my orange is the best orange in the world',1,11);

forumdb=# insert into posts(title,content,author, category) values('my
apple', 'my apple is the best orange in the world',1,10);

forumdb=# insert into posts(title,content, author,category,reply_to)
values ('Re:my orange', 'No! It''s my orange the best orange in the
world',2,11,2);

forumdb=# insert into posts(title,content,author,category) values ('my
tomato', 'my tomato is the best orange in the world',2,12);

The records present in the posts table are now as follows:

forumdb=# select pk,title,content,author,category from posts;

pk | title | content |
author | category
———t——— —_ +————
e

2 | my orange | my orange is the best orange in the world |1
| 11

3 | my apple | my apple is the best orange in the world |1
| 10

4 | Re:my orange | No! It's my orange the best orange in the world | 2
| 11

5 | my tomato | my tomato is the best orange in the world | 2
| 12
(4 rows)

Suppose we now want to search for all posts that belong to the orange category. To do this,
we can use several methods.

[109]

Advanced Statements Chapter 5

The following method uses subqueries:

forumdb=# select pk,title,content, author,category from posts where category
in (select pk from categories where title ='orange');

pk | title | content |
author | category
——— e Bttt e e
S
2 | my orange | my orange is the best orange in the world [1
| 11
4 | Re:my orange | No! It's my orange the best orange in the world | 2
| 11
(2 rows)

The subquery is represented by the following:

forumdb=# select pk from categories where title ='orange'

This statement extracts the values pk=2 and pk=4 from the category table and the external
query searches the records in the posts table that have pk=2 or pk=4. Similarly, if you
wanted to search for all post values that do not belong to the orange category, you would
have to perform the following statement:

forumdb=# select pk,title,content, author,category from posts where category
not in (select pk from categories where title ='orange');

pk | title | content | author |
category
——t—— +—_ F———— F————
3 | my apple | my apple is the best orange in the world | 1 | 10

5 | my tomato | my tomato is the best orange in the world | 2 | 12
(2 rows)

Using the EXISTS/NOT EXISTS condition

The EXISTS statement is used when we want to check whether a subquery returns (TRUE),
and the NOT EXISTS statement is used when we want to check whether a subquery does
not return (FALSE) . For example, if we wanted to write the same conditions written
previously using the EXISTS/NOT EXISTS conditions, we'd have to perform the following:

forumdb=# select pk,title,content, author,category from posts where exists
(select 1 from categories where title ='orange' and posts.category=pk) ;
pk | title | content |
author | category

Advanced Statements Chapter 5

2 | my orange | my orange is the best orange in the world [1
| 11

4 | Re:my orange | No! It's my orange the best orange in the world | 2
| 11
(2 rows)

The preceding query returns the same results as the query written with the IN condition.

Similarly, if we wanted to search for all post values that do not belong to the orange
category using the NOT EXISTS condition, we'd have to write the following:

forumdb=# select pk,title,content, author,category from posts where not
exists (select 1 from categories where title ='orange' and
posts.category=pk) ;

pk | title | content | author |
category
—_—— e o +———
3 | my apple | my apple is the best orange in the world |1 | 10
5 | my tomato | my tomato is the best orange in the world | 2 | 12

(2 rows)

Both queries written with the IN condition and with the EXISTS condition are called semi-
join queries, and we will be looking at joins in the next section.

Learning joins

We will now explore joins in more detail. We will address what a join is, how many types
of joins exist, and what they are used for. We can think of a join as a combination of rows
from two or more tables.

For example, the following query returns all the combinations from the rows of the
category table and the rows of the post s table:

forumdb=# select c.pk,c.title,p.pk,p.category,p.title from categories

c,posts p;
pk | title | pk | category | title
——— o o
10 | apple | 2 | 11 | my orange
10 | apple | 3 | 10 | my apple
10 | apple | 4 | 11 | Re:my orange
10 | apple | 5 | 12 | my tomato
11 | orange | 2 | 11 | my orange
11 | orange | 3 | 10 | my apple
11 | orange | 4 | 11 | Re:my orange

[111]

Advanced Statements Chapter 5

11 | orange | 5 | 12 | my tomato

12 | tomato | 2 | 11 | my orange

12 | tomato | 3 | 10 | my apple

12 | tomato | 4 | 11 | Re:my orange
12 | tomato | 5 | 12 | my tomato

13 | lemon | 2 | 11 | my orange

13 | lemon | 3 | 10 | my apple

13 | lemon | 4 | 11 | Re:my orange
13 | lemon | 5 | 12 | my tomato

14 | apricot | 2 | 11 | my orange

14 | apricot | 3 | 10 | my apple

14 | apricot | 4 | 11 | Re:my orange
14 | apricot | 5 | 12 | my tomato
(20 rows)

This query makes a Cartesian product between the category table and the posts table. It
can also be called a cross join:

The same query can also be written in the following way:

forumdb=# select c.pk,c.title,p.pk,p.category,p.title from categories c
CROSS JOIN posts p;

pk | title | pk | category | title
—— t———t Fo———————
10 | apple | 2 | 11 | my orange
10 | apple | 3 | 10 | my apple
10 | apple [4 | 11 | Re:my orange
10 | apple | 5 | 12 | my tomato
11 | orange | 2 | 11 | my orange
11 | orange | 3 | 10 | my apple
11 | orange | 4 | 11 | Re:my orange
11 | orange | 5 | 12 | my tomato
12 | tomato | 2 | 11 | my orange
12 | tomato | 3 | 10 | my apple
12 | tomato | 4 | 11 | Re:my orange
12 | tomato | 5 | 12 | my tomato

[112]

Advanced Statements

Chapter 5

13
13
13
13
14
14
14
14
(20

lemon
lemon
lemon
lemon
apricot
apricot
apricot
apricot

rows)

g W N O wWwN

11
10
11
12
11
10
11
12

Using INNER JOIN

Now suppose that starting with all the possible combinations that exist between the rows of
the category table and the rows of the post s table, we want to filter all the rows that have
the same value as the category field (category.pk = posts.category). We want to
have a result like the one described in the following diagram:

my
my
Re
my
my
my
Re
my

orange
apple

1my orange
tomato
orange
apple

rmy orange
tomato

INNER JOIN

The INNER JOIN keyword selects records that have matching values in
both tables.

To achieve this, we need to run the following code:
forumdb=# select c.pk,c.title,p.pk,p.category,p.title from categories
c,posts p where c.pk=p.category;

pk | title
S,
11 | orange
10 | apple
11 | orange
12 | tomato
(4 rows)

rk

category

11
10
11
12

tit

my
my
Re
my

[113]

le

orange
apple

:my orange

tomato

Advanced Statements Chapter 5

We can also write the same query using the explicit JOIN operation:
forumdb=# select c.pk,c.title,p.pk,p.category,p.title from categories c
inner join posts p on c.pk=p.category;

pk | title | pk | category | title
—_— o o
11 | orange | 2 | 11 | my orange

10 | apple | 3 | 10 | my apple

11 | orange | 4 |11 | Re:my orange
12 | tomato | 5 | 12 | my tomato

(4 rows)

INNER JOIN versus EXISTS/IN

If we wanted to search for all posts that belong to the orange category using the INNER
JOIN condition, we would have to rewrite the query in this way:

forumdb=# select distinct p.pk,p.title,p.content,p.author,p.category from
categories c inner join posts p on c.pk=p.category where c.title='orange';

pk | title | content |
author | category
——— f——————————— +————
S
2 | my orange | my orange is the best orange in the world |1
| 11
4 | Re:my orange | No! It's my orange the best orange in the world | 2
| 11
(2 rows)

Using the INNER JOIN condition, we can rewrite all queries that can be
written using the IN or EXISTS condition.

It is preferable to use JOIN conditions whenever possible instead of IN or EXISTS

conditions, because they perform better in terms of the execution speed, as we will see in
the following chapters.

Using LEFT JOINS
We will now explore what a left join is. As an example, we can perform the following
query:

forumdb=# select c.*,p.category,p.title from categories c left join posts p
on c.pk=p.category;
pk | title | description | category | title

[114]

Advanced Statements Chapter 5

—_—— o o o —————
11 | orange | fruits | 11 | my orange

10 | apple | fruits | 10 | my apple

11 | orange | fruits | 11 | Re:my orange
12 | tomato | vegetable | 12 | my tomato

13 | lemon | | |

14 | apricot | fruits | |

(6 rows)

This query returns all records of the categories table and returns the matched records
from the posts table. As we can see, if the second table (the posts table, in this example)
has no matches, the result is NULL.

The LEFT JOIN keyword returns all records from the left table (tablel),
and all the records from the right table (table2). The result is NULL from
the right side if there is no match.

This diagram gives us an idea of how a left join works:

LEFT JOIN

Suppose now that we want to search for all categories that do not have posts — we could
write the following:

forumdb=# select * from categories c where c.pk not in (select category
from posts);

pk | title | description
e o
13 | lemon |

14 | apricot | fruits

(2 rows)

[115]

Advanced Statements Chapter 5

This query, written using the NOT IN condition, looks for all records in the categories
table for which the pk value does not match in the category field of the posts table. As
we have already seen, another way to write the same query would be to use the NOT
EXISTS condition:

forumdb=# select * from categories c where not exists (select 1 from posts
where category=c.pk);

pk | title | description
e b
13 | lemon |

14 | apricot | fruits

(2 rows)

If we now wanted to use a left join in order to achieve the same purpose, we would start by
writing the following left join query:

forumdb=# select c.*,p.category from categories c left join posts p on
p.category=c.pk;

pk | title | description | category
——— e —— o —— Fom e —————
11 | orange | fruits |11

10 | apple | fruits | 10

11 | orange | fruits |11

12 | tomato | vegetable | 12

13 | lemon \ \

14 | apricot | fruits |

(6 rows)

From the result, it is immediately clear that all the values we are looking for are those for
which the value of p.category is NULL.

So, we rewrite the query in the following way:

forumdb=# select c.* from categories c left join posts p on p.category=c.pk
where p.category is null;
pk | title | description

13 | lemon
14 | apricot
(2 rows)

fruits

As shown here, we get the same result we had using the NOT EXISTS or NOT IN condition.

Using the LEFT JOIN condition, we can rewrite some queries that can be
written using the IN or EXISTS conditions.

[116]

Advanced Statements Chapter 5

It is preferable to use JOIN conditions whenever possible instead of IN or EXISTS
conditions, because they perform better in terms of execution speed, as we will see in the
following chapters.

Using RIGHT JOIN

The right join is the twin of the left join; it takes data from the right table, reverses the order
of the tables, and uses a right join instead of a left join. For example, we can obtain the same
results as the preceding query using a right join instead of a left join:

forumdb=# select c.*,p.category,p.title from posts p right join categories
c on c.pk=p.category;

pk | title | description | category | title
———t Fom———— Fo————— f————————
11 | orange | fruits | 11 | my orange
10 | apple | fruits | 10 | my apple
11 | orange | fruits | 11 | Re:my orange
12 | tomato | vegetable | 12 | my tomato
13 | lemon | | |
14 | apricot | fruits | |
(6 rows)

The RIGHT JOIN keyword returns all records from the right table (table2)
and all the records from the left table (tablel) that match the right table
(table2). The result is NULL from the left side when there is no match.

This diagram illustrates how RIGHT JOIN works:

RIGHT JOIN

[117]

Advanced Statements Chapter 5

Using FULL OUTER JOIN

In SQL, FULL OUTER JOIN is the combination of what we would have if we put together
the right join and the left join. We will check it out using the following steps:

1. Let's insert some data:

forumdb=# insert into tags (tag,parent) wvalues ('fruits',K NULL);

INSERT 0 1

forumdb=# insert into tags (tag,parent) values ('vegetables',K NULL);
INSERT 0 1

forumdb=# insert into j_posts_tags values (1,2), (1,3);

INSERT 0 2

2. Having inserted some data into the tags table and some data into the
j_posts_tags table, the j_tags_posts table relates the tags table to the
posts table. So, the current situation is as follows:

forumdb=# select * from tags;
pk | tag | parent
e b

1 | fruits |

2 | vegetables |
(2 rows)

forumdb=# select * from j_posts_tags ;
tag_pk | post_pk

3. Now let's try to write this JOIN query:

forumdb=# select jpt.*,t.*,p.title from j_posts_tags jpt
inner join tags t on jpt.tag_pk=t.pk
inner join posts p on jpt.post_pk = p.pk;

tag_pk | post_pk | pk | tag | parent | title
———————— e M e e
11 2 |1 | fruits | | my orange
11 3 |1 | fruits | | my apple
(2 rows)

This query returns all the records that have posts and tags. It's a JOIN query
between three tables: tags, j_posts_tags, and posts.

[118]

Advanced Statements Chapter 5

4. If we wanted to have the left and right joins between the tags, j_posts_tags,
and posts tables, we'd have to use the full outer join and write the following;:

forumdb=# select jpt.*,t.*,p.title from j_posts_tags jpt full outer
join tags t on jpt.tag pk=t.pk full outer join posts p on
jpt.post_pk = p.pk;

tag_pk | post_pk | pk | tag | parent | title
———————— -t
11 2 | 1 | fruits | | my orange
113 | 1 | fruits | | my apple
| | 2 | vegetables | \
| | \ | | my tomato
| | | | | Re:my orange
(5 rows)

This diagram illustrates how the full outer join works:

FULL OUTER JOIN

One question we need to consider is, What is the difference between a full join and a cross join,
which we saw at the beginning of this section on joins?

Well, a full outer join is different from a cross join because a cross join makes a Cartesian
product from all the records present in the tables.

For example, in a cross join with the same data as the preceding full join, we would get the following result:
forumdb=# select jpt.*,t.*,p.title from j_posts_tags jpt
cross join tags t
cross join posts p ;

tag_pk | post_pk | pk | tag | parent | title
———————— e e
1 | 2 |1 | fruits | | my orange

1 | 3 |1 | fruits | | my orange

1 | 2 |1 | fruits | | my apple

1 | 3 |1 | fruits | | my apple

Advanced Statements Chapter 5

1 | 2 | 1 | fruits | | Re:my orange
1 | 3 |1 | fruits | | Re:my orange
1 | 2 |1 | fruits | | my tomato

1 | 3 | 1 | fruits | | my tomato

1 | 2 | 2 | vegetables | | my orange

1 | 3 | 2 | vegetables | | my orange

1 | 2 | 2 | vegetables | | my apple

1 | 3 | 2 | vegetables | | my apple

1 | 2 | 2 | vegetables | | Re:my orange
1 | 3 | 2 | vegetables | | Re:my orange
1 | 2 | 2 | vegetables | | my tomato

1 | 3 | 2 | vegetables | | my tomato
(16 rows)

Using SELF JOIN

A self join is a regular join, but the table is joined with itself. Let's start by inserting some
rows into the posts table:

forumdb=# insert into posts (title,content, author,category) values ('my new
orange', 'this my post
on my new orange',1,11);

Suppose we wanted to find all posts that belong to author 2 that have the same category
as those entered by author 1. Our first step would be to search for all the records that
belong to author 1:

forumdb=# select distinct pl.title,pl.author,pl.category from posts pl
where pl.author=1;

title | author | category
,,,,,,,,,,,,,,, ey
my apple |1 | 10
my new orange | 1 | 11
my orange |1 | 11

(3 rows)

The second step would be to search for all the records that belong to author 2:

forumdb=# select distinct p2.title,p2.author,p2.category from posts p2
where p2.author=2;

title | author | category
______________ +________+__________
my tomato | 2 | 12
Re:my orange | 2 | 11

(2 rows)

[120]

Advanced Statements Chapter 5

The result that we want would be as follows:

title author category

Re:my orange 2 11

The following snippet is the query that realizes what we want:

forumdb=# select distinct p2.title,p2.author,p2.category from posts
pl,posts p2 where pl.category=p2.category and pl.author<>p2.author and
pl.author=1 and p2.author=2;

title | author | category
,,,,,,,,,,,,,, O
Re:my orange | 2 | 11
(1 row)

We can also write the same query this way:

forumdb=# select distinct p2.title,p2.author,p2.category from posts pl
inner join posts p2 on (pl.category=p2.category and pl.author<>p2.author)
where pl.author=1 and p2.author=2;

title | author | category
______________ o
Re:my orange | 2 | 11
(1 row)

Aliases must be used for table names when a self join is performed,
otherwise, PostgreSQL will not know which table the column names
belong to.

Aggregate functions

Aggregate functions perform a calculation on a set of rows and return a single row.
PostgreSQL provides all the standard SQL aggregate functions:

AVG () : This function returns the average value.

COUNT () : This function returns the number of values.

MAX () : This function returns the maximum value.

MIN () : This function returns the minimum value.

SUM () : This function returns the sum of values.

[121]

Advanced Statements Chapter 5

Aggregate functions are used in conjunction with the GROUP BY clause. A GROUP BY clause
splits a resultset into groups of rows and aggregate functions perform calculations on them.
For example, if we wanted to count how many records there are for each category,
PostgreSQL first groups the data and then counts it. The following diagram illustrates the
process:

This diagram illustrates that PostgreSQL, before grouping the data, sorts it internally.
Therefore, we must remember that a grouping operation always implies an ordering
operation; this will become more clear when we discuss performance later on.

Now that we have understood the theory, let's address how to actually calculate how many
records there are for each category:

forumdb=# select category,count (*) from posts group by category;
category | count

The preceding query counts how many records there are for each category in the posts
table.

[122]

Advanced Statements Chapter 5

Another way to write the same query is as follows:

forumdb=# select category,count (*) from posts group by 1;
category | count

In PostgreSQL, we can write the GROUP BY condition using the name of
the fields or their position in the query.

Another condition that we can use is the having condition. Suppose that we want to count
how many records there are for each category that have a count greater than 2. To do this,
we would have to add the having condition after the group by condition, thus writing the
following;:

forumdb=# select category,count (*) from posts group by category having
count (*) > 2;
category | count
__________ +_______
11 | 3
(1 row)

Similarly, we could do this:

forumdb=# select category,count (*) from posts group by 1 having count (*) >
2;
category | count
__________ o
11 | 3
(1 row)

Now let's see how the aggregation functions work if we add aliases. Let's resume the first
query and write the following:

forumdb=# select category,count (*) as category_ count from posts group by

category;
category | category_count
__________ o
11 | 3
10 | 1
12 | 1
(3 rows)

[123]

Advanced Statements Chapter 5

As seen here, we can use an alias on aggregate functions.

However, what do we do if we want to use an alias inside a query that has a having
condition too? To answer this question, let's try the following statement:

forumdb=# select category,count (*) as category_count from posts group by
category having category_count > 2;
ERROR: column "category_count" does not exist

As we can see, we can't use an alias on a having condition. The correct way to write the
preceding query is as follows:

forumdb=# select category,count (*) as category_ count from posts group by
category having count (*) > 2;
category | category_count
__________ +________________
11 | 3
(1 row)

In the next chapter, we will discuss aggregates in more detail.

UNION/UNION ALL

The UNION operator is used to combine the resultset of two or more SELECT statements. We
can use the UNION statement only if the following rules are respected:

e FEach SELECT statement within UNION must have the same number of columns.
¢ The columns must have similar data types.
e The columns in each SELECT statement must be in the same order.

Let's explore an example.

First, we need to insert some data:

forumdb=# insert into tags (tag,parent) values ('apple',1l);
INSERT 0 1

forumdb=# select * from tags;

pk | tag | parent
____+ ____________ + ________
1 | fruits |
2 | vegetables |
3 | apple |1
(3 rows)

[124]

Advanced Statements Chapter 5

forumdb=# select * from categories;

pk | title | description
e b
10 | apple | fruits

11 | orange | fruits

12 | tomato | vegetable

13 | lemon |

14 | apricot | fruits

(5 rows)

Suppose now that we want to have a result set that is a union of tags and categories;in
other words, we want to reach this result:

title

apple

apricot

fruits

lemon

orange

tomato

vegetables

To achieve this, we have to use the UNION operator:

forumdb=# select title from categories union select tag from tags order by
title;
title

apple
apricot
fruits
lemon
orange
tomato
vegetables
(7 rows)

The union operator combines the values of the two tables and removes duplicates. If we
don't want duplicates to be removed and instead have them remain in the resultset, we
have to use the UNION ALL operator:

forumdb=# select title from categories union all select tag from tags order
by title;
title

[125]

Advanced Statements Chapter 5

apple
apricot
fruits
lemon
orange
tomato
vegetables
(8 rows)

The UNION operator always implies DISTINCT before returning the

data, and, as we have seen previously, for large tables, DISTINCT always
implies sorting. Therefore, UNION ALL is a much faster operation than
UNION. It is recommended to use UNION instead of UNION ALL only when
you do not want duplicates in the resultset and only when you are sure
that duplicates exist.

EXCEPT/INTERSECT

The EXCEPT operator returns rows by comparing the resultsets of two or more queries. The
EXCEPT operator returns distinct rows from the first (left) query that is not in the output of
the second (right) query. Similar to the UNION operator, the EXCEPT operator can also
compare queries that have the same number and the same datatype of fields.

