


Learn PostgreSQL

Build and manage high-performance database solutions
using PostgreSQL 12 and 13

Luca Ferrari
Enrico Pirozzi

BIRMINGHAM - MUMBAI



Learn PostgreSQL
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amey Varangaonkar
Acquisition Editor: Siddarth Mandal
Content Development Editor: Joseph Sunil
Senior Editor: David Sugarman
Technical Editor: Sonam Pandey
Copy Editor: Safis Editing
Project Coordinator: Aishwarya Mohan
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Alishon Mendonca

First published: October 2020

Production reference: 1081020

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83898-528-8

www.packt.com

http://www.packt.com


 
   
     
     
     
     
     
     
   
     
     
         
    
      

To my beautiful wife, Emanuela; I love her like Santa loves his reindeer.
To my great son, Diego, who has changed our lives on 1283788200.

To my parents, Miriam and Anselmo; my greatest fans since day one.

– Luca Ferrari

In loving memory of my father, Ilario.  

- Enrico Pirozzi



About Packt

 

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks. 

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com


Contributors

About the authors
Luca Ferrari has been passionate about computer science since the Commodore 64 era, and
today holds a master's degree (with honors) and a Ph.D. from the University of Modena
and Reggio Emilia. He has written several research papers, technical articles, and book
chapters. In 2011, he was named an Adjunct Professor by Nipissing University. An avid
Unix user, he is a strong advocate of open source, and in his free time, he collaborates with
a few projects. He met PostgreSQL back in release 7.3; he was a founder and former
president of the Italian PostgreSQL Community (ITPUG). He also talks regularly at
technical conferences and events and delivers professional training.

Enrico Pirozzi has been passionate about computer science since he was a 13-year-old, his
first computer was a Commodore 64, and today he holds a master's degree from the
University of Bologna. He has participated as a speaker at national and international
conferences on PostgreSQL. He met PostgreSQL back in release 7.2, he was a co-founder of
the first PostgreSQL Italian mailing list and the first Italian PostgreSQL website, and he
talks regularly at technical conferences and events and delivers professional training. Right
now, he is employed as a PostgreSQL database administrator at Nexteam (Zucchetti Group
S.p.a.).



About the reviewers
Marcelo Diaz is a software engineer with more than 15 years of experience, and with a
special focus on PostgreSQL. He is passionate about open source and has promoted its
application in critical and high-demand environments where he has worked as a software
developer and consultant for both private and public companies. He currently works very
happily at Cybertec and as a technical reviewer for Packt Publishing. He enjoys spending
his leisure time with his daughter, Malvina, and his wife, Romina. He also likes playing
football.

Ilja Everilä is a software developer and consultant with over a decade of experience in
various projects. He has done both frontend and backend work, along with database
administration, in PostgreSQL. All in all, he is very much into database work and found
this book an interesting read on an important subject.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com


Table of Contents
Preface 1

Section 1: Getting Started
Chapter 1: Introduction to PostgreSQL 9

Technical requirements 10
PostgreSQL at a glance 10

A brief history of PostgreSQL 12
What's new in PostgreSQL 12? 12
What's new in PostgreSQL 13? 13
PostgreSQL release policy, version numbers, and life cycle 14

Exploring PostgreSQL terminology 15
Installing PostgreSQL 12 or higher 18

What to install 19
Installing PostgreSQL 12 from binary packages 20

Installing PostgreSQL 12 on GNU/Linux Debian, Ubuntu, and derivatives 20
Installing PostgreSQL 12 on Linux Fedora 21
Installing PostgreSQL 12 on FreeBSD 23

Installing PostgreSQL from sources 25
Installing PostgreSQL via pgenv 27

Summary 30
References 30

Chapter 2: Getting to Know Your Cluster 31
Technical requirements 31
Managing your cluster 32

pg_ctl 32
PostgreSQL processes 37

Connecting to the cluster 39
The template databases 40
The psql command-line client 41

Entering SQL statements via psql 43
A glance at the psql commands 45

Introducing the connection string 46
Solving common connection problems 46

Database "foo" does not exist 47
Connection refused 47
No pg_hba.conf entry 48

Exploring the disk layout of PGDATA 48
Objects in the PGDATA directory 50

Tablespaces 52



Table of Contents

[ ii ]

Exploring configuration files and parameters 53
Summary 55
References 55

Chapter 3: Managing Users and Connections 56
Introduction to users and groups 57
Managing roles 58

Creating new roles 58
Role passwords, connections, and availability 59

Using a role as a group 60
Removing an existing role 62
Inspecting existing roles 63

Managing incoming connections at the role level 65
The syntax of pg_hba.conf 66
Order of rules in pg_hba.conf 67
Merging multiple rules into a single one 68
Using groups instead of single roles 69
Using files instead of single roles 70

Summary 71
References 71

Section 2: Interacting with the Database
Chapter 4: Basic Statements 73

Technical requirements 73
Setting up our developing environment 74
Creating and managing databases 75

Creating a database 75
Managing databases 75

Listing all databases 76
Making a new database from a modified template 76

Dropping tables and databases 78
Dropping tables 78
Dropping databases 78

Making a database copy 79
Confirming the database size 79

The psql method 80
The SQL method 80

Creating a database 81
Managing tables 83

The EXISTS option 85
Managing temporary tables 86
Managing unlogged tables 88
Creating a table 88

Understanding basic table manipulation statements 89
Inserting and selecting  data 89



Table of Contents

[ iii ]

NULL values 93
Sorting with NULL values 95

Creating a table starting from another table 96
Updating data 97
Deleting data 98

Summary 100
References 100

Chapter 5: Advanced Statements 101
Exploring the SELECT statement 101

Using the like clause 102
Using ilike 103
Using distinct 104
Using limit and offset 106
Using subqueries 108

Using the IN/NOT IN condition 108
Using the EXISTS/NOT EXISTS condition 110

Learning joins 111
Using INNER JOIN 113

INNER JOIN versus EXISTS/IN 114
Using  LEFT JOINS 114
Using RIGHT JOIN 117
Using  FULL OUTER JOIN 118
Using SELF JOIN 120

Aggregate functions 121
UNION/UNION ALL 124
EXCEPT/INTERSECT​ 126

Using UPSERT 127
UPSERT – the PostgreSQL way 128
Learning the RETURNING clause for INSERT 130
Returning tuples out of queries 131

UPDATE related to multiple tables 131
Exploring UPDATE .... RETURNING 133
DELETE .... RETURNING 134

Exploring CTEs 134
CTE concept 135
CTE in PostgreSQL 12 136
CTE – some examples 137
Query recursion 139

Recursive CTEs 140
Summary 141
References 142

Chapter 6: Window Functions 143
Using basic statement window functions 144

Using the PARTITION BY function and WINDOW clause 145
Introducing some useful functions 146

The ROW_NUMBER function 147



Table of Contents

[ iv ]

The ORDER BY clause 147
FIRST_VALUE 148
LAST_VALUE 149
RANK 149
DENSE_RANK 150
The LAG and LEAD functions 151
The CUME_DIST function 153
The NTILE function 153

Using advanced statement window functions 154
The frame clause 155

ROWS BETWEEN start_point and end_point 155
RANGE BETWEEN start_point and end_point 161

Summary 165
References 166

Chapter 7: Server-Side Programming 167
Exploring data types 168

The concept of extensibility 168
Standard data types 168

Boolean data type 169
Numeric data type 170

Integer types 171
Numbers with a fixed precision data type 171
Numbers with an arbitrary precision data type 171

Character data type 173
Chars with fixed-length data types 173
Chars with variable length with a limit data types 174
Chars with a variable length without a limit data types 175

Date/timestamp data types 176
Date data types 176
Timestamp data types 179

The NoSQL data type 182
The hstore data type 182
The JSON data type 184

Exploring functions and languages 188
Functions 188
SQL functions 189

Basic functions 189
SQL functions returning a set of elements 190
SQL functions returning a table 191
Polymorphic SQL functions 192

PL/pgSQL functions 193
First overview 194
Declaring function parameters 195

IN/OUT parameters 196
Function volatility categories 198

Control structure 200
Conditional statements 200

IF statements 201
CASE statements 202



Table of Contents

[ v ]

Loop statements 205
The record type 206

Exception handling statements 208
Summary 209
References 210

Chapter 8: Triggers and Rules 211
Exploring rules in PostgreSQL 212

Understanding the OLD and NEW variables 212
Rules on INSERT 214

The ALSO option 214
The INSTEAD OF option 215

Rules on DELETE / UPDATE 217
Creating the new_tags table 218
Creating two tables 219
Managing  rules on INSERT, DELETE, and UPDATE events 220

INSERT rules 220
DELETE rules 222
UPDATE rules 224

Managing triggers in PostgreSQL 226
Trigger syntax 227
Triggers on INSERT 228

The TG_OP variable 233
Triggers on UPDATE / DELETE 234

Event triggers 240
An example of an event trigger 242

Summary 243
References 244

Chapter 9: Partitioning 245
Basic concepts 245

Range partitioning 246
List partitioning 247
Hash partitioning 248
Table inheritance 249

Dropping tables 253
Exploring partitioning using inheritance 253

An example of list partitioning 253
Creating tables 254
Creating triggers and functions, and inserting data 257
Creating triggers and functions and updating data 259

Exploring declarative partitioning 261
List partitioning 261
Range partitioning 264

Partition maintenance 267
Summary 269
References 270



Table of Contents

[ vi ]

Section 3: Administering the Cluster
Chapter 10: Users, Roles, and Database Security 272

Understanding roles 273
Properties related to new objects 273
Properties related to superusers 274
Properties related to replication 274
Properties related to row-level security 274
Changing properties of existing roles: the ALTER ROLE statement 275

Renaming an existing role 276
SESSION_USER versus CURRENT_USER 276
Per-role configuration parameters 277

Inspecting roles 279
Roles that inherit from other roles 281

Understanding how privileges are resolved 283
Role inheritance overview 286

Access control lists 286
Default ACLs 291

Knowing default ACLs 293
Granting and revoking permissions 294

Permissions related to tables 295
Column-based permissions 296
Permissions related to sequences 299
Permissions related to schemas 301

ALL objects in the schema 303
Permissions related to languages 303
Permissions related to routines 304
Permissions related to databases 305
Other GRANT and REVOKE statements 306
Assigning the object owner 306
Inspecting ACLs 307

Row-level security 308
Role password encryption 313
SSL connections 313

Configuring the cluster for SSL 314
Connecting to the cluster via SSL 314

Summary 316
References 316

Chapter 11: Transactions, MVCC, WALs, and Checkpoints 318
Technical requirements 319
Introducing transactions 319

Comparing implicit and explicit transactions 321
Time within transactions 326

More about transaction identifiers – the XID wraparound problem 327
Virtual and real transaction identifiers 328



Table of Contents

[ vii ]

Multi-version concurrency control 330
Transaction isolation levels 335

Read uncommitted 337
Read Committed 338
Repeatable Read 338
Serializable 338

Explaining MVCC 340
Savepoints 343
Deadlocks 345
How PostgreSQL handles persistency and consistency: WALs 347

Write-Ahead Logs (WALs) 348
WALs as a rescue method in the event of a crash 351
Checkpoints 351

Checkpoint configuration parameters 353
checkpoint_timeout and max_wal_size 353
Checkpoint throttling 354
Manually issuing a checkpoint 355

VACUUM 355
Manual VACUUM 356
Automatic VACUUM 361

Summary 363
References 364

Chapter 12: Extending the Database - the Extension Ecosystem 365
Introducing extensions 366

The extension ecosystem 367
Extension components 368

The control file 369
The script file 370

Managing extensions 370
Creating an extension 371
Viewing installed extensions 372
Finding out available extension versions 373
Altering an existing extension 373
Removing an existing extension 375

Exploring the PGXN client 376
Installing pgxnclient on Debian GNU/Linux and derivates 377
Installing pgxnclient on Fedora Linux 378
Installing pgxnclient on FreeBSD 378
Installing pgxnclient from sources 379
The pgxnclient command-line interface 380

Installing extensions 381
Installing the extension via pgxnclient 382
Installing the extension manually 383
Using the installed extension 386
Removing an installed extension 387



Table of Contents

[ viii ]

Removing an extension via pgxncliet 388
Removing a manually installed extension 388

Creating your own extension 389
Defining an example extension 389
Creating extension files 390
Installing the extension 391
Creating an extension upgrade 392
Performing an extension upgrade 394

Summary 395
References 396

Chapter 13: Indexes and Performance Optimization 397
Technical requirements 398
Execution of a statement 398

Execution stages 399
The optimizer 401
Nodes that the optimizer uses 402

Sequential nodes 402
Sequential Scan 402
Index nodes 403
Join nodes 404

Parallel nodes 407
Gather nodes 407
Parallel scans 407
Parallel joins 408
Parallel aggregations 408

When does the optimizer choose a parallel plan? 408
Utility nodes 409

Node costs 410
Indexes 411

Index types 412
Creating an index 413
Inspecting indexes 415
Dropping an index 417
Invalidating an index 417
Rebuilding an index 418

The EXPLAIN statement 419
EXPLAIN output formats 421
EXPLAIN ANALYZE 422
EXPLAIN options 424

An example of query tuning 427
ANALYZE and how to update statistics 433
Auto-explain 436
Summary 440
References 440

Chapter 14: Logging and Auditing 441



Table of Contents

[ ix ]

Technical requirements 441
Introduction to logging 442

Where to log 443
When to log 445
What to log 448
A complete example of logging configuration 449

Extracting information from logs – PgBadger 453
Installing PgBadger 454
Configuring PostgreSQL logging for PgBadger usage 455
Using PgBadger 456
Scheduling PgBadger 459

Implementing auditing 462
Installing PgAudit 464
Configuring PostgreSQL to exploit PgAudit 465
Configuring PgAudit 465
Auditing by session 466
Auditing by role 468

Summary 470
References 470

Chapter 15: Backup and Restore 471
Technical requirements 471
Introducing various types of backups and restores 472
Exploring logical backups 473

Dumping a single database 474
Restoring a single database 477
Limiting the amount of data to back up 480
Dump formats and pg_restore 481
Performing a selective restore 485
Dumping a whole cluster 487
Parallel backups 487
Backup automation 489

Exploring physical backups 491
Performing a manual physical backup 492

pg_verifybackup 493
Starting the cloned cluster 494
Restoring from a physical backup 495

Summary 496
Further reading 496

Chapter 16: Configuration and Monitoring 497
Technical requirements 498
Cluster configuration 498

Inspecting all the configuration parameters 499
Finding configuration errors 501



Table of Contents

[ x ]

Nesting configuration files 502
Configuration contexts 503
Main configuration settings 504

WAL settings 504
Memory-related settings 505
Process information settings 507
Networking-related settings 507
Archive and replication settings 508
Vacuum andautovacuum-related settings 508
Optimizer settings 509
Statistics collector 509

Modifying the configuration from a live system 509
Configuration generators 510

Monitoring the cluster 514
Information about running queries 514
Inspecting locks 515
Inspecting databases 517
Inspecting tables and indexes 517
More statistics 519

Advanced statistics with pg_stat_statements 520
Installing the pg_stat_statements extension 520
Using pg_stat_statements 521
Resetting data collected from pg_stat_statements 521
Tuning pg_stat_statements 522

Summary 522
Further Reading 523

Section 4: Replication
Chapter 17: Physical Replication 525

Exploring basic concepts 526
WAL 526

The wal_level directive 527
Preparing the environment setup for streaming replication 527

Learning WAL archiving and PITR 529
PITR – the manual way 530

The WAL archive 530
Basebackup 532
Recovery 534

Managing streaming replication 536
Basic concept 537
Replication environment 538
The wal_keep_segments option 539
The slot way 540
The pg_basebackup command 541
Asynchronous replication 542

Replica monitoring 544



Table of Contents

[ xi ]

Cascading replication 545
Synchronous replication 548

PostgreSQL settings 548
Master server 548
Standby server 549

Summary 550
References 550

Chapter 18: Logical Replication 551
Understanding basic concepts 551

Comparing logical replication and physical replication 554
Exploring logical replication setup 554

Logical replication environment settings 555
The replica role 555
Master server – postgresql.conf 556
Replica server – postgresql.conf 557
The pg_hba.conf file 557

Logical replication setup 558
Monitoring logical replication 559
Comparing physical replication and logical replication 561

Simulating on test versus bloating elimination 561
Read-only versus write allowed 562

DDL commands 567
Disabling logical replication 569

Summary 570
References 571

Section 5: The PostegreSQL Ecosystem
Chapter 19: Useful Tools and Extensions 573

Exploring the pg_trgm extension 574
Using foreign data wrappers and the postgres_fdw extension 577
Exploring the btree_gin extension 579
Managing the pgbackrest tool 582

Basic concepts 583
Environment setting 583

The exchange of public keys 583
Installing pgbackrest 586
Configuring pgbackrest 587

The repository configuration 587
The PostgreSQL server configuration 589

The postgresql.conf file 590
The pgbackrest.conf file 590

Creating and managing continuous backups 591
Creating the stanza 591
Checking the stanza 592
Managing basebackups 592
Managing PITR 595



Table of Contents

[ xii ]

Summary 597
References 597

Chapter 20: Toward PostgreSQL 13 598
Introducing PostgreSQL 13's new features 599

Replication 599
Administration 600
psql 601
Performance 602
Backup tools 602

Upgrading to PostgreSQL 13 603
Summary 604
References 604

Other Books You May Enjoy 605

Index 608



Preface
PostgreSQL is one of the fastest-growing open source object-relational Database
Management Systems (DBMS) in the world. As well as being easy to use, it’s scalable and
highly efficient. In this book, you’ll explore PostgreSQL 12 and 13 and learn how to build
database solutions using it. Complete with hands-on tutorials, this guide will teach you
how to achieve the right database design required for a reliable environment.

You'll learn how to install and configure a PostgreSQL server and even manage users and
connections. The book then progresses to key concepts of relational databases, before taking
you through the Data Definition Language (DDL) and commonly used DDL commands.
To build on your skills, you’ll understand how to interact with the live cluster, create
database objects, and use tools to connect to the live cluster. You’ll then get to grips with
creating tables, building indexes, and designing your database schema. Later, you'll explore
the Data Manipulation Language (DML) and server-side programming capabilities of
PostgreSQL using PL/pgSQL, before learning how to monitor, test, and troubleshoot your
database application to ensure high-performance and reliability.

By the end of this book, you'll be well-versed in the Postgres database and be able to set up
your own PostgreSQL instance and use it to build robust solutions.

Who this book is for
This Postgres book is for anyone interested in learning about the PostgreSQL database from
scratch. Anyone looking to build robust data warehousing applications and scale the
database for high-availability and performance using the latest features of PostgreSQL will
also find this book useful. Although prior knowledge of PostgreSQL is not required,
familiarity with databases is expected.

What this book covers
Chapter 1, Introduction to PostgreSQL, explains what the PostgreSQL database is, the
community and development behind this great and robust relational database, as well as
how to get help and recognize different PostgreSQL versions and dependencies. You will
also learn how to get and install PostgreSQL through either binary packages or by
compiling it from sources. A glance at how to manage the cluster with your operating
system tools (systemd and rc scripts) will be taken.



Preface

[ 2 ]

Chapter 2, Getting to Know Your Cluster,  shows you the anatomy of a PostgreSQL cluster
by specifying what is on the file system, where the main configuration files are, and how
they are used. The psql command-line utility will be described in order to make you
connect to the database cluster and check it's working.

Chapter 3, Managing Users and Connections, provides a complete description of how users
and connections are managed by a running instance and how you can prevent or limit user
connections. The architecture and terminology of the database will be detailed. The concept
of "role" will be described, and you will learn how to create single-user accounts, as well as
groups.

Chapter 4, Basic Statements, shows how to create and destroy main database objects, such
as databases, tables, and schemas.
 The chapter also takes a glance at basic statements, such as SELECT, INSERT, UPDATE, and
DELETE.

Chapter 5, Advanced Statements, introduces the advanced statements PostgreSQL
provides, such as common table expressions, UPSERTs, and queries with RETURNING rows.
This chapter will provide practical examples of when and how to use them.

Chapter 6, Window Functions, introduces a powerful set of functions that provide
aggregation without having to collapse the result in a single row. In other words, thanks to
window functions, you can perform aggregation on multiple rows (windows) and still
present all the tuples in the output. Window functions allow the implementation of
business intelligence and make reporting easy.

Chapter 7, Server-Side Programming, tackles the fact that while SQL is fine for doing most of
the day-to-day work with a database, you could end up with a particular problem that
requires an imperative approach. This chapter shows you how to implement your own
code within the database, how to write functions and procedures in different languages,
and how to make them interact with transaction boundaries.
Chapter 8, Triggers and Rules, presents both triggers and rules with practical examples,
showing advantages and drawbacks.

Chapter 9, Partitioning, explores partitioning – the capability to split a table into smaller
pieces. PostgreSQL has supported partitioning for a long time, but with version 10 it
introduced so-called "declarative partitioning." After having a quick lock at old-school
inheritance-based partitioning, the chapter focuses on all the features related to declarative
partitioning and its tuning parameters.



Preface

[ 3 ]

Chapter 10, Users, Roles, and Database Security, first glances at user management: roles,
groups, and passwords.
You will learn how to constrain users to access only particular databases and from
particular machines, as well as how to constrain the usage of database objects such as
tables. You then will see how row-level security can harden your table contents and
prevent users from modifying tuples that do not belong to them.

Chapter 11, Transactions, MVCC, WALs, and Checkpoints, presents a very fundamental
concept in PostgreSQL: the Write-Ahead Log. You will learn why such a log is so
important, how it deals with transactions, and how you can interact with transactions from
a SQL point of view. The chapter also presents you with the concept of transaction
isolation, ACID rules, and how the database can implement them. Then you will discover
how the WAL can speed up database work and, at the very same time, can protect it
against crashes. You will understand what MVCC is and why it is important. Lastly, the
chapter provides insight into checkpoints and related tunables.

Chapter 12, Extending the Database, introduces a handy way to plug new functionalities into
your cluster – extensions. This chapter will show you what an extension is, how to get and
install an extension, and how to search for already available extensions in the PostgreSQL
ecosystem.

Chapter 13, Indexes and Performance Optimization, addresses the fact that optimizing for
performance is an important task for every database administrator. Indexes are fast ways to
let the database access the most commonly used data, but they cannot be built on top of
everything because of their maintenance costs. The chapter presents the available index
types, then it explains how to recognize tables and queries that could benefit from indexes
and how to deploy them. Thanks to tools such as explain and autoexplain, you will keep
your queries under control.

Chapter 14, Logging and Auditing, tackles questions such as What is happening in the database
cluster? What happened yesterday?
Having a good logging and auditing ruleset is a key point in the administration of a
database cluster. The chapter presents you with the main options for logging, how to
inspect logs with external utilities such as pgFouine, and how to audit your cluster (in a
way that can help you make it compliant with GDPR).

Chapter 15, Backup and Restore, broaches the fact that things can go wrong, and in such
cases, you need a good backup to promptly restore in order for your database to always be
available. The chapter presents the basic and most common ways to back up a single
database or a whole cluster, as well as how to do archiving and point-in-time
recovery. External tools such as Barman and pgBackRest will be introduced.



Preface

[ 4 ]

Chapter 16, Configuration and Monitoring, presents the cluster catalog, the way in which
PostgreSQL exports its own internal status. It does not matter how finely you tuned your
cluster, you need to monitor it to understand and promptly adjust it to incoming
needs. Knowing the catalog is fundamental for a database administrator, in order to be able
to see what is going on in the live system. Thanks to special extensions, such as
pg_stat_activity, you will be able to monitor in real time what your users are doing
against the database.

Chapter 17, Physical Replication, covers built-in replication, a mechanism that allows you to
keep several instances up and in sync with a single master node, which PostgreSQL has
supported since version 9. Replication allows scalability and redundancy, as well as many
other scenarios such as testing and comparing databases. This chapter presents so-called
"physical replication," a way to fully replicate a whole cluster over another instance that
will continuously follow its leader. Both asynchronous and synchronous replication, as well
as replication slots, will be presented.

Chapter 18, Logical Replication, covers logical replication, which allows very fine-grained
replication specifying which tables have to be replicated and which don't – supported by
PostgreSQL since version 10. This, of course, allows a very new and rich scenario of data
sharing across different database instances.  The chapter presents how logical replication
works, how to set it up, and how to monitor the replication. 

Chapter 19, Useful Tools and Useful Extensions, is to be considered as an appendix to the
book. In this chapter, we will talk about some tools and some extensions that allow the
DBA to maximize the work done while minimizing the effort.

Chapter 20, Toward PostgreSQL 13, looks at the latest version of the database – PostgreSQL
13, which at the time of writing is in the beta-2 state. This chapter presents the main
changes and highlights the differences between PostgreSQL 12 and version 13, and looks at
how to upgrade to the new production-ready version once it is available.



Preface

[ 5 ]

To get the most out of this book
For this book to be useful, basic knowledge of the Linux operating system in any
distribution or knowledge of the FreeBSD operating system is required. All the SQL
examples can be run using the psql program or using the GUI tool pdAdmin. This makes
them applicable to most platforms. Some scripts will be executed using the bash scripting
language.

Software/Hardware covered in the book OS Requirements
PostgreSQL 12 - 13 Linux OS / FreeBSD

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Learn- ​PostgreSQL. In case there's an update to the code, it will be
updated on the existing GitHub repository.

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL


Preface

[ 6 ]

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​static. ​packt- ​cdn. ​com/​downloads/
9781838985288_​ColorImages. ​pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "psql is a powerful environment in which to manage our data and our
databases."

A block of code is set as follows:

CREATE DATABASE databasename

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

postgres=# \c forumdb
You are now connected to database "forumdb" as user "postgres".
forumdb=#

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"The first field is an object identifier (OID), which is a number that uniquely identifies the
database called forumdb."

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838985288_ColorImages.pdf


Preface

[ 7 ]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/


1
Section 1: Getting Started

In this section, you will learn what PostgreSQL is, what is new in version 12 (and version
13), and how to install and run this great open source database. 

This section contains the following chapters:

Chapter 1, Introduction to PostgreSQL
Chapter 2, Getting to Know Your Cluster
Chapter 3, Managing Users and Connections



1
Introduction to PostgreSQL

PostgreSQL is a well-known open-source relational database, and its motto states what the
project intends to be: the most advanced open-source database in the world.

The main qualities that attract masses of new users every year and keep current users
enthusiastic about their projects are its rock-solid stability, scalability, and safeness, as well
as the features that an enterprise-level database management system provides.

But PostgreSQL is not just a database; it has grown to be a whole ecosystem of extensions,
tools, and languages tied together by communities spread around the world.

PostgreSQL is an open-source project and is fully developed in the open-source world. That
means that there is no single entity in charge of the project and the result is that PostgreSQL
is not a commercial product. In other words, PostgreSQL belongs to everyone, and anyone
can contribute to it. Thanks to a very permissive BSD-style license, PostgreSQL can be used
in any project or scenario, either open or closed source.

Of course, contributing to a project of that size requires experience in software
development, database concepts, and, of course, a positive attitude to open source and
collaborative efforts. But it does also mean that PostgreSQL will continue to live pretty
much forever without the risk of a single company going out of business and sinking with
the database.

PostgreSQL 12 is the latest release of this great database, and at the time of writing, efforts
for PostgreSQL 13 have already begun. This book will focus on PostgreSQL, starting from
the basics and moving toward the most exciting and complex tasks (such as replicating
your datasets to prevent disasters). Of course, given that PostgreSQL is a project of this size
with so many features, a single book cannot cover it all in detail, so our aim is to introduce
the whole set of qualities PostgreSQL provides to you, giving practical use cases and
examples, as well as external resources to help you learn more about particular aspects.



Introduction to PostgreSQL Chapter 1

[ 10 ]

This book covers PostgreSQL 12 and 13, but the concepts explained in this
book can apply also to later versions (as well as to previous ones when the
same features are present). At the time of writing, PostgreSQL 12 is the
stable release, while PostgreSQL 13 is in its second beta public release and
is expected, therefore, to be stable enough for testing its features.

This chapter will introduce you to this great open source database starting from the project
history and goals, which is very important to help you decide whether you want to use
PostgreSQL in the first place. You will learn basic PostgreSQL terminology, which is very
important to help you search the documentation and understand the main error messages,
in case you need to. Finally, you will see how to install PostgreSQL in different ways so that
you will get a basic knowledge of how to install it on different platforms and contexts.

The following topics are covered in this chapter:

PostgreSQL at a glance
Exploring PostgreSQL terminology
Installing PostgreSQL 12 or higher

Technical requirements
You can find the code for this chapter at the following GitHub repository: https:/ ​/​github.
com/​PacktPublishing/ ​Learn- ​PostgreSQL.

PostgreSQL at a glance
As a relational database, PostgreSQL provides a lot of features, and it is quite difficult to
"scare" a PostgreSQL instance. In fact, a single instance can contain more than 4 billion
individual databases, each with unlimited total size and capacity for more than 1 billion
tables, each containing 32 TB of data. Moreover, if there's any concern that those upper
limits won't suffice, please consider that a single table can have 1,600 columns, each 1 GB in
size, with an unlimited number of multi-column (up to 32 columns) indexes. In short,
PostgreSQL can store much more data than you can possibly think of! 

Therefore, there is no amount of data that PostgreSQL cannot handle, but of course, in
order to perform well with certain big databases, you need to understand PostgreSQL and
its features.

https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL


Introduction to PostgreSQL Chapter 1

[ 11 ]

PostgreSQL is fully ACID-compliant and has a very strong foundation in data integrity and
concurrency. It ships with a procedural language, named PL/pgSQL, which can be used to
write reusable pieces of code, such as functions and routines, and it supports before and
after triggers, views, materialized views, and partitioned tables.

ACID is an acronym of the properties used to indicate that the database
engine provides atomicity, consistency, isolation, and durability.
Atomicity means that a complex database operation is processed as a
single instruction even when it is made up of different operations.
Consistency means that the data within the database is always kept
consistent and that is it is not corrupted due to partially performed
operations. Isolation allows the database to handle concurrency in the
"right way"—that is, without having corrupted data from interleaved
changes. Lastly, durability means that the database engine is supposed to
protect the data it contains, even in the case of software and hardware
failures, as much as it can.

PostgreSQL can be extended with other embedded languages, such as Perl, Python, Java,
and even Bash! And if you think the database does not provide you with enough features,
you can plug in extensions to obtain different behaviors and enhancements—for
instance, geospatial references (GIS), scheduled jobs, esoteric data types, and utilities in
general.

PostgreSQL runs on pretty much every operating system out there, including Linux, Unix,
Mac OS X, and Microsoft Windows, and can even run on commodity hardware such as
Raspberry Pi boards. There are also several cloud computing providers that list PostgreSQL
in their software catalog.

Thanks to its extensive tuning mechanism, it can be adapted very well to the hosting
platform. The community is responsible for keeping the database and documentation at a
very high-quality level, and also the mailing lists and IRC channels are very responsive and
a valuable source for solutions and ideas.

In the experience of the authors, there has never been a case where PostgreSQL has not
been able to adapt to an application scenario.

The PostgreSQL project has a very rich and extensive set of a mailing lists
that range from general topics to very specific details. It is a good habit to
search for problems and solutions on the mailing list archives; see the web
page at https:/ ​/​www. ​postgresql. ​org/​list/ ​ to get a better idea.

https://www.postgresql.org/list/
https://www.postgresql.org/list/
https://www.postgresql.org/list/
https://www.postgresql.org/list/
https://www.postgresql.org/list/
https://www.postgresql.org/list/
https://www.postgresql.org/list/
https://www.postgresql.org/list/
https://www.postgresql.org/list/
https://www.postgresql.org/list/
https://www.postgresql.org/list/
https://www.postgresql.org/list/


Introduction to PostgreSQL Chapter 1

[ 12 ]

A brief history of PostgreSQL
PostgreSQL takes its name from its ancestor: Ingres. Ingres was a relational database
developed by professor Michael Stonebraker. In 1986, Professor Stonebraker started a post-
Ingres project to develop new cool features in the database landscape and named this
project POSTGRES (POST-Ingres). The project aimed to develop an object-relational
database, where "object" means the user would have the capability to extend the database
with their own objects, such as data types, functions, and so on.

In 1994, POSTGRES was released with version 4.2 and an MIT license, which opened up
collaboration from other developers around the world. At that time, POSTGRES was using
an internal query language named QUEL.

Two Berkeley students, Andrew Yu and Jolly Chen, replaced the QUEL query language
with the hot and cool SQL language, and the feature was so innovative that the project
changed its name to Postgre95 to emphasize the difference compared to other preceding
versions.

Eventually, in 1996, the project gained a public server to host the code, and five developers,
including Marc G. Fournier, Tom Lane, and Bruce Momjan, started the development of the
new branded project named PostgreSQL. Since then, the project has been kept in good
shape and up to date.

This also means that PostgreSQL has been developed for over 30 years, again emphasizing
the solidity and openness of the project itself. If you are curious, it is also possible to dig
into the source code down to the initial commit in the open source world:

$ git log `git rev-list --max-parents=0 HEAD`
commit d31084e9d1118b25fd16580d9d8c2924b5740dff
 Author: Marc G. Fournier <scrappy@hub.org>
 Date:   Tue Jul 9 06:22:35 1996 +0000

 Postgres95 1.01 Distribution - Virgin Sources

What's new in PostgreSQL 12?
PostgreSQL 12 was released on October 3, 2019. It includes a rich set of new features with
regard to its predecessor versions, including the following:

Several performance optimizations, ranging from inlining Common Table
Expressions to huge table partition management and an improved user-defined
statistic hint for multi-column selections



Introduction to PostgreSQL Chapter 1

[ 13 ]

A few administrative optimizations, including the concurrent rebuilding of
indexes, off-line check-summing, and, most notably, reporting about
maintenance processes' progress
Security features including multi-factor authentication and TCP/IP encryption
via GSSAPI
Support for the SQL JSON path language
Stored generated columns

PostgreSQL 12 also contains a set of changes aimed to make the database administrator
(DBA)'s life easier—for instance, removing conflicting options and obsolete SQL terms and
types. This emphasizes the fact that PostgreSQL developers do always take care of the
database and its adherence to the current SQL standard.

What's new in PostgreSQL 13?
PostgreSQL 13 will contain a very rich set of optimizations under the hood, with particular
regard to the following:

Partitioning, which now includes the ability to execute before triggers on 
partitioned tables, the capability to prune partitions in particular edge cases to
speed up query execution, and a better way to join partitions in queries (referred
to as partition-wise joins).
Replication, which can now work at the logical level even on partitioned tables,
automatically publishing all the partitions. Also, there is now no automatic
promotion of a server if it does not reach the specific target to recovery and a
slave server can be promoted without cancelling any pending pause requests. It
is worth noting that it is possible to change the settings of a streaming replication
without having to restart the cluster, therefore having a no-downtime impact.
Indexes, which are now more efficient in general for storing data and accepting
operators with parameters.
Statistics, with particular regard to improvements in the extended statistics, the
data collected and used by the optimizer and a few changes in the monitoring
catalogs.

There are a lot more changes that will be discussed in an appropriate chapter at the end of
the book, but as usual, a new release of PostgreSQL contains performance improvements as
well as security improvements and, as always, a better configuration system.



Introduction to PostgreSQL Chapter 1

[ 14 ]

PostgreSQL release policy, version numbers, and
life cycle
PostgreSQL developers release a new major release once per year, usually near October. A
major release is a stable version that introduces new features and possible incompatibilities
with previous versions. During its life cycle, a major release is constantly improved by
means of minor releases, which are usually bug-fixing and maintenance releases.

The PostgreSQL version number identifies the major and minor release. Since PostgreSQL
10 (released in 2011), the version number is specified as major.minor; so, for
instance, 12.0 indicates the first major release, 12, while 12.1 indicates the minor
release, 1, of major release 12. In short, the greater the number, the more recent the version
you are managing.

However, before PostgreSQL 10, the version number was made by three different groups of
digits—brand.year.minor—where the brand is the main development topic (for
instance, "replication"), the year represents the year of development of that brand, and the
minor is the minor version. What is important to keep in mind is that the brand and
year pair made a major number in PostgreSQL versions prior to 10. So, for instance,
PostgreSQL 9.6.16 is the 16th minor release done on brand 9 during the 6th year of
development, and therefore could be incompatible with 9.5.20 because the two major
versions are 9.6 and 9.5.

But what does it mean, in a practical sense, that two major versions are possibly
incompatible?

PostgreSQL stores its own data on the storage system, often the hard disk. This data is
stored in binary format, for optimization of performances and space consumption, and this
format could possibly change between major versions. This means that, while you are able
to upgrade PostgreSQL between minor versions on the fly, you probably will have to dump
and restore your database content between major version upgrades. As you will see in this
book, PostgreSQL provides ad hoc tools to support you even in the worst case of a major
upgrade with a lot of incompatibilities, but keep in mind that while a minor version
upgrade is something you usually do without any ahead planning, a major version
upgrade could imply downtime.



Introduction to PostgreSQL Chapter 1

[ 15 ]

The recommendation, as for much other software, is to run the most recent version of
PostgreSQL available to you: PostgreSQL developers put in a lot of effort in order to
provide bug-free products, but new features could introduce new bugs, and regardless of
the very extensive testing platform PostgreSQL has, it is software after all, and software
could have bugs. Despite internal bugs, new releases also include fixes for security exploits
and performance improvements, so it is a very good habit to keep up to date with your
running PostgreSQL server.

Last but not least, not all PostgreSQL versions will live forever. PostgreSQL provides
support and upgrades for 5 years after a new release is issued; after this length of time, a
major release will reach its end of life (EOL) and PostgreSQL developers will no longer
maintain it. This does not mean you cannot run an ancient version of PostgreSQL, it simply
means this version will not get any upgrades from the official project and, therefore, will be
out of date. As an example, since PostgreSQL 12 was released in 2019, it will reach its EOL
in 2024.

With that in mind, we'll now introduce the main PostgreSQL terminology, as well
as further useful-to-understand concepts.

Exploring PostgreSQL terminology
A PostgreSQL instance is called a cluster because a single instance can serve and handle
multiple databases. Every database is an isolated space where users and applications can
store data.

A database is accessed by allowed users, but users connected to a database cannot cross the
database boundaries and interact with data contained in another database, unless they
explicitly connect to the latter database too.

A database can be organized into namespaces, called schemas. A schema is a mnemonic
name that the user can assign to organize database objects, such as tables, into a more
structured collection. Schemas cannot be nested, so they represent a flat namespace.

Database objects are represented by everything the user can create and manage within the
database—for instance, tables, functions, triggers, and data types. Every object belongs to
one and only one schema that, if not specified, is the default public schema.

Users are defined at a cluster-wide level, which means they are not tied to a particular
database in the cluster. A user can connect with and manage any database in the cluster
they have been allowed to.



Introduction to PostgreSQL Chapter 1

[ 16 ]

PostgreSQL splits users into two main categories:

Normal users: These users are the ones who can connect to and handle databases
and objects depending on their privilege set.
Superusers: These users can do anything with any database object.

PostgreSQL allows the configuration of as many superusers as you need, and every
superuser has the very same permissions: they can do everything with every database and
object and, most notably, can also control the life cycle of the cluster (for instance, they can
terminate normal user connections, reload the configuration, stop the whole cluster, and so
on).

PostgreSQL internal data, such as users, databases, namespaces, configuration, and
database runtime status, is provided by means of catalogs: special tables that present
information in a SQL-interactive way. Many catalogs are trimmed depending on the user
who is inspecting them, with the exception that superusers usually see the whole set of
available information.

PostgreSQL stores the user data (for example, tables) and its internal status on the local
filesystem. This is an important point to keep in mind: PostgreSQL relies on the underlying
filesystem to implement persistence, and therefore tuning the filesystem is an important
task in order to make PostgreSQL perform well. In particular, PostgreSQL stores all of its
content (user data and internal status) in a single filesystem directory known as PGDATA.
The PGDATA directory represents what the cluster is serving as databases, so it is possible
for you to have a single installation of PostgreSQL and make it switch to
different PGDATA directories to deliver different content. In effect, this is a possible way to
implement quick upgrades between major versions. As you will see in the next sections,
the PGDATA directory needs to be initialized before it can be used by PostgreSQL; the
initialization is the creation of the directory structure within PGDATA itself and is, of course,
a one-time operation.

The detailed content of PGDATA will be explained later in the next chapter, but for now, it
will suffice for you to remember that the PGDATA directory is where PostgreSQL expects to
find data and configuration files. In particular, the PGDATA directory is made by at least
the write-ahead logs (WALs) and the data storage. Without either of those two parts, the
cluster is unable to guarantee data consistency and, in some critical circumstances, even
start.



Introduction to PostgreSQL Chapter 1

[ 17 ]

WALs are a technology that many database systems use, and even some transaction
filesystems (such as ZFS, ReiserFS, UFS with Soft Updates, and so on) provide. The idea is
that, before applying any change to a chunk of data, an intent log will be made persistent.
In this case, if the cluster crashes, it can always rely on the already-written intent log to
understand what operations have been completed and what must be recovered (more
details on this in later chapters). Please note that with the term "crash," we refer to any
possible disaster that can hit your cluster, including a software bug, but more likely the lack
of electrical power, hard disk failures, and so on. PostgreSQL does commit to providing to
you the best data consistency it can, and therefore, it makes a great effort to ensure that the
intent log (WAL) is as secure as possible.

Internally, PostgreSQL keeps track of the tables structures, indexes, functions, and all the
stuff needed to manage the cluster in dedicated storage named the catalog. The PostgreSQL
catalog is fundamental for the life cycle of the cluster and reflects pretty much every action
the database does on the user's structures and data. PostgreSQL provides access to the
catalog from database superusers by means of an SQL interface, which means the catalog is
totally explorable and, to some extent, manipulable, via SQL statements.

The SQL standard defines a so-called information schema, a collection of
tables common to all standard database implementations, including
PostgreSQL, that the DBA can use to inspect the internal status of the
database itself. For instance, the information schema defines a table that
collects information about all the user-defined tables so that it is possible
to query the information schema to see whether a specific table exists or
not.

The PostgreSQL catalog is what some call an "information schema on
steroids": the catalog is much more accurate and PostgreSQL-specific that
the general information schema, and the DBA can extract a lot more
information about the PostgreSQL status from the catalog. Of course,
PostgreSQL does support the information schema, but throughout the
whole book, you will see references to the catalogs because they provide
much more detailed information.

When the cluster is started, PostgreSQL launches a single process called the postmaster. The
aim of the postmaster is to wait for incoming client connections, often made over a TCP/IP
connection, and fork another process named the backend process, which in turn is in charge
of serving one and only one connection.



Introduction to PostgreSQL Chapter 1

[ 18 ]

This means that every time a new connection against the cluster is opened, the cluster
reacts by launching a new backend process to serve it until the connection ends and the
process is, consequently, destroyed. The postmaster usually starts also some utility
processes that are responsible to keep PostgreSQL in good shape while it is running; these
processes will be discussed later in this process.

To summarize, PostgreSQL provides you with executables that can be installed wherever
you want on your system and can serve a single cluster. The cluster, in turn, serves data out
of a single PGDATA directory that contains, among other stuff, the user data, the cluster
internal status, and the WALs. Every time a client connects to the server, the postmaster
process forks a new backend process that is the minion in charge of serving the connection.

This is a quick recap of the main terms used within PostgreSQL:

Cluster: Cluster refers to the whole PostgreSQL service.
Postmaster: This is the first process the cluster executes, and this process is
responsible for keeping track of the activities of the whole cluster. The 
postmaster forks itself into a backend process every time a new connection is
established.
Database: The database is an isolated data container to which users (or
applications) can connect to. A cluster can handle multiple databases. A database
can be made by different objects, including schemas (namespaces), tables,
triggers, and other objects you will see as the book progresses.
PGDATA: PGDATA is the name of the directory that, on persistent storage, is fully
dedicated to PostgreSQL and its data. PostgreSQL stores the data within such a
directory.
WALs: WALs contains the intent log of database changes, used to recover data
from a critical crash.

Now that we've discussed the basic terminology related to PostgreSQL, it is time to get it
installed on your machine.

Installing PostgreSQL 12 or higher
PostgreSQL can run on several Unix and Unix-like operating systems, such as Linux, as
well as on Microsoft Windows. So far, the most supported platform remains Linux because
most PostgreSQL developers work on this platform, and so it is the one with the most
tested use cases. However, deploying on other platforms should not present any problems
and, most importantly, is not going to put your data at any risk.



Introduction to PostgreSQL Chapter 1

[ 19 ]

This section will focus on installing PostgreSQL 12, since it is the latest stable version
available worldwide. You will learn, however, how to build your own version of
PostgreSQL, and this may also be the way to install PostgreSQL 13 on your system.

Before installing PostgreSQL 12, you need to choose, or at least evaluate, how to install it.
There are two main ways to get PostgreSQL 12 up and running, as follows:

Compiling from sources
Using a binary package

Binary packages are provided by the PostgreSQL community or the operating system, and
using them has the advantage that it can provide you with a PostgreSQL installation very
quickly. Moreover, binary packages do not require a compilation toolchain, and therefore
are much easier to adopt. Lastly, a binary package adheres to the operating system
conventions it has been built for (for instance, on where to place configuration files) and
upgrades can be managed by the operating system as well. Since binary packages need to
be pre-built from vendors, they could possibly not be the very latest released version.

On the other hand, installing from sources requires a compilation toolchain, as well as
much more time and CPU consumption to build the PostgreSQL executables. You have full
control over which components will be available in the final product, and can trim and
optimize your instance for very high performances and shrink resource consumption to a
minimum. In the long term, however, you will be responsible for maintaining the
installation and upgrading it in a similar manner.

What to install
PostgreSQL is split across several components to install:

The PostgreSQL server is the part that can serve your databases to applications
and users and is required to store your data.
The PostgreSQL client is the library and client tool to connect to the database
server. It is not required if you don't need to connect to the database on the very
same machine, while it is required on client machines.
The PostgreSQL contrib package is a set of well-known extensions and utilities
that can enhance your PostgreSQL experience.
The PostgreSQL docs is the documentation related to the server and the client.
PostgreSQL PL/Perl, PL/Python, and PL/Tcl are three components to allow the
usage of programming languages— Perl, Python, and Tcl, respectively—directly
within the PostgreSQL server.



Introduction to PostgreSQL Chapter 1

[ 20 ]

The recommended set of components is the server, the client, and the contrib modules;
these modules will be used across the book. You are free to decide whether to install the
other components as you wish.

Installing PostgreSQL 12 from binary packages
In the following sections, you will see how to install PostgreSQL 12 on a few popular Linux
and Unix operating systems, namely the following:

GNU/Linux Debian, Ubuntu, and derivatives
Fedora
FreeBSD

It is not possible to provide detailed instructions for every operating system out there, but
the concepts presented in the following sections should prove insightful regardless. 

Installing PostgreSQL 12 on GNU/Linux Debian,
Ubuntu, and derivatives
The PostgreSQL Global Developers Group (PGDG) provides binary packages for Debian
and its derivatives, including the Ubuntu operating system family. In order to use the
PGDG repositories, it is required for you to first install the source and signature of the
repository:

To import the repository on an Ubuntu 19.10 disc, you need to run the following1.
commands:

$ sudo /bin/sh -c '/bin/echo "deb
http://apt.postgresql.org/pub/repos/apt/ $(lsb_release -cs)-pgdg
main" > /etc/apt/sources.list.d/pgdg.list'
$ wget --quiet -O -
https://www.postgresql.org/media/keys/ACCC4CF8.asc | sudo apt-key
add -

$ sudo apt-get update
...

This will ensure the repository sources for your operating system are up to date
so that you can install the PostgreSQL 12 packages. In the Debian/Ubuntu
repositories, the packages are named after the component and the version, and
the postgresql-12 package includes the server and the contrib module.



Introduction to PostgreSQL Chapter 1

[ 21 ]

Install the modules needed:2.

$ sudo apt install postgresql-12 postgresql-client-12 postgresql-
contrib-12

Debian and Ubuntu provide their own command to control the
cluster, pg_ctlcluster(1). The rationale for that is that on a Debian/Ubuntu
operating system, every PostgreSQL version is installed in its own directory with
separate configuration files, so there is a way to run different versions
concurrently and manage them via the operating system. For example,
configuration files are under the /etc/postgresql/12/main directory, while
the data directory is set by default to /var/lib/postgresql/12/main.

Enable PostgreSQL 12 at boot time by executing the following command:3.

$ sudo update-rc.d postgresql enable

Start the cluster immediately using the service(1) command:4.

$ sudo service postgresql start

You have thus installed PostgreSQL on GNU/Linux Debian, Ubuntu, and derivatives.

Installing PostgreSQL 12 on Linux Fedora
Fedora PostgreSQL packages are provided by the PostgreSQL community. In order to
allow dnf(8) to find PostgreSQL packages, you need to install the PGDG repository, and
then proceed with the installation as a distribution package:

Add the repository using the following command:1.

$ sudo dnf install
https://download.postgresql.org/pub/repos/yum/reporpms/F-30-x86_64/
pgdg-fedora-repo-latest.noarch.rpm

The list of available repositories can be obtained by the PostgreSQL official
website at the download page (see the References section).

Install the PostgreSQL packages using the following command. Please note that2.
the postgresql12 package installs only the client part of the product, not the
server:

$ sudo dnf -y install \
              postgresql12-server  \



Introduction to PostgreSQL Chapter 1

[ 22 ]

              postgresql12-contrib \
              postgresql12-docs    \
              postgresql12
...
Installed:
  postgresql12-contrib-12.1-2PGDG.f30.x86_64        postgresql12-
docs-12.1-2PGDG.f30.x86_64        postgresql12-
server-12.1-2PGDG.f30.x86_64
  postgresql12-12.1-2PGDG.f30.x86_64

Complete!

Configure the system specifying the PGDATA directory and enabling the option to3.
start the service at boot time. In order to specify the PGDATA directory, you need
to use systemd(1) to edit an overriding configuration file for the
postgresql-12 service:

$ sudo systemctl edit postgresql-12

The preceding command will open your default text editor with an empty file;
you can, therefore, set the PGDATA variable as follows and then save and exit the
editor to apply changes:

[Service]
Environment=PGDATA=/postgres/12

Initialize the database directory; this can be done with a specific Fedora4.
installation command named postgresql-12-setup, as follows:

$ sudo /usr/pgsql-12/bin/postgresql-12-setup initdb
Initializing database ... OK

Enable PostgreSQL 12 to start at boot time and launch the server immediately:5.

$ sudo systemctl enable postgresql-12

Created symlink /etc/systemd/system/multi-
user.target.wants/postgresql-12.service
                → /usr/lib/systemd/system/postgresql-12.service.

$ sudo systemctl start postgresql-12.service



Introduction to PostgreSQL Chapter 1

[ 23 ]

If your Fedora installation contains the service(8) command, you can also start
the service with the following:

$ sudo service postgresql-12 start

Redirecting to /bin/systemctl start postgresql-12.service

You have now successfully installed PostgreSQL 12 on Linux Fedora.

Installing PostgreSQL 12 on FreeBSD
PostgreSQL 12 is available on FreeBSD by means of ports and packages. Thanks to
the pkg(1) command, it is very easy to install PostgreSQL 12 here, as shown in the
following steps:

Search for available packages (execute an update command in order to scan for1.
new packages):

$ pkg update
...
$ pkg search postgresql12
pgtcl-postgresql12-2.1.1_2     TCL extension for accessing a
PostgreSQL server (PGTCL-NG)
postgresql12-client-12.1       PostgreSQL database (client)
postgresql12-contrib-12.1      The contrib utilities from the
PostgreSQL distribution
postgresql12-docs-12.1         The PostgreSQL documentation set
postgresql12-plperl-12.1       Write SQL functions for PostgreSQL
using Perl5
postgresql12-plpython-12.1     Module for using Python to write SQL
functions
postgresql12-pltcl-12.1        Module for using Tcl to write SQL
functions
postgresql12-server-12.1       PostgreSQL is the most advanced
open-source database available anywhere

Install packages by executing pkg(1) and specify the set of packages you need.2.
Of course, the installation must be executed as a user with administrative
privileges, as follows:

$ sudo pkg install  postgresql12-server-12.1  \
                    postgresql12-client-12.1  \
                    postgresql12-contrib-12.1 \
                    postgresql12-docs-12.1
...



Introduction to PostgreSQL Chapter 1

[ 24 ]

Initialize the directory to serve the database and to enable the server startup at3.
the machine boot. The minimal parameters to set are postgresql_enable and
postgresql_data. For example, to edit (as an administrative user)
the /etc/rc.conf file, add the options as follows:

# to enable PostgreSQL at boot time
postgresql_enable="YES"

# PGDATA to use
postgresql_data="/postgres/12"

Then, run the following command to create and initialize the directory where4.
PostgreSQL 12 will store the data:

$ sudo /usr/local/etc/rc.d/postgresql initdb

The files belonging to this database system will be owned by user
"postgres".
This user must also own the server process.

The database cluster will be initialized with locale "C".
The default text search configuration will be set to "english".

Data page checksums are disabled.

creating directory /postgres/12 ... ok
creating subdirectories ... ok
selecting dynamic shared memory implementation ... posix
selecting default max_connections ... 100
selecting default shared_buffers ... 128MB
selecting default time zone ... Europe/Rome
creating configuration files ... ok
running bootstrap script ... ok
performing post-bootstrap initialization ... ok
syncing data to disk ... ok

initdb: warning: enabling "trust" authentication for local
connections
You can change this by editing pg_hba.conf or using the option -A,
or
--auth-local and --auth-host, the next time you run initdb.

Success. You can now start the database server using:

    /usr/local/bin/pg_ctl -D /postgres/12 -l logfile start



Introduction to PostgreSQL Chapter 1

[ 25 ]

Start the PostgreSQL 12 instance with the following command:5.

$ sudo service postgresql start

2019-12-09 14:20:50.344 CET [67267] LOG:  starting PostgreSQL 12.1
on amd64-portbld-freebsd12.0, compiled by FreeBSD clang version
6.0.1 (tags/RELEASE_601/final 335540) (based on LLVM 6.0.1), 64-bit
2019-12-09 14:20:50.344 CET [67267] LOG:  listening on IPv6 address
"::1", port 5432
2019-12-09 14:20:50.344 CET [67267] LOG:  listening on IPv4 address
"127.0.0.1", port 5432
2019-12-09 14:20:50.345 CET [67267] LOG:  listening on Unix socket
"/tmp/.s.PGSQL.5432"
2019-12-09 14:20:50.352 CET [67267] LOG:  ending log output to
stderr
2019-12-09 14:20:50.352 CET [67267] HINT:  Future log output will
go to log destination "syslog".

If the server cannot be started, for any reason, the command output will print out an error
message that should help you to understand what went wrong.

Installing PostgreSQL from sources
Installing PostgreSQL from sources requires downloading a tarball, which is a compressed
package with all the source code files, and starting the compilation. Usually, this takes
several minutes, depending on the power of the machine and the I/O bandwidth. In order
to compile PostgreSQL from source, you will need tar(1), GNU make(1) (at least at
version 3.80), and a C compiler compliant to the C99 standard (or higher). Usually, you
already have these tools on a Linux or Unix system; otherwise, please refer to your
operating system documentation on how to install these tools.

Once you have all the dependencies installed, follow the steps given here to compile and
install PostgreSQL:

The very first step is to download the PostgreSQL tarball related to the version1.
you want to install, verifying that it is correct. For instance, to download version
12.1, you can do the following:

$ wget
https://ftp.postgresql.org/pub/source/v12.1/postgresql-12.1.tar.bz2
...
$ wget
https://ftp.postgresql.org/pub/source/v12.1/postgresql-12.1.tar.bz2
.md5
...



Introduction to PostgreSQL Chapter 1

[ 26 ]

If you want to install the available second beta version of PostgreSQL 13, you can
repeat the preceding steps with a different tarball URL:

$ wget
https://ftp.postgresql.org/pub/source/v13beta2/postgresql-13beta2.t
ar.bz2
...
$ wget
https://ftp.postgresql.org/pub/source/v13beta2/postgresql-13beta2.t
ar.bz2.md5
...

Before starting the compilation, check that the downloaded tarball is intact:2.

$ md5sum --check postgresql-12.1.tar.bz2.md5
postgresql-12.1.tar.bz2: OK

Once you are sure that the downloaded tarball is not corrupt, you can extract its3.
content and start the compilation (please consider that the extracted archive will
take around 200 MB of disk space, and the compilation will add some more extra
space):

$ tar xjvf postgresql-12.1.tar.bz2
$ cd postgresql-12.1
$ ./configure --prefix=/usr/local
...
$ make && sudo make install
...
PostgreSQL installation complete.

If you want or need the systemd(1) service file, add the --with-
systemd option to the configure line.

Once the database has been installed, you need to create a user to run the4.
database with, usually named postgres, and initialize the database directory:

$ sudo useradd postgres
$ sudo mkdir /postgres/12
$ sudo chown postgres:postgres /postgres/12
$ /usr/local/bin/initdb -D /postgres/12
...



Introduction to PostgreSQL Chapter 1

[ 27 ]

Installing PostgreSQL via pgenv
pgenv is a nice and small tool that allows you to download and manage several instances
of different versions of PostgreSQL on the same machine. The idea behind pgenv is to let
you explore different PostgreSQL versions—for instance, to test your application against
different major versions. pgenv does not aim to be an enterprise-class tool to manage in-
production instances; rather, it is a tool to let developers and DBAs experiment with
different versions of PostgreSQL and keep them under control easily.

Of course, being an external tool, pgenv must be installed before it can be used. The
installation, however, is very simple, since the application is made by a single Bash script:

The fastest way to get pgenv installed is to clone the GitHub repository and set1.
the PATH environment variable to point to the executable directory, as follows:

$ git clone https://github.com/theory/pgenv

Cloning into 'pgenv'...
remote: Enumerating objects: 79, done.
remote: Counting objects: 100% (79/79), done.
remote: Compressing objects: 100% (34/34), done.
remote: Total 642 (delta 34), reused 72 (delta 29), pack-reused 563
Receiving objects: 100% (642/642), 173.78 KiB | 801.00 KiB/s, done.
Resolving deltas: 100% (300/300), done.