For example, say we have the following:

forumdb=# select * from tags;

rk tag | parent
____+ ____________ + ________
1 | fruits |
2 | vegetables |
3 | apple |1
(3 rows)

forumdb=# select * from categories;

pk | title | description
____+ _________ + _____________
10 | apple | fruits

11 | orange | fruits

12 | tomato | vegetable

13 | lemon |

14 | apricot | fruits

(5 rows)

[126]

Advanced Statements Chapter 5

Say we want to reach this result:

title
apricot

lemon

orange

tomato

We would need to order all records that are present in the categories table but that are
not present in the tags table by the tit1le field. To do this, we would use the following

query:

forumdb=# select title from categories except select tag from tags order by

apricot
lemon

orange
tomato
(4 rows)

The INTERSECT operator performs the reverse operation. It searches for all the records
present in the first table that are also present in the second table:

forumdb=# select title from categories intersect select tag from tags order
by 1;
title

In this section, we have taken a detailed look at the instructions needed to search data in
tables using various statements and joins. In the next section, we will see how to modify the
data in the tables in more advanced ways.

Using UPSERT

In this section, we will look at some interesting features of the insert statement:

e How to make an upsert statement starting from an insert statement

e How to make a SQL query that inserts the same data and returns the record
inserted

[127]

Advanced Statements Chapter 5

UPSERT - the PostgreSQL way

In PostgreSQL, the upsert statement does not exist as in other DBMSes. An upsert
statement is used when we want to insert a new record on top of the existing record or
update an existing record. To do this in PostgreSQL, we can use the ON CONFLICT
keyword:

INSERT INTO table_name (column_list) VALUES (value_list)
ON CONFLICT target action;

Here, ON CONFLICT means that the target action is executed when the record already exists
(meaning when a record with the same primary key exists). The target action could be this:

DO NOTHING
Alternatively, it could be the following:

DO UPDATE SET { column_name = { expression | DEFAULT }
(column_name [, ...]) [ROW] ({ expression | DEFAULT } [, ...])

(column_name [, ...]) (sub-SELECT)

FoLyood
[WHERE condition]

Now, let's look at an example to better understand how upsert works:

1. For example, start with the j_posts_tags table:

forumdb=# \d j_posts_tags ;
Table "public.j_posts_tags"

Column | Type Collation Nullable | Default
————————— B e s
tag_pk | integer | | not null |

post_pk | integer | | not null |

Foreign-key constraints:

"j_posts_tags_post_pk_fkey" FOREIGN KEY (post_pk) REFERENCES
posts (pk)

"j_posts_tags_tag_pk_fkey" FOREIGN KEY (tag_pk) REFERENCES
tags (pk)

2. First, let's add a primary key to the j_posts_add table:
forumdb=# alter table j_posts_tags add constraint j_posts_tags_pkey
primary key (tag_pk,post_pk);

ALTER TABLE

forumdb=# \d j_posts_tags;

[128]

Advanced Statements Chapter 5

Table "public.]j_posts_tags"

Column | Type | Collation | Nullable | Default
777777777 o
tag_pk | integer | | not null |

post_pk | integer | | not null |

Indexes

"j_posts_tags_pkey" PRIMARY KEY, btree (tag_pk, post_pk)
Foreign-key constraints:

"j_posts_tags_post_pk_fkey" FOREIGN KEY (post_pk) REFERENCES
posts (pk)

"j_posts_tags_tag_pk_fkey" FOREIGN KEY (tag_pk) REFERENCES
tags (pk)

3. Next, let's see what the records of §j_posts_tags are:

forumdb=# select * from j_posts_tags ;
tag_pk | post_pk

4. Now let's try to insert another record with the same primary key. If we perform a
standard insert statement, as follows, we can see that PostgreSQL returns an
error because we are trying to insert a record that already exists:

forumdb=# insert into j_posts_tags values(1,2);
ERROR: duplicate key value violates unique constraint
"j_posts_tags_pkey"

DETAIL: Key (tag_pk, post_pk)=(1, 2) already exists.

5. Let's now try using the ON CONFLICT DO NOTHING option:

forumdb=# insert into j_posts_tags values(l,2) ON CONFLICT DO
NOTHING;
INSERT 0 O
forumdb=# select * from j_posts_tags ;
tag_pk | post_pk

[129]

Advanced Statements Chapter 5

In this case, PostgreSQL doesn't return an error; instead, it simply does nothing.

6. Now let's try the DO UPDATE set option. This option realizes the upsert
statement, as in the following example:
forumdb=# insert into j_posts_tags values(1l,2) ON CONFLICT

(tag_pk,post_pk) DO UPDATE set tag pk=excluded.tag pk+l;
INSERT 0 1

forumdb=# select * from j_posts_tags ;
tag_pk | post_pk

The fields inside the ON CONFLICT condition must have a unique or exclusion constraint.
The previous statement simply replaces the following statement:

INSERT INTO Jj_posts_tags values (1,2)

It gets replaced with this statement:

UPDATE set tag_pk=tag_pk+l where tag_pk=1 and post_pk=2

Learning the RETURNING clause for INSERT

In PostgreSQL, we can add the RETURNING keyword to the insert statement. The
RETURNING keyword in PostgreSQL provides an opportunity to return the values of any
columns from an insert or update statement after the insert or update was run. For
example, if we want to return all the fields of the record that we have just inserted, we have
to perform a query as follows:

forumdb=# insert into j_posts_tags values(1l,2) returning ¥*;
tag_pk post_pk

[130]

Advanced Statements Chapter 5

The * means that we want to return all the fields of the record that we have just inserted; if
we want to return only some fields, we have to specify what fields the query has to return:

forumdb=# insert into j_posts_tags values (1,6) returning tag_pk;
tag_pk

This feature will show itself to be particularly useful at the end of the chapter when we talk
about CTEs.

Returning tuples out of queries

In previous chapters, we have looked at simple update queries, such as the following:

forumdb=# update posts set title = 'my new apple' where pk = 3;
UPDATE 1

Now we will look at something more complicated. What if we want to update some records
in the posts table that are related in some way?

UPDATE related to multiple tables

Let's start with the following scenario:
1. Consider the categories table:

forumdb=# select * from categories order by pk;

pk | title | description
e o
10 | apple | fruits

11 | orange | fruits

12 | tomato | vegetable

13 | lemon |

14 | apricot | fruits

(5 rows)

[131]

Advanced Statements Chapter 5

2. Consider the posts table (only the pk, title, and category fields):

forumdb=# select pk,title,category from posts order by pk;

pk | title | category
b e
2 | my orange | 11
3 | my new apple | 10
4 | Re:my orange | 11
5 | my tomato | 12
6 | my new orange | 11

Now we want to modify all the records of the posts table that belong to the apple
category. The only record in the table that belongs to the apple category is this:

|3 |my new apple |10

We want this result:

|3 |my new apple last updated current date |1O |

Thus, we want to add a string that contains the words last update + current date,
where the current date is the effective current date. We can reach our goal in three different
ways. The first two ways are SQL standard queries, but the third is not. Let's look at the
non-standard option in detail.

First of all, let's create a temporary table so as not to modify the data for subsequent tests, as
we've seen in the previous chapter. For this, let's perform the following statement:

drop table if exists t_posts;
create temp table t_posts as select * from posts;

Now, let's start using the first way:

update t_posts p
set title=p.title||' last updated '||current_date::text
where p.category in (select pk from categories c where c.title='apple');

The preceding query searches all records in the posts table that have a value of the
category field equal to the pk values of the categories table, which was already filtered
by the where condition. The part of the preceding query that executesp.title||' last
updated '||current_date::text appendsthe' last update ' + current_date
string, where current_date is the effective current date, as seen here:

forumdb=# select current_date;
current_date

[132]

Advanced Statements Chapter 5

2020-01-09
(1 row)

So, the result of the update query is as follows:

forumdb=# select pk,title,category from t_posts order by pk;

pk | title | category
____+ ______________________________________ + __________
2 | my orange | 11
3 | my new apple last updated 2020-01-09 | 10
4 | Re:my orange | 11
5 | my tomato | 12
6 | my new orange | 11

(5 rows)

Another way to make the update query is using the exists condition:

forumdb=# update t_posts p set title=p.title||' last updated

'| |current_date: :text

where exists (select 1 from categories c where c.pk=p.category and
c.title='apple' 1limit 1);

Now we'll see the third way to make this kind of update. It's a PostgreSQL query, but it
isn't a SQL standard query:

forumdb=# update t_posts p

set title=p.title||' last updated '||current_date::text
from categories c

where c.pk=p.category and c.title='apple';

This query is slightly different from those that we've seen before; PostgreSQL allows us to
add a from condition to the update statement. It works very similarly to the inner join
mechanism seen previously. For further information, see the official documentation
(https://www.postgresql.org/docs/lZ/sql—update.html)

Exploring UPDATE RETURNING

As we've seen in the INSERT statement, the update statement also has the possibility to
add the RETURNING keyword. The update statement works in the same way as the INSERT
statement:

forumdb=# update t_posts p set title=p.titlel||' last updated

'| |current_date: :text

where exists (select 1 from categories c where c.pk=p.category and
c.title="'apple' limit 1) returning pk,title,category;

[133]

https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html

Advanced Statements Chapter 5

pk | title | category
7777+ 77777777777777777777777777777777777777 + 7777777777

3 | my new apple last updated 2020-01-09 | 10
(1 row)

UPDATE 1

DELETE RETURNING

As we've seen, the update statement, like the INSERT statement, has the possibility to add
the RETURNING keyword; this feature is also available for the delete statement:

forumdb=# delete from t_posts p where exists (select 1 from categories c
where c.pk=p.category and c.title='apple') returning pk,title,category;

pk | title | category
e e
3 | my new apple | 10

(1 row)
DELETE 1

forumdb=# select pk,title,category from t_posts order by 1;

pk | title | category
e [P
2 | my orange |11
4 | Re:my orange | 11
5 | my tomato | 12
6 my new orange | 11

(4 rows)

As we can see, all the records associated with the apple category are not present anymore.
In this section, we've seen how to modify the data inside the tables in an advanced way.

In the next section, we'll talk about CTEs, an advanced method to return and modify data.

Exploring CTEs

In this section, we are going to talk about CTEs. This section will be split into three parts.
Firstly, we will talk about the concept of CTEs; secondly, we will discuss how CTEs are
implemented in PostgreSQL 12; and finally, we will explore some examples of how to use
CTEs.

[134]

Advanced Statements Chapter 5

CTE concept

A CTE, or a common table expression, is a temporary result taken from a SQL statement.
This statement can contain SELECT, INSERT, UPDATE, or DELETE instructions. The lifetime
of a CTE is equal to the lifetime of the query. Here is an example of a CTE definition:

WITH cte_name (column_list) AS (
CTE_query_definition
)

statement;

If, for example, we wanted to create a temporary dataset with all the posts written by the
author scotty, we would have to write this:

forumdb=# with posts_author_1 as
(select p.* from posts p
inner join users u on p.author=u.pk
where username='scotty')
select pk,title from posts_author_1;
pk | title
e
4 | Re:my orange
5 | my tomato
(2 rows)

We could also write the same thing using an inline view:

forumdb=# select pk,title from
(select p.* from posts p inner join users u on p.author=u.pk where
u.username='scotty') posts_author_1;
pk | title
____+ ______________
4 | Re:my orange
5 | my tomato
(2 rows)

As we can see, the result is the same. The difference is that in the first example, the CTE
creates a temporary result set, whereas the second query, the inline view, does not.

[135]

Advanced Statements Chapter 5

CTE in PostgreSQL 12

Starting from PostgreSQL version 12, things have changed, and two new options have been
introduced for the execution of a CTE, namely MATERIALIZED and NOT MATERIALIZED. If
we want to perform a CTE that materializes a temporary resultset, we have to add the

materialized keyword:

forumdb=# with posts_author_1 as materialized
(select p.* from posts p

inner join users u on p.author=u.pk

where username='scotty')
select pk,title from posts_author_1;

rk title
____+ ______________

4 | Re:my orange

5 | my tomato

(2 rows)

The query written here materializes a temporary resultset as happened in previous versions
of PostgreSQL. If we write the query with the NOT MATERIALIZE option, PostgreSQL will

not materialize any temporary resultset:

forumdb=# with posts_author_1 as not materialized
(select p.* from posts p

inner join users u on p.author=u.pk

where username='scotty')
select pk,title from posts_author_1;

pk title
S

4 | Re:my orange

5 | my tomato

(2 rows)

If we don't specify any option, the default is NOT MATERIALIZED, and this could be a
problem if we are migrating a database from a minor version to PostgreSQL 12. This is
because the behavior of the query planner could change, and the performance could change

too.
From version 12, we have to insert the MATERIALIZED option if we want
to have our queries display the same behavior that we had with the
previous versions.

[136]

Advanced Statements Chapter 5

CTE - some examples

Let's now present some examples of the use of CTEs:

1. Firstly, we will recreate the t_posts table from scratch and then we'll create a
new table, delete_posts, with the same data structure as the posts table:

forumdb=# drop table if exists t_posts;
DROP TABLE
forumdb=# create temp table t_posts as select * from posts;
SELECT 5
forumdb=# create table delete_posts as select * from posts limit O;
SELECT O
forumdb=# \d delete_posts
Table "public.delete_posts"

created_on
last_edited_on
editable

timestamp with time zone
timestamp with time zone
boolean

Column | Type | Collation | Nullable |
Default
———————————————— B S Tt
[P
pk | integer | | |
title | text | | |
content | text \ \ |
author | integer | | |
category | integer \ \ |
reply_to | integer \ \
| \ \ |
| \ \ |
| \ \ |

The starting values for the t_posts and delete_posts tables are as follows:

forumdb=+# select pk,title,category from t_posts ;

pk | title | category
e o
4 | Re:my orange | 11

5 | my tomato | 12

2 | my orange | 11

[9) | my new orange | 11

3 | my new apple | 10

(5 rows)

forumdb=# select pk,title,category from delete_posts ;
pk | title | category

[137]

Advanced Statements Chapter 5

2. Now suppose that we want to delete some records from the posts table, and we
want all the records that we have deleted from the t_posts table to be inserted
into the delete_posts table. To reach this goal, we have to use CTEs as follows:

forumdb=# with del_posts as (
delete from t_posts
where category in (select pk from categories where title
='apple')
returning *)
insert into delete_posts select * from del_posts;
INSERT 0 1

The query here deletes all the records from the t_posts table that have their
category as 'apple' and, in the same transaction, inserts all the records deleted
in the delete_posts table, as we can see here:

forumdb=# select pk,title,category from t_posts ;
pk | title | category

____+ _______________ + __________
4 | Re:my orange | 11
5 | my tomato | 12
2 | my orange | 11
6 | my new orange | 11
(4 rows)

forumdb=# select pk,title,category from delete_posts ;
pk | title | category
____+ ______________ + __________

3 | my new apple
(1 row)

3. Now let's make another example by returning to the starting scenario:

forumdb=# drop table if exists t_posts;

DROP TABLE

forumdb=# create temp table t_posts as select * from posts;
SELECT 5

[138]

Advanced Statements Chapter 5

4. As we have done before, let's create a new table named inserted_post with the
same data structure as the posts table:

forumdb=# create table inserted_posts as select * from posts limit
0;
SELECT 0

5. Suppose now that we want to perform a SQL query that moves, in the same
transaction, all the records that are present in the t_posts table to the
inserted_posts table. This query will be as follows:

forumdb=# with ins_posts as (insert into inserted_posts select *
from t_posts returning pk) delete from t_posts where pk in (select
pk from ins_posts);

DELETE 5

As we can see from the results, the query has achieved our goal:

forumdb=# select pk,title,category from t_posts ;
pk | title | category

forumdb=# select pk,title,category from inserted_posts ;

pk | title | category
e b
4 | Re:my orange | 11

5 | my tomato | 12

2 | my orange | 11

6 | my new orange | 11

3 | my new apple | 10

(5 rows)

Query recursion

In PostgreSQL, it is possible to create recursive queries. Recursive queries are used in graph
databases and in many common use cases, such as querying tables that represent website
menus. Recursive CTEs make it possible to have recursive queries in PostgreSQL.

[139]

Advanced Statements Chapter 5

Recursive CTEs

A recursive CTE is a special construct that allows an auxiliary statement to reference itself
and, therefore, join itself onto previously computed results. This is particularly useful
when we need to join a table an unknown number of times, typically to "explode" a flat

tree structure. The traditional solution would involve some kind of iteration, probably by
means of a cursor that iterates one tuple at a time over the whole resultset. However, with
recursive CTEs, we can use a much cleaner and simpler approach. A recursive CTE is made
by an auxiliary statement that is built on top of the following:

¢ A non-recursive statement, which works as a bootstrap statement and is executed
when the auxiliary term is first evaluated.

¢ A recursive statement, which can either reference the bootstrap statement
or itself

These two parts are joined together by means of a UNION predicate. For example, let's see
inside the tags table:

1 fruits
2 | vegetables
3 | apple

(3 rows)

Now we would like to "explode" the flat tree structure and follow the relation between
parent and child using the parent field of the tags table. So, we want the result to be
something like this:

level tag

1 fruits

1 vegetable

2 fruits -> apple

To reach this goal, we have to perform the following:

forumdb# WITH RECURSIVE tags_tree AS (
—— non recursive statment

SELECT tag, pk, 1 AS level

FROM tags WHERE parent IS NULL

UNION
—— recursive statement
SELECT tt.tag|| ' —=> ' || ct.tag, ct.pk

, tt.level + 1
FROM tags ct

[140]

Advanced Statements Chapter 5

JOIN tags_tree tt ON tt.pk = ct.parent

)
SELECT level,tag FROM tags_tree

order by level;

level | tag
,,,,,,, e
1 | fruits
1 | vegetables
2 | fruits -> apple
(3 rows)

When we use CTEs, it is important to avoid infinite loops. These can
happen if the recursion does not end properly.

Thus, we have learned how to use CTEs to tinker with tables.

Summary

Hopefully, this chapter was full of interesting ideas for the developer and the DBA. In this
chapter, we talked about complex queries; we then saw the SELECT statement and the use
of the LIKE, ILIKE, DISTINCT, OFFSET, LIMIT, IN, and NOT IN clauses. We then started
talking about aggregates through the GROUP BY and HAVING clauses, and we introduced
some aggregate functions, such as SUM (), COUNT (), AVG (), MIN (), and MAX ().

We then talked in depth about subqueries and joins. Another very interesting set of topics
covered in this chapter were the UNION, EXCEPT, and INTERSECT queries. Finally, by
looking at the advanced options for the INSERT, DELETE, and UPDATE instructions, and by
covering CTEs, we gave you an idea of the power of the SQL language owned by
PostgreSQL.

As for the concept of aggregates, in the next chapter, we will see a new way to make
aggregates using windows functions. Through the use of windows functions, we will see
that we are able to create all the aggregates and aggregation functions described in this
chapter, but we will also see that we have the option to create new ones.

[141]

Advanced Statements Chapter 5

References

e PostgreSQL 12 - Subquery expressions official documentation: https://www.
postgresgl.org/docs/12/functions—-subquery.html

e PostgreSQL 12 - Joins official documentation: https://www.postgresqgl.org/
docs/12/tutorial-join.html

e PostgreSQL 12 - CTEs official documentation: https://www.postgresql.org/
docs/12/queries—-with.html

[142]

https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html

Window Functions

In the previous chapter, we talked about aggregates. In this chapter, we are going to further
discuss another way to make aggregates: window functions. The official documentation

(https://www.postgresql.org/docs/12/tutorial-window.html) describes window
functions as follows:

A window function performs a calculation across a set of table rows that are somehow
related to the current row. This is comparable to the type of calculation that can be done
with an aggregate function. However, window functions do not cause rows to become
grouped into a single output row as non-window aggregate calls would. Instead, the rows
retain their separate identities. Behind the scenes, the window function is able to access
more than just the current row of the query result.

In this chapter, we will talk about window functions, what they are, and how we can use
them to improve the performance of our queries.

The following topics will be covered in this chapter:

¢ Using basic statement window functions
¢ Using advanced statement window functions

https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html

Window Functions

Chapter 6

Using basic statement window functions

As we saw in the previous chapter, aggregation functions behave in the following way:

T

—>

/

The data is first sorted and then aggregated; the data is then flattened through aggregation.
This is what happens when we execute the following statement:

forumdb=# select category,count (*) from posts group by category order by

category;

Alternatively, we can decide to use window functions by executing the following

statement:

forumdb=# select category, count(*) over (partition by category) from posts

order by category;
count

category
10
11
11
11
12

(5 rows)

|
+
|
|
|
|
|

[144]

Window Functions

Chapter 6

Window functions create aggregates without flattening the data into a single row.

However, they replicate it for all the rows to which the grouping functions refer. The
behavior of PostgreSQL is depicted in the following diagram:

)

I

{

J

\

J

\

\

This is the reason that the distinct keyword has to be added to the preceding query if we
want to obtain the same result that we get with a classic GROUP BY query.

Using the PARTITION BY function and WINDOW

clause

Let's now run some basic queries using the window functions. Suppose that we want to use
two over clauses. For example, if, on one column, we want to count the rows relating to the
category, and on another column the total count of the columns, then we have to run the

following statement:

forumdb=# select category, count(*) over (partition by category), count (*)
over () from posts order by category;
category | count | count

[145]

Window Functions Chapter 6

Or if we want to remove all duplicate rows, we will have to run the following:

forumdb=# select distinct category, count(*) over (partition by
category) ,count (*) over ()

from posts

order by category;

category | count | count
,,,,,,,,,, B
10 | 1 | 5
11 | 3 | 5
12 | 1 | 5
)

In the preceding query, the first window function aggregates the data using the category
field, while the second one aggregates the data of the whole table.