$ export PATH=$PATH:./pgenv/bin

Now, the pgenv command is at your fingertips, and you can run the command to2.
get a help prompt and see the available commands:

$ pgenv
Using PGENV_ROOT /home/luca/git/pgenv
Usage: pgenv <command> [<args>]

The pgenv commands are:
    use        Set and start the current PostgreSQL version
    clear      Stop and unset the current PostgreSQL version
    start      Start the current PostgreSQL server
    stop       Stop the current PostgreSQL server
    restart    Restart the current PostgreSQL server
    build      Build a specific version of PostgreSQL
    rebuild    Re-build a specific version of PostgreSQL
    remove     Remove a specific version of PostgreSQL
    version    Show the current PostgreSQL version
    current    Same as 'version'
    versions   List all PostgreSQL versions available to pgenv



Introduction to PostgreSQL Chapter 1

[ 28 ]

    help       Show this usage statement and command summary
    available  Show which versions can be downloaded
    check      Check all program dependencies
    config     View, edit, delete the program configuration

For full documentation, see: https://github.com/theory/pgenv#readme

This is 'pgenv' version [72faf1a]

The idea behind pgenv is pretty simple: it is a tool to automate the "boring"
stuff—that is, downloading, compiling, installing, and start/stopping a cluster. In
order to let pgenv manage a specific instance, you have to "use" it. When you use
an instance, pgenv detects whether the instance has been initialized or not, and in
the latter case, it does the initialization for you.

In order to install versions 12.0 and 12.1 of PostgreSQL, you simply have to run3.
the following commands:

$ pgenv build 12.0
...
PostgreSQL 12.0 built

$ pgenv build 12.1
...

PostgreSQL 12.1 built

The preceding commands will download and compile the two versions of
PostgreSQL, and the time required for the operations to complete depends on the
power and speed of the machine you are running on.

After that, you can decide which instance to start with the use command:4.

$ pgenv use 12.0
...
server started
PostgreSQL 12.0 started
Logging to /home/luca/git/pgenv/pgsql/data/server.log

pgenv is smart enough to see whether the instance you are starting has been
already initialized, or it will initialize (only the first time) for you.



Introduction to PostgreSQL Chapter 1

[ 29 ]

Once you have started the instance, you can connect to it with any client tool you5.
like, most notably psql (you will learn more about psql in the next chapters):

$ psql -U postgres -h localhost template1
psql (12.1 (Ubuntu 12.1-1.pgdg18.04+1), server 12.0)
Type "help" for help.

template1=#

If you need to stop and change the PostgreSQL version to use, you can issue6.
a stop command followed by a use command with the targeted version. For
instance, to stop running the 12.0 instance and start a 12.1 instance, you can use
the following:

$ pgenv stop
...
PostgreSQL 12.0 stopped

$ pgenv use 12.1
...
PostgreSQL 12.1 started
Logging to /home/luca/git/pgenv/pgsql/data/server.log

pgenv allows you to see which instances are currently installed and which one is7.
currently active—that is, "in use"—and this does not mean it is running:

$ pgenv versions
Using PGENV_ROOT /home/luca/git/pgenv
      11.5      pgsql-11.5
      11beta4    pgsql-11beta4
      12.0      pgsql-12.0
  *   12.1      pgsql-12.1

If you are searching for a quick way to test and run different PostgreSQL versions on the
same machine, pgenv is a good tool.

Installing PostgreSQL 13 beta 2 using pgenv is really simple—just repeat the preceding
process, changing the version number of the cluster you want to build:

$ pgenv build 13beta2
...
PostgreSQL 13beta2 built

$ pgenv use 13beta1
...
server started
PostgreSQL 13beta1 started



Introduction to PostgreSQL Chapter 1

[ 30 ]

$ psql -U postgres -c "SELECT version();" template1
                                                  version
---------------------------------------------------------------------------
---------------------------------
 PostgreSQL 13beta2 on x86_64-unknown-freebsd12.1, compiled by gcc (FreeBSD
Ports Collection) 9.2.0, 64-bit
(1 row)

You now know how to use your preferred method to install the version of PostgreSQL that
you need.

Summary
This chapter has introduced you to PostgreSQL, its history, and its main features. You have
learned about PostgreSQL terminology, as well as how to install a cluster on Unix-like
operating systems, such as GNU/Linux Debian, Fedora, and FreeBSD, as well as installing
the tool from various sources.

In the following chapters, you will start using this great database engine and learn details
about every main single feature it provides.

References
PostgreSQL 12 release note: https:/ ​/ ​www.​postgresql. ​org/​docs/ ​12/ ​release-
12.​html

Upgrading documentation: https:/ ​/​www. ​postgresql. ​org/ ​docs/ ​current/
upgrading. ​html

PostgreSQL version policy: https:/ ​/​www. ​postgresql. ​org/ ​support/ ​versioning/ ​

PostgreSQL initdb official documentation: https:/ ​/​www. ​postgresql. ​org/
docs/​12/ ​app- ​initdb. ​html

PostgreSQL pg_ctl official documentation: https:/ ​/​www. ​postgresql. ​org/
docs/​12/ ​app- ​pg- ​ctl. ​html

pgenv GitHub repository and documentation: https:/ ​/​github. ​com/​theory/
pgenv

https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/12/release-12.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/docs/current/upgrading.html
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/support/versioning/
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://github.com/theory/pgenv
https://github.com/theory/pgenv
https://github.com/theory/pgenv
https://github.com/theory/pgenv
https://github.com/theory/pgenv
https://github.com/theory/pgenv
https://github.com/theory/pgenv
https://github.com/theory/pgenv
https://github.com/theory/pgenv
https://github.com/theory/pgenv


2
Getting to Know Your Cluster

In order to be a proficient user and administrator of a PostgreSQL cluster, you first have to
know and understand how PostgreSQL works. A database system is a very complex beast,
and PostgreSQL, being an enterprise-level Database Management System (DBMS), is in
no way a simple software system. However, thanks to a very good design and
implementation, once you understand the basic concepts and terminology of PostgreSQL,
things will quickly become comprehensive and clear.

This chapter will introduce you to the main PostgreSQL terminology and concepts, as well
as teach you how to connect to the cluster. This chapter will also introduce you to the psql
client, which ships with PostgreSQL and is the recommended way to connect to your
database. You can, of course, use any client that supports PostgreSQL to connect to the
database, and the rules explained here will also be valid for other clients supporting
PostgreSQL. The main free graphical client available for PostgreSQL is pgAdmin4, but you
can really choose the one you like the most.

This chapter covers the following topics:

Managing your cluster
Connecting to the cluster
Exploring the disk layout of PGDATA
Exploring configuration files and parameters

Technical requirements
What you need to know for this chapter is as follows:

How to install binary packages on your Unix machine
Basic Unix command-line usage
Basic SQL statements



Getting to Know Your Cluster Chapter 2

[ 32 ]

You can find the code for this chapter in the following GitHub repository: https:/ ​/​github.
com/​PacktPublishing/ ​Learn- ​PostgreSQL.

Managing your cluster
From an operating system point of view, PostgreSQL is a service that can be started,
stopped, and, of course, monitored. As you saw in the previous chapter, usually when you
install PostgreSQL, you also get a set of operating system-specific tools and scripts to
integrate PostgreSQL with your operating system service management (for example,
systemd service files).

In particular, PostgreSQL ships with a tool called pg_ctl that helps in managing the
cluster and the related running processes. This section introduces you to the basic usage of
pg_ctl and to the processes that you can encounter in a running cluster.

pg_ctl
The pg_ctl command-line utility is a tool that allows you to perform different actions on a
cluster, mainly initialize it, start it, restart and stop it, and so on. pg_ctl accepts the
command to execute as the first argument, followed by other specific arguments—the main
commands are as follows:

start, stop, and restart execute the corresponding actions on the cluster.
status reports the current status (running or not) of the cluster.
initdb (or init for short) executes the initialization of the cluster, possibly
removing any previously existing data.
reload causes the PostgreSQL server to reload the configuration, which is useful
when you want to apply configuration changes.
promote is used when the cluster is running as a subordinate
server (named standby) in a replication setup and, from now on, must be
detached from the original master and become independent (replication will be
explained in later chapters).

Let's see a possible usage of each of these commands now.

https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL


Getting to Know Your Cluster Chapter 2

[ 33 ]

The status command just queries the cluster to get information, so it is pretty safe as a
starting point to understand what is happening:

$ pg_ctl status
pg_ctl: no server running

As we can see, it's not currently running, which in hindsight makes sense given that we
haven't started it up explicitly. We can then start the cluster with the start command:

$ pg_ctl start
waiting for server to start....
2019-12-17 19:31:48.421 CET [96724] LOG:  starting PostgreSQL 12.1 on
amd64-portbld-freebsd12.0, compiled by FreeBSD clang version 6.0.1
(tags/RELEASE_601/final 335540) (based on LLVM 6.0.1), 64-bit
2019-12-17 19:31:48.421 CET [96724] LOG:  listening on IPv6 address "::1",
port 5432
2019-12-17 19:31:48.422 CET [96724] LOG:  listening on IPv4 address
"127.0.0.1", port 5432
2019-12-17 19:31:48.423 CET [96724] LOG:  listening on Unix socket
"/tmp/.s.PGSQL.5432"
2019-12-17 19:31:48.429 CET [96724] LOG:  ending log output to stderr
2019-12-17 19:31:48.429 CET [96724] HINT:  Future log output will go to log
destination "syslog".
 done
server started

The pg_ctl command launches the postmaster process, which prints out a few log lines
before redirecting the logs to the appropriate log file, and the server started message at
the end confirms that the server is started. Now, if you run pg_ctl again to check the
server, you will see that it has been started:

$ pg_ctl status
pg_ctl: server is running (PID: 96724)
/usr/local/bin/postgres

As you can see, the server is now running and pg_ctl shows the Process Identifier (PID)
of the running process, as well as the command line that launched the process—in this
case,/usr/local/bin/postgres. This process is the postmaster, which is the "root" of
all PostgreSQL processes. But wait a minute: why is it called postmaster if the launched
process is a postgres executable? The name postmaster is just that: a name used to
identify a process among the others. Both backend processes and the postmaster are run
starting from the postgres executable, and the postmaster is just the root of all
PostgreSQL processes, with the main aim of keeping all the other processes under control.



Getting to Know Your Cluster Chapter 2

[ 34 ]

Now that the cluster is running, let's stop it. As you can imagine, stop is the command
used to instruct pg_ctl about which action to perform:

$ pg_ctl stop
waiting for server to shut down.... done
server stopped

However, stopping a cluster can be much more problematic than starting it, and for that
reason, it is possible to pass extra arguments to the stop command in order to let pg_ctl
act accordingly. In particular, there are three ways of stopping a cluster:

The smart mode means that the PostgreSQL cluster will gently wait for all the
connected clients to disconnect and only then it will shut the cluster down.
The fast mode will immediately disconnect every client and will shut down the
server without having to wait.
The immediate mode will abort every PostgreSQL process, including client
connections, and shut down the cluster in a dirty way, meaning that data
integrity is not guaranteed and the server needs a crash recovery at start up time.

Once you issue a stop command through pg_ctl, the server will not accept any new
incoming connections from clients, and depending on the stop mode you have selected,
existing connections will be terminated. The default stop mode, if none is specified, is fast,
which forces an immediate disconnection of the clients but ensures data integrity.

If you want to change the stop mode, you can use the -m flag, specifying the mode name, as
follows:

$ pg_ctl stop -m smart
waiting for server to shut down........................ done
server stopped

In the preceding example, the pg_ctl command will wait, printing a dot every second
until all the clients disconnect from the server. In the meantime, if you try to connect to the
same cluster from another client, you will receive an error, because the server has entered
the stopping procedure:

$ psql template1
psql: error: could not connect to server: FATAL:  the database system is
shutting down



Getting to Know Your Cluster Chapter 2

[ 35 ]

It is possible to specify just the first letter of the stop mode instead of the whole word; so,
for instance, s for smart, i for immediate, and f for fast. Interacting with a cluster status,
for example, to stop it is an action that not every user must be able to perform; usually, only
an operating system administrator must be able to interact with services including
PostgreSQL.

pg_ctl must be run by the same unprivileged operating system user that is going to run
the cluster. PostgreSQL does not allow a cluster to be run by privileged users, such as root,
in order to mitigate the side effects of privilege escalation. Therefore, PostgreSQL is run by
a "normal" user, usually named postgres on all the operating systems. This unprivileged
user will own the PGDATA directory and run the postmaster process, and therefore also all
the processes launched by the postmaster itself.

pg_ctl, having to interact with PostgreSQL processes, must be run by the very same
unprivileged user, and in fact, if you try to run pg_ctl as a privileged user, you get a 
warning message:

$ sudo pg_ctl stop
pg_ctl: cannot be run as root
Please log in (using, e.g., "su") as the (unprivileged) user that will
own the server process.

A better approach is to either log in as the postgres user or ask sudo to use this user—for
instance, specifying the user to run the command via the -u flag and keeping the
environment with -E:

$ sudo -E -u postgres pg_ctl stop
waiting for server to shut down.... done
server stopped

On the other hand, if you are going to manage the PostgreSQL cluster without pg_ctl and
with operating system tools (such as service scripts), you will need to run the commands
as a privileged user:

$ sudo service postgresql start
2019-12-17 19:24:43.928 CET [28738] LOG:  starting PostgreSQL 12.1 on
amd64-portbld-freebsd12.0, compiled by FreeBSD clang version 6.0.1
(tags/RELEASE_601/final 335540) (based on LLVM 6.0.1), 64-bit
2019-12-17 19:24:43.929 CET [28738] LOG:  listening on IPv6 address "::1",
port 5432
2019-12-17 19:24:43.929 CET [28738] LOG:  listening on IPv4 address
"127.0.0.1", port 5432
2019-12-17 19:24:43.930 CET [28738] LOG:  listening on Unix socket
"/tmp/.s.PGSQL.5432"
2019-12-17 19:24:43.935 CET [28738] LOG:  ending log output to stderr



Getting to Know Your Cluster Chapter 2

[ 36 ]

2019-12-17 19:24:43.935 CET [28738] HINT:  Future log output will go to log
destination "syslog".

Therefore, it is important to keep in mind that while pg_ctl provides you with all of the
possible interactions with your cluster, you need to use the same unprivileged user that the
cluster is running. This is particularly important when dealing with your own automation
scripts and programs that can control the cluster.

Every tool that interacts with the cluster must know something about the latter—in
particular, it must know where the data and the configuration is stored on the disk. So, how
can pg_ctl know where the PGDATA directory is? The trick is that almost every
PostgreSQL-related command searches for the value of PGDATA as an environmental
variable or as a -D command-line option.

If a command cannot find the PGDATA directory, it will display it clearly:

$ pg_ctl status
pg_ctl: no database directory specified and environment variable PGDATA
unset
Try "pg_ctl --help" for more information.

$ export PGDATA=/postgres/12
$ pg_ctl status
pg_ctl: server is running (PID: 91393)
/usr/local/bin/postgres "-D" "/postgres/12"

As you can see from the preceding example, once you erase the PGDATA environment
variable, the command is no longer able to operate and asks for a PGDATA variable either on
the command line or in the environment. The command-line argument, specified with -D,
always has precedence against any environment variable, so if you don't set or
misconfigure the PGDATA variable, but instead pass the right value on the command line,
everything works fine:

$ export PGDATA=/postgres/11  # wrong PGDATA!
$ pg_ctl status -D /postgres/12
pg_ctl: server is running (PID: 91393)
/usr/local/bin/postgres "-D" "/postgres/12"

The same concepts of PGDATA and the -D optional argument is true for pretty much any
"low-level" commands that act against a cluster and makes clear that with the same set of
executables, you can run multiple instances of PostgreSQL on the same machine, as long as
you keep the PGDATA directory of each one separate.



Getting to Know Your Cluster Chapter 2

[ 37 ]

Do not use the same PGDATA directory for multiple versions of
PostgreSQL. While it could be tempting to have, on your own test
machine, a single PGDATA directory that can be used in turn by a
PostgreSQL 12 and a PostgreSQL 13 instance, this will not work and you
risk losing all your data. Luckily, PostgreSQL is smart enough to see that
PGDATA has been created and used by a different version and refuses to
operate, but please be careful in not sharing the same PGDATA directory
with different instances.

It is worth reiterating one more time: the PGDATA directory can be named whatever you like
and it is a common habit to have it named after the PostgreSQL major version it is used by.
However, this is not mandatory, and the choice of name and location is up to you.

PostgreSQL processes
You have already learned how the postmaster is the root of all PostgreSQL processes, but as
explained in Chapter 1, Introduction to PostgreSQL, PostgreSQL will launch multiple
different processes at startup. These processes are in charge of keeping the cluster in good
health, as well as observing and instructing the cluster. This section provides a glance at the
main processes you can find in a running cluster, allowing you to recognize each of them
and their respective purposes.

If you inspect a running cluster from the operating system point of view, you will see a
bunch of processes tied to PostgreSQL:

$ pstree
-+= 00001 root /sbin/init --
...
 |-+= 91393 postgres /usr/local/bin/postgres -D /postgres/12
 | |--= 91839 postgres postgres: checkpointer    (postgres)
 | |--= 92351 postgres postgres: background writer    (postgres)
 | |--= 92752 postgres postgres: walwriter    (postgres)
 | |--= 92978 postgres postgres: autovacuum launcher    (postgres)
 | |--= 93359 postgres postgres: stats collector    (postgres)
 | \--= 93739 postgres postgres: logical replication launcher    (postgres)



Getting to Know Your Cluster Chapter 2

[ 38 ]

As you can see, the postmaster process with PID 91393 is one that owns all other
subprocesses. The maintenance processes are as follows:

checkpointer is a process responsible for executing the checkpoints, which are
points in time where the database ensures that all the data is actually stored
persistently on the disk.

background writer is responsible for helping to push the data out of the
memory to permanent storage.
walwriter is responsible for writing out the Write-Ahead Logs (WALs), the
logs that are needed to ensure data reliability even in the case of a database crash.
stats collector is a process that monitors the amount of data PostgreSQL is
handling, storing it for further elaboration, such as deciding on which indexes to
use to satisfy a query.
logical replication launcher is a process responsible for handling logical
replication.

Depending on the exact configuration of the cluster, there could be other processes active:

Background workers: These are processes that can be customized by the user to
perform background tasks.
WAL receiver or WAL sender: These are processes involved in receiving from or
sending data to another cluster in replication scenarios.

Many of the concepts and aims of the preceding process list will become clearer as you
progress through the book's chapters, but for now, it is sufficient that you know that
PostgreSQL has a few other processes that are always active without any regard to
incoming client connections.

When a client connects to your cluster, a new process is spawned: this process, named
the backend process, is responsible for serving the client requests (meaning executing the
queries and returning the results). You can see and count connections by inspecting the
process list:

$ pstree
-+= 00001 root /sbin/init --
.../
 |-+= 91393 postgres /usr/local/bin/postgres -D /postgres/12
 | |--= 14530 postgres postgres: postgres template1 [local]  (postgres)
 | |--= 91839 postgres postgres: checkpointer    (postgres)
 | |--= 92351 postgres postgres: background writer    (postgres)
 | |--= 92752 postgres postgres: walwriter    (postgres)
 | |--= 92978 postgres postgres: autovacuum launcher    (postgres)



Getting to Know Your Cluster Chapter 2

[ 39 ]

 | |--= 93359 postgres postgres: stats collector    (postgres)
 | \--= 93739 postgres postgres: logical replication launcher    (postgres)

If you compare the preceding list with the previous one, you will see that there is another
process with PID 14530: this process is a backend process. In particular, this process
represents a client connection to the database named  template1.

PostgreSQL uses a process approach to concurrency instead of a multi-
thread approach. There are different reasons, most notably the isolation
and portability that a multi-process approach offers. Moreover, on
modern hardware and software, forking a process is no longer so much of
an invasive operation.

Therefore, once PostgreSQL is running, there is a tree of processes that root at postmaster.
The aim of the latter is to spawn new processes when there is the need to handle new
database connections, as well as to monitor all maintenance processes to ensure that the
cluster is running fine.

Connecting to the cluster
Once PostgreSQL is running, it awaits incoming database connections to serve; as soon as a
connection comes in, PostgreSQL serves it by connecting the client to the right database.
This means that in order to interact with the cluster, you need to connect to it. However,
you don't connect to the whole cluster; rather, you ask PostgreSQL to interact with one of
the databases the cluster is serving. Therefore, when you connect to the cluster, you need to
connect to a specific database. This also means that the cluster must have at least one
database from the very beginning of its life. That is the role of the so-called template
databases, which, among other duties, serve as a common database to which you can
connect on a freshly installed cluster.

When you initialize the cluster with the initdb command, PostgreSQL builds the
filesystem layout of the PGDATA directory and builds two template databases, named
template0 and template1. The aim of these databases is to provide an initialization point
for later operations—for instance, to allow users to connect to one of them in order to
interact with the cluster.



Getting to Know Your Cluster Chapter 2

[ 40 ]

In order to connect to one of the databases, either a template or a user-defined one, you
need a client to connect with. PostgreSQL ships with psql, a command-line client that
allows you to interact with, connect, and administer databases and the cluster itself.
However, other clients do exist, but they will not be discussed in this chapter. You could
also connect your own applications to a database, which is an important task in a day-to-
day database activity: to this end, you also need a set of parameters that can be "composed"
into a connection string (something similar to a URL, for what it matters) that your
application can use to gain access to PostgreSQL.

This section will explain all of the preceding concepts, starting from the template databases
and then showing the basic usage of psql and the connection string.

The template databases
The template1 database is the first database created when the system is initialized, and
then it is cloned into template0. This means that the two databases are, at least initially,
identical, and the aim of template0 is to act as a safe copy for rebuilding in case it is
accidentally damaged or removed.

You can inspect available databases using the psql -l command:

$ psql -l                             List of databases
   Name    |  Owner   | Encoding | Collate | Ctype |   Access privileges
-----------+----------+----------+---------+-------+-----------------------
 postgres  | postgres | UTF8     | C       | C     |
 template0 | postgres | UTF8     | C       | C     | =c/postgres          +
           |          |          |         |       | postgres=CTc/postgres
 template1 | postgres | UTF8     | C       | C     | =c/postgres          +

It is interesting to note that there's a third database that is created during the installation
process: the postgres database. That database belongs to the postgres user, which is, by
default, the only database administrator created during the initialization process. This
database is a common space to be used for connections instead of the template databases.

The name template indicates the real aim of these two databases: when you create a new
database, PostgreSQL clones a template database as a common base. This is somewhat
similar to creating a user home directory on Unix systems: the system clones a
skeleton directory and assigns the new copy to the user. PostgreSQL does the same—it
clones template1 and assigns the newly created database to the user that requested it.



Getting to Know Your Cluster Chapter 2

[ 41 ]

What this also means is that whatever object you put into template1, you will find the
very same object in freshly created databases. This can be really useful for providing a
common base database and having all other databases brought to life with the same set of
attributes and objects.

Nevertheless, you are not forced to use template1 as the base template and, in fact, you
can create your own databases and use them as templates for other databases. However,
please keep in mind that by default (and most notably on a newly initialized system), the
template1 database is the one that is cloned for the first databases you will create.

Another difference between template1 and template0, apart from the former being the
default for new databases, is that you cannot connect to the latter. This is in order to
prevent accidental damage to template0 (the safety copy).

It is important to note that the cluster (and all user-defined databases) can work even
without the template databases—the template1 and template0 databases are not 
fundamental for the other databases to run. However, if you lose the templates, you will be
required to use another database as a template every time you perform an action that
requires it, such as creating a new database.

The psql command-line client
The psql(1) command is the command-line interface that ships with every installation of
PostgreSQL. While you can certainly use a graphical user interface to connect and interact
with the databases, a basic knowledge of psql is mandatory in order to administer the
cluster. In fact, as psql(1) is shipped with PostgreSQL, it is the most updated client,
especially when a new major version is released, and therefore provides a consistent way to
access your cluster. Moreover, the client is lightweight and useful even in emergency
situations when a GUI is not available. psql accepts several options to connect to a
database, mainly the following:

-d: The database name
-U: The username
-h: The host (either an IPv4 or IPv6 address or a hostname)

If no option is specified, psql assumes your operating system user is trying to connect to a
database with the same name, and a database user with a name that matches the operating
system on a local connection. Take the following connection:

$ id
uid=770(postgres) gid=770(postgres) groups=770(postgres)



Getting to Know Your Cluster Chapter 2

[ 42 ]

$ psql
psql (12.1)
Type "help" for help.

postgres=#

This means that the current operating system user (postgres) has required psql to
connect to a database named postgres via the PostgreSQL user named postgres on the
local machine. Explicitly, the connection could have been requested as follows:

$ psql -U postgres -d postgres
psql (12.1)
Type "help" for help.

postgres=#

The first thing to note is that once a connection has been established, the command prompt
changes: psql reports the database to which the user has been connected (postgres) and a
sign to indicate they are a superuser (#). In the case that the user is not a database
administrator, a > sign is placed at the end of the prompt.

If you need to connect to a database that is named differently by your operating system
username, you need to specify it:

$ psql -d template1
psql (12.1)
Type "help" for help.

template1=#

Similarly, if you need to connect to a database that does not correspond to your operating
username with a PostgreSQL user that is different from your operating system username,
you have to explicitly pass both parameters to psql:

$ id
uid=770(postgres) gid=770(postgres) groups=770(postgres)

$ psql -d template1 -U luca
psql (12.1)
Type "help" for help.

template1=>

As you can see from the preceding example, the operating system user postgres has
connected to the template1 database with the PostgreSQL user luca. Since the latter is not
a system administrator, the command prompt ends with the > sign.



Getting to Know Your Cluster Chapter 2

[ 43 ]

In order to quit from psql and close the connection to the database, you have to type  \q or
quit and press Enter (you can also press CTRL + D to exit on any Unix and Linux
machines):

$ psql -d template1 -U luca
psql (12.1)
Type "help" for help.

template1=> \q
$

Entering SQL statements via psql
Once you are connected to a database via psql, you can issue any statement you like.
Statements must be terminated by a semicolon, indicating that the next Enter key will
execute the statement. The following is an example where the Enter key has been
emphasized:

$ psql -d template1 -U luca
psql (12.1)
Type "help" for help.

template1=> SELECT current_date; <ENTER>
 current_date
--------------
 2019-12-23
(1 row)

Another way to execute the statement is to issue a \g command, again followed
by <ENTER>. This is useful when connecting via a terminal emulator that has keys
remapped:

template1=> SELECT current_date \g <ENTER>
 current_date
--------------
 2019-12-23
(1 row)

Until you end a statement with a semicolon or \g, psql will keep the content you are
typing in the query buffer, so you can also edit multiple lines of text as follows:

template1=> SELECT
template1-> current_date
template1-> ;
 current_date
--------------



Getting to Know Your Cluster Chapter 2

[ 44 ]

 2019-12-23
(1 row)

Note how the psql command prompt has changed on the lines following the first one: the
difference is there to remind you that you are editing a multi-line statement and psql has
not (yet) found a statement terminator.

One useful feature of the psql query buffer is the capability to edit the content of the query
buffer in an external editor. If you issue the \e command, your favorite editor will pop up
with the content of the last-edited query. You can then edit and refine your SQL statement
as much as you want, and once you exit the editor, psql will read what you have produced
and execute it. The editor to use is chosen with the EDITOR operating system environment
variable.

It is also possible to execute all the statements included in a file or edit a file before
executing it. As an example, assume the test.sql file has the following content:

$ cat test.sql

SELECT current_date;
SELECT current_time;
SELECT current_role;

The file has three very simple SQL statements. In order to execute all of the file at once, you
can use the \i special command followed by the name of the file:

template1=> \i test.sql
 current_date
--------------
 2019-12-23
(1 row)

    current_time
--------------------
 17:56:05.015434+01
(1 row)

 current_role
--------------
 luca
(1 row)

As you can see, the client has executed, one after the other, every statement within the file.
If you need to edit the file without leaving psql, you can issue \e test.sql to open your
favorite editor, make changes, and come back to the psql connection.



Getting to Know Your Cluster Chapter 2

[ 45 ]

SQL is case-insensitive and space-insensitive: you can write it in all
uppercase or all lowercase, with however many horizontal and vertical
spaces you want. In this book, SQL keywords will be written in uppercase
and the statements will be formatted to read cleanly.

A glance at the psql commands
Every command specific to psql starts with a backslash character (\). It is possible to get
some help about SQL statements and PostgreSQL commands via the special \h command,
after which you can specify the specific statement you want help for:

template1=> \h SELECT
Command:     SELECT
Description: retrieve rows from a table or view
Syntax:
[ WITH [ RECURSIVE ] with_query [, ...] ]
SELECT [ ALL | DISTINCT [ ON ( expression [, ...] ) ] ]
    [ * | expression [ [ AS ] output_name ] [, ...] ]
...
URL: https://www.postgresql.org/docs/12/sql-select.html

The displayed help is, for space reasons, concise. You can find much more
verbose description and usage examples in the online documentation. For
this reason, at the end of the help screen, there is a link reference to the
online documentation.

If you need help with the psql commands, you can issue a \? command:

template1=> \?
General
  \copyright             show PostgreSQL usage and distribution terms
  \crosstabview [COLUMNS] execute query and display results in crosstab
  \errverbose            show most recent error message at maximum
verbosity
  \g [FILE] or ;         execute query (and send results to file or |pipe)
  \gdesc                 describe result of query, without executing it
...

There are also a lot of introspection commands, such as, for example, \d to list all user-
defined tables. These special commands are, under the hood, a way to execute queries
against the PostgreSQL system catalogs, which are in turn registries about all objects that
live in a database. The introspection commands will be shown later in the book, and are
useful as shortcuts to get an idea of which objects are defined in the current database.



Getting to Know Your Cluster Chapter 2

[ 46 ]

Many psql features will be detailed as you move on through the book, but it is worth
spending some time trying to get used to this very efficient and rich command-line client.

Introducing the connection string
In the previous section, you learned how to specify basic connection options, such as -d
and -U for a database and user, respectively. psql also accepts a LibPQ connection string.

LibPQ is the underlying library that every application can use to connect to a PostgreSQL
cluster and is, for example, used in C and C++ clients, as well as non-native connectors.

A connection string in LibPQ is a URI made up of several parts:

postgresql://username@host:port/database

Here, we have the following:

postgresql is a fixed string that specifies the protocol the URI refers to.
username is the PostgreSQL username to use when connecting to the database.
host is the hostname (or IP address) to connect to.
port is the TCP/IP port the server is listening on (by default, 5432).
database is the name of the database to which you want to connect.

The username, port, and database parts can be omitted if they are set to their default (the
username is the same as the operating system username).

The following connections are all equivalent:

$ psql -d template1 -U luca -h localhost

$ psql postgresql://luca@localhost/template1

$ psql postgresql://luca@localhost:5432/template1

Solving common connection problems
There are a few common problems when dealing with database connections, and this
section explains them in order to ease your task of getting connected to your cluster.

Please note that the solutions provided here are just for testing purposes and not for
production usage. All the security settings will be explained in later chapters, so the aim of
the following subsection is just to help you get your test environment usable.



Getting to Know Your Cluster Chapter 2

[ 47 ]

Database "foo" does not exist
This means either you misspelled the name of the database in the connection parameter or
you are trying to connect without specifying the database name.

For instance, the following connection fails because, by default, X is assuming that user
luca is trying to connect to a database with the same name (meaning, luca) since none has
been explicitly set:

$ psql
psql: error: could not connect to server: FATAL:  database "luca" does not
exist

The solution is to provide an existing database name via the ~-d~ option or to create a
database with the same name as the user.

Connection refused
This usually means there is a network connection problem, so either the host you are trying
to connect to is not reachable or the cluster is not listening on the network.

As an example, imagine PostgreSQL is running on a machine named miguel and we are
trying to connect from another host on the same network:

$ psql -h miguel -U luca template1
psql: error: could not connect to server: could not connect to server:
Connection refused
        Is the server running on host "miguel" (192.168.222.123) and
accepting
        TCP/IP connections on port 5432?

In this case, the database cluster is running on the remote host but is not accepting
connections from the outside. Usually, you have to fix the server configuration or connect
(via SSH, for instance) to the remote machine and open a local connection from there.

In order to quickly solve the problem, you have to edit the postgresql.conf file and
ensure the listen_address option has an asterisk (or the name of your external network
card) so that the server will listen on any available network address:

listen_addresses = '*'



Getting to Know Your Cluster Chapter 2

[ 48 ]

After a restart of the service, the client will be able to connect. Please note that enabling the
server to listen on any available network address could not be the optimal solution and can
expose the server to risks in a production environment. However, you will learn later in the
book how to specifically configure the connection properties for your server.

No pg_hba.conf entry
This error means the server is up and running and able to accept your request, but the
Host-Based Access (HBA) control does not permit you to enter.

As an example, the following connection is refused:

$  psql -h localhost -U luca template1
psql: error: could not connect to server: FATAL:  no pg_hba.conf entry for
host "127.0.0.1", user "luca", database "template1", SSL off

The reason for this is that, inspecting the pg_hba.conf file, there is no rule to let the
user luca in on the localhost interface. So, for instance, adding a single line such as the
following to the pg_hba.conf file can fix the problem:

host all luca 127.0.0.1/32 trust

You need to reload the configuration in order to apply changes. The format of every line in
the pg_hba.conf file will be discussed later, but for now, please assume that the preceding
line instruments the cluster to accept any connection incoming from localhost by means
of user luca.

Exploring the disk layout of PGDATA
In the previous sections, you have seen how to install PostgreSQL and connect to it, but we
have not looked at the storage part of a cluster. Since the aim of PostgreSQL, as well as the
aim of any relational database, is to permanently store data, the cluster needs some sort of
permanent storage. In particular, PostgreSQL exploits the underlying filesystem to store its
own data. All of the PostgreSQL-related stuff is contained in a directory known as PGDATA.

The PGDATA directory acts as the disk container that stores all the data of the cluster,
including the users' data and cluster configuration.



Getting to Know Your Cluster Chapter 2

[ 49 ]

The following is an example of the content of PGDATA for a running PostgreSQL 12 cluster
(it looks the same for a PostgreSQL 13 instance):

$ sudo ls -1 /postgres/12
PG_VERSION
base
global
pg_commit_ts
pg_dynshmem
pg_hba.conf
pg_ident.conf
pg_logical
pg_multixact
pg_notify
pg_replslot
pg_serial
pg_snapshots
pg_stat
pg_stat_tmp
pg_subtrans
pg_tblspc
pg_twophase
pg_wal
pg_xact
postgresql.auto.conf
postgresql.conf
postmaster.opts
postmaster.pid

The PGDATA directory is structured in several files and subdirectories. The main files are as
follows:

postgresql.conf is the main configuration file, used as default when the
service is started.
postgresql.auto.conf is the automatically included configuration file used to
store dynamically changed settings via SQL instructions.
pg_hba.conf is the HBA file that provides the configuration regarding available
database connections.
PG_VERSION is a text file that contains the major version number (useful when
inspecting the directory to understand which version of the cluster has managed
the PGDATA directory).
postmaster.pid is the PID of the running cluster.



Getting to Know Your Cluster Chapter 2

[ 50 ]

The main directories available in PGDATA are as follows:

base is a directory that contains all the users' data, including databases, tables,
and other objects.
global is a directory containing cluster-wide objects.
pg_wal is the directory containing the WAL files.
pg_stat and pg_stat_tmp are, respectively, the storage of the permanent and
temporary statistical information about the status and health of the cluster.

Of course, all files and directories in PGDATA are important for the cluster to work properly,
but so far, the preceding is the "core" list of objects that are fundamental in PGDATA itself.
Other files and directories will be discussed in later chapters.

Objects in the PGDATA directory
PostgreSQL does not name objects on disk, such as tables, in a mnemonic or human-
readable way; instead, every file is named after a numeric identifier. You can see this by
having a look, for instance, at the base subdirectory:

$ sudo ls -1 /postgres/12/base
1
13777
13778

As you can see from the preceding, the base directory contains three objects, named 1,
13777, and 13778, respectively. In particular, each of the preceding is a directory that
contains other files, as shown here:

$ sudo ls -1 /postgres/12/base/13777 | head
112
113
1247
1247_fsm
1247_vm
1249
1249_fsm
1249_vm
1255
1255_fsm



Getting to Know Your Cluster Chapter 2

[ 51 ]

As you can see, each file is named with a numeric identifier. Internally, PostgreSQL holds a
specific catalog that allows the database to match a mnemonic name to a numeric identifier
and vice versa. The integer identifier is named OID (Object Identifier); this name is a
historical term that today corresponds to the so-called filenode. The two terms will be used
interchangeably in this section.

There is a specific utility that allows you to inspect a PGDATA directory and extract
mnemonic names: oid2name. For example, if you executed the oid2name utility, you'd get
a list of all available databases:

$ oid2name
All databases:
    Oid  Database Name  Tablespace
----------------------------------
  13778       postgres  pg_default
  13777      template0  pg_default
      1      template1  pg_default

As you can see, the Oid numbers in the oid2name output reflect the same directory names
listed in the base directory; every subdirectory has a name corresponding to the database.
You can even go further and inspect a single file going into the database directory,
specifying the database where you are going to search for an object name with the -d flag:

$ cd /postgres/12/base/1
$ oid2name -d template1 -f 3395
From database "template1":
  Filenode                 Table Name
-------------------------------------
      3395  pg_init_privs_o_c_o_index

As you can see from the preceding, the 3395 file in the
/postgres/12/base/1 directory corresponds to the table named
pg_init_privs_o_c_o_index. Therefore, when PostgreSQL needs to interact with a table
like this, it will seek the disk to the /postgres/12/base/1/3395 file.

From the preceding, it should be clear that every SQL table is stored as a file with a numeric
name. However, PostgreSQL does not allow a single file to be greater than 1 GB in size, so
what happens if a table grows beyond that limit? PostgreSQL "attaches" another file with a
numeric extension that indicates the next chunk of 1 GB of data. In other words, if your
table is stored in the 123 file, the second gigabyte will be stored in the 123.1 file, and if
another gigabyte of storage is needed, another file, 123.2, will be created. Therefore, the
filenode refers to the very first file related to a specific table, but more than one file can be
stored on disk.



Getting to Know Your Cluster Chapter 2

[ 52 ]

Tablespaces
PostgreSQL pretends to find all its data within the PGDATA directory, but that does not
mean that your cluster is "jailed" to this directory. In fact, PostgreSQL allows "escaping" the
PGDATA directory by means of tablespaces. A tablespace is a storage space that can be outside
the PGDATA directory. Tablespaces are dragged into the PGDATA directory by means of
symbolic links stored in the pg_tblspc subdirectory. In this way, the PostgreSQL
processes do not have to seek outside PGDATA, still being able to access "external" storage. A
tablespace can be used to achieve different aims, such as enlarging the storage data or
providing different storage performances for specific objects. For instance, you can create a
tablespace on a slow disk to contain infrequently accessed objects and tables, keeping fast
storage within another tablespace for frequently accessed objects.

You don't have to make links by yourself: PostgreSQL provides the TABLESPACE feature to
manage this and the cluster will create and manage the appropriate links under the
pg_tblspc subdirectory.

For instance, the following is a PGDATA directory that has three different tablespaces:

$ sudo ls -l /postgres/12/pg_tblspc/
total 0
lrwx------  1 postgres  postgres  22 Dec 23 19:47 16384 ->
/data/tablespaces/ts_a
lrwx------  1 postgres  postgres  22 Dec 23 19:47 16385 ->
/data/tablespaces/ts_b
lrwx------  1 postgres  postgres  22 Dec 23 19:47 16386 ->
/data/tablespaces/ts_c
lrwx------  1 postgres  postgres  22 Dec 23 19:47 16387 ->
/data/tablespaces/ts_d

As you can see from the preceding example, there are four tablespaces that are attached to
the /data storage. You can inspect them with oid2name and the -s flag:

$ oid2name -s
All tablespaces:
    Oid  Tablespace Name
------------------------
   1663       pg_default
   1664        pg_global
  16384             ts_a
  16385             ts_b
  16386             ts_c
  16387             ts_d



Getting to Know Your Cluster Chapter 2

[ 53 ]

As you can see, the numeric identifiers of the symbolic links are mapped to mnemonic
names of the tablespaces. From the preceding example, you can observe that there are also
two particular tablespaces:

pg_default is the default tablespace corresponding to "none," the default
storage to be used for every object when nothing is explicitly specified. In other
words, every object stored directly under the PGDATA directory is attached to the
pg_default tablespace.
pg_global is the tablespace used for system-wide objects.

By default, both of the preceding tablespaces refer directly to the PGDATA directory,
meaning any cluster without a custom tablespace is totally contained within the PGDATA
directory.

Exploring configuration files and parameters
The main configuration file for PostgreSQL is postgresql.conf, a text-based file that
drives the cluster when it starts.
Usually, when changing the configuration of the cluster, you have to edit the
postgresql.conf file to write the new settings and, depending on the context of the
settings you have edited, to issue a cluster SIGHUP signal (that is, reload the configuration)
or restart it.

Every configuration parameter is associated with a context, and depending on the context,
you can apply changes with or without a cluster restart. In particular, available contexts are
the following:

internal: A group of parameters that are set at compile-time and therefore
cannot be changed at runtime.
postmaster: All the parameters that require the cluster to be restarted (that is, to
kill the postmaster process and start it again) to activate them.
sighup: All the configuration parameters that can be applied with a SIGHUP
signal sent to the postmaster process, which is equivalent to issuing a
reload signal in the operating system service manager.
backend and superuser-backend: All the parameters that can be set at run
time but will be applied to the next normal or administrative connection.
user and superuser: A group of settings that can be changed at run time and
are immediately active for normal and administrative connection.



Getting to Know Your Cluster Chapter 2

[ 54 ]

The configuration parameters will be explained later in the book, but the following is an
example of a minimal configuration file with some different settings:

$ cat postgresql.conf
shared_buffers = 512MB
maintenance_work_mem = 128MB
checkpoint_completion_target = 0.7
wal_buffers = 16MB
work_mem = 1310kB
min_wal_size = 1GB
max_wal_size = 2GB

The postgrsql.auto.conf file has the very same syntax of the main postgresql.conf
file but is automatically overwritten by PostgreSQL when the configuration is changed at
run time directly within the system, by means of specific administrative statements such
as ALTER SYSTEM.

You are not tied to having a single configuration file, and, in fact, there are specific
directives that can be used to include other configuration files. The configuration of the
cluster will be detailed in a later chapter.

The PostgreSQL HBA file (pg_hba.conf) is another text file that contains the connection
allowance: it lists the databases, the users, and the networks that are allowed to connect to
your cluster. As an example, the following is an excerpt from a pg_hba.conf file:

hosts   all luca 192.168.222.1/32 md5
hostssl all enrico 192.168.222.1/32 md5

In short, the preceding lines mean that user luca can connect to any database in the cluster
by the machine with IPv4 address 192.168.222.1, while user enrico can connect to any
database from the same machine but only on an SSL-encrypted connection. All the
available pg_hba.conf rules will be detailed in a later chapter, but for now, it is sufficient
to know that this file acts as a "firewall" for incoming connections.



Getting to Know Your Cluster Chapter 2

[ 55 ]

Summary
PostgreSQL can handle several databases within a single cluster, served out of disk storage
contained in a single directory named PGDATA. The cluster runs many different processes;
one, in particular, is named postmaster and is in charge of spawning other processes, one
per client connection, and keeping track of the status of maintenance processes.

The configuration of the cluster is managed via text-based configuration files, the main one
being postgresql.conf. It is possible to drive the cluster, by means of postmaster, to
recognize allowed user connections by means of rules placed in the pg_hba.conf text file.

You can interact with the cluster status by means of the pg_ctl tool or, depending on your
operating system, by other provided programs, such as service.

This chapter has presented you with all of the preceding information so that you are able
not only to install PostgreSQL but also to start and stop it regularly, integrate it with your
operating system, connect to the cluster.

In the following chapter, you will learn how to manage users and connections.

References
PostgreSQL PGDATA disk layout: https:/ ​/​www. ​postgresql. ​org/ ​docs/ ​12/
storage- ​file- ​layout. ​html

PostgreSQL initdb official documentation: https:/ ​/​www. ​postgresql. ​org/
docs/​12/ ​app- ​initdb. ​html

PostgreSQL pg_ctl official documentation: https:/ ​/​www. ​postgresql. ​org/
docs/​12/ ​app- ​pg- ​ctl. ​html

The pgAdmin4 graphical client for PostgreSQL: https:/ ​/​www. ​pgadmin. ​org/ ​

https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/storage-file-layout.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-initdb.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.postgresql.org/docs/12/app-pg-ctl.html
https://www.pgadmin.org/
https://www.pgadmin.org/
https://www.pgadmin.org/
https://www.pgadmin.org/
https://www.pgadmin.org/
https://www.pgadmin.org/
https://www.pgadmin.org/
https://www.pgadmin.org/
https://www.pgadmin.org/
https://www.pgadmin.org/


3
Managing Users and

Connections
PostgreSQL is a complex system that includes users, databases, and data. In order to be able
to interact with a database in the cluster, you need to have at least one user. By default,
when installing a new cluster, a single administrator user (named postgres) is created.
While it is possible to handle all the connections, applications, and databases with that
single administrative user, it is much better to create different users with different
properties and privileges, as well as login credentials, for every specific task.

PostgreSQL provides a very rich user-management structure, and single users can be
grouped into a variety of different groups at the same time. Moreover, groups can be
nested within other groups, so that you can have a very accurate representation of your
account model. Thanks to this accurate representation, and thanks to the fact that every
user and group can be assigned different properties and privileges, it is possible to apply
fine-grained permissions to each user in the database, depending on the specific task and
activity involved.

This chapter introduces you to the concepts behind users and groups and their
relationships. The chapter will focus mainly on the login properties of roles (either users or
groups) and how PostgreSQL can prevent specific users from connecting to specific
databases.

This chapter covers the following main topics:

Introduction to users and groups
Managing roles
Managing incoming connections at the role level



Managing Users and Connections Chapter 3

[ 57 ]

Introduction to users and groups
In order to connect interactively or via an application to a PostgreSQL database, you need
to have login credentials. In particular, a database user, a user who is allowed to connect to
that specific database, must exist.

Database users are somewhat similar to operating system users: they have a username and
a password (usually encrypted) and are known to the PostgreSQL cluster. Similarly to
operating system users, database users can be grouped into user groups in order to ease the
massive administration of users.

In SQL, and therefore even in PostgreSQL, both concepts of a single user account and a
group of accounts are encompassed by the concept of a role.

A role can be a single account, a group of accounts, or even both depending on how you
configure it; however, in order to ease management, a role should express one and only one
concept at a time: that is, it should be either a single user or a single group, but not both.

While a role can be used simultaneously as a group or a single user, we
strongly encourage you to keep the two concepts of user and group
separated—it will simplify the management of your infrastructure.

Every role must have a unique name or identifier, usually called the username.

A role represents a collection of database permissions and connection properties. The two
elements are orthogonal. You can set up a role simply as a container for other roles,
configuring the contained roles to hold the assigned permissions, or you can have a role
that holds all the permissions for contained roles, or mix and match these two approaches.

It is important to understand that a role is defined at the cluster level. This means that the
same role can have different privileges and properties depending on the database it is using
(for instance, being allowed to connect to one database and not to another).

Since a role is defined at a cluster level, it must have a unique name
within the entire cluster, not just the group!



Managing Users and Connections Chapter 3

[ 58 ]

Managing roles
Roles can be managed by means of three main SQL statements: CREATE ROLE to create a
role from scratch, ALTER ROLE to change some role properties (for example, the login
password), and DROP ROLE to remove an existing role.

In order to use the SQL statements to create new roles and then manage them, it is
necessary to connect to a database in the cluster. The superuser role postgres can be used
to that aim, at least initially; such a role is created when the database cluster is initialized.
Using the postgres role and a template database is the most common way to create your
initial roles.

PostgreSQL ships with a set of shell scripts that can be used to create,
modify, and delete roles without connecting directly to the cluster. Under
the hood, those scripts connect to the template database and perform the
same SQL commands found in this section.

A role is identified by a string that represents the role name, or better, the account name of
that role. Such a name must be unique across the system, meaning that you cannot have
two different roles with identical names, and must consist of letters, digits, and some
symbols, such as underscore.

Creating new roles
In order to create a new role, either a single user account or a group container, you need to
use the CREATE ROLE statement. The statement has the following short synopsis and
requires a mandatory parameter that is the role username:

CREATE ROLE name [ [ WITH ] option [ ... ] ]

The options that you can specify in the statement range from the account password, the
ability to log in interactively, and the superuser privileges. Please remember that, unlike
other systems, in PostgreSQL, you can have as many superusers as you want, and everyone
has the same live-or-die rights on the cluster.

Almost every option of the CREATE ROLE statement has a positive form that adds the
ability to the role, and a negative form (with a NO prefix) that excludes the ability from the
role. As an example, the SUPERUSER option adds the ability to act as a cluster superuser,
while the NOSUPERUSER option removes it from the role.



Managing Users and Connections Chapter 3

[ 59 ]

In this chapter, we will focus on the login abilities, which is a restricted set of options that
allows a role to log in to the cluster. Other options will be discussed in Chapter 10, Users,
Roles, and Database Security, since they are more related to the security features of the role.

What if you forgot an option at the CREATE ROLE time? And what if you
changed your mind and want to remove an option from an existing role?
There is an ALTER ROLE statement that allows you (as a cluster superuser)
to modify an existing role without having to drop and recreate it. The
statement will be shown in Chapter 10, Users, Roles, and Database Security,
along with some other interesting options for roles.

Role passwords, connections, and availability
Connecting to a database in the cluster means that the role must authenticate itself, and
therefore there must be an authentication mechanism, the username and password being
the most classical ones.

When a user attempts to connect to a database, PostgreSQL checks the login credentials and
a few other properties of the user to ensure that it is allowed to log in and has valid
credentials.

The main options that allow you to manipulate and manage the login attempts are as
follows:

 PASSWORD or ENCRYPTED PASSWORD are equivalent options and allow you to set
the login password for the role. Both options exist for backward compatibility
with older PostgreSQL versions, but nowadays, the cluster always stores role
passwords in an encrypted form, so the use of ENCRYPTED PASSWORD does not
add any value to the PASSWORD option.
PASSWORD NULL explicitly forces a null (not empty) password, preventing the
user from logging in with any password. This option can be used to deny
password-based authentication.
CONNECTION LIMIT <n> allows the user to open no more than <n>
simultaneous connections to the cluster, without any regard to a specific
database. This is often useful to prevent a user from wasting resources on the
cluster.
VALID UNTIL allows you to specify an instant (in the future) when the role will
expire.



Managing Users and Connections Chapter 3

[ 60 ]

Setting the password for a specific role does not mean that that role will be able to connect
to the cluster: in order to be allowed to interactively log in, the role must also have the
LOGIN option. In other words, the following statement will not allow the user to log in:

template1=# CREATE ROLE luca
            WITH PASSWORD 'xxx';

The default option is NOLOGIN (which prevents interactive login). Therefore, in order to
define interactive users, remember to add the LOGIN option when creating the role:

template1=# CREATE ROLE luca
            WITH LOGIN PASSWORD 'xxx';

Multiple options can be written in any order, so the preceding code represents the same
statement, but in a form that is less human readable:

template1=# CREATE ROLE luca
            WITH PASSWORD 'xxx' LOGIN;

The VALID UNTIL option allows you to define a date or even a timestamp (that is, an
instant) in the future when the role password will expire, and will no longer be allowed to
log in to the cluster.

Of course, this option only makes sense for interactive roles, meaning those who have the
LOGIN capability. As an example, the following role will be prevented from logging in after
Christmas 2020:

template1=# CREATE ROLE luca
            WITH LOGIN PASSWORD 'xxx'
            VALID UNTIL '2020-12-25 23:59:59';

Using a role as a group
A group is a role that contains other roles. It's that simple!

Usually, when you want to create a group, all you need to do is create a role without the
LOGIN option and then add all the members one after the other to the containing role.
Adding a role to a containing role makes the latter a group.



Managing Users and Connections Chapter 3

[ 61 ]

In order to create a role as a member of a specific group, the IN ROLE option can be used.
This option accepts the name of the group (which, in turn, is another role) to which the
newly created role will become a member. As an example, in the following code block, you
can see the creation of the book_authors group and the addition of the role members luca
and enrico:

template1=# CREATE ROLE book_authors
            WITH NOLOGIN;
CREATE ROLE
template1=# CREATE ROLE luca
 WITH LOGIN PASSWORD 'xxx'
 IN ROLE book_authors;
CREATE ROLE
template1=# CREATE ROLE enrico
            WITH LOGIN PASSWORD 'xxx'
            IN ROLE book_authors;
CREATE ROLE

The IN GROUP clause of CREATE ROLE is an obsolete synonym for the IN
ROLE clause.

It is also possible to add members to a group using the special GRANT statement. The GRANT
statement is the general SQL statement that allows for fine privilege tuning (more on this in
Chapter 10, Users, Roles, and Database Security); PostgreSQL extends the SQL syntax
allowing the granting of a role to another role. When you grant a role to another, the former
becomes a member of the latter. In other words, assuming that all roles already exist
without any particular association, the following adds the role enrico to the
book_authors group:

template1=# GRANT ROLE book_authors
            TO enrico;

Every group can have one or more admin members, which are allowed to add new
members to the group. The ADMIN option allows a user to specify the member that will be
associated as an administrator of the newly created group. For instance, in the following
code block, you can see the creation of the new group called book_reviewers with luca
as administrator; this means that the user luca, even if they are not a cluster superuser, will
be able to add new members to the book_reviewers group:

template1=# CREATE ROLE book_reviewers
            WITH NOLOGIN
            ADMIN luca;
CREATE ROLE



Managing Users and Connections Chapter 3

[ 62 ]

As you can see, the ADMIN option can be used in CREATE ROLE only if the administrator
role already exists; in the example, the luca role must have been created before the group,
as he is going to be the administrator.

The GRANT statement can solve the problem—the WITH ADMIN OPTION clause allows the
membership of a role with administrative privileges.

As an example, the following piece of code shows how to make the user enrico also an
administrator of the book_reviewers group. Please note that the full WITH ADMIN
OPTION has to be spelled out:

template1=# GRANT book_reviewers
            TO enrico
            WITH ADMIN OPTION;
GRANT ROLE

What happens if a group role has the LOGIN option? The group will still be a role container,
but it can act also as a single user account with the ability to log in. While this is possible, it
is a more common practice to deny group roles access to login to avoid confusion.

Removing an existing role
In order to remove an existing role, you need to use the DROP ROLE statement. The 
statement has a very simple synopsis:

DROP ROLE [ IF EXISTS ] name [, ...]

You need to specify only the role name you want to delete, or, if you need to delete
multiple roles, you can specify them as a comma-separated list.

In order to be deleted, the role must exist; therefore, if you try to remove a nonexistent role,
you will receive an error:

template1=# DROP ROLE this_role_does_not_exists;
ERROR:  role "this_role_does_not_exists" does not exist

As you can see, PostgreSQL warns you that it cannot delete a role if the role does not exist.

You cannot break PostgreSQL! PostgreSQL will protect itself from your
mistakes, and does a very good job of keeping your data safe! The
preceding example about the deletion of a nonexistent role is an example
of how PostgreSQL protects itself from your own mistakes in order to
ensure an always-stable service.



Managing Users and Connections Chapter 3

[ 63 ]

The DROP ROLE statement supports the IF EXISTS clause, which stops PostgreSQL from
complaining about the deletion of a role that is missing:

template1=# DROP ROLE IF EXISTS this_role_does_not_exists;
NOTICE:  role "this_role_does_not_exists" does not exist, skipping
DROP ROLE

As you can see, this time PostgreSQL does not raise an error; instead, it displays a notice
about the fact that the role does not exist. However, it executes the statement, doing
nothing, but reporting success instead of failure. Why could this be useful? Imagine that
you have an automated task that is in charge of deleting several roles: if the DROP ROLE
reports a failure, your task could be interrupted, while with IF EXISTS, you will rest
assured that PostgreSQL will not cause an abort due to a missing role.

There are several statements that support the IF EXISTS clause, as you
will see in later chapters. The idea is to avoid reporting an error when you
are not interested in catching it, and you should use, whenever possible,
this clause in automating programs.

What happens if you drop a group? Member roles will stay in place, but of course, the
association with the group will be lost (since the group has been deleted). In other words,
deleting a group does not cascade to its members.

Inspecting existing roles
Now that you know how to manage roles, how can you inspect existing roles, including
yours? There are different ways to get information about existing roles, and all rely on the
PostgreSQL catalogs, the only source of introspection into the cluster.

In order to get information about what role you are running, use the special keyword
CURRENT_ROLE: you can query it via a SELECT statement (such statements will be
presented in later chapters, so for now, just blindly use it as shown here):

template1=# SELECT current_role;
 current_role
--------------
 postgres
(1 row)

If you connect to the database with another user, you will see different results:

$ psql -U luca template1
psql (12.1)
Type "help" for help.



Managing Users and Connections Chapter 3

[ 64 ]

template1=> SELECT current_role;
 current_role
--------------
 luca
(1 row)

Knowing your own role is important, but getting information about existing roles and their
properties can be even more illuminating. psql provides the special \du (describe users)
command to list all the available roles within the system:

$ psql -U postgres template1
psql (12.1)
Type "help" for help.
template1=# \du
                                       List of roles
  Role name   |                         Attributes
|   Member of
--------------+------------------------------------------------------------
+----------------
 book_authors | Cannot login
| {}
 enrico       |
| {book_authors}
 luca         | 1 connection
| {book_authors}
 postgres     | Superuser, Create role, Create DB, Replication, Bypass RLS
| {}

The Attributes column shows the options and properties of the role, many of which will
be discussed in Chapter 10, Users, Roles, and Database Security. With regard to the login
properties, if a role is prevented from connecting interactively to the cluster, a Cannot
login information will be displayed in the book_authors line in the preceding example.

You can get information about a specific role by directly querying the pg_roles catalog, a
catalog that contains information about all PostgreSQL roles. For example, to get the basic
connection information for the luca role, you can execute the following query:

template1=# SELECT rolname, rolcanlogin, rolconnlimit, rolpassword
            FROM pg_roles
            WHERE rolname = 'luca';
-[ RECORD 1 ]--+---------
rolname        | luca
rolcanlogin    | t
rolconnlimit   | 1
rolpassword    | ******



Managing Users and Connections Chapter 3

[ 65 ]

As you can see, the password is not displayed for security reasons, even if the cluster
superuser is asking for it. It is not possible to get the password in plain text; as we have
already explained, the passwords are always stored encrypted. The special catalog
pg_authid represents the backbone for the pg_roles information, and can be queried
with the very same statement, but reports the user password (as encrypted text). The
following code shows the result of querying pg_authid for the very same user as in the 
fourth listing; note how the rolpassword field contains some more useful information this
time:

template1=# SELECT rolname, rolcanlogin, rolconnlimit, rolpassword
            FROM pg_authid WHERE rolname = 'luca';
-[ RECORD 1 ]--+------------------------------------
rolname        | luca
rolcanlogin    | t
rolconnlimit   | 1
rolpassword    | md5bd18b4163ec8a322833d8d7a6633c8ec

The password is represented as a hash and the initial part specifies the encryption
algorithm used—MD5. You will learn more about password encryption in Chapter 10,
Users, Roles, and Database Security.

Managing incoming connections at the role
level
When a new connection is established to a cluster, PostgreSQL validates the incoming
request at the role level. The fact that the role has the LOGIN property is not enough for it to
open a new connection to any database within the cluster. This is because PostgreSQL
checks the incoming connection request against a kind of firewall table, formerly know as
host-based access, that is defined within the pg_hba.conf file.

If the table states that the role can open the connection to the specified database, the
connection is granted (assuming it has the LOGIN property); otherwise, it is rejected.

Every time you modify the pg_hba.conf file, you need to instruct the cluster to reload the
new rules via a HUP signal or by means of a reload command in pg_ctl. Therefore, the
usual workflow when dealing with pg_hba.conf is similar to the following:

$ $EDITOR $PGDATA/pg_hba.conf
... modify the file as you wish ...

$ sudo -u postgres pg_ctl reload -D $PGDATA



Managing Users and Connections Chapter 3

[ 66 ]

The syntax of pg_hba.conf
The pg_hba.conf file contains the firewall for incoming connections. Every line within the
file has the following structure:

<connection-type> <database> <role> <remote-machine> <auth-method>

Here, we see the following values:

connection-type is the type of connection supported by PostgreSQL, and is
either local (meaning via operating system sockets), host (TCP/IP connection),
or hostssl (TCP/IP encrypted connection).
database is a name of a specific database that the line refers to or the special
keyword all, which means every available database.
role is the specific role username that the line refers to or the special keyword
all, which means all available roles (and groups).
remote-machine is the hostname, IP address, or subnet from which the
connection is expected. The special keyword all matches with any remote
machine that the connection is established from, while the special keywords
samehost and samenet match the localhost or the whole network that the
PostgreSQL cluster is running within, respectively.
auth-method dictates how the connection must be handled; more generally, it
deals with how the login credentials have to be checked. The main methods are
scram-sha-256 (the most robust method, available since PostgreSQL 10), md5
(the method used in older versions), reject to always refuse the connection, and
trust to always accept the connection without any regard to supplied
credentials.

In order to better understand how the system works, the following is an excerpt of a
possible pg_hba.conf file:

host    all       luca     carmensita       scram-sha-256
hostssl all       test     192.168.222.1/32 scram-sha-256
host    digikamdb pgwatch2 192.168.222.4/32 trust
host    digikamdb enrico   carmensita       reject

The first line indicates that the user luca can connect to every database within the cluster
(all clause) via a TCP/IP connection (host clause) coming from a host named
carmensita, but he must provide a valid username/password to verify the SCRAM
authentication method.



Managing Users and Connections Chapter 3

[ 67 ]

The second line states that the user test can connect to every database in the system over
an SSL-encrypted connection (see the hostssl clause), but only from a machine that has
the IPv4 address of 192.168.222.1; again, the credentials must pass the SCRAM
authentication method.

The third line states that access to the digikamdb database is granted only to the pgwatch2
user over a nonencrypted connection from the host 192.168.222.4; this time, the access is
granted (trust) without any credential being required.

Finally, the last line rejects any incoming connection from the host named carmensita,
opened by the user enrico against the digikamdb; in other words, enrico is not able to
connect to digikamdb from the carmensita host.

The authentication method trust should never be used; it allows any role
to connect to the database if the HBA has a rule that matches the incoming
connection. This is the method that is used when the cluster is initialized
in order to enable the freshly created superuser to connect to the cluster.
You can always use this trick as a last resort if you get yourself locked out
of your own cluster.

Order of rules in pg_hba.conf
The order by which the rules are listed in the pg_hba.conf file matters. The first rule that
satisfies the logic is applied, and the others are skipped. In order to better understand this,
imagine that we want to allow luca to connect to any database in the cluster except
forumdb. The following does not make this happen:

host all     luca all scram-sha-256
 host forumdb luca all reject

Why does the preceding code not work?

Imagine that the user luca tries to open a connection to the forumdb database: the machine
from which the connection is attempted is matched against the all keyword with the line
containing luca, and then the database name is matched against the all keyword for the
database field.



Managing Users and Connections Chapter 3

[ 68 ]

Since both the remote machine and the database name are subsets of all, the connection is
passed through the SCRAM-256 authentication method; if the user succeeds in the
authentication, the connection is opened. The reject line is therefore skipped because the
first line matches. On the other hand, exchanging the order of the rules as shown in the
following code does work:

host forumdb luca all reject
host all     luca all scram-sha-256

In this way, when luca tries to connect to a database, he gets rejected if the database is
forumdb; otherwise, he can connect (if he passes the required authentication method).

Merging multiple rules into a single one
One line declares at least one rule, but it is possible to merge multiple lines into a single
one. In fact, the role, database, and remote-machine fields allow for the definition of
multiple matches, each one separated by a , (comma).

As an example, suppose we want to give access to both luca and enrico roles (from the
same network that the cluster is running into) to the forumdb and digikamdb databases, so
that pg_hba.conf looks like the following:

host forumdb   luca   samenet scram-sha-256
host forumdb   enrico samenet scram-sha-256
host digikamdb luca   samenet scram-sha-256
host digikamdb enrico samenet scram-sha-256

Since the database and the role fields can list more than one item, the preceding code can be
compressed into the following one:

host forumdb,digikamdb   luca   samenet scram-sha-256
host forumdb,digikamdb   enrico samenet scram-sha-256

We can shrink the rules one step further since the machine from which the database
connection can be established is literally the same for both the rules, and therefore the final
code is as follows:

host forumdb,digikamdb   luca, enrico  samenet scram-sha-256

It should now be clear to you that if more rules have the same authentication method and
connection protocol, then it is possible to collapse them into an aggregation. This can help
you manage the host-based access configuration.



Managing Users and Connections Chapter 3

[ 69 ]

Using groups instead of single roles
The role field in every pg_hba.conf rule can be substituted by the name of a group
(remember that a group is itself a role); however, in order to make the rule valid for every
member of the group, you have to prefix the group name with a + (plus) sign.

To better understand this, consider the example of the forum_stats group that includes
the luca member. The following rule will not allow the luca role to access the forumdb
database:

host forumdb forum_stats all scram-sha-256

Even if the user is a member the forum_stats role, it will be denied the ability to log in to
the database; the cluster host-based access policy requires the forum_stats role to be
exactly matched by a rule, and in the following, the luca role does not match any rule:

$ psql -U luca forumdb
psql: error: could not connect to server:
FATAL:  no pg_hba.conf entry for host "192.168.222.1", user "luca",
database "forumdb", SSL off

On the other hand, if we clearly state that we want to use the forum_stat role as a group
name, and therefore allow all of its members, the connection can be established by any role
that is a member of the group, including luca. Therefore, we change the rule to the
following:

host forumdb +forum_stats all scram-sha-256

This, in turn, (bearing in mind the plus sign) makes the connection possible, as shown here:

$ psql  -U luca forumdb
psql (12.1)
Type "help" for help.

forumdb=>

The pg_hba.conf rules, when applied to a group name (that is, with the + preceding the
role name) include all the direct and indirect members.



Managing Users and Connections Chapter 3

[ 70 ]

What if we want to allow every group member except one to access the database?
Remembering that the rule engine stops at the first match, it is possible to place a reject rule
before the group acceptance rule. For example, to allow every member of the forum_stats
group to access the database while preventing the single luca role from connecting, you
can use the following:

host forumdb luca         all reject
host forumdb +forum_stats all scram-sha-256

The first line will prevent the luca role from connecting, even if the following one allows
every member of the forum_stats (including luca) to connect: the first match wins and
so luca is locked out the database.

Using files instead of single roles
The role field of a rule can also be specified as a text file, both line or comma-separated.
This is handy when you deal with long usernames or group names, or with lists produced
automatically from batch processes.

If you specify the role field with an at sign prefix (@), the name is interpreted as a line-
separated text file (as a relative name to the PGDATA directory). For instance, in order to
reject connections to all the users and groups listed in the file rejected_users.txt, while
allowing connection to all the usernames and groups specified in the allowed_users.txt
file, the pg_hba.conf file has to look like the following snippet:

host forumdb @rejected_users.txt   all reject
host forumdb @allowed_users.txt    all scram-sha-256

The following is the content of the rejected_users.txt file, followed by the
allowed_users.txt file:

$ sudo cat $PGDATA/rejected_users.txt
luca
enrico

$ sudo cat $PGDATA/allowed_users.txt
+forum_stats, postgres

As you can see, it is possible to specify the file contents as either a line-separated list of
usernames or a comma-separated list. It is also possible to specify which roles to use as a
group by placing a + sign in front of the role name.



Managing Users and Connections Chapter 3

[ 71 ]

Summary
Roles are a powerful tool to represent both single users and a group of users. When a
database connection attempt is made, PostgreSQL processes the connection credential
information through the host-based access control so that it can immediately establish or
reject the connection depending on firewall-like rules. Moreover, single users and groups
can have other limitations to the number of connections they can open against a database or
against the whole cluster.

In this chapter, you have seen how to create and manage roles, as well as how to allow
single roles to connect to the cluster and to specific databases. In Chapter 10, Users, Roles,
and Database Security, you will see how to deal with the security properties of users and
groups, but before you proceed further, you need to know how PostgreSQL objects can be
created and managed.

In the following chapter, you will learn how to interact with the PostgreSQL database
using SQL statements.

References
CREATE ROLE statement official documentation: https:/ ​/​www. ​postgresql. ​org/
docs/​12/ ​sql- ​createrole. ​html

DROP ROLE statement official documentation: https:/ ​/​www. ​postgresql. ​org/
docs/​12/ ​sql- ​droprole. ​html

PostgreSQL pg_roles catalog details: https:/ ​/​www. ​postgresql. ​org/ ​docs/ ​12/
view-​pg- ​roles. ​html

PostgreSQL pg_authid catalog details: https:/ ​/​www. ​postgresql. ​org/ ​docs/ ​12/
catalog- ​pg- ​authid. ​html

PostgreSQL host-based access rule details: https:/ ​/​www. ​postgresql. ​org/ ​docs/
12/​auth- ​pg- ​hba- ​conf. ​html

https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html


2
Section 2: Interacting with the

Database
In this section, you will learn how to interact with a live cluster, creating database objects
and using tools to connect to it. You will also learn about various basic and advanced
commands that can be used for managing databases.

This section contains the following chapters:

Chapter 4, Basic Statements
Chapter 5, Advanced Statements
Chapter 6, Window Functions
Chapter 7, Server-Side Programming
Chapter 8, Triggers and Rules
Chapter 9, Partitioning



4
Basic Statements

In this chapter, we will discuss basic SQL commands for PostgreSQL; these are Data
Definition Language (DDL) commands and Data Manipulation Language (DML)
commands. In basic terms, DDL commands are used to manage databases and tables, and
DML commands are used to insert, delete, update, and select data inside databases. In this
chapter, we will also discuss the psql environment, which refers to the interactive terminal
for working with PostgreSQL. psql can be described as PostgreSQL's shell environment; it
is the gate we have to go through in order to start writing commands natively in
PostgreSQL.  We have to remember that psql is always present in any PostgreSQL
installation we work with. psql is a powerful environment in which to manage our data
and our databases. 

Basic statements and psql are therefore the foundations on which we will build our
knowledge of PostgreSQL. Therefore, reading and understanding this chapter is essential if
you are going to understand some of the more complex topics we are going to talk about
later.

Let's show a list of what we're going to learn in this chapter:

Setting up our developing environment
Creating and managing databases
Managing tables
Understanding basic table manipulation statements

Technical requirements
You can find the code for this chapter in the following GitHub repository: https:/ ​/​github.
com/​PacktPublishing/ ​Learn- ​PostgreSQL.

https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL


Basic Statements Chapter 4

[ 74 ]

Setting up our developing environment
At this point in the book, we have learned how to install PostgreSQL and how to configure
users. Let's now see how to connect to our database. In the next four steps, we will see how
easy it is to do this:

Start by connecting to your psql environment:1.

postgres@pgdev:~$ psql
psql (12.1 (Debian 12.1-1.pgdg100+1))
Type "help" for help.
postgres=#

Next, switch on the expanded mode using the \x command:2.

postgres=# \x
Expanded display is on.

Then list all the databases that are present in the cluster: 3.

postgres=# \l
List of databases
-[ RECORD 1 ]-----+----------------------
Name              | forumdb
Owner             | postgres
Encoding          | UTF8
Collate           | en_US.UTF-8
Ctype             | en_US.UTF-8
Access privileges |

 Finally, connect to the forumdb database:4.

postgres=# \c forumdb
You are now connected to database "forumdb" as user "postgres".
forumdb=#

Now, that we have finished setting up our developing environments, we can move on to
creating databases in them.



Basic Statements Chapter 4

[ 75 ]

Creating and managing databases
In this section, we will start by creating our first database, then we will learn how to delete
a database and, finally, how to create a new database from an existing one. We will also
analyze the point of view of the DBA. We will see what happens behind the scenes when
we create a new database and learn some basic functions useful to the DBA to get an idea of
​​the real size of the databases.

Let's see how to create a database from scratch and what happens behind the scenes when a
database is created.

Creating a database
To create the forumdb database from scratch, you will need to execute this simple
statement:

CREATE DATABASE databasename

SQL is a case insensitive language, so we can write all the commands with
uppercase or lowercase letters. 

Now, let's see what happens behind the scenes when we create a new database.
PostgreSQL performs the following steps:

Makes a physical copy of the template database, template1.1.
Assigns the database name to the database just copied.2.

The template1 database is a database that is created by the initdb process during the
initialization of the PostgreSQL cluster.

Managing databases
In the previous section, we created a new database called forumdb. In this section, we will
see how to manage databases, how to list all the databases present on a cluster, how to
create a database starting from an existing database, how to drop a database, and what
happens internally, behind the scenes, when we create and drop the database.



Basic Statements Chapter 4

[ 76 ]

Listing all databases
To list all the tables present in the database forumdb, we have to use the psql
command \d. The \d command makes a list of all the tables present in the forumdb
database:

forumdb=# \d
 List of relations
 Schema | Name              | Type     | Owner
--------+-------------------+----------+----------
 public | categories        | table    | postgres
 public | categories_pk_seq | sequence | postgres
 public | j_posts_tags      | table    | postgres
 public | posts             | table    | postgres
 public | posts_pk_seq      | sequence | postgres
 public | tags              | table    | postgres
 public | tags_pk_seq       | sequence | postgres
 public | users             | table    | postgres
 public | users_pk_seq      | sequence | postgres
(9 rows)

Making a new database from a modified template
Now that we've learned how to list all tables in a database, let's see that any changes made
to the template1 database will be seen by all the databases that will be created later. Now
we will perform these steps:

Connect to the template1 database.1.
Create a table called dummytable inside the template1 database.2.
Create a new database called dummydb.3.

So let's start making the database using the following steps:

Connect to the template1 database:1.

forumdb=# \c template1
You are now connected to database "template1" as user "postgres".

 Create a table called dummytable. For now, we don't need to worry about the2.
exact syntax for creating tables; this will be explained in more detail later on: 

template1=# create table dummytable (dummyfield integer not null
primary key);
CREATE TABLE



Basic Statements Chapter 4

[ 77 ]

Use the \d command to show a list of tables that are present in3.
the template1 database:

template1=# \d
 List of relations
 Schema | Name       | Type  | Owner
--------+------------+-------+----------
 public | dummytable | table | postgres
(1 row)

So, we have successfully added a new table to the template1 database. Now4.
let's try to create a new database called dummydb and make a list of all the tables
in the dummydb database:

template1=# create database dummydb;
CREATE DATABASE
template1=# \c dummydb
You are now connected to database "dummydb" as user "postgres".

The dummydb database contains the following tables:

dummydb=# \d
 Schema | Name       | Type  | Owner
--------+------------+-------+----------
 public | dummytable | table | postgres
(1 row)

As expected, in the dummydb database, we can see the table created previously in
the template1 database.

It is important to remember that any changes made to the template1
database will be present in all databases created after this change.

Now we will delete the dummydb database and the dummy table in the template1
database.



Basic Statements Chapter 4

[ 78 ]

Dropping tables and databases
In the next section, you will learn how to delete tables and databases. The commands we
are going to learn are the following:

DROP TABLE: This is used to drop a table in the database.
DROP DATABASE: This is used to drop a database in the cluster. 

Dropping tables
In PostgreSQL, the command needed to drop a table is simply DROP TABLE tablename.
To do this, we have to connect to the database to which the table belongs, and then run the
command DROP TABLE tablename.

For example, if we want to drop the dummytable table from database template1, we have
to take the following steps.

We connect to database template1 using the following command:

dummydb=# \c template1
You are now connected to database "template1" as user "postgres".

And we can drop the table using the following command:

template1=# drop table dummytable;
DROP TABLE

Dropping databases
In PostgreSQL  the command needed to drop a table is simply DROP DATABASE
databasename; for example, if we want to drop the dummydb database, we have to execute
the following command:

template1=# drop database dummydb ;
DROP DATABASE

With this, everything has now been returned to how it was at the beginning of the chapter.



Basic Statements Chapter 4

[ 79 ]

Making a database copy
The following steps show you how to make a new database out of a template database:

Make a copy of the forumdb database on the same PostgreSQL cluster  by1.
performing the following command: 

template1=# create database forumdb2 template forumdb;
CREATE DATABASE

By using this command, you are simply telling PostgreSQL to create a new
database called forumdb2 using the forumdb database as a template.

Connect to the forumdb2 database:2.

template1=# \c forumdb2
You are now connected to database "forumdb2" as user "postgres".

List all the tables in the forumdb2 database:3.

forumdb2=# \d
 List of relations
 Schema | Name              | Type     | Owner
--------+-------------------+----------+----------
 public | categories        | table    | postgres
 public | categories_pk_seq | sequence | postgres
 public | j_posts_tags      | table    | postgres
 public | posts             | table    | postgres
 public | posts_pk_seq      | sequence | postgres
 public | tags              | table    | postgres
 public | tags_pk_seq       | sequence | postgres
 public | users             | table    | postgres
 public | users_pk_seq      | sequence | postgres
(9 rows)

You can see that the same tables that are present in the forumdb database are now present
in this database.

Confirming the database size
We are now going to address the question of how one can determine the real size of a
database. There are two methods you can use to do this: psql and SQL. Let's compare the
two in the following sections.



Basic Statements Chapter 4

[ 80 ]

The psql method
We can check the database size using the psql method, using the following steps:

First, we return to expanded mode:1.

forumdb=# \x
Expanded display is on.

Then, execute the following command:2.

forumdb=# \l+ forumdb
List of databases
-[ RECORD 1 ]-----+------------
Name              | forumdb
Owner             | postgres
Encoding          | UTF8
Collate           | en_US.UTF-8
Ctype             | en_US.UTF-8
Access privileges |
Size              | 8369 kB
Tablespace        | pg_default
Description       |

As you can see, in the Size field, you can now see the real size of the database at that
moment.

The SQL method
When trying to use the method outlined above, you may find that you cannot connect to
your database through the psql command. This happens when we only have web access to
the database; for example, if we only have pgadmin4 server-side installation access. If this
happens, the SQL method is an alternative approach that will allow you to find the same
information. To use this method, complete the following steps:

Execute the following command:1.

forumdb=# select pg_database_size('forumdb');
-[ RECORD 1 ]----+--------
pg_database_size | 8569711

The pg_database_size(name) function returns the disk space used by the
database called forumdb. This means that the result is the number of bytes used
by the database.



Basic Statements Chapter 4

[ 81 ]

If you wanted a more readable result in "human" terms, you could use the2.
pg_size_pretty function and write the following:

forumdb=# select pg_size_pretty(pg_database_size('forumdb'));
-[ RECORD 1 ]--+--------
pg_size_pretty | 8369 kB

As you can see, both methods give the same result.

Creating a database
We have just learned what commands are used to create a new database, but what happens
behind the scenes when a database is created? In this section, we will see the relationships
that exist between what we perform at the SQL level and what happens physically in the
filesystem.

To understand this, we need to introduce the pg_database system table:

Go back to the expanded mode and execute the following:1.

forumdb=# select * from pg_database where datname='forumdb';
-[ RECORD 1 ]-+------------
oid           | 16630
datname       | forumdb
datdba        | 10
encoding      | 6
datcollate    | en_US.UTF-8
datctype      | en_US.UTF-8
datistemplate | f
datallowconn  | t
datconnlimit  | -1
datlastsysoid | 14049
datfrozenxid  | 479
datminmxid    | 1
dattablespace | 1663
datacl

This query gives us all the information about the forumdb database. The first
field is an object identifier (OID), which is a number that uniquely identifies the
database called forumdb. 



Basic Statements Chapter 4

[ 82 ]

Exit the psql environment and go to the $PGDATA directory (as shown in2.
previous chapters). In a Linux Debian environment, we have to execute the
following:

cd /var/lib/postgresql/12/main/

For the PostgreSQL 13 version, the path is as follows:

cd /var/lib/postgresql/13/main/

Use the ls command to see what is inside the main directory:3.

postgres@pgdev:~/12/main$ ls -l
total 84
drwx------ 6 postgres postgres 4096 Dec 8 20:28 base
drwx------ 2 postgres postgres 4096 Dec 10 11:05 global
drwx------ 2 postgres postgres 4096 Dec 6 18:47 pg_commit_ts
drwx------ 2 postgres postgres 4096 Dec 6 18:47 pg_dynshmem
drwx------ 4 postgres postgres 4096 Dec 10 11:09 pg_logical
drwx------ 4 postgres postgres 4096 Dec 6 18:47 pg_multixact
drwx------ 2 postgres postgres 4096 Dec 10 11:04 pg_notify
drwx------ 2 postgres postgres 4096 Dec 6 18:47 pg_replslot
drwx------ 2 postgres postgres 4096 Dec 6 18:47 pg_serial
drwx------ 2 postgres postgres 4096 Dec 6 18:47 pg_snapshots
drwx------ 2 postgres postgres 4096 Dec 10 11:04 pg_stat
drwx------ 2 postgres postgres 4096 Dec 6 18:47 pg_stat_tmp
drwx------ 2 postgres postgres 4096 Dec 6 18:47 pg_subtrans
drwx------ 2 postgres postgres 4096 Dec 6 18:47 pg_tblspc
drwx------ 2 postgres postgres 4096 Dec 6 18:47 pg_twophase
-rw------- 1 postgres postgres 3 Dec 6 18:47 PG_VERSION
drwx------ 3 postgres postgres 4096 Dec 6 18:47 pg_wal
drwx------ 2 postgres postgres 4096 Dec 6 18:47 pg_xact
-rw------- 1 postgres postgres 88 Dec 6 18:47 postgresql.auto.conf
-rw------- 1 postgres postgres 130 Dec 10 11:04 postmaster.opts
-rw------- 1 postgres postgres 107 Dec 10 11:04 postmaster.pid

As you can see, the first directory is called base. It contains all the databases that
are in the cluster.

Go inside the base directory in order to see the contents: 4.

postgres@pgdev:~/12/main$ cd base
postgres@pgdev:~/12/main/base$

List all files that are present in the directory:5.

postgres@pgdev:~/12/main/base$ ls -l
total 40



Basic Statements Chapter 4

[ 83 ]

drwx------ 2 postgres postgres 12288 Dec 10 11:04 1
drwx------ 2 postgres postgres 4096 Dec 6 18:47 14049
drwx------ 2 postgres postgres 12288 Dec 10 11:05 14050
drwx------ 2 postgres postgres 12288 Dec 10 11:05 16630

As you can see, there is a directory called 16630; its name is exactly the same as the OID in
the pg_database catalog. 

When PostgreSQL creates a new database, it copies the directory relative
to the database template1 and then gives it a new name. In
PostgreSQL, databases are directories.

In this section, we have learned how to manage databases. In the next section, we will learn
how to manage tables.

Managing tables
In this section, we will learn how to manage tables in the database.

PostgreSQL has three types of tables:

Temporary tables: Very fast tables, visible only to the user who created them
Unlogged tables: Very fast tables to be used as support tables common to all
users
Logged tables: Regular tables

We will now use the following steps to create a user table from scratch:

Create a new database using the following command:1.

forumdb=# create database forumdb2;
CREATE DATABASE

Execute the following command:2.

forumdb=# \c forumdb2
You are now connected to database "forumdb2" as user "postgres".

forumdb2=# CREATE TABLE users (
 pk int GENERATED ALWAYS AS IDENTITY
 , username text NOT NULL
 , gecos text
 , email text NOT NULL



Basic Statements Chapter 4

[ 84 ]

 , PRIMARY KEY( pk )
 , UNIQUE ( username )
 );
CREATE TABLE

The CREATE TABLE command creates a new table. The command GENERATED AS
IDENTITY, automatically assigns a unique value to a column.

Observe what was created on the database using the /d command:3.

forumdb2=# \d users
                           Table "public.users"
  Column | Type | Collation | Nullable | Default
----------+---------+-----------+----------+-----------------------
-------
 pk       | integer |           | not null | generated always as
identity
 username | text    |           | not null |
 gecos    | text    |           |          |
 email    | text    |           | not null |
Indexes:
    "users_pkey" PRIMARY KEY, btree (pk)
    "users_username_key" UNIQUE CONSTRAINT, btree (username)

Something to note is that PostgreSQL has created a unique index. Later in this
book, we will analyze indexes in more detail and address what they are, what
kind of indexes exist, and how to use them. For now, we will simply say that a
unique index is an index that does not allow the insertion of duplicate values ​​for
the field where the index was created.

In PostgreSQL, primary keys are implemented using unique indexes.

Use the following command to drop a table:4.

forumdb=# drop table users ;

The preceding command simply drops the table users. The CREATE TABLE command, as
we've seen before, has some useful options:

IF NOT EXISTS

TEMP

UNLOGGED



Basic Statements Chapter 4

[ 85 ]

We'll cover each of these in the following subsections. 

The EXISTS option
The EXISTS option can be used in conjunction with entity create or drop commands to
check whether the object already exists or the object doesn't exist. An example of its use
may be combined with the CREATE TABLE or CREATE DATABASE command. We can use
also this option when we create or drop sequences, indices, roles, and schemas. The use
case is very simple – the create or drop command is executed if the EXISTS clause is true;
for example, if we want to create a table named users, if the table exists, we have to
execute this SQL statement:

forumdb=# create table if not exists users (
    pk int GENERATED ALWAYS AS IDENTITY
   ,username text NOT NULL
   ,gecos text
   ,email text NOT NULL
   ,PRIMARY KEY( pk )
   ,UNIQUE ( username )
);
NOTICE: relation "users" already exists, skipping
CREATE TABLE

The command described above will only create the users table if the users table does not
exist already, otherwise, the command will be skipped. The DROP command works
similarly; the DROP table command is used to drop tables; the if exists option also
exists for the DROP table command; for example, if we want to drop the users table, if it
exists, we have to execute the following: 

forumdb=# drop table if exists users;
DROP TABLE

This command will delete the users table if the users table exists in the database. Now if
we run it for the second time, we will have the following:

forumdb=# drop table if exists users;
NOTICE: table "users" does not exist, skipping
DROP TABLE

You can see that the command is skipped because the table does not exist. This option can
be useful because, if the table does not exist, PostgreSQL does not block any other
subsequent instructions.



Basic Statements Chapter 4

[ 86 ]

Managing temporary tables
Later in this book, we will explore sessions, transactions, and concurrency in more depth.
For now, you simply need to know that a session is a set of transactions, each session is
isolated, and that a transaction is isolated from everything else. In other words, anything
that happens inside the transaction cannot be seen from outside the transaction until the
transaction ends. Due to this, we might need to create a data structure that is visible only
within the transaction that is running. In order to do this, we have to use the temp option. 

We will now explore two possibilities. The first possibility is that we could have a table
visible only in the session where it was created. The second is that we might have a table
visible in the same transaction where it was created.

The following is an example of the first possibility where there is a table visible within the
session:

forumdb=# create temp table if not exists temp_users  (
    pk int GENERATED ALWAYS AS IDENTITY
   ,username text NOT NULL
   ,gecos text
   ,email text NOT NULL
   ,PRIMARY KEY( pk )
   ,UNIQUE ( username )
);
CREATE TABLE

The preceding command will create the temp_users table, which will only be visible
within the session where the table was created. 

If instead, we wanted to have a table visible only within our transaction, then we would
have to add the on commit drop options. To do this, we would have to do the following:

Start a new transaction.1.
Create the table temp_users.2.
Commit or rollback the transaction started at point one.3.

Let's start from the first point:

Start the transaction with the following code:1.

forumdb=# begin work;
BEGIN



Basic Statements Chapter 4

[ 87 ]

Create a table visible only inside the transaction:2.

forumdb# create temp table if not exists temp_users (
 pk int GENERATED ALWAYS AS IDENTITY
 ,username text NOT NULL
 ,gecos text
 ,email text NOT NULL
 ,PRIMARY KEY( pk )
 ,UNIQUE ( username )
) on commit drop;

Now check that the table is present inside the transaction and not outside the
transaction:

forumdb=# \d temp_users;
                       Table "pg_temp_4.temp_users"
  Column  | Type    | Collation | Nullable | Default
----------+---------+-----------+----------+-----------------------
-------
 pk       | integer |           | not null | generated always as
identity
 username | text    |           | not null |
 gecos    | text    |           |          |
 email    | text    |           | not null |
Indexes:
    "temp_users_pkey" PRIMARY KEY, btree (pk)
    "temp_users_username_key" UNIQUE CONSTRAINT, btree (username)

You can see the structure of the temp_users table, so now commit the3.
transaction:

forumdb=# commit work;
COMMIT

If you re-execute the DESCRIBE command \d temp_users, PostgreSQL responds
in this way :

forumdb=# \d temp_users;
Did not find any relation named "temp_users".

This happens because the on commit drop option drops the table once the transaction is
completed.



Basic Statements Chapter 4

[ 88 ]

Managing unlogged tables
We will now address the topic of unlogged tables. For now, we will simply note that
unlogged tables are much faster than classic tables (also known as logged tables) but are
not crash-safe. This means that the consistency of the data is not guaranteed in the event of
a crash.

The following snippet shows how to create an unlogged table:

forumdb=# create unlogged table if not exists unlogged_users (
    pk int GENERATED ALWAYS AS IDENTITY
   ,username text NOT NULL
   ,gecos text
   ,email text NOT NULL
   ,PRIMARY KEY( pk )
   ,UNIQUE ( username )
);
CREATE TABLE

Unlogged tables are a fast alternative to permanent and temporary tables.
This performance increase comes at the expense of losing data in the event
of a server crash, however. This is something you may be able to afford
under certain circumstances. 

Creating a table
We will now explore what happens behind the scenes when a new table is created. Also, for
tables, PostgreSQL assigns an object identifier called OID. An OID is simply a number that
internally identifies an object inside a PostgreSQL cluster. Let's now see the relationship
between the tables created at the SQL level and what happens behind the scenes in the
filesystem:

To do this, we will use the OIDs and a system table called pg_class,1.
which collects information about all the tables that are present in the database. So
let's run this query:

forumdb=# select oid,relname from pg_class where relname='users';
 oid   | relname
-------+---------
 16630 | users
(1 row)



Basic Statements Chapter 4

[ 89 ]

Here, the oid field is the object identifier field, and relname represents the
relation name of the object. As seen here, the forumdb database is stored in the
16630 directory.

Now, let's see where the users table is stored. To do this, go to the 166302.
directory using the following code:

postgres@pgdev:~/12/main/base/16630$ cd
/var/lib/postgresql/12/main/base/16630

Once here, execute the following command:3.

postgres@pgdev:~/12/main/base/16630$ ls -l | grep 16633
-rw------- 1 postgres postgres 0 Dec 6 23:33 16633

As you can see, in the directory 16630, there is a file called 16633.  In PostgreSQL, each
table is stored in one or more files. If the table size is less than 1 GB, then the table will be
stored in a single file. If the table has a size greater than 1 GB, then the table will be stored
in two files and the second file will be called 16633.1. If the users table has a size greater
than 2 GB, then the table will be stored in three files, called 16633, 16633.1, 16633.2, and
so on; the same thing happens for the index users_username_key.  

In PostgreSQL, each table or index is stored in one or more files. When a
table or index exceeds 1 GB, it is divided into gigabyte-sized segments.

In this section, we've learned how to manage tables, and we've seen what happens
internally. In the next section, we will learn how to manipulate data inside tables.

Understanding basic table manipulation
statements
Now that you have learned how to create tables, you need to understand how to insert,
view, modify, and delete data in the tables. This will help you update any incorrect entries,
or update existing entries, as needed. There are a variety of commands that can be used for
this, which we will look at now.



Basic Statements Chapter 4

[ 90 ]

Inserting and selecting  data
In this section, we will learn how to insert data into tables. To insert data into tables, you
need to use the INSERT command. The INSERT command inserts new rows into a table. It
is possible to insert one or more rows specified by value expressions, or zero or more rows
resulting from a query. We will now go through some use cases as follows:

To insert a new user in the users table, execute the following command:1.

forumdb=# insert into users (username,gecos,email) values
('myusername','mygecos','myemail');
INSERT 0 1

This result shows that PostgreSQL has inserted one record into the users table.

Now, if we want to see the record that we have just entered into the  users table,2.
we have to perform the SELECT  command:

forumdb=# select * from users;
 pk | username   | gecos   | email
----+------------+---------+---------
  1 | myusername | mygecos | myemail
(1 row)

The select command is executed in order to retrieve rows from a table. With
this SQL statement, PostgreSQL returns all the data present in all the fields of the
table. The value * specifies all the fields present. The same thing can be expressed
in this way:

forumdb=# select pk,username,gecos,email from users;
 pk | username   | gecos   | email
----+------------+---------+---------
 1  | myusername | mygecos | myemail
(1 row)

Let's now insert another user into the users table; for example, insert the user3.
'scotty' with all their own fields:

forumdb=# insert into users (username,gecos,email) values
('scotty','scotty_gecos','scotty_email');
INSERT 0 1



Basic Statements Chapter 4

[ 91 ]

If we want to perform the same search as before, ordering data by the username4.
field, we have to execute the following:

forumdb=# select pk,username,gecos,email from users order by
username;
 pk | username   | gecos        | email
----+------------+--------------+--------------
 1  | myusername | mygecos      | myemail
 2  | scotty     | scotty_gecos | scotty_email
(2 rows)

The SQL language, without the ORDER BY option, does not return the data
in an orderly manner.

In PostgreSQL, this could also be written as follows: 

forumdb=# select pk,username,gecos,email from users order by 2;
 pk | username   | gecos        | email
----+------------+--------------+--------------
  1 | myusername | mygecos      | myemail
  2 | scotty     | scotty_gecos | scotty_email
(2 rows)

PostgreSQL also accepts field positions on a query as sorting options.

Let's now see how to insert multiple records using a single-row statement. For5.
example, the following statement will insert three records in the categories
table: 

forumdb=# insert into categories (title,description) values
('apple', 'fruits'), ('orange','fruits'),('lettuce','vegetable');
INSERT 0 3



Basic Statements Chapter 4

[ 92 ]

This is a slight variation of the INSERT command. Our categories table will
now contain the following values:

forumdb=# select * from categories;
 pk | title   | description
----+---------+-------------
 10 | apple   | fruits
 11 | orange  | fruits
 12 | lettuce | vegetable
(3 rows)

Now if we want to select only the tuples where the description is equal to6.
vegetable, use the WHERE condition:

forumdb=# select * from categories where description ='vegetable';
 pk | title  | description
----+--------+-------------
 12 | lettuce| vegetable
(1 row)

The where condition filters on one or more fields of the table. For example, if we7.
wanted to search for all those topics with title as orange and description as
fruits, we would have to write the following:

forumdb=# select * from categories where description ='fruits' and
title='orange';
 pk | title  | description
----+--------+-------------
 11 | orange | fruits
(1 row)

Now, if for example, we want to select all the tuples that have both a8.
description field equal to fruits and are sorted by title in reverse order,
execute the following:

forumdb=# select * from categories where description ='fruits'
order by title desc;
 pk | title  | description
----+--------+-------------
 11 | orange | fruits
 10 | apple  | fruits
(2 rows)

Or we could also write this:

forumdb=# select * from categories where description ='fruits'
order by 2 desc;



Basic Statements Chapter 4

[ 93 ]

 pk | title  | description
----+--------+-------------
 11 | orange | fruits
 10 | apple  | fruits
(2 rows)

The ASC or DESC options sort the query in ascending or descending
order; if nothing is specified, ASC is the default.

NULL values
In this section, we will talk about NULL values. In the SQL language, the value NULL is
defined as follows:

Null (or NULL) is a special marker used in Structured Query Language to indicate that a
data value does not exist in the database. Introduced by the creator of the relational
database model, E. F. Codd, SQL Null serves to fulfill the requirement that all true
relational database management systems (RDBMS) support a representation of missing
information.

Now let's check out how it is used in PostgreSQL:

Let's start by inserting a tuple in this way:1.

forumdb=# insert into categories (title) values ('lemon');
INSERT 0 1

Let's see now which tuples are present in the categories table:2.

forumdb=# select * from categories;
 pk | title   | description
----+---------+-------------
 10 | apple   | fruits
 11 | orange  | fruits
 12 | lettuce | vegetable
 13 | lemon   |
(4 rows)

So now, if we want to select all the tuples in which the description is not present,3.
we use the following:

forumdb=# select * from categories where description ='';
 pk | title | description



Basic Statements Chapter 4

[ 94 ]

----+-------+-------------
(0 rows)

As you can see, PostgreSQL does not return any tuples. This happens because the
last insert has entered a NULL value in the description field.

In order to see the NULL values present in the tables, let's execute the following4.
command:

forumdb=# \pset null NULL
Null display is "NULL".

This tells psql to show NULL values ​​that are present in the table as NULL, as5.
shown here:

forumdb=# select * from categories;
 pk | title  | description
----+--------+-------------
 10 | apple  | fruits
 11 | orange | fruits
 12 | lettuce| vegetable
 13 | lemon  | NULL
(4 rows)

As you can see, the description value associated with the title lemon is not
an empty string; it is a NULL value.

Now, if we want to see all records that have NULL values in the description6.
field, we have to use the IS NULL operator:

forumdb=# select title,description from categories where
description is null;
 title | description
-------+-------------
 lemon | NULL
(1 row)

The preceding query looks for all tuples for which there is no value in the
description field.

Now, we will search for all tuples for which there is a value in the description7.
field using the following query:

forumdb=# select title,description from categories where
description is not null;
 title  | description
--------+-------------



Basic Statements Chapter 4

[ 95 ]

 apple  | fruits
 orange | fruits
 lettuce| vegetable
(3 rows)

To perform searches on NULL fields, we have to use the operators IS
NULL / IS NOT NULL. The empty string is different from a NULL value.

Sorting with NULL values
Now let's see what happens when ordering a table where there are NULL values present:

Before we do this, let's insert another tuple into the table:1.

insert into categories (title,description) values
('apricot','fruits');

Now let's repeat the sorting query that you performed previously:2.

forumdb=# select * from categories order by description NULLS last;
 pk | title   | description
----+---------+-------------
 10 | apple   | fruits
 11 | orange  | fruits
 14 | apricot | fruits
 12 | lettuce | vegetable
 13 | lemon   | NULL
(5 rows)

As you can see, all description values ​​are sorted and NULL values ​​are
positioned at the end of the result set. The same thing can be achieved by running
the following:

forumdb=# select * from categories order by description;
 pk | title   | description
----+---------+-------------
 10 | apple   | fruits
 11 | orange  | fruits
 14 | apricot | fruits
 12 | lettuce | vegetable
 13 | lemon   | NULL
(5 rows)



Basic Statements Chapter 4

[ 96 ]

If we want to place NULL values at the beginning, we have to perform the3.
following:

forumdb=# select * from categories order by description NULLS
first;
 pk | title   | description
----+---------+-------------
 13 | lemon   | NULL
 10 | apple   | fruits
 11 | orange  | fruits
 14 | apricot | fruits
 12 | lettuce | vegetable
(5 rows)

If not specified, the default action for ORDER BY type queries are: ORDER BY
NULLS LAST is the default for ASC (which also is the default), and NULLS
FIRST for DESC.

Creating a table starting from another table
We will now examine how to create a new table using data from another table.

To do this, you need to create a temporary table with the data present in the categories
table as follows:

forumdb=# create temp table temp_categories as select * from categories;
SELECT 5

This command creates a table called temp_data with the same data structure and data as
the table called categories:

forumdb=# select * from temp_categories ;
 pk | title   | description
----+---------+-------------
 10 | apple   | fruits
 11 | orange  | fruits
 12 | lettuce | vegetable
 13 | lemon   | NULL
 14 | apricot | fruits
(5 rows)



Basic Statements Chapter 4

[ 97 ]

Updating data
Now let's try updating some data:

If you wanted to change the apricot value to the peach value, you would need1.
to run the following statement:

forumdb=# update temp_categories set title='peach' where pk = 14;
UPDATE 1

This statement will modify  the value apricot to the value peach in the title
field for all rows of the temp_categories table that have pk=14, as seen here:

forumdb=# select * from temp_categories where pk=14;
 pk | title | description
----+-------+-------------
 14 | peach | fruits
(1 row)

If you wanted to change the title value of all the lines for which the2.
description value is vegetable, you would need to run the following
statement:

forumdb=# update temp_categories set title = 'no title' where
description = 'vegetable';
UPDATE 1

 UPDATE 1 means that only 1 row has been modified, as shown here:

forumdb=# select * from temp_categories order by description;
 pk | title    | description
----+----------+-------------
 10 | apple    | fruits
 11 | orange   | fruits
 14 | peach    | fruits
 12 | no title | vegetable
 13 | lemon    | NULL
(5 rows)

You must be careful when using the UPDATE command. If you work in auto-commit mode,
there is no chance of turning back after the update is complete.



Basic Statements Chapter 4

[ 98 ]

Deleting data
In this section, we will see how to delete data from a table. The command needed to delete
data is delete. Let's get started:

If we want to delete all records in the temp_categories table that have pk=10,1.
we have to perform the following command:

forumdb=# delete from temp_categories where pk=10;
DELETE 1

The preceding statement deletes all the records that have pk=10. DELETE 1
means that one record has been deleted. As you can see here, the row with the
value of pk=10 is no longer present in temp_categories:

forumdb=# select * from temp_categories order by description;
 pk | title    | description
----+----------+-------------
 11 | orange   | fruits
 14 | peach    | fruits
 12 | no title | vegetable
 13 | lemon    | NULL
(4 rows)

Now if we want to delete all rows that have a description value equal to NULL,2.
we have to execute this statement: 

forumdb=# delete from temp_categories where description is null;
DELETE 1

The preceding statement used a DELETE command combined with the IS NULL
operator.

If you want to delete all records from a table, you have to execute the following:3.

forumdb=# delete from temp_categories ;
DELETE 3

Be very careful when you use this command – all records present in the
table will be deleted!



Basic Statements Chapter 4

[ 99 ]

Now the temp_categories table is empty, as shown here:

forumdb=# select * from temp_categories order by description;
 pk | title | description
----+-------+-------------
(0 rows)

If we want to reload all the data from the categories table to the4.
temp_categories table, we have to execute this statement:

forumdb=# insert into temp_categories select * from categories;
INSERT 0 5

The preceding statement takes all values from the categories table and puts
them in the temp_categories table, as you can see here:

forumdb=# select * from temp_categories order by description;
 pk | title   | description
----+---------+-------------
 10 | apple   | fruits
 11 | orange  | fruits
 14 | apricot | fruits
 12 | lettuce | vegetable
 13 | lemon   | NULL
(5 rows)

Another way to delete data is by using the TRUNCATE command. When we want5.
to delete all the data from a table without providing a where condition, we can
use the TRUNCATE command:

forumdb=# truncate table temp_categories ;
TRUNCATE TABLE

The TRUNCATE command deletes all data in a table. As you can see here, the
temp_categories table is now empty:

forumdb=# select * from temp_categories order by description;
 pk | title | description
----+-------+-------------
(0 rows)

Here is some key information about the TRUNCATE command:

TRUNCATE deletes all the records in a table similar to the DELETE command.
In the TRUNCATE command, it is not possible to use WHERE conditions.
The TRUNCATE command deletes records much faster than the DELETE command.



Basic Statements Chapter 4

[ 100 ]

Summary
This chapter introduced you to the basic SQL/PostgreSQL statements and some basic SQL
commands. You learned how to create and delete databases, how to create and delete
tables, what types of tables exist, which basic statements to use to insert, modify, and delete
data, and the first basic queries to query the database.

In the next chapter, you will learn how to write more complex queries that relate to
multiple tables in different ways.

References
The CREATE DATABASE official documentation: https:/ ​/​www. ​PostgreSQL. ​org/
docs/​12/ ​sql- ​createdatabase. ​html

The CREATE TABLE official documentation: https:/ ​/​www. ​PostgreSQL. ​org/ ​docs/
12/​sql- ​createtable. ​html

The SELECT official documentation: https:/ ​/​www. ​PostgreSQL. ​org/ ​docs/ ​12/
sql-​select. ​html

The INSERT official documentation: https:/ ​/​www. ​PostgreSQL. ​org/ ​docs/ ​12/
sql-​insert. ​html

The DELETE official documentation: https:/ ​/​www. ​PostgreSQL. ​org/ ​docs/ ​12/
sql-​delete. ​html

The UPDATE official documentation: https:/ ​/​www. ​PostgreSQL. ​org/ ​docs/ ​12/
sql-​update. ​html

The TRUNCATE official documentation: https:/ ​/​www. ​PostgreSQL. ​org/ ​docs/ ​12/
sql-​truncate. ​html

https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createdatabase.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-createtable.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-select.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-insert.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-delete.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-update.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html
https://www.PostgreSQL.org/docs/12/sql-truncate.html


5
Advanced Statements

In the previous chapter, we started taking our first steps with PostgreSQL. In this chapter,
we will analyze the SQL language more deeply and write more complex queries. We will
talk about SELECT/INSERT/UPDATE again, but this time, we will use the more advanced
options surrounding them. We will then cover JOIN and common table expressions
(CTEs) in depth.

The topics we will talk about will be the following:

Exploring the SELECT statement
Using UPSERT
Exploring CTEs

Exploring the SELECT statement
As we saw in the previous chapter, we can use the SELECT statement to filter our datasets
using the equality condition. In the same way, we can filter records using > or
< conditions, such as in the following example:

forumdb=# select * from categories where pk > 12 order by title;
 pk | title | description
----+---------+-------------
 14 | apricot | fruits
 13 | lemon |
(2 rows)

The preceding query returns all records that have pk> 12.

Another condition that we can use with the SELECT statement is the like condition. Let's
take a look at this next.



Advanced Statements Chapter 5

[ 102 ]

Using the like clause
Suppose we wanted to find all records that have a title field value starting with the
letter 'a'.

To do this, we would have to use the like condition:

forumdb=# select * from categories where title like 'a%';

pk  | title   | description
----+---------+-------------
 10 | apple   | fruits
 14 | apricot | fruits
(2 rows)

As shown, the preceding query returns all records that have a title beginning with the letter
a. In a similar vein, if we wanted to find all records with titles ending with the letter e, we
would have to write the following:

forumdb=# select * from categories where title like '%e';
 pk | title  | description
----+--------+-------------
 10 | apple  | fruits
 11 | orange | fruits
(2 rows)

The two kinds of searches can also be combined. For example, if we wanted to search all
records that contain the letters 'ap', we would write the following:

forumdb=# select * from categories where title like '%ap%';
 pk | title   | description
----+---------+-------------
 10 | apple   | fruits
 14 | apricot | fruits
(2 rows)

The query given here will return all records whose titles contain the string ap.

Now let's try to run the following query and see what happens:

forumdb=# select * from categories where title like 'A%';
 pk | title | description
----+-------+-------------
(0 rows)

As we can see, the search does not return any results. This happens because like searches
are case-sensitive.



Advanced Statements Chapter 5

[ 103 ]

Now let's introduce the upper (text) function. The upper function, given an input
string, returns the same string with all characters in uppercase, as here:

forumdb=# select upper('orange');
 upper
--------
 ORANGE
(1 row)

In PostgreSQL, it is possible to call functions without writing FROM.
PostgreSQL does not need dummy tables to perform the SELECT function.
If we were in Oracle, the same query would have to be written this way:
select upper('orange') from DUAL;.

Returning to our preceding example, if we wanted to perform a like case-insensitive
search, we would have to write this statement:

forumdb=# select * from categories where upper(title) like 'A%';
 pk | title   | description
----+---------+-------------
 10 | apple   | fruits
 14 | apricot | fruits
(2 rows)

We have now covered all of the functions that can be performed using the like operator.

Using ilike
In PostgreSQL, it is possible to perform a case-insensitive like query by using the ilike
operator. In this situation, our query would become the following:

forumdb=# select * from categories where title ilike 'A%';
 pk | title   | description
----+---------+-------------
 10 | apple   | fruits
 14 | apricot | fruits
(2 rows)

This is the PostgreSQL way of solving the case-insensitive like query issue that we
encountered previously.



Advanced Statements Chapter 5

[ 104 ]

Using distinct
We will now discuss another kind of query: the distinct query. Firstly, however, we need
to introduce another very useful function for the DBA called the coalesce function. The
coalesce function, given two or more parameters, returns the first value that is not NULL.

For example, let's use the coalesce function for the test value:

forumdb=# select coalesce(NULL,'test');
 coalesce
----------
 test
(1 row)

In the preceding query, the coalesce function returns test because the first argument is
NULL and the second argument is not NULL.

In the following query, we can see that the coalesce function returns orange because the
first argument is not NULL:

forumdb=# select coalesce('orange','test');
coalesce
----------
 orange
(1 row)

Now let's perform the following query:

forumdb=# \pset null (NULL)
Null display is "(NULL)".

forumdb=# select description,coalesce(description,'No description') from
categories order by 1;
 description | coalesce
-------------+----------------
 fruits      | fruits
 fruits      | fruits
 fruits      | fruits
 vegetable   | vegetable
 (NULL)      | No description
(5 rows)



Advanced Statements Chapter 5

[ 105 ]

In the preceding code, the coalesce function transforms any NULL value into the string No
description. Another thing that isn't very user-friendly about the coalesce function is
that the name of the field that is given when a function is called is not the name we would
want for our query. In this case, the second field of the result set is called coalesce, which
is not the name we would prefer. 

In PostgreSQL, an alias can be assigned to any field in a query. For example, we can assign
an alias to the coalesce field as follows:

forumdb=# select coalesce(description,'No description') as description from
categories order by 1;
  description
----------------
 fruits
 fruits
 fruits
 No description
 vegetable
(5 rows)

Now the result set has the description field instead of the coalesce field.

If we want to use an alias with spaces or capital letters, we have to quote the alias using "",
as in the following example:

forumdb=# select coalesce(description,'No description') as Description from
categories order by 1;
  description
----------------
 fruits
 fruits
 fruits
 No description
 vegetable
(5 rows)

The resultset doesn't have an alias of Description but does have an alias
of description, which doesn't seem right. The correct way to perform this is as follows:

forumdb=# select coalesce(description,'No description') as "Description"
from categories order by 1;
  Description
----------------
 fruits
 fruits
 fruits
 No description



Advanced Statements Chapter 5

[ 106 ]

 vegetable
(5 rows)

Now let's perform the following query:

forumdb=# select distinct coalesce(description,'No description') as
description from categories order by 1;
  description
----------------
 fruits
 No description
 vegetable
(3 rows)

In the preceding query, we have used the select distinct statement. The select
distinct statement is used to return only distinct (different) values. Internally, the
distinct statement involves a data sort for large tables, which means that if a query uses
the DISTINCT statement, the query may become slower as the number of records increases.

Using limit and offset
The limit clause is the PostgreSQL way to limit the number of rows returned by a query, 
whereas the offset clause is used to skip a specific number of rows returned by the query.

limit and offset are used to return a portion of data from a resultset generated by a
query; the limit clause is used to limit the number of records in output and the offset
clause is used to provide PostgreSQL with the position on the resultset from which to start
returning data.

They can be used independently or together.

Now let's test limit and offset using the following queries:

forumdb=# select * from categories order by pk limit 1;
 pk | title | description
----+-------+-------------
 10 | apple | fruits
(1 row)

The preceding query returns only the first record that we have inserted; this is because the
pk field is an integer type with a default value generated always as the identity.



Advanced Statements Chapter 5

[ 107 ]

If we want the two first records that were inserted, we have to perform the following query:

forumdb=# select * from categories order by pk limit 2;
 pk | title  | description
----+--------+-------------
 10 | apple  | fruits
 11 | orange | fruits
(2 rows)

If we only want the second record that was inserted, we have to perform the following
query:

forumdb=# select * from categories order by pk offset 1 limit 1;
 pk | title  | description
----+--------+-------------
 11 | orange | fruits
(1 row)

offset and limit are very useful when we want to return data in a
paged way.

Another valuable function of limit is that it can create a new table from an existing table.
For example, if we want to create a table called new_categories starting from the
categories table, we have to perform the following statement:

forumdb=# create table new_categories as select * from categories limit 0;
SELECT 0

This statement will copy into the new_categories table only the data structure of the table
categories.

The SELECT 0 clause means that no data has been copied into the new_categories table;
only the data structure has been replicated, as we can see here:

forumdb=# \d new_categories
 Table "public.new_categories"
 Column      | Type    | Collation | Nullable | Default
-------------+---------+-----------+----------+---------
 pk          | integer |           |          |
 title       | text    |           |          |
 description | text    |           |          |



Advanced Statements Chapter 5

[ 108 ]

Using subqueries
Subqueries can be described as nested queries – they are where we can nest a query inside
another query using parentheses. Subqueries can return a single value or a recordset, just
like regular queries. We will start by introducing subqueries using the IN/NOT IN operator.

Using the IN/NOT IN condition
Let's start with the IN operator; we can use the IN operator inside a where clause instead of
using multiple OR conditions. For example, if you wanted to search for all categories that
have the value pk=10 or the value pk=11, we would have to perform the following
statement:

forumdb=# select * from categories where pk=10 or pk=11;
 pk | title  | description
----+--------+-------------
 10 | apple  | fruits
 11 | orange | fruits
(2 rows)

Another way to reach the same outcome is the following:

forumdb=# select * from categories where pk in (10,11);
 pk | title  | description
----+--------+-------------
 10 | apple  | fruits
 11 | orange | fruits
(2 rows

If we wanted to return the records that don't have pk=10 or pk=11, we would have to
perform the following: 

forumdb=# select * from categories where not (pk=10 or pk=11);
 pk | title   | description
----+---------+-------------
 12 | tomato  | vegetable
 13 | lemon   |
 14 | apricot | fruits
(3 rows)



Advanced Statements Chapter 5

[ 109 ]

An operator similar to the IN operator but with reverse functionality is the NOT IN
operator. For example, if we wanted to search for all categories that do not have pk=10 or
pk=11, we would have to execute the following: 

forumdb=# select * from categories where pk not in (10,11);
 pk | title | description
----+---------+-------------
 12 | tomato | vegetable
 13 | lemon |
 14 | apricot | fruits
(3 rows)

Now, we can insert some data into the posts table:

forumdb=# insert into posts(title,content,author,category) values('my
orange','my orange is the best orange in the world',1,11);
forumdb=# insert into posts(title,content,author,category) values('my
apple','my apple is the best orange in the world',1,10);
forumdb=# insert into posts(title,content,author,category,reply_to)
values('Re:my orange','No! It''s my orange the best orange in the
world',2,11,2);
forumdb=# insert into posts(title,content,author,category) values('my
tomato','my tomato is the best orange in the world',2,12);

The records present in the posts table are now as follows:

forumdb=# select pk,title,content,author,category from posts;
 pk | title        | content                                         |
author | category
----+--------------+-------------------------------------------------+-----
---+----------
  2 | my orange    | my orange is the best orange in the world       | 1
| 11
  3 | my apple     | my apple is the best orange in the world        | 1
| 10
  4 | Re:my orange | No! It's my orange the best orange in the world | 2
| 11
  5 | my tomato    | my tomato is the best orange in the world       | 2
| 12
(4 rows)

Suppose we now want to search for all posts that belong to the orange category. To do this,
we can use several methods.