Using the window functions, it is possible to aggregate the data in different fields in the
same query.

As we've seen here, we can define the window frame directly on the query level, but we
can also define an alias for the window frame. For example, the preceding query becomes
the following:

forumdb=# select distinct category, count(*) over wl ,count (*) over W2
from posts

WINDOW wl as (partition by category),W2 as ()

order by category;

category | count | count
__________ +_______+_______
10 | 1 | 5
11 | 3 | 5
12 |1 | 5
(3 rows)

The use of aliases is called the WINDOW clause. The WINDOW clause is very useful when we
have many aggregates.

Introducing some useful functions

Window functions can use all the aggregation functions that we explored in the previous
chapter. In addition to these, window functions introduce new aggregation functions.

[146]

Window Functions Chapter 6

Before we examine some of those, let's introduce a unique function — generate_series.
generate_series simply generates a numerical series, for example:

forumdb=# select generate_series(1,5);
generate_series

rows)

In the following examples, we will use this function for various use cases.

The ROW_NUMBER function

Now let's look at the ROW_NUMBER () function. The ROW_NUMBER () function assigns a
progressive number for each row within the partition:

forumdb=4# select category, count(*) over w from posts WINDOW w as
(partition by category) order by category;
category count | row_number

10
11
11
11
12
(5 rows)

In the preceding query, we've used the PARTITION BY clause to divide the window into
subsets based on the values in the category column. As can be seen, we have three
category values: 10, 11, and 12. This means that we have three windows and inside each
window, the ROW_NUMBER () function assigns numbers as we defined before.

The ORDER BY clause

The ORDER BY clause sorts the values inside the window. We can also use the NULLS
FIRST or NULLS LAST option to have the null values at the beginning or at the end of the
sorting. For example, we can perform a window function query without an ORDER

BY clause, as we can see in the following snippet, but we have to pay attention to what kind
of function we are using, and what our goal is.

[147]

Window Functions

Chapter 6

If we use aggregation functions that do not depend on the sort order, such as the
COUNT function, we can avoid sorting the data, otherwise, it is good practice to sort the data
inside the partition in order to avoid the risk of having different results every time the

query is launched:

forumdb=# select category,row_number () over w,title
from posts WINDOW w as (partition by category) order by category;

category | row_number | title

__________ +____________+_______________
10 | 1 | my new apple
11 | 1 | Re:my orange
11 1 2 | my orange
11 | 3 | my new orange
12 | 1 | my tomato

(5 rows)

Or, we can use the order by clause and order data inside the partition:

forumdb=# select category,row_number () over w,title
from posts WINDOW w as (partition by category order by title) order by

category;

category | row_number | title

__________ o
10 | 1 | my new apple
11 |1 1 | my new orange
11 | 2 | my orange
11 | 3 | Re:my orange
12 | 1 | my tomato

(5 rows)

As we can see in the second example, inside the partition, the data is sorted on the title

field.

FIRST_VALUE

The FIRST_VALUE function returns the first value within the partition, for example:

forumdb=# select category,row_number () over w,title,first_value(title) over

w
from posts WINDOW w as (partition by category order by category) order by
category;
category | row_number | title | first_value
—————————— B R
10 | 1 | my new apple | my new apple
11 | 1 | Re:my orange | Re:my orange
11 1 2 | my orange | Re:my orange

[148]

Window Functions Chapter 6

11 | 3 | my new orange | Re:my orange
1 | my tomato | my tomato

LAST_VALUE

The LAST_VALUE function returns the last value within the partition, for example:

forumdb=# select category,row_number () over w,title,last_value(title) over

w
from posts WINDOW w as (partition by category order by category) order by
category;
category | row_number | title | last_value
—————————— -
10 | 1 | my new apple | my new apple
11 | 1 | Re:my orange | my new orange
11 | 2 | my orange | my new orange
11 | 3 | my new orange | my new orange
12 | 1 | my tomato | my tomato
(5 rows)

It is important to always use the order by clause when we use the first_value () or
last_value () functions to avoid incorrect results, as mentioned previously.

RANK

The RANK function ranks the current row within its partition with gaps. If we don't specify
a PARTITION BY clause, the function doesn't know how to correlate the current tuple, so
the function correlates to itself, as seen here:

forumdb=# select pk,title,author, category,rank() over () from posts order
by category;

pk | title author | category | rank
e o fom o
3 | my new apple |1 | 10 |1
4 | Re:my orange | 2 | 11 |1
2 | my orange |1 | 11 |1
6 | my new orange | 1 | 11 |1
5 my tomato | 2 | 12 |1

(5 rows)

[149]

Window Functions Chapter 6

If we add the order by clause, the function ranks in the assigned order, for example, the
author with id 1 starts from record 1, and the author with id 2 starts from record 4, as we
can see in the following example:

forumdb=# select pk,title,author,category,rank() over (order by author)
from posts ;

pk | title | author | category | rank
—_———t B ——— o -
2 | my orange |1 | 11 |1
6 | my new orange | 1 | 11 |1
3 | my new apple |1 | 10 |1
4 | Re:my orange | 2 | 11 | 4
5 | my tomato | 2 | 12 | 4
(5 rows)

If we add the PARTITION BY clause, the working mechanism is the same, the only
difference is that the ranking is calculated within the partition and not on the whole table as
in the previous example:

forumdb=# select pk,title,author, category, rank() over (partition by author
order by category) from posts order by author;

pk | title | author | category | rank
e R e Fo——————— fomm Fo—————
3 | my new apple | 1 | 10 |1
2 | my orange |1 | 11 | 2
6 | my new orange | 1 | 11 | 2
4 | Re:my orange | 2 | 11 |1
5 | my tomato | 2 | 12 | 2

(5 rows)

DENSE_RANK

The DENSE_RANK function is similar to the RANK function. The difference is that the
DENSE_RANK function ranks the current row within its partition without gaps:

forumdb=# select pk,title,author, category,dense_rank() over (order by
author) from posts order by category;

pk | title | author | category | dense_rank
—_———t B o o
3 | my new apple |1 | 10 |1
2 | my orange |1 | 11 |1
6 | my new orange | 1 | 11 |1
4 | Re:my orange | 2 | 11 | 2
5 | my tomato | 2 | 12 | 2

[150]

Window Functions Chapter 6

The LAG and LEAD functions

In this section, we will show how the LAG and LEAD functions work. First of all, we are

going to set up our environment and we are going to generate a sequence of numbers as we
did previously:

forumdb=# select x from (select generate_series(1l,5) as x) V ;
x

1
2
3
4
5
5

(

rows)

This is our starting point for this example. The official documentation (https://www.
postgresqgl.org/docs/12/functions-window.html) defines the LAG function as follows:

The LAG function returns a value evaluated at the row that is offset rows before the
current row within the partition; if there is no such row, it instead returns the default
(which must be of the same type as the value). Both the offset and the default are evaluated
with respect to the current row. If omitted, of fset defaults to 1 and default to null.

Now, let's write the following statement:

forumdb=# select x,lag(x) over w from (select generate_series(1l,5) as x) V
WINDOW w as (order by x) ;

x | lag
e
1]

2 11
31 2

4 | 3
51 4

(5 rows)

As we can see, the 1ag function returns a result set with an offset value equal to 1. If we
introduce an of fset parameter, the 1ag function will return a result set with an offset
equal to the number that we have passed as input, as can be seen in the next example:

forumdb=# select x,lag(x,2) over w from (select generate_series(1l,5) as x)
V WINDOW w as (order by x) ;
x | lag

[151]

https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html

Window Functions Chapter 6

The lead function is the opposite of the 1ag function, as described in the official
documentation:

The LEAD function returns the value evaluated at the row that is offset rows after the
current row within the partition; if there is no such row, it instead returns the default
(which must be of the same type as the mentioned value). Both the offset and default are
evaluated with respect to the current row. If omitted, the offset defaults to 1 and the
default becomes null.

Here are a couple of examples where we can see how it works. In the first example, we will
use the lead function without any parameters:

forumdb=# select x,lead(x) over w from (select generate_series(1l,5) as x) V
WINDOW w as (order by x) ;

x | lead
[
11 2

2 1 3

3| 4

4 | 5

5 |

(5 rows)

As we can see in the 1ead function, the offset starts from the bottom.

Let's now see an example of using the 1ead function with an offset parameter:

forumdb=# select x,lead(x,2) over w from (select generate_series(1l,5) as x)
V WINDOW w as (order by x) ;

x | lead
e
113

2 | 4
315

4 |

5 |

(5 rows)

[152]

Window Functions Chapter 6

The CUME_DIST function

The cUME_DIST function calculates the cumulative distribution of value within a partition.
The function is described in the official documentation as follows:

The CUME_DIST function computes the fraction of partition rows that are less than or
equal to the current row and its peers.

Let's look at an example:

forumdb=# select x,cume_dist() over w from (select generate_series(1l,5) as
X) V WINDOW w as (order by x) ;

X | cume_dist
T
1 1] 0.2

2 1 0.4

31 0.6

4 | 0.8

511

(5 rows)

As the function is mathematically defined, the cume_dist function can never have a value
greater than the current value of the field.

The NTILE function

The PostgreSQL NTILE function groups the rows sorted in the partition. Starting from 1,
up to the parameter value passed to the NTILE function, each group is assigned a number
of buckets. The parameter passed to the NTILE function determines how many records we
want the bucket to be composed of.

Now, let's see an example of how it works by trying to split our result set into two buckets:

forumdb=# select x,ntile(2) over w from (select generate_series(1l,6) as x)
V WINDOW w as (order by x) ;
x | ntile

[153]

Window Functions Chapter 6

If we wanted to divide our result set into three buckets, we would run the following
statement:

forumdb=# select x,ntile(3) over w from (select generate_series(1l,6) as x)
V WINDOW w as (order by x) ;
x | ntile

The NTILE () function accepts an integer and tries to divide the window into a number of
balanced buckets, specifying to which bucket each row belongs.

In this section, we have introduced some features that allow you to do some basic data
mining. For example, 1ag and lead could be used to compare different lines of a table, and
therefore compare the salaries of different employees, or compare collections from different
days.

In the next section, we will go into even more detail and explore some more advanced
features of window functions.

Using advanced statement window
functions

In this section, we will discuss advanced window functions in more detail, and we will
explore some techniques that may be useful for carrying out more detailed data analysis.

[154]

Window Functions Chapter 6

Let's start with another way to write the same aggregate that we have described before:

forumdb=# select distinct category, count(*) over wl
from posts
WINDOW wl as (partition by category RANGE BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW)
order by category;
category | count

What does RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW mean? They are
the default conditions, known as the frame clause. This means that the data is partitioned,
first by category, and then within the partition, the count is calculated by resetting the
count every time the frame is changed.

The frame clause

In this section, we'll talk about the frame clause, which allows us to manage partitions in a
different way. The frame clause has two forms:

e Rows between start_point and end_point
e Range between start_point and end_point

It only makes sense to use the frame clause if the order by clause is also present. We will
use the ROWS BETWEEN clause when we are going to consider a specific set of records
relative to the current row. We will use the RANGE BETWEEN clause when we are going to
consider a range of values in a specific column relative to the value in the current row.

ROWS BETWEEN start_point and end_point

Now we will look at some simple examples to try to better explain the frame_set clauses.
These are typically used to do in-depth data analysis and data mining, among other tasks.
Let's start with some examples, beginning here:

forumdb=# select x from (select generate_series(1l,5) as x) V WINDOW w as
(order by x) ;

[155]

Window Functions Chapter 6

2
3
4
5
(5

rows)

Suppose that we want to have an incremental sum row by row, the goal that we want to
reach is as follows:

sum(x)
1
3
6
10
15

Q= ||| X

This can be achieved using the following query:

forumdb=# SELECT x, SUM(x) OVER w

FROM (select generate_series(1,5) as x) V

WINDOW w AS (ORDER BY x ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) ;
x | sum

Now, let's imagine that the query was executed in successive steps, one for each row of the
table. In the following diagrams, we will simulate the internal behavior of PostgreSQL, to
better understand how the clause ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT
ROW works:

1. First, PostgreSQL uses the order_by_clause condition to order the data inside
the window, as seen in the following diagram:

[156]

Window Functions Chapter 6

STEP 1

X sum(x)

_ UNBOUNDED PRECEDING
1 1

<:| CURRENT ROW
2
3
4
5

|

ORDER BY

As we can see in the diagram, we have two pointers: the green one for the
UNBOUNDED PRECEDING clause and the orange pointer for the CURRENT
ROW clause. The result is 1, so in the first step both point to the first row. Now,
let's see what happens in the next steps.

2. In the second step, the UNBOUNDED PRECEDING pointer still points to the
tirst row, whereas the CURRENT ROW pointer now points to the second row,
and the result of the sum is 1+2 = 3:

STEP 2
X sum(x)

4mmm UNBOUNDED PRECEDING

2 3 (e CURRENT ROW
3

1

ORDER BY

[157]

Window Functions Chapter 6

3. The third step is very similar to step 2: the UNBOUNDED PRECEDING pointer
still points to the first row, whereas the CURRENT ROW pointer now points to
the third row, and the result of the sum is 1+2+3 = 6:

STEP 3
X sum(x)
) . — UNBOUNDED PRECEDING
2 3
3 o {mmm CURRENT ROW
A
5

|

ORDER BY

4. The fourth step is almost identical to step 3: the UNBOUNDED PRECEDING
pointer still points to the first row, whereas the CURRENT ROW pointer now
points to the fourth row, and the result of the sum is 1+2+3+4 = 10:

< sum(x) STEP 4
1 1 4mmm UNBOUNDED PRECEDING
2 3

6

4 10 == CURRENT ROW

|

ORDER BY

[158]

Window Functions

Chapter 6

5. And in the fifth and final step, we have the desired result:

1

ORDER BY

4mmm UNBOUNDED PRECEDING

STEP 5
X sum(x)
1 1
2 3
3 6
A 10
5 15 <:| CURRENT ROW

That is how a frameset clause works!

Let's look at some more examples of how the frame clause works using different options.

If for each row of the table we want to find the sum of the current row with the preceding

row, we would start from the following:

G| |[W]IN =

We want to end up with the following result:

X sum(x)
1 1
2 3
3 5
4 7
5 9

[159]

Window Functions Chapter 6

The query that we have to perform is described in the following example:

forumdb=# SELECT x, SUM(x) OVER w

FROM (select generate_series(1l,5) as x) V

WINDOW w AS (ORDER BY x RANGE BETWEEN 1 PRECEDING AND CURRENT ROW) ;
x | sum

The preceding query works similarly to what we saw before. The only difference is that
now the calculation range is between the first row and the current row of the partition, as
written in the statement BETWEEN 1 PRECEDING AND CURRENT ROW. In this example, only
two lines are used to calculate the sum. The same mechanism can be used to perform an
incremental sum, as we can see in the preceding example:

forumdb=# SELECT x, SUM(x) OVER w

FROM (select generate_series(1,5) as x) V

WINDOW w AS (ORDER by x ROWS UNBOUNDED PRECEDING) ;
x | sum

Now the only difference is that the calculation range is by ROWS UNBOUNDED PRECEDING
and not BETWEEN 1 PRECEDING AND CURRENT ROW.

Let's look at another example where window functions simplify our work. Always starting
from the series that we've seen before, we know that the total sum is 1+2+3+4+5 = 15, so now

suppose that we want to make a reverse sum starting from the max value of the table, that
is, 5.

[160]

Window Functions Chapter 6

In this example, we want the result to be as follows:

X sum(x)
1 15

2 14

3 12

4 9

5 5

The query that makes this possible is the following;:

forumdb=# SELECT x, SUM(x) OVER w

FROM (select generate_series(1l,5) as x) V

WINDOW w AS (ORDER BY X ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) ;
x | sum

What makes this possible is the UNBOUNDED FOLLOWING clause, which works the
opposite way to UNBOUNDED PRECEDING. This happens because of the following:

o In the first row, all values are added: 1+2+3+4+5 =15.
e In the second row, these values are added: 2+3+4+5 = 14.
e In the third row, these values are added: 3+4+5 =12.

RANGE BETWEEN start_point and end_point

As discussed earlier, when we use RANGE BETWEEN, we will consider a RANGE of values
with respect to the value in the current row. The difference when it comes to the ROWS
clause is that if the field that we use for ORDER BY does not contain unique values for each
row, then RANGE will combine all the rows it comes across with non-unique values, rather
than processing them one at a time.

[161]

Window Functions Chapter 6

In contrast, Rows will include all of the rows in the non-unique bunch but processes each of
them separately.

1. First of all, let's create a simple dataset with duplicate data:

forumdb=# select generate_series(1,10) % 5 as x order by 1;
X

0
0
1
1
2
2
3
3
4
4
1

(

0 rows)

2. Now let's do some tests to observe the differences between the ROWS and RANGE
clauses. Let's start with the ROWS clause:

forumdb=# SELECT x, row_number () OVER w, SUM(x) OVER w FROM (select
generate_series(1,10) % 5 as x) V
WINDOW w AS (ORDER BY x ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) ;

x | row_number | sum
___+ ____________ + _____
0] 1 | 0
01 2 | 0
11 3 |1
11 4 | 2

2 | 5 | 3

2 |1 6 | 4
31 7 | 5_
31 8 | 6

4 | 9 |7

4 | 10 | 8
(10 rows)

The preceding query works exactly as we've seen before, it sums the previous row
with the current row.

[162]

Window Functions Chapter 6

3. Let's now see what happens if we use the RANGE clause instead of the ROWS
clause:

forumdb=# SELECT x, row_number () OVER w, SUM(x) OVER w

FROM (select generate_series(1,10) % 5 as x) V

WINDOW w AS (ORDER BY x RANGE BETWEEN 1 PRECEDING AND CURRENT ROW) ;
X | row_number | sum

e b
011 | 0
01 2 | 0
11 3 | 2
11 4 | 2
215 | 6
21 6 | 6
31 7 | 10
31 8 | 10
4 | 9 | 14
4 | 10 | 14
(10 rows)

Let's take this result:

X row_number sum
0 1 0
0 2 0
1 3 2
1 4 2
2 5 6
2 6 6
3 7 10
3 8 10
4 9 14
4 10 14

Now let's look at the result from the frame point of view:

X row_number sum Frame Number
0 1 0 1
0 2 0 1
1 3 2 2
1 4 2 2
2 5 6 3
2 6 6 3

[163]

Window Functions Chapter 6
3 10 4
3 8 10 4
4 9 14 5
5 10 14 5

As we can see, there are four frames in the table before, so internally PostgreSQL works in
this way: first, PostgreSQL splits the window function into frames using the order by

clause and then aggregates the data among the frames; for example:

e The sum of row number 3 is the result of the sum of row number 1 + row number

2 + row number 3 + row number 4: 0+0+1+1=2.

e The sum of row number 4 is the result of the sum of row number 1 + row number

2 + row number 3 + row number 4: 0+0+1+1=2.

e The sum of row number 5 is the result of the sum of row number 3 + row number

4 + row number 5 + row number 6:1+1+2+2=6.

e The sum of row number 6 is the result of the sum of row number 3 + row number

4+ row number 5 + row number 6:1+1+2+2=6.

In the preceding example, we have considered a partition ordered in an ascending way. In

the next example, the partition is sorted in a descending way and we will see the
difference between ROWS and RANGE in this scenario.

This is the query for the RANGE clause

forumdb=# SELECT x,row_number () OVER w,

FROM (select generate_series(1,10) % 5 as x) V

dense_rank () OVER w,sum(x) OVER w

WINDOW w AS (ORDER BY x desc RANGE BETWEEN 1 PRECEDING AND CURRENT ROW) ;
sum

X | row_number | dense_rank
T B,
4 | 1 | 1

4 | 2 |1

31 3 | 2

3| 4 | 2

2 | 5 | 3

2 1 6 | 3

11 7 | 4

11| 8 | 4

01 9 | 5

0 | 10 | 5

(10 rows)

[164]

Window Functions Chapter 6

And this is the query for the ROWS clause. As we can see, things work exactly as in the
previous example without the ORDER BY DESC option:

forumdb=# SELECT x,row_number () OVER w, dense_rank() OVER w,sum(x) OVER w
FROM (select generate_series(1,10) % 5 as x) V
WINDOW w AS (ORDER BY x desc ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) ;

X | row_number | dense_rank | sum
—_— o +————
4 | 1 | 1 | 4

4 | 2 | 1 | 8
31 3 | 2 |7
3| 4 | 2 | 6
215 | 3 | 5
2 1 6 | 3 | 4
11 7 | 4 | 3
11 8 | 4 I 2
01 9 | 5 |1

0 | 10 | 5 [0
(10 rows)

In this example, using the sum function, we can better understand the difference between
the RANGE and ROWS options. As we can see, the RANGE option aggregates data by frame
(RANGE) while the ROWS option aggregates data by rows. The main difference between the
ROWS clause and the RANGE clause is that ROWS operates on individual rows, while RANGE
operates on groups. That concludes our chapter on window functions.

Summary

In this chapter, we explored how to use window functions. We have seen that by using
window functions we can create more complex aggregates compared to those made with
the GROUP BY statement, which we saw in chapter 5, Advanced Statements. We learned
how to use the ROW_NUMBER (), FIRST_VALUE (), LAST_VALUE (), RANK

DENSE_RANK (), LAG (), LEAD (), CUME_DIST (),and NTILE () functions. We have also
seen the difference between creating aggregates with the ROWS BETWEEN and RANGE
BETWEEN clauses. You can use what you have learned in this chapter in data mining
operations to make your work much easier.

[165]

Window Functions Chapter 6

For more information on window functions, you can consult the official documentation:
https://www.postgresqgl.org/docs/12/functions-window.html.

In the next chapter, we will talk about server-side programming, we will look at how to
create functions to be used on the server side and, if necessary, where to use window
functions.

References

e PostgreSQL 12 - window functions official documentation: https://www.
postgresgl.org/docs/12/functions-window.html

[166]

https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html

Server-Side Programming

In previous chapters, we learned how to execute SQL queries. We started by writing simple
queries, then moved on to writing more complex queries; we learned how to use aggregates
in the traditional way, and in chapter 5, Advanced Statements, we talked about window
functions, which are another way to write aggregates. In this chapter, we will add server-
side programming to this list of skills. Server-side programming can be useful in many
cases as it moves the programming logic from the client side to the database side. For
example, we could use it to take a function that has been written many times at different
points of the application program and move it inside the server so that it is written only
once, meaning that in case of modification, we only have to modify one function. In this
chapter, we will also look at how PostgreSQL can manage different server-side
programming languages, and we will see that server-side programming can be very useful
if you need to process a large amount of data that has been extracted from tables. We will
address the fact that all the functions we will write can be called in any SQL statement. We
will also see that in some cases, for certain types of functions, it is also possible to create
indices on the functions.

Another feature of server-side programming is the chance to define customized data. In this
chapter, we will look at some examples of this.

In simple terms, this chapter will discuss the following:

e Exploring data types
¢ Exploring functions and languages

Server-Side Programming Chapter 7

Exploring data types

As users, we have already had the opportunity to experience the power and versatility of
server-side functions — for example, in Chapter 5, Advanced Statements, we used a query

similar to the following;:

forumdb=# select * from categories where upper(title) like 'A%’;

pk | title | description
e e
10 | apple | fruits
14 | apricot | fruits
(2 rows)

In this piece of code, the upper function is a server-side function; this function turns all the
characters of a string into uppercase. In this chapter, we will acquire the knowledge to be
able to write functions such as the upper functions that we called in the preceding query.

In this section, we'll talk about data types. We will briefly mention the standard types
managed by PostgreSQL and how to create new ones.

The concept of extensibility

What is extensibility? Extensibility is PostgreSQL's ability to extend its functionality and its
data types. Extensibility is an extremely useful PostgreSQL feature because it enables us to
have data types, functions, and functional indexes that are not present in the base

system. In this chapter, we will cover the extension at the data type level, as well as the
addition of new functions.

Standard data types

In previous chapters, even if not explicitly obvious, we have already used standard data
types. This happened when we learned how to use Data Definition Language (DDL)
commands. However, we will now be looking more deeply into this topic. The following is
a short list of the most used data types:

e Boolean type
e Numeric types

Character types
Date/time
NoSQL data types : hstore, xml, json, and jsonb

[168]

Server-Side Programming Chapter 7

For each data type, we will show an example operation followed by a brief explanation. For
further information on the standard data types supported by PostgreSQL, please refer to
the official documentation at https://www.postgresql.org/docs/12/extend-type-
system.html.

Boolean data type

First, we will introduce the Boolean data type. PostgreSQL supports Boolean data types.
The Boolean type (identified by BOOLEAN or BOOL), like all data types supported by
PostgreSQL, can assume the NULL value. Therefore, a Boolean data type can take the NULL,
FALSE, and TRUE values. The data type input function for the Boolean type accepts the
following representations for the TRUE state:

State

true

yes

on

1

For the false state, we have the following:

State

false

no

off

0

Let's look at some examples, starting with the users table:
1. Let's first display the contents of the users table:

forumdb=# select * from users;

pk | username | gecos | email
_—— o o
1 | myusername | mygecos | myemail

2 | scotty | scotty_gecos | scotty_email
(2 rows)

2. Now let's add a Boolean data type to the users table:

forumdb=# alter table users add user_on_line boolean;
ALTER TABLE

[169]

https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html

Server-Side Programming Chapter 7

3. Let's update some values:

forumdb=# update users set user_on_line = true where pk=1;
UPDATE 1

4. Now, if we want to search for all the records that have the user_on_1ine field
set to t rue, we have to perform the following;:

forumdb=# select * from users where user_on_line = true;

pk | username | gecos | email | user_on_line
———t——— o o Fo——————
1 | myusername | mygecos | myemail | t

(1 row)

5. If we want the search for all the records who have the user_on_1ine field set to
NULL, as we saw in Chapter 4, Basic Statements, we have to perform the

following;:
forumdb=# select * from users where user_on_line is NULL;
pk | username | gecos | email | user_on_line
————te e ——— o o o
2 | scotty scotty_gecos | scotty_email
(1 row)

Thus, we have explored the Boolean data type.

Numeric data type

PostgreSQL supports several types of numeric data types; the most used ones are as
follows:

e integer or int4 (4-byte integer number).

® bigint or int8 (8-byte integer number).

e real (4-byte variable-precision, inexact with 6 decimal digit precision).

® double precision (8-byte variable precision, inexact with 15 decimal digits
precision).

e numeric (precision, scale), where the precision of a numeric is the total count of
significant digits in the whole number, and the scale of a numeric is the count of
decimal digits in the fractional part. For example, 5.827 has a precision of 4 and a
scale of 3.

Now, we will look at some brief examples of each type in the upcoming sections.

[170]

Server-Side Programming Chapter 7

Integer types

As we can see here, if we cast a number to an integer type such as integer or bigint,
PostgreSQL will make a t runc value of the input number:

forumdb=# select 1.123456789::integer as my_field;
my_field

forumdb=# select 1.123456789::int4 as my_field;
my_field

forumdb=# select 1.123456789::bigint as my_field;
my_field

forumdb=# select 1.123456789::int8 as my_field;
my_field

Numbers with a fixed precision data type

In the following example, we'll see the same query that we have seen previously, but this
time, we'll make a cast to real and to double precision:

forumdb=# select 1.123456789::real as my_field;
my_field

1.1234568
forumdb=# select 1.123456789::double precision as my_field;
my_field

1.123456789

As can be seen here, in the first query, the result was cut to the sixth digit; this happened
because the real type has 6 decimal digit precision.

Numbers with an arbitrary precision data type

In this last section about numeric data types, we'll make the same query that we saw earlier,
but we'll make a cast to arbitrary precision:

forumdb=# select 1.123456789::numeric(10,1) as my_field;
my_field

[171]

Server-Side Programming Chapter 7

1.1

forumdb=# select 1.123456789::numeric(10,5) as my_field;
my_field

1.12346

forumdb=# select 1.123456789: :numeric(10,9) as my_field;
my_field

1.123456789

As we can see from the examples shown here, we decide how many digits the scale should
be.

But what about if we perform something like the following?

forumdb=# select 1.123456789: :numeric(10,11) as my_field;
ERROR: NUMERIC scale 11 must be between 0 and precision 10
ROW 1: select 1.123456789::numeric(10,11) as my_field;

The result is an error. This is because the data type was defined as a numeric type with a
precision value equal to 10, so we can't have a scale parameter equal to or greater than the
precision value.

Similarly, the next example will also produce an error:

forumdb=# select 1.123456789: :numeric(10,10) as my_field;

ERROR: numeric field overflow

DETAILS: A field with precision 10, scale 10 must round to an absolute
value less than 1.

In the preceding example, the query generates an error because the scale was 10, meaning
we should have 10 digits, but we have 11 digits in total:

Digits 2 3 4 5 6 7 8 9 10 11

==

2 3 4 5 6 7 8 9

However, if in our number we don't have the first digit, the query will work:

forumdb=# select 0.123456789::numeric(10,10) as my_field;
my_field

0.1234567890

Thus, we have learned all about the various numeric data types.

[172]

Server-Side Programming Chapter 7

Character data type

The most used character data types in PostgreSQL are the following:

e character (n)/char (n) (fixed-length, blank-padded)
e character varying(n)/varchar (n) (variable-length with a limit)
e text (variable unlimited length)

Now, we will look at some examples to see how PostgreSQL manages these kinds of data
types.

Chars with fixed-length data types

We will check out how they work using the following example:

1. Let's start by creating a new test table:

create table new_tags (

pk integer not null primary key,
tag char (10)

)i

In the previous code, we created a new table named new_tags with a char (10)
field name tag.

2. Now, let's add some records and see how PostgreSQL behaves:

forumdb=# insert into new_tags values (1, 'first tag');
INSERT 0 1

forumdb=# insert into new_tags values (2, 'tag');
INSERT 0 1

In order to continue with our analysis, we must introduce two new functions:

e length (p):This counts the number of characters, where p is an input
parameter and a string.

e octet_length (p): This counts the number of bytes, where p is an input
parameter and a string.

[173]

Server-Side Programming Chapter 7

3. Let's execute the following query:

forumdb=# select
pk,tag, length (tag),octet_length(tag),h char_length(tag);

pk | tag | length | octet_length | char_length
—_—— B o o
1 | first tag | 9 | 10 | 9

2 | tag |3 | 10 | 3

(2 rows)

As we can see, the overall length of the space occupied internally by the field is always 10;
this is true even if the number of characters entered is different. This happens because we
have defined the field as char (10), with a fixed length of 10, so even if we insert a string
with a shorter length, the difference between 10 and the number of real characters of the
string will be filled with blank characters.

Chars with variable length with a limit data types

In this section, we are going to repeat the same example that we used in the previous
section, but this time we'll use the varchar (10) data type for the tag field:

1. Let's recreate the new_tags table:

forumdb=# drop table if exists new_tags;
DROP TABLE

forumdb=# create table new_tags (
pk integer not null primary key,
tag varchar (10)

)i

CREATE TABLE

2. Then, let's insert some data:

forumdb=# insert into new_tags values (1, 'first tag');
INSERT 0 1

forumdb=# insert into new_tags values (2, 'tag');
INSERT 0 1

[174]

Server-Side Programming Chapter 7

3. Now, if we repeat the same query as before, we obtain the following:

forumdb=# select pk,tag,length(tag),octet_length(tag) from new_tags

pk | tag | length | octet_length
—_— = o
1 | first tag | 9 | 9
2 | tag | 3 | 3
(2 rows)

As we can see, this time, the real internal size and the number of characters in the
string are the same.

4. Now, let's try to insert a string longer than 10 characters and see what happens:

forumdb=# insert into new_tags values (3, 'this sentence has more
than 10 characters');
ERROR: value too long for type character varying(10)

PostgreSQL answers correctly with an error because the input string exceeds the dimension
of the field.

Chars with a variable length without a limit data types

In this section, we will again use the same example as before, but this time we'll use a text
data type for the tag field.

Let's recreate the new_tags table and let's re-insert the same data that we inserted
previously:

forumdb# drop table if exists new_tags;

DROP TABLE

forumdb# create table new_tags (

pk integer not null primary key,

tag text

)

CREATE TABLE

forumdb# insert into new_tags wvalues (1, 'first tag'), (2, 'tag'), (3, 'this
sentence has more than 10 characters');

INSERT 0 3

This time, PostgreSQL correctly inserts all three records. This is because the text data type
is a char data type with unlimited length, as we can see in the following query:

forumdb# select pk, substring(tag from 0 for
20) ,length(tag),octet_length(tag) from new_tags ;
pk | substring length | octet_length

[175]

Server-Side Programming Chapter 7

e o e ———
1 | first tag | 9 |9

2 | tag | 3 | 3

3 | this sentence has m | 41 | 41

(3 rows)

In the preceding example, we can see that the text data type behaves exactly like the
varchar (n) data type we saw earlier. The only difference between text and varchar (n)
is that the text type has no size limit. It is important to note that on the preceding query,
we used the substring function. The substring function takes a piece of the string
starting from the from parameter for n characters; for example, if we write substring (tag
from 0 for 20),it means that we want the first 20 characters of the tag string as output.

With this, we have covered all the char data types.

Date/timestamp data types

In this section, we will talk about how to store dates and times in PostgreSQL. PostgreSQL
supports both dates and times and the combination of date and time (timestamp).
PostgreSQL manages hours both with time zone settings and without time zone settings, as
described in the official documentation (https://www.postgresqgl.org/docs/12/datatype-
datetime.html):

PostgreSQL supports the full set of SQL date and time types. Dates are counted according
to the Gregorian calendar.

Date data types

Managing dates often becomes a puzzle for the developer. This happens because dates are
represented differently depending on the country for which we have to store the data — for
example, the American way is month/day/year, whereas the Italian format is
day/month/year. PostgreSQL helps us by providing the necessary tools to best solve this
problem, as seen here:

1. The first thing we have to do is to see how PostgreSQL internally stores dates. To
do this, we have to perform the following query:

forumdb=# \x
forumdb=# select * from pg _settings where name ='DateStyle';

—[RECORD 1 J———fm oo
name | DateStyle
setting | ISO, MDY

[176]

https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html

Server-Side Programming Chapter 7

unit |

category | Client Connection Defaults / Locale and
Formatting

short_desc | Sets the display format for date and time values.
extra_desc | Also controls interpretation of ambiguous date
inputs.

context | user

vartype | string

source | configuration file

min_val |

max_val |

enumvals |

boot_val | ISO, MDY

reset_val | ISO, MDY

sourcefile | /etc/postgresqgl/12/main/postgresql.conf
sourceline | 649

pending_restart | £

First of all, let's take a look at the pg_settings view. Using the pg_settings
view, we can view the parameters set in the postgresqgl.conf configuration file.
In the preceding result, we can see that the configuration for displaying the date
is MDY (month/day/year). If we want to change this parameter globally, we have to
edit the postgresql.conf file.

2. On a Debian or Debian-based distribution, we can edit the file as follows:
root@pgdev:/# vim /etc/postgresgl/l2/main/postgresgl.conf

3. Then, we have to modify the following section:
#Locale and Formatting
datestyle = 'iso, mdy'

4. After changing this parameter, in the query on pg_settings, the context
parameter is 'user'; we just need to do a reload of the server. In this case, a
restart is not necessary:

root@pgdev:/# /etc/init.d/postgresql reload
[ok] Reloading postgresqgl configuration (via systemctl):
postgresqgl.service.

For further information about the pg_settings view, we suggest visiting
https://www.postgresqgl.org/docs/12/view-pg-settings.html.

[177]

https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html

Server-Side Programming Chapter 7

5. We have learned what the internal parameters for date display are, so now, let's
look at how to insert, update, and display dates. If we know the value of the
date-style parameter, the PostgreSQL way of converting a string into a date is as
follows:

forumdb=# select '12-31-2020'::date;
date

2020-12-31
(1 row)

This way is simple but not particularly user-friendly. The best way to manage
dates is by using some functions that PostgreSQL provides for us.

6. The first function that we'll talk about is the to_date () function. The
to_date () function converts a given string into a date. The syntax of the
to_date () function is as follows:

forumdb=# select to_date('31/12/2020', 'dd/mm/yyyy"')
to_date

2020-12-31
(1 row)

’

The to_date () function accepts two string parameters. The first parameter
contains the value that we want to convert into a date. The second parameter is
the pattern of the date. The to_date () function returns a date value.

7. Now, let's go back to the posts table and execute this query:

forumdb=# select pk,title,created_on from posts;

pk | title | created_on
S o
4 Re:my orange | 2020-01-03 18:46:06.436248+01
5 | my tomato | 2020-01-03 18:47:39.603937+01
2 | my orange | 2020-01-03 18:44:13.266102+01
6 | my new orange | 2020-01-05 18:05:10.860354+01
3 | my new apple | 2020-01-03 18:44:32.459516+01
(5 rows)

[178]

Server-Side Programming Chapter 7

How is it possible that we have date/time combinations (timestamps) if nobody
has ever entered these values into the table? It is possible because the posts table
has been created as follows:

forumdb=# \d posts;
Table "public.posts"

Column | Type |[...]| Default
7777777777777777 ———_—_——————— e [] ————
pk | integer | | []

title | text \ \

[eeein.]

created_on | timestamp with time zone | |

CURRENT_TIMESTAMP

As we can see, the created_on field has CURRENT_TIMESTAMP as the default
value, which means that if no value has been inserted, the current timestamp of
the server will be inserted. Suppose now that we want to display the date in a
different format — for example, in the Italian format, created_on: 03-01-2020.

8. To reach this goal, we have to use another built-in function, the to_char
function:

forumdb=# select pk,title,to_char (created_on, 'dd—mm-yyyy') as
created_on
from posts;

pk | title | created_on
e e
4 | Re:my orange | 03-01-2020
5 | my tomato | 03-01-2020
2 | my orange | 03-01-2020
6 | my new orange | 05-01-2020
3 | my new apple | 03-01-2020
(5 rows)

As shown here, the to_char () function is the inverse of the to_date () function. It
converts a date into a string using a specific pattern.

Timestamp data types

PostgreSQL can manage dates and times with a time zone and without a time zone. We can
store both date and time using the timestamp data type. In PostgreSQL, there is a data type
called timestamp with time zone to display date and time with a time zone, and a data
type called timestamp without time zone to store date and time without a time zone.

[179]

Server-Side Programming Chapter 7

Let's now create some examples. First of all, let's create a new table:

forumdb=# create table new_posts as select pk,title,created_on::timestamp
with time zone as created_on_t, created_on::timestamp without time zone as
create_on_nt from posts;

SELECT 5

We have just created a new table called new_posts with the following structure:

forumdb=# \d new_posts;
Table "public.new_posts"

Column | Type | Collation | Nullable |
Default
—————————————— Bt e s s
pk integer
title text

timestamp with time zone
timestamp without time zone

created_on_t
create_on_nt

This table now has the same values for the create_on_t (timestemp with time
zone) field and for the created_on_nt (timestamp without time zone) field, as we
can see here:

forumdb=# select * from new_posts ;

pk | title | created_on_t | create_on_nt
—_———te o o
4 | Re:my orange | 2020-01-03 18:46:06.436248+01 | 2020-01-03
18:46:06.436248

5 | my tomato | 2020-01-03 18:47:39.603937+01 | 2020-01-03
18:47:39.603937

2 | my orange | 2020-01-03 18:44:13.266102+01 | 2020-01-03

18:44:13.266102
6 | my new orange | 2020-01-05 18:05:10.860354+01 | 2020-01-05
18:05:10.860354

3 | my new apple | 2020-01-03 18:44:32.459516+01 | 2020-01-03
18:44:32.459516
(5 rows)

[180]

Server-Side Programming Chapter 7

Now, let's introduce a PostgreSQL environment variable called the t imezone variable. This
variable tells us the current value of the time zone:

forumdb=# show timezone;
TimeZone

Europe/Berlin
(1 row)

In this server, the time zone is set to CET; if we want to modify this value only on this
session, we have to perform the following query:

forumdb=# set timezone='GMT';
SET

Now, the time zone is set to GMT:

forumdb=# show timezone;
TimeZone

Now, if we execute the query that we performed previously again, we will see that the field
with the time zone has changed its value:

forumdb=# select * from new_posts ;

pk | title | created_on_t | create_on_nt
—_———te e o
4 | Re:my orange | 2020-01-03 17:46:06.436248+00 | 2020-01-03
18:46:06.436248

5 | my tomato | 2020-01-03 17:47:39.603937+00 | 2020-01-03
18:47:39.603937

2 | my orange | 2020-01-03 17:44:13.266102+00 | 2020-01-03

18:44:13.266102
6 | my new orange | 2020-01-05 17:05:10.860354+00 | 2020-01-05
18:05:10.860354

3 | my new apple | 2020-01-03 17:44:32.459516+00 | 2020-01-03
18:44:32.459516
(5 rows)

This shows the difference between a timestamp with a time zone and a timestamp without
a time zone. For further information on the topic of date and time, please refer to the official
documentation at https://www.postgresgl.org/docs/12/datatype-datetime.html.

[181]

https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html

Server-Side Programming Chapter 7

The NoSQL data type

In this section, we will approach the NoSQL data types that are present in PostgreSQL. We
will take just a quick look because the NoSQL world is not specific to this book.

PostgreSQL handles the following NoSQL data types:

e hstore
e xml

® json

We will now talk about hstore and json.