Advanced Statements Chapter 5

[ 110 ]

The following method uses subqueries:

forumdb=# select pk,title,content,author,category from posts where category
in (select pk from categories where title ='orange');
 pk | title        | content                                         |
author | category
----+--------------+-------------------------------------------------+-----
---+----------
  2 | my orange    | my orange is the best orange in the world       | 1
| 11
  4 | Re:my orange | No! It's my orange the best orange in the world | 2
| 11
(2 rows)

The subquery is represented by the following:

forumdb=# select pk from categories where title ='orange'

This statement extracts the values pk=2 and pk=4 from the category table and the external
query searches the records in the posts table that have pk=2 or pk=4. Similarly, if you
wanted to search for all post values ​​that do not belong to the orange category, you would
have to perform the following statement:

forumdb=# select pk,title,content,author,category from posts where category
not in (select pk from categories where title ='orange');
 pk | title     | content                                   | author |
category
----+-----------+-------------------------------------------+--------+-----
-----
 3 | my apple   | my apple is the best orange in the world  | 1      | 10
 5 | my tomato  | my tomato is the best orange in the world | 2      | 12
(2 rows)

Using the EXISTS/NOT EXISTS condition
The EXISTS statement is used when we want to check whether a subquery returns (TRUE),
and the NOT EXISTS statement is used when we want to check whether a subquery does
not return (FALSE). For example, if we wanted to write the same conditions written
previously using the EXISTS/NOT EXISTS conditions, we'd have to perform the following:

forumdb=# select pk,title,content,author,category from posts where exists
(select 1 from categories where title ='orange' and posts.category=pk);
 pk | title        | content                                         |
author | category
----+--------------+-------------------------------------------------+-----
---+----------



Advanced Statements Chapter 5

[ 111 ]

  2 | my orange    | my orange is the best orange in the world       | 1
| 11
  4 | Re:my orange | No! It's my orange the best orange in the world | 2
| 11
(2 rows)

The preceding query returns the same results as the query written with the IN condition.

Similarly, if we wanted to search for all post values ​​that do not belong to the orange
category using the NOT EXISTS condition, we'd have to write the following:

forumdb=# select pk,title,content,author,category from posts where not
exists (select 1 from categories where title ='orange' and
posts.category=pk);
 pk | title     | content                                   | author |
category
----+-----------+-------------------------------------------+--------+-----
-----
  3 | my apple | my apple is the best orange in the world   | 1      | 10
  5 | my tomato | my tomato is the best orange in the world | 2      | 12
(2 rows)

Both queries written with the IN condition and with the EXISTS condition are called semi-
join queries, and we will be looking at joins in the next section.

Learning joins
We will now explore joins in more detail. We will address what a join is, how many types
of joins exist, and what they are used for. We can think of a join as a combination of rows
from two or more tables. 

For example, the following query returns all the combinations from the rows of the
category table and the rows of the posts table:

forumdb=# select c.pk,c.title,p.pk,p.category,p.title from categories
c,posts p;
 pk | title   | pk | category | title
----+---------+----+----------+--------------
 10 | apple   | 2  | 11       | my orange
 10 | apple   | 3  | 10       | my apple
 10 | apple   | 4  | 11       | Re:my orange
 10 | apple   | 5  | 12       | my tomato
 11 | orange  | 2  | 11       | my orange
 11 | orange  | 3  | 10       | my apple
 11 | orange  | 4  | 11       | Re:my orange



Advanced Statements Chapter 5

[ 112 ]

 11 | orange  | 5  | 12       | my tomato
 12 | tomato  | 2  | 11       | my orange
 12 | tomato  | 3  | 10       | my apple
 12 | tomato  | 4  | 11       | Re:my orange
 12 | tomato  | 5  | 12       | my tomato
 13 | lemon   | 2  | 11       | my orange
 13 | lemon   | 3  | 10       | my apple
 13 | lemon   | 4  | 11       | Re:my orange
 13 | lemon   | 5  | 12       | my tomato
 14 | apricot | 2  | 11       | my orange
 14 | apricot | 3  | 10       | my apple
 14 | apricot | 4  | 11       | Re:my orange
 14 | apricot | 5  | 12       | my tomato
(20 rows)

This query makes a Cartesian product between the category table and the posts table. It
can also be called a cross join:

The same query can also be written in the following way:

forumdb=# select c.pk,c.title,p.pk,p.category,p.title from categories c
CROSS JOIN posts p;
 pk | title   | pk | category | title
----+---------+----+----------+--------------
 10 | apple   | 2  | 11       | my orange
 10 | apple   | 3  | 10       | my apple
 10 | apple   | 4  | 11       | Re:my orange
 10 | apple   | 5  | 12       | my tomato
 11 | orange  | 2  | 11       | my orange
 11 | orange  | 3  | 10       | my apple
 11 | orange  | 4  | 11       | Re:my orange
 11 | orange  | 5  | 12       | my tomato
 12 | tomato  | 2  | 11       | my orange
 12 | tomato  | 3  | 10       | my apple
 12 | tomato  | 4  | 11       | Re:my orange
 12 | tomato  | 5  | 12       | my tomato



Advanced Statements Chapter 5

[ 113 ]

 13 | lemon   | 2  | 11       | my orange
 13 | lemon   | 3  | 10       | my apple
 13 | lemon   | 4  | 11       | Re:my orange
 13 | lemon   | 5  | 12       | my tomato
 14 | apricot | 2  | 11       | my orange
 14 | apricot | 3  | 10       | my apple
 14 | apricot | 4  | 11       | Re:my orange
 14 | apricot | 5  | 12       | my tomato
(20 rows)

Using INNER JOIN
Now suppose that starting with all the possible combinations that exist between the rows of
the category table and the rows of the posts table, we want to filter all the rows that have
the same value as the category field (category.pk = posts.category). We want to
have a result like the one described in the following diagram:

The INNER JOIN keyword selects records that have matching values in
both tables.

To achieve this, we need to run the following code:
forumdb=# select c.pk,c.title,p.pk,p.category,p.title from categories
c,posts p where c.pk=p.category;
 pk | title  | pk | category | title
----+--------+----+----------+--------------
 11 | orange | 2  | 11       | my orange
 10 | apple  | 3  | 10       | my apple
 11 | orange | 4  | 11       | Re:my orange
 12 | tomato | 5  | 12       | my tomato
(4 rows)



Advanced Statements Chapter 5

[ 114 ]

We can also write the same query using the explicit JOIN operation:
forumdb=# select c.pk,c.title,p.pk,p.category,p.title from categories c
inner join posts p on c.pk=p.category;
 pk | title  | pk | category | title
----+--------+----+----------+--------------
 11 | orange | 2  | 11       | my orange
 10 | apple  | 3  | 10       | my apple
 11 | orange | 4  | 11       | Re:my orange
 12 | tomato | 5  | 12       | my tomato
(4 rows)

INNER JOIN versus EXISTS/IN
If we wanted to search for all posts that belong to the orange category using the INNER
JOIN condition, we would have to rewrite the query in this way:

forumdb=# select distinct p.pk,p.title,p.content,p.author,p.category from
categories c inner join posts p on c.pk=p.category where c.title='orange';
 pk | title        | content                                         |
author | category
----+--------------+-------------------------------------------------+-----
---+----------
  2 | my orange    | my orange is the best orange in the world       | 1
| 11
  4 | Re:my orange | No! It's my orange the best orange in the world | 2
| 11
(2 rows)

Using the INNER JOIN condition, we can rewrite all queries that can be
written using the IN or EXISTS condition.  

It is preferable to use JOIN conditions whenever possible instead of IN or EXISTS
conditions, because they perform better in terms of the execution speed, as we will see in
the following chapters.

Using  LEFT JOINS
We will now explore what a left join is. As an example, we can perform the following
query:

forumdb=# select c.*,p.category,p.title from categories c left join posts p
on c.pk=p.category;
 pk | title   | description | category | title



Advanced Statements Chapter 5

[ 115 ]

----+---------+-------------+----------+--------------
 11 | orange  | fruits      | 11       | my orange
 10 | apple   | fruits      | 10       | my apple
 11 | orange  | fruits      | 11       | Re:my orange
 12 | tomato  | vegetable   | 12       | my tomato
 13 | lemon   |             |          |
 14 | apricot | fruits      |          |
(6 rows)

This query returns all records of the categories table and returns the matched records
from the posts table. As we can see, if the second table (the posts table, in this example)
has no matches, the result is NULL.

The LEFT JOIN keyword returns all records from the left table (table1),
and all the records from the right table (table2). The result is NULL from
the right side if there is no match.

This diagram gives us an idea of how a left join works:

Suppose now that we want to search for all categories that do not have posts – we could
write the following:

forumdb=# select * from categories c where c.pk not in (select category
from posts);
 pk | title   | description
----+---------+-------------
 13 | lemon   |
 14 | apricot | fruits
(2 rows)



Advanced Statements Chapter 5

[ 116 ]

This query, written using the NOT IN condition, looks for all records in the categories
table for which the pk value does not match in the category field of the posts table. As
we have already seen, another way to write the same query would be to use the NOT
EXISTS condition:

forumdb=# select * from categories c where not exists (select 1 from posts
where category=c.pk);
 pk | title   | description
----+---------+-------------
 13 | lemon   |
 14 | apricot | fruits
(2 rows)

If we now wanted to use a left join in order to achieve the same purpose, we would start by
writing the following left join query:

forumdb=# select c.*,p.category from categories c left join posts p on
p.category=c.pk;
 pk | title   | description | category
----+---------+-------------+----------
 11 | orange  | fruits      | 11
 10 | apple   | fruits      | 10
 11 | orange  | fruits      | 11
 12 | tomato  | vegetable   | 12
 13 | lemon   |             |
 14 | apricot | fruits      |
(6 rows)

From the result, it is immediately clear that all the values ​​we are looking for are those for
which the value of p.category is NULL.

So, we rewrite the query in the following way:

forumdb=# select c.* from categories c left join posts p on p.category=c.pk
where p.category is null;
 pk | title   | description
----+---------+-------------
 13 | lemon   |
 14 | apricot | fruits
(2 rows)

As shown here, we get the same result we had using the NOT EXISTS or NOT IN condition.

Using the LEFT JOIN condition, we can rewrite some queries that can be
written using the IN or EXISTS conditions.  



Advanced Statements Chapter 5

[ 117 ]

It is preferable to use JOIN conditions whenever possible instead of IN or EXISTS
conditions, because they perform better in terms of execution speed, as we will see in the 
following chapters.

Using RIGHT JOIN
The right join is the twin of the left join; it takes data from the right table, reverses the order
of the tables, and uses a right join instead of a left join. For example, we can obtain the same
results as the preceding query using a right join instead of a left join:

forumdb=# select c.*,p.category,p.title from posts p right join categories
c on c.pk=p.category;
 pk | title | description | category | title
----+---------+-------------+----------+--------------
 11 | orange  | fruits      | 11       | my orange
 10 | apple   | fruits      | 10       | my apple
 11 | orange  | fruits      | 11       | Re:my orange
 12 | tomato  | vegetable   | 12       | my tomato
 13 | lemon   |             |          |
 14 | apricot | fruits      |          |
(6 rows)

The RIGHT JOIN keyword returns all records from the right table (table2)
and all the records from the left table (table1) that match the right table
(table2). The result is NULL from the left side when there is no match.

This diagram illustrates how RIGHT JOIN works:



Advanced Statements Chapter 5

[ 118 ]

Using  FULL OUTER JOIN
In SQL, FULL OUTER JOIN is the combination of what we would have if we put together
the right join and the left join. We will check it out using the following steps:

Let's insert some data:1.

forumdb=# insert into tags (tag,parent) values ('fruits',NULL);
INSERT 0 1
forumdb=# insert into tags (tag,parent) values ('vegetables',NULL);
INSERT 0 1
forumdb=# insert into j_posts_tags values (1,2),(1,3);
INSERT 0 2

Having inserted some data into the tags table and some data into the2.
j_posts_tags table, the j_tags_posts table relates the tags table to the
posts table. So, the current situation is as follows:

forumdb=# select * from tags;
 pk | tag | parent
----+------------+--------
  1 | fruits |
  2 | vegetables |
(2 rows)

forumdb=# select * from j_posts_tags ;
 tag_pk | post_pk
--------+---------
      1 | 2
      1 | 3
(2 rows)

Now let's try to write this JOIN query:3.

forumdb=# select jpt.*,t.*,p.title from j_posts_tags jpt
inner join tags t on jpt.tag_pk=t.pk
inner join posts p on jpt.post_pk = p.pk;

 tag_pk | post_pk | pk | tag | parent | title
--------+---------+----+--------+--------+-----------
      1 | 2       | 1  | fruits |        | my orange
      1 | 3       | 1  | fruits |        | my apple
(2 rows)

This query returns all the records that have posts and tags. It's a JOIN query
between three tables: tags, j_posts_tags, and posts.



Advanced Statements Chapter 5

[ 119 ]

If we wanted to have the left and right joins between the tags, j_posts_tags,4.
and posts tables, we'd have to use the full outer join and write the following:

forumdb=# select jpt.*,t.*,p.title from j_posts_tags jpt full outer
join tags t on jpt.tag_pk=t.pk full outer join posts p on
jpt.post_pk = p.pk;
 tag_pk | post_pk | pk | tag        | parent | title
--------+---------+----+------------+--------+--------------
      1 | 2       | 1  | fruits     |        | my orange
      1 | 3       | 1  | fruits     |        | my apple
        |         | 2  | vegetables |        |
        |         |    |            |        | my tomato
        |         |    |            |        | Re:my orange
(5 rows)

This diagram illustrates how the full outer join works:

One question we need to consider is, What is the difference between a full join and a cross join,
which we saw at the beginning of this section on joins?

Well, a full outer join is different from a cross join because a cross join makes a Cartesian
product from all the records present in the tables.

For example, in a cross join with the same data as the preceding full join, we would get the following result:
forumdb=# select jpt.*,t.*,p.title from j_posts_tags jpt
cross join tags t
cross join posts p ;
 tag_pk | post_pk | pk | tag        | parent | title
--------+---------+----+------------+--------+--------------
 1      | 2       | 1  | fruits     |        | my orange
 1      | 3       | 1  | fruits     |        | my orange
 1      | 2       | 1  | fruits     |        | my apple
 1      | 3       | 1  | fruits     |        | my apple



Advanced Statements Chapter 5

[ 120 ]

 1      | 2       | 1  | fruits     |        | Re:my orange
 1      | 3       | 1  | fruits     |        | Re:my orange
 1      | 2       | 1  | fruits     |        | my tomato
 1      | 3       | 1  | fruits     |        | my tomato
 1      | 2       | 2  | vegetables |        | my orange
 1      | 3       | 2  | vegetables |        | my orange
 1      | 2       | 2  | vegetables |        | my apple
 1      | 3       | 2  | vegetables |        | my apple
 1      | 2       | 2  | vegetables |        | Re:my orange
 1      | 3       | 2  | vegetables |        | Re:my orange
 1      | 2       | 2  | vegetables |        | my tomato
 1      | 3       | 2  | vegetables |        | my tomato
(16 rows)

Using SELF JOIN
A self join is a regular join, but the table is joined with itself. Let's start by inserting some
rows into the posts table:

forumdb=# insert into posts (title,content,author,category) values ('my new
orange','this my post
on my new orange',1,11);

Suppose we wanted to find all posts that belong to author 2 that have the same category
as those entered by author 1. Our first step would be to search for all the records that
belong to author 1:

forumdb=# select distinct p1.title,p1.author,p1.category from posts p1
where p1.author=1;
     title     | author | category
---------------+--------+----------
 my apple      | 1      | 10
 my new orange | 1      | 11
 my orange     | 1      | 11
(3 rows)

The second step would be to search for all the records that belong to author 2:

forumdb=# select distinct p2.title,p2.author,p2.category from posts p2
where p2.author=2;
    title     | author | category
--------------+--------+----------
 my tomato    | 2      | 12
 Re:my orange | 2      | 11
(2 rows)



Advanced Statements Chapter 5

[ 121 ]

The result that we want would be as follows:

title author category
Re:my orange 2 11

The following snippet is the query that realizes what we want:

forumdb=# select distinct p2.title,p2.author,p2.category from posts
p1,posts p2 where p1.category=p2.category and p1.author<>p2.author and
p1.author=1 and p2.author=2;
    title     | author | category
--------------+--------+----------
 Re:my orange | 2      | 11
(1 row)

We can also write the same query this way:

forumdb=# select distinct p2.title,p2.author,p2.category from posts p1
inner join posts p2 on ( p1.category=p2.category and p1.author<>p2.author)
where p1.author=1 and p2.author=2;
    title     | author | category
--------------+--------+----------
 Re:my orange | 2      | 11
(1 row)

Aliases must be used for table names when a self join is performed,
otherwise, PostgreSQL will not know which table the column names
belong to.

Aggregate functions
Aggregate functions perform a calculation on a set of rows and return a single row.
PostgreSQL provides all the standard SQL aggregate functions:

AVG(): This function returns the average value.
COUNT(): This function returns the number of values.
MAX(): This function returns the maximum value.
MIN(): This function returns the minimum value.
SUM(): This function returns the sum of values.



Advanced Statements Chapter 5

[ 122 ]

Aggregate functions are used in conjunction with the GROUP BY clause. A GROUP BY clause
splits a resultset into groups of rows and aggregate functions perform calculations on them.
For example, if we wanted to count how many records there are for each category,
PostgreSQL first groups the data and then counts it. The following diagram illustrates the
process:

This diagram illustrates that PostgreSQL, before grouping the data, sorts it internally.
Therefore, we must remember that a grouping operation always implies an ordering
operation; this will become more clear when we discuss performance later on.

Now that we have understood the theory, let's address how to actually calculate how many
records there are for each category:

forumdb=# select category,count(*) from posts group by category;
 category | count
----------+-------
 11       | 3
 10       | 1
 12       | 1
(3 rows)

The preceding query counts how many records there are for each category in the posts
table.



Advanced Statements Chapter 5

[ 123 ]

Another way to write the same query is as follows:

forumdb=# select category,count(*) from posts group by 1;
 category | count
----------+-------
 11       | 3
 10       | 1
 12       | 1
(3 rows)

In PostgreSQL, we can write the GROUP BY condition using the name of
the fields or their position in the query.

Another condition that we can use is the having condition. Suppose that we want to count
how many records there are for each category that have a count greater than 2. To do this,
we would have to add the having condition after the group by condition, thus writing the
following:

forumdb=# select category,count(*) from posts group by category having
count(*) > 2;
 category | count
----------+-------
       11 | 3
(1 row)

Similarly, we could do this:

forumdb=# select category,count(*) from posts group by 1 having count(*) >
2;
 category | count
----------+-------
 11 | 3
(1 row)

Now let's see how the aggregation functions work if we add aliases. Let's resume the first
query and write the following:

forumdb=# select category,count(*) as category_count from posts group by
category;
 category | category_count
----------+----------------
       11 | 3
       10 | 1
       12 | 1
(3 rows)



Advanced Statements Chapter 5

[ 124 ]

As seen here, we can use an alias on aggregate functions.

However, what do we do if we want to use an alias inside a query that has a having
condition too? To answer this question, let's try the following statement:

forumdb=# select category,count(*) as category_count from posts group by
category having category_count > 2;
ERROR: column "category_count" does not exist

As we can see, we can't use an alias on a having condition. The correct way to write the
preceding query is as follows:

forumdb=# select category,count(*) as category_count from posts group by
category having count(*) > 2;
 category | category_count
----------+----------------
       11 | 3
(1 row)

In the next chapter, we will discuss aggregates in more detail.

UNION/UNION ALL
The UNION operator is used to combine the resultset of two or more SELECT statements. We
can use the UNION statement only if the following rules are respected:

Each SELECT statement within UNION must have the same number of columns.
The columns must have similar data types.
The columns in each SELECT statement must be in the same order.

Let's explore an example.

First, we need to insert some data:

forumdb=# insert into tags (tag,parent) values ('apple',1);
INSERT 0 1

forumdb=# select * from tags;
 pk | tag        | parent
----+------------+--------
  1 | fruits     |
  2 | vegetables |
  3 | apple      | 1
(3 rows)



Advanced Statements Chapter 5

[ 125 ]

forumdb=# select * from categories;
 pk | title   | description
----+---------+-------------
 10 | apple   | fruits
 11 | orange  | fruits
 12 | tomato  | vegetable
 13 | lemon   |
 14 | apricot | fruits
(5 rows)

Suppose now that we want to have a result set that is a union of tags and categories; in
other words, we want to reach this result:

title
apple

apricot
fruits
lemon
orange
tomato

vegetables

To achieve this, we have to use the UNION operator:

forumdb=# select title from categories union select tag from tags order by
title;
   title
------------
 apple
 apricot
 fruits
 lemon
 orange
 tomato
 vegetables
(7 rows)

The union operator combines the values ​​of the two tables and removes duplicates. If we
don't want duplicates to be removed and instead have them remain in the resultset, we
have to use the UNION ALL operator:

forumdb=# select title from categories union all select tag from tags order
by title;
 title
------------
 apple



Advanced Statements Chapter 5

[ 126 ]

 apple
 apricot
 fruits
 lemon
 orange
 tomato
 vegetables
(8 rows)

The UNION operator always implies DISTINCT before returning the
data, and, as we have seen previously, for large tables, DISTINCT always
implies sorting. Therefore, UNION ALL is a much faster operation than
UNION. It is recommended to use UNION instead of UNION ALL only when
you do not want duplicates in the resultset and only when you are sure
that duplicates exist.

EXCEPT/INTERSECT​
The EXCEPT operator returns rows by comparing the resultsets of two or more queries. The
EXCEPT operator returns distinct rows from the first (left) query that is not in the output of
the second (right) query. Similar to the UNION operator, the EXCEPT operator can also
compare queries that have the same number and the same datatype of fields.

For example, say we have the following:

forumdb=# select * from tags;
 pk | tag        | parent
----+------------+--------
  1 | fruits     |
  2 | vegetables |
  3 | apple      | 1
(3 rows)

forumdb=# select * from categories;
 pk | title   | description
----+---------+-------------
 10 | apple   | fruits
 11 | orange  | fruits
 12 | tomato  | vegetable
 13 | lemon   |
 14 | apricot | fruits
(5 rows)



Advanced Statements Chapter 5

[ 127 ]

Say we want to reach this result:

title
apricot
lemon
orange
tomato

We would need to order all records that are present in the categories table but that are
not present in the tags table by the title field. To do this, we would use the following
query:

forumdb=# select title from categories except select tag from tags order by
1;
 title
---------
 apricot
 lemon
 orange
 tomato
(4 rows)

The INTERSECT operator performs the reverse operation. It searches for all the records
present in the first table that are also present in the second table:

forumdb=# select title from categories intersect select tag from tags order
by 1;
 title
-------
 apple
(1 row)

In this section, we have taken a detailed look at the instructions needed to search data in
tables using various statements and joins. In the next section, we will see how to modify the
data in the tables in more advanced ways. 

Using UPSERT
In this section, we will look at some interesting features of the insert statement:

How to make an upsert statement starting from an insert statement
How to make a SQL query that inserts the same data and returns the record
inserted



Advanced Statements Chapter 5

[ 128 ]

UPSERT – the PostgreSQL way
In PostgreSQL, the upsert statement does not exist as in other DBMSes. An upsert
statement is used when we want to insert a new record on top of the existing record or
update an existing record. To do this in PostgreSQL, we can use the ON CONFLICT
keyword:

INSERT INTO table_name(column_list) VALUES(value_list)
ON CONFLICT target action;

Here, ON CONFLICT means that the target action is executed when the record already exists
(meaning when a record with the same primary key exists). The target action could be this:

 DO NOTHING

Alternatively, it could be the following:

 DO UPDATE SET { column_name = { expression | DEFAULT } |
     ( column_name [, ...] ) = [ ROW ] ( { expression | DEFAULT } [, ...] )
|
     ( column_name [, ...] ) = ( sub-SELECT )
     } [, ...]
 [ WHERE condition ]

Now, let's look at an example to better understand how upsert works:

For example, start with the j_posts_tags table:1.

forumdb=# \d j_posts_tags ;
            Table "public.j_posts_tags"
 Column  | Type    | Collation | Nullable | Default
---------+---------+-----------+----------+---------
 tag_pk  | integer |           | not null |
 post_pk | integer |           | not null |
Foreign-key constraints:
    "j_posts_tags_post_pk_fkey" FOREIGN KEY (post_pk) REFERENCES
posts(pk)
    "j_posts_tags_tag_pk_fkey" FOREIGN KEY (tag_pk) REFERENCES
tags(pk)

First, let's add a primary key to the j_posts_add table:2.

forumdb=# alter table j_posts_tags add constraint j_posts_tags_pkey
primary key (tag_pk,post_pk);
ALTER TABLE

forumdb=# \d j_posts_tags;



Advanced Statements Chapter 5

[ 129 ]

 Table "public.j_posts_tags"
 Column  | Type    | Collation | Nullable | Default
---------+---------+-----------+----------+---------
 tag_pk  | integer |           | not null |
 post_pk | integer |           | not null |
Indexes:
 "j_posts_tags_pkey" PRIMARY KEY, btree (tag_pk, post_pk)
Foreign-key constraints:
 "j_posts_tags_post_pk_fkey" FOREIGN KEY (post_pk) REFERENCES
posts(pk)
 "j_posts_tags_tag_pk_fkey" FOREIGN KEY (tag_pk) REFERENCES
tags(pk)

Next, let's see what the records of j_posts_tags are:3.

forumdb=# select * from j_posts_tags ;
 tag_pk | post_pk
--------+---------
      1 | 2
      1 | 3
(2 rows)

Now let's try to insert another record with the same primary key. If we perform a4.
standard insert statement, as follows, we can see that PostgreSQL returns an
error because we are trying to insert a record that already exists:

forumdb=# insert into j_posts_tags values(1,2);
ERROR: duplicate key value violates unique constraint
"j_posts_tags_pkey"
DETAIL: Key (tag_pk, post_pk)=(1, 2) already exists.

Let's now try using the ON CONFLICT DO NOTHING option:5.

forumdb=# insert into j_posts_tags values(1,2) ON CONFLICT DO
NOTHING;
INSERT 0 0
forumdb=# select * from j_posts_tags ;
 tag_pk | post_pk
--------+---------
      1 | 2
      1 | 3
(2 rows)



Advanced Statements Chapter 5

[ 130 ]

In this case, PostgreSQL doesn't return an error; instead, it simply does nothing.

Now let's try the DO UPDATE set option. This option realizes the upsert6.
statement, as in the following example:

forumdb=# insert into j_posts_tags values(1,2) ON CONFLICT
(tag_pk,post_pk) DO UPDATE set tag_pk=excluded.tag_pk+1;
INSERT 0 1

forumdb=# select * from j_posts_tags ;
 tag_pk | post_pk
--------+---------
      1 | 3
      2 | 2

The fields inside the ON CONFLICT condition must have a unique or exclusion constraint.
The previous statement simply replaces the following statement:

INSERT INTO  j_posts_tags values (1,2)

It gets replaced with this statement:

UPDATE set tag_pk=tag_pk+1 where tag_pk=1 and post_pk=2

Learning the RETURNING clause for INSERT
In PostgreSQL, we can add the RETURNING keyword to the insert statement. The
RETURNING keyword in PostgreSQL provides an opportunity to return the values of any 
columns from an insert or update statement after the insert or update was run. For
example, if we want to return all the fields of the record that we have just inserted, we have
to perform a query as follows:

forumdb=# insert into j_posts_tags values(1,2) returning *;
 tag_pk | post_pk
--------+---------
      1 | 2
(1 row)



Advanced Statements Chapter 5

[ 131 ]

The * means that we want to return all the fields of the record that we have just inserted; if
we want to return only some fields, we have to specify what fields the query has to return:

forumdb=# insert into j_posts_tags values (1,6) returning tag_pk;
 tag_pk
--------
 1
(1 row)

This feature will show itself to be particularly useful at the end of the chapter when we talk
about CTEs.

Returning tuples out of queries
In previous chapters, we have looked at simple update queries, such as the following:

forumdb=# update posts set title = 'my new apple' where pk = 3;
UPDATE 1

Now we will look at something more complicated. What if we want to update some records
in the posts table that are related in some way?

UPDATE related to multiple tables
Let's start with the following scenario:

Consider the categories table:1.

forumdb=# select * from categories order by pk;
 pk | title   | description
----+---------+-------------
 10 | apple   | fruits
 11 | orange  | fruits
 12 | tomato  | vegetable
 13 | lemon   |
 14 | apricot | fruits
(5 rows)



Advanced Statements Chapter 5

[ 132 ]

Consider the posts table (only the pk, title, and category fields):2.

forumdb=# select pk,title,category from posts order by pk;
 pk | title         | category
----+---------------+----------
  2 | my orange     | 11
  3 | my new apple  | 10
  4 | Re:my orange  | 11
  5 | my tomato     | 12
  6 | my new orange | 11
(5 rows)

Now we want to modify all the records of the posts table that belong to the apple
category. The only record in the table that belongs to the apple category is this:

3 my new apple 10

We want this result:

3 my new apple last updated current date 10

Thus, we want to add a string that contains the words last update + current date,
where the current date is the effective current date. We can reach our goal in three different
ways. The first two ways are SQL standard queries, but the third is not. Let's look at the
non-standard option in detail.

First of all, let's create a temporary table so as not to modify the data for subsequent tests, as
we've seen in the previous chapter. For this, let's perform the following statement:

drop table if exists t_posts;
create temp table t_posts as select * from posts;

Now, let's start using the first way:

update t_posts p
set title=p.title||' last updated '||current_date::text
where p.category in (select pk from categories c where c.title='apple');

The preceding query searches all records in the posts table that have a value of the
category field equal to the pk values of the categories table, which was already filtered
by the where condition. The part of the preceding query that executes p.title||' last
updated '||current_date::text  appends the ' last update ' + current_date
string, where current_date is the effective current date, as seen here:

 forumdb=# select current_date;
 current_date



Advanced Statements Chapter 5

[ 133 ]

--------------
 2020-01-09
(1 row)

So, the result of the update query is as follows:

forumdb=# select pk,title,category from t_posts order by pk;
 pk | title                                | category
----+--------------------------------------+----------
  2 | my orange                            | 11
  3 | my new apple last updated 2020-01-09 | 10
  4 | Re:my orange                         | 11
  5 | my tomato                            | 12
  6 | my new orange                        | 11
(5 rows)

Another way to make the update query is using the exists condition:

forumdb=# update t_posts p set title=p.title||' last updated
'||current_date::text
where exists (select 1 from categories c where c.pk=p.category and
c.title='apple' limit 1);

Now we'll see the third way to make this kind of update. It's a PostgreSQL query, but it
isn't a SQL standard query:

forumdb=# update t_posts p
 set title=p.title||' last updated '||current_date::text
 from categories c
where c.pk=p.category and c.title='apple';

This query is slightly different from those that we've seen before; PostgreSQL allows us to
add a from condition to the update statement. It works very similarly to the inner join
mechanism seen previously. For further information, see the official documentation
(https:/​/​www.​postgresql. ​org/ ​docs/ ​12/ ​sql- ​update. ​html).

Exploring UPDATE .... RETURNING
As we've seen in the INSERT statement, the update statement also has the possibility to
add the RETURNING keyword. The update statement works in the same way as the INSERT
statement:

forumdb=# update t_posts p set title=p.title||' last updated
'||current_date::text
where exists (select 1 from categories c where c.pk=p.category and
c.title='apple' limit 1) returning pk,title,category;

https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html
https://www.postgresql.org/docs/12/sql-update.html


Advanced Statements Chapter 5

[ 134 ]

 pk | title | category
----+--------------------------------------+----------
  3 | my new apple last updated 2020-01-09 | 10
(1 row)

UPDATE 1

DELETE .... RETURNING
As we've seen, the update statement, like the INSERT statement, has the possibility to add
the RETURNING keyword; this feature is also available for the delete statement:

forumdb=# delete from t_posts p where exists (select 1 from categories c
where c.pk=p.category and c.title='apple') returning pk,title,category;
 pk | title        | category
----+--------------+----------
 3  | my new apple | 10
(1 row)
DELETE 1

forumdb=# select pk,title,category from t_posts order by 1;
 pk | title         | category
----+---------------+----------
  2 | my orange     | 11
  4 | Re:my orange  | 11
  5 | my tomato     | 12
  6 | my new orange | 11
(4 rows)

As we can see, all the records associated with the apple category are not present anymore.
In this section, we've seen how to modify the data inside the tables in an advanced way.

In the next section, we'll talk about CTEs, an advanced method to return and modify data.

Exploring CTEs
In this section, we are going to talk about CTEs. This section will be split into three parts.
Firstly, we will talk about the concept of CTEs; secondly, we will discuss how CTEs are
implemented in PostgreSQL 12; and finally, we will explore some examples of how to use
CTEs.



Advanced Statements Chapter 5

[ 135 ]

CTE concept
A CTE, or a common table expression, is a temporary result taken from a SQL statement.
This statement can contain SELECT, INSERT, UPDATE, or DELETE instructions. The lifetime
of a CTE is equal to the lifetime of the query. Here is an example of a CTE definition:

WITH cte_name (column_list) AS (
 CTE_query_definition
)
statement;

If, for example, we wanted to create a temporary dataset with all the posts written by the
author scotty, we would have to write this:

forumdb=# with posts_author_1 as
 (select p.* from posts p
 inner join users u on p.author=u.pk
 where username='scotty')
select pk,title from posts_author_1;
 pk | title
----+--------------
  4 | Re:my orange
  5 | my tomato
(2 rows)

 We could also write the same thing using an inline view:

forumdb=# select pk,title from
(select p.* from posts p inner join users u on p.author=u.pk where
u.username='scotty') posts_author_1;
 pk | title
----+--------------
  4 | Re:my orange
  5 | my tomato
(2 rows)

As we can see, the result is the same. The difference is that in the first example, the CTE
creates a temporary result set, whereas the second query, the inline view, does not. 



Advanced Statements Chapter 5

[ 136 ]

CTE in PostgreSQL 12
Starting from PostgreSQL version 12, things have changed, and two new options have been
introduced for the execution of a CTE, namely MATERIALIZED and NOT MATERIALIZED. If
we want to perform a CTE that materializes a temporary resultset, we have to add the
materialized keyword:

forumdb=#  with posts_author_1 as materialized
 (select p.* from posts p
 inner join users u on p.author=u.pk
 where username='scotty')
select pk,title from posts_author_1;
 pk | title
----+--------------
 4 | Re:my orange
 5 | my tomato
(2 rows)

The query written here materializes a temporary resultset as happened in previous versions
of PostgreSQL. If we write the query with the NOT MATERIALIZE option, PostgreSQL will
not materialize any temporary resultset:

forumdb=# with posts_author_1 as not materialized
 (select p.* from posts p
 inner join users u on p.author=u.pk
 where username='scotty')
select pk,title from posts_author_1;
 pk | title
----+--------------
 4 | Re:my orange
 5 | my tomato
(2 rows)

If we don't specify any option, the default is NOT MATERIALIZED, and this could be a
problem if we are migrating a database from a minor version to PostgreSQL 12. This is
because the behavior of the query planner could change, and the performance could change
too.

From version 12, we have to insert the MATERIALIZED option if we want
to have our queries display the same behavior that we had with the
previous versions.



Advanced Statements Chapter 5

[ 137 ]

CTE – some examples
Let's now present some examples of the use of CTEs:

Firstly, we will recreate the t_posts table from scratch and then we'll create a1.
new table, delete_posts, with the same data structure as the posts table:

forumdb=# drop table if exists t_posts;
DROP TABLE
forumdb=# create temp table t_posts as select * from posts;
SELECT 5
forumdb=# create table delete_posts as select * from posts limit 0;
SELECT 0
forumdb=# \d delete_posts
                        Table "public.delete_posts"
     Column     | Type                     | Collation | Nullable |
Default
----------------+--------------------------+-----------+----------
+---------
 pk             | integer                  |           |          |
 title          | text                     |           |          |
 content        | text                     |           |          |
 author         | integer                  |           |          |
 category       | integer                  |           |          |
 reply_to       | integer                  |           |          |
 created_on     | timestamp with time zone |           |          |
 last_edited_on | timestamp with time zone |           |          |
 editable       | boolean                  |           |          |

The starting values ​​for the t_posts and delete_posts tables are as follows:

forumdb=# select pk,title,category from t_posts ;
 pk | title         | category
----+---------------+----------
 4  | Re:my orange  | 11
 5  | my tomato     | 12
 2  | my orange     | 11
 6  | my new orange | 11
 3  | my new apple  | 10
(5 rows)

forumdb=# select pk,title,category from delete_posts ;
 pk | title | category
----+-------+----------
(0 rows)



Advanced Statements Chapter 5

[ 138 ]

Now suppose that we want to delete some records from the posts table, and we2.
want all the records that we have deleted from the t_posts table to be inserted
into the delete_posts table. To reach this goal, we have to use CTEs as follows:

forumdb=# with del_posts as (
    delete from t_posts
    where category in (select pk from categories where title
='apple')
returning *)
insert into delete_posts select * from del_posts;
INSERT 0 1

The query here deletes all the records from the t_posts table that have their
category as 'apple' and, in the same transaction, inserts all the records deleted
in the delete_posts table, as we can see here:

forumdb=# select pk,title,category from t_posts ;
 pk | title | category
----+---------------+----------
  4 | Re:my orange | 11
  5 | my tomato | 12
  2 | my orange | 11
  6 | my new orange | 11
(4 rows)

forumdb=# select pk,title,category from delete_posts ;
 pk | title | category
----+--------------+----------
  3 | my new apple | 10
(1 row)

Now let's make another example by returning to the starting scenario:3.

forumdb=# drop table if exists t_posts;
DROP TABLE
forumdb=# create temp table t_posts as select * from posts;
SELECT 5



Advanced Statements Chapter 5

[ 139 ]

As we have done before, let's create a new table named inserted_post with the4.
same data structure as the posts table:

forumdb=# create table inserted_posts as select * from posts limit
0;
SELECT 0

Suppose now that we want to perform a SQL query that moves, in the same5.
transaction, all the records that are present in the t_posts table to the
inserted_posts table. This query will be as follows:

forumdb=# with ins_posts as ( insert into inserted_posts select *
from t_posts returning pk) delete from t_posts where pk in (select
pk from ins_posts);
DELETE 5

As we can see from the results, the query has achieved our goal:

forumdb=# select pk,title,category from t_posts ;
 pk | title | category
----+-------+----------
(0 rows)

forumdb=# select pk,title,category from inserted_posts ;
 pk | title         | category
----+---------------+----------
 4  | Re:my orange  | 11
 5  | my tomato     | 12
 2  | my orange     | 11
 6  | my new orange | 11
 3  | my new apple  | 10
(5 rows)

Query recursion
In PostgreSQL, it is possible to create recursive queries. Recursive queries are used in graph
databases and in many common use cases, such as querying tables that represent website
menus. Recursive CTEs make it possible to have recursive queries in PostgreSQL.



Advanced Statements Chapter 5

[ 140 ]

Recursive CTEs
A recursive CTE is a special construct that allows an auxiliary statement to reference itself
and, therefore, join itself onto previously computed results. This is particularly useful
when we need to join a table an unknown number of times, typically to "explode" a flat
tree structure. The traditional solution would involve some kind of iteration, probably by
means of a cursor that iterates one tuple at a time over the whole resultset. However, with
recursive CTEs, we can use a much cleaner and simpler approach. A recursive CTE is made
by an auxiliary statement that is built on top of the following:

A non-recursive statement, which works as a bootstrap statement and is executed
when the auxiliary term is first evaluated.
A recursive statement, which can either reference the bootstrap statement
or itself

These two parts are joined together by means of a UNION predicate. For example, let's see
inside the tags table: 

 pk | tag        | parent
----+------------+--------
  1 | fruits     |
  2 | vegetables |
  3 | apple      | 1
(3 rows)

Now we would like to "explode" the flat tree structure and follow the relation between
parent and child using the parent field of the tags table. So, we want the result to be
something like this:

level tag
1 fruits
1 vegetable
2 fruits -> apple

To reach this goal, we have to perform the following:

forumdb# WITH RECURSIVE tags_tree AS (
 -- non recursive statment
SELECT tag, pk, 1 AS level
FROM tags WHERE parent IS NULL
UNION
-- recursive statement
SELECT tt.tag|| ' -> ' || ct.tag, ct.pk
, tt.level + 1
FROM tags ct



Advanced Statements Chapter 5

[ 141 ]

JOIN tags_tree tt ON tt.pk = ct.parent
)
SELECT level,tag FROM tags_tree
order by level;
level  | tag
-------+-----------------
 1     | fruits
 1     | vegetables
 2     | fruits -> apple
(3 rows)

When we use CTEs, it is important to avoid infinite loops. These can
happen if the recursion does not end properly.

Thus, we have learned how to use CTEs to tinker with tables.

Summary
Hopefully, this chapter was full of interesting ideas for the developer and the DBA. In this
chapter, we talked about complex queries; we then saw the SELECT statement and the use
of the LIKE, ILIKE, DISTINCT, OFFSET, LIMIT, IN, and NOT IN clauses. We then started
talking about aggregates through the GROUP BY and HAVING clauses, and we introduced
some aggregate functions, such as SUM(), COUNT(), AVG(),  MIN(), and MAX().

We then talked in depth about subqueries and joins. Another very interesting set of topics
covered in this chapter were the UNION, EXCEPT, and INTERSECT queries. Finally, by
looking at the advanced options for the INSERT, DELETE, and UPDATE instructions, and by
covering CTEs, we gave you an idea of ​​the power of the SQL language owned by
PostgreSQL.

As for the concept of aggregates, in the next chapter, we will see a new way to make
aggregates using windows functions. Through the use of windows functions, we will see
that we are able to create all the aggregates and aggregation functions described in this
chapter, but we will also see that we have the option to create new ones.



Advanced Statements Chapter 5

[ 142 ]

References
PostgreSQL 12 - Subquery expressions official documentation: https:/ ​/​www.
postgresql. ​org/ ​docs/ ​12/ ​functions- ​subquery. ​html

PostgreSQL 12 - Joins official documentation: https:/ ​/​www. ​postgresql. ​org/
docs/​12/ ​tutorial- ​join. ​html

PostgreSQL 12 - CTEs official documentation: https:/ ​/​www. ​postgresql. ​org/
docs/​12/ ​queries- ​with. ​html

https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/functions-subquery.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/tutorial-join.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html
https://www.postgresql.org/docs/12/queries-with.html


6
Window Functions

In the previous chapter, we talked about aggregates. In this chapter, we are going to further
discuss another way to make aggregates: window functions. The official documentation
(https:/​/​www.​postgresql. ​org/ ​docs/ ​12/ ​tutorial- ​window. ​html) describes window
functions as follows:

A window function performs a calculation across a set of table rows that are somehow
related to the current row. This is comparable to the type of calculation that can be done
with an aggregate function. However, window functions do not cause rows to become
grouped into a single output row as non-window aggregate calls would. Instead, the rows
retain their separate identities. Behind the scenes, the window function is able to access
more than just the current row of the query result.

In this chapter, we will talk about window functions, what they are, and how we can use
them to improve the performance of our queries.

The following topics will be covered in this chapter:

Using basic statement window functions
Using advanced statement window functions

https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html
https://www.postgresql.org/docs/12/tutorial-window.html


Window Functions Chapter 6

[ 144 ]

Using basic statement window functions
As we saw in the previous chapter, aggregation functions behave in the following way:

The data is first sorted and then aggregated; the data is then flattened through aggregation.
This is what happens when we execute the following statement:

forumdb=# select category,count(*) from posts group by category order by
category;

Alternatively, we can decide to use window functions by executing the following
statement:

forumdb=# select category, count(*) over (partition by category) from posts
order by category;
 category | count
----------+-------
       10 | 1
       11 | 3
       11 | 3
       11 | 3
       12 | 1
(5 rows)



Window Functions Chapter 6

[ 145 ]

Window functions create aggregates without flattening the data into a single row.
However, they replicate it for all the rows to which the grouping functions refer. The
behavior of PostgreSQL is depicted in the following diagram:

This is the reason that the distinct keyword has to be added to the preceding query if we
want to obtain the same result that we get with a classic GROUP BY query. 

Using the PARTITION BY function and WINDOW
clause
Let's now run some basic queries using the window functions. Suppose that we want to use
two over clauses. For example, if, on one column, we want to count the rows relating to the
category, and on another column the total count of the columns, then we have to run the
following statement:

forumdb=# select category, count(*) over (partition by category),count(*)
over () from posts order by category;
 category | count | count
----------+-------+-------
 10       | 1     | 5
 11       | 3     | 5
 11       | 3     | 5
 11       | 3     | 5
 12       | 1     | 5
(5 rows)



Window Functions Chapter 6

[ 146 ]

Or if we want to remove all duplicate rows, we will have to run the following:

forumdb=# select distinct category, count(*) over (partition by
category),count(*) over ()
from posts
order by category;
 category | count | count
----------+-------+-------
       10 | 1     | 5
       11 | 3     | 5
       12 | 1     | 5
(3 rows)

In the preceding query, the first window function aggregates the data using the category
field, while the second one aggregates the data of the whole table.

Using the window functions, it is possible to aggregate the data in different fields in the
same query.

As we've seen here, we can define the window frame directly on the query level, but we
can also define an alias for the window frame. For example, the preceding query becomes
the following:

forumdb=# select distinct category, count(*) over w1 ,count(*) over W2
from posts
WINDOW w1 as (partition by category),W2 as ()
order by category;
 category | count | count
----------+-------+-------
 10       | 1     | 5
 11       | 3     | 5
 12       | 1     | 5
(3 rows)

The use of aliases is called the WINDOW clause. The WINDOW clause is very useful when we
have many aggregates.

Introducing some useful functions
Window functions can use all the aggregation functions that we explored in the previous
chapter. In addition to these, window functions introduce new aggregation functions.



Window Functions Chapter 6

[ 147 ]

Before we examine some of those, let's introduce a unique function – generate_series.
generate_series simply generates a numerical series, for example:

forumdb=# select generate_series(1,5);
 generate_series
-----------------
 1
 2
 3
 4
 5
(5 rows)

In the following examples, we will use this function for various use cases.

The ROW_NUMBER function
Now let's look at the ROW_NUMBER() function. The ROW_NUMBER() function assigns a 
progressive number for each row within the partition:

forumdb=# select category, count(*) over w from posts WINDOW w as
(partition by category) order by category;
 category | count | row_number
----------+-------+------------
 10       | 1     | 1
 11       | 3     | 1
 11       | 3     | 2
 11       | 3     | 3
 12       | 1     | 1
(5 rows)

In the preceding query, we've used the PARTITION BY clause to divide the window into
subsets based on the values in the category column. As can be seen, we have three
category values: 10, 11, and 12. This means that we have three windows and inside each
window, the ROW_NUMBER() function assigns numbers as we defined before. 

The ORDER BY clause
The ORDER BY clause sorts the values inside the window. We can also use the NULLS
FIRST or NULLS LAST option to have the null values at the beginning or at the end of the
sorting. For example, we can perform a window function query without an ORDER
BY clause, as we can see in the following snippet, but we have to pay attention to what kind
of function we are using, and what our goal is. 



Window Functions Chapter 6

[ 148 ]

If we use aggregation functions that do not depend on the sort order, such as the
COUNT function, we can avoid sorting the data, otherwise, it is good practice to sort the data
inside the partition in order to avoid the risk of having different results every time the
query is launched:

forumdb=# select category,row_number() over w,title
from posts WINDOW w as (partition by category) order by category;
 category | row_number | title
----------+------------+---------------
       10 | 1          | my new apple
       11 | 1          | Re:my orange
       11 | 2          | my orange
       11 | 3          | my new orange
       12 | 1          | my tomato
(5 rows)

Or, we can use the order by clause and order data inside the partition:

forumdb=# select category,row_number() over w,title
from posts WINDOW w as (partition by category order by title) order by
category;
 category | row_number | title
----------+------------+---------------
       10 | 1          | my new apple
       11 | 1          | my new orange
       11 | 2          | my orange
       11 | 3          | Re:my orange
       12 | 1          | my tomato
(5 rows)

As we can see in the second example, inside the partition, the data is sorted on the title
field.

FIRST_VALUE
 The FIRST_VALUE function returns the first value within the partition, for example:

forumdb=# select category,row_number() over w,title,first_value(title) over
w
from posts WINDOW w as (partition by category order by category) order by
category;
 category | row_number | title | first_value
----------+------------+---------------+--------------
       10 | 1          | my new apple  | my new apple
       11 | 1          | Re:my orange  | Re:my orange
       11 | 2          | my orange     | Re:my orange



Window Functions Chapter 6

[ 149 ]

       11 | 3          | my new orange | Re:my orange
       12 | 1          | my tomato     | my tomato
(5 rows)

LAST_VALUE
 The LAST_VALUE function returns the last value within the partition, for example:

forumdb=# select category,row_number() over w,title,last_value(title) over
w
from posts WINDOW w as (partition by category order by category) order by
category;
 category | row_number | title | last_value
----------+------------+---------------+---------------
       10 | 1 | my new apple | my new apple
       11 | 1 | Re:my orange | my new orange
       11 | 2 | my orange | my new orange
       11 | 3 | my new orange | my new orange
       12 | 1 | my tomato | my tomato
(5 rows)

 It is important to always use the order by clause when we use the first_value() or
last_value() functions to avoid incorrect results, as mentioned previously. 

RANK
The RANK function ranks the current row within its partition with gaps. If we don't specify
a PARTITION BY clause, the function doesn't know how to correlate the current tuple, so
the function correlates to itself, as seen here:

forumdb=# select pk,title,author,category,rank() over () from posts order
by category;
 pk | title          author | category | rank
----+---------------+--------+----------+------
  3 | my new apple  | 1      | 10       | 1
  4 | Re:my orange  | 2      | 11       | 1
  2 | my orange     | 1      | 11       | 1
  6 | my new orange | 1      | 11       | 1
  5 | my tomato     | 2      | 12       | 1
(5 rows)



Window Functions Chapter 6

[ 150 ]

If we add the order by clause, the function ranks in the assigned order, for example, the
author with id 1 starts from record 1, and the author with id 2 starts from record 4, as we
can see in the following example:

forumdb=# select pk,title,author,category,rank() over (order by author)
from posts ;
 pk | title         | author | category | rank
----+---------------+--------+----------+------
  2 | my orange     | 1      | 11       | 1
  6 | my new orange | 1      | 11       | 1
  3 | my new apple  | 1      | 10       | 1
  4 | Re:my orange  | 2      | 11       | 4
  5 | my tomato     | 2      | 12       | 4
(5 rows)

If we add the PARTITION BY clause, the working mechanism is the same, the only 
difference is that the ranking is calculated within the partition and not on the whole table as
in the previous example:

forumdb=# select pk,title,author,category,rank() over (partition by author
order by category) from posts order by author;
 pk | title         | author | category | rank
----+---------------+--------+----------+------
  3 | my new apple  | 1      | 10       | 1
  2 | my orange     | 1      | 11       | 2
  6 | my new orange | 1      | 11       | 2
  4 | Re:my orange  | 2      | 11       | 1
  5 | my tomato     | 2      | 12       | 2
(5 rows)

DENSE_RANK 
The DENSE_RANK function is similar to the RANK function. The difference is that the
DENSE_RANK function ranks the current row within its partition without gaps:

forumdb=# select pk,title,author,category,dense_rank() over (order by
author) from posts order by category;
 pk | title         | author | category | dense_rank
----+---------------+--------+----------+------------
  3 | my new apple  | 1      | 10       | 1
  2 | my orange     | 1      | 11       | 1
  6 | my new orange | 1      | 11       | 1
  4 | Re:my orange  | 2      | 11       | 2
  5 | my tomato     | 2      | 12       | 2
(5 rows)



Window Functions Chapter 6

[ 151 ]

The LAG and LEAD functions
In this section, we will show how the LAG and LEAD functions work. First of all, we are
going to set up our environment and we are going to generate a sequence of numbers as we
did previously:

forumdb=# select x from (select generate_series(1,5) as x) V ;
 x
---
 1
 2
 3
 4
 5
(5 rows)

This is our starting point for this example. The official documentation (https:/ ​/​www.
postgresql.​org/​docs/ ​12/ ​functions- ​window. ​html) defines the LAG function as follows: 

The LAG function returns a value evaluated at the row that is offset rows before the
current row within the partition; if there is no such row, it instead returns the default
(which must be of the same type as the value). Both the offset and the default are evaluated
with respect to the current row. If omitted, offset defaults to 1 and default to null.

Now, let's write the following statement:

forumdb=# select x,lag(x) over w from (select generate_series(1,5) as x) V
WINDOW w as (order by x) ;
 x | lag
---+-----
 1 |
 2 | 1
 3 | 2
 4 | 3
 5 | 4
(5 rows)

As we can see, the lag function returns a result set with an offset value equal to 1. If we
introduce an offset parameter, the lag function will return a result set with an offset
equal to the number that we have passed as input, as can be seen in the next example:

forumdb=# select x,lag(x,2) over w from (select generate_series(1,5) as x)
V WINDOW w as (order by x) ;
 x | lag
---+-----
 1 |
 2 |

https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html


Window Functions Chapter 6

[ 152 ]

 3 | 1
 4 | 2
 5 | 3
(5 rows)

The lead function is the opposite of the lag function, as described in the official
documentation:

The LEAD function returns the value evaluated at the row that is offset rows after the
current row within the partition; if there is no such row, it instead returns the default
(which must be of the same type as the mentioned value). Both the offset and default are
evaluated with respect to the current row. If omitted, the offset defaults to 1 and the
default becomes null.

Here are a couple of examples where we can see how it works. In the first example, we will
use the lead function without any parameters:

forumdb=# select x,lead(x) over w from (select generate_series(1,5) as x) V
WINDOW w as (order by x) ;
 x | lead
---+------
 1 | 2
 2 | 3
 3 | 4
 4 | 5
 5 |
(5 rows)

As we can see in the lead function, the offset starts from the bottom.

Let's now see an example of using the lead function with an offset parameter:

forumdb=# select x,lead(x,2) over w from (select generate_series(1,5) as x)
V WINDOW w as (order by x) ;
 x | lead
---+------
 1 | 3
 2 | 4
 3 | 5
 4 |
 5 |
(5 rows)



Window Functions Chapter 6

[ 153 ]

The CUME_DIST function
The CUME_DIST function calculates the cumulative distribution of value within a partition.
The function is described in the official documentation as follows: 

The CUME_DIST function computes the fraction of partition rows that are less than or
equal to the current row and its peers.

Let's look at an example:

forumdb=# select x,cume_dist() over w from (select generate_series(1,5) as
x) V WINDOW w as (order by x) ;
 x | cume_dist
---+-----------
 1 | 0.2
 2 | 0.4
 3 | 0.6
 4 | 0.8
 5 | 1
(5 rows)

As the function is mathematically defined, the cume_dist function can never have a value
greater than the current value of the field. 

The NTILE function
 The PostgreSQL NTILE function groups the rows sorted in the partition. Starting from 1,
up to the parameter value passed to the NTILE function, each group is assigned a number
of buckets. The parameter passed to the NTILE function determines how many records we
want the bucket to be composed of.

Now, let's see an example of how it works by trying to split our result set into two buckets:

forumdb=# select x,ntile(2) over w from (select generate_series(1,6) as x)
V WINDOW w as (order by x) ;
 x | ntile
---+-------
 1 | 1
 2 | 1
 3 | 1
 4 | 2
 5 | 2
 6 | 2
(6 rows)



Window Functions Chapter 6

[ 154 ]

If we wanted to divide our result set into three buckets, we would run the following
statement:

forumdb=# select x,ntile(3) over w from (select generate_series(1,6) as x)
V WINDOW w as (order by x) ;
 x | ntile
---+-------
 1 | 1
 2 | 1
 3 | 2
 4 | 2
 5 | 3
 6 | 3
(6 rows)

The NTILE() function accepts an integer and tries to divide the window into a number of
balanced buckets, specifying to which bucket each row belongs.

In this section, we have introduced some features that allow you to do some basic data
mining. For example, lag and lead could be used to compare different lines of a table, and
therefore compare the salaries of different employees, or compare collections from different
days. 

In the next section, we will go into even more detail and explore some more advanced
features of window functions.

Using advanced statement window
functions
In this section, we will discuss advanced window functions in more detail, and we will
explore some techniques that may be useful for carrying out more detailed data analysis.



Window Functions Chapter 6

[ 155 ]

Let's start with another way to write the same aggregate that we have described before:

forumdb=# select distinct category, count(*) over w1
from posts
WINDOW w1 as (partition by category RANGE BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW)
order by category;
 category | count
----------+-------
       12 | 1
       10 | 1
       11 | 3
(3 rows)

What does RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW mean? They are
the default conditions, known as the frame clause. This means that the data is partitioned,
first by category, and then within the partition, the count is calculated by resetting the
count every time the frame is changed.

The frame clause
In this section, we'll talk about the frame clause, which allows us to manage partitions in a
different way.  The frame clause has two forms: 

Rows between start_point and end_point
Range between start_point and end_point

It only makes sense to use the frame clause if the order by clause is also present. We will
use the ROWS BETWEEN clause when we are going to consider a specific set of records
relative to the current row. We will use the RANGE BETWEEN clause when we are going to
consider a range of values ​​in a specific column relative to the value in the current row.

ROWS BETWEEN start_point and end_point
Now we will look at some simple examples to try to better explain the frame_set clauses.
These are typically used to do in-depth data analysis and data mining, among other tasks.
Let's start with some examples, beginning here:

forumdb=# select x from (select generate_series(1,5) as x) V WINDOW w as
(order by x) ;
 x
---
 1



Window Functions Chapter 6

[ 156 ]

 2
 3
 4
 5
(5 rows)

Suppose that we want to have an incremental sum row by row, the goal that we want to
reach is as follows:

x sum(x)
1 1
2 3
3 6
4 10
5 15

This can be achieved using the following query: 

forumdb=# SELECT x, SUM(x) OVER w
 FROM (select generate_series(1,5) as x) V
 WINDOW w AS (ORDER BY x ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW);
 x | sum
---+-----
 1 | 1
 2 | 3
 3 | 6
 4 | 10
 5 | 15
(5 rows)

Now, let's imagine that the query was executed in successive steps, one for each row of the
table. In the following diagrams, we will simulate the internal behavior of PostgreSQL, to
better understand how the clause ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT
ROW works:

First, PostgreSQL uses the order_by_clause condition to order the data inside1.
the window, as seen in the following diagram:



Window Functions Chapter 6

[ 157 ]

As we can see in the diagram, we have two pointers: the green one for the
UNBOUNDED PRECEDING clause and the orange pointer for the CURRENT
ROW clause. The result is 1, so in the first step both point to the first row. Now,
let's see what happens in the next steps.

In the second step, the UNBOUNDED PRECEDING pointer still points to the2.
first row, whereas the CURRENT ROW pointer now points to the second row,
and the result of the sum is 1+2 = 3:



Window Functions Chapter 6

[ 158 ]

The third step is very similar to step 2: the UNBOUNDED PRECEDING pointer3.
still points to the first row, whereas the CURRENT ROW pointer now points to
the third row, and the result of the sum is 1+2+3 = 6:

 The fourth step is almost identical to step 3: the UNBOUNDED PRECEDING4.
pointer still points to the first row, whereas the CURRENT ROW pointer now 
points to the fourth row, and the result of the sum is 1+2+3+4 = 10:



Window Functions Chapter 6

[ 159 ]

And in the fifth and final step, we have the desired result:5.

That is how a frameset clause works!

Let's look at some more examples of how the frame clause works using different options.

If for each row of the table we want to find the sum of the current row with the preceding
row, we would start from the following:

x

1
2
3
4
5

We want to end up with the following result:

x sum(x)
1 1
2 3
3 5
4 7
5 9



Window Functions Chapter 6

[ 160 ]

The query that we have to perform is described in the following example:

forumdb=# SELECT x, SUM(x) OVER w
 FROM (select generate_series(1,5) as x) V
 WINDOW w AS (ORDER BY x RANGE BETWEEN 1 PRECEDING AND CURRENT ROW);
 x | sum
---+-----
 1 | 1
 2 | 3
 3 | 5
 4 | 7
 5 | 9
(5 rows)

The preceding query works similarly to what we saw before. The only difference is that
now the calculation range is between the first row and the current row of the partition, as
written in the statement BETWEEN 1 PRECEDING AND CURRENT ROW. In this example, only
two lines are used to calculate the sum. The same mechanism can be used to perform an
incremental sum, as we can see in the preceding example:

forumdb=# SELECT x, SUM(x) OVER w
FROM (select generate_series(1,5) as x) V
WINDOW w AS (ORDER by x ROWS UNBOUNDED PRECEDING);
 x | sum
---+-----
 1 | 1
 2 | 3
 3 | 6
 4 | 10
 5 | 15
(5 rows)

Now the only difference is that the calculation range is by ROWS UNBOUNDED PRECEDING
and not BETWEEN 1 PRECEDING AND CURRENT ROW.

Let's look at another example where window functions simplify our work. Always starting
from the series that we've seen before, we know that the total sum is 1+2+3+4+5 = 15, so now
suppose that we want to make a reverse sum starting from the max value of the table, that
is, 5.



Window Functions Chapter 6

[ 161 ]

In this example, we want the result to be as follows:

x sum(x)
​1 15
2 14
3 12
4 9
5 5

The query that makes this possible is the following:

forumdb=# SELECT x, SUM(x) OVER w
FROM (select generate_series(1,5) as x) V
WINDOW w AS (ORDER BY X ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING);
 x | sum
---+-----
 1 | 15
 2 | 14
 3 | 12
 4 | 9
 5 | 5
(5 rows)

What makes this possible is the UNBOUNDED FOLLOWING clause, which works the
opposite way to UNBOUNDED PRECEDING. This happens because of the following:

In the first row, all values ​​are added: 1+2+3+4+5 =15.
In the second row, these values are added: 2+3+4+5 = 14.
In the third row, these values are added: 3+4+5 = 12.

RANGE BETWEEN start_point and end_point
As discussed earlier, when we use RANGE BETWEEN, we will consider a RANGE of values ​
with respect to the value in the current row.  The difference when it comes to the ROWS
clause is that if the field that we use for ORDER BY does not contain unique values for each
row, then RANGE will combine all the rows it comes across with non-unique values, rather
than processing them one at a time.



Window Functions Chapter 6

[ 162 ]

In contrast, ROWS will include all of the rows in the non-unique bunch but processes each of
them separately. 

First of all, let's create a simple dataset with duplicate data:1.

forumdb=# select generate_series(1,10) % 5 as x order by 1;
 x
---
 0
 0
 1
 1
 2
 2
 3
 3
 4
 4
(10 rows)

Now let's do some tests to observe the differences between the ROWS and RANGE2.
clauses. Let's start with the ROWS clause:

forumdb=# SELECT x, row_number() OVER w, SUM(x) OVER w FROM (select
generate_series(1,10) % 5 as x) V
WINDOW w AS (ORDER BY x ROWS BETWEEN 1 PRECEDING AND CURRENT ROW);
 x | row_number | sum
---+------------+-----
 0 | 1          | 0
 0 | 2          | 0
 1 | 3          | 1
 1 | 4          | 2
 2 | 5          | 3
 2 | 6          | 4
 3 | 7          | 5_
 3 | 8          | 6
 4 | 9          | 7
 4 | 10         | 8
(10 rows)

The preceding query works exactly as we've seen before, it sums the previous row
with the current row.



Window Functions Chapter 6

[ 163 ]

Let's now see what happens if we use the RANGE clause instead of the ROWS3.
clause:

forumdb=# SELECT x, row_number() OVER w, SUM(x) OVER w
FROM (select generate_series(1,10) % 5 as x) V
WINDOW w AS (ORDER BY x RANGE BETWEEN 1 PRECEDING AND CURRENT ROW);
 x | row_number | sum
---+------------+-----
 0 | 1          | 0
 0 | 2          | 0
 1 | 3          | 2
 1 | 4          | 2
 2 | 5          | 6
 2 | 6          | 6
 3 | 7          | 10
 3 | 8          | 10
 4 | 9          | 14
 4 | 10         | 14
(10 rows)

Let's take this result:

x row_number sum
0 1 0
0 2 0
1 3 2
1 4 2
2 5 6
2 6 6
3 7 10
3 8 10
4 9 14
4 10 14

Now let's look at the result from the frame point of view:

x row_number sum Frame Number
0 1 0 1
0 2 0 1
1 3 2 2
1 4 2 2
2 5 6 3
2 6 6 3



Window Functions Chapter 6

[ 164 ]

3 7 10 4
3 8 10 4
4 9 14 5
5 10 14 5

As we can see, there are four frames in the table before, so internally PostgreSQL works in
this way: first, PostgreSQL splits the window function into frames using the order by
clause and then aggregates the data among the frames; for example: 

The sum of row number 3 is the result of the sum of row number 1 + row number
2 + row number 3 + row number 4: 0+0+1+1=2.
The sum of row number 4 is the result of the sum of row number 1 + row number
2 + row number 3 + row number 4: 0+0+1+1=2.
The sum of row number 5 is the result of the sum of row number 3 + row number
4 + row number 5 + row number 6:1+1+2+2=6.
The sum of row number 6 is the result of the sum of row number 3 + row number
4+ row number 5 + row number 6:1+1+2+2=6.

In the preceding example, we have considered a partition ordered in an ascending way. In
the next example, the partition is sorted in a descending way and we will see the
difference between ROWS and RANGE in this scenario.

This is the query for the RANGE clause:

forumdb=# SELECT x,row_number() OVER w, dense_rank() OVER w,sum(x) OVER w
FROM (select generate_series(1,10) % 5 as x) V
WINDOW w AS (ORDER BY x desc RANGE BETWEEN 1 PRECEDING AND CURRENT ROW);
 x | row_number | dense_rank | sum
---+------------+------------+-----
 4 | 1          | 1          | 8
 4 | 2          | 1          | 8
 3 | 3          | 2          | 14
 3 | 4          | 2          | 14
 2 | 5          | 3          | 10
 2 | 6          | 3          | 10
 1 | 7          | 4          | 6
 1 | 8          | 4          | 6
 0 | 9          | 5          | 2
 0 | 10         | 5          | 2
(10 rows)



Window Functions Chapter 6

[ 165 ]

And this is the query for the ROWS clause. As we can see, things work exactly as in the
previous example without the ORDER BY DESC option:

forumdb=# SELECT x,row_number() OVER w, dense_rank() OVER w,sum(x) OVER w
FROM (select generate_series(1,10) % 5 as x) V
WINDOW w AS (ORDER BY x desc ROWS BETWEEN 1 PRECEDING AND CURRENT ROW);
 x | row_number | dense_rank | sum
---+------------+------------+-----
 4 | 1          | 1          | 4
 4 | 2          | 1          | 8
 3 | 3          | 2          | 7
 3 | 4          | 2          | 6
 2 | 5          | 3          | 5
 2 | 6          | 3          | 4
 1 | 7          | 4          | 3
 1 | 8          | 4          | 2
 0 | 9          | 5          | 1
 0 | 10         | 5          | 0
(10 rows)

In this example, using the sum function, we can better understand the difference between
the RANGE and ROWS options. As we can see, the RANGE option aggregates data by frame
(RANGE)  while the ROWS option aggregates data by rows.  The main difference between the
ROWS clause and the RANGE clause is that ROWS operates on individual rows, while RANGE
operates on groups. That concludes our chapter on window functions. 

Summary
In this chapter, we explored how to use window functions. We have seen that by using
window functions we can create more complex aggregates compared to those made with
the GROUP BY statement, which we saw in Chapter 5, Advanced Statements. We learned
how to use the  ROW_NUMBER (), FIRST_VALUE (), LAST_VALUE (), RANK
DENSE_RANK(), LAG (), LEAD (), CUME_DIST (), and NTILE () functions. We have also
seen the difference between creating aggregates with the ROWS BETWEEN and RANGE
BETWEEN clauses. You can use what you have learned in this chapter in data mining
operations to make your work much easier.



Window Functions Chapter 6

[ 166 ]

For more information on window functions, you can consult the official documentation:
https:/​/​www.​postgresql. ​org/ ​docs/ ​12/ ​functions- ​window. ​html.

In the next chapter, we will talk about server-side programming, we will look at how to
create functions to be used on the server side and, if necessary, where to use window
functions.

References
PostgreSQL 12 - window functions official documentation: https:/ ​/​www.
postgresql. ​org/ ​docs/ ​12/ ​functions- ​window. ​html

https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html
https://www.postgresql.org/docs/12/functions-window.html


7
Server-Side Programming

In previous chapters, we learned how to execute SQL queries. We started by writing simple
queries, then moved on to writing more complex queries; we learned how to use aggregates
in the traditional way, and in Chapter 5, Advanced Statements, we talked about window
functions, which are another way to write aggregates. In this chapter, we will add server-
side programming to this list of skills. Server-side programming can be useful in many
cases as it moves the programming logic from the client side to the database side. For
example, we could use it to take a function that has been written many times at different
points of the application program and move it inside the server so that it is written only
once, meaning that in case of modification, we only have to modify one function. In this
chapter, we will also look at how PostgreSQL can manage different server-side
programming languages, and we will see that server-side programming can be very useful
if you need to process a large amount of data that has been extracted from tables. We will
address the fact that all the functions we will write can be called in any SQL statement. We
will also see that in some cases, for certain types of functions, it is also possible to create
indices on the functions.

Another feature of server-side programming is the chance to define customized data. In this
chapter, we will look at some examples of this. 

In simple terms, this chapter will discuss the following: 

Exploring data types
Exploring functions and languages



Server-Side Programming Chapter 7

[ 168 ]

Exploring data types
As users, we have already had the opportunity to experience the power and versatility of
server-side functions – for example, in Chapter 5, Advanced Statements, we used a query
similar to the following:  

forumdb=# select * from categories where upper(title) like 'A%';
 pk | title   | description
----+---------+-------------
 10 | apple   | fruits
 14 | apricot | fruits
(2 rows)

In this piece of code, the upper function is a server-side function; this function turns all the
characters of a string into uppercase. In this chapter, we will acquire the knowledge to be
able to write functions such as the upper functions that we called in the preceding query. 

In this section, we'll talk about data types. We will briefly mention the standard types
managed by PostgreSQL and how to create new ones.

The concept of extensibility
What is extensibility? Extensibility is PostgreSQL's ability to extend its functionality and its
data types. Extensibility is an extremely useful PostgreSQL feature because it enables us to
have data types, functions, and functional indexes that are not present in the base
system. In this chapter, we will cover the extension at the data type level, as well as the
addition of new functions.

Standard data types
In previous chapters, even if not explicitly obvious, we have already used standard data
types. This happened when we learned how to use Data Definition Language (DDL)
commands. However, we will now be looking more deeply into this topic. The following is
a short list of the most used data types:

Boolean type
Numeric types
Character types
Date/time
NoSQL data types : hstore, xml, json, and jsonb



Server-Side Programming Chapter 7

[ 169 ]

For each data type, we will show an example operation followed by a brief explanation. For
further information on the standard data types supported by PostgreSQL, please refer to
the official documentation at https:/ ​/ ​www. ​postgresql. ​org/ ​docs/ ​12/​extend- ​type-
system.​html.

Boolean data type
First, we will introduce the Boolean data type. PostgreSQL supports Boolean data types.
The Boolean type (identified by BOOLEAN or BOOL ), like all data types supported by
PostgreSQL, can assume the NULL value. Therefore, a Boolean data type can take the NULL,
FALSE, and TRUE values. The data type input function for the Boolean type accepts the
following representations for the TRUE state:

State
true
yes
on
1

For the false state, we have the following:

State
false
no
off
0

Let's look at some examples, starting with the users table:

Let's first display the contents of the users table:1.

forumdb=# select * from users;
 pk | username   | gecos        | email
----+------------+--------------+--------------
 1  | myusername | mygecos      | myemail
 2  | scotty     | scotty_gecos | scotty_email
(2 rows)

Now let's add a Boolean data type to the users table:2.

forumdb=# alter table users add user_on_line boolean;
ALTER TABLE

https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html
https://www.postgresql.org/docs/10/extend-type-system.html


Server-Side Programming Chapter 7

[ 170 ]

Let's update some values:3.

forumdb=# update users set user_on_line = true where pk=1;
UPDATE 1

Now, if we want to search for all the records that have the user_on_line field4.
set to true, we have to perform the following:

forumdb=# select * from users where user_on_line = true;
 pk | username   | gecos   | email   | user_on_line
----+------------+---------+---------+--------------
 1  | myusername | mygecos | myemail | t
(1 row)

If we want the search for all the records who have the user_on_line field set to5.
NULL, as we saw in Chapter 4, Basic Statements, we have to perform the
following:

forumdb=# select * from users where user_on_line is NULL;
 pk | username | gecos        | email        | user_on_line
----+----------+--------------+--------------+--------------
 2  | scotty   | scotty_gecos | scotty_email |
(1 row)

Thus, we have explored the Boolean data type.

Numeric data type
PostgreSQL supports several types of numeric data types; the most used ones are as
follows:

integer or int4 (4-byte integer number).
bigint or int8 (8-byte integer number).
real (4-byte variable-precision, inexact with 6 decimal digit precision).
double precision (8-byte variable precision, inexact with 15 decimal digits
precision).
numeric (precision, scale), where the precision of a numeric is the total count of
significant digits in the whole number, and the scale of a numeric is the count of
decimal digits in the fractional part. For example, 5.827 has a precision of 4 and a
scale of 3.

Now, we will look at some brief examples of each type in the upcoming sections.



Server-Side Programming Chapter 7

[ 171 ]

Integer types
As we can see here, if we cast a number to an integer type such as integer or bigint,
PostgreSQL will make a trunc value of the input number:

forumdb=# select 1.123456789::integer as my_field;
 my_field
-----
 1
forumdb=# select 1.123456789::int4 as my_field;
 my_field
-----
 1
forumdb=# select 1.123456789::bigint as my_field;
 my_field
-----
 1
forumdb=# select 1.123456789::int8 as my_field;
 my_field
-----
 1

Numbers with a fixed precision data type
In the following example, we'll see the same query that we have seen previously, but this
time, we'll make a cast to real and to double precision:

forumdb=# select 1.123456789::real as my_field;
 my_field
-----------
 1.1234568
forumdb=# select 1.123456789::double precision as my_field;
 my_field
-------------
 1.123456789

As can be seen here, in the first query, the result was cut to the sixth digit; this happened
because the real type has 6 decimal digit precision.

Numbers with an arbitrary precision data type
In this last section about numeric data types, we'll make the same query that we saw earlier,
but we'll make a cast to arbitrary precision:

forumdb=# select 1.123456789::numeric(10,1) as my_field;
 my_field
-----



Server-Side Programming Chapter 7

[ 172 ]

 1.1
forumdb=# select 1.123456789::numeric(10,5) as my_field;
 my_field
---------
 1.12346
forumdb=# select 1.123456789::numeric(10,9) as my_field;
  my_field
-------------
 1.123456789

As we can see from the examples shown here, we decide how many digits the scale should
be.

But what about if we perform something like the following?

forumdb=# select 1.123456789::numeric(10,11) as my_field;
ERROR: NUMERIC scale 11 must be between 0 and precision 10
ROW 1: select 1.123456789::numeric(10,11) as my_field;

The result is an error. This is because the data type was defined as a numeric type with a
precision value equal to 10, so we can't have a scale parameter equal to or greater than the
precision value.

Similarly, the next example will also produce an error:

forumdb=# ​select 1.123456789::numeric(10,10) as my_field;
 ERROR: numeric field overflow
 DETAILS: A field with precision 10, scale 10 must round to an absolute
value less than 1.

In the preceding example, the query generates an error because the scale was 10, meaning
we should have 10 digits, but we have 11 digits in total:

Digits 1 2 3 4 5 6 7 8 9 10 11
1 . 1 2 3 4 5 6 7 8 9

However, if in our number we don't have the first digit, the query will work:

forumdb=# select 0.123456789::numeric(10,10) as my_field;
     my_field
--------------
 0.1234567890

Thus, we have learned all about the various numeric data types.



Server-Side Programming Chapter 7

[ 173 ]

Character data type
The most used character data types in PostgreSQL are the following:

character(n)/char(n) (fixed-length, blank-padded)
character varying(n)/varchar(n) (variable-length with a limit)
text (variable unlimited length)

Now, we will look at some examples to see how PostgreSQL manages these kinds of data
types.

Chars with fixed-length data types
We will check out how they work using the following example:

Let's start by creating a new test table:1.

create table new_tags (
pk integer not null primary key,
tag char(10)
);

In the previous code, we created a new table named new_tags with a char(10)
field name tag.

Now, let's add some records and see how PostgreSQL behaves:2.

forumdb=# insert into new_tags values (1,'first tag');
INSERT 0 1
forumdb=# insert into new_tags values (2,'tag');
INSERT 0 1

In order to continue with our analysis, we must introduce two new functions:

length (p): This counts the number of characters, where p is an input
parameter and a string.
octet_length(p): This counts the number of bytes, where p is an input
parameter and a string.



Server-Side Programming Chapter 7

[ 174 ]

Let's execute the following query:3.

forumdb=# select
pk,tag,length(tag),octet_length(tag),char_length(tag);
 pk | tag        | length | octet_length | char_length
----+------------+--------+--------------+-------------
 1 | first tag   | 9      | 10           | 9
 2 | tag         | 3      | 10           | 3
(2 rows)

As we can see, the overall length of the space occupied internally by the field is always 10;
this is true even if the number of characters entered is different. This happens because we
have defined the field as char(10), with a fixed length of 10, so even if we insert a string
with a shorter length, the difference between 10 and the number of real characters of the
string will be filled with blank characters.

Chars with variable length with a limit data types
In this section, we are going to repeat the same example that we used in the previous
section, but this time we'll use the varchar(10) data type for the tag field:

Let's recreate the new_tags table:1.

forumdb=# drop table if exists new_tags;
DROP TABLE

forumdb=# create table new_tags (
pk integer not null primary key,
tag varchar(10)
);
CREATE TABLE

Then, let's insert some data:2.

forumdb=# insert into new_tags values (1,'first tag');
INSERT 0 1
forumdb=# insert into new_tags values (2,'tag');
INSERT 0 1



Server-Side Programming Chapter 7

[ 175 ]

Now, if we repeat the same query as before, we obtain the following:3.

forumdb=# select pk,tag,length(tag),octet_length(tag) from new_tags
;
 pk | tag       | length | octet_length
----+-----------+--------+--------------
  1 | first tag | 9      | 9
  2 | tag       | 3      | 3
(2 rows)

As we can see, this time, the real internal size and the number of characters in the
string are the same.

Now, let's try to insert a string longer than 10 characters and see what happens:4.

forumdb=# insert into new_tags values (3,'this sentence has more
than 10 characters');
ERROR: value too long for type character varying(10)

PostgreSQL answers correctly with an error because the input string exceeds the dimension
of the field.

Chars with a variable length without a limit data types
In this section, we will again use the same example as before, but this time we'll use a text
data type for the tag field.

Let's recreate the new_tags table and let's re-insert the same data that we inserted
previously:

forumdb# drop table if exists new_tags;
DROP TABLE
forumdb# create table new_tags (
pk integer not null primary key,
tag text
);
CREATE TABLE
forumdb# insert into new_tags values (1,'first tag'), (2,'tag'),(3,'this
sentence has more than 10 characters');
INSERT 0 3

This time, PostgreSQL correctly inserts all three records. This is because the text data type
is a char data type with unlimited length, as we can see in the following query:

forumdb# select pk,substring(tag from 0 for
20),length(tag),octet_length(tag) from new_tags ;
 pk  | substring          | length | octet_length



Server-Side Programming Chapter 7

[ 176 ]

----+---------------------+--------+--------------
 1  | first tag           | 9      | 9
 2  | tag                 | 3      | 3
 3  | this sentence has m | 41     | 41
(3 rows)

In the preceding example, we can see that the text data type behaves exactly like the
varchar(n) data type we saw earlier. The only difference between text and varchar(n)
is that the text type has no size limit. It is important to note that on the preceding query,
we used the substring function. The substring function takes a piece of the string
starting from the from parameter for n characters; for example, if we write substring(tag
from 0 for 20), it means that we want the first 20 characters of the tag string as output. 

With this, we have covered all the char data types.

Date/timestamp data types
In this section, we will talk about how to store dates and times in PostgreSQL. PostgreSQL
supports both dates and times and the combination of date and time (timestamp).
PostgreSQL manages hours both with time zone settings and without time zone settings, as
described in the official documentation (https:/ ​/​www. ​postgresql. ​org/ ​docs/ ​12/​datatype-
datetime.​html):

PostgreSQL supports the full set of SQL date and time types. Dates are counted according
to the Gregorian calendar.

Date data types
Managing dates often becomes a puzzle for the developer. This happens because dates are
represented differently depending on the country for which we have to store the data – for
example, the American way is month/day/year, whereas the Italian format is
day/month/year. PostgreSQL helps us by providing the necessary tools to best solve this
problem, as seen here:

The first thing we have to do is to see how PostgreSQL internally stores dates. To1.
do this, we have to perform the following query:

forumdb=# \x
forumdb=# select * from pg_settings where name ='DateStyle';
-[ RECORD 1 ]---+--------------------------------------------------
-----
name            | DateStyle
setting         | ISO, MDY

https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html


Server-Side Programming Chapter 7

[ 177 ]

unit            |
category        | Client Connection Defaults / Locale and
Formatting
short_desc      | Sets the display format for date and time values.
extra_desc      | Also controls interpretation of ambiguous date
inputs.
context         | user
vartype         | string
source          | configuration file
min_val         |
max_val         |
enumvals        |
boot_val        | ISO, MDY
reset_val       | ISO, MDY
sourcefile      | /etc/postgresql/12/main/postgresql.conf
sourceline      | 649
pending_restart | f

First of all, let's take a look at the pg_settings view. Using the pg_settings
view, we can view the parameters set in the postgresql.conf configuration file.
In the preceding result, we can see that the configuration for displaying the date
is MDY (month/day/year). If we want to change this parameter globally, we have to
edit the postgresql.conf file.

On a Debian or Debian-based distribution, we can edit the file as follows:2.

root@pgdev:/# vim /etc/postgresql/12/main/postgresql.conf

Then, we have to modify the following section:3.

#Locale and Formatting

datestyle = 'iso, mdy'

After changing this parameter, in the query on pg_settings, the context4.
parameter is 'user'; we just need to do a reload of the server. In this case, a
restart is not necessary:

root@pgdev:/# /etc/init.d/postgresql reload
[ ok ] Reloading postgresql configuration (via systemctl):
postgresql.service.

For further information about the pg_settings view, we suggest visiting
https:/​/ ​www. ​postgresql. ​org/ ​docs/ ​12/​view- ​pg- ​settings. ​html.

https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html
https://www.postgresql.org/docs/12/view-pg-settings.html


Server-Side Programming Chapter 7

[ 178 ]

We have learned what the internal parameters for date display are, so now, let's5.
look at how to insert, update, and display dates. If we know the value of the
date-style parameter, the PostgreSQL way of converting a string into a date is as
follows:

forumdb=# select '12-31-2020'::date;
    date
------------
 2020-12-31
(1 row)

This way is simple but not particularly user-friendly. The best way to manage
dates is by using some functions that PostgreSQL provides for us.

The first function that we'll talk about is the to_date() function. The6.
to_date() function converts a given string into a date. The syntax of the
to_date() function is as follows:

forumdb=# select to_date('31/12/2020','dd/mm/yyyy') ;
 to_date
------------
 2020-12-31
(1 row)

The to_date() function accepts two string parameters. The first parameter
contains the value that we want to convert into a date. The second parameter is
the pattern of the date. The to_date() function returns a date value.

Now, let's go back to the posts table and execute this query:7.

forumdb=# select pk,title,created_on from posts;
 pk | title         | created_on
----+---------------+-------------------------------
 4   Re:my orange   | 2020-01-03 18:46:06.436248+01
 5  | my tomato     | 2020-01-03 18:47:39.603937+01
 2  | my orange     | 2020-01-03 18:44:13.266102+01
 6  | my new orange | 2020-01-05 18:05:10.860354+01
 3  | my new apple  | 2020-01-03 18:44:32.459516+01
(5 rows)



Server-Side Programming Chapter 7

[ 179 ]

How is it possible that we have date/time combinations (timestamps) if nobody
has ever entered these values ​​into the table? It is possible because the posts table
has been created as follows:

forumdb=# \d posts;
 Table "public.posts"
 Column         | Type                     |[...]| Default
----------------+--------------------------+[...]+-----------------
-------------
 pk             | integer                  |     | [..]
 title          | text                     |     |
 [......]
 created_on     | timestamp with time zone |     |
CURRENT_TIMESTAMP

As we can see, the created_on field has CURRENT_TIMESTAMP as the default
value, which means that if no value has been inserted, the current timestamp of
the server will be inserted. Suppose now that we want to display the date in a
different format – for example, in the Italian format, created_on: 03-01-2020.

To reach this goal, we have to use another built-in function, the to_char8.
function:

forumdb=# select pk,title,to_char(created_on,'dd-mm-yyyy') as
created_on
from posts;
 pk | title         | created_on
----+---------------+------------
  4 | Re:my orange  | 03-01-2020
  5 | my tomato     | 03-01-2020
  2 | my orange     | 03-01-2020
  6 | my new orange | 05-01-2020
  3 | my new apple  | 03-01-2020
(5 rows)

As shown here, the to_char() function is the inverse of the to_date() function. It
converts a date into a string using a specific pattern.

Timestamp data types
PostgreSQL can manage dates and times with a time zone and without a time zone. We can
store both date and time using the timestamp data type. In PostgreSQL, there is a data type
called timestamp with time zone to display date and time with a time zone, and a data
type called timestamp without time zone to store date and time without a time zone.



Server-Side Programming Chapter 7

[ 180 ]

Let's now create some examples. First of all, let's create a new table:

forumdb=# create table new_posts as select pk,title,created_on::timestamp
with time zone as created_on_t, created_on::timestamp without time zone as
create_on_nt from posts;
SELECT 5

We have just created a new table called new_posts with the following structure:

forumdb=# \d new_posts;
 Table "public.new_posts"
 Column       | Type                        | Collation | Nullable |
Default
--------------+-----------------------------+-----------+----------+-------
--
 pk           | integer                     |           |          |
 title        | text                        |           |          |
 created_on_t | timestamp with time zone    |           |          |
 create_on_nt | timestamp without time zone |           |          |

This table now has the same values for the create_on_t (timestemp with time
zone) field and for the created_on_nt (timestamp without time zone) field, as we
can see here:

forumdb=# select * from new_posts ;
 pk | title         | created_on_t                  | create_on_nt
----+---------------+-------------------------------+----------------------
------
 4 | Re:my orange   | 2020-01-03 18:46:06.436248+01 | 2020-01-03
18:46:06.436248
 5 | my tomato      | 2020-01-03 18:47:39.603937+01 | 2020-01-03
18:47:39.603937
 2 | my orange      | 2020-01-03 18:44:13.266102+01 | 2020-01-03
18:44:13.266102
 6 | my new orange  | 2020-01-05 18:05:10.860354+01 | 2020-01-05
18:05:10.860354
 3 | my new apple   | 2020-01-03 18:44:32.459516+01 | 2020-01-03
18:44:32.459516
(5 rows)



Server-Side Programming Chapter 7

[ 181 ]

Now, let's introduce a PostgreSQL environment variable called the timezone variable. This
variable tells us the current value of the time zone:

forumdb=# show timezone;
 TimeZone
---------------
 Europe/Berlin
(1 row)

In this server, the time zone is set to CET; if we want to modify this value only on this
session, we have to perform the following query:

forumdb=# set timezone='GMT';
SET

Now, the time zone is set to GMT:

forumdb=# show timezone;
 TimeZone
----------
 GMT
(1 row)

Now, if we execute the query that we performed previously again, we will see that the field
with the time zone has changed its value:

forumdb=# select * from new_posts ;
 pk | title         | created_on_t                  | create_on_nt
----+---------------+-------------------------------+----------------------
------
 4 | Re:my orange   | 2020-01-03 17:46:06.436248+00 | 2020-01-03
18:46:06.436248
 5 | my tomato      | 2020-01-03 17:47:39.603937+00 | 2020-01-03
18:47:39.603937
 2 | my orange      | 2020-01-03 17:44:13.266102+00 | 2020-01-03
18:44:13.266102
 6 | my new orange  | 2020-01-05 17:05:10.860354+00 | 2020-01-05
18:05:10.860354
 3 | my new apple   | 2020-01-03 17:44:32.459516+00 | 2020-01-03
18:44:32.459516
(5 rows)

This shows the difference between a timestamp with a time zone and a timestamp without
a time zone. For further information on the topic of date and time, please refer to the official
documentation at https:/ ​/ ​www. ​postgresql. ​org/ ​docs/ ​12/ ​datatype- ​datetime. ​html.

https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html
https://www.postgresql.org/docs/12/datatype-datetime.html


Server-Side Programming Chapter 7

[ 182 ]

The NoSQL data type
In this section, we will approach the NoSQL data types that are present in PostgreSQL. We
will take just a quick look because the NoSQL world is not specific to this book.

PostgreSQL handles the following NoSQL data types:

hstore

xml

json

 We will now talk about hstore and json.

The hstore data type
hstore was the first NoSQL data type that was implemented in PostgreSQL. This data type
is used for storing key-value pairs in a single value. Before working with the hstore data
type, we need to enable the hstore extension on our server:

forumdb=# create extension hstore ;
CREATE EXTENSION

Let's look at how we can use the hstore data type with an example. Suppose that we want
to show all posts with their usernames and with their categories:

forumdb=# select p.pk,p.title,u.username,c.title as category
from posts p
inner join users u on p.author=u.pk
left join categories c on p.category=c.pk
order by 1;

 pk | title         | username   | category
----+---------------+------------+----------
  2 | my orange     | myusername | orange
  3 | my new apple  | myusername | apple
  4 | Re:my orange  | scotty     | orange
  5 | my tomato     | scotty     | tomato
  6 | my new orange | myusername | orange
(5 rows



Server-Side Programming Chapter 7

[ 183 ]

Suppose now that the table's posts, users, and categories are huge tables and we would like
to store all the information about usernames and categories in a single field stored inside
the posts table. If we could do this, we would no longer need to join three huge tables. In
this case, hstore can help us:

forumdb# select
p.pk,p.title,hstore(ARRAY['username',u.username,'category',c.title]) as
options
from posts p
inner join users u on p.author=u.pk
left join categories c on p.category=c.pk
order by 1;

 pk | title         | options
----+---------------+------------------------------------------------
  2 | my orange     | "category"=>"orange", "username"=>"myusername"
  3 | my new apple  | "category"=>"apple", "username"=>"myusername"
  4 | Re:my orange  | "category"=>"orange", "username"=>"scotty"
  5 | my tomato     | "category"=>"tomato", "username"=>"scotty"
  6 | my new orange | "category"=>"orange", "username"=>"myusername"
(5 rows)

The preceding query first puts in an array the values ​​of the username and category fields,
and then transforms them into hstore. Now, if we want to store the data in a new table
called posts_options, we have to perform something like the following:

forumdb# create table posts_options as
select p.pk,p.title,hstore(ARRAY['username',u.username,'category',c.title])
as options
from posts p
inner join users u on p.author=u.pk
left join categories c on p.category=c.pk
order by 1;

SELECT 5

We now have a new table with the following structure:

forumdb=# \d posts_options
 Table "public.posts_options"
 Column  | Type    | Collation | Nullable | Default
---------+---------+-----------+----------+---------
 pk      | integer |           |          |
 title   | text    |           |          |
 options | hstore  |           |          |



Server-Side Programming Chapter 7

[ 184 ]

Next, suppose that we want to search for all the records that have category = 'orange'.
We would have to execute the following:

forumdb=# select * from posts_options where options->'category' = 'orange';
 pk | title         | options
----+---------------+------------------------------------------------
 2  | my orange     | "category"=>"orange", "username"=>"myusername"
 4  | Re:my orange  | "category"=>"orange", "username"=>"scotty"
 6  | my new orange | "category"=>"orange", "username"=>"myusername"
(3 rows)

Since hstore, as well as the json/jsonb data types, is not a structured data type, we can
insert any other key value without defining it first – for example, we can do this:

insert into posts_options (pk,title,options) values (7,'my last
post','"enabled"=>"false"') ;

The result of the selection on the whole table will be the following:

forumdb=# select * from posts_options;
 pk | title         | options
----+---------------+------------------------------------------------
 2  | my orange     | "category"=>"orange", "username"=>"myusername"
 3  | my new apple  | "category"=>"apple", "username"=>"myusername"
 4  | Re:my orange  | "category"=>"orange", "username"=>"scotty"
 5  | my tomato     | "category"=>"tomato", "username"=>"scotty"
 6  | my new orange | "category"=>"orange", "username"=>"myusername"
 7  | my last post  | "enabled"=>"false"
(6 rows)

As we said at the beginning of this section, NoSQL is not the subject of this book, but it is
worth briefly going over it. For further information about the stored data type, please refer
to the official documentation at https:/ ​/ ​www. ​postgresql. ​org/ ​docs/ ​12/​hstore. ​html.

The JSON data type
In this section, we'll take a brief look at the JSON data type. JSON stands for JavaScript
Object Notation. JSON is an open standard format, and it is formed of key-value pairs.
PostgreSQL supports the JSON data type natively. It provides many functions and
operators used for manipulating JSON data. PostgreSQL, in addition to the json data type,
also supports the jsonb data type. The difference between these two data types is that the
first is internally represented as text whereas the second is internally represented in a
binary and indexable manner. Let's look at how we can use the json/jsonb data types with
an example. 

https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html
https://www.postgresql.org/docs/12/hstore.html


Server-Side Programming Chapter 7

[ 185 ]

Suppose that we want to show all the posts and tags that we have in our forumdb database.
Working in a classic relational SQL way, we should write something like the following:

forumdb=# select p.pk,p.title,t.tag
from posts p
left join j_posts_tags jpt on p.pk=jpt.post_pk
left join tags t on jpt.tag_pk=t.pk
order by 1;
 pk |     title     |    tag
----+---------------+------------
  2 | my orange     | vegetables
  2 | my orange     | fruits
  3 | my new apple  | fruits
  4 | Re:my orange  |
  5 | my tomato     |
  6 | my new orange | fruits
(6 rows)
or if we want as result something like:

Suppose now that we want to have a result like the following:

pk title tag
2 my orange vegetables,fruits
3 my new apple fruits
4 Re:my orange
5 my tomato
6 my new orange fruits

In a relational way, we have to aggregate data using the first two fields and perform
something like the following:

forumdb=# select p.pk,p.title,string_agg(t.tag,',') as tag
from posts p
left join j_posts_tags jpt on p.pk=jpt.post_pk
left join tags t on jpt.tag_pk=t.pk
group by 1,2
order by 1;

 pk | title         | tag
----+---------------+-------------------
 2  | my orange     | vegetables,fruits
 3  | my new apple  | fruits
 4  | Re:my orange  |
 5  | my tomato     |
 6  | my new orange | fruits
(5 rows)



Server-Side Programming Chapter 7

[ 186 ]

Now, imagine that we want to generate a simple JSON structure; we would execute the
following query:

forumdb# select row_to_json(q) as json_data from (
 select p.pk,p.title,string_agg(t.tag,',') as tag
 from posts p
 left join j_posts_tags jpt on p.pk=jpt.post_pk
 left join tags t on jpt.tag_pk=t.pk
group by 1,2 order by 1) Q;

                       json_data
--------------------------------------------------------
 {"pk":2,"title":"my orange","tag":"vegetables,fruits"}
 {"pk":3,"title":"my new apple","tag":"fruits"}
 {"pk":4,"title":"Re:my orange","tag":null}
 {"pk":5,"title":"my tomato","tag":null}
 {"pk":6,"title":"my new orange","tag":"fruits"}
(5 rows)

As we can see, with a simple query, it is possible to switch from a classic SQL 
representation to a NoSQL representation. Now, let's create a new table called post_json.
This table will have only one jsonb field, called jsondata:

forumdb=# create table post_json (jsondata jsonb);
CREATE TABLE
forumdb=# \d post_json
 Table "public.post_json"
 Column   | Type  | Collation | Nullable | Default
----------+-------+-----------+----------+---------
 jsondata | jsonb |           |          |

Now, let's insert some data into the post_json table:

forumdb# insert into post_json(jsondata)
select row_to_json(q) as json_data from (
  select p.pk,p.title,string_agg(t.tag,',') as tag
  from posts p
  left join j_posts_tags jpt on p.pk=jpt.post_pk
  left join tags t on jpt.tag_pk=t.pk
group by 1,2 order by 1) Q;
INSERT 0 5

Now, the post_json table has the following records:

forumdb=# select jsonb_pretty(jsondata) from post_json;
          jsonb_pretty
---------------------------------
 {                              +



Server-Side Programming Chapter 7

[ 187 ]

     "pk": 2,                   +
     "tag": "vegetables,fruits",+
     "title": "my orange"       +
 }
 {                              +
     "pk": 3,                   +
     "tag": "fruits",           +
     "title": "my new apple"    +
 }
 {                              +
     "pk": 4,                   +
     "tag": null,               +
     "title": "Re:my orange"    +
 }
 {                              +
     "pk": 5,                   +
     "tag": null,               +
     "title": "my tomato"       +
 }
 {                              +
     "pk": 6,                   +
     "tag": "fruits",           +
     "title": "my new orange"   +
 }
(5 rows)

If we wanted to search for all data that has tag = "fruits", we could use the @> jsonb
operator. This operator checks whether the left JSON value contains the right JSON
path/value entries at the top level; the following query makes this search possible:

forumdb=# select jsonb_pretty(jsondata) from post_json where jsondata @>
'{"tag":"fruits"}';
 jsonb_pretty
------------------------------
 { +
 "pk": 3, +
 "tag": "fruits", +
 "title": "my new apple" +
 }
 { +
 "pk": 6, +
 "tag": "fruits", +
 "title": "my new orange"+
 }
(2 rows)



Server-Side Programming Chapter 7

[ 188 ]

What we have just written is just a small taste of what can be done through the NoSQL data
model. JSON is widely used when working with large tables and when a data structure is
needed that minimizes the number of joins to be done during the research phase. A 
detailed discussion of the NoSQL world is beyond the scope of this book, but we wanted to
describe briefly how powerful PostgreSQL is in the approach to unstructured data as well.
For more information, please look at the official documentation at https:/ ​/​www.
postgresql.​org/​docs/ ​12/ ​functions- ​json. ​html.

After understanding what data types are and which data types can be used in PostgreSQL,
in the next section, we will see how to use data types within functions.

Exploring functions and languages
PostgreSQL is capable of executing server-side code. There are many ways to provide
PostgreSQL with the code to be executed. For example, the user can create functions in
different programming languages. The main languages ​​supported by PostgreSQL are as
follows:

SQL
PL/pgSQL
C

These listed languages are the built-in languages; there are also other languages that
PostgreSQL can manage, but before using them, we need to install them on our system.
Some of these other supported languages ​​are as follows:

PL/Python
PL/Perl
PL/tcl
PL/Java

In this section, we'll talk about SQL and PL/pgSQL functions. 

Functions
The command structure with which a function is defined is as follows:

CREATE FUNCTION function_name(p1 type, p2 type,p3 type, ....., pn type)
 RETURNS type AS
BEGIN

https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html
https://www.postgresql.org/docs/12/functions-json.html


Server-Side Programming Chapter 7

[ 189 ]

 -- function logic
END;
LANGUAGE language_name

The following steps always apply for any type of function we want to create:

Specify the name of the function after the CREATE FUNCTION keywords.1.
Make a list of parameters separated by commas.2.
Specify the return data type after the RETURNS keyword.3.
For the PL/Pgsql language, put some code between the BEGIN and END block.4.
For the PL/Pgsql language, the function has to end5.
with the END keyword followed by a semicolon.
Define the language in which the function was written – for example, sql or6.
plpgsql, plperl, plpython, and so on.

This is the basic scheme to which we will refer later in the chapter; this scheme may have
small variations in some specific cases.

SQL functions
SQL functions are the easiest way to write functions in PostgreSQL, and we can use any
SQL command inside them.

Basic functions
This section will show how to take your first steps into the SQL functions world. For
example, the following function makes a sum between two numbers:

forumdb=#CREATE OR REPLACE FUNCTION my_sum(x integer, y integer) RETURNS
integer AS $$
 SELECT x + y;
$ LANGUAGE SQL;
CREATE FUNCTION

forumdb=# select my_sum(1,2);
 my_sum
--------
      3
(1 row)



Server-Side Programming Chapter 7

[ 190 ]

As we can see in the preceding example, the code function is placed between $$; we can
consider $$ as labels. The function can be called using the SELECT statement without using
any FROM clauses. The arguments of a SQL function can be referenced in the function body 
using either numbers (the old way) or their names (the new way). For example, we could
write the same function in this way:  

CREATE OR REPLACE FUNCTION my_sum(integer, integer) RETURNS integer AS $$
 SELECT $1 + $2;
$$ LANGUAGE SQL;

In the preceding function, we can see the old way to reference the parameter inside the
function. In the old way, the parameters were referenced positionally, so the value $1
corresponds to the first parameter of the function, $2 to the second, and so on. In the code
of the SQL functions, we can use all the SQL commands, including those seen in previous
chapters.

SQL functions returning a set of elements
In this section, we will look at how to make a SQL function that returns a result set of a data
type. For example, suppose that we want to write a function that takes p_title as a
parameter and delete all the records that have title=p_title, as well as returning all the
keys of the deleted records. The following function would make this possible:

forumdb=# CREATE OR REPLACE FUNCTION delete_posts(p_title text) returns
setof integer as $$
delete from posts where title=p_title returning pk;
$$
LANGUAGE SQL
CREATE FUNCTION

This is the situation before we called the delete_posts function:

forumdb=# select pk,title from posts order by pk;
 pk | title
----+---------------
 2  | my orange
 3  | my new apple
 4  | Re:my orange
 5  | my tomato
 6  | my new orange
(5 rows)



Server-Side Programming Chapter 7

[ 191 ]

This is the situation after we called the delete_posts function:

forumdb=# select delete_posts('my tomato');
 delete_posts
--------------
 5
(1 row)

forumdb=# select pk,title from posts order by pk;
 pk | title
----+---------------
 2  | my orange
 3  | my new apple
 4  | Re:my orange
 6  | my new orange
(4 rows)

In this function, we've introduced a new kind of data type – the setof data type. The
setof directive simply defines a result set of a data type. For example, the delete_posts
function is defined to return a set of integers, so its result will be an integer dataset. We can
use the setof directive with any type of data.

SQL functions returning a table
In the previous section, we saw how to write a function that returns a result set of a single
data type; however, it is possible that there will be cases where we need our function to
return a result set of multiple fields. For example, let's consider the same function as before,
but this time we want the pk, title pair to be returned as a result, so our function
becomes the following:

create or replace function delete_posts (p_title text) returns table
(ret_key integer,ret_title text) AS $$
delete from posts where title=p_title returning pk,title;
$$
language SQL;

The only difference between this and the previous function is that now the function returns
a table type; inside the table type, we have to specify the name and the type of the fields. As
we have seen before, this is the situation before calling the function:

forumdb=# select pk,title from posts order by pk;
 pk | title
----+---------------
 2  | my orange
 3  | my new apple



Server-Side Programming Chapter 7

[ 192 ]

 4  | Re:my orange
 5  | my tomato
 6  | my new orange
(5 rows)

This is the correct way to call the function:

forumdb=# select * from delete_posts('my tomato');
 ret_key | ret_title
---------+-----------
 5       | my tomato
(1 row)

This is the situation after calling the function:

forumdb=# select pk,title from posts order by pk;
 pk | title
----+---------------
 2  | my orange
 3  | my new apple
 4  | Re:my orange
 6  | my new orange
(4 rows)

The functions that return a table can be treated as real tables, in the sense that we can use
them with the ofin, exists, join, and so on options.

Polymorphic SQL functions
In this section, we will briefly talk about polymorphic SQL functions.

Polymorphic functions are useful for DBAs when we need to write a function that has to
work with different types of data. To better understand polymorphic functions, let's start
with an example. Suppose we want to recreate something that looks like the Oracle NVL
function – in other words, we want to create a function that accepts two parameters and
replaces the first parameter with the second one if the first parameter is null. The problem
is that we want to write a single function that is valid for all types of data (integer, real, text,
and so on).

The following function makes this possible:

create or replace function nvl ( anyelement,anyelement) returns anyelement
as $$
select coalesce($1,$2);
$$
language SQL;



Server-Side Programming Chapter 7

[ 193 ]

This is how to call it:

forumdb=# select nvl(NULL::int,1);
 nvl
-----
 1
(1 row)

forumdb=# select nvl(''::text,'n'::text);
 nvl
-----

(1 row)

forumdb=# select nvl('a'::text,'n'::text);
 nvl
-----
 a
(1 row)

For further information, see the official documentation at https:/ ​/​www. ​postgresql. ​org/
docs/​12/​extend-​type- ​system. ​html.

PL/pgSQL functions
In this section, we'll talk about the PL/pgsql language. The PL/pgSQL language is the
default built-in procedural language for PostgreSQL. As described in the official
documentation, the design goals with PL/pgSQL were to create a loadable procedural
language that can do the following:

Can be used to create functions and trigger procedures (we'll talk about triggers
in the next chapter).
Add new control structures.
Add new data types to the SQL language.

It is very similar to Oracle PL/SQL and it supports the following:

Variable declarations
Expressions 
Control structures as conditional structures or loop structures
Cursors

https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html
https://www.postgresql.org/docs/12/extend-type-system.html


Server-Side Programming Chapter 7

[ 194 ]

First overview
As we saw at the beginning of the SQL functions section, the prototype for writing functions
in PostgreSQL is as follows:

CREATE FUNCTION function_name(p1 type, p2 type,p3 type, ....., pn type)
 RETURNS type AS
BEGIN
 -- function logic
END;
LANGUAGE language_name

Now, suppose that we want to recreate the my_sum function using the PL/pgsql language:

forumdb# CREATE OR REPLACE FUNCTION my_sum(x integer, y integer) RETURNS
integer AS
$BODY$
DECLARE
 ret integer;
BEGIN
 ret := x + y;
 return ret;
END;
$BODY$
language 'plpgsql';

forumdb=# select my_sum(2,3); 
 my_sum
--------
      5

The preceding query provides the same results as the query seen at the beginning of the
chapter. Now, let's examine it in more detail:

The following is the function header; here, you define the name of the function,1.
the input parameters, and the return value:

CREATE OR REPLACE FUNCTION my_sum(x integer, y integer) RETURNS
integer AS

The following is a label indicating the beginning of the code. We can put any2.
string inside the $$ characters, the important thing is that the same label is
present at the end of the function:

$BODY$



Server-Side Programming Chapter 7

[ 195 ]

In the following section, we can define our variables; it is important that each3.
declaration or statement ends with a semicolon:

DECLARE
  ret integer;

With the BEGIN statement, we tell PostgreSQL that we want to start to write our4.
logic:

BEGIN
  ret := x + y;
  return ret;

Caveat: do not write a semicolon after BEGIN – it's not correct and it will
generate a syntax error.

Between the BEGIN statement and the END statement, we can put our own code:5.

END;

The END instruction indicates that our code has ended:6.

$BODY$

This label closes the first label and at last, the language statement specifies7.
PostgreSQL, in which language the function is written:

language 'plpgsql';

Declaring function parameters
After learning about how to write a simple PL/pgsql function, let's go into a little more
detail about the single aspects seen in the preceding section. Let's start with the declaration
of the parameters. In the next two examples, we'll see how to define, in two different ways,
the my_sum function that we have seen before.

The first example is as follows:

CREATE OR REPLACE FUNCTION my_sum(integer, integer) RETURNS integer AS
$BODY$
DECLARE
 x alias for $1;
 y alias for $2;
 ret integer;



Server-Side Programming Chapter 7

[ 196 ]

BEGIN
 ret := x + y;
 return ret;
END;
$BODY$
language 'plpgsql';

The second example is as follows:

CREATE OR REPLACE FUNCTION my_sum(integer, integer) RETURNS integer AS
$BODY$
DECLARE
 ret integer;
BEGIN
 ret := $1 + $2;
 return ret;
END;
$BODY$
language 'plpgsql';

In example 1, we used alias; the syntax of alias is, in general, the following:

newname ALIAS FOR oldname;

In our specific case, we used the positional variable $1 as the oldname value. In the second
example, we used the positional approach exactly as we did in the case of SQL functions. 

IN/OUT parameters
In the preceding example, we used the RETURNS clause in the first row of the function
definition; however, there is another way to reach the same goal. In PL/pgSQL, we can
define all parameters as input parameters, output parameters, or input/output parameters.
For example, say we write the following:

CREATE OR REPLACE FUNCTION my_sum_3_params(IN x integer,IN y integer, OUT z
integer) AS
$BODY$
BEGIN
 z := x+y;
END;
$BODY$
language 'plpgsql';



Server-Side Programming Chapter 7

[ 197 ]

We have defined a new function called my_sum_3_params, which accepts two input
parameters (x and y) and has an output of parameter z. As there are two input parameters,
the function will be called with only two parameters, exactly as in the last function:

forumdb=# select my_sum_3_params(2,3);
 my_sum_3_params
-----------------
 5
(1 row)

With this kind of parameter definition, we can have functions that have multiple variables
as a result. For example, if we want a function that, given two integer values, computes
their sum and their product, we can write something like this:

CREATE OR REPLACE FUNCTION my_sum_mul(IN x integer,IN y integer,OUT w
integer, OUT z integer) AS
$BODY$
BEGIN
 z := x+y;
 w := x*y;
END;
$BODY$
language 'plpgsql';

The strange thing is that if we invoke the function as we did before, we will have the
following result:

forumdb=# select my_sum_mul(2,3);
 my_sum_mul
------------
 (6,5)
(1 row)

This result seems to be a little bit strange because the result is not a scalar value but is a
record, which is a custom type. To cause the output to be separated as columns, we have to
use the following syntax:

forumdb=# select * from my_sum_mul(2,3);
 w | z
---+---
 6 | 5
(1 row)



Server-Side Programming Chapter 7

[ 198 ]

We can use the result of the function exactly as if it were a result of a table and write, for
example, the following:

forumdb=# select * from my_sum_mul(2,3) where w=6;
 w | z
---+---
 6 | 5
(1 row)

We can define the parameters as follows:

IN: Input parameters (if omitted, this is the default option)
OUT: Output parameters
INOUT: Input/output parameters

Function volatility categories
In PostgreSQL, each function can be defined as VOLATILE, STABLE, or IMMUTABLE. If we do
not specify anything, the default value is VOLATILE. The difference between these three 
possible definitions is well described in the official documentation (https:/ ​/​www.
postgresql.​org/​docs/ ​12/ ​xfunc- ​volatility. ​html):

A VOLATILE function can do anything, including modifying the database. It can return
different results on successive calls with the same arguments. The optimizer makes no
assumptions about the behavior of such functions. A query using a volatile function will
reevaluate the function at every row where its value is needed. If a function is marked as
VOLATILE, it can return different results if we call it multiple times using the same
input parameters.

A STABLE function cannot modify the database and is guaranteed to return the same
results given the same arguments for all rows within a single statement. This category
allows the optimizer to optimize multiple calls of the function to a single call. In
particular, it is safe to use an expression containing such a function in an index scan
condition. If a function is marked as STABLE the function will return the same result
given the same parameters within the same transaction. 

An IMMUTABLE function cannot modify the database and is guaranteed to return the
same results given the same arguments forever. This category allows the optimizer to pre-
evaluate the function when a query calls it with constant arguments. 

https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html
https://www.postgresql.org/docs/12/xfunc-volatility.html


Server-Side Programming Chapter 7

[ 199 ]

In the following pages of this chapter, we will only be focusing on examples of volatile
functions; however, here we will briefly look at one example of a stable function and one
example of an immutable function:

Let's start with a stable function – for example, the now() function is a stable1.
function. The now() function returns the current date and time that we have at
the beginning of the transaction, as we can see here:

forumdb=# begin ;
 BEGIN

 forumdb=# select now();
 now
 -------------------------------
 2020-02-19 16:33:35.322562+01
 (1 row)

 forumdb=# select now();
 now
 -------------------------------
 2020-02-19 16:33:35.322562+01
 (1 row)

 forumdb=# commit;
 COMMIT

 forumdb=# begin ;
 BEGIN
 forumdb=# select now();
 now
 -------------------------------
 2020-02-19 16:33:51.394306+01
 (1 row)
 forumdb=# commit ;
 COMMIT

Now, let's look at an immutable function – for example, the2.
lower(string_expression) function. The lower function accepts a string and
converts it into a lowercase format. As we can see, if the input parameters are the
same, the lower function always returns the same result, even if it is performed
in different transactions:

forumdb=# begin;
BEGIN

forumdb=# select now();



Server-Side Programming Chapter 7

[ 200 ]

 now
-------------------------------
 2020-02-19 16:43:40.109944+01
(1 row)

forumdb=# select lower('MICKY MOUSE');
 lower
-------------
 micky mouse
(1 row)

forumdb=# commit ;
COMMIT

forumdb=# begin;
BEGIN

forumdb=# select now();
 now
-------------------------------
 2020-02-19 16:43:52.797172+01
(1 row)

forumdb=# select lower('MICKY MOUSE');
 lower
-------------
 micky mouse
(1 row)

forumdb=# commit;
COMMIT

Control structure
PL/pgSQL has the ability to manage control structures such as the following:

Conditional statements
Loop statements
Exception handler statements

Conditional statements
The PL/pgSQL language can manage IF-type conditional statements and CASE-type
conditional statements.



Server-Side Programming Chapter 7

[ 201 ]

IF statements
In PL/pgSQL, the syntax of an IF statement is as follows:

IF boolean-expression THEN
 statements
[ ELSIF boolean-expression THEN
 statements
[ ELSIF boolean-expression THEN
 statements
 ...
]
]
[ ELSE
 statements ]
END IF;

For example, say we want to write a function that, when given the two input values ​​x and
y, returns the following:

'first parameter is higher than second parameter if x > y'

'second paramater is higher than first parameter if x < y'

'the 2 parameters are equals if x = y'

We have to write the following function:

CREATE OR REPLACE FUNCTION my_check(x integer default 0, y integer default
0) RETURNS text AS
$BODY$
BEGIN
 IF x > y THEN
 return 'first parameter is higher than second parameter';
 ELSIF x < y THEN
 return 'second paramater is higher than first parameter';
 ELSE
 return 'the 2 parameters are equals';
 END IF;
END;
$BODY$
language 'plpgsql';

In this example, we have seen the IF construct in its largest form: IF [...]
THEN[...] ELSIF [...]  ELSE[...] ENDIF;.



Server-Side Programming Chapter 7

[ 202 ]

However, its shorter form also exists, as follows:

IF [...] THEN[...] ELSE[...] ENDIF;

IF [...] THEN[...] ENDIF;

Some examples of the results provided by the previously defined function are as follows:

forumdb=# select my_check(1,2);
 my_check
-------------------------------------------------
 second paramater is higher than first parameter
(1 row)

forumdb=# select my_check(2,1);
 my_check
-------------------------------------------------
 first parameter is higher than second parameter
(1 row)

forumdb=# select my_check(1,1);
 my_check
-----------------------------
 the 2 parameters are equals
(1 row)

CASE statements
In PL/pgSQL, it is also possible to use the CASE statement. The CASE statement can have the
following two syntaxes.

The following is a simple CASE statement:

CASE search-expression
 WHEN expression [, expression [ ... ]] THEN
 statements
 [ WHEN expression [, expression [ ... ]] THEN
 statements
 ... ]
 [ ELSE
 statements ]
END CASE;



Server-Side Programming Chapter 7

[ 203 ]

The following is a searched CASE statement:

CASE
 WHEN boolean-expression THEN
 statements
 [ WHEN boolean-expression THEN
 statements
 ... ]
 [ ELSE
 statements ]
END CASE;

Now, we will perform the following operations:

We will use the first one, the simple CASE syntax, if we have to make a choice
from a list of values.
We will use the second one when we have to choose from a range of values.