The hstore data type

hstore was the first NoSQL data type that was implemented in PostgreSQL. This data type
is used for storing key-value pairs in a single value. Before working with the hstore data
type, we need to enable the hstore extension on our server:

forumdb=# create extension hstore ;
CREATE EXTENSION

Let's look at how we can use the hstore data type with an example. Suppose that we want
to show all posts with their usernames and with their categories:

forumdb=# select p.pk,p.title,u.username,c.title as category
from posts p

inner join users u on p.author=u.pk

left join categories c on p.category=c.pk

order by 1;
pk | title | username | category
—— Fom———— F—————
2 | my orange | myusername | orange
3 | my new apple | myusername | apple
4 | Re:my orange | scotty | orange
5 | my tomato | scotty | tomato
6 | my new orange | myusername | orange

[182]

Server-Side Programming Chapter 7

Suppose now that the table's posts, users, and categories are huge tables and we would like
to store all the information about usernames and categories in a single field stored inside
the posts table. If we could do this, we would no longer need to join three huge tables. In
this case, hstore can help us:

forumdb# select

P.pPk,p.title, hstore (ARRAY|['username',u.username, 'category',c.title]) as
options

from posts p

inner join users u on p.author=u.pk

left join categories c on p.category=c.pk

order by 1;

pk | title | options

____+ _______________ + __
2 | my orange | "category"=>"orange", "username"=>"myusername"
3 | my new apple | "category"=>"apple", "username"=>"myusername"
4 | Re:my orange | "category"=>"orange", "username"=>"scotty"
5 | my tomato | "category"=>"tomato", "username"=>"scotty"
6 | my new orange | "category"=>"orange", "username"=>"myusername"

(5 rows)

The preceding query first puts in an array the values of the username and category fields,
and then transforms them into hstore. Now, if we want to store the data in a new table
called posts_options, we have to perform something like the following:

forumdb# create table posts_options as

select p.pk,p.title, hstore (ARRAY['username',u.username, 'category',c.title])
as options

from posts p

inner join users u on p.author=u.pk

left join categories c on p.category=c.pk

order by 1;

SELECT 5

We now have a new table with the following structure:

forumdb=# \d posts_options
Table "public.posts_options"

Column | Type | Collation | Nullable | Default
————————— Bt e sttt
pk | integer | | |
title | text | | |
options | hstore | | |

[183]

Server-Side Programming Chapter 7

Next, suppose that we want to search for all the records that have category = 'orange'.
We would have to execute the following;:

forumdb=# select * from posts_options where options—->'category' = 'orange';
pk | title | options
2 | my orange "category"=>"orange", "username"=>"myusername"

4 | Re:my orange "category"=>"orange", "username"=>"scotty"
6 | my new orange "category"=>"orange", "username"=>"myusername"
(3 rows)

Since hstore, as well as the json/jsonb data types, is not a structured data type, we can
insert any other key value without defining it first — for example, we can do this:

insert into posts_options (pk,title,options) values (7, 'my last
post', '""enabled"=>"false"")

The result of the selection on the whole table will be the following;:

forumdb=# select * from posts_options;

pk | title | options
____+ _______________ + __
2 | my orange | "category"=>"orange", "username"=>"myusername"
3 | my new apple | "category"=>"apple", "username"=>"myusername"
4 | Re:my orange | "category"=>"orange", "username"=>"scotty"
5 | my tomato | "category"=>"tomato", "username"=>"scotty"
6 | my new orange | "category"=>"orange", "username"=>"myusername"
7 | my last post | "enabled"=>"false"
(6 rows)

As we said at the beginning of this section, NoSQL is not the subject of this book, but it is
worth briefly going over it. For further information about the stored data type, please refer
to the official documentation at https://www.postgresqgl.org/docs/12/hstore.html.

The JSON data type

In this section, we'll take a brief look at the JSON data type. JSON stands for JavaScript
Object Notation. JSON is an open standard format, and it is formed of key-value pairs.
PostgreSQL supports the JSON data type natively. It provides many functions and
operators used for manipulating JSON data. PostgreSQL, in addition to the json data type,
also supports the jsonb data type. The difference between these two data types is that the
first is internally represented as text whereas the second is internally represented in a
binary and indexable manner. Let's look at how we can use the json/jsonb data types with
an example.

[184]

https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html

Server-Side Programming

Chapter 7

Suppose that we want to show all the posts and tags that we have in our forumdb database.
Working in a classic relational SQL way, we should write something like the following;:

forumdb=# select p.pk,p.title,t.tag
from posts p

left join j_posts_tags jpt on p.pk=jpt.post_pk
left join tags t on jpt.tag_pk=t.pk

order by

(6 rows)
or if we

1;

title | tag
___________ +____________
orange | vegetables
orange | fruits

new apple | fruits
:my orange |

tomato |

new orange | fruits

want as result something like:

Suppose now that we want to have a result like the following;:

pk title tag

2 my orange vegetables, fruits
3 my new apple fruits

4 Re:my orange

5 my tomato

6 my new orange fruits

In a relational way, we have to aggregate data using the first two fields and perform
something like the following:

forumdb=# select p.pk,p.title,string_agg(t.tag,',') as tag
from posts p
left join j_posts_tags jpt on p.pk=jpt.post_pk
left join tags t on jpt.tag_pk=t.pk

group by
order by

rows)

1,2
1;

orange

new apple fruits

:my orange

tomato
new orange

[185]

Server-Side Programming

Chapter 7

Now, imagine that we want to generate a simple JSON structure; we would execute the
following query:

forumdb# select row_to_json(q) as json_data from (
select p.pk,p.title,string agg(t.tag,',') as tag

from posts p

left join j_posts_tags jpt on p.pk=jpt.post_pk

left join tags t on jpt.tag pk=t.pk
group by 1,2 order by 1) Q;

2,"title":
3,"title":
4,"title":
5,"title":
6,"title":

{"pk":
{"pk":
{"pk":
{"pk":
{"pk":
(5 rows

As we can see, with a simple query, it is possible to switch from a classic SQL

)

json_data

orange", "tag":"vegetables, fruits"}

new apple","tag":"fruits"}

:my orange","tag":null}

tomato","tag":null}

new orange","tag":

"fruits"}

representation to a NoSQL representation. Now, let's create a new table called post_json.
This table will have only one jsonb field, called jsondata:

forumdb=# create table post_json (jsondata jsonb);

CREATE

TABLE

forumdb=# \d post_json
Table "public.post_json"

Column

jsonda

| Type

Collation | Nullable | Default
—————————— B M et
ta | jsonb

Now, let's insert some data into the post_json table:

forumdb# insert into post_json(jsondata)
select row_to_json(qg) as json_data from (

select p.pk,p.title,string_agg(t.tag,',') as tag

from

left join j_posts_tags jpt on p.pk=jpt.post_pk

posts p

left join tags t on jpt.tag_pk=t.pk
group by 1,2 order by 1) Q;

INSERT

05

Now, the post_json table has the following records:

forumdb=# select jsonb_pretty(jsondata) from post_json;

jsonb_pretty

Server-Side Programming Chapter 7
"pk": 2, +
"tag": "vegetables, fruits",+
"title": "my orange" +

3

{ +
"pk": 3, +
"tag": "fruits", +
"title": "my new apple" +

3

{ +
"pk": 4, +
"tag": null, +
"title": "Re:my orange" +

3

{ +
"pk": 5, +
"tag": null, +
"title": "my tomato" +

3

{ +
"pk": 6, +
"tag": "fruits", +
"title": "my new orange" +

3

(5 rows)

If we wanted to search for all data that has tag = "fruits", we could use the @> jsonb

operator. This operator checks whether the left JSON value contains the right JSON

path/value entries at the top level; the following query makes this search possible:

forumdb=# select jsonb_pretty(jsondata) from post_json where jsondata @>

'{"tag":

"fruits"}';

jsonb_pretty

{ +
"pk": 3
"tag":
"title"
t

{ +

, +
"fruits", +
: "my new apple" +

"pk": 6, +

"tag":

"title":

}

(2 rows)

"fruits", +
"my new orange"+

[187]

Server-Side Programming Chapter 7

What we have just written is just a small taste of what can be done through the NoSQL data
model. JSON is widely used when working with large tables and when a data structure is
needed that minimizes the number of joins to be done during the research phase. A
detailed discussion of the NoSQL world is beyond the scope of this book, but we wanted to
describe briefly how powerful PostgreSQL is in the approach to unstructured data as well.
For more information, please look at the official documentation at https://www.
postgresqgl.org/docs/12/functions—json.html.

After understanding what data types are and which data types can be used in PostgreSQL,
in the next section, we will see how to use data types within functions.

Exploring functions and languages

PostgreSQL is capable of executing server-side code. There are many ways to provide
PostgreSQL with the code to be executed. For example, the user can create functions in
different programming languages. The main languages supported by PostgreSQL are as
follows:

e SQL
e PL/pgSQL
e C

These listed languages are the built-in languages; there are also other languages that
PostgreSQL can manage, but before using them, we need to install them on our system.
Some of these other supported languages are as follows:

e PL/Python
e PL/Perl

e PL/tcl

e PL/Java

In this section, we'll talk about SQL and PL/pgSQL functions.

The command structure with which a function is defined is as follows:
CREATE FUNCTION function_name (pl type, p2 type,p3 type, , pn type)
RETURNS type AS
BEGIN

[188]

https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html

Server-Side Programming Chapter 7

—— function logic
END;
LANGUAGE language_name

The following steps always apply for any type of function we want to create:

Specify the name of the function after the CREATE FUNCTION keywords.
Make a list of parameters separated by commas.

Specify the return data type after the RETURNS keyword.

For the PL/Pgsql language, put some code between the BEGIN and END block.

SN

For the PL/Pgsql language, the function has to end

with the END keyword followed by a semicolon.

6. Define the language in which the function was written — for example, sql or
plpgsql, plperl, plpython, and so on.

This is the basic scheme to which we will refer later in the chapter; this scheme may have
small variations in some specific cases.

SQL functions

SQL functions are the easiest way to write functions in PostgreSQL, and we can use any
SQL command inside them.

Basic functions

This section will show how to take your first steps into the SQL functions world. For
example, the following function makes a sum between two numbers:

forumdb=#CREATE OR REPLACE FUNCTION my_ sum(x integer, y integer) RETURNS
integer AS $$

SELECT x + y;

$ LANGUAGE SQL;

CREATE FUNCTION

forumdb=# select my_sum(1,2);
my_sum

[189]

Server-Side Programming Chapter 7

As we can see in the preceding example, the code function is placed between $$; we can
consider $$ as labels. The function can be called using the SELECT statement without using
any FROM clauses. The arguments of a SQL function can be referenced in the function body
using either numbers (the old way) or their names (the new way). For example, we could
write the same function in this way:

CREATE OR REPLACE FUNCTION my_sum(integer, integer) RETURNS integer AS $$
SELECT $1 + $2;
$$ LANGUAGE SQL;

In the preceding function, we can see the old way to reference the parameter inside the
function. In the old way, the parameters were referenced positionally, so the value $1
corresponds to the first parameter of the function, $2 to the second, and so on. In the code
of the SQL functions, we can use all the SQL commands, including those seen in previous
chapters.

SQL functions returning a set of elements

In this section, we will look at how to make a SQL function that returns a result set of a data
type. For example, suppose that we want to write a function that takesp_title asa
parameter and delete all the records that have title=p_title, as well as returning all the
keys of the deleted records. The following function would make this possible:

forumdb=# CREATE OR REPLACE FUNCTION delete_posts(p_title text) returns
setof integer as $$

delete from posts where title=p_title returning pk;

$$

LANGUAGE SQL

CREATE FUNCTION

This is the situation before we called the delete_posts function:

forumdb=# select pk,title from posts order by pk;
pk | title

my orange
my new apple
Re:my orange
my tomato
| my new orange
rows)

[190]

Server-Side Programming Chapter 7

This is the situation after we called the delete_posts function:

forumdb=# select delete_posts('my tomato');
delete_posts

pk | title

my orange
my new apple
Re:my orange
| my new orange
rows)

In this function, we've introduced a new kind of data type — the setof data type. The
setof directive simply defines a result set of a data type. For example, the delete_posts
function is defined to return a set of integers, so its result will be an integer dataset. We can
use the setof directive with any type of data.

SQL functions returning a table

In the previous section, we saw how to write a function that returns a result set of a single
data type; however, it is possible that there will be cases where we need our function to
return a result set of multiple fields. For example, let's consider the same function as before,
but this time we want the pk, title pair to be returned as a result, so our function
becomes the following:

create or replace function delete_posts (p_title text) returns table
(ret_key integer,ret_title text) AS $$

delete from posts where title=p_title returning pk,title;

$$

language SQL;

The only difference between this and the previous function is that now the function returns
a table type; inside the table type, we have to specify the name and the type of the fields. As
we have seen before, this is the situation before calling the function:

forumdb=# select pk,title from posts order by pk;
pk | title

my orange
my new apple

[191]

Server-Side Programming Chapter 7

4 | Re:my orange
5 | my tomato

6 | my new orange
5 rows)

(

This is the correct way to call the function:

forumdb=# select * from delete_posts('my tomato');

ret_key | ret_title
_________ e
5 | my tomato

(1 row)

This is the situation after calling the function:

forumdb=# select pk,title from posts order by pk;
pk | title

2 | my orange

3 | my new apple
4 | Re:my orange
6 | my new orange
4

The functions that return a table can be treated as real tables, in the sense that we can use
them with the ofin, exists, join, and so on options.

Polymorphic SQL functions

In this section, we will briefly talk about polymorphic SQL functions.

Polymorphic functions are useful for DBAs when we need to write a function that has to
work with different types of data. To better understand polymorphic functions, let's start
with an example. Suppose we want to recreate something that looks like the Oracle NVL
function — in other words, we want to create a function that accepts two parameters and
replaces the first parameter with the second one if the first parameter is null. The problem
is that we want to write a single function that is valid for all types of data (integer, real, text,
and so on).

The following function makes this possible:

create or replace function nvl (anyelement,anyelement) returns anyelement
as $%

select coalesce($1,52);

$S

language SQL;

[192]

Server-Side Programming Chapter 7

This is how to call it:

forumdb=# select nvl (NULL::int,1);
nvl

forumdb=# select nvl(''::text, 'n'::text);
nvl

(1 row)

forumdb=# select nvl('a'::text, 'n'::text);
nvl

For further information, see the official documentation at https://www.postgresql.org/
docs/12/extend-type-system.html.

PL/pgSQL functions

In this section, we'll talk about the PL/pgsql language. The PL/pgSQL language is the
default built-in procedural language for PostgreSQL. As described in the official
documentation, the design goals with PL/pgSQL were to create a loadable procedural
language that can do the following:

e Can be used to create functions and trigger procedures (we'll talk about triggers
in the next chapter).

¢ Add new control structures.
¢ Add new data types to the SQL language.

It is very similar to Oracle PL/SQL and it supports the following:

Variable declarations
e Expressions

Control structures as conditional structures or loop structures
e Cursors

[193]

https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html

Server-Side Programming Chapter 7

First overview
As we saw at the beginning of the SQL functions section, the prototype for writing functions
in PostgreSQL is as follows:

CREATE FUNCTION function_name (pl type, p2 type,p3 type, , pn type
RETURNS type AS
BEGIN
—-— function logic
END;
LANGUAGE language_name

Now, suppose that we want to recreate the my_sum function using the PL/pgsql language:

forumdb# CREATE OR REPLACE FUNCTION my_ sum(x integer, y integer) RETURNS

integer AS

$BODYS

DECLARE

ret integer;

BEGIN
ret := x + y;
return ret;

END;

$BODYS

language 'plpgsql';

forumdb=# select my_sum(2, 3);
my_sum

The preceding query provides the same results as the query seen at the beginning of the
chapter. Now, let's examine it in more detail:

1. The following is the function header; here, you define the name of the function,
the input parameters, and the return value:

CREATE OR REPLACE FUNCTION my_sum(x integer, y integer) RETURNS
integer AS

2. The following is a label indicating the beginning of the code. We can put any
string inside the $$ characters, the important thing is that the same label is

present at the end of the function:

$BODY$

[194]

Server-Side Programming Chapter 7

3. In the following section, we can define our variables; it is important that each
declaration or statement ends with a semicolon:

DECLARE
ret integer;

4. With the BEGIN statement, we tell PostgreSQL that we want to start to write our
logic:

BEGIN
ret = x + y;
return ret;

Caveat: do not write a semicolon after BEGIN — it's not correct and it will

generate a syntax error.

5. Between the BEGIN statement and the END statement, we can put our own code:
END;

6. The END instruction indicates that our code has ended:
$BODYS$

7. This label closes the first label and at last, the language statement specifies
PostgreSQL, in which language the function is written:

language 'plpgsqgl';

Declaring function parameters

After learning about how to write a simple PL/pgsql function, let's go into a little more
detail about the single aspects seen in the preceding section. Let's start with the declaration
of the parameters. In the next two examples, we'll see how to define, in two different ways,

the my_sum function that we have seen before.

The first example is as follows:

CREATE OR REPLACE FUNCTION my_sum(integer, integer) RETURNS integer AS
$BODY$
DECLARE

x alias for $1;

y alias for $2;

ret integer;

[195]

Server-Side Programming Chapter 7

BEGIN
ret = x + y;
return ret;
END;
SBODYS

language 'plpgsqgl';
The second example is as follows:

CREATE OR REPLACE FUNCTION my_sum(integer, integer) RETURNS integer AS
$BODY$
DECLARE
ret integer;
BEGIN
ret := $1 + $2;
return ret;
END;
$BODY$
language 'plpgsqgl';

In example 1, we used alias; the syntax of alias is, in general, the following:

newname ALIAS FOR oldname;

In our specific case, we used the positional variable $1 as the o1dname value. In the second
example, we used the positional approach exactly as we did in the case of SQL functions.

IN/OUT parameters

In the preceding example, we used the RETURNS clause in the first row of the function
definition; however, there is another way to reach the same goal. In PL/pgSQL, we can
define all parameters as input parameters, output parameters, or input/output parameters.
For example, say we write the following:

CREATE OR REPLACE FUNCTION my_sum_3_params (IN x integer,IN y integer, OUT z
integer) AS
$SBODYS
BEGIN
z 1= Xty;
END;
$SBODYS
language 'plpgsqgl';

[196]

Server-Side Programming Chapter 7

We have defined a new function called my_sum_3_params, which accepts two input
parameters (x and y) and has an output of parameter z. As there are two input parameters,
the function will be called with only two parameters, exactly as in the last function:

forumdb=# select my_sum_3_params (2, 3);
my_sum_3_params

With this kind of parameter definition, we can have functions that have multiple variables
as a result. For example, if we want a function that, given two integer values, computes
their sum and their product, we can write something like this:

CREATE OR REPLACE FUNCTION my_sum_mul (IN x integer,IN y integer,OUT w
integer, OUT z integer) AS
SBODYS
BEGIN

z 1= xXty;

w o= x*y;
END;

SBODYS

language 'plpgsqgl';

The strange thing is that if we invoke the function as we did before, we will have the
following result:

forumdb=# select my_sum_mul (2, 3);
my_sum_mul

(6,5)
(1 row)

This result seems to be a little bit strange because the result is not a scalar value but is a
record, which is a custom type. To cause the output to be separated as columns, we have to
use the following syntax:

forumdb=# select * from my_ sum mul (2, 3);

w | z
e
6 | 5
(1 row)

[197]

Server-Side Programming Chapter 7

We can use the result of the function exactly as if it were a result of a table and write, for
example, the following:

forumdb=# select * from my_sum mul (2,3) where w=6;

w | z
e
6 | 5
(1 row)

We can define the parameters as follows:

e IN: Input parameters (if omitted, this is the default option)
e OUT: Output parameters
e INOUT: Input/output parameters

Function volatility categories

In PostgreSQL, each function can be defined as VOLATILE, STABLE, or IMMUTABLE. If we do
not specify anything, the default value is VOLATILE. The difference between these three
possible definitions is well described in the official documentation (https://www.
postgresql.org/docs/l2/xfuncfvolatility.htmly

A VOLATILE function can do anything, including modifying the database. It can return
different results on successive calls with the same arguments. The optimizer makes no
assumptions about the behavior of such functions. A query using a volatile function will
reevaluate the function at every row where its value is needed. If a function is marked as
VOLATILE, it can return different results if we call it multiple times using the same
input parameters.

A STABLE function cannot modify the database and is guaranteed to return the same
results given the same arguments for all rows within a single statement. This category
allows the optimizer to optimize multiple calls of the function to a single call. In
particular, it is safe to use an expression containing such a function in an index scan
condition. If a function is marked as STABLE the function will return the same result
given the same parameters within the same transaction.

An IMMUTABLE function cannot modify the database and is guaranteed to return the
same results given the same arguments forever. This category allows the optimizer to pre-
evaluate the function when a query calls it with constant arguments.

[198]

https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html

Server-Side Programming Chapter 7

In the following pages of this chapter, we will only be focusing on examples of volatile
functions; however, here we will briefly look at one example of a stable function and one
example of an immutable function:

1. Let's start with a stable function — for example, the now () function is a stable
function. The now () function returns the current date and time that we have at
the beginning of the transaction, as we can see here:

forumdb=# begin ;
BEGIN

forumdb=# select now();
now

2020-02-19 16:33:35.322562+01
(1 row)

forumdb=# select now();
now

2020-02-19 16:33:35.322562+01
(1 row)

forumdb=# commit;
COMMIT

forumdb=# begin ;

BEGIN

forumdb=# select now();
now

2020-02-19 16:33:51.394306+01
(1 row)

forumdb=# commit ;

COMMIT

2. Now, let's look at an immutable function — for example, the
lower (string_expression) function. The lower function accepts a string and
converts it into a lowercase format. As we can see, if the input parameters are the
same, the lower function always returns the same result, even if it is performed
in different transactions:

forumdb=# begin;
BEGIN

forumdb=# select now();

[199]

Server-Side Programming Chapter 7

2020-02-19 16:43:40.109944+01
(1 row)

forumdb=# select lower ('MICKY MOUSE');
lower

micky mouse
(1 row)

forumdb=# commit ;
COMMIT

forumdb=# begin;
BEGIN

forumdb=# select now();
now

2020-02-19 16:43:52.797172+01
(1 row)

forumdb=# select lower ('MICKY MOUSE');
lower

micky mouse
(1 row)

forumdb=# commit;
COMMIT

Control structure
PL/pgSQL has the ability to manage control structures such as the following:

¢ Conditional statements
¢ Loop statements
¢ Exception handler statements

Conditional statements

The PL/pgSQL language can manage IF-type conditional statements and CASE-type
conditional statements.