Let's start with the first syntax:

CREATE OR REPLACE FUNCTION my_check_value(x integer default 0) RETURNS text
AS
$BODY$
BEGIN
 CASE x
 WHEN 1 THEN return 'value = 1';
 WHEN 2 THEN return 'value = 2';
 ELSE return 'value >= 3 ';
 END CASE;
END;
$BODY$
language 'plpgsql';

The preceding my_check_value function returns the following:

value = 1 if x = 1
value =2 if x = 2
value >= 3 if x >= 3

We can see this to be true here:

forumdb=# select my_check_value(1);
 my_check_value
----------------
 value = 1
(1 row)



Server-Side Programming Chapter 7

[ 204 ]

forumdb=# select my_check_value(2);
 my_check_value
----------------
 value = 2
(1 row)

forumdb=# select my_check_value(3);
 my_check_value
----------------
 value >= 3
(1 row)

Now, let's see an example of the searched CASE syntax:

CREATE OR REPLACE FUNCTION my_check_case(x integer default 0, y integer
default 0) RETURNS text AS
 $BODY$
 BEGIN
   CASE
    WHEN x > y THEN return 'first parameter is higher than second
parameter';
    WHEN x < y THEN return 'second paramater is higher than first
parameter';
 ELSE return 'the 2 parameters are equals';
 END CASE;
 END;
 $BODY$
 language 'plpgsql';

The my_check_case function returns the same data as the my_check function that we
wrote before:

forumdb=# select my_check_case(2,1);
 my_check_case
-------------------------------------------------
 first parameter is higher than second parameter
(1 row)

forumdb=# select my_check_case(1,2);
 my_check_case
-------------------------------------------------
 second paramater is higher than first parameter
(1 row)

forumdb=# select my_check_case(1,1);
 my_check_case
-----------------------------
 the 2 parameters are equals



Server-Side Programming Chapter 7

[ 205 ]

(1 row)

forumdb=# select my_check_case();
 my_check_case
-----------------------------
 the 2 parameters are equals
(1 row)

Loop statements
PL/pgSQL can handle loops in many ways. We will look at some examples of how to make
a loop next. For further details, we suggest referring to the official documentation
at https:/​/​www.​postgresql. ​org/ ​docs/ ​12/​plpgsql. ​html. What makes PL/pgsql
particularly useful is the fact that it allows us to process data from queries through
procedural language. We are going to see now how this is possible.

Suppose that we want to build a PL/pgSQL function that, when given an integer as
parameters, returns a result set of a composite data type. The composite data type that we
want it to return is as follows:

ID  pk field Integer data type
TITLE Title field text data type
RECORD_DATA Title field + content field hstore data type

The right way to build a composite data type is as follows:

create type my_ret_type as (
 id integer,
 title text,
 record_data hstore
);

The preceding statement creates a new data type, a composite data type, which is
composed of an integer data type + a text data type + an hstore data type. Now, if we
want to write a function that returns a result set of the my_ret_type data type, our first
attempt might be as follows:  

CREATE OR REPLACE FUNCTION my_first_fun (p_id integer) returns setof
my_ret_type as
$$
DECLARE
 rw posts%ROWTYPE; -- declare a rowtype;
 ret my_ret_type;
BEGIN
    for rw in select * from posts where pk=p_id loop

https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html


Server-Side Programming Chapter 7

[ 206 ]

      ret.id := rw.pk;
      ret.title := rw.title;
      ret.record_data := hstore(ARRAY['title',rw.title,'Title and Content'
                         ,format('%s %s',rw.title,rw.content)]);
     return next ret;
     end loop;
 return;
END;
$$
language 'plpgsql';

As we can see, many things are concentrated in these few lines of PL/pgSQL code:

rw posts%ROWTYPE: With this statement, the rw variable is defined as a1.
container of a single row of the posts table.
for rw in select * from posts where pk=p_id loop: With this2.
statement, we cycle within the result of the selection, assigning the value
returned by the select command each time to the rw variable.The next three
steps assign the values ​​to the ret variable.
return next ret;: This statement returns the value of the ret variable and3.
goes to the next record of the for cycle. 
end loop;: This statement tells PostgreSQL that the for cycle ends here.4.
return;: This is the return instruction of the function.5.

An important thing to remember is that the PL/pgSQL language is inside
the PostgreSQL transaction system. This means that the functions are
executed atomically and that the function returns the results not at the
execution of the RETURN NEXT command but at the execution of the
RETURN command placed at the end of the function. This may mean that,
for very large datasets, the PL/pgsql functions can take a long time before
returning results.

The record type
In an example that we used previously, we introduced the %ROWTYPE data type. In the
PL/pgSQL language, it is possible to generalize this concept. There is a data type called
record that generalizes the concept of %ROWTYPE. For example, we can rewrite
the my_first_funin the following way:

CREATE OR REPLACE FUNCTION my_second_fun (p_id integer) returns setof
my_ret_type as
$$
DECLARE



Server-Side Programming Chapter 7

[ 207 ]

   rw record; -- declare a record variable
   ret my_ret_type;
BEGIN
   for rw in select * from posts where pk=p_id loop
   ret.id := rw.pk;
   ret.title := rw.title;
   ret.record_data := hstore(ARRAY['title',rw.title
                    ,'Title and Content',format('%s
%s',rw.title,rw.content)]);
   return next ret;
 end loop;
 return;
END;
$$
language 'plpgsql';

The only difference between my_first_fun and my_second_fun is in this definition:

rw record; -- declare a record variable

This time, the rw variable is defined as a record data type. This means that the rw variable
is an object that can be associated with any records of any table. The result of the two
functions, my_first_fun and my_second_fun, is the same:

forumdb=# select * from my_first_fun(3);
-[ RECORD 1 ]--------------------------------------------------------------
---------------------
id | 3
title | my new apple
record_data | "title"=>"my new apple", "Title and Content"=>"my new apple
my apple is the best orange in the world"

forumdb=# select * from my_second_fun(3);
-[ RECORD 1 ]--------------------------------------------------------------
---------------------
id | 3
title | my new apple
record_data | "title"=>"my new apple", "Title and Content"=>"my new apple
my apple is the best orange in the world"



Server-Side Programming Chapter 7

[ 208 ]

Exception handling statements
PL/pgSQL can also handle exceptions. The BEGIN...END block of a function allows the
EXCEPTION option, which works as a catch for exceptions. For example, if we write a
function to divide two numbers, we could have a problem with a division by 0:

CREATE OR REPLACE FUNCTION my_first_except (x real, y real ) returns real
as
$$
DECLARE
 ret real;
BEGIN
 ret := x / y;
 return ret;
END;
$$
language 'plpgsql';

This function works well if y <> 0, as we can see here:

forumdb=# select my_first_except(4,2);
 my_first_except
-----------------
 2
(1 row)

However, if y assumes a zero value, we have a problem:

forumdb=# select my_first_except(4,0);
ERROR: division by zero
CONTEXT: PL/pgSQL function my_first_except(real,real) line 5 at assignment

To solve this problem, we have to handle the exception. To do this, we have to rewrite our
function in the following way:

CREATE OR REPLACE FUNCTION my_second_except (x real, y real ) returns real
as
$$
DECLARE
  ret real;
BEGIN
  ret := x / y;
  return ret;
EXCEPTION
  WHEN division_by_zero THEN
     RAISE INFO 'DIVISION BY ZERO';
     RAISE INFO 'Error % %', SQLSTATE, SQLERRM;
     RETURN 0;



Server-Side Programming Chapter 7

[ 209 ]

END;
$$
language 'plpgsql' ;

The SQLSTATE and SQLERRM variables contain the status and message associated with the
generated error. Now, if we execute the second function, we no longer get an error from
PostgreSQL:

forumdb=# select my_second_except(4,0);
INFO: DIVISION BY ZERO
INFO: Error 22012 division by zero
 my_second_except
------------------
                0
(1 row)

The list of errors that PostgreSQL can manage is available at https:/ ​/ ​www.​postgresql.
org/​docs/​12/​errcodes- ​appendix. ​html.

Summary
In this chapter, we introduced the world of server-side programming. The topic is so vast
that there are specific books dedicated just to server-side programming. We have tried to
give you a better understanding of the main concepts of server-side programming. We
talked about the main data types managed by PostgreSQL, then we saw how it is possible
to create new ones using composite data types. We also mentioned SQL functions and
polymorphic functions, and finally, provided some information about the PL/pgSQL
language.

In the next chapter, we will use these concepts to introduce event management in
PostgreSQL. We will talk about event management through the use of triggers and the
functions associated with them.

https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html
https://www.postgresql.org/docs/12/errcodes-appendix.html


Server-Side Programming Chapter 7

[ 210 ]

References
Postgresql 12 – data types official documentation: https:/ ​/​www. ​postgresql.
org/​docs/ ​12/ ​datatype. ​html

Postgresql 12 – SQL functions official documentation: https:/ ​/​www. ​postgresql.
org/​docs/ ​12/ ​xfunc- ​sql. ​html

Postgresql 12 – PL/PGSQL official documentation: https:/ ​/​www. ​postgresql.
org/​docs/ ​12/ ​plpgsql. ​html

https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/datatype.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/xfunc-sql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html
https://www.postgresql.org/docs/12/plpgsql.html


8
Triggers and Rules

In the previous chapter, we talked about server-side programming. In this chapter, we will
use the concepts introduced in the previous chapter to manage the programming of events
in PostgreSQL. The first thing we need to address is what an event in PostgreSQL actually
is. In PostgreSQL, possible events are given by the SELECT/INSERT/UPDATE, and DELETE
statements. There are also events related to data definition language (DDL) operations; we
will talk about those events in Chapter 17, Event Triggers.

In PostgreSQL, there are two ways to handle events: 

Rules
Triggers

In this chapter, we will explore both of these ways and address when it is more appropriate
to use one of them rather than the other. As a starting point, we can generally say that rules
are usually simple event handlers, while triggers are more complex event handlers.
Triggers and rules are often used to update accumulators and to modify or delete records
that belong to different tables than the one in which we are modifying records. They are
very powerful tools that allow us to perform operations in tables other than the one in
which we are modifying the data. Triggers and rules will also be used in the next chapter
when we talk about partitioning. This is because, in PostgreSQL, there is still a partitioning
model based on triggers and rules.

In this chapter, we will talk about the following:

Exploring rules in PostgreSQL
Managing triggers in PostgreSQL
Event triggers



Triggers and Rules Chapter 8

[ 212 ]

Exploring rules in PostgreSQL
As mentioned earlier, rules are simple event handlers. At the user level, it is possible to
manage all the events that perform write operations, which are as follows:

INSERT

DELETE

UPDATE

 The fundamental concept behind rules is to modify the flow of an event. If we are given an
event, what we can do when certain conditions occur is as follows:

Do nothing and then undo the action of that event.
Trigger another event instead of the default one.
Trigger another event in conjunction with the default.

So, given a write operation, for example, an INSERT operation, we can perform one of these
three actions:

Cancel the operation.
Perform another operation instead of the INSERT.
Execute the INSERT and simultaneously perform another operation.

Understanding the OLD and NEW variables
Before we start working with rules and then with triggers, we need to understand the
concept of the OLD and NEW variables.

The OLD and NEW variables represent the state of the row in the table before or after the
event. OLD and NEW values are cursors that represent the whole record. To better
understand this, consider an UPDATE operation; in this case, the OLD variable contains the
value of the record already present in the table, while the NEW variable contains the value
that the record of the table will have after the UPDATE operation.



Triggers and Rules Chapter 8

[ 213 ]

For example, we can consider the tags table with the following records:

forumdb=# select * from tags;
 pk | tag        | parent
----+------------+--------
 1  | fruits     |
 2  | vegetables |
 3  | apple      | 1
(3 rows)

Suppose we want to modify the tag with pk=3 from 'apple' to 'orange' with this
UPDATE operation:

forumdb=# update tags set tag='orange' where pk=3;
UPDATE 1

The OLD variable will have these values:

3 apple 1

The NEW variable will have these values:

3 orange 1

It is quite logical that for certain operations both the OLD variable and the NEW variable may
exist, but for other operations, only one of them may exist. Here, we can see this expressed 
in more detail:

Operation/Variable NEW OLD

INSERT present absent

DELETE absent present

UPDATE present present

Now that everything is clearer, we can start working with rules.



Triggers and Rules Chapter 8

[ 214 ]

Rules on INSERT
Let's start by introducing the rules syntax:

CREATE [ OR REPLACE ] RULE name AS ON event
    TO table [ WHERE condition ]
    DO [ ALSO | INSTEAD ] { NOTHING | command | ( command ; command ... ) }

As we can see, the rule definition is extremely simple. There are three options that we can
have when we decide to use a rule:

The ALSO option1.
The INSTEAD option2.
The INSTEAD NOTHING option3.

The ALSO option
Suppose that, from the tags table, we want to copy all records with the field tag
value  starting with the letter a in the a_tag table:

First of all, let's create a new table called a_tags:1.

create table a_tags (
    pk integer not null primary key,
    tag text,
    parent integer);

Then let's create the new rule as follows:2.

create or replace rule r_tags1
    as on INSERT to tags
    where NEW.tag ilike 'a%' DO ALSO
    insert into a_tags(pk,tag,parent)values
(NEW.pk,NEW.tag,NEW.parent);

In the rule we have just defined, we simply told PostgreSQL that every time a
record is inserted with a tag value that starts with the letter "a,"  as well as being
inserted into the tags table, it must also be inserted into the a_tags table.

Now we perform the following query:3.

forumdb=# insert into tags (tag) values ('apple');
INSERT 0 1



Triggers and Rules Chapter 8

[ 215 ]

Then we check the records in the tags table and the a_tags records. We will4.
check in the parent table:

forumdb=# select * from tags;
 pk | tag        | parent
----+------------+--------
 1  | fruits     |
 2  | vegetables |
 3  | orange     | 1
 11 | apple      |
(4 rows)

In the child table, we will see the following:

forumdb=# select * from a_tags;
 pk | tag | parent
----+-------+--------
 12 | apple |
(1 row)

The record is present in both tables. A question worth asking is whether the rules are
executed before the event or after the event. For example, is the newly created rule executed
before INSERT or after INSERT? The answer is that rules in PostgreSQL are always
executed before the event.

The INSTEAD OF option
Suppose now that we want to move all records with the field tag starting with the letter b
in the b_tags table:

First of all, let's create a new table called  b_tags:1.

create table b_tags (
 pk integer not null primary key ,
 tag text,
 parent integer);

Then let's create the new rule:2.

create or replace rule r_tags2
    as on INSERT to tags
    where NEW.tag ilike 'b%'
    DO INSTEAD insert into b_tags(pk,tag,parent)values
(NEW.pk,NEW.tag,NEW.parent);



Triggers and Rules Chapter 8

[ 216 ]

This time, in the rule, we simply told  PostgreSQL that every time a record is
inserted with a tag value that starts with the letter "b," it must be moved into the
b_tags table.

Now let's perform this query:3.

forumdb=# insert into tags (tag) values ('banana');
INSERT 0 0

Already from the answer, INSERT 0 0, we can guess that nothing has been
inserted into the a_tags table.

Now, we will perform this statement:4.

forumdb=# select * from tags;
 pk | tag        | parent
----+------------+--------
 1  | fruits     |
 2  | vegetables |
 3  | orange     | 1
 11 | apple      |
(4 rows)

As we can see in the preceding snippet, the value banana does not appear in the5.
parent table, and in the child table, we will have the following:

forumdb=# select * from b_tags ;
 pk | tag    | parent
----+--------+--------
 13 | banana |
(1 row)

The rule that we defined made sure that the record was not inserted in the tags
table but was inserted in the b_tags table.

As the last example of the INSERT rule, suppose we want nothing to be inserted6.
every time a record is inserted with the tag field starting with the letter "c." As
we have done before, let's perform the rule:

create or replace rule r_tags3
    as on INSERT to tags
    where NEW.tag ilike 'c%'
    DO INSTEAD NOTHING;



Triggers and Rules Chapter 8

[ 217 ]

This time, we've said to PostgreSQL that every time the tags table receives a7.
record with the field tag starting with the letter "c," this record should not be
considered. Let's try what we've said:

forumdb=# insert into tags (tag) values ('cedro');
INSERT 0 0

Even now, we have INSERT 0 0 as the answer from the server, and we can8.
check that the record has not been inserted in any table:

forumdb=# select pk,tag,parent,'tags' as tablename
from tags
union all
select pk,tag,parent,'a_tags' as tablename
from a_tags
union all
select pk,tag,parent,'b_tags' as tablename
from b_tags
order by tablename, tag;

 pk | tag        | parent | tablename
----+------------+--------+-----------
 12 | apple      |        | a_tags
 13 | banana     |        | b_tags
 11 | apple      |        | tags
 1  | fruits     |        | tags
 3  | orange     | 1      | tags
 2  | vegetables |        | tags
(6 rows)

As we can see, the record does not appear in any table. In the preceding query, we used
UNION ALL. UNION ALL concatenates the results of the three queries. The important thing
is that the field types must be compatible with each other.

Rules on DELETE / UPDATE
In the previous section, we looked at how to use rules on INSERT events. In this section, we
will see how to use rules on DELETE and UPDATE events. We will now look at a complete
example of how to use the rules, starting from the concepts described above.



Triggers and Rules Chapter 8

[ 218 ]

The goal we want to reach is described in the following steps:

Create a table called new_tags equal to the tags table; this table will help us to1.
have a clean environment where we can do our tests.
Create two tables: a table called new_a_tags for a copy of all records with the2.
tags that start with the letter "a" and a table called new_b_tags for a copy of all
records with the tags that start with the letter "b."
Create all the INSERT/DELETE/UPDATE rules that make everything work.3.

Let's begin.

Creating the new_tags table
The first step is to create a new new_tags table. We will create this table based on the
existing tags table:

forumdb=# create table new_tags as select * from tags limit 0;
SELECT 0
forumdb=# \d new_tags
              Table "public.new_tags"
 Column | Type    | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 pk     | integer |           |          |
 tag    | text    |           |          |
 parent | integer |           |          |

The preceding statement copies the structure of the fields of the tags table into the
new_tags table but does not copy the constraints or any indices. Now we have to create the
primary key constraint on the new table: 

forumdb=# alter table new_tags alter pk set not null ;
ALTER TABLE
forumdb=# alter table new_tags add constraint new_tags_pk primary key (pk);
ALTER TABLE
forumdb=# \d new_tags
              Table "public.new_tags"
 Column | Type    | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 pk     | integer |           | not null |
 tag    | text    |           |          |
 parent | integer |           |          |
Indexes:
    "new_tags_pk" PRIMARY KEY, btree (pk)

With this, step 1 is complete.



Triggers and Rules Chapter 8

[ 219 ]

Creating two tables
In a similar way to what we just did, let's create new_a_tags and new_b_tags tables. For
the new_a_tags table, we will have the following:

forumdb=# create table new_a_tags as select * from a_tags limit 0;
SELECT 0
forumdb=# alter table new_a_tags alter pk set not null ;
ALTER TABLE
forumdb=# alter table new_a_tags add constraint new_b_tags_pk primary key
(pk);
ALTER TABLE
forumdb=# \d new_a_tags
 Table "public.new_a_tags"
 Column | Type    | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 pk     | integer |           | not null |
 tag    | text    |           |          |
 parent | integer |           |          |
Indexes:
 "new_b_tags_pk" PRIMARY KEY, btree (pk)

In the same way, we will create the new_b_tags table:

forumdb=# create table new_b_tags as select * from a_tags limit 0;
SELECT 0
forumdb=# alter table new_b_tags alter pk set not null ;
ALTER TABLE
forumdb=# alter table new_b_tags add constraint new_a_tags_pk primary key
(pk);
ALTER TABLE
forumdb=# \d new_b_tags
 Table "public.new_b_tags"
 Column | Type    | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 pk     | integer |           | not null |
 tag    | text    |           |          |
 parent | integer |           |          |
Indexes:
 "new_a_tags_pk" PRIMARY KEY, btree (pk)

Step 2 is now complete and we have everything we need to start our complete example.



Triggers and Rules Chapter 8

[ 220 ]

Managing  rules on INSERT, DELETE, and UPDATE
events 
The goal we want to achieve is shown in the following figure:

We want all tags starting with the letter "a" to be stored in the new_tags table and also
copied to the new_a_tags table, and we want the same for tags that begin with the letter
"b." 

We have to manage rules for INSERT, DELETE, and UPDATE events in the following ways:

INSERT rules must recognize all tags starting with the letters "a" or "b" and copy
those records into their respective tables – new_a_tags and new_b_tags.
DELETE rules must recognize all the tags starting with the letters "a" or "b" and
delete those records in the respective tables – new_a_tags and new_b_tags.
Update rules must recognize all the tags that begin with the letters "a" or "b" and,
if a record changes its tag, the rule must check whether the record should be
copied or deleted in the new_a_tags and new_b_tags tables.

INSERT rules
Let's start by creating two INSERT rules:

forumdb=# create or replace rule r_new_tags_insert_a as on INSERT to
new_tags where NEW.tag ilike 'a%' DO ALSO insert into



Triggers and Rules Chapter 8

[ 221 ]

new_a_tags(pk,tag,parent)values (NEW.pk,NEW.tag,NEW.parent);
CREATE RULE

forumdb=# create or replace rule r_new_tags_insert_b as on INSERT to
new_tags where NEW.tag ilike 'b%' DO ALSO insert into
new_b_tags(pk,tag,parent)values (NEW.pk,NEW.tag,NEW.parent);
CREATE RULE

As we can see, the new_tags table now has two new rules:

forumdb=# \d new_tags;
 Table "public.new_tags"
 Column | Type    | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 pk     | integer |           | not null |
 tag    | text    |           |          |
 parent | integer |           |          |
Indexes:
 "new_tags_pk" PRIMARY KEY, btree (pk)
Rules:
 r_new_tags_insert_a AS
 ON INSERT TO new_tags
 WHERE new.tag ~~* 'a%'::text DO INSERT INTO new_a_tags (pk, tag, parent)
 VALUES (new.pk, new.tag, new.parent)
 r_new_tags_insert_b AS
 ON INSERT TO new_tags
 WHERE new.tag ~~* 'b%'::text DO INSERT INTO new_b_tags (pk, tag, parent)
 VALUES (new.pk, new.tag, new.parent)

To check whether the rules work, let's insert some data: 

forumdb=# insert into new_tags values(1,'fruits',NULL);
INSERT 0 1
forumdb=# insert into new_tags values(2,'apple',1);
INSERT 0 1
forumdb=# insert into new_tags values(3,'orange',1);
INSERT 0 1
forumdb=# insert into new_tags values(4,'banana',1);
INSERT 0 1

Then let's check the parent table:

forumdb=# select * from new_tags ;
 pk | tag    | parent
----+--------+--------
 1  | fruits |
 2  | apple  | 1
 3  | orange | 1



Triggers and Rules Chapter 8

[ 222 ]

 4  | banana | 1
(4 rows)

Now let's see what is in the table_a child table:

forumdb=# select * from new_a_tags ;
 pk | tag   | parent
----+-------+--------
 2 | apple  | 1
(1 row)

And what's in the table_b child table:

forumdb=# select * from new_b_tags ;
 pk | tag    | parent
----+--------+--------
 4 | banana  | 1
(1 row)

We can see that the two rules work. 

DELETE rules
Now let's create the DELETE rules. We need rules that, if a record is deleted from the
new_tags table and it begins with the letter "a" or with the letter "b," its copy in the
new_a_tags and new_b_tags table must also be deleted. For all the records that start with
the letter "a," we need this rule:

create or replace rule r_new_tags_delete_a as on delete to new_tags where
OLD.tag ilike 'a%' DO ALSO delete from new_a_tags where pk=OLD.pk;

Similarly, we need this rule for records beginning with the letter "b":

create or replace rule r_new_tags_delete_b as on delete to new_tags where
OLD.tag ilike 'b%' DO ALSO delete from new_b_tags where pk=OLD.pk;

The current situation of the new_tags table is as follows:

forumdb=# \d new_tags
 Table "public.new_tags"
 Column | Type    | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 pk     | integer |           | not null |
 tag    | text    |           |          |
 parent | integer |           |          |
Indexes:
 "new_tags_pk" PRIMARY KEY, btree (pk)



Triggers and Rules Chapter 8

[ 223 ]

Rules:
 r_new_tags_delete_a AS
 ON DELETE TO new_tags
 WHERE old.tag ~~* 'a%'::text DO DELETE FROM new_a_tags
 WHERE new_a_tags.pk = old.pk
 r_new_tags_delete_b AS
 ON DELETE TO new_tags
 WHERE old.tag ~~* 'b%'::text DO DELETE FROM new_b_tags
 WHERE new_b_tags.pk = old.pk
 r_new_tags_insert_a AS
 ON INSERT TO new_tags
 WHERE new.tag ~~* 'a%'::text DO INSERT INTO new_a_tags (pk, tag, parent)
 VALUES (new.pk, new.tag, new.parent)
 r_new_tags_insert_b AS
 ON INSERT TO new_tags
 WHERE new.tag ~~* 'b%'::text DO INSERT INTO new_b_tags (pk, tag, parent)
 VALUES (new.pk, new.tag, new.parent)

Let's test whether the two new rules work:

forumdb=# delete from new_tags where tag = 'apple';
DELETE 1

forumdb=# delete from new_tags where tag = 'banana';
DELETE 1

forumdb=# select * from new_tags ;
 pk | tag    | parent
----+--------+--------
 1  | fruits |
 3  | orange | 1
(2 rows)

forumdb=# select * from new_a_tags ;
 pk | tag | parent
----+-----+--------
(0 rows)

forumdb=# select * from new_b_tags ;
 pk | tag | parent
----+-----+--------
(0 rows)

We can see from this that the new rules work.



Triggers and Rules Chapter 8

[ 224 ]

UPDATE rules
Now we need to introduce a rule that checks whether a tag is updated with a word that
starts with "a" or "b." The best way to do this is to first create a function that conducts this
check and then create a rule based on that function. Let's start by creating the function:

create or replace function move_record (p_pk integer, p_tag text, p_parent
integer,p_old_pk integer,p_old_tag text ) returns void language plpgsql as
$$
BEGIN
   if left(lower(p_tag),1) in ('a','b') THEN
        delete from new_tags where pk = p_old_pk;
        insert into new_tags values(p_pk,p_tag,p_parent);
  end if;
END;
$$;

This function takes five parameters as input; the first three parameters are the new values ​
that arrive from the update and the last two parameters are the old values ​​of the record that
are present in the record. The function checks these things:

 If the record in the table starts with the letter "a" or "b."1.
 If the old record in the table starts with the letter "a" or "b," it deletes the old2.
record and inserts the new record.

So, finally, the rule is as follows:

forumdb=# create or replace rule r_new_tags_update_a as on UPDATE to
new_tags DO ALSO select
move_record(NEW.pk,NEW.tag,NEW.parent,OLD.pk,OLD.tag);
CREATE RULE

The rule calls the function in the case of an update. Let's see if this rule works:

forumdb=# update new_tags set tag='apple' where tag='orange';
 move_record
-------------
(1 row)
UPDATE 0
forumdb=# select * from new_a_tags ;
 pk |  tag  | parent
----+-------+--------
  3 | apple |      1
(1 row)

forumdb=# select * from new_tags ;
 pk |  tag   | parent



Triggers and Rules Chapter 8

[ 225 ]

----+--------+--------
  1 | fruits |
  3 | apple  |      1
(2 rows)

Now let's see what happens if a record changes its tag from apple to banana:

forumdb=# update new_tags set tag='banana' where tag='apple';
NOTICE: 3 banana 1 3 apple
 move_record
-------------
(1 row)

UPDATE 0
forumdb=# select * from new_tags ;
 pk | tag | parent
----+--------+--------
 1 | fruits |
 3 | banana | 1
(2 rows)

forumdb=# select * from new_a_tags ;
 pk | tag | parent
----+-----+--------
(0 rows)

forumdb=# select * from new_b_tags ;
 pk | tag | parent
----+--------+--------
 3 | banana | 1
(1 row)

The rule works! In this short exercise, we have tried to introduce an example of complete
rule management. It is a didactic example and there are many other ways to achieve the
same goal. In the next section, we will explore another way to manage events in
PostgreSQL: triggers.



Triggers and Rules Chapter 8

[ 226 ]

Managing triggers in PostgreSQL
In the previous section, we talked about rules. In this section, we will talk about triggers,
what they are, and how to use them. We need to start by understanding what triggers are;
if we have understood what rules are this should be simple. In the previous section, we
defined rules as simple event handlers, now we can define triggers as complex event
handlers. For triggers, as for rules, there are NEW and OLD records, which assume the same
meaning for triggers as they did for rules. For triggers, the manageable events are INSERT /
DELETE / UPDATE and TRUNCATE. Another difference between rules and triggers is that with
triggers it is possible to handle INSERT / UPDATE / DELETE / and TRUNCATE events before
they happen or after they have happened. With triggers, we can also use the INSTEAD OF
option, but only on views. 

So we can manage the following events:

BEFORE INSERT/UPDATE/DELETE/TRUNCATE
AFTER INSERT/UPDATE/DELETE/TRUNCATE
INSTEAD OF INSERT/UPDATE/DELETE

With rules, it is possible to have only the NEW record for INSERT operations, the NEW and
OLD record for UPDATE operations, and the OLD record for DELETE operations. The first two
list items can also be used on foreign tables as well as primary tables and the third list
item can only be used on views. For further information, see https:/ ​/​www. ​postgresql.
org/​docs/​12/​sql- ​createtrigger. ​html. 

We will now take the first steps to use triggers and we will find out how to obtain the same
results as achieved when using rules. With triggers, we can do everything we can do with
rules and much more.

Before continuing, we need to keep two things in mind: 

If triggers and rules are simultaneously present on the same event in a table, the1.
rules always fire before the triggers.
If there are multiple triggers on the same event of a table (for example, BEFORE2.
INSERT), they are executed in alphabetical order.

There is another category of triggers called event triggers, which will be covered in
the Event triggers section.

https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html


Triggers and Rules Chapter 8

[ 227 ]

Trigger syntax
As described in the official document, the syntax for defining a trigger is as follows:

CREATE [ CONSTRAINT ] TRIGGER name { BEFORE | AFTER | INSTEAD OF } { event
[ OR ... ] }
 ON table_name
 [ FROM referenced_table_name ]
 [ NOT DEFERRABLE | [ DEFERRABLE ] [ INITIALLY IMMEDIATE | INITIALLY
DEFERRED ] ]
 [ REFERENCING { { OLD | NEW } TABLE [ AS ] transition_relation_name } [
... ] ]
 [ FOR [ EACH ] { ROW | STATEMENT } ]
 [ WHEN ( condition ) ]
 EXECUTE { FUNCTION | PROCEDURE } function_name ( arguments )

where event can be one of:

 INSERT
 UPDATE [ OF column_name [, ... ] ]
 DELETE
 TRUNCATE

We will only look at the most used aspects of this syntax; for further information,
see https:/​/​www.​PostgreSQL. ​org/ ​docs/ ​12/ ​sql-​createtrigger. ​html.  The key points
behind the execution of a trigger are as follows:

The event that we want to handle, for example, INSERT, DELETE, or UPDATE.1.
When we want the TRIGGER execution to start (for example, BEFORE INSERT).2.
The trigger calls a function to perform some action.3.

The function invoked by the trigger must be defined in a particular way, as shown in the
prototype here:

CREATE OR REPLACE FUNCTION function_name RETURNS trigger as
$$
DECLARE
....
BEGIN

    RETURN
END;
$$
LANGUAGE 'plpgsql';

https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html
https://www.PostgreSQL.org/docs/12/sql-createtrigger.html


Triggers and Rules Chapter 8

[ 228 ]

The functions that are called by the triggers are functions that have no input parameters
and must return a TRIGGER type; these functions have no input parameters and they take
the parameters from the NEW / OLD records. Starting with this prototype of the preceding
function, a possible TRIGGER definition on the BEFORE INSERT event can be described as
follows:

CREATE TRIGGER trigger_name BEFORE INSERT on table_name FOR EACH ROW
EXECUTE PROCEDURE function_name.

In the next section, we will try to implement what we wrote with the rules, this time
applying triggers.

Triggers on INSERT
In this section, we will see how to make our first triggers:

Let's go back to the rule that we wrote in the The ALSO option section: 1.

create or replace rule r_tags1
 as on INSERT to tags
 where NEW.tag ilike 'a%' DO ALSO
 insert into a_tags(pk,tag,parent)values
(NEW.pk,NEW.tag,NEW.parent);

Now let's see how we can achieve the same goal using a trigger. First, let's go2.
back to the initial situation:

forumdb=# drop table if exists new_tags cascade;
forumdb=# create table new_tags as select * from tags limit 0;
forumdb=# truncate table a_tags;
forumdb=# select * from new_tags ;
 pk | tag | parent
----+-----+--------
(0 rows)

forumdb=# select * from a_tags ;
 pk | tag | parent
----+-----+--------
(0 rows)

Now we can create the function, which will then be called by the trigger:3.

CREATE OR REPLACE FUNCTION f_tags() RETURNS trigger as
$$
BEGIN



Triggers and Rules Chapter 8

[ 229 ]

 IF lower(substring(NEW.tag from 1 for 1)) = 'a' THEN
 insert into a_tags(pk,tag,parent)values
(NEW.pk,NEW.tag,NEW.parent);
 END IF;
 RETURN NEW;
END;
$$
LANGUAGE 'plpgsql';

Let's take a deeper look at what the code means: 

The statement lower (substring (NEW.tag from 1 for 1))
takes the first character of a string and converts it into lowercase.
The RETURN NEW statement passes the new record from the table to the
INSERT in the new_tags table.

Now let's define the trigger on the BEFORE INSERT event of the t_tags table:4.

CREATE TRIGGER t_tags BEFORE INSERT on new_tags FOR EACH ROW
EXECUTE PROCEDURE f_tags();

So when a value is inserted into the new_tags table, before executing the5.
INSERT, the trigger is executed and returns the NEW record to the default action
(INSERT on the new_tags table). Now let's check that it works:

forumdb=# insert into new_tags (pk,tag,parent) values
(1,'fruits',NULL);
INSERT 0 1

forumdb=# insert into new_tags (pk,tag,parent) values
(2,'apple',1);
INSERT 0 1

forumdb=# select * from new_tags ;
 pk | tag | parent
----+--------+--------
 1 | fruits |
 2 | apple | 1
(2 rows)

forumdb=# select * from a_tags ;
 pk | tag | parent
----+-------+--------
 2 | apple | 1
(1 row)

As we can see here, it works!



Triggers and Rules Chapter 8

[ 230 ]

We will proceed from here, step by step, to better understand the difference6.
between working with rules and working with triggers. The goal we want to
achieve with triggers is to receive the same result as we can achieve with the
following rule:

create or replace rule r_tags2
 as on INSERT to tags
 where NEW.tag ilike 'b%'
 DO INSTEAD insert into b_tags(pk,tag,parent)values
(NEW.pk,NEW.tag,NEW.parent);

For now, let's use the same procedure we used in the rules, by creating a new7.
function that will then be fired from the trigger:

CREATE OR REPLACE FUNCTION f2_tags() RETURNS trigger as
$$
BEGIN
 IF lower(substring(NEW.tag from 1 for 1)) = 'b' THEN
 insert into b_tags(pk,tag,parent)values
(NEW.pk,NEW.tag,NEW.parent);
 RETURN NULL;
 END IF;
 RETURN NEW;
END;
$$
LANGUAGE 'plpgsql';

CREATE TRIGGER t2_tags BEFORE INSERT on new_tags FOR EACH ROW
EXECUTE PROCEDURE f2_tags();

The lower statement, (substring (NEW.tag from 1 for 1)) = 'b', is8.
practically identical to what we first saw in relation to rules. The difference is the
RETURN NULL, which means that if the NEW.tag value starts with 'b', then
a NULL value is returned to the default action and then the INSERT on the
new_tags table will not insert any value. If, instead, the IF condition is not
satisfied, then the function returns NEW and the record is inserted into the
new_tags table.



Triggers and Rules Chapter 8

[ 231 ]

Let's see if it works:

forumdb=# insert into new_tags (pk,tag,parent) values
(1,'fruits',NULL);
INSERT 0 1
forumdb=# insert into new_tags (pk,tag,parent) values
(2,'apple',1);
INSERT 0 1
forumdb=# insert into new_tags (pk,tag,parent) values
(3,'banana',1);
INSERT 0 0
forumdb=# select * from new_tags ;
 pk | tag | parent
----+--------+--------
 1 | fruits |
 2 | apple | 1
(2 rows)
forumdb=# select * from a_tags ;
 pk | tag | parent
----+-------+--------
 2 | apple | 1
(1 row)
forumdb=# select * from b_tags ;
 pk | tag | parent
----+--------+--------
 3 | banana | 1
(1 row)

As we can see, it works.

We will now look at how to write the whole procedure using a single trigger.9.
First, let's go back to the initial conditions of our environment. As before, we
delete the data in the tables and, using the CASCADE option, we delete the triggers
and the functions associated with them:

forumdb=# TRUNCATE new_tags;
TRUNCATE TABLE
forumdb=# TRUNCATE a_tags;
TRUNCATE TABLE
forumdb=# TRUNCATE b_tags;
TRUNCATE TABLE
forumdb=# DROP TRIGGER t_tags ON new_tags CASCADE;
DROP TRIGGER
forumdb=# DROP TRIGGER t2_tags ON new_tags CASCADE;
DROP TRIGGER



Triggers and Rules Chapter 8

[ 232 ]

In this last step, we will combine what we have written in the functions f1_tags10.
() and f2_tags () into a single function, f3_tags (), that will be fired from
the t3_tags trigger:

CREATE OR REPLACE FUNCTION f3_tags() RETURNS trigger as
$$
BEGIN
 IF lower(substring(NEW.tag from 1 for 1)) = 'a' THEN
     insert into a_tags(pk,tag,parent)values
(NEW.pk,NEW.tag,NEW.parent);
     RETURN NEW;
 ELSIF lower(substring(NEW.tag from 1 for 1)) = 'b' THEN
     insert into b_tags(pk,tag,parent)values
(NEW.pk,NEW.tag,NEW.parent);
     RETURN NULL;
 ELSE
     RETURN NEW;
 END IF;
END;
$$
LANGUAGE 'plpgsql';

CREATE TRIGGER t3_tags BEFORE INSERT on new_tags FOR EACH ROW
EXECUTE PROCEDURE f3_tags();

This function contains the logic of the two functions previously seen. In this way,
we can solve the problem in a more elegant way by using a single function and a
single trigger. Let's see if it works:

forumdb=# insert into new_tags (pk,tag,parent) values
(1,'fruits',NULL);
INSERT 0 1
forumdb=# insert into new_tags (pk,tag,parent) values
(2,'apple',1);
INSERT 0 1
forumdb=# insert into new_tags (pk,tag,parent) values
(3,'banana',1);
INSERT 0 0
forumdb=# select * from new_tags ;
 pk | tag | parent
----+--------+--------
 1 | fruits |
 2 | apple | 1
(2 rows)
forumdb=# select * from a_tags ;
 pk | tag | parent
----+-------+--------



Triggers and Rules Chapter 8

[ 233 ]

 2 | apple | 1
(1 row)
forumdb=# select * from b_tags ;
 pk | tag | parent
----+--------+--------
 3 | banana | 1

As can be seen, the function works.

One final thing to note about the function used is that the same function can be
written in a simpler way as follows:

CREATE OR REPLACE FUNCTION f3_tags() RETURNS trigger as
$$
BEGIN
 IF lower(substring(NEW.tag from 1 for 1)) = 'a' THEN
     nsert into a_tags(pk,tag,parent)values
(NEW.pk,NEW.tag,NEW.parent);
 ELSIF lower(substring(NEW.tag from 1 for 1)) = 'b' THEN
     insert into b_tags(pk,tag,parent)values
(NEW.pk,NEW.tag,NEW.parent);
     RETURN NULL;
 END IF;
 RETURN NEW;
END;
$$
LANGUAGE 'plpgsql';

This is possible because the RETURN statement returns the control to the function caller.

The TG_OP variable
As shown in the official documentation at https:/ ​/​www. ​PostgreSQL. ​org/ ​docs/ ​12/
plpgsql-​trigger. ​html, control of the triggers in PostgreSQl is allowed using special
variables, two of which we have already seen (the NEW variable and the OLD variable). There
is another special variable called TG_OP, which tells us from which event the trigger is fired.
The possible values ​​of the TG_OP variable are INSERT, DELETE ,  UPDATE, and TRUNCATE.

https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html


Triggers and Rules Chapter 8

[ 234 ]

Triggers on UPDATE / DELETE
Let's look at the example we used before when learning about rules and try to do the same
with triggers:

What we want to do is make it so that all tags starting with the letter "a" have to be stored in
the new_tags table and also copied to the new_a_tags table, and we want the same for

tags that begin with the letter "b." For the management of the INSERT event, we wrote these
rules:

forumdb=# create or replace rule r_new_tags_insert_a as on INSERT to
new_tags where NEW.tag ilike 'a%' DO ALSO insert into
new_a_tags(pk,tag,parent)values (NEW.pk,NEW.tag,NEW.parent);
CREATE RULE

forumdb=# create or replace rule r_new_tags_insert_b as on INSERT to
new_tags where NEW.tag ilike 'b%' DO ALSO insert into
new_b_tags(pk,tag,parent)values (NEW.pk,NEW.tag,NEW.parent);
CREATE RULE

These and subsequent rules that we wrote for handling INSERT, UPDATE, and DELETE
events, will be managed by a single function called by the triggers that will start before the
INSERT, UPDATE, and DELETE events. First, let's return to the initial conditions in our
environment:

TRUNCATE new_tags;
TRUNCATE a_tags;
TRUNCATE b_tags;
drop trigger t3_tags ON new_tags cascade;



Triggers and Rules Chapter 8

[ 235 ]

Now, as before, we will proceed step by step. The first step is to write the section of code
that will be performed during the INSERT event. Then, we will see how to extend the
function to manage the DELETE and UPDATE events. The function that will handle all three
events will be the fcopy_ins () function; this function will be invoked by the
tcopy_tags_ins, tcopy_tags_upd, and tcopy_tags_del triggers. The function using
the TG_OP variable will be able to discriminate between the INSERT, UPDATE, and DELETE
events.

Let's start by writing the fcopy_ins () function to handle the INSERT event:

CREATE OR REPLACE FUNCTION fcopy_tags() RETURNS trigger as
$$
BEGIN
IF TG_OP = 'INSERT' THEN
     IF lower(substring(NEW.tag from 1 for 1)) = 'a' THEN
         insert into a_tags(pk,tag,parent)values
(NEW.pk,NEW.tag,NEW.parent);
     ELSIF lower(substring(NEW.tag from 1 for 1)) = 'b' THEN
         insert into b_tags(pk,tag,parent)values
(NEW.pk,NEW.tag,NEW.parent);
     END IF;
     RETURN NEW;
END IF;
END;
$$
LANGUAGE 'plpgsql';

CREATE TRIGGER tcopy_tags_ins BEFORE INSERT on new_tags FOR EACH ROW
EXECUTE PROCEDURE fcopy_tags();

Now let's see if, for the INSERT event, this code works:

forumdb=# insert into new_tags (pk,tag,parent) values (1,'fruits',NULL);
INSERT 0 1
forumdb=# insert into new_tags (pk,tag,parent) values (2,'apple',1);
INSERT 0 1
forumdb=# insert into new_tags (pk,tag,parent) values (3,'banana',1);
INSERT 0 1

forumdb=# select * from a_tags;
 pk | tag | parent
----+-------+--------
 2 | apple | 1
(1 row)

forumdb=# select * from b_tags;
 pk | tag | parent



Triggers and Rules Chapter 8

[ 236 ]

----+--------+--------
 3 | banana | 1
(1 row)

forumdb=# select * from new_tags;
 pk | tag | parent
----+--------+--------
 1 | fruits |
 2 | apple | 1
 3 | banana | 1
(3 rows)

It is clear that it works!

Next, let's handle the DELETE event. The things we need to do are the following:

Add some lines of code to the function for managing the DELETE operation.
Create a new trigger on the DELETE event.

The function becomes as follows:

CREATE OR REPLACE FUNCTION fcopy_tags() RETURNS trigger as
$$
BEGIN
IF TG_OP = 'INSERT' THEN
     IF lower(substring(NEW.tag from 1 for 1)) = 'a' THEN
         insert into a_tags(pk,tag,parent)values
(NEW.pk,NEW.tag,NEW.parent);
     ELSIF lower(substring(NEW.tag from 1 for 1)) = 'b' THEN
         insert into b_tags(pk,tag,parent)values
(NEW.pk,NEW.tag,NEW.parent);
     END IF;
     RETURN NEW;
END IF;
IF TG_OP = 'DELETE' THEN
     IF lower(substring(OLD.tag from 1 for 1)) = 'a' THEN
             DELETE FROM a_tags WHERE pk = OLD.pk;
         ELSIF lower(substring(OLD.tag from 1 for 1)) = 'b' THEN
             DELETE FROM b_tags WHERE pk = OLD.pk;
     END IF;
     RETURN OLD;
END IF;
END;
$$
LANGUAGE 'plpgsql';



Triggers and Rules Chapter 8

[ 237 ]

This piece of code was added:

IF TG_OP = 'DELETE' THEN
     IF lower(substring(OLD.tag from 1 for 1)) = 'a' THEN
         DELETE FROM a_tags WHERE pk = OLD.pk;
     ELSIF lower(substring(OLD.tag from 1 for 1)) = 'b' THEN
         DELETE FROM b_tags WHERE pk = OLD.pk;
     END IF;
 RETURN OLD;
END IF;

This piece of code deletes the data in the a_tags and b_tags tables if the record to be
deleted begins with the letter "a" or with the letter "b." The trigger for handling the DELETE
event is the following:

CREATE TRIGGER tcopy_tags_del
AFTER DELETE on new_tags FOR EACH ROW EXECUTE PROCEDURE fcopy_tags();

The trigger is executed AFTER DELETE; in this case it would have made no difference if we
created the TRIGGER BEFORE or AFTER INSERT functions. Let's see if this trigger on the
DELETE event works:

forumdb=# delete from new_tags where pk=2;
DELETE 1

forumdb=# delete from new_tags where pk=3;
DELETE 1

forumdb=# select * from a_tags;
 pk | tag | parent
----+-----+--------
(0 rows)

forumdb=# select * from b_tags;
 pk | tag | parent
----+-----+--------
(0 rows)

forumdb=# select * from new_tags;
 pk | tag | parent
----+--------+--------
 1 | fruits |
(1 row)

As we can see, the TRIGGER works.



Triggers and Rules Chapter 8

[ 238 ]

For the last step, we need to manage the UPDATE event. Let's write the function and the
triggers as a full version from scratch. First, let's bring our environment back to the initial
conditions:

forumdb=# DROP TRIGGER tcopy_tags_ins ON new_tags cascade;
DROP TRIGGER
forumdb=# DROP TRIGGER tcopy_tags_del ON new_tags cascade;
DROP TRIGGER

forumdb=# TRUNCATE new_tags;
TRUNCATE TABLE

forumdb=# TRUNCATE a_tags;
TRUNCATE TABLE

forumdb=# TRUNCATE b_tags;
TRUNCATE TABLE

forumdb=# insert into new_tags (pk,tag,parent) values (1,'fruits',NULL);
INSERT 0 1

forumdb=# insert into new_tags (pk,tag,parent) values (2,'apple',1);
INSERT 0 1

forumdb=# insert into new_tags (pk,tag,parent) values (3,'banana',1);
INSERT 0 1

Now we can write the complete function with all the triggers for the INSERT, UPDATE, and
DELETE events:

CREATE OR REPLACE FUNCTION fcopy_tags() RETURNS trigger as
$$
BEGIN
IF TG_OP = 'INSERT' THEN
     IF lower(substring(NEW.tag from 1 for 1)) = 'a' THEN
         insert into a_tags(pk,tag,parent)values
(NEW.pk,NEW.tag,NEW.parent);
     ELSIF lower(substring(NEW.tag from 1 for 1)) = 'b' THEN
         insert into b_tags(pk,tag,parent)values
(NEW.pk,NEW.tag,NEW.parent);
     END IF;
     RETURN NEW;
 END IF;
IF TG_OP = 'DELETE' THEN
     IF lower(substring(OLD.tag from 1 for 1)) = 'a' THEN
         DELETE FROM a_tags WHERE pk = OLD.pk;
     ELSIF lower(substring(OLD.tag from 1 for 1)) = 'b' THEN
         DELETE FROM b_tags WHERE pk = OLD.pk;



Triggers and Rules Chapter 8

[ 239 ]

     END IF;
     RETURN OLD;
END IF;
IF TG_OP = 'UPDATE' THEN
    IF (lower(substring(OLD.tag from 1 for 1)) in( 'a','b') ) THEN
         DELETE FROM a_tags WHERE pk=OLD.pk;
         DELETE FROM b_tags WHERE pk=OLD.pk;
         DELETE FROM new_tags WHERE pk = OLD.pk;
         INSERT into new_tags(pk,tag,parent) values
(NEW.pk,NEW.tag,NEW.parent);
     END IF;
     RETURN NEW;
END IF;
END;
$$
LANGUAGE 'plpgsql';

CREATE TRIGGER tcopy_tags_ins
    BEFORE INSERT on new_tags FOR EACH ROW EXECUTE PROCEDURE fcopy_tags();
CREATE TRIGGER tcopy_tags_del
    AFTER DELETE on new_tags FOR EACH ROW EXECUTE PROCEDURE fcopy_tags();
CREATE TRIGGER tcopy_tags_upd
    AFTER UPDATE on new_tags FOR EACH ROW EXECUTE PROCEDURE fcopy_tags();

In this case, the trigger must be defined AFTER UPDATE and not BEFORE UPDATE because
in the UPDATE section, we have the instruction DELETE FROM new_tags WHERE pk =
OLD.pk; if the trigger had been defined BEFORE UPDATE, we would have had an error
because we would have attempted to delete a record reserved for UPDATE.

Let's see if the complete function works:

forumdb=# select * from new_tags;
 pk | tag    | parent
----+--------+--------
 1 | fruits  |
 2 | apple   | 1
 3 | banana  | 1
(3 rows)

forumdb=# select * from a_tags;
 pk | tag   | parent
----+-------+--------
 2 | apple  | 1
(1 row)

forumdb=# select * from b_tags;
 pk | tag    | parent



Triggers and Rules Chapter 8

[ 240 ]

----+--------+--------
 3 | banana  | 1
(1 row)

forumdb=# update new_tags set tag='apricot' where pk=3;
UPDATE 1
forumdb=# select * from b_tags;
 pk | tag | parent
----+-----+--------
(0 rows)

forumdb=# select * from a_tags;
 pk | tag     | parent
----+---------+--------
 2 | apple    | 1
 3 | apricot  | 1
(2 rows)

forumdb=# select * from new_tags;
 pk | tag | parent
----+---------+--------
 1 | fruits |
 2 | apple | 1
 3 | apricot | 1
(3 rows)

As this shows, the trigger approach works. Now, in this section, we have seen how to
modify events that are DML through the use of rules and triggers. In the next section, we
will see how it is also possible to intercept and modify events related to DDL  operations
using event triggers.

Event triggers
Rules and triggers act as Data Manipulation Level (DML) statements, which means they
are triggered by something that changes the data but not the data layout or the table
properties. PostgreSQL provides so-called event triggers, which are particular triggers that
fire on DDL (Data Definition Level) statements. The purpose of the event trigger is
therefore to manage and react to events that are going to change the data structure rather
than the data content. Triggers can be used in many ways to enforce specific policies across
your databases.



Triggers and Rules Chapter 8

[ 241 ]

Once fired, an event trigger receives an event and a command tag, both of which are useful
for introspection and providing information about what fired the trigger. In particular, the
command tag contains a description of the command (for example, CREATE or ALTER), while
the event contains the category that fired the trigger, in particular, the following:

ddl_command_start and ddl_command_end indicate respectively the
beginning and the completion of the DDL command.
sql_drop indicates that a DROP command is near to completion.
table_rewrite indicates that a full table rewrite is about to begin.

As with DML triggers, there are particular commands to create, delete, and modify an
event trigger:

CREATE EVENT TRIGGER to add a new event trigger
DROP EVENT TRIGGER to delete an existing trigger
ALTER EVENT TRIGGER to modify an existing trigger

Here is the synopsis for the creation of a new event trigger:

CREATE EVENT TRIGGER name
    ON event
    [ WHEN filter_variable IN (filter_value [, ... ]) [ AND ... ] ]
    EXECUTE { FUNCTION | PROCEDURE } function_name()

Similar to their DML counterpart triggers, event triggers are associated with a mnemonic
name and a function to execute once they are fired. However, unlike ordinary triggers,
event triggers do not specify to which table they are attached; in fact, event triggers are not
related to any particular table but rather to DDL commands.

Event triggers must be created by the database administrator and have a database scope,
meaning they live and act in the database they have been defined in.

There are a couple of special functions that can help developers to perform introspection
within an event trigger in order to understand the exact event that fired the trigger. The
most important functions are as follows:

pg_event_trigger_commands(), which returns a tuple for every command
that was executed during the DDL statement.
pg_event_trigger_dropped_objects(), which reports a tuple for every
dropped object within the same DDL statement.



Triggers and Rules Chapter 8

[ 242 ]

Along with the preceding utility functions, it is important to carefully read the event trigger
documentation in order to understand when a command will fire an event trigger or not.
Explaining event triggers in further detail is out of the scope of this section; instead, we will
look at a practical example in the following section. For more information about event
triggers, please refer to the official documentation or to the Packt Book PostgreSQL 11
Server-Side Programming.

An example of an event trigger
In order to better understand how event triggers work, let's build a simple example of a
trigger that prevents any ALTER TABLE like commands in a database.

The first step is to define a function that will be executed once the trigger has been fired;
such a function needs to inspect the DDL statement properties in order to understand
whether it has been invoked by means of an ALTER TABLE command. The introspection is
done using the pg_event_trigger_ddl_commands() special function, which returns a
tuple for every DDL statement executed within the same command. Such tuples contain a
field named command_tag, which reports the command group (uppercase), and
object_type, which reports the object type (lowercase) that the DDL statement has been
executed against. The function must return a trigger type, specifically an event trigger type,
therefore the function can be defined as follows:

CREATE OR REPLACE FUNCTION
f_avoid_alter_table()
RETURNS EVENT_TRIGGER
AS
$code$
DECLARE
event_tuple record;
BEGIN

   FOR event_tuple IN SELECT *
                      FROM pg_event_trigger_ddl_commands()  LOOP
        IF event_tuple.command_tag = 'ALTER TABLE' AND
event_tuple.object_type = 'table' THEN
           RAISE EXCEPTION 'Cannot execute an ALTER TABLE!';
        END IF;
   END LOOP;
END
$code$
LANGUAGE plpgsql;



Triggers and Rules Chapter 8

[ 243 ]

As you can see, if the function discovers that the executed command has an 'ALTER
TABLE' tag and a 'table' object type, it raises an exception causing the whole statement
to fail.

Once the function is in place, it is possible to attach it to an event trigger:

forumdb=# CREATE EVENT TRIGGER tr_avoid_alter_table
          ON ddl_command_end EXECUTE FUNCTION f_avoid_alter_table();

At this point, the trigger is active and the function will be fired for every DDL command
once the system is approaching the end of a command.

It is now possible to test the trigger and see whether a user is allowed to execute ALTER
TABLE:

forumdb=> ALTER TABLE tags ADD COLUMN thumbs_up int DEFAULT 0;
ERROR:  Cannot execute an ALTER TABLE!
CONTEXT:  PL/pgSQL function f_avoid_alter_table() line 10 at RAISE

As we can see, an exception is raised as soon as the ALTER TABLE command is executed.

While event triggers can be used, as in the preceding example, to prevent users from
executing particular commands, a better strategy is to avoid inappropriate command
executions by means of permissions whenever possible. Event triggers are complex and are
used to provide support for things such as logical replication, auditing, and other
infrastructures.

Summary
In this chapter, we covered the topic of triggers and rules. We explored rules and triggers
using some identical examples. We established that rules are simple event handlers and
triggers are complex event handlers. 

We introduced the concept of trigger variables:

NEW

OLD 

TG_OP

As well as data-manipulation-based triggers, we briefly introduced the PostgreSQL event
triggers that allow developers and database administrators to have more control over firing
and executing functions.



Triggers and Rules Chapter 8

[ 244 ]

We have come to understand that triggers are extremely complex event handlers. In this
chapter, we started to show the power of these tools made available to the PostgreSQL
DBA; in the next chapter, we will talk about partitioning and we will utilize the topics
covered in this chapter.

In the next chapter, we will return to talking about triggers and we will use triggers to
create a certain type of partitioning present in PostgreSQL.

References
PostgreSQL 12 Rules on INSERT, UPDATE, and DELETE official
documentation: https:/ ​/​www. ​PostgreSQL. ​org/ ​docs/ ​12/ ​rules- ​update. ​html

PostgreSQL 12 trigger functions official documentation: https:/ ​/ ​www.
PostgreSQL. ​org/ ​docs/ ​12/ ​plpgsql- ​trigger. ​html

PostgreSQL 12 ALTER TRIGGER official documentation: https:/ ​/​www.
PostgreSQL. ​org/ ​docs/ ​12/ ​sql- ​altertrigger. ​html

PostgreSQL 12 DROP TRIGGER official documentation: https:/ ​/​www.
PostgreSQL. ​org/ ​docs/ ​12/ ​sql- ​droptrigger. ​html

PostgreSQL 12 event trigger official documentation: https:/ ​/​www. ​postgresql.
org/​docs/ ​12/ ​functions- ​event- ​triggers. ​html

PostgreSQL 11 Server-Side Programming – Quick Start Guide: https:/ ​/​www.
packtpub. ​com/ ​big- ​data- ​and- ​business- ​intelligence/ ​postgresql- ​11- ​server-
side-​programming- ​quick- ​start- ​guide

https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/rules-update.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/plpgsql-trigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-altertrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.PostgreSQL.org/docs/12/sql-droptrigger.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.postgresql.org/docs/12/functions-event-triggers.html
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide
https://www.packtpub.com/big-data-and-business-intelligence/postgresql-11-server-side-programming-quick-start-guide


9
Partitioning

In the previous chapter, we talked about rules and triggers. In this chapter, we will talk
about partitioning. Partitioning is a technique that allows us to split a huge table into
smaller tables, to make queries more efficient. In this chapter, we will see how we can
partition data, and, in some cases, we will see how to use the rules and triggers seen in the
previous chapter to make partitioning possible. We will start by introducing the basic
concepts of partitioning, and then we will see what possibilities PostgreSQL offers to
implement partitioning. 

This chapter will cover the following topics:

Basic concepts
Partitioning using table inheritance
Declarative partitioning

Basic concepts
First of all, let's try to understand why we have to partition data. We should start by saying
that a common constant of all databases is that their size always grows. It is, therefore,
possible that a database, after a few months of growth, can reach a size of gigabytes,
terabytes, or petabytes. 

Another thing we must always keep in mind is that not all tables grow at the same rate or
to the same level; there are tables that will be bigger than other tables and there will be
indexes too that will be bigger than other indexes.



Partitioning Chapter 9

[ 246 ]

We also need to know that there is a part of our server's RAM memory shared among all
the Postgres processes that is used to manage the data that is present in tables. This part of
the server's RAM is called shared_buffers.

The way PostgreSQL works is as follows:

Data is taken from disks.1.
Data is placed in shared buffers.2.
Data is processed in shared buffers.3.
Data is downloaded to disks.4.

Typically, in a dedicated server only for PostgreSQL, the size of shared_buffers is about
one-third or one-quarter of the total server RAM memory. A useful link to set some
PostgreSQL configuration parameters is https:/ ​/​pgtune. ​leopard. ​in. ​ua.

When a table grows excessively compared to the shared_buffers size, there is a
possibility that performance will decrease. In this case, partitioning data can help us.
Partitioning data means splitting a very large table into smaller tables in a way that is
transparent to the client program. The client program will think that the server still has only
one single table. Data partitioning can be done in two ways:

Using table inheritance
Using declarative partitioning

After figuring out when it is recommended to partition data, let's see what types of table
partitioning are possible. PostgreSQL 12 manages the following types of table partitioning:

Range partitioning
List partitioning
Hash partitioning

We will now describe these three methods in detail.

Range partitioning
Range partitioning is where the table is divided into "intervals." The intervals must not
overlap and the range is defined through the use of a field or a set of fields. For further
information, see https:/ ​/​www. ​postgresql. ​org/ ​docs/ ​12/ ​ddl- ​partitioning. ​html.

https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html


Partitioning Chapter 9

[ 247 ]

Let's look at an example of the definition of range partitioning. Suppose we have this table:

field date field_value
2020-03-01 1
2020-03-02 10
2020-04-01 12
2020-04-15 1

Now consider that we want to split this table into two tables. The first table (TABLE A) will
contain all the records with a field_date value between 2020-03-01 and 2020-03-31, and
the second table (TABLE B) will contain all the records with a field_date value between 
2020-04-01 and 2020-04-30. So, our goal is to have two tables as follows:

field date field_value
2020-03-01 1
2020-03-02 10

This is TABLE B:

field date field_value
2020-04-01 12
2020-04-15 1

What we have seen is an example of partitioning by range.

List partitioning
In list partitioning, the table will be partitioned using a list of values. For further
information, see https:/ ​/​www. ​postgresql. ​org/ ​docs/ ​12/ ​ddl- ​partitioning. ​html.

Let's look at an example of the definition of list partitioning. Suppose we have this table:

field_state field_city
United States Washington
United States San Francisco
Italy Rome
Japan Tokio

https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html


Partitioning Chapter 9

[ 248 ]

Suppose now that we want to split this table into n tables, with one table for each state. The
first table (TABLE A) will contain all the records with a field_state value equal to
United States, the second table (TABLE B) will contain all records with a field_state
value equal to Italy, and the third table (TABLE C) will contain records with a
field_state value equal to Japan. So, our goal is to have three tables as follows:

TABLE A:

field_state field_city
United States Washington
United States San Francisco

TABLE B:

field_state field_city
Italy Rome

TABLE C:

field_state field_city
Japan Tokyo

This is an example of partitioning by list.

Hash partitioning
Using hash partitioning, the table will be partitioned using a hash value that will be used as
the value to split data into different tables. For further information, see https:/ ​/​www.
postgresql.​org/​docs/ ​12/ ​ddl- ​partitioning. ​html.

Let's look at an example of the definition of list partitioning. Suppose we have this table:

field date field_value
2020-03-01 1
2020-03-02 10
2020-04-01 12
2020-04-15 1

https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html


Partitioning Chapter 9

[ 249 ]

Suppose now that we have a hash function that transforms a date into a hash value; for
example:

hash(2020-03-01) = AAAAAAB
hash(2020-03-02) = AAAAAAC
hash(2020-04-01) = AAAAAAB
hash(2020-04-15) = AAAAAAC

So, after the partitioning process, we will have two tables:

TABLE A :

field date field_value
2020-03-01 1
2020-04-01 12

TABLE B :

field date field_value
2020-03-02 10
2020-04-15 1

This is an example of partitioning by hash.

In the following sections, we will see how PostgreSQL implements list, range, and hash
partitioning.

Table inheritance
Another introductory topic that we must look at is the inheritance of tables. PostgreSQL
takes up the concept of inheritance from databases to objects. The concept is very simple
and can be summarized as follows: suppose we have two tables, table A and table B. If we
define table A as a parent table and table B as child table, this means that all the records in
table B will be accessible from table A. Let's now try to give an example of what we have
just described:

For example, let's define two tables.1.

The first table, the parent table, is defined as follows:

create table table_a (
 pk integer not null primary key,



Partitioning Chapter 9

[ 250 ]

 tag text,
 parent integer);

And the second table, the child table, is defined as follows:

create table table_b () inherits (table_a);

alter table table_b add constraint table_b_pk primary key(pk);

The child table inherits all the fields from the parent table. The parent table is2.
described as seen here:

forumdb=# \d table_a;
 Table "public.table_a"
 Column | Type    | Collation    | Nullable    | Default
--------+---------+-----------+----------+---------
 pk     | integer |           | not null |
 tag    | text    |           |          |
 parent | integer |           |          |
Indexes:
 "table_a_pkey" PRIMARY KEY, btree (pk)
Number of child tables: 1 (Use \d+ to list them.)

And for more details, let's use the \d+ command:

forumdb=# \d+ table_a;
 Table "public.table_a"
 Column | Type    | Collation | Nullable | Default | Storage  |
Stats target | Description
--------+---------+-----------+----------+---------+----------+----
----------+-------------
 pk     | integer |           | not null |         | plain    |
|
 tag    | text    |           |          |         | extended |
|
 parent | integer |           |          |         | plain    |
|
Indexes:
 "table_a_pkey" PRIMARY KEY, btree (pk)
Child tables: table_b
Access method: heap

In this last table, we can see that table_b is a child table of table_a.

Let's do the same for the table called table_b:3.

forumdb=# \d table_b;
 Table "public.table_b"



Partitioning Chapter 9

[ 251 ]

 Column | Type    | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 pk     | integer |           | not null |
 tag    | text    |           |          |
 parent | integer |           |          |
Indexes:
 "table_b_pk" PRIMARY KEY, btree (pk)
Inherits: table_a

Here, we can see that table_b is a child table of table_a.

Now let's see how these two tables behave if we insert, modify, or delete data.4.
For example, let's make some inserts as follows:

forumdb=# insert into table_a (pk,tag,parent) values
(1,'fruits',0);
INSERT 0 1

forumdb=# insert into table_b (pk,tag,parent) values
(2,'orange',0);
INSERT 0 1

Let's see how our data reacts if we execute the select command: 5.

forumdb=# select * from table_b ;
 pk | tag    | parent
----+--------+--------
 2  | orange | 0
(1 row)

We can see that table_b has one record.

Now we execute the following command:6.

forumdb=# select * from table_a ;
pk  | tag     | parent
----+--------+--------
1   | fruits   | 0
2   | orange   | 0
(2 rows)

It seems that table_a has two records. This happens because this table inherits
the other table's attributes. If we execute a SELECT command on a parent table,
we will see all the records that belong to the parent table and all the records that
belong to the child table.



Partitioning Chapter 9

[ 252 ]

If we want to see all the records that belong only to table_a, we have to use the7.
ONLY clause, as seen here:  

forumdb=# select * from only table_a ;
pk | tag     | parent
----+--------+--------
1  | fruits  | 0
(1 row)

Let's see what happens if we UPDATE some records, for example, if we execute8.
the following:

forumdb=# update table_a set tag='apple' where pk=2;
UPDATE 1

We performed an update operation on table_a, but this update was physically
done on table_b by means of the inheritance of the tables, as we can see here:

forumdb=# select * from table_b;
 pk | tag   | parent
----+-------+--------
 2  | apple | 0
(1 row)

The same happens if we use a delete statement as follows:9.

forumdb=# delete from table_a where pk=2;
DELETE 1

Here, again, the delete operation performed on table_a has its effect on
table_b; as we can see here, table_a will have these records:

forumdb=# select * from table_a;
 pk | tag | parent
----+--------+--------
 1 | fruits | 0
(1 row)

And table_b will now have no records:

forumdb=# select * from table_b;
 pk | tag | parent
----+-----+--------
(0 rows)



Partitioning Chapter 9

[ 253 ]

In PostgreSQL 12, inheritance propagates the operations performed on the
parent table to the child tables.

Dropping tables
To conclude the topic of inheritance, we need to address how to delete tables. If we want to
delete a child table, for example, to drop table_b, we have to run the following statement:

forumdb=# drop table table_b;
DROP TABLE

If we want to DROP a parent table and all its linked child tables, we have to run the
following:

forumdb=# drop table table_a cascade;
NOTICE: drop cascades to table table_b
DROP TABLE

After showing the concepts behind partitioning, in the next section, we will make a table
partition using the concept of inheritance.

Exploring partitioning using inheritance
At this point in the book, we have all the elements necessary to partition data. In the
previous chapter, we learned how to use triggers and rules to move data between tables. In
this chapter, we just learned that it is possible using inheritance to query a parent table and
manage the data of child tables. In the next section, we will do partitioning using the
declarative partitioning method, available on PostgreSQL starting from version 10.x.

An example of list partitioning
In this first example, we will try to create a partitioned table using the list partitioning logic.
In the next section, we will create a partitioned table using the range partitioning logic,
starting from a table such as the following:

pk tag level
1 vegetables 0
2 fruits 0



Partitioning Chapter 9

[ 254 ]

3 orange 1
4 apple 1
5 red apple 2

Our goal is to split our data using the value of the level field. The goal that we want to
reach is to have 4 levels and we want to have 1 table for each level. We also want all records
with level = 0 to be stored in the part_level_0 table, all records with level = 1 to be
stored in the part_level_1 table, and so on, as shown here.

This is table part_tags_level_0:

pk tag level
1 vegetables 0
2 fruits 0

This is table part_tags_level_1:

pk tag level
3 orange 1
4 apple 1

This is table part_tags_level_2:

pk tag level
5 red apple 2

We will now dive into the code in the coming sections.

Creating tables
The first step is to create a parent table and its child tables:

The parent table will be defined as follows:1.

CREATE SEQUENCE part_tags_pk_seq;

CREATE TABLE part_tags (
     pk INTEGER NOT NULL DEFAULT nextval('part_tags_pk_seq')
PRIMARY KEY,
     tag VARCHAR(255) NOT NULL,
     level INTEGER DEFAULT 0
);



Partitioning Chapter 9

[ 255 ]

And the child tables will be defined as follows:2.

CREATE TABLE part_tags_level_0 (
    CHECK(level = 0 )
) INHERITS (part_tags);

CREATE TABLE part_tags_level_1 (
    CHECK(level = 1 )
) INHERITS (part_tags);

CREATE TABLE part_tags_level_2 (
    CHECK(level = 2 )
) INHERITS (part_tags);

CREATE TABLE part_tags_level_3 (
    CHECK(level = 3 )
) INHERITS (part_tags);

The check command on the level field has two functions:

The first is to avoid incorrect values ​​in the daughter tables.
The second is to have PostgreSQL perform the correct pruning of the
data.

The second function is linked to the constraint_exclusion parameter, as
shown in the parameter description:

forumdb=# select name,short_desc,extra_desc from pg_settings where name
='constraint_exclusion';
-[ RECORD 1 ]---+----------------------------------------------------------
----------------------
name            | constraint_exclusion
short_desc | Enables the planner to use constraints to optimize queries.
extra_desc | Table scans will be skipped if their constraints guarantee
that no rows match the query.

This parameter makes it possible for the query optimizer to exclude some child
tables from the search. For example, if we execute select * from part_tags
where level = 1, then the query optimizer will check the conditions of the
check imposed on the child tables and will only query the table for which check
(level = 1) is satisfied. Possible values for the constraint_exclusion
parameter are the following:

on: With this value set, PostgreSQL examines all tables.
off: With this value set, PostgreSQL doesn't examine any constraints.



Partitioning Chapter 9

[ 256 ]

partition: With this value, PostgreSQL checks the constraints for the
UNION ALL subqueries and only for inheritance child tables,
and partition is the default setting.

 For further information, see https:/ ​/ ​www.​postgresql. ​org/​docs/ ​12/ ​runtime-
config-​query. ​html#GUC- ​CONSTRAINT- ​EXCLUSION.

After creating child tables, let's now create their primary keys:3.

ALTER TABLE ONLY part_tags_level_0 add constraint
part_tags_level_0_pk primary key (pk);
ALTER TABLE ONLY part_tags_level_1 add constraint
part_tags_level_1_pk primary key (pk);
ALTER TABLE ONLY part_tags_level_2 add constraint
part_tags_level_2_pk primary key (pk);
ALTER TABLE ONLY part_tags_level_3 add constraint
part_tags_level_3_pk primary key (pk);

The next step is to create all the indexes that we need for our queries. Suppose,4.
for example, that we want to index like and ilike queries. First of all, we have
to create the trigram extension (https:/ ​/​www. ​postgresql. ​org/ ​docs/ ​12/ ​pgtrgm.
html):

CREATE EXTENSION pg_trgm ;

And then we have to create a GIN index on the tag field:5.

CREATE INDEX part_tags_level_0_tag on part_tags_level_0 using GIN
(tag gin_trgm_ops);
CREATE INDEX part_tags_level_1_tag on part_tags_level_1 using GIN
(tag gin_trgm_ops);
CREATE INDEX part_tags_level_2_tag on part_tags_level_2 using GIN
(tag gin_trgm_ops);
CREATE INDEX part_tags_level_3_tag on part_tags_level_3 using GIN
(tag gin_trgm_ops);

We have finished the phase of creating the tables and their indexes.

https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html


Partitioning Chapter 9

[ 257 ]

Creating triggers and functions, and inserting data
Now that we have created the structure on which our data will be stored, we must tell
PostgreSQL how to make sure that the data will be inserted not into the parent table but
into the child tables. The mechanism is very similar to what we saw in the previous chapter
and we can create it using triggers or rules. In this example, we will use triggers:

First of all, let's create the function that will be called by the trigger:1.

CREATE OR REPLACE FUNCTION insert_part_tags () RETURNS TRIGGER as
$$
BEGIN
 IF NEW.level = 0 THEN
     INSERT INTO part_tags_level_0 values (NEW.*);
 ELSIF NEW.level = 1 THEN
     INSERT INTO part_tags_level_1 values (NEW.*);
 ELSIF NEW.level = 2 THEN
     INSERT INTO part_tags_level_2 values (NEW.*);
 ELSIF NEW.level = 3 THEN
     INSERT INTO part_tags_level_3 values (NEW.*);
 ELSE
     RAISE EXCEPTION 'Error in part_tags, level out of range';
 END IF;
 RETURN NULL;
END;
$$
language 'plpgsql';

Then let's create the trigger:2.

CREATE TRIGGER insert_part_tags_trigger BEFORE INSERT ON part_tags
FOR EACH ROW EXECUTE PROCEDURE insert_part_tags();

This trigger moves the record into the child tables and returns to the parent table
a NULL record. In this way, no one record will be inserted into the parent table.



Partitioning Chapter 9

[ 258 ]

Let's now make some INSERT statements:3.

forumdb=# insert into part_tags (tag,level) values
('vegetables',0);
INSERT 0 0
forumdb=# insert into part_tags (tag,level) values ('fruits',0);
INSERT 0 0
forumdb=# insert into part_tags (tag,level) values ('orange',1);
INSERT 0 0
forumdb=# insert into part_tags (tag,level) values ('apple',1);
INSERT 0 0
forumdb=# insert into part_tags (tag,level) values ('red apple',2);
INSERT 0 0

As we can see, if we query the parent table, we receive the following results:

forumdb=# select * from part_tags;
 pk | tag | level
----+------------+-------
 6 | vegetables | 0
 7 | fruits | 0
 8 | orange | 1
 9 | apple | 1
 10 | red apple | 2
(5 rows)

In the parent table, there is no data:

forumdb=# select * from only part_tags;
 pk | tag | level
----+-----+-------
(0 rows)

But as we can see, all the data is stored in the child4.
tables part_tags_level_0, part_tags_level_1, and part_tags_level_2.
We can see the data present in the  part_tags_level_0 table here:

forumdb=# select * from only part_tags_level_0;
 pk | tag        | level
----+------------+-------
 6  | vegetables | 0
 7  | fruits     | 0
(2 rows)

This is the data present in the part_tags_level_1 table:

forumdb=# select * from only part_tags_level_1;
 pk | tag    | level



Partitioning Chapter 9

[ 259 ]

----+--------+-------
 8  | orange | 1
 9  | apple  | 1
(2 rows)

This is the data present in the part_tags_level_2 table:

forumdb=# select * from only part_tags_level_2;
 pk | tag | level
----+-----------+-------
 10 | red apple | 2
(1 row)

Now, we have finished creating the trigger, and we have added data to it.

Creating triggers and functions and updating data
In terms of the deletion of data, as we saw in the Exploring partitioning using inheritance
section, the deletion of a record in the parent table is automatically propagated to the child
tables. For example, let's execute the following:

forumdb=# delete from part_tags where tag='apple';
DELETE 1
forumdb=# select * from only part_tags_level_1;
 pk | tag | level
----+--------+-------
 8 | orange | 1
(1 row)

forumdb=# select * from part_tags;
 pk | tag        | level
----+------------+-------
 6  | vegetables | 0
 7  | fruits     | 0
 8  | orange     | 1
 10 | red apple  | 2
(4 rows)

As we can see in the preceding example, the record has been correctly deleted. The same
thing happens when we modify a record and the change remains within the same child
table. For example, let's run the following:

forumdb=# update part_tags set tag='apple' where pk=8;
UPDATE 0



Partitioning Chapter 9

[ 260 ]

As we can see here, the record has been correctly updated:

forumdb=# select * from part_tags;
 pk | tag        | level
----+------------+-------
 6  | vegetables | 0
 7  | fruits     | 0
 8  | apple      | 1
 10 | red apple  | 2
(4 rows)

forumdb=# select * from only part_tags_level_1;
 pk | tag    | level
----+--------+-------
 8  | apple  | 1
(1 row)

A problem occurs when the update has to be moved to another child table, for example, if
we run the following:

forumdb=# update part_tags set level=1,tag='apple' where pk=10;
ERROR: new row for relation "part_tags_level_2" violates check constraint
"part_tags_level_2_level_check"

To make it possible to move data among child tables, we have to add another trigger for
each child table. That's because all records are stored in the child tables:

CREATE OR REPLACE FUNCTION update_part_tags() RETURNS TRIGGER AS
$$
BEGIN
 IF (NEW.level != OLD.level) THEN
     DELETE FROM part_tags where pk = OLD.PK;
     INSERT INTO part_tags values (NEW.*);
 END IF;
 RETURN NULL;
END;
$$
LANGUAGE 'plpgsql';

CREATE TRIGGER update_part_tags_trigger BEFORE UPDATE ON part_tags_level_0
FOR EACH ROW EXECUTE PROCEDURE update_part_tags();
CREATE TRIGGER update_part_tags_trigger BEFORE UPDATE ON part_tags_level_1
FOR EACH ROW EXECUTE PROCEDURE update_part_tags();
CREATE TRIGGER update_part_tags_trigger BEFORE UPDATE ON part_tags_level_2
FOR EACH ROW EXECUTE PROCEDURE update_part_tags();
CREATE TRIGGER update_part_tags_trigger BEFORE UPDATE ON part_tags_level_3
FOR EACH ROW EXECUTE PROCEDURE update_part_tags();



Partitioning Chapter 9

[ 261 ]

The trigger works in the same way as we saw in the previous chapter. Now let's try again
with this update:

forumdb=# update part_tags set level=1,tag='apple' where pk=5;
UPDATE 0
forumdb=# select * from part_tags;
 pk | tag        | level
----+------------+-------
6   | vegetables | 0
7   | fruits     | 0
8   | apple      | 1
10  | apple      | 1
(4 rows)

As we can see, it works! In this section, we've talked about how to partition a table using
the inheritance method. Starting from PostgreSQL 10.x, it is possible to reach the goal in a
much easier way, therefore in the next section, we will talk about declarative partitioning.

Exploring declarative partitioning
In this section, we will talk about declarative partitioning. It is available in PostgreSQL
starting from version 10, but it is best in version 12 in terms of features and performance.
We will now look at an example of partitioning by range and an example of partitioning by
list.

List partitioning
In the first example of declarative partitioning, we will use the same example as we looked
at when we introduced partitioning using inheritance. We will see that things become
much simpler using the declarative partitioning method:

First of all, let's drop the parent table and its child tables that we made1.
previously:

DROP TABLE IF EXISTS part_tags cascade;

Now let's recreate the same tables using the declarative method. First, we must2.
define our parent table:

CREATE TABLE part_tags (
 pk INTEGER NOT NULL DEFAULT nextval('part_tags_pk_seq') ,
 level INTEGER NOT NULL DEFAULT 0,
 tag VARCHAR (255) NOT NULL,



Partitioning Chapter 9

[ 262 ]

 primary key (pk,level)
)
PARTITION BY LIST (level);

As we can see from the preceding example, we have to define what kind of
partitioning we want to apply. In this case, it is LIST PARTITIONING. Another
important thing to note is that the field used to partition the data must be part of
the primary key.

Next, let's define the child tables:3.

CREATE TABLE part_tags_level_0 PARTITION OF part_tags FOR VALUES IN
(0);
CREATE TABLE part_tags_level_1 PARTITION OF part_tags FOR VALUES IN
(1);
CREATE TABLE part_tags_level_2 PARTITION OF part_tags FOR VALUES IN
(2);
CREATE TABLE part_tags_level_3 PARTITION OF part_tags FOR VALUES IN
(3);

With these SQL statements, we are defining the fact that all records with a level
value equal to 0 will be stored in the part_tags_level_0 table, all the records
with a level value equal to 1 will be stored in the part_tags_level_1 table, and
so on. 

Now, as we did in the previous section, let's define the indexes for the parent4.
table and for all child tables. We can do this using this simple statement:

CREATE INDEX part_tags_tag on part_tags using GIN (tag
gin_trgm_ops);

As shown here, our partition procedure is finished.5.



Partitioning Chapter 9

[ 263 ]

For the parent tables, we have the following: 

forumdb=# \d part_tags;
 Column | Type                   | Collation | Nullable | Default
--------+------------------------+-----------+----------+----------
--------
 pk     | integer                |           | not null |
nextval('part_tags_pk_seq'::regclass)
 level  | integer                |           | not null | 0
 tag    | character varying(255) |           | not null |
Partition key: LIST (level)
Indexes:
    "part_tags_pkey" PRIMARY KEY, btree (pk, level)
    "part_tags_tag" gin (tag gin_trgm_ops)
Number of partitions: 4 (Use \d+ to list them.)

For the child tables, we have the following:

forumdb=# \d part_tags_level_0;
 Table "public.part_tags_level_0"
 Column | Type                   | Collation | Nullable | Default
--------+------------------------+-----------+----------+----------
--------
 pk     | integer                |           | not null |
nextval('part_tags_pk_seq'::regclass)
 level  | integer                |           | not null | 0
 tag    | character varying(255) |           | not null |
Partition of: part_tags FOR VALUES IN (0)
Indexes:
 "part_tags_level_0_pkey" PRIMARY KEY, btree (pk, level)
 "part_tags_level_0_tag_idx" gin (tag gin_trgm_ops

Let's now perform some INSERT operations:6.

insert into part_tags (tag,level) values ('vegetables',0);
insert into part_tags (tag,level) values ('fruits',0);
insert into part_tags (tag,level) values ('orange',1);
insert into part_tags (tag,level) values ('apple',1);
insert into part_tags (tag,level) values ('red apple',2);

Finally, let's check whether everything is okay:7.

forumdb=# select * from part_tags;
 pk | level | tag
----+-------+------------
 6  | 0     | vegetables
 7  | 0     | fruits
 8  | 1     | orange



Partitioning Chapter 9

[ 264 ]

 9  | 1     | apple
 10 | 2     | red apple

forumdb=# select * from part_tags_level_0;
 pk | level | tag
----+-------+------------
 6  | 0     | vegetables
 7  | 0     | fruits
(2 rows)

forumdb=# select * from part_tags_level_1;
 pk | level | tag
----+-------+--------
 8  | 1     | orange
 9  | 1     | apple
(2 rows)

Thus, we have successfully created partitions using lists.

Range partitioning
After having seen how it is possible to partition by list in a very simple way, let's look at
how to partition by range:

As before, let's DROP the existing part_tags table and its child table:1.

DROP TABLE IF EXISTS part_tags cascade;

Suppose that we want to have a table exactly the same as the previous one, but2.
now we want the part_tags table to have an ins_date field where we will
store the day on which the tag was added. What we want to do is partition by
range on the ins_date field in order to put all the records entered in January
2020, February 2020, March 2020, and April 2020 into different tables. Here, we
have all the statements that make this possible; they are very similar to the
statements that we saw in the previous section:

CREATE TABLE part_tags (
     pk INTEGER NOT NULL DEFAULT nextval('part_tags_pk_seq'),
     ins_date date not null default now()::date,
     tag VARCHAR (255) NOT NULL,
     level INTEGER NOT NULL DEFAULT 0,
     primary key (pk,ins_date)
)
PARTITION BY RANGE (ins_date);



Partitioning Chapter 9

[ 265 ]

CREATE TABLE part_tags_date_01_2020 PARTITION OF part_tags FOR
VALUES FROM ('2020-01-01') TO ('2020-01-31');
CREATE TABLE part_tags_date_02_2020 PARTITION OF part_tags FOR
VALUES FROM ('2020-02-01') TO ('2020-02-28');
CREATE TABLE part_tags_date_03_2020 PARTITION OF part_tags FOR
VALUES FROM ('2020-03-01') TO ('2020-03-31');
CREATE TABLE part_tags_date_04_2020 PARTITION OF part_tags FOR
VALUES FROM ('2020-04-01') TO ('2020-04-30')

CREATE INDEX part_tags_tag on part_tags using GIN (tag
gin_trgm_ops);

As we can see, the only two differences are PARTITION BY RANGE and FOR
VALUES FROM .. TO ...

In this example, as in the previous example about list partitioning, we have3.
obtained the parent table and all the child tables in a simple way:

forumdb=# \d part_tags;
 Partitioned table "public.part_tags"
 Column   | Type                   | Collation | Nullable | Default
----------+------------------------+-----------+----------+--------
-----------
 pk       | integer                |           | not null |
nextval('part_tags_pk_seq'::regclass)
 ins_date | date                   |           | not null |
now()::date
 tag      | character varying(255) |           | not null |
 level    | integer                |           | not null | 0
Partition key: RANGE (ins_date)
Indexes:
 "part_tags_pkey" PRIMARY KEY, btree (pk, ins_date)
 "part_tags_tag" gin (tag gin_trgm_ops)
Number of partitions: 4 (Use \d+ to list them.)

forumdb=# \d part_tags_date_01_2020;
                              Table "public.part_tags_date_01_2020"
  Column  | Type                   | Collation | Nullable | Default
----------+------------------------+-----------+----------+--------
---------
 pk       | integer                |           | not null |
nextval('part_tags_pk_seq'::regclass)
 ins_date | date                   |           | not null |
now()::date
 tag      | character varying(255) |           | not null |
 level    | integer                |           | not null | 0
Partition of: part_tags FOR VALUES FROM ('2020-01-01') TO
('2020-01-31')



Partitioning Chapter 9

[ 266 ]

Indexes:
    "part_tags_date_01_2020_pkey" PRIMARY KEY, btree (pk, ins_date)
    "part_tags_date_01_2020_tag_idx" gin (tag gin_trgm_ops)

As we did earlier, let's do some INSERT operations:4.

insert into part_tags (tag,ins_date,level) values
('vegetables','2020-01-01',0);
insert into part_tags (tag,ins_date,level) values
('fruits','2020-01-01',0);
insert into part_tags (tag,ins_date,level) values
('orange','2020-02-01',1);
insert into part_tags (tag,ins_date,level) values
('apple','2020-03-01',1);
insert into part_tags (tag,ins_date,level) values ('red
apple','2020-04-01',2);

And let's check now whether everything is okay:5.

forumdb=# select * from part_tags;
 pk | ins_date   | tag        | level
----+------------+------------+-------
 11 | 2020-01-01 | vegetables | 0
 12 | 2020-01-01 | fruits     | 0
 13 | 2020-02-01 | orange     | 1
 14 | 2020-03-01 | apple      | 1
 15 | 2020-04-01 | red apple  | 2
(5 rows)

forumdb=# select * from part_tags_date_01_2020;
 pk | ins_date   | tag        | level
----+------------+------------+-------
 11 | 2020-01-01 | vegetables | 0
 12 | 2020-01-01 | fruits     | 0
(2 rows)

forumdb=# select * from part_tags_date_02_2020;
 pk | ins_date   | tag    | level
----+------------+--------+-------
 13 | 2020-02-01 | orange | 1
(1 row)

forumdb=# select * from part_tags_date_03_2020;
 pk | ins_date   | tag   | level
----+------------+-------+-------
 14 | 2020-03-01 | apple | 1
(1 row)



Partitioning Chapter 9

[ 267 ]

forumdb=# select * from part_tags_date_04_2020;
 pk | ins_date   | tag       | level
----+------------+-----------+-------
 15 | 2020-04-01 | red apple | 2
(1 row)

As we can see, all the data has been partitioned correctly.

Partition maintenance
In this section, we will look at how to do the following:

Attach a new partition: If we want to attach a new partition to the parent table,
we have to execute the following:

CREATE TABLE part_tags_date_05_2020 PARTITION OF part_tags FOR
VALUES FROM ('2020-05-01') TO ('2020-05-30');

As we can see here, a new partition called part_tags_date_05_2020 has been
added to the parent table part_tags:

forumdb=# \d part_tags;
 Partitioned table "public.part_tags"
 Column   | Type                   | Collation | Nullable | Default
----------+------------------------+-----------+----------+--------
-----------
 pk       | integer                |           | not null |
nextval('part_tags_pk_seq'::regclass)
 ins_date | date                   |           | not null |
now()::date
 tag      | character varying(255) |           | not null |
 level    | integer                |           | not null | 0
Partition key: RANGE (ins_date)
Indexes:
 "part_tags_pkey" PRIMARY KEY, btree (pk, ins_date)
 "part_tags_tag" gin (tag gin_trgm_ops)
Number of partitions: 5 (Use \d+ to list them.)

forumdb=# \d part_tags_date_05_2020
 Table "public.part_tags_date_05_2020"
 Column   | Type                   | Collation | Nullable | Default
----------+------------------------+-----------+----------+--------
----------
 pk       | integer                |           | not null |
nextval('part_tags_pk_seq'::regclass)
 ins_date | date                   |           | not null |



Partitioning Chapter 9

[ 268 ]

now()::date
 tag      | character varying(255) |           | not null |
 level    | integer                |           | not null | 0
Partition of: part_tags FOR VALUES FROM ('2020-05-01') TO
('2020-05-30')
Indexes:
 "part_tags_date_05_2020_pkey" PRIMARY KEY, btree (pk, ins_date)
 "part_tags_date_05_2020_tag_idx" gin (tag gin_trgm_ops

Detach an existing partition: If we want to detach an existing partition from the
parent table, we have to execute the following:

ALTER TABLE part_tags DETACH PARTITION part_tags_date_05_2020 ;

As we can see here, the partition called part_tags_date_05_2020 has been
detached from the parent table part_tags: 

forumdb=# \d part_tags;
 Partitioned table "public.part_tags"
 Column   | Type                   | Collation | Nullable | Default
----------+------------------------+-----------+----------+--------
-----------
 pk       | integer                |           | not null |
nextval('part_tags_pk_seq'::regclass)
 ins_date | date                   |           | not null |
now()::date
 tag      | character varying(255) |           | not null |
 level    | integer                |           | not null | 0
Partition key: RANGE (ins_date)
Indexes:
 "part_tags_pkey" PRIMARY KEY, btree (pk, ins_date)
 "part_tags_tag" gin (tag gin_trgm_ops)
Number of partitions: 4 (Use \d+ to list them.)

forumdb=# \d+ part_tags;
[.. some informtions about fields....]
Partition key: RANGE (ins_date)
Indexes:
    "part_tags_pkey" PRIMARY KEY, btree (pk, ins_date)
    "part_tags_tag" gin (tag gin_trgm_ops)
Partitions: part_tags_date_01_2020 FOR VALUES FROM ('2020-01-01')
TO ('2020-01-31'),
            part_tags_date_02_2020 FOR VALUES FROM ('2020-02-01')
TO ('2020-02-28'),
            part_tags_date_03_2020 FOR VALUES FROM ('2020-03-01')
TO ('2020-03-31'),
            part_tags_date_04_2020 FOR VALUES FROM ('2020-04-01')
TO ('2020-04-30')



Partitioning Chapter 9

[ 269 ]

Attach an already existing table to the parent table: Suppose we have a table
called part_tags_already_exists already present in our database containing
all the tags with a date entered prior to 2019-12-31. This table has the following
structure:

forumdb=# \d part_tags_already_exists;
 Table "public.part_tags_already_exists"
 Column   | Type                   | Collation | Nullable | Default
----------+------------------------+-----------+----------+--------
------------------
 pk       | integer                |           | not null |
nextval('part_tags_pk_seq'::regclass)
 ins_date | date                   |           | not null |
now()::date
 tag      | character varying(255) |           | not null |
 level    | integer                |           | not null | 0
Indexes:
 "part_tags_already_exists_pkey" PRIMARY KEY, btree (pk, ins_date)
 "part_tags_already_exists_tag_idx" gin (tag gin_trgm_ops)

If we want to attach this table containing all the tags with a date entered prior to
2019-12-31 to the parent table, we have to run this statement:

ALTER TABLE part_tags ATTACH PARTITION part_tags_already_exists FOR
VALUES FROM ('1970-01-01') TO ('2019-12-31');

In this way, the  part_tags_already_exists table becomes a child table for the parent
table, part_tags.

Summary
In this chapter, we introduced the topic of table partitioning in PostgreSQL. Partitioning
tables is useful when we have tables that become bigger and bigger, making queries slower
and slower. We started by introducing the basic concepts of partitioning. We talked about
range partitioning, list partitioning, and hash partitioning. We went through some
examples of list partitioning and range partitioning. We also saw the two ways in which
PostgreSQL solves the problem of partitioning tables: partitioning using inheritance and
declarative partitioning.

In the following part of this book, we will return to talking about partitioning in Chapter
13, Indexes and Performance Optimization. In the next chapter, we will talk about how
PostgreSQL manages users, roles, and in general, the security of our database.



Partitioning Chapter 9

[ 270 ]

References
PostgreSQL official documentation about table partitioning: https:/ ​/ ​www.
postgresql. ​org/ ​docs/ ​12/ ​ddl- ​partitioning. ​html

PostgreSQL official documentation about inherintance: https:/ ​/​www.
postgresql. ​org/ ​docs/ ​12/ ​tutorial- ​inheritance. ​html

PostgreSQL official documentation about rules: https:/ ​/​www. ​postgresql. ​org/
docs/​12/ ​rules- ​update. ​html

PostgreSQL official documentation about triggers: https:/ ​/ ​www.​postgresql.
org/​docs/ ​12/ ​sql- ​createtrigger. ​html

PostgreSQL official documentation about CREATE TABLE: https:/ ​/ ​www.
postgresql. ​org/ ​docs/ ​12/ ​sql- ​createtable. ​html

PostgreSQL tuning: https:/ ​/​pgtune. ​leopard. ​in. ​ua

PostgreSQL official documentation about CONSTRAINT EXCLUSION: https:/ ​/
www.​postgresql. ​org/ ​docs/ ​12/ ​runtime- ​config- ​query. ​html#GUC- ​CONSTRAINT-
EXCLUSION

PostgreSQL official documentation about trigrams: https:/ ​/​www. ​postgresql.
org/​docs/ ​12/ ​pgtrgm. ​html

https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/ddl-partitioning.html
https://www.postgresql.org/docs/12/tutorial-inheritance.html
https://www.postgresql.org/docs/12/tutorial-inheritance.html
https://www.postgresql.org/docs/12/tutorial-inheritance.html
https://www.postgresql.org/docs/12/tutorial-inheritance.html
https://www.postgresql.org/docs/12/tutorial-inheritance.html
https://www.postgresql.org/docs/12/tutorial-inheritance.html
https://www.postgresql.org/docs/12/tutorial-inheritance.html
https://www.postgresql.org/docs/12/tutorial-inheritance.html
https://www.postgresql.org/docs/12/tutorial-inheritance.html
https://www.postgresql.org/docs/12/tutorial-inheritance.html
https://www.postgresql.org/docs/12/tutorial-inheritance.html
https://www.postgresql.org/docs/12/tutorial-inheritance.html
https://www.postgresql.org/docs/12/tutorial-inheritance.html
https://www.postgresql.org/docs/12/tutorial-inheritance.html
https://www.postgresql.org/docs/12/tutorial-inheritance.html
https://www.postgresql.org/docs/12/tutorial-inheritance.html
https://www.postgresql.org/docs/12/tutorial-inheritance.html
https://www.postgresql.org/docs/12/tutorial-inheritance.html
https://www.postgresql.org/docs/12/rules-update.html
https://www.postgresql.org/docs/12/rules-update.html
https://www.postgresql.org/docs/12/rules-update.html
https://www.postgresql.org/docs/12/rules-update.html
https://www.postgresql.org/docs/12/rules-update.html
https://www.postgresql.org/docs/12/rules-update.html
https://www.postgresql.org/docs/12/rules-update.html
https://www.postgresql.org/docs/12/rules-update.html
https://www.postgresql.org/docs/12/rules-update.html
https://www.postgresql.org/docs/12/rules-update.html
https://www.postgresql.org/docs/12/rules-update.html
https://www.postgresql.org/docs/12/rules-update.html
https://www.postgresql.org/docs/12/rules-update.html
https://www.postgresql.org/docs/12/rules-update.html
https://www.postgresql.org/docs/12/rules-update.html
https://www.postgresql.org/docs/12/rules-update.html
https://www.postgresql.org/docs/12/rules-update.html
https://www.postgresql.org/docs/12/rules-update.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtrigger.html
https://www.postgresql.org/docs/12/sql-createtable.html
https://www.postgresql.org/docs/12/sql-createtable.html
https://www.postgresql.org/docs/12/sql-createtable.html
https://www.postgresql.org/docs/12/sql-createtable.html
https://www.postgresql.org/docs/12/sql-createtable.html
https://www.postgresql.org/docs/12/sql-createtable.html
https://www.postgresql.org/docs/12/sql-createtable.html
https://www.postgresql.org/docs/12/sql-createtable.html
https://www.postgresql.org/docs/12/sql-createtable.html
https://www.postgresql.org/docs/12/sql-createtable.html
https://www.postgresql.org/docs/12/sql-createtable.html
https://www.postgresql.org/docs/12/sql-createtable.html
https://www.postgresql.org/docs/12/sql-createtable.html
https://www.postgresql.org/docs/12/sql-createtable.html
https://www.postgresql.org/docs/12/sql-createtable.html
https://www.postgresql.org/docs/12/sql-createtable.html
https://www.postgresql.org/docs/12/sql-createtable.html
https://www.postgresql.org/docs/12/sql-createtable.html
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://pgtune.leopard.in.ua
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/runtime-config-query.html#GUC-CONSTRAINT-EXCLUSION
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html


3
Section 3: Administering the

Cluster
In this section, you will learn how to interact with the cluster in order to keep it under
control, to tune it, and search for problems or bottlenecks. You will learn about various
aspects such as user management, access control, transaction control, and various
extensions that can be used with clusters.

This section contains the following chapters:

Chapter 10, Users, Roles, and Database Security
Chapter 11, Transactions, MVCC, WALs, and Checkpoints
Chapter 12, Extending the database: the extension ecosystem
Chapter 13, Indexes and Performance Optimization
Chapter 14, Logging and Auditing
Chapter 15, Backup and Restore
Chapter 16, Configuration and Monitoring



10
Users, Roles, and Database

Security
PostgreSQL is a rock solid database, and it pays great attention to security, providing a
very rich infrastructure to handle permissions, privileges, and security policies. This
chapter builds on the basic concepts introduced in Chapter 3, Managing Users and
Connections, revisiting the role concept and extending knowledge with a particular focus on
security and privileges attached to roles (both users and groups). You will learn how to
configure every aspect of a role to carefully manage security, from connection to accessing
the data within a database.

However, PostgreSQL goes far beyond this and provides a strong mechanism known as
Role Level Security, which allows a fine-grain definition of policies to mask out part of the
data to certain users.

In this chapter, you will also learn about the Access Control List (ACL) and the way
PostgreSQL handles permissions internally, which is the result of granting or revoking
privileges. Finally, you will look briefly at the password encryption algorithms that
PostgreSQL provides to store role passwords safely.

This chapter covers the following topics:

Understanding roles
Access control lists
Granting and revoking permissions
Row-level security
Role password encryption
SSL connections



Users, Roles, and Database Security Chapter 10

[ 273 ]

Understanding roles
In Chapter 3, Managing Users and Connections, you have seen how to create new roles, a
stereotype that can act both as a single user or a group of users. The CREATE ROLE
statement was used to create the role, and you learned about the main properties a role can
be associated with.

This section extends the concepts you have read about in Chapter 3, Managing Users and
Connections, introducing more interesting and security-related properties of a role.

Just as a quick reminder, the synopsis for creating a new role is the following:

CREATE ROLE name [ [ WITH ] option [ ... ] ]

Here, an option can be indicated in a positive form, that is, associating the property with
the role, or in a negative form with the NO prefix, which removes the property from the role.
Some properties are not assigned to new roles by default, so you should take your time and
consult the documentation of the CREATE ROLE statement in order to see what the default
value is for every property. If you are in doubt, associate explicitly the properties you need
and negate those you absolutely don't want your roles to have.

Properties related to new objects
There are two main capabilities that a role can acquire in order to create new objects, and
both should be given to trusted parties:

CREATEROLE allows a role to create other roles (and therefore database accounts
and groups).
CREATEDB allows a role to create other databases within the cluster.

By default, if not specified explicitly, a new role is created without such capabilities, hence:

template1=# CREATE ROLE luca;

Is wholly equivalent to the following command:

template1=# CREATE ROLE luca
            WITH NOCREATEROLE
                 NOCREATEDB;



Users, Roles, and Database Security Chapter 10

[ 274 ]

Properties related to superusers
With the SUPERUSER property, the role is created as a cluster administrator, that is, a role
that has every right on every object within the cluster, including the capability to change
the PostgreSQL configuration, terminate user connections, and halt the cluster.

It is possible to have as many superusers as you need in a cluster. However, being a class of
users without any particular restriction, it is a good habit to avoid giving all the
permissions to untrusted users and void giving all the permissions to untrusted users
unless it is not strictly necessary.

Properties related to replication
The REPLICATION property is used to specify that the new role will be able to use the
replication protocol, a particular message-based protocol that PostgreSQL uses to replicate
data from one cluster to another.

REPLICATION is an option that allows a role to access all the data within the cluster without
any particular restriction. Therefore, it is usually granted to just those roles used for
replication. You may think of granting the REPLICATION option like granting the
SUPERUSER, and therefore you have to grant it carefully.

Due to its security implications, if not specified otherwise, the NOREPLICATION option is
set.

Properties related to row-level security
Role Level Security (RLS) is a policy enforcement mechanism that prevents certain roles
from gaining access to specific tuples within specific tables. In other words, it applies
security constraints at the level of table rows, hence we can also use the name row-level
security.

There is a single option that drives RLS: BYPASSRLS. If the role has such an option, the role
bypasses (that is, is not subjected to) all security constraints on every row within the
cluster. The default for this option, as you can imagine, is to negate it (that is,
NOBYPASSRLS), so that roles are subjected to security enforcement whenever possible.

It is important to note that cluster superusers are always able to bypass row-level security
policies.

You will learn more about RLS in the Row-level security section of this chapter.



Users, Roles, and Database Security Chapter 10

[ 275 ]

Changing properties of existing roles: the ALTER
ROLE statement
As you can imagine, once they have been created, roles are not immutable: you can add or
remove properties to a role by means of the ALTER ROLE statement. The synopsis for the
statement is very similar to the one used to create a role, and is as follows:

ALTER ROLE name [ [ WITH ] option [ ... ] ]

Here, name is the unique role name and the options are specified in the exact same manner
as in the CREATE ROLE statement.

As an example, imagine you want to provide the luca  role with the capabilities to create
databases and new roles. You can issue two ALTER ROLE statements or combine the
options as follows:

forumdb=# ALTER ROLE luca WITH CREATEDB;
ALTER ROLE

forumdb=# ALTER ROLE luca WITH CREATEROLE;
ALTER ROLE

-- equivalent to the above two statements
forumdb=# ALTER ROLE luca CREATEROLE CREATEDB;
ALTER ROLE

And if you, later on, change your mind, you can remove one or both options by assigning
the negated form:

forumdb=# ALTER ROLE luca NOCREATEROLE, NOCREATEDB;
ALTER ROLE

The ALTER ROLE statement is always executable by a cluster superuser, but can also be
executed by a non-superuser role that has the CREATEROLE option (that is, can create, and
therefore manipulate, other roles), but only if the statement is applied to a non-superuser
role.



Users, Roles, and Database Security Chapter 10

[ 276 ]

Renaming an existing role
The ALTER ROLE statement also allows for a change in the name of the role: the RENAME
clause allows for a role to be substituted by another unique role name. As an example, let's
rename a role's short username to a longer one:

forumdb=# ALTER ROLE enrico RENAME TO enrico_pirozzi;
ALTER ROLE

In case the system is using MD5 passwords, ALTER ROLE will issue a warning. Since MD5
passwords are computed using the role name as a "salt", changing the role name means the
salt is no longer valid and therefore the password is reset. In other words, if the system is
using MD5 passwords, the command will have produced the following warning:

forumdb=# ALTER ROLE enrico RENAME TO enrico_pirozzi;
NOTICE:  MD5 password cleared because of role rename
ALTER ROLE

This simply reminds you to change the password for the renamed role. This is not a
problem for SCRAM-SHA-256 passwords since they don't use the role name as a salt
(further details can be found in the Role Password Encryption section later in this chapter).

SESSION_USER versus CURRENT_USER
The ALTER ROLE statement operates on an existing role, specified by its role name. It is,
however, possible to refer to the current role with two particular keywords: SESSION_USER
and CURRENT_USER.

Mind the usage of user in the SESSION_USER and CURRENT_USER special
keywords. They still refer to the concept of role, but for backward
compatibility, they use the user nomenclature. While there is a
CURRENT_ROLE keyword, there is not the equivalent SESSION_ROLE one.

SESSION_USER is the role name of the role that is connected to the database.

CURRENT_USER is the role name of the role that has been explicitly set by a SET
ROLE statement.

Once a connection is established, the two keywords refer to the very same role that is the
one that opened the connection (that is, the one specified in the connection parameters or in
the connection string). If the role performs an explicit SET ROLE operation, SESSION_USER
remains unchanged, while CURRENT_USER reflects the last specified role.



Users, Roles, and Database Security Chapter 10

[ 277 ]

Let's see this in action. Suppose the user luca opens a connection to the database. In the
beginning, both SESSION_USER and CURRENT_USER hold the same value:

$ psql  -U luca forumdb

forumdb=> SELECT current_user, session_user;
 current_user | session_user
--------------+--------------
 luca         | luca
(1 row)

Assume the luca  role is a member of the forum_stats group, so that it is possible to
perform an explicit transformation to such role:

forumdb=> SET ROLE forum_stats;
SET
forumdb=> SELECT current_user, session_user;
 current_user | session_user
--------------+--------------
 forum_stats  | luca
(1 row)

As you can see, after the SET ROLE statement, CURRENT_USER changed its value to reflect
the role the user is actually playing, while SESSION_USER holds the original value by which
the user connected to the database.

Per-role configuration parameters
Along with role properties and granted permissions, roles can also be attached with some
configuration parameters that can document the usage. Essentially, it is possible to attach a
list of SET commands to a role so that, every time the role connects to a database, such
commands are implicitly executed.

Let's say the user luca executes a SET command for the client_min_messages value
every time they connect to the database:

$ psql  -U luca forumdb

forumdb=> SET client_min_messages TO 'DEBUG';
SET



Users, Roles, and Database Security Chapter 10

[ 278 ]

This can be annoying and, most notably, risky. The user could forget to execute the
SET command that they require for proper functioning of the connection. It is possible to
change the role so that they will be executing the SET command automatically as soon as a
connection is established:

forumdb=# ALTER ROLE luca
           IN DATABASE forumdb
           SET client_min_messages TO 'DEBUG';
 ALTER ROLE

And now, every time the luca  role connects to the forumdb database, the SET command is
automatically executed:

$ psql -U luca forumdb

forumdb=> SHOW client_min_messages;

 client_min_messages
---------------------
 debug
(1 row)

The general syntax for changing runtime parameters for a role is as follows:

ALTER ROLE name IN DATABASE dbname SET parameter_name TO parameter_value

Here, you have to specify the role name or the special keyword ALL for every existing role,
the database name, and the name and value of the parameter you want to change.

It is also possible to discard any per-role configuration with the RESET ALL clause, as in the
following example:

forumdb=# ALTER ROLE luca
          IN DATABASE forumdb
          RESET ALL;
ALTER ROLE



Users, Roles, and Database Security Chapter 10

[ 279 ]

Inspecting roles
There are different ways to inspect existing roles and get information about their
properties. One quick approach, as already seen in Chapter 3, Managing Users and
Connections, is to use the \du command in psql:

forumdb=> \du
                             List of roles
  Role name   |               Attributes           |    Member of
--------------+------------------------------------+--------------------
 book_authors | Cannot login                       | {}
 enrico       |                                    | {book_authors,
              |                                    |   forum_admins}
 forum_admins | Cannot login                       | {}
 forum_stats  | Cannot login                       | {}
 luca         | 1 connection                       | {book_authors,
              |                                    |   forum_stats}
 postgres     | Superuser, Create role,            |
              | Create DB, Replication, Bypass RLS | {}
 test         |                                    | {forum_stats}

The Attributes column provides a mnemonic description of the role properties, while the
Member of column states all the groups a role is within. As an example, the luca  role is
limited to a single connection and belongs to the book_authors and forum_stats groups.

Besides the special commands of psql, you can always query the system catalog to get
information about the existing roles. The main entry point is the table pg_authid, which
contains one row per existing role with a column that reflects every property of the role
(that is, what you defined via the CREATE ROLE or ALTER ROLE statements), for example:

forumdb=# \x
Expanded display is on.
forumdb=# SELECT * FROM pg_authid WHERE rolname = 'luca';
-[ RECORD 1 ]--+------------------------------------
oid            | 16390
rolname        | luca
rolsuper       | f
rolinherit     | t
rolcreaterole  | f
rolcreatedb    | f
rolcanlogin    | t
rolreplication | f
rolbypassrls   | f
rolconnlimit   | 1
rolpassword    | md5bd18b4163ec8a3ad833d867a5933c8ec
rolvaliduntil  |



Users, Roles, and Database Security Chapter 10

[ 280 ]

Every role has a unique name and also an OID value, which represents the role as a
numerical value. This is similar to how users are represented in the Unix system (and many
others) where the numerical value of a role is used only internally.

Many of the role properties have a Boolean value, where 'f' means false (that is, NO-option)
and 't' means true (that is, with-option). For instance, in the preceding example, you can see
that rolcreatedb is false, which means that the role has been created (or altered) with
the NOCREATEDB option.

The role password (rolpassword field) is expressed as a hash. In this case, this tells us that
the password has been encrypted with MD5 since the hash starts with the string 'md5'. On
the other hand, if the password has been encrypted with SCRAM-SHA-256, the hash starts
with 'SCRAM-SHA-256'.

There is another possible catalog, named pg_roles, which displays the very same
information about pg_authid with the exception of the rolpassword field, which is
always masked out:

forumdb=> SELECT * FROM pg_roles WHERE rolname = 'luca';
-[ RECORD 1 ]--+---------
rolname        | luca
rolsuper       | f
rolinherit     | t
rolcreaterole  | f
rolcreatedb    | f
rolcanlogin    | t
rolreplication | f
rolconnlimit   | 1
rolpassword    | ********
rolvaliduntil  |
rolbypassrls   | f
rolconfig      |
oid            | 16390

Why two similar views of the same data? In order to query pg_authid, you must be a
cluster superuser, while every user can query pg_roles since there is no hint regarding the
role password.

What about group membership? You can query the special pg_auth_members catalog to
get information about what roles are members of what other roles. As an example, the
following query provides a list of groups:

forumdb=> SELECT r.rolname, g.rolname AS group,
                 m.admin_option AS is_admin
          FROM pg_auth_members m



Users, Roles, and Database Security Chapter 10

[ 281 ]

               JOIN pg_roles r ON r.oid = m.member
               JOIN pg_roles g ON g.oid = m.roleid
          ORDER BY r.rolname;
  rolname   |        group         | is_admin
------------+----------------------+----------
 enrico     | book_authors         | f
 enrico     | forum_admins         | f
 luca       | forum_stats          | f
 luca       | book_authors         | f
 pg_monitor | pg_read_all_settings | f
 pg_monitor | pg_read_all_stats    | f
 pg_monitor | pg_stat_scan_tables  | f
 test       | forum_stats          | f
(8 rows)

Roles that inherit from other roles
We have already seen in Chapter 3, Managing Users and Connections, that a role can contain
other roles, therefore behaving as a group.

When a role becomes a member of another role, it gets all the permissions of the group role.
However, there are cases where such privileges are dynamically granted, that is, the
member role will have the privileges transparently, and cases where the privileges will be
granted statically, that is, the member role needs to explicitly become the group role in
order to use its privileges. The INHERIT property of a role discriminates how roles can use
the group privileges. If a role has the INHERIT property, it will propagate its permissions to
its members, while if it has the NOINHERIT property, it will not propagate.

In order to understand the difference and the implication, let's build a couple of groups and
assign members to them:

forumdb=# CREATE ROLE forum_admins WITH NOLOGIN;
CREATE ROLE

forumdb=# CREATE ROLE forum_stats WITH NOLOGIN;
CREATE ROLE

forumdb=# REVOKE ALL ON users FROM forum_stats;
REVOKE

forumdb=# GRANT SELECT (username, gecos) ON users TO forum_stats;
GRANT

forumdb=# GRANT forum_admins TO enrico;
GRANT ROLE



Users, Roles, and Database Security Chapter 10

[ 282 ]

forumdb=# GRANT forum_stats  TO luca;
GRANT ROLE

It is quite simple to see how the enrico role can perform what the forum_admins
role allows him to do on the users table: being a member of the forum_admins group, the
enrico role can perform any action against the users table. This can be demonstrated by a
couple of simple instructions:

$ psql  -U enrico forumdb

forumdb=> SELECT * FROM users;
 pk | username  |     gecos      |        email
----+-----------+----------------+---------------------
  1 | fluca1978 | Luca Ferrari   | fluca1978@gmail.com
  2 | sscotty71 | Enrico Pirozzi | sscotty71@gmail.com
(2 rows)

forumdb=> UPDATE users SET gecos = upper( gecos );
UPDATE 2

forumdb=> SELECT * FROM users;
 pk | username  |     gecos      |        email
----+-----------+----------------+---------------------
  1 | fluca1978 | LUCA FERRARI   | fluca1978@gmail.com
  2 | sscotty71 | ENRICO PIROZZI | sscotty71@gmail.com
(2 rows)

As you can see, the user enrico has actually changed the name and surname of the
existing users to a full uppercase string. Let's now see what the other user can do:

$ psql  -U luca forumdb

 forumdb=> SELECT * FROM users;
 ERROR:  permission denied for table users
 forumdb=> SELECT username, gecos FROM users;
  username  |     gecos
 -----------+----------------
  fluca1978 | LUCA FERRARI
  sscotty71 | ENRICO PIROZZI
 (2 rows)

 forumdb=> UPDATE users SET gecos = lower( gecos );
 ERROR:  permission denied for table users

As you can see, the user luca cannot perform anything other than what has been granted
to the forum_stats role, that is, a group he belongs to.



Users, Roles, and Database Security Chapter 10

[ 283 ]

It is possible to change the privileges of the user luca by either assigning to the role the
new grants or by adding another group with more privileges. For instance, if we want all
users in the forum_stats group to not be able to read anything other than the columns
username and gecos, while providing luca a special grant even if he belongs to such
group, it is possible to explicitly set the permission to luca, and to him alone:

forumdb=# GRANT SELECT ON users TO luca;
GRANT

Once the permission has been granted (by a superuser), the luca role can use it:

% psql -h miguel -U luca forumdb

forumdb=> SELECT * FROM users;
 pk | username  |     gecos      |        email
----+-----------+----------------+---------------------
  1 | fluca1978 | LUCA FERRARI   | fluca1978@gmail.com
  2 | sscotty71 | ENRICO PIROZZI | sscotty71@gmail.com
(2 rows)

As you can see, the special permission granted to luca wins out against the more
restrictive one granted to the forum_stats group, of which luca is a member.

In order to be able to configure your users and groups, you need to understand the
privilege chain.