[200]

Server-Side Programming Chapter 7

IF statements
In PL/pgSQL, the syntax of an IF statement is as follows:

IF boolean-expression THEN
statements

[ELSIF boolean-expression THEN
statements

[ELSIF boolean-expression THEN
statements

1

1

[ELSE
statements]

END IF;

For example, say we want to write a function that, when given the two input values x and
y, returns the following;:

e 'first parameter is higher than second parameter if x > y'
® 'second paramater is higher than first parameter if x < y'

e 'the 2 parameters are equals if x = y'

We have to write the following function:

CREATE OR REPLACE FUNCTION my_check (x integer default 0, y integer default
0) RETURNS text AS
$BODY$
BEGIN
IF x > y THEN
return 'first parameter is higher than second parameter';
ELSIF x < y THEN
return 'second paramater is higher than first parameter';
ELSE
return 'the 2 parameters are equals';
END IF;
END;
$BODY$
language 'plpgsqgl';

In this example, we have seen the IF construct in its largest form: IF [...]
THEN[...] ELSIF [...] ELSE[...] ENDIF;.

[201]

Server-Side Programming Chapter 7

However, its shorter form also exists, as follows:

e IF [...] THEN[...] ELSE[...] ENDIF;
e IF [...] THEN[...] ENDIF;

Some examples of the results provided by the previously defined function are as follows:

forumdb=# select my_check (1, 2);
my_check

second paramater is higher than first parameter
(1 row)

forumdb=# select my_check(2,1);
my_check

first parameter is higher than second parameter
(1 row)

forumdb=# select my_check(1l,1);
my_check

the 2 parameters are equals
(1 row)

CASE statements

In PL/pgSQL, it is also possible to use the CASE statement. The CASE statement can have the
following two syntaxes.

The following is a simple CASE statement:

CASE search-expression
WHEN expression [, expression [...]] THEN
statements
[WHEN expression [, expression [...]] THEN
statements
|
[ELSE
statements]
END CASE;

[202]

Server-Side Programming Chapter 7

The following is a searched CASE statement:

CASE

WHEN boolean-expression THEN
statements

[WHEN boolean-expression THEN
statements

el]

[ELSE

statements]
END CASE;

Now, we will perform the following operations:

e We will use the first one, the simple CASE syntax, if we have to make a choice
from a list of values.

e We will use the second one when we have to choose from a range of values.

Let's start with the first syntax:

CREATE OR REPLACE FUNCTION my_check_value (x integer default 0) RETURNS text

AS

$SBODYS

BEGIN

CASE x

WHEN 1 THEN return 'value = 1';
WHEN 2 THEN return 'value = 2';
ELSE return 'value >= 3 ';

END CASE;
END;

$SBODYS
language 'plpgsqgl';

The preceding my_check_value function returns the following:

e value = 1lifx=1
e value =21ifx=2

e value >= 3ifx>=3

We can see this to be true here:

forumdb=# select my_check_value(l);
my_check_value

[203]

Server-Side Programming Chapter 7

forumdb=# select my_check_value(2);
my_check_value

value = 2

(1 row)

forumdb=# select my_check_value (3);
my_check_value

value >= 3

(1 row)

Now, let's see an example of the searched CASE syntax:

CREATE OR REPLACE FUNCTION my_check_case(x integer default 0, y integer
default 0) RETURNS text AS
$BODYS
BEGIN
CASE
WHEN x > y THEN return 'first parameter is higher than second
parameter';
WHEN x < y THEN return 'second paramater is higher than first
parameter';
ELSE return 'the 2 parameters are equals';
END CASE;
END;
$BODYS
language 'plpgsgl';

The my_check_case function returns the same data as the my_ check function that we
wrote before:

forumdb=# select my_check_case(2,1);
my_check_case

first parameter is higher than second parameter
(1 row)

forumdb=# select my_check_case(1,2);
my_check_case

second paramater is higher than first parameter
(1 row)

forumdb=# select my_check_case(1,1);
my_check_case

the 2 parameters are equals

[204]

Server-Side Programming Chapter 7

(1 row)

forumdb=# select my_check_case();
my_check_case

the 2 parameters are equals
(1 row)

Loop statements

PL/pgSQL can handle loops in many ways. We will look at some examples of how to make
a loop next. For further details, we suggest referring to the official documentation
athttps://www.postgresql.org/docs/lZ/plpgsql.html.VVhatInakequJpgsql
particularly useful is the fact that it allows us to process data from queries through
procedural language. We are going to see now how this is possible.

Suppose that we want to build a PL/pgSQL function that, when given an integer as
parameters, returns a result set of a composite data type. The composite data type that we
want it to return is as follows:

ID pk field Integer data type
TITLE Title field text data type
RECORD_DATA Title field + content field hstore data type

The right way to build a composite data type is as follows:

create type my_ret_type as (
id integer,

title text,

record_data hstore

)i

The preceding statement creates a new data type, a composite data type, which is
composed of an integer data type + a text data type + an hstore data type. Now, if we
want to write a function that returns a result set of the my_ret_type data type, our first
attempt might be as follows:

CREATE OR REPLACE FUNCTION my_first_fun (p_id integer) returns setof
my_ret_type as

$$
DECLARE

rw posts%ROWTYPE; —-- declare a rowtype;

ret my_ret_type;
BEGIN

for rw in select * from posts where pk=p_id loop

[205]

https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html

Server-Side Programming Chapter 7

ret.id := rw.pk;
ret.title := rw.title;
ret.record_data := hstore(ARRAY['title',rw.title, 'Title and Content'

, format ('%$s %s',rw.title,rw.content)]);
return next ret;

end loop;
return;
END;
$S

language 'plpgsqgl';
As we can see, many things are concentrated in these few lines of PL/pgSQL code:

1. rw posts3ROWTYPE: With this statement, the rw variable is defined as a
container of a single row of the posts table.

2. for rw in select * from posts where pk=p_id loop: With this
statement, we cycle within the result of the selection, assigning the value
returned by the select command each time to the rw variable. The next three
steps assign the values to the ret variable.

3. return next ret;: This statement returns the value of the ret variable and
goes to the next record of the for cycle.

4. end loop;: This statement tells PostgreSQL that the for cycle ends here.
5. return;: This is the return instruction of the function.

An important thing to remember is that the PL/pgSQL language is inside
the PostgreSQL transaction system. This means that the functions are
executed atomically and that the function returns the results not at the
execution of the RETURN NEXT command but at the execution of the
RETURN command placed at the end of the function. This may mean that,
for very large datasets, the PL/pgsql functions can take a long time before
returning results.

The record type

In an example that we used previously, we introduced the $ROWTYPE data type. In the
PL/pgSQL language, it is possible to generalize this concept. There is a data type called
record that generalizes the concept of *ROWTYPE. For example, we can rewrite

the my_first_funin the following way:

CREATE OR REPLACE FUNCTION my_second_fun (p_id integer) returns setof
my_ret_type as

$$

DECLARE

[206]

Server-Side Programming Chapter 7

rw record; —-- declare a record variable
ret my_ret_type;
BEGIN
for rw in select * from posts where pk=p_id loop
ret.id := rw.pk;
ret.title := rw.title;
ret.record_data := hstore (ARRAY['title',rw.title
,'Title and Content', format ('%s
%$s',rw.title, rw.content)]);
return next ret;
end loop;
return;
END;
$S
language 'plpgsqgl';

The only difference between my_first_fun and my_second_fun is in this definition:
rw record; —-- declare a record variable

This time, the rw variable is defined as a record data type. This means that the rw variable
is an object that can be associated with any records of any table. The result of the two
functions, my_first_fun and my_second_fun, is the same:

forumdb=# select * from my_first_fun(3);

—[RECORD 1 J-————————— -
id | 3

title | my new apple

record_data | "title"=>"my new apple", "Title and Content"=>"my new apple

my apple is the best orange in the world"

forumdb=# select * from my_second_fun(3);

—[RECORD 1 J-————————— -
id | 3

title | my new apple

record_data | "title"=>"my new apple", "Title and Content"=>"my new apple

my apple is the best orange in the world"

[207]

Server-Side Programming Chapter 7

Exception handling statements

PL/pgSQL can also handle exceptions. The BEGIN. . . END block of a function allows the
EXCEPTION option, which works as a catch for exceptions. For example, if we write a
function to divide two numbers, we could have a problem with a division by 0:

CREATE OR REPLACE FUNCTION my_first_except (x real, y real) returns real
as
$S
DECLARE
ret real;
BEGIN
ret := x / vy;
return ret;
END;
$S
language 'plpgsqgl';

This function works well if y <> 0, as we can see here:

forumdb=# select my_first_except (4,2);
my_first_except

However, if y assumes a zero value, we have a problem:

forumdb=# select my_first_except (4,0);
ERROR: division by zero
CONTEXT: PL/pgSQL function my_first_except (real,real) line 5 at assignment

To solve this problem, we have to handle the exception. To do this, we have to rewrite our
function in the following way:

CREATE OR REPLACE FUNCTION my_second_except (x real, y real) returns real
as
SS
DECLARE
ret real;
BEGIN
ret := x / vy;
return ret;
EXCEPTION
WHEN division_by_zero THEN
RAISE INFO 'DIVISION BY ZERO';
RAISE INFO 'Error % %', SQLSTATE, SQLERRM;
RETURN 0;

[208]

Server-Side Programming Chapter 7

END;
$S
language 'plpgsqgl' ;

The SQLSTATE and SQLERRM variables contain the status and message associated with the
generated error. Now, if we execute the second function, we no longer get an error from
PostgreSQL.:

forumdb=# select my_second_except (4,0);
INFO: DIVISION BY ZERO

INFO: Error 22012 division by zero
my_second_except

(1 row)

The list of errors that PostgreSQL can manage is available at https://www.postgresql.
org/docs/12/errcodes—-appendix.html.

Summary

In this chapter, we introduced the world of server-side programming. The topic is so vast
that there are specific books dedicated just to server-side programming. We have tried to
give you a better understanding of the main concepts of server-side programming. We
talked about the main data types managed by PostgreSQL, then we saw how it is possible
to create new ones using composite data types. We also mentioned SQL functions and
polymorphic functions, and finally, provided some information about the PL/pgSQL
language.

In the next chapter, we will use these concepts to introduce event management in
PostgreSQL. We will talk about event management through the use of triggers and the
functions associated with them.

[209]

https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html

Server-Side Programming Chapter 7

References

e Postgresql 12 — data types official documentation: https://www.postgresql.
org/docs/12/datatype.html

¢ Postgresql 12 — SQL functions official documentation: https://www.postgresql.
org/docs/12/xfunc-sgl.html

e Postgresql 12 — PL/PGSQL official documentation: https://www.postgresql.
org/docs/12/plpgsgl.html

[210]

https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html

Triggers and Rules

In the previous chapter, we talked about server-side programming. In this chapter, we will
use the concepts introduced in the previous chapter to manage the programming of events
in PostgreSQL. The first thing we need to address is what an event in PostgreSQL actually
is. In PostgreSQL, possible events are given by the SELECT/INSERT/UPDATE, and DELETE
statements. There are also events related to data definition language (DDL) operations; we
will talk about those events in Chapter 17, Event Triggers.

In PostgreSQL, there are two ways to handle events:

e Rules
o Triggers

In this chapter, we will explore both of these ways and address when it is more appropriate
to use one of them rather than the other. As a starting point, we can generally say that rules
are usually simple event handlers, while triggers are more complex event handlers.
Triggers and rules are often used to update accumulators and to modify or delete records
that belong to different tables than the one in which we are modifying records. They are
very powerful tools that allow us to perform operations in tables other than the one in
which we are modifying the data. Triggers and rules will also be used in the next chapter
when we talk about partitioning. This is because, in PostgreSQL, there is still a partitioning
model based on triggers and rules.

In this chapter, we will talk about the following;:

¢ Exploring rules in PostgreSQL
e Managing triggers in PostgreSQL
e Event triggers

Triggers and Rules Chapter 8

Exploring rules in PostgreSQL

As mentioned earlier, rules are simple event handlers. At the user level, it is possible to
manage all the events that perform write operations, which are as follows:

e INSERT
e DELETE
e UPDATE

The fundamental concept behind rules is to modify the flow of an event. If we are given an
event, what we can do when certain conditions occur is as follows:

¢ Do nothing and then undo the action of that event.
e Trigger another event instead of the default one.
e Trigger another event in conjunction with the default.

So, given a write operation, for example, an INSERT operation, we can perform one of these
three actions:

o Cancel the operation.
e Perform another operation instead of the INSERT.
e Execute the INSERT and simultaneously perform another operation.

Understanding the OLD and NEW variables

Before we start working with rules and then with triggers, we need to understand the
concept of the OLD and NEW variables.

The oLD and NEW variables represent the state of the row in the table before or after the
event. OLD and NEW values are cursors that represent the whole record. To better
understand this, consider an UPDATE operation; in this case, the OLD variable contains the
value of the record already present in the table, while the NEW variable contains the value
that the record of the table will have after the UPDATE operation.

[212]

Triggers and Rules Chapter 8

For example, we can consider the tags table with the following records:

forumdb=# select * from tags;

pk | tag | parent
e Jr
1 | fruits |

2 | vegetables |

3 | apple | 1

(3 rows)

Suppose we want to modify the tag with pk=3 from "apple' to 'orange' with this
UPDATE operation:

forumdb=# update tags set tag='orange' where pk=3;
UPDATE 1

The OLD variable will have these values:

3 lapple R

The NEW variable will have these values:

|3 |0range |1

It is quite logical that for certain operations both the OLD variable and the NEw variable may
exist, but for other operations, only one of them may exist. Here, we can see this expressed
in more detail:

Operation/Variable NEW OLD
INSERT present absent
DELETE absent present
UPDATE present present

Now that everything is clearer, we can start working with rules.

[213]

Triggers and Rules Chapter 8

Rules on INSERT

Let's start by introducing the rules syntax:

CREATE [OR REPLACE] RULE name AS ON event

TO table [WHERE condition]
DO [ALSO INSTEAD] { NOTHING command | (command ; command ...) }

As we can see, the rule definition is extremely simple. There are three options that we can
have when we decide to use a rule:

1. The ALSO option
2. The INSTEAD option
3. The INSTEAD NOTHING option

The ALSO option
Suppose that, from the tags table, we want to copy all records with the field tag
value starting with the letter a in the a_tag table:

1. First of all, let's create a new table called a_tags:

create table a_tags (
pk integer not null primary key,

tag text,
parent integer);

2. Then let's create the new rule as follows:

create or replace rule r_tagsl

as on INSERT to tags

where NEW.tag ilike 'a%' DO ALSO

insert into a_tags (pk,tag,parent)values
(NEW.pk,NEW.tag, NEW.parent) ;

In the rule we have just defined, we simply told PostgreSQL that every time a
record is inserted with a tag value that starts with the letter "a," as well as being

inserted into the tags table, it must also be inserted into the a_tags table.
3. Now we perform the following query:

forumdb=# insert into tags (tag) values ('apple');
INSERT 0 1

[214]

Triggers and Rules Chapter 8

4. Then we check the records in the tags table and the a_tags records. We will
check in the parent table:

forumdb=# select * from tags;

pk | tag parent
N, b
1 | fruits \

2 | vegetables |

3 | orange | 1

11 | apple \

(4 rows)

In the child table, we will see the following:

forumdb=# select * from a_tags;
pk | tag | parent
e I

12 | apple |

(1 row)

The record is present in both tables. A question worth asking is whether the rules are
executed before the event or after the event. For example, is the newly created rule executed
before INSERT or after INSERT? The answer is that rules in PostgreSQL are always
executed before the event.

The INSTEAD OF option

Suppose now that we want to move all records with the field tag starting with the letter b
in the b_tags table:

1. First of all, let's create a new table called b_tags:

create table b_tags (

pk integer not null primary key ,
tag text,

parent integer);

2. Then let's create the new rule:

create or replace rule r_tags2

as on INSERT to tags

where NEW.tag ilike 'b%'

DO INSTEAD insert into b_tags (pk,tag,parent)values
(NEW.pk,NEW.tag, NEW.parent) ;

[215]

Triggers and Rules Chapter 8

This time, in the rule, we simply told PostgreSQL that every time a record is
inserted with a tag value that starts with the letter "b," it must be moved into the

b_tags table.

3. Now let's perform this query:

forumdb=# insert into tags (tag) values ('banana');
INSERT 0 O

Already from the answer, INSERT 0 0, we can guess that nothing has been
inserted into the a_tags table.

4. Now, we will perform this statement:

forumdb=# select * from tags;

pk | tag | parent
e b
1 | fruits |

2 | vegetables |

3 | orange |1

11 | apple |

(4 rows)

5. As we can see in the preceding snippet, the value banana does not appear in the
parent table, and in the child table, we will have the following:

forumdb=# select * from b_tags ;
pk | tag | parent
e b

13 | banana |

(1 row)

The rule that we defined made sure that the record was not inserted in the tags
table but was inserted in the b_tags table.

6. As the last example of the INSERT rule, suppose we want nothing to be inserted
every time a record is inserted with the tag field starting with the letter "c." As
we have done before, let's perform the rule:

create or replace rule r_tags3
as on INSERT to tags
where NEW.tag ilike 'c%'
DO INSTEAD NOTHING;

[216]

Triggers and Rules Chapter 8

7. This time, we've said to PostgreSQL that every time the tags table receives a
record with the field tag starting with the letter "c," this record should not be
considered. Let's try what we've said:

forumdb=# insert into tags (tag) values ('cedro');
INSERT 0 O

8. Even now, we have INSERT 0 0 as the answer from the server, and we can
check that the record has not been inserted in any table:

forumdb=# select pk,tag,parent, 'tags' as tablename
from tags

union all

select pk,tag,parent, 'a_tags' as tablename

from a_tags

union all

select pk,tag,parent, 'b_tags' as tablename

from b_tags

order by tablename, tag;

pk | tag | parent | tablename
———— o t————
12 | apple | | a_tags

13 | banana | | b_tags

11 | apple | | tags

1 | fruits | | tags

3 | orange | 1 | tags

2 | vegetables | | tags

(6 rows)

As we can see, the record does not appear in any table. In the preceding query, we used
UNION ALL.UNION ALL concatenates the results of the three queries. The important thing
is that the field types must be compatible with each other.

Rules on DELETE / UPDATE

In the previous section, we looked at how to use rules on INSERT events. In this section, we
will see how to use rules on DELETE and UPDATE events. We will now look at a complete
example of how to use the rules, starting from the concepts described above.

[217]

Triggers and Rules Chapter 8

The goal we want to reach is described in the following steps:

1. Create a table called new_tags equal to the tags table; this table will help us to
have a clean environment where we can do our tests.

2. Create two tables: a table called new_a_tags for a copy of all records with the
tags that start with the letter "a" and a table called new_b_tags for a copy of all
records with the tags that start with the letter "b."

3. Create all the INSERT/DELETE/UPDATE rules that make everything work.

Let's begin.

Creating the new_tags table
The first step is to create a new new_tags table. We will create this table based on the
existing tags table:

forumdb=# create table new_tags as select * from tags limit O;
SELECT O

forumdb=# \d new_tags
Table "public.new_tags"

Column | Type Collation Nullable | Default
———————— B
pk | integer | | |

tag | text | | |

parent | integer | \ |

The preceding statement copies the structure of the fields of the tags table into the
new_tags table but does not copy the constraints or any indices. Now we have to create the

primary key constraint on the new table:

forumdb=# alter table new_tags alter pk set not null ;
ALTER TABLE
forumdb=# alter table new_tags add constraint new_tags_pk primary key (pk);
ALTER TABLE
forumdb=# \d new_tags
Table "public.new_tags"

Column | Type | Collation | Nullable | Default
———————— B T AT
rk | integer | | not null |

tag | text \ \ |

parent | integer | | |

Indexes:

"new_tags_pk" PRIMARY KEY, btree (pk)

With this, step 1 is complete.

[218]

Triggers and Rules Chapter 8

Creating two tables

In a similar way to what we just did, let's create new_a_tags and new_b_tags tables. For
the new_a_tags table, we will have the following:

forumdb=# create table new_a_tags as select * from a_tags limit O;
SELECT 0
forumdb=# alter table new_a_tags alter pk set not null ;
ALTER TABLE
forumdb=# alter table new_a_tags add constraint new_b_tags_pk primary key
(Pk);
ALTER TABLE
forumdb=# \d new_a_tags
Table "public.new_a_tags"

Column | Type | Collation | Nullable | Default
———————— t——————
rk | integer | | not null |

tag | text | | |

parent | integer | | |

Indexes

"new_b_tags_pk" PRIMARY KEY, btree (pk)

In the same way, we will create the new_b_tags table:

forumdb=# create table new_b_tags as select * from a_tags limit O;
SELECT O
forumdb=# alter table new_b_tags alter pk set not null ;
ALTER TABLE
forumdb=# alter table new_b_tags add constraint new_a_tags_pk primary key
(Pk) ;
ALTER TABLE
forumdb=# \d new_b_tags
Table "public.new_b_tags"

Column | Type | Collation | Nullable | Default
———————— Bt s T
pk | integer | | not null |

tag | text \ \ |

parent | integer | \ |

Indexes:

"new_a_tags_pk" PRIMARY KEY, btree (pk)

Step 2 is now complete and we have everything we need to start our complete example.

[219]

Triggers and Rules Chapter 8

Managing rules on INSERT, DELETE, and UPDATE
events

The goal we want to achieve is shown in the following figure:

new tags

*pk integer

otag text

cparent integer
COPY HERE ALL COPY HERE ALL

TAGS STARTING WITH 'b' TAGS STARTING WITH 'a’'
new b tags new a tags

*pk integer +pk integer
otag text otag text
cparent integer Sparent integer

We want all tags starting with the letter "a" to be stored in the new_tags table and also
copied to the new_a_tags table, and we want the same for tags that begin with the letter

lvb "

We have to manage rules for INSERT, DELETE, and UPDATE events in the following ways:

e INSERT rules must recognize all tags starting with the letters "a" or "b" and copy
those records into their respective tables — new_a_tags and new_b_tags.

* DELETE rules must recognize all the tags starting with the letters "a" or "b" and
delete those records in the respective tables — new_a_tags and new_b_tags.

¢ Update rules must recognize all the tags that begin with the letters "a" or "b" and,
if a record changes its tag, the rule must check whether the record should be
copied or deleted in the new_a_tags and new_b_tags tables.

INSERT rules

Let's start by creating two INSERT rules:

forumdb=# create or replace rule r_new_tags_insert_a as on INSERT to
new_tags where NEW.tag ilike 'a%' DO ALSO insert into

[220]

Triggers and Rules

Chapter 8

new_a_tags (pk, tag, parent)values (NEW.pk,NEW.tag,NEW.parent);

CREATE RULE

forumdb=# create or replace rule r_new_tags_insert_b as on INSERT to

new_tags where NEW.tag ilike
new_b_tags (pk,tag, parent)values (NEW.pk,NEW.tag,NEW.parent);

CREATE RULE

'b%' DO ALSO insert into

As we can see, the new_tags table now has two new rules:

forumdb=# \d new_tags;

Table "public.new_tags"
Column | Type |

________ +_________+_________
pk | integer |

tag | text \

parent | integer |

Indexes:

"new_tags_pk" PRIMARY KEY, btree

Rules:
r_new_tags_insert_a AS
ON INSERT TO new_tags
WHERE new.tag ~~%*
VALUES (new.pk, new.tag,
r_new_tags_insert_b AS
ON INSERT TO new_tags
WHERE new.tag ~~%*

VALUES (new.pk, new.tag,

Collation

'a%'::text

' ' itext

| Nullable Default

(pk)

DO INSERT INTO new_a_tags
.parent)

DO INSERT INTO new_b_tags
.parent)

To check whether the rules work, let's insert some data:

forumdb=# insert into new_tags values (1, 'fruits',é NULL);

INSERT 0 1

forumdb=# insert into new_tags values (2, 'apple',61l);

INSERT 0 1

forumdb=# insert into new_tags values (3, 'orange',61l);

INSERT 0 1

forumdb=# insert into new_tags values (4, 'banana’',l);

INSERT 0 1

Then let's check the parent table:

forumdb=# select * from new_tags ;

pk | tag | parent
____+ ________ + ________
1 | fruits |

2 | apple | 1

3 | orange | 1

(pk,

(pk,

tag,

tag,

parent)

parent)

[221]

Triggers and Rules

Chapter 8

4 | banana | 1
(4 rows)

Now let's see what is in the table_a child table:

forumdb=# select * from new_a_tags ;

pk | tag | parent
____+ _______ + ________
2 | apple | 1

(1 row)

And what's in the table_b child table:

forumdb=# select * from new_b_tags ;

pk | tag | parent
e b
4 | banana | 1

(1 row)

We can see that the two rules work.

DELETE rules

Now let's create the DELETE rules. We need rules that, if a record is deleted from the
new_tags table and it begins with the letter "a" or with the letter "b," its copy in the
new_a_tags and new_b_tags table must also be deleted. For all the records that start with

the letter "a," we need this rule:

create or replace rule r_new_tags_delete_a as on delete
OLD.tag ilike 'a%' DO ALSO delete from new_a_tags where

Similarly, we need this rule for records beginning with the letter "b":

create or replace rule r_new_tags_delete_b as on delete
OLD.tag ilike 'b%' DO ALSO delete from new_b_tags where

The current situation of the new_tags table is as follows:

forumdb=# \d new_tags
Table "public.new_tags"

Column | Type | Collation | Nullable | Default
77777777 to————————
rk | integer | | not null |

tag | text | | |

parent | integer | | |

Indexes:

"new_tags_pk" PRIMARY KEY, btree (pk)

to new_tags where
pk=0LD.pk;

to new_tags where
pk=0LD.pk;

[222]

Triggers and Rules Chapter 8

Rules:

r_new_tags_delete_a AS

ON DELETE TO new_tags

WHERE old.tag ~~* 'a%'::text DO DELETE FROM new_a_tags

WHERE new_a_tags.pk = old.pk

r_new_tags_delete_b AS

ON DELETE TO new_tags

WHERE old.tag ~~* 'b%'::text DO DELETE FROM new_Db_tags

WHERE new_b_tags.pk = old.pk

r_new_tags_insert_a AS

ON INSERT TO new_tags

WHERE new.tag ~~* 'a%'::text DO INSERT INTO new_a_tags (pk, tag, parent)
VALUES (new.pk, new.tag, new.parent)

r_new_tags_insert_b AS

ON INSERT TO new_tags

WHERE new.tag ~~* 'b%'::text DO INSERT INTO new_b_tags (pk, tag, parent)
VALUES (new.pk, new.tag, new.parent)

Let's test whether the two new rules work:

forumdb=# delete from new_tags where tag = 'apple';
DELETE 1

forumdb=# delete from new_tags where tag = 'banana';
DELETE 1

forumdb=# select * from new_tags ;

pk | tag | parent
JE I, b
1 | fruits |

3 | orange | 1

(2 rows)

forumdb=# select * from new_a_tags ;
pk | tag | parent
____+ _____ + ________

forumdb=# select * from new_b_tags ;
pk | tag | parent
____+ _____ + ________

We can see from this that the new rules work.

[223]

Triggers and Rules Chapter 8

UPDATE rules

Now we need to introduce a rule that checks whether a tag is updated with a word that
starts with "a" or "b." The best way to do this is to first create a function that conducts this
check and then create a rule based on that function. Let's start by creating the function:

create or replace function move_record (p_pk integer, p_tag text, p_parent
integer,p_old_pk integer,p_old_tag text) returns void language plpgsgl as
$S
BEGIN
if left (lower(p_tag),1) in ('a','b') THEN
delete from new_tags where pk = p_old_pk;
insert into new_tags values (p_pk,p_tag,p_parent);
end if;
END;
$S;

This function takes five parameters as input; the first three parameters are the new values
that arrive from the update and the last two parameters are the old values of the record that
are present in the record. The function checks these things:

1. If the record in the table starts with the letter "a" or "b."
2. If the old record in the table starts with the letter "a" or "b," it deletes the old
record and inserts the new record.

So, finally, the rule is as follows:

forumdb=# create or replace rule r_new_tags_update_a as on UPDATE to
new_tags DO ALSO select

move_record (NEW.pk, NEW.tag, NEW.parent ,OLD.pk,OLD. tag) ;

CREATE RULE

The rule calls the function in the case of an update. Let's see if this rule works:

forumdb=# update new_tags set tag='apple' where tag='orange';
move_record
(1 row)
UPDATE 0
forumdb=# select * from new_a_tags ;
pk | tag | parent
e b
3 | apple | 1
(1 row)

forumdb=# select * from new_tags ;
pk | tag | parent

[224]

Triggers and Rules Chapter 8

e I
1 | fruits |
3 | apple | 1
(2 rows)

Now let's see what happens if a record changes its tag from apple to banana:

forumdb=# update new_tags set tag='banana' where tag='apple';
NOTICE: 3 banana 1 3 apple
move_record

UPDATE O
forumdb=# select * from new_tags ;
pk | tag | parent

____+ ________ + ________
1 | fruits |

3 | banana | 1

(2 rows)

forumdb=# select * from new_a_tags ;
pk | tag | parent
____+ _____ + ________

forumdb=# select * from new_b_tags ;
pk | tag | parent
____+ ________ + ________
3 | banana | 1
(1 row)

The rule works! In this short exercise, we have tried to introduce an example of complete
rule management. It is a didactic example and there are many other ways to achieve the
same goal. In the next section, we will explore another way to manage events in
PostgreSQL: triggers.

[225]

Triggers and Rules Chapter 8

Managing triggers in PostgreSQL

In the previous section, we talked about rules. In this section, we will talk about triggers,
what they are, and how to use them. We need to start by understanding what triggers are;
if we have understood what rules are this should be simple. In the previous section, we
defined rules as simple event handlers, now we can define triggers as complex event
handlers. For triggers, as for rules, there are NEW and OLD records, which assume the same
meaning for triggers as they did for rules. For triggers, the manageable events are INSERT /
DELETE / UPDATE and TRUNCATE. Another difference between rules and triggers is that with
triggers it is possible to handle INSERT / UPDATE / DELETE / and TRUNCATE events before
they happen or after they have happened. With triggers, we can also use the INSTEAD OF
option, but only on views.

So we can manage the following events:

e BEFORE INSERT/UPDATE/DELETE/TRUNCATE
o AFTER INSERT/UPDATE/DELETE/TRUNCATE
o INSTEAD OF INSERT/UPDATE/DELETE

With rules, it is possible to have only the NEW record for INSERT operations, the NEW and
OLD record for UPDATE operations, and the OLD record for DELETE operations. The first two
list items can also be used on foreign tables as well as primary tables and the third list

item can only be used on views. For further information, see https://www.postgresql.
org/docs/12/sgl-createtrigger.html.

We will now take the first steps to use triggers and we will find out how to obtain the same
results as achieved when using rules. With triggers, we can do everything we can do with
rules and much more.

Before continuing, we need to keep two things in mind:

1. If triggers and rules are simultaneously present on the same event in a table, the
rules always fire before the triggers.

2. If there are multiple triggers on the same event of a table (for example, BEFORE
INSERT), they are executed in alphabetical order.

There is another category of triggers called event triggers, which will be covered in
the Event triggers section.

[226]

https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html

Triggers and Rules Chapter 8

Trigger syntax

As described in the official document, the syntax for defining a trigger is as follows:

CREATE [CONSTRAINT] TRIGGER name { BEFORE | AFTER | INSTEAD OF } { event
[OR ...] }

ON table_name

[FROM referenced_table_name]

[NOT DEFERRABLE | [DEFERRABLE] [INITIALLY IMMEDIATE | INITIALLY

DEFERRED]]
[REFERENCING { { OLD | NEW } TABLE [AS] transition_relation_name } [

11
[FOR [EACH] { ROW | STATEMENT }]

[WHEN (condition)]
EXECUTE { FUNCTION | PROCEDURE } function_name (arguments)

where event can be one of:

INSERT

UPDATE [OF column_name [, ...] 1]
DELETE

TRUNCATE

We will only look at the most used aspects of this syntax; for further information,
Seehttps://www.PostgreSQL.org/docs/lZ/sqlfcreatetrigger.html.'Thelqﬁlpoﬂﬂs
behind the execution of a trigger are as follows:

1. The event that we want to handle, for example, INSERT, DELETE, or UPDATE.
2. When we want the TRIGGER execution to start (for example, BEFORE INSERT).
3. The trigger calls a function to perform some action.

The function invoked by the trigger must be defined in a particular way, as shown in the
prototype here:

CREATE OR REPLACE FUNCTION function_name RETURNS trigger as

$$
DECLARE

BEGIN
RETURN
END;

$$
LANGUAGE 'plpgsgl'

~

[227]

https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html

Triggers and Rules Chapter 8

The functions that are called by the triggers are functions that have no input parameters
and must return a TRIGGER type; these functions have no input parameters and they take
the parameters from the NEW / OLD records. Starting with this prototype of the preceding
function, a possible TRIGGER definition on the BEFORE INSERT event can be described as
follows:

CREATE TRIGGER trigger_name BEFORE INSERT on table_name FOR EACH ROW
EXECUTE PROCEDURE function_name.

In the next section, we will try to implement what we wrote with the rules, this time
applying triggers.

Triggers on INSERT

In this section, we will see how to make our first triggers:

1. Let's go back to the rule that we wrote in the The ALSO option section:

create or replace rule r_tagsl

as on INSERT to tags

where NEW.tag ilike 'a%' DO ALSO

insert into a_tags (pk,tag,parent)values
(NEW.pk, NEW.tag, NEW.parent) ;

2. Now let's see how we can achieve the same goal using a trigger. First, let's go
back to the initial situation:

forumdb=# drop table if exists new_tags cascade;

forumdb=# create table new_tags as select * from tags limit O;
forumdb=# truncate table a_tags;

forumdb=# select * from new_tags ;

pk | tag | parent

7777+ 77777 + 77777777

forumdb=# select * from a_tags ;
pk | tag | parent

[, .

(0 rows)

3. Now we can create the function, which will then be called by the trigger:

CREATE OR REPLACE FUNCTION f_tags () RETURNS trigger as
$S
BEGIN

[228]

Triggers and Rules Chapter 8

IF lower (substring(NEW.tag from 1 for 1)) = 'a' THEN
insert into a_tags (pk,tag,parent)values
(NEW.pk,NEW.tag, NEW.parent) ;
END IF;
RETURN NEW;
END;
$$
LANGUAGE 'plpgsgl';

Let's take a deeper look at what the code means:

e The statement lower (substring (NEW.tag from 1 for 1))
takes the first character of a string and converts it into lowercase.

e The RETURN NEW statement passes the new record from the table to the
INSERT in the new_tags table.

4. Now let's define the trigger on the BEFORE INSERT event of the t_tags table:

CREATE TRIGGER t_tags BEFORE INSERT on new_tags FOR EACH ROW
EXECUTE PROCEDURE f_tags();

5. So when a value is inserted into the new_tags table, before executing the
INSERT, the trigger is executed and returns the NEW record to the default action
(INSERT on the new_tags table). Now let's check that it works:

forumdb=# insert into new_tags (pk,tag,parent) values
(1, 'fruits',NULL);
INSERT 0 1

forumdb=# insert into new_tags (pk,tag,parent) values
(2, 'apple’,1);
INSERT 0 1

forumdb=# select * from new_tags ;
pk | tag | parent

____+ ________ + ________
1 | fruits |

2 | apple | 1

(2 rows)

forumdb=# select * from a_tags ;
pk | tag | parent

B b

2 | apple | 1

(1 row)

As we can see here, it works!

[229]

Triggers and Rules Chapter 8

6. We will proceed from here, step by step, to better understand the difference
between working with rules and working with triggers. The goal we want to
achieve with triggers is to receive the same result as we can achieve with the
following rule:

create or replace rule r_tags2

as on INSERT to tags

where NEW.tag ilike 'b%'

DO INSTEAD insert into b_tags (pk,tag,parent)values
(NEW.pk,NEW.tag, NEW.parent) ;

7. For now, let's use the same procedure we used in the rules, by creating a new
function that will then be fired from the trigger:

CREATE OR REPLACE FUNCTION f2_tags () RETURNS trigger as
$$
BEGIN
IF lower (substring(NEW.tag from 1 for 1)) = 'b' THEN
insert into b_tags (pk,tag, parent)values
(NEW.pk,NEW.tag, NEW.parent) ;
RETURN NULL;
END IF;
RETURN NEW;
END;
$$
LANGUAGE 'plpgsgl';

CREATE TRIGGER t2_tags BEFORE INSERT on new_tags FOR EACH ROW
EXECUTE PROCEDURE f2_tags();

8. The lower statement, (substring (NEW.tag from 1 for 1)) = 'b',is
practically identical to what we first saw in relation to rules. The difference is the
RETURN NULL, which means that if the NEW. t ag value starts with 'b"', then
a NULL value is returned to the default action and then the INSERT on the
new_tags table will not insert any value. If, instead, the IF condition is not
satisfied, then the function returns NEW and the record is inserted into the
new_tags table.

[230]

Triggers and Rules Chapter 8

Let's see if it works:

forumdb=# insert into new_tags (pk,tag,parent) values
(1, 'fruits',NULL);

INSERT 0 1

forumdb=# insert into new_tags (pk,tag,parent) values
(2, 'apple',1);

INSERT 0 1

forumdb=# insert into new_tags (pk,tag,parent) values
(3, 'banana',1);

INSERT 0 O

forumdb=# select * from new_tags ;

pk | tag | parent

JE b
1 | fruits |

2 | apple | 1

(2 rows)

forumdb=# select * from a_tags ;
pk | tag | parent

e b

2 | apple | 1

(1 row)

forumdb=# select * from b_tags ;
pk | tag | parent
e b

3 | banana | 1

(1 row)

As we can see, it works.

9. We will now look at how to write the whole procedure using a single trigger.
First, let's go back to the initial conditions of our environment. As before, we
delete the data in the tables and, using the CASCADE option, we delete the triggers
and the functions associated with them:

forumdb=# TRUNCATE new_tags;

TRUNCATE TABLE

forumdb=# TRUNCATE a_tags;

TRUNCATE TABLE

forumdb=# TRUNCATE b_tags;

TRUNCATE TABLE

forumdb=# DROP TRIGGER t_tags ON new_tags CASCADE;
DROP TRIGGER

forumdb=4# DROP TRIGGER t2_tags ON new_tags CASCADE;
DROP TRIGGER

[231]

Triggers and Rules Chapter 8

10. In this last step, we will combine what we have written in the functions £1_tags

() and £2_tags () into a single function, £3_tags (), that will be fired from
the t3_tags trigger:

CREATE OR REPLACE FUNCTION f3_tags () RETURNS trigger as
$S
BEGIN
IF lower (substring (NEW.tag from 1 for 1)) = 'a' THEN
insert into a_tags (pk,tag,parent)values
(NEW.pk, NEW.tag, NEW.parent) ;
RETURN NEW;
ELSIF lower (substring (NEW.tag from 1 for 1)) = 'b' THEN
insert into b_tags (pk,tag,parent)values
(NEW.pk, NEW.tag, NEW.parent) ;
RETURN NULL;
ELSE
RETURN NEW;
END IF;
END;
$S
LANGUAGE 'plpgsqgl';

CREATE TRIGGER t3_tags BEFORE INSERT on new_tags FOR EACH ROW
EXECUTE PROCEDURE f3_tags();

This function contains the logic of the two functions previously seen. In this way,

we can solve the problem in a more elegant way by using a single function and a
single trigger. Let's see if it works:

forumdb=# insert into new_tags (pk,tag,parent) values
(1, 'fruits',NULL);

INSERT 0 1

forumdb=4# insert into new_tags (pk,tag,parent) values
(2, 'apple',1);

INSERT 0 1

forumdb=# insert into new_tags (pk,tag,parent) values
(3, 'banana',1);

INSERT 0 O

forumdb=+# select * from new_tags ;

pk | tag | parent

e b
1 | fruits |

2 | apple | 1

(2 rows)

forumdb=# select * from a_tags ;
pk | tag | parent
____+ _______ + ________

[232]

Triggers and Rules Chapter 8

2 | apple | 1

(1 row)

forumdb=# select * from b_tags ;
pk | tag | parent

As can be seen, the function works.

One final thing to note about the function used is that the same function can be
written in a simpler way as follows:

CREATE OR REPLACE FUNCTION f3_tags () RETURNS trigger as
$S
BEGIN
IF lower (substring(NEW.tag from 1 for 1)) = 'a' THEN
nsert into a_tags (pk,tag,parent)values
(NEW.pk,NEW.tag, NEW.parent) ;
ELSIF lower (substring (NEW.tag from 1 for 1)) = 'b' THEN
insert into b_tags (pk,tag,parent)values
(NEW.pk,NEW.tag, NEW.parent) ;
RETURN NULL;
END IF;
RETURN NEW;
END;
$S
LANGUAGE 'plpgsqgl';

This is possible because the RETURN statement returns the control to the function caller.

The TG_OP variable

As shown in the official documentation at https://www.PostgreSQL.org/docs/12/
plpgsql-trigger.html, control of the triggers in PostgreSQl is allowed using special
variables, two of which we have already seen (the NEW variable and the OLD variable). There
is another special variable called TG_0P, which tells us from which event the trigger is fired.
The possible values of the TG_OP variable are INSERT, DELETE , UPDATE, and TRUNCATE.

[233]

https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html

Triggers and Rules Chapter 8

Triggers on UPDATE / DELETE

Let's look at the example we used before when learning about rules and try to do the same
with triggers:

new tags
*pk integer
otag text
cparent integer

COPY HERE ALL COPY HERE ALL
TAGS STARTING WITH 'b' TAGS STARTING WITH 'a’
h v

new b tags

*p integer N)
pk _ Integer
otag Text k integer

. “tag text
“parent integer cparent integer

new a tags

What we want to do is make it so that all tags starting with the letter "a" have to be stored in
the new_tags table and also copied to the new_a_tags table, and we want the same for
tags that begin with the letter "b." For the management of the INSERT event, we wrote these
rules:

forumdb=# create or replace rule r new_tags_insert_a as on INSERT to
new_tags where NEW.tag ilike 'a%' DO ALSO insert into

new_a_tags (pk, tag, parent)values (NEW.pk,NEW.tag,NEW.parent);
CREATE RULE

forumdb=+# create or replace rule r_new_tags_insert_b as on INSERT to
new_tags where NEW.tag ilike 'b%' DO ALSO insert into

new_b_tags (pk,tag,parent)values (NEW.pk,NEW.tag,NEW.parent);
CREATE RULE

These and subsequent rules that we wrote for handling INSERT, UPDATE, and DELETE
events, will be managed by a single function called by the triggers that will start before the
INSERT, UPDATE, and DELETE events. First, let's return to the initial conditions in our
environment:

TRUNCATE new_tags;

TRUNCATE a_tags;

TRUNCATE b_tags;

drop trigger t3_tags ON new_tags cascade;

[234]

Triggers and Rules Chapter 8

Now, as before, we will proceed step by step. The first step is to write the section of code
that will be performed during the INSERT event. Then, we will see how to extend the
function to manage the DELETE and UPDATE events. The function that will handle all three
events will be the fcopy_ins () function; this function will be invoked by the
tcopy_tags_ins, tcopy_tags_upd, and tcopy_tags_del triggers. The function using
the TG_oP variable will be able to discriminate between the INSERT, UPDATE, and DELETE
events.

Let's start by writing the fcopy_ins () function to handle the INSERT event:

CREATE OR REPLACE FUNCTION fcopy_tags() RETURNS trigger as
$S
BEGIN
IF TG_OP = 'INSERT' THEN
IF lower (substring(NEW.tag from 1 for 1)) = 'a' THEN
insert into a_tags(pk,tag,parent)values
(NEW.pk,NEW.tag, NEW.parent) ;
ELSIF lower (substring(NEW.tag from 1 for 1)) = 'b' THEN
insert into b_tags (pk,tag,parent)values
(NEW.pk,NEW.tag, NEW.parent) ;

END IF;
RETURN NEW;

END IF;

END;

$$

LANGUAGE 'plpgsgl';

CREATE TRIGGER tcopy_tags_ins BEFORE INSERT on new_tags FOR EACH ROW
EXECUTE PROCEDURE fcopy_tags();

Now let's see if, for the INSERT event, this code works:

forumdb=# insert into new_tags (pk,tag,parent) values (1, 'fruits',K NULL);

INSERT 0 1
forumdb=# insert into new_tags (pk,tag,parent) values (2, 'apple',6l);
INSERT 0 1
forumdb=# insert into new_tags (pk,tag,parent) values (3, 'banana',l);
INSERT 0 1

forumdb=# select * from a_tags;
pk | tag | parent

forumdb=# select * from b_tags;
pk | tag | parent

[235]

Triggers and Rules Chapter 8

7777+ 77777777 + 77777777
3 | banana | 1
(1 row)

forumdb=# select * from new_tags;
pk | tag | parent

e I
1 | fruits |

2 | apple | 1

3 | banana | 1

(3 rows)

It is clear that it works!
Next, let's handle the DELETE event. The things we need to do are the following:

¢ Add some lines of code to the function for managing the DELETE operation.
e Create a new trigger on the DELETE event.

The function becomes as follows:

CREATE OR REPLACE FUNCTION fcopy_tags() RETURNS trigger as
$S
BEGIN
IF TG_OP = 'INSERT' THEN
IF lower (substring (NEW.tag from 1 for 1)) = 'a' THEN
insert into a_tags(pk,tag,parent)values
(NEW.pk,NEW.tag, NEW.parent) ;
ELSIF lower (substring(NEW.tag from 1 for 1)) = 'b' THEN
insert into b_tags (pk,tag,parent)values
(NEW.pk,NEW.tag, NEW.parent) ;

END IF;
RETURN NEW;
END IF;
IF TG_OP = 'DELETE' THEN
IF lower (substring(OLD.tag from 1 for 1)) = 'a' THEN
DELETE FROM a_tags WHERE pk = OLD.pk;
ELSIF lower (substring(OLD.tag from 1 for 1)) = 'b' THEN
DELETE FROM b_tags WHERE pk = OLD.pk;
END IF;
RETURN OLD;
END IF;
END;
$$

LANGUAGE 'plpgsgl';

[236]

Triggers and Rules Chapter 8

This piece of code was added:

IF TG_OP = 'DELETE' THEN
IF lower (substring(OLD.tag from 1 for 1)) = 'a' THEN
DELETE FROM a_tags WHERE pk = OLD.pk;
ELSIF lower (substring(OLD.tag from 1 for 1)) = 'b' THEN
DELETE FROM b_tags WHERE pk = OLD.pk;
END IF;
RETURN OLD;
END IF;

This piece of code deletes the data in the a_tags and b_tags tables if the record to be
deleted begins with the letter "a" or with the letter "b." The trigger for handling the DELETE
event is the following:

CREATE TRIGGER tcopy_tags_del
AFTER DELETE on new_tags FOR EACH ROW EXECUTE PROCEDURE fcopy_tags();

The trigger is executed AFTER DELETE; in this case it would have made no difference if we
created the TRIGGER BEFORE or AFTER INSERT functions. Let's see if this trigger on the
DELETE event works:

forumdb=# delete from new_tags where pk=2;
DELETE 1

forumdb=# delete from new_tags where pk=3;
DELETE 1

forumdb=# select * from a_tags;
pk | tag | parent
____+ _____ + ________

forumdb=# select * from b_tags;
pk | tag | parent
____+ _____ + ________

forumdb=# select * from new_tags;
pk | tag | parent
____+ ________ + ________
1 | fruits |
(1 row)

As we can see, the TRIGGER works.

[237]

Triggers and Rules Chapter 8

For the last step, we need to manage the UPDATE event. Let's write the function and the
triggers as a full version from scratch. First, let's bring our environment back to the initial
conditions:

forumdb=# DROP TRIGGER tcopy_tags_ins ON new_tags cascade;
DROP TRIGGER
forumdb=# DROP TRIGGER tcopy_tags_del ON new_tags cascade;
DROP TRIGGER

forumdb=# TRUNCATE new_tags;
TRUNCATE TABLE

forumdb=# TRUNCATE a_tags;
TRUNCATE TABLE

forumdb=# TRUNCATE b_tags;
TRUNCATE TABLE

forumdb=# insert into new_tags (pk,tag,parent) values (1, 'fruits',6 NULL);
INSERT 0 1

forumdb=# insert into new_tags (pk,tag,parent) values (2, 'apple',61l);
INSERT 0 1

forumdb=# insert into new_tags (pk,tag,parent) values (3, 'banana’',l);
INSERT 0 1

Now we can write the complete function with all the triggers for the INSERT, UPDATE, and
DELETE events:

CREATE OR REPLACE FUNCTION fcopy_tags () RETURNS trigger as
$$
BEGIN
IF TG_OP = 'INSERT' THEN
IF lower (substring(NEW.tag from 1 for 1)) = 'a' THEN
insert into a_tags (pk,tag,parent)values
(NEW.pk, NEW.tag, NEW.parent) ;

ELSIF lower (substring(NEW.tag from 1 for 1)) = 'b' THEN
insert into b_tags (pk,tag,parent)values
(NEW.pk, NEW.tag, NEW.parent) ;
END IF;
RETURN NEW;
END IF;
IF TG_OP = 'DELETE' THEN
IF lower (substring(OLD.tag from 1 for 1)) = 'a' THEN
DELETE FROM a_tags WHERE pk = OLD.pk;
ELSIF lower (substring(OLD.tag from 1 for 1)) = 'b' THEN

DELETE FROM b_tags WHERE pk = OLD.pk;

[238]

Triggers and Rules Chapter 8

END IF;
RETURN OLD;
END IF;
IF TG_OP = 'UPDATE' THEN
IF (lower (substring(OLD.tag from 1 for 1)) in('a','b')) THEN

DELETE FROM a_tags WHERE pk=O0LD.pk;

DELETE FROM b_tags WHERE pk=OLD.pk;

DELETE FROM new_tags WHERE pk = OLD.pk;

INSERT into new_tags (pk,tag,parent) values
(NEW.pk,NEW.tag, NEW.parent) ;

END IF;
RETURN NEW;

END IF;

END;

$$

LANGUAGE 'plpgsgl';

CREATE TRIGGER tcopy_tags_ins

BEFORE INSERT on new_tags FOR EACH ROW EXECUTE PROCEDURE fcopy_tags();
CREATE TRIGGER tcopy_tags_del

AFTER DELETE on new_tags FOR EACH ROW EXECUTE PROCEDURE fcopy_tags();
CREATE TRIGGER tcopy_tags_upd

AFTER UPDATE on new_tags FOR EACH ROW EXECUTE PROCEDURE fcopy_tags();

In this case, the trigger must be defined AFTER UPDATE and not BEFORE UPDATE because
in the UPDATE section, we have the instruction DELETE FROM new_tags WHERE pk =
OLD.pk; if the trigger had been defined BEFORE UPDATE, we would have had an error
because we would have attempted to delete a record reserved for UPDATE .

Let's see if the complete function works:

forumdb=# select * from new_tags;

pk | tag | parent
____+ ________ + ________
1 | fruits |

2 | apple |1

3 | banana |1

(3 rows)

forumdb=# select * from a_tags;

pk | tag | parent
____+ _______ + ________
2 | apple | 1

(1 row)

forumdb=# select * from b_tags;
pk | tag | parent

[239]

Triggers and Rules Chapter 8

forumdb=# update new_tags set tag='apricot' where pk=3;
UPDATE 1

forumdb=# select * from b_tags;

pk | tag | parent

forumdb=# select * from a_tags;

pk | tag | parent
e b
2 | apple | 1

3 | apricot | 1

(2 rows)

forumdb=# select * from new_tags;
pk | tag | parent

|

| apple | 1

| apricot | 1
rows)

As this shows, the trigger approach works. Now, in this section, we have seen how to
modify events that are DML through the use of rules and triggers. In the next section, we
will see how it is also possible to intercept and modify events related to DDL operations
using event triggers.

Event triggers

Rules and triggers act as Data Manipulation Level (DML) statements, which means they
are triggered by something that changes the data but not the data layout or the table
properties. PostgreSQL provides so-called event triggers, which are particular triggers that
fire on DDL (Data Definition Level) statements. The purpose of the event trigger is
therefore to manage and react to events that are going to change the data structure rather
than the data content. Triggers can be used in many ways to enforce specific policies across
your databases.

[240]

Triggers and Rules Chapter 8

Once fired, an event trigger receives an event and a command tag, both of which are useful
for introspection and providing information about what fired the trigger. In particular, the
command tag contains a description of the command (for example, CREATE or ALTER), while
the event contains the category that fired the trigger, in particular, the following:

¢ ddl_command_start and dd1_command_end indicate respectively the
beginning and the completion of the DDL command.

® sql_drop indicates that a DROP command is near to completion.
e table_rewrite indicates that a full table rewrite is about to begin.

As with DML triggers, there are particular commands to create, delete, and modify an
event trigger:

e CREATE EVENT TRIGGER to add a new event trigger
e DROP EVENT TRIGGER to delete an existing trigger
e ALTER EVENT TRIGGER to modify an existing trigger

Here is the synopsis for the creation of a new event trigger:

CREATE EVENT TRIGGER name
ON event
[WHEN filter_variable IN (filter_value [, ... 1) [AND ...]]
EXECUTE { FUNCTION | PROCEDURE } function_name ()

Similar to their DML counterpart triggers, event triggers are associated with a mnemonic
name and a function to execute once they are fired. However, unlike ordinary triggers,
event triggers do not specify to which table they are attached; in fact, event triggers are not
related to any particular table but rather to DDL commands.

Event triggers must be created by the database administrator and have a database scope,
meaning they live and act in the database they have been defined in.

There are a couple of special functions that can help developers to perform introspection
within an event trigger in order to understand the exact event that fired the trigger. The
most important functions are as follows:

® pg_event_trigger_commands (), which returns a tuple for every command
that was executed during the DDL statement.

® pg_event_trigger_dropped_objects (), which reports a tuple for every
dropped object within the same DDL statement.

[241]

Triggers and Rules Chapter 8

Along with the preceding utility functions, it is important to carefully read the event trigger
documentation in order to understand when a command will fire an event trigger or not.
Explaining event triggers in further detail is out of the scope of this section; instead, we will
look at a practical example in the following section. For more information about event
triggers, please refer to the official documentation or to the Packt Book PostgreSQL 11
Server-Side Programming.

An example of an event trigger

In order to better understand how event triggers work, let's build a simple example of a
trigger that prevents any ALTER TABLE like commands in a database.

The first step is to define a function that will be executed once the trigger has been fired;
such a function needs to inspect the DDL statement properties in order to understand
whether it has been invoked by means of an ALTER TABLE command. The introspection is
done using the pg_event_trigger_ddl_commands () special function, which returns a
tuple for every DDL statement executed within the same command. Such tuples contain a
field named command_tag, which reports the command group (uppercase), and
object_type, which reports the object type (lowercase) that the DDL statement has been
executed against. The function must return a trigger type, specifically an event trigger type,
therefore the function can be defined as follows:

CREATE OR REPLACE FUNCTION
f _avoid_alter_table ()
RETURNS EVENT_TRIGGER

AS

Scode$

DECLARE

event_tuple record;

BEGIN

FOR event_tuple IN SELECT *
FROM pg_event_trigger_ddl_commands () LOOP
IF event_tuple.command_tag = 'ALTER TABLE' AND
event_tuple.object_type = 'table' THEN
RAISE EXCEPTION 'Cannot execute an ALTER TABLE!';
END IF;
END LOOP;
END
Scodes
LANGUAGE plpgsql;

[242]

Triggers and Rules Chapter 8

As you can see, if the function discovers that the executed command has an 'ALTER
TABLE' tag and a 'table' object type, it raises an exception causing the whole statement
to fail.

Once the function is in place, it is possible to attach it to an event trigger:

forumdb=# CREATE EVENT TRIGGER tr_avoid_alter_table
ON ddl_command_end EXECUTE FUNCTION f_avoid_alter_table();

At this point, the trigger is active and the function will be fired for every DDL command
once the system is approaching the end of a command.

It is now possible to test the trigger and see whether a user is allowed to execute ALTER
TABLE:

forumdb=> ALTER TABLE tags ADD COLUMN thumbs_up int DEFAULT O;
ERROR: Cannot execute an ALTER TABLE!
CONTEXT: PL/pgSQL function f_avoid_alter_table() line 10 at RAISE

As we can see, an exception is raised as soon as the ALTER TABLE command is executed.

While event triggers can be used, as in the preceding example, to prevent users from
executing particular commands, a better strategy is to avoid inappropriate command
executions by means of permissions whenever possible. Event triggers are complex and are
used to provide support for things such as logical replication, auditing, and other
infrastructures.

Summary

In this chapter, we covered the topic of triggers and rules. We explored rules and triggers
using some identical examples. We established that rules are simple event handlers and
triggers are complex event handlers.

We introduced the concept of trigger variables:

e NEW
e OLD
e TG_OP

As well as data-manipulation-based triggers, we briefly introduced the PostgreSQL event
triggers that allow developers and database administrators to have more control over firing
and executing functions.

[243]

Triggers and Rules Chapter 8

We have come to understand that triggers are extremely complex event handlers. In this
chapter, we started to show the power of these tools made available to the PostgreSQL
DBA; in the next chapter, we will talk about partitioning and we will utilize the topics
covered in this chapter.

In the next chapter, we will return to talking about triggers and we will use triggers to
create a certain type of partitioning present in PostgreSQL.

References

e PostgreSQL 12 Rules on INSERT, UPDATE, and DELETE official
documentation: nttps://www.PostgreSQL.org/docs/12/rules-update.html

e PostgreSQL 12 trigger functions official documentation: https://www.
PostgreSQL.org/docs/12/plpgsgl-trigger.html

e PostgreSQL 12 ALTER TRIGGER official documentation: https://www.
PostgreSQL.org/docs/12/sgl-altertrigger.html

e PostgreSQL 12 DROP TRIGGER official documentation: https://www.
PostgreSQL.org/docs/12/sgl-droptrigger.html

e PostgreSQL 12 event trigger official documentation: https://www.postgresql.

org/docs/12/functions—-event-triggers.html

e PostgreSQL 11 Server-Side Programming — Quick Start Guide: https://www.
packtpub.com/big-data-and-business-intelligence/postgresqgl-1l-server—
side-programming-quick-start-guide

[244]

https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide

Partitioning

In the previous chapter, we talked about rules and triggers. In this chapter, we will talk
about partitioning. Partitioning is a technique that allows us to split a huge table into
smaller tables, to make queries more efficient. In this chapter, we will see how we can
partition data, and, in some cases, we will see how to use the rules and triggers seen in the
previous chapter to make partitioning possible. We will start by introducing the basic
concepts of partitioning, and then we will see what possibilities PostgreSQL offers to
implement partitioning.

This chapter will cover the following topics:

¢ Basic concepts
e Partitioning using table inheritance
e Declarative partitioning

Basic concepts

First of all, let's try to understand why we have to partition data. We should start by saying
that a common constant of all databases is that their size always grows. It is, therefore,
possible that a database, after a few months of growth, can reach a size of gigabytes,
terabytes, or petabytes.

Another thing we must always keep in mind is that not all tables grow at the same rate or
to the same level; there are tables that will be bigger than other tables and there will be
indexes too that will be bigger than other indexes.

Partitioning Chapter 9

We also need to know that there is a part of our server's RAM memory shared among all
the Postgres processes that is used to manage the data that is present in tables. This part of
the server's RAM is called shared_buffers.

The way PostgreSQL works is as follows:

1. Data is taken from disks.

2. Data is placed in shared buffers.

3. Data is processed in shared buffers.
4. Data is downloaded to disks.

Typically, in a dedicated server only for PostgreSQL, the size of shared_buffers is about
one-third or one-quarter of the total server RAM memory. A useful link to set some
PostgreSQL configuration parameters is https://pgtune.leopard.in.ua.

When a table grows excessively compared to the shared_buffers size, there is a
possibility that performance will decrease. In this case, partitioning data can help us.
Partitioning data means splitting a very large table into smaller tables in a way that is
transparent to the client program. The client program will think that the server still has only
one single table. Data partitioning can be done in two ways:

¢ Using table inheritance
¢ Using declarative partitioning

After figuring out when it is recommended to partition data, let's see what types of table
partitioning are possible. PostgreSQL 12 manages the following types of table partitioning:
¢ Range partitioning
e List partitioning
e Hash partitioning

We will now describe these three methods in detail.

Range partitioning

Range partitioning is where the table is divided into "intervals." The intervals must not
overlap and the range is defined through the use of a field or a set of fields. For further
information, see https://www.postgresql.org/docs/12/ddl-partitioning.html.

[246]

https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html

Partitioning Chapter 9

Let's look at an example of the definition of range partitioning. Suppose we have this table:

field date field_value
2020-03-01 1
2020-03-02 10
2020-04-01 12
2020-04-15 1

Now consider that we want to split this table into two tables. The first table (TABLE A) will
contain all the records with a field_date value between 2020-03-01 and 2020-03-31, and
the second table (TABLE B) will contain all the records with a field_date value between
2020-04-01 and 2020-04-30. So, our goal is to have two tables as follows:

field date field_value

2020-03-01 1

2020-03-02 10
This is TABLE B:

field date field_value

2020-04-01 12

2020-04-15 1

What we have seen is an example of partitioning by range.

List partitioning

In list partitioning, the table will be partitioned using a list of values. For further
information, see https://www.postgresql.org/docs/12/ddl-partitioning.html.

Let's look at an example of the definition of list partitioning. Suppose we have this table:

field_state field_city
United States Washington
United States San Francisco
Italy Rome

Japan Tokio

[247]

https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html

Partitioning Chapter 9

Suppose now that we want to split this table into n tables, with one table for each state. The
first table (TABLE A) will contain all the records with a field_state value equal to
United States, the second table (TABLE B) will contain all records with a field state
value equal to Italy, and the third table (TABLE C) will contain records with a
field_state value equal to Japan. So, our goal is to have three tables as follows:

TABLE A:

field_state field_city
United States Washington
United States San Francisco
TABLE B:

field_state field_city
Italy Rome
TABLE C:

field_state field_city
Japan Tokyo

This is an example of partitioning by list.

Hash partitioning

Using hash partitioning, the table will be partitioned using a hash value that will be used as
the value to split data into different tables. For further information, see https://www.
postgresqgl.org/docs/12/ddl-partitioning.html.

Let's look at an example of the definition of list partitioning. Suppose we have this table:

field date field_value
2020-03-01 1
2020-03-02 10
2020-04-01 12
2020-04-15 1

[248]

https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html

Partitioning Chapter 9

Suppose now th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>