Understanding how privileges are resolved
When a role performs a SQL statement, PostgreSQL checks whether such a role is allowed
to perform the task against the object. For example, when the user luca performs SELECT
against the table users, PostgreSQL verifies whether the role has been granted to do so.

In case the role has not been granted explicitly, PostgreSQL searches for all the groups the
role belongs to. In the event that one of the group has the permission requested, the
operation is allowed. In the event that no group has the requested permission, and the
permission has not been set for the PUBLIC catch-all special role, the operation is rejected.



Users, Roles, and Database Security Chapter 10

[ 284 ]

However, this is only a part of the story: when the system checks the groups a role belongs
to, it does stop searching for a permission in case a group has the NOINHERIT property.
When you define a role, you can define the INHERIT (and its counterpart NOINHERIT)
property, which dictates how the permission resolution should happen. In the case of
INHERIT (the default), permissions are dynamically inherited, otherwise they are not.

In the previous section, you have seen the INHERITS default behavior in action. The luca
role did get the inherited permissions that allowed him to perform SELECT of only two
columns on the users table. Even if luca is not granted that permission, the system checks
all the groups he belongs to in order find one, and it finds it in the forums_stats group.
Since the permissions are dynamically inherited from a role to all its contained ones, that is,
from a group to its members, this is akin to luca having such permission set on his own
role, and so the operation is allowed.

In order to have a better understanding of this, let's introduce another group, named
forum_emails, that can read the emails on the users table, and assign such a group to
forum_stats. We would expect that forum_stats, being a member of forum_emails,
can read the email column, but since the forum_emails group has been created with the
NOINHERIT property, it cannot:

-- remove any explicit SELECT permission
-- so luca will have only those from its group
forumdb=# REVOKE SELECT ON users FROM luca;
REVOKE

-- create the new group
forumdb=# CREATE ROLE forum_emails WITH NOLOGIN NOINHERIT;
CREATE ROLE

-- assign permissions
forumdb=# GRANT SELECT (email) ON users TO forum_emails;
GRANT

-- assign the role to the group
forumdb=# GRANT forum_emails TO forum_stats;
GRANT ROLE

Now, luca is a member of forum_stats and forum_emails, but since the latter "does not
export" its permissions to its members, luca cannot get the permissions to read the email
column:

% psql  -U luca forumdb

forumdb=> SELECT username, gecos, email FROM users;
ERROR:  permission denied for table users



Users, Roles, and Database Security Chapter 10

[ 285 ]

Being a member of a role means the role can always explicitly become the group:

forumdb=> SELECT current_role;
 current_role
--------------
 luca
(1 row)

forumdb=> SET ROLE TO forum_emails;
SET
forumdb=> SELECT current_role;
 current_role
--------------
 forum_emails
(1 row)

forumdb=> SELECT email FROM users;
        email
---------------------
 fluca1978@gmail.com
 sscotty71@gmail.com
(2 rows)

forumdb=> SELECT gecos FROM users;
ERROR:  permission denied for table users

Let's now change the INHERIT property of the forum_emails role so that it does have such
a property and therefore propagates it to its members:

forumdb=# ALTER ROLE forum_emails WITH INHERIT;
ALTER ROLE

And now let's see whether the luca role can use both privileges of the forum_stats and
forum_emails groups simultaneously:

$ psql -U luca forumdb

forumdb=> SELECT gecos, username, email FROM users;
     gecos      | username  |        email
----------------+-----------+---------------------
 LUCA FERRARI   | fluca1978 | fluca1978@gmail.com
 ENRICO PIROZZI | sscotty71 | sscotty71@gmail.com
(2 rows)

Great! Now the role can use both group privileges at the very same time without having to
explicitly change its current role.



Users, Roles, and Database Security Chapter 10

[ 286 ]

Role inheritance overview
When a role is a member of one or more other roles, the privileges resolution goes like this:

If the role has the privilege requested, nothing more is checked and the operation
is allowed (for example, you granted permission to this role).
If the role does not have the privilege, the latter is searched for in all the parents,
that is, all the groups of which the role is a direct member. If the privilege is
found in one of the parent groups, the operation is allowed.
If neither the role nor parent groups have the requested privileged, the latter is
searched for in the grandparents of the role. If it is found in any of the
grandparents, and there is the INHERIT property set on such a grandparent, the
operation is allowed, otherwise it is rejected.
If the privilege has not been found, the search continues within the parent of the
grandparents that have the INHERIT property set.

In other words, a certain privilege is automatically inherited if a role is a direct member of a
group, or is dynamically inherited if the role is a member of a group that has the INHERIT
property set.

In any case, the role can always exploit the privilege via an explicit SET ROLE statement,
which means the INHERT property is used only to prevent the role from changing into the
group.

You can think of this as a way to force a role to explicitly declare it is going to perform
some important task, and so it must explicitly SET the role it is going to use for that task.

Access control lists
PostgreSQL stores permissions assigned to roles and objects as Access Control Lists
(ACLs), and, when needed, it examines the ACLs for a specific role and a database object in
order to understand whether the command or query can be performed. In this section, you
will learn what ACLs are, how they are stored, and how to interpret them to understand
what permissions an ACL provides.



Users, Roles, and Database Security Chapter 10

[ 287 ]

An ACL is a representation of a group of permissions with the following structure:

grantee=flags/grantor

Here, we see the following:

grantee is the role name of the role to which the permissions are applied.
flags is the string representing the permissions.
grantor is the user who granted the permissions.

Whenever the granted and grantee results in the same name, the role is the owner of the
database object.

The flags that can be used in an ACL are those reported in the following table. As you can
see, not all the flags apply to all the objects: for example it does not make sense to have a
"delete" permission on a function, and it does not make sense to have an "execute"
permission on a table:

Flag Description Statements Applies to

a append, insert new data INSERT tables, columns

r read, get data SELECT tables, columns, and sequences

w write, update data UPDATE tables

d delete data DELETE tables

D delete all data TRUNCATE tables



Users, Roles, and Database Security Chapter 10

[ 288 ]

C create a new object CREATE databases, schemas, and table
spaces

c connect to a database  database

t trigger, react to data changes CREATE TRIGGER tables

T crate temporary objects CREATE TEMP tables

x cross reference between data FOREIGN KEY tables

X execute runnable code CALL, SELECT functions, routines, and
procedures



Users, Roles, and Database Security Chapter 10

[ 289 ]

U use of various objects  sequences, schemas, foreign
objects, types, and languages

With the list of possible flags in mind, it now becomes easy to decode an ACL such as the
following, which is related to a table object:

luca=arw/enrico

First of all, identify the roles involed: luca and enrico. luca is the role before the equals
sign, hence it is the role the ACL refers to, which means this ACL describes what
permissions the luca  role has. The other role, enrico, is after the slash sign and therefore
is the role that granted luca permissions. Now, with respect to the flags, the ACL provides
an append (a), read (r), and write (w) permissions. The above reads as "enrico granted
luca to perform INSERT, UPDATE, and SELECT on the table."

Let's now see an example of ACLs from a table in the database: you can use the special \dp
psql command to get information about a table:

forumdb=> \dp categories
                                  Access privileges
 Schema |    Name    | Type  |   Access privileges   | Column privileges  |
Policies
--------+------------+-------+-----------------------+--------------------
+----------
 public | categories | table | enrico=arwdDxt/enrico+|                    |
        |            |       | luca=arw/enrico      +|                    |
        |            |       | =d/enrico             |                    |

The ACLs are clearly reported in the Access privileges column of the command
output. The first line of the ACLs makes a statement regarding the owner of the
categories table: since the grantee and the grantor are the same role (enrico), this is the
table owner. Moreover, enrico has the append (a), read (r), write (w), delete (d), truncate
(D), trigger (t), and cross reference (x) permissions. If you think carefully, this means that
the role can do everything possible in relation to a table object. Therefore, it is possible to
read this as "a table owner can do everything on that table."



Users, Roles, and Database Security Chapter 10

[ 290 ]

The second line of the ACL is the one decoded above, and reads as "luca can INSERT,
UPDATE, and SELECT data." The third line of the ACL is a little more obscure: the grantor is
still the enrico role, but there is no grantee before the equals sign. This means that ACL
refers to every role. Since the ACL includes only the delete (d) permission, this means that
every role in the database can delete rows from the table, as enrico desires.

ACLs are processed to find a match. Imagine that the luca role wants to delete a row from
the table, and therefore issues a DELETE statement. Is that statement allowed or rejected?
Reading the ACL related to the luca role (luca=arw/enrico), it is clear that the role
cannot delete anything from the table. However, there is a "catch-all" ACL that allows every
role to perform a DELETE operation (=d/enrico), hence even the luca role is allowed to
remove tuples.

On the other hand, a different role (for example, forum_stats) is not allowed to perform
any INSERT on the table because there is no specific permission either for that role or for
any other role.

But how are those ACLs being produced? First of all, they have all been created by the user
enrico, so assuming he is the one connected to the database, the sequence of GRANT
statements should have been as follows:

-- generates ACL: luca=arw/enrico
forumdb=> GRANT SELECT, UPDATE, INSERT
          ON categories
          TO luca;
GRANT

-- generates ACL: =d/enrico
forumdb=> GRANT DELETE ON categories
          TO PUBLIC;
GRANT

Now that you have seen how PostgreSQL manages ACLs and how it translates GRANT and
REVOKE commands into ACLs, it is time to see what the default permissions are that are
granted to a role.



Users, Roles, and Database Security Chapter 10

[ 291 ]

Default ACLs
What happens if an object is created and neither any GRANT or REVOKE is applied to it? The
system does not store any ACL for such an object, as you can see by creating a simple
empty table and inspecting privileges on it:

forumdb=> CREATE TABLE foo();
CREATE TABLE
forumdb=> \dp foo
                            Access privileges
 Schema | Name | Type  | Access privileges | Column privileges | Policies
--------+------+-------+-------------------+-------------------+----------
 public | foo  | table |                   |                   |
(1 row)

Since there is no ACL associated with the table, how can PostgreSQL know what roles are
permitted to do what on the object? The answer lies in the default privileges: PostgreSQL
applies a set of default privileges to the object and checks against its default list.

Most notably, if the role is the owner of the object, this has all the available privileges for
such an object. If the role is not the owner, the PUBLIC permissions are inspected, that is, all
permissions assigned to the special PUBLIC role for that kind of object are used.

The list of PUBLIC associated privileges is quite short, for security reasons, and can be
summarized as:

Execute permission (X) on routines
Connect and create temporary objects on databases (cT)
Use of languages, types, and domain (U)

As you can see, by default, the PUBLIC set of privileges does not allow a role to do anything
really dangerous, and therefore the only way to authorize a role to perform actions against
objects is to GRANT and REVOKE permissions carefully.

The first time GRANT is performed against an object, PostgreSQL also introduces the default
ACL for the owner of that object. In the case of the preceding table, foo, the owner will
have an ACL such as luca=arwdDxt/luca (assuming the luca role is the owner), so
suppose we give permissions to manipulate data to enrico:

forumdb=> \dp foo
                            Access privileges
 Schema | Name | Type  | Access privileges | Column privileges | Policies
--------+------+-------+-------------------+-------------------+----------
 public | foo  | table |                   |                   |
(1 row)



Users, Roles, and Database Security Chapter 10

[ 292 ]

forumdb=> GRANT SELECT, INSERT,
                UPDATE, DELETE
          ON foo TO enrico;
GRANT

forumdb=> \dp foo
                            Access privileges
 Schema | Name | Type  | Access privileges | Column privileges | Policies
--------+------+-------+-------------------+-------------------+----------
 public | foo  | table | luca=arwdDxt/luca+|                   |
        |      |       | enrico=arwd/luca  |                   |
(1 row)

As you can see, after GRANT, the ACL is made by two entries, the one we just granted, and
the one that was implicitly applied to the owner.

It is also important to note that ACLs store what a role can do, not what it cannot do.
Everything not listed in the ACLs is rejected. To better understand this, consider revoking a
permission to the enrico role:

forumdb=> REVOKE TRUNCATE ON foo FROM enrico;
REVOKE

forumdb=> \dp foo
                            Access privileges
 Schema | Name | Type  | Access privileges | Column privileges | Policies
--------+------+-------+-------------------+-------------------+----------
 public | foo  | table | luca=arwdDxt/luca+|                   |
        |      |       | enrico=arwd/luca  |                   |
(1 row)

As you can see, the revoke did not change the ACL line for the enrico role. The role did
not have the permission revoked; that is, it was already implicitly revoked, hence no
change at all is requested.

Similarly, revoking permissions from PUBLIC does not affect already existing ACLs. If we
remove the insert permission from every user, enrico will still retain his own permission
because ACLs are stored in additively:

forumdb=> REVOKE INSERT ON foo FROM PUBLIC;
REVOKE

forumdb=> \dp foo
                            Access privileges
 Schema | Name | Type  | Access privileges | Column privileges | Policies
--------+------+-------+-------------------+-------------------+----------
 public | foo  | table | luca=arwdDxt/luca+|                   |



Users, Roles, and Database Security Chapter 10

[ 293 ]

        |      |       | enrico=arwd/luca  |                   |
(1 row)

To summarize, ACLs are always empty for a freshly created object. In this situation, the
object owner has all available permissions and other roles have default permissions
associated with PUBLIC. The first GRANT or REVOKE statement executed against that object
will create the explicit owner ACL and, in the case of GRANT, will add another one
accordingly.

ACLs are stored as granted privileges. What is not explicitly set in an ACL is implicitly
rejected as it has been revoked.

Knowing default ACLs
It is now clear that the owner of an object has all the possible permissions related to such an
object. But what about other roles? It is possible to inspect the default ACL provided once
an object is instantiated via the special function acldefault.
The function accepts two arguments – a type of object (for example, a relation/table, a
function) and the OID value of the role that is supposed to create the object. The function
will return the ACLs that will be in place since the creation of the object.

For example, in order to see the permissions provided when your role creates a new table
(type 'r'), you can perform the following query:

forumdb=> SELECT acldefault( 'r', r.oid )
          FROM pg_roles r
          WHERE r.rolname = CURRENT_ROLE;
     acldefault
---------------------
 {luca=arwdDxt/luca}
(1 row)

Nothing new here, but what about the creation of a function (type 'f')? It is now easy to see
the following:

forumdb=> SELECT acldefault( 'f', r.oid )
          FROM pg_roles r
          WHERE r.rolname = CURRENT_ROLE;
      acldefault
-----------------------
 {=X/luca,luca=X/luca}
(1 row)

This time, two ACLs are produced: the first grants all users the executable permission,
while the latter specifies that the owner is the luca role with executable permissions, too.



Users, Roles, and Database Security Chapter 10

[ 294 ]

You can inspect all the default ACLs for a specific user by means of its OID and the type of
object, where the main types are 'r' for tables, 'c' for columns, 'l' for languages, and 'f' for 
routines and procedures. Other types are available. Please refer to the official
documentation. It is now time to see how to manipulate ACLs and permissions in a
practical way. In the next section, you will learn how to deal with permission management.

Granting and revoking permissions
As you have seen in Chapter 3, Managing Users and Connections, a role contains a collection
of permissions that are provided by means of a GRANT statement and removed by means of
a REVOKE statement. Permissions are stored internally as ACLs, as you have seen in the
previous section.

This section revisits the GRANT and REVOKE statements to better help you understand how
to use them, with respect to different database objects.

The GRANT statement has the following synopsis:

GRANT <permission, permission, ...> ON <database-object> TO <role>;

Here, you list all the permissions you want to associate with the target role for the specified
database object. It is also possible to extend the GRANT statement with the WITH GRANT
OPTION clause, which will cause the target role to be able to grant the same permissions it
has received to another role.

The REVOKE statement has a similar synopsis:

REVOKE <permission, permission, ..> ON <database-object> FROM <role>;

There is a special role, named PUBLIC, that can be used when dealing with permission
management. It is not a concrete role, rather a marker to indicate "all available roles." In
other words, if you grant a permission to PUBLIC, you are implicitly granting such
permission to all available roles.

But what does "all available roles" mean? It means all existing and future roles. The PUBLIC
role represents any role that will ever be present in the system, at the time the permission is
managed and in the future.

According to the above, in order to prevent any user from accessing your objects, you
should always remove all the permissions from the special PUBLIC role, and then
selectively provide the permissions you need to specific roles.



Users, Roles, and Database Security Chapter 10

[ 295 ]

In the following sections, we will detail different permissions to assign or remove grouping,
and classify them depending on the database object. As a general rule of thumb, the list of
permissions depends on the action you can run against the database object.

In many cases, the special keyword ALL is a substitute for every permission related to the
database object.

Permissions related to tables
We have already seen the main permissions related to a database table. They refer to the
main statements that can run against a table object, such as SELECT, INSERT, UPDATE,
DELETE, and TRUNCATE. Moreover, it is possible to use the special keywords TRIGGER and
REFERENCES to create triggers and foreign keys within the table.

Of course, the special keyword ALL does include all the preceding permissions.

As an example, in order to provide the forum_stats role with the permissions to read,
update, and insert data into the categories table, without granting permissions to execute
the other actions, you can do the following:

forumdb=# REVOKE ALL
          ON categories FROM forum_stats;
REVOKE

forumdb=# GRANT SELECT, INSERT, UPDATE
          ON categories TO forum_stats;
GRANT

forumdb=# \dp categories
                                   Access privileges
 Schema |    Name    | Type  |     Access privileges     | Column
privileges | Policies
--------+------------+-------+---------------------------+-----------------
--+----------
 public | categories | table | postgres=arwdDxt/postgres+|
|
        |            |       | forum_stats=arw/postgres  |
|
(1 row)

The first REVOKE statement is not mandatory, but it is good practice. Since we want to
ensure that the role has precisely the permissions we are going to grant and not one more,
removing all the permissions from the role ensures that a previous GRANT statement does
not persist.



Users, Roles, and Database Security Chapter 10

[ 296 ]

As you can see, the ACL for the forum_stats user reflects the permissions we granted.

Column-based permissions
Since certain statements related to table objects can address columns directly, for example,
SELECT and UPDATE, it is also possible to grant or revoke column permissions. The
synopsis is the same, but you can list the columns that the permission refers to.

Column permissions can be applied only to SELECT, UPDATE, INSERT, and REFERENCES
permissions because those are the ones that can refer to columns explicitly; the special
keyword ALL encapsulates the entire list of permissions.
As an example, consider a scenario where the forum_stats user can interact with the table
users only on the gecos and username columns, able to read both of them but to update
just the first one. The permissions could be assigned as follows:

forumdb=# REVOKE ALL ON users
          FROM forum_stats;
REVOKE

forumdb=# GRANT SELECT (username, gecos),
                UPDATE (gecos)
         ON users TO forum_stats;
GRANT

As already stressed, the first REVOKE statement is good practice to ensure that the
permissions for the role are reset before we assign the ones we want. Then, we grant the
SELECT and UPDATE permissions, specifying the columns every statement will be able to
interact with.

The side effect of the preceding GRANT statement is that the forum_stats role is no longer
able to issue SELECT or UPDATE with a column list wider than the one specified in GRANT:

-- denied, not all the columns can be read!
forumdb=> SELECT * FROM users;
ERROR:  permission denied for table users

-- allowed
forumdb=> SELECT gecos, username FROM users;
     gecos      | username
----------------+-----------
 LUCA FERRARI   | fluca1978
 ENRICO PIROZZI | sscotty71
(2 rows)



Users, Roles, and Database Security Chapter 10

[ 297 ]

-- denied, the 'username' column cannot be updated!
forumdb=> UPDATE users SET username = upper( username );
ERROR:  permission denied for table users

-- allowed
forumdb=> UPDATE users SET gecos = lower( gecos );
UPDATE 2

Let's now inspect the permissions for the users table:

forumdb=> \dp users
                                       Access privileges
 Schema | Name  | Type  |       Access privileges       |     Column
privileges     | Policies
--------+-------+-------+-------------------------------+------------------
---------+----------
 public | users | table | postgres=arwdDxt/postgres    +| username:
+|
        |       |       | forum_admins=arwdDxt/postgres |
forum_stats=r/postgres +|
        |       |       |                               | gecos:
+|
        |       |       |                               |
forum_stats=rw/postgres+|

There are two important things here that are different from all the previous examples. First,
the Access privileges column does not include any entry related to the forum_stats
role even if we explicitly granted permission. Second, the Column privileges column is
now full of rows related to the forum_stats role.

Every row in Column privileges refers to exactly one column of the table and contains
an ACL for every allowed role. For instance, the username column has the ACL
forum_stats=r/postgres, which means that the forum_stats role has read permission
(that is, SELECT) on such a column. The gecos column has the ACL
forum_stats=rw/postgres, which reads as the forum_stats role can both read and
write on the column (that is, SELECT, UPDATE).

To summarize, if the role has been granted one or more permissions on all the columns, the
ACL is placed under the Access privileges column, and if the permissions are related to
specific columns, the ACL is shown under the Column privileges column.



Users, Roles, and Database Security Chapter 10

[ 298 ]

You must be careful to not make permissions conflict with one another. For instance,
assume we wrongly provide a SELECT permission to the forum_stats role:

forumdb=# GRANT SELECT
          ON users TO forum_stats;
GRANT

If we inspect the permissions after such a statement, we can see that the ACL has been
inserted as an access privilege:

forumdb=# \dp users
                                       Access privileges
 Schema | Name  | Type  |       Access privileges       |     Column
privileges     | Policies
--------+-------+-------+-------------------------------+------------------
---------+----------
 public | users | table | postgres=arwdDxt/postgres    +| username:
+|
        |       |       | forum_admins=arwdDxt/postgres+|
forum_stats=r/postgres +|
        |       |       | forum_stats=r/postgres        | gecos:
+|
        |       |       |                               |
forum_stats=rw/postgres+|
        |       |       |                               | email:
+|
        |       |       |                               |
forum_emails=r/postgres |

Which permission will be considered in the case of a SELECT statement?

It is easy to test and see that PostgreSQL considers the last granted permission more open
than the column one. Therefore, the role has been granted to select every column on the
table:

forumdb=> SELECT * FROM users;
 pk | username  |     gecos      |        email
----+-----------+----------------+---------------------
  1 | fluca1978 | luca ferrari   | fluca1978@gmail.com
  2 | sscotty71 | enrico pirozzi | sscotty71@gmail.com
(2 rows)

Fixing the problem may not be as simple as you think. Revoking read permission on the
columns you don't want the role to have access to will not do what you may expect:

forumdb=# REVOKE SELECT (pk, email)
          ON users FROM forum_stats;
REVOKE



Users, Roles, and Database Security Chapter 10

[ 299 ]

If you remember, REVOKE does not store an ACL, but modifies existing ones. In this 
particular case, since there is nothing related to the preceding pk and email columns, the
REVOKE statement does not change anything:

forumdb=> \dp users
                                       Access privileges
 Schema | Name  | Type  |       Access privileges       |     Column
privileges     | Policies
--------+-------+-------+-------------------------------+------------------
---------+----------
 public | users | table | postgres=arwdDxt/postgres    +| username:
+|
        |       |       | forum_admins=arwdDxt/postgres+|
forum_stats=r/postgres +|
        |       |       | forum_stats=r/postgres        | gecos:
+|
        |       |       |                               |
forum_stats=rw/postgres+|
        |       |       |                               | email:
+|
        |       |       |                               |
forum_emails=r/postgres |

The rule of thumb is that every specific GRANT statement is canceled by the
counterpart, REVOKE. In this example, since the last GRANT statement was issued without a
specific list of columns, we need to issue a REVOKE statement without the list of columns:

forumdb=# REVOKE SELECT
          ON users FROM forum_stats;
REVOKE

However, this also removes the column-based grant permissions, so after REVOKE, the
forum_stats role will no longer be able to perform SELECT against the username and
gecos columns. In order to re-enable the role, you must re-issue the GRANT statement for
the targeted columns.

The preceding example has shown you that the application of permissions at a fine-grain
level requires attention and care, because an overly wide GRANT or REVOKE statement can
produce results you would not expect at a glance.

Permissions related to sequences
A sequence is a table-like object that produces a transaction safe stream of new values,
usually used for autogenerated (synthetic) keys.



Users, Roles, and Database Security Chapter 10

[ 300 ]

There are three main permissions associated with a sequence: USAGE allows the querying of
new values from the sequence; the SELECT privilege allows querying of the last or current
value from the sequence (but not to get a new one); and lastly, the UPDATE privilege is
another PostgreSQL-specific extension that allows the value of the sequence to be set and/or
reset.

Since the USAGE privilege is the only one recognized by the SQL standard, if you grant it to
a role, the role will automatically be able to also perform the actions that require the
SELECT and UPDATE privileges. The latter two permissions are there only to allow you a
finer-grain configuration of permissions against a sequence.

A general synopsis of the GRANT and REVOKE commands is as follows:

GRANT <permission> ON SEQUENCE <sequence> TO <role>;
REVOKE <permission> ON SEQUENCE <sequence> FROM <role>;

The special keyword ALL encapsulates all the permissions applicable to a sequence.

In order to understand how privileges on a sequence work, let's consider the sequence used
to generate the primary keys of the categories table: categories_pk_seq.

First of all, remove all privileges from the luca role so that he can no longer interact with
the sequence:

forumdb=# REVOKE ALL
          ON SEQUENCE categories_pk_seq
          FROM luca;
REVOKE

Now, if the luca role tries to get a new value from the sequence, he gets a permission
denied error:

forumdb=> SELECT nextval( 'categories_pk_seq' );
ERROR:  permission denied for sequence categories_pk_seq

Giving the sequence the USAGE privilege allows the luca role to query the sequence again:

forumdb=# GRANT USAGE ON SEQUENCE categories_pk_seq TO luca;
GRANT

Now, the role can successfully apply the setval function:

forumdb=> SELECT setval( 'categories_pk_seq', 10 );
 setval
--------
     10



Users, Roles, and Database Security Chapter 10

[ 301 ]

(1 row)

forumdb=> SELECT nextval( 'categories_pk_seq' );
 nextval
---------
      11
(1 row)

Remember that the USAGE privilege encapsulates both SELECT and UPDATE privileges, so
once you have granted USAGE to a role, the sequence can be queried and set to a specific
value.

Permissions related to schemas
A schema is a namespace for various objects, mainly tables and suchlike. There are
primarily two permissions that can be applied to a schema: CREATE, to allow the creation of
objects within the schema; and USAGE, to allow the role to "use" objects in the schema
(assuming it has appropriate permissions on the object). That can look a little confusing at
first, since if the role does not have the USAGE permission, it will not be able to access the
object even if it is the owner.

The general synopsis for GRANT and REVOKE involves the explicit ON SCHEMA clause (to
distinguish them from targeting a table):

GRANT <permission> ON SCHEMA <schema> TO <role>;
REVOKE <permission> ON SCHEMA <schema> FROM <role>;

As in other similar statements, the keyword ALL encapsulates all the permissions. In order
to better understand the two different permissions, let's create a configuration schema and
see how to enable access to it:

forumdb=# CREATE SCHEMA configuration;
CREATE SCHEMA

The schema has been created by a superuser, and therefore the user luca does not have
any privileges in it, so he is not able to create a table:

forumdb=> CREATE TABLE configuration.conf( param text,
                                           value text,
                                           UNIQUE (param) );
ERROR:  permission denied for schema configuration
LINE 1: CREATE TABLE configuration.conf( param text, value text, UNI...



Users, Roles, and Database Security Chapter 10

[ 302 ]

In order to allow the user luca to create new objects within the schema, the CREATE
permission has to be granted. However, without the USAGE permission, the role will not be
able to access anything in the schema, so you need to provide both permissions at the same
time:

forumdb=# GRANT CREATE ON SCHEMA configuration TO luca;
GRANT

forumdb=# GRANT USAGE ON SCHEMA configuration TO luca;
GRANT

Therefore, the luca role can now create a new object within the schema:

forumdb=> CREATE TABLE configuration.conf( param text,
                                           value text,
                                           UNIQUE (param) );
CREATE TABLE

forumdb=> INSERT INTO configuration.conf
          VALUES( 'posts_per_page', '10' );
INSERT 0 1

Without the USAGE permission, the role is no longer able to access any object within the
schema, even if it is the owner of the object:

forumdb=# REVOKE USAGE ON SCHEMA configuration FROM luca;
REVOKE

In fact, the user can no longer read their own data:

forumdb=> SELECT * FROM configuration.conf;
ERROR:  permission denied for schema configuration
LINE 1: SELECT * FROM configuration.conf;

On the other hand, what you probably want is to let the role be able to handle data within
the schema, but not to create new objects, so something like the following:

forumdb=# GRANT USAGE ON SCHEMA configuration TO luca;
GRANT

forumdb=# REVOKE CREATE ON SCHEMA configuration FROM luca;
REVOKE



Users, Roles, and Database Security Chapter 10

[ 303 ]

You can think of a schema as a container for other database objects. In order to access the
container, you must have the USAGE permission, and in order to create new objects, you
must have the CREATE permission. Nevertheless, USAGE does not provide you with
unlimited access to any object within the schema. Instead, it provides you with access to
objects depending on the permissions you have on such objects.

ALL objects in the schema
Since schemas are named containers of database objects, they can be used as a shortcut to
apply different privileges to every object contained in the schema by means of the ALL
<objects> IN SCHEMA clause.

By way of an example, in order to apply a set of equal permissions to all the tables
contained in a schema, you can do the following:

forumdb=> REVOKE ALL
          ON ALL TABLES IN SCHEMA configuration
          FROM luca;
REVOKE

forumdb=> GRANT SELECT, INSERT, UPDATE
          ON ALL TABLES IN SCHEMA configuration
          TO luca;
GRANT

This can greatly simplify the management of large schemas.

At the moment, you can use the clause for the following:

Tables, as in ON ALL TABLES IN SCHEMA
Sequences, as in ON ALL SEQUENCES IN SCHEMA
Routines, as in ON ALL ROUTINES IN SCHEMA (with the variants ON ALL
PROCEDURES IN SCHEMA and ON ALL FUNCTIONS IN SCHEMA)

Permissions related to languages
There is a single permission that applies to a language: USAGE. Such permission allows a
role to use the language. The special keyword ALL, which exists for compatibility with
other GRANT and REVOKE statements, simply applies just that one permission.



Users, Roles, and Database Security Chapter 10

[ 304 ]

As an example, in order to deny any role to execute any snippet of PL/Perl code, you need
to revoke the permission from the special group PUBLIC:

forumdb=# REVOKE USAGE ON LANGUAGE plperl FROM PUBLIC;
REVOKE

In this way, even a trusted user such as luca cannot execute a PL/Perl snippet:

forumdb=> DO LANGUAGE plperl $$ elog( INFO, "Hello World" ); $$;
ERROR:  permission denied for language plperl

If you want to allow the luca role to execute PL/Perl code, you need to grant it explicitly:

forumdb=# GRANT USAGE ON LANGUAGE plperl TO luca;
GRANT

Permissions related to routines
The special keyword ROUTINES includes both FUNCTIONS and PROCEDURES. There is a
single permission associated with ROUTINES, that is, the EXECUTE permission in order to be
able to run (execute) the code in the routine.

In order to demonstrate the permission, let's create a very simple routine, get_max, that
returns the maximum between two integers:

forumdb=> CREATE FUNCTION get_max( a int, b int )
RETURNS int AS $$
BEGIN
  IF a > b THEN
    RETURN a;
  ELSE
    RETURN b;
  END IF;
END $$ LANGUAGE plpgsql;

This now prevents any role apart from luca from executing such a routine:

forumdb=# REVOKE EXECUTE ON ROUTINE get_max FROM PUBLIC;
REVOKE
forumdb=# GRANT EXECUTE ON ROUTINE get_max TO luca;
GRANT



Users, Roles, and Database Security Chapter 10

[ 305 ]

Any role other than luca will receive a permission denied error if invoking the
function:

-- executing as enrico
forumdb=> SELECT get_max( 10, 20 );
ERROR:  permission denied for function get_max

Since get_max is a function, we could have written the GRANT and REVOKE permission with
the FUNCTION keyword instead of the catch all, ROUTINE. This is a matter of preference.

In particular, the ROUTINE keyword becomes handy when you want to apply permissions
to all functions and procedures within a schema, something like the following:

forumdb=# GRANT EXECUTE ON ALL ROUTINES IN SCHEMA my_schema;

Permissions related to databases
There are a bunch of permissions related to databases: CONNECT allows or rejects incoming
connections without any regard to host-based access control; TEMP allows the creation of
temporary objects (for example, tables) in the database; and CREATE allows the creation of
new objects within the database.

The general synopsis is as follows:

GRANT <permission> ON DATABASE <database> TO <role>;
REVOKE <permission> ON DATABASE <database> FROM <role>;

For instance, if you need to lock out every user from the database, for instance, because you
have to do maintenance work, you can issue the following REVOKE command:

forumdb=# REVOKE CONNECT ON DATABASE forumdb FROM PUBLIC;
REVOKE

New incoming connections will be rejected for a permission denied error:

$ psql  -U luca forumdb
psql: error: could not connect to server: FATAL:  permission denied for
database "forumdb"
DETAIL:  User does not have CONNECT privilege.



Users, Roles, and Database Security Chapter 10

[ 306 ]

Now, if you want the luca role to be the only one able to connect to the database and to
create objects but not temporary ones, you need to issue the following command:

forumdb=# REVOKE ALL ON DATABASE forumdb FROM public;
REVOKE

forumdb=# GRANT CONNECT, CREATE ON DATABASE forumdb TO luca;
GRANT

Other GRANT and REVOKE statements
There are other GRANT and REVOKE groups to control permission on table spaces, types, and
foreign data wrappers. They will not be discussed here, but you should now have quite a
clear workflow for applying permissions to different objects within the cluster and the
databases.

Assigning the object owner
You have seen that the owner of an object has all the available permissions on such objects.
During this time, you may wish to change the ownership of an object to another role,
which, in turn, gets all the permissions. Usually, the change of ownership is done through a
special ALTER statement such as the following:

ALTER <object> OWNER TO <role>;

For instance, to change the ownership of a table, you can issue the following command:

forumdb=# ALTER TABLE categories OWNER TO luca;
ALTER TABLE

Whereas to change the ownership of a function, you can issue the following command:

-- equivalent to: ALTER FUNCTION get_max OWNER TO luca;
forumdb=# ALTER ROUTINE get_max OWNER TO luca;
ALTER ROUTINE

Similar statements exist for all the other kinds of objects.



Users, Roles, and Database Security Chapter 10

[ 307 ]

Inspecting ACLs
In order to see which permissions have been granted to roles and objects, you can use the
already mentioned psql special command \dp (describe permissions), which reports the
ACLs configured for a specific object (a table, for instance). The command performs a query
against the special catalog pg_class, which contains a specific field named relacl that is
an array of ACLs. You can see this as follows:

forumdb=> \dp categories
                                 Access privileges
 Schema |    Name    | Type  |  Access privileges   | Column privileges |
Policies
--------+------------+-------+----------------------+-------------------+--
--------
 public | categories | table | luca=arwdDxt/luca   +|                   |
        |            |       | forum_stats=arw/luca |                   |
(1 row)

forumdb=> SELECT relname, relacl
          FROM pg_class WHERE relname = 'categories';
  relname   |                  relacl
------------+------------------------------------------
 categories | {luca=arwdDxt/luca,forum_stats=arw/luca}
(1 row)

As you can see, the output from the \dp command and from the query is the same, except
for the formatting of the output.

You can also use the special function aclexplode to get more descriptive information
about what the ACL means. The function returns a set of records, each one with the OID of
the grantor, of the grantee, and a textual description of the permission granted. It is,
therefore, possible to build a query like the following:

forumdb=> WITH acl AS (
             SELECT relname,
                    (aclexplode(relacl)).grantor,
                    (aclexplode(relacl)).grantee,
                    (aclexplode(relacl)).privilege_type
            FROM pg_class )
         SELECT g.rolname AS grantee,
                acl.privilege_type AS permission,
                gg.rolname AS grantor
         FROM acl
         JOIN pg_roles g ON g.oid = acl.grantee
         JOIN pg_roles gg ON gg.oid = acl.grantor
         WHERE acl.relname = 'categories';



Users, Roles, and Database Security Chapter 10

[ 308 ]

This returns all the individual permissions assigned to the table categories, as shown here:

   grantee   | permission | grantor
-------------+------------+---------
 luca        | INSERT     | luca
 luca        | SELECT     | luca
 luca        | UPDATE     | luca
 luca        | DELETE     | luca
 luca        | TRUNCATE   | luca
 luca        | REFERENCES | luca
 luca        | TRIGGER    | luca
 forum_stats | INSERT     | luca
 forum_stats | SELECT     | luca
 forum_stats | UPDATE     | luca

Row-level security
In the previous part of the chapter, you have seen the permission mechanism by which
PostgreSQL allows roles (both users and groups) to access different objects within the
database and data contained in the objects. In particular, with regard to tables, you have
learned how to restrict access to just a specific column list within the tabular data.

PostgreSQL provides another interesting mechanism to restrict access to tabular data: row-
level security. The idea is that row-level security can decide which tuples the role can gain
access to, either in read or write mode. Therefore, if the column-based permissions provides
a way of limiting the vertical shape of the tabular data, the RLS provides a way to restrict
the horizontal shape of the data itself.

When is it appropriate to use RLS? Imagine you have a table that contains data related to
users, and you don't want your users to be able to tamper with other users' data. In such a
case, restricting the access of every user to just their own tuples could provide good
isolation that prevents the data from being tampered with. Another fairly common scenario
is a multi-homed system, where you store the same data, but for different companies in the
very same tables. You don't want a company to be able to spy on or inspect thw data of
another company, and so again RLS can prove useful.

Of course, RLS is not a silver bullet, and many of the solutions you could come up with
involving RLS could have been realized with other techniques, but being aware of this
important feature could make your data much more resistant to misuse.

The RLS framework works on so-called policies. A policy decision is a set of rules according
to which certain tuples should be available. Depending on the policies you apply, your
roles (that is, users) will be able to read and/or write certain tuples.



Users, Roles, and Database Security Chapter 10

[ 309 ]

Applying RLS to a table is usually a two-step process: first, you have to define a policy (or
more than one), and then you have to enable the policy against the table. Please be aware
that superusers, owners, and roles with the special BYPASSRLS property will not be subject
to any RLS.

ATTENTION: In the case of a database backup, for example, via pg_dump,
the user who executes the backup must be able to bypass row-level
security policies; that is, it must have the BYPASSRLS property, or the
backup will fail.

A policy defines the availability of tuples according to a logic criterion, that is, a filtering
condition. A tuple can be available only for reading, or only for writing, or for both. The
general synopsis for a policy is as follows:

CREATE POLICY <name>
ON <table>
FOR <statement>
TO <role>
USING <filtering condition>
WITH CHECK <writing condition>

Here, the following applies:

name is the name of the policy; this is used to find it within the system.
table is the table you want to apply the policy to.
statement is any of SELECT, UPDATE, DELETE, INSERT, or the special keyword
ALL to indicate all of the available statements.
filtering condition is a condition used to restrict the result set of available
tuples, typically, the tuples you want the role to be able to retrieve from your
table.
writing condition is an option clause that provides a restriction on writing
down tuples.

A policy can be removed with the DROP POLICY command and can be rewritten with a
specific ALTER POLICY command.

Let's now look at a couple of examples to better understand how a policy can be built.
Assume we want to allow a database user to see only the tuples in the posts table that
belong to them. Therefore, the condition is to match the user themselves against a SELECT
statement. The policy could look like the following:

forumdb=> CREATE POLICY show_only_my_posts
          ON posts



Users, Roles, and Database Security Chapter 10

[ 310 ]

          FOR SELECT
          USING ( author = ( SELECT pk FROM users
                             WHERE username = CURRENT_ROLE ) );
CREATE POLICY

The policy has been named show_only_my_posts and acts against the posts table for
every SELECT statement. A tuple will be returned in the final result set only if there is a
match of the USING clause, which means only if the author is found in the users table and
is the current database user.

Having created the policy does not mean that the latter is active; you need to enable the
policy on the table it refers to with a specific ALTER TABLE command:

forumdb=> ALTER TABLE posts ENABLE ROW LEVEL SECURITY;
ALTER TABLE

The preceding ALTER TABLE will enable all the policies created for such a table, in our case
just one, but you have to be aware that if other policies are there, they will be activated too.

You must be the owner of the table in order to enable or disable row-level
security.

Now the role has been restricted to "see" just their own posts, but what about creating new
posts? Since there is no particular restriction about writes in the policy, the user is able to
create every tuple in the posts table. We can limit the user write ability, for instance,
making it clear that they can only modify posts that belong to them and within a certain
period of time, let's say 1 day. This results in a policy such as the following:

forumdb=> CREATE POLICY manage_only_my_posts
          ON posts
          FOR ALL
          USING ( author = ( SELECT pk FROM users
                             WHERE username = CURRENT_ROLE ) )
         WITH CHECK ( author = ( SELECT pk FROM users
                             WHERE username = CURRENT_ROLE )
                     AND
                     last_edited_on + '1 day'::interval >=
CURRENT_TIMESTAMP );
CREATE POLICY



Users, Roles, and Database Security Chapter 10

[ 311 ]

Since the row-level security has already been activated for the posts
table, the freshly created policy will be immediately active.

In this case, whatever statement the user is going to execute against the table, they will only
see their own posts (the USING clause) and will not be able to write (that is, INSERT,
UPDATE, DELETE) any tuple that does not belong to them and is not in a time range of 1 day
(the CHECK clause).

What is happening under the hood? PostgreSQL silently applies the USING and CHECK
clauses at every query you issue against the table to filter the possible tuples. For example,
if you observe the query plan of a non-filtering SELECT command, you will see that the
CURRENT_ROLE filter is applied as in the USING clause:

forumdb=> EXPLAIN SELECT * FROM posts;
                                       QUERY PLAN
---------------------------------------------------------------------------
-------------
 Seq Scan on posts  (cost=8.17..76.17 rows=1000 width=74)
   Filter: (author = $0)
   InitPlan 1 (returns $0)
     ->  Index Scan using users_username_key on users  (cost=0.15..8.17
rows=1 width=4)
           Index Cond: (username = (CURRENT_ROLE)::text)

The filter has been applied by PostgreSQL even if the query does not mention it. This
means that PostgreSQL is always "forced" to execute the query and filter the results for you,
so you cannot expect any performance gain in using RLS. After all, the tuples must be
excluded somewhere!

Now, if you try to modify the tuples in a way that violates the CHECK condition,
PostgreSQL will claim and will not allow you to perform the changes:

forumdb=> UPDATE posts
          SET last_edited_on = last_edited_on - '2 weeks'::interval;
ERROR:  new row violates row-level security policy for table "posts"



Users, Roles, and Database Security Chapter 10

[ 312 ]

You can always inspect RLS via the special \dp command in psql (the following output
has been trimmed to fit the page boundaries):

forumdb=> \dp posts
Access privileges
|                                                      Policies
+--------------------------------------------------------------------------
------------------------------------------
| show_only_my_posts (r):
+
|   (u): (author = ( SELECT users.pk
+
|    FROM users
+
|   WHERE (users.username = (CURRENT_ROLE)::text)))
+
| manage_only_my_posts:
+
|   (u): (author = ( SELECT users.pk
+
|    FROM users
+
|   WHERE (users.username = (CURRENT_ROLE)::text)))
+
|   (c): ((author = ( SELECT users.pk
+
|    FROM users
+
|   WHERE (users.username = (CURRENT_ROLE)::text))) AND ((last_edited_on +
'1 day'::interval) >= CURRENT_TIMESTAMP))
(1 row)

Lastly, you can disable or enable back policies on a table by issuing a specific ALTER TABLE
command, such as the following:

forumdb=> ALTER TABLE posts DISABLE ROW LEVEL SECURITY;
ALTER TABLE

-- to enable the RLS again
forumdb=> ALTER TABLE posts ENABLE ROW LEVEL SECURITY;
ALTER TABLE

We have now learned all about role level security, and can move on to working on
password encryption for the roles.



Users, Roles, and Database Security Chapter 10

[ 313 ]

Role password encryption
The passwords associated with roles are always stored in an encrypted form, even if the
role is created without the ENCRYPTED PASSWORD property. PostgreSQL determines the
algorithm to use in order to encrypt the password via the password_encryption option
in the postgresql.conf configuration file. By default, the value of the option is set to md5,
which means that the password is computed as MD5 hashes. The only other option
available since PostgreSQL 10 is scram-sha-256, which will make the encryption much
more robust.

You can quickly check the configuration from the operating system command line:

$ sudo -u postgres grep password_encryption $PGDATA/postgresql.conf
password_encryption = scram-sha-256    # md5 or scram-sha-256

Alternatively, you can inspect the pg_settings system catalog:

forumdb=# SELECT name, setting, enumvals
         FROM pg_settings
         WHERE name = 'password_encryption';
        name         |    setting    |      enumvals
---------------------+---------------+---------------------
 password_encryption | scram-sha-256 | {md5,scram-sha-256}
(1 row)

It is important to note that you cannot change the password encryption algorithm of a live
system without resetting all the passwords of the active roles. In other words, if you decide
to migrate from md5 to scram-sha-256, you need to issue appropriate ALTER ROLE
statements to insert a new password for every role you have defined in the database.

Since the pg_authid.rolpassword field starts with the encryption
algorithm, either 'md5' or 'SCRAM-SHA-256', it is simple to inspect the
system catalog and find out roles that have not been updated to a new
encryption algorithm.

SSL connections
The Secure Socket Layer (SSL) allows PostgreSQL to accept encrypted network
connections, which means every single piece of data in every packet is encrypted and
therefore protected against network spoofing, as long as you handle your keys and
certificates appropriately.



Users, Roles, and Database Security Chapter 10

[ 314 ]

In order to enable the SSL extension, you first need to configure the server, then accept
incoming SSL connections, and finally instrument the clients to connect in SSL mode.

Configuring the cluster for SSL
In order to let SSL do the encryption, the server must have private and public certificates.
Creating and managing certificates is beyond the scope of this book, and is a complex topic.
If you or your organization already have certificates, the only thing you have to do is to
import the certificate and key files into your PostgreSQL server.

Assuming your certificate and key files are named server.crt and server.key,
respectively, you have to configure the following parameters in the postgresql.conf
configuration file:

ssl = on
ssl_key_file = '/postgres/pgdata/ssl/server.key'
ssl_cert_file = '/postgres/pgdata/ssl/server.crt'

This is done, of course, with the absolute path to your files. The first line tells PostgreSQL to
enable SSL, while the other two lines tell the server where to find the files required to
establish an encrypted connection. Of course, those files must be readable by the user who
runs the PostgreSQL cluster (usually the postgres operating system user).

Once you have enabled SSL, you need to adjust the pg_hba.conf file to allow the host-
based access machinery to handle SSL-based connections. In particular, if you don't want to
accept plain connections, you need to substitute every host entry with hostssl, for
instance:

hostssl    all       luca     carmensita       scram-sha-256
hostssl    all       test     192.168.222.1/32 scram-sha-256

If you want to accept both plain and encrypted connections, you can leave host as the
connection method.

Connecting to the cluster via SSL
When connecting to PostgreSQL, the client will switch automatically to an SSL connection
in case the host-based access has a hostssl entry, otherwise it will default to the standard
plain connection.



Users, Roles, and Database Security Chapter 10

[ 315 ]

In case pg_hba.conf has a host line, this means that it can accept both SSL and plain
connections. Therefore, you need to force the connection to be SSL when you are initiating
it. In psql, this can only be achieved by using a connection string and specifying the
sslmode=require parameter to enable it. The server, if accepting the connection, will
report the SSL protocol in use:

$ psql "postgresql://luca@localhost:5432/forumdb?sslmode=require"
psql (12.1)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits:
256, compression: off)
Type "help" for help.

forumdb=>

If you omit the sslmode parameter, or use the standard psql connection parameters, the
connection will be turned into SSL if the pg_hba.conf file has a hostssl line that
matches. For instance, the following three connections produce the same result (an
encrypted connection):

$ psql -h localhost -U luca forumdb
psql (12.1)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits:
256, compression: off)
Type "help" for help.

forumdb=> \q

$ psql "postgresql://luca@localhost:5432/forumdb"
psql (12.1)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits:
256, compression: off)
Type "help" for help.

forumdb=> \q

$ psql "postgresql://luca@localhost:5432/forumdb?sslmode=require"
psql (12.1)
SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits:
256, compression: off)
Type "help" for help.

forumdb=>



Users, Roles, and Database Security Chapter 10

[ 316 ]

Similarly, you can specify that you don't want an SSL connection at all. It is possible to force
SSL mode to the off setting, sslmode=disable. This time, if pg_hba.conf has a hostssl
mode, the connection will be rejected, while it will be served as a non-encrypted one if the
pg_hba.conf file has a host line:

$ psql "postgresql://luca@localhost:5432/forumdb?sslmode=disable"
psql: error: could not connect to server: FATAL:  no pg_hba.conf entry for
host "127.0.0.1", user "luca", database "forumdb", SSL off

From the error, you can clearly see that there is no line that accepts a plain (host mode)
connection in the pg_hba.conf file, or, on the other hand, that there are only hostssl
lines.

Summary
In this chapter, we learned that PostgreSQL provides a very rich infrastructure for
managing permissions associated with roles. Internally, PostgreSQL handles permissions
on different database objects by means of ACLs, and every ACL contains information about
the set of permissions, the users to whom permissions are granted, and the user who
granted such permissions. In terms of tabular data, it is even possible to define column-
based permissions and row-level permissions to exclude users from having access to a
particular subset of data.

Permissions are granted by nested roles in a dynamically-inherited way or on-demand,
leaving you the option to fine-tune how a role should exploit privileges.

With regard to security, we saw that PostgreSQL allows two different algorithms for
password encryption, with SCRAM-SHA-256 being the most modern and robust. Lastly,
when opportunely configured, the server can handle network connections via SSL, thereby
encrypting all network traffic and data.

In the next chapter, you will learn all about transactions and how PostgreSQL manages
them in a concurrent scenario, providing rock solid stability for your data.

References
CREATE ROLE statement official documentation: https:/ ​/​www. ​postgresql. ​org/
docs/​12/ ​sql- ​createrole. ​html

ALTER ROLE statement official documentation: https:/ ​/​www. ​postgresql. ​org/
docs/​12/ ​sql- ​alterrole. ​html

https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-createrole.html
https://www.postgresql.org/docs/12/sql-alterrole.html
https://www.postgresql.org/docs/12/sql-alterrole.html
https://www.postgresql.org/docs/12/sql-alterrole.html
https://www.postgresql.org/docs/12/sql-alterrole.html
https://www.postgresql.org/docs/12/sql-alterrole.html
https://www.postgresql.org/docs/12/sql-alterrole.html
https://www.postgresql.org/docs/12/sql-alterrole.html
https://www.postgresql.org/docs/12/sql-alterrole.html
https://www.postgresql.org/docs/12/sql-alterrole.html
https://www.postgresql.org/docs/12/sql-alterrole.html
https://www.postgresql.org/docs/12/sql-alterrole.html
https://www.postgresql.org/docs/12/sql-alterrole.html
https://www.postgresql.org/docs/12/sql-alterrole.html
https://www.postgresql.org/docs/12/sql-alterrole.html
https://www.postgresql.org/docs/12/sql-alterrole.html
https://www.postgresql.org/docs/12/sql-alterrole.html
https://www.postgresql.org/docs/12/sql-alterrole.html
https://www.postgresql.org/docs/12/sql-alterrole.html


Users, Roles, and Database Security Chapter 10

[ 317 ]

DROP ROLE statement official documentation: https:/ ​/​www. ​postgresql. ​org/
docs/​12/ ​sql- ​droprole. ​html

GRANT statement official documentation: https:/ ​/​www. ​postgresql. ​org/ ​docs/
12/​sql- ​grant. ​html

REVOKE statement official documentation: https:/ ​/​www. ​postgresql. ​org/ ​docs/
12/​sql- ​revoke. ​html

PostgreSQL pg_roles catalog details: https:/ ​/​www. ​postgresql. ​org/ ​docs/ ​12/
view-​pg- ​roles. ​html

PostgreSQL pg_authid catalog details: https:/ ​/​www. ​postgresql. ​org/ ​docs/ ​12/
catalog- ​pg- ​authid. ​html

PostgreSQL ACL documentation: https:/ ​/​www. ​postgresql. ​org/ ​docs/ ​12/​ddl-
priv.​html

PostgreSQL host-based access rule details: https:/ ​/​www. ​postgresql. ​org/ ​docs/
12/​auth- ​pg- ​hba- ​conf. ​html

PostgreSQL ACL utility functions: https:/ ​/​www. ​postgresql. ​org/ ​docs/ ​12/
functions- ​info. ​html

https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-droprole.html
https://www.postgresql.org/docs/12/sql-grant.html
https://www.postgresql.org/docs/12/sql-grant.html
https://www.postgresql.org/docs/12/sql-grant.html
https://www.postgresql.org/docs/12/sql-grant.html
https://www.postgresql.org/docs/12/sql-grant.html
https://www.postgresql.org/docs/12/sql-grant.html
https://www.postgresql.org/docs/12/sql-grant.html
https://www.postgresql.org/docs/12/sql-grant.html
https://www.postgresql.org/docs/12/sql-grant.html
https://www.postgresql.org/docs/12/sql-grant.html
https://www.postgresql.org/docs/12/sql-grant.html
https://www.postgresql.org/docs/12/sql-grant.html
https://www.postgresql.org/docs/12/sql-grant.html
https://www.postgresql.org/docs/12/sql-grant.html
https://www.postgresql.org/docs/12/sql-grant.html
https://www.postgresql.org/docs/12/sql-grant.html
https://www.postgresql.org/docs/12/sql-grant.html
https://www.postgresql.org/docs/12/sql-grant.html
https://www.postgresql.org/docs/12/sql-revoke.html
https://www.postgresql.org/docs/12/sql-revoke.html
https://www.postgresql.org/docs/12/sql-revoke.html
https://www.postgresql.org/docs/12/sql-revoke.html
https://www.postgresql.org/docs/12/sql-revoke.html
https://www.postgresql.org/docs/12/sql-revoke.html
https://www.postgresql.org/docs/12/sql-revoke.html
https://www.postgresql.org/docs/12/sql-revoke.html
https://www.postgresql.org/docs/12/sql-revoke.html
https://www.postgresql.org/docs/12/sql-revoke.html
https://www.postgresql.org/docs/12/sql-revoke.html
https://www.postgresql.org/docs/12/sql-revoke.html
https://www.postgresql.org/docs/12/sql-revoke.html
https://www.postgresql.org/docs/12/sql-revoke.html
https://www.postgresql.org/docs/12/sql-revoke.html
https://www.postgresql.org/docs/12/sql-revoke.html
https://www.postgresql.org/docs/12/sql-revoke.html
https://www.postgresql.org/docs/12/sql-revoke.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/view-pg-roles.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/catalog-pg-authid.html
https://www.postgresql.org/docs/12/ddl-priv.html
https://www.postgresql.org/docs/12/ddl-priv.html
https://www.postgresql.org/docs/12/ddl-priv.html
https://www.postgresql.org/docs/12/ddl-priv.html
https://www.postgresql.org/docs/12/ddl-priv.html
https://www.postgresql.org/docs/12/ddl-priv.html
https://www.postgresql.org/docs/12/ddl-priv.html
https://www.postgresql.org/docs/12/ddl-priv.html
https://www.postgresql.org/docs/12/ddl-priv.html
https://www.postgresql.org/docs/12/ddl-priv.html
https://www.postgresql.org/docs/12/ddl-priv.html
https://www.postgresql.org/docs/12/ddl-priv.html
https://www.postgresql.org/docs/12/ddl-priv.html
https://www.postgresql.org/docs/12/ddl-priv.html
https://www.postgresql.org/docs/12/ddl-priv.html
https://www.postgresql.org/docs/12/ddl-priv.html
https://www.postgresql.org/docs/12/ddl-priv.html
https://www.postgresql.org/docs/12/ddl-priv.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/auth-pg-hba-conf.html
https://www.postgresql.org/docs/12/functions-info.html
https://www.postgresql.org/docs/12/functions-info.html
https://www.postgresql.org/docs/12/functions-info.html
https://www.postgresql.org/docs/12/functions-info.html
https://www.postgresql.org/docs/12/functions-info.html
https://www.postgresql.org/docs/12/functions-info.html
https://www.postgresql.org/docs/12/functions-info.html
https://www.postgresql.org/docs/12/functions-info.html
https://www.postgresql.org/docs/12/functions-info.html
https://www.postgresql.org/docs/12/functions-info.html
https://www.postgresql.org/docs/12/functions-info.html
https://www.postgresql.org/docs/12/functions-info.html
https://www.postgresql.org/docs/12/functions-info.html
https://www.postgresql.org/docs/12/functions-info.html
https://www.postgresql.org/docs/12/functions-info.html
https://www.postgresql.org/docs/12/functions-info.html
https://www.postgresql.org/docs/12/functions-info.html
https://www.postgresql.org/docs/12/functions-info.html


11
Transactions, MVCC, WALs,

and Checkpoints
This chapter introduces you to transactions, a fundamental part of every enterprise-level
database system. PostgreSQL has very rich and standard-compliant transaction machinery
that allows users to exactly define transaction properties, including nested transactions.

PostgreSQL relies heavily on transactions to keep data consistent across concurrent
connections and parallel activities, and thanks to Write-Ahead Logs (WALs), PostgreSQL
does its best to keep the data safe and reliable. Moreover, PostgreSQL implements Multi-
Version Concurrency Control (MVCC), a way to maintain high concurrency between
transactions.

The chapter can be split into two parts: the first one is more practical and provides concrete
examples of what transactions are, how to use them, and how to understand MVCC. The
second part is much more theoretical and explains how WALs work and how they allow
PostgreSQL to recover even from a crash.

In this chapter, you will learn about the following topics:

Introducing transactions
Transaction isolation levels
Explaining MVCC
Savepoints
Deadlocks
How PostgreSQL handles persistency and consistency: WALs
VACUUM



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 319 ]

Technical requirements
In order to proceed, you need to know the following:

How to issue SQL statements via psql
How to connect to the cluster and a database
How to check and modify the cluster configuration

The code for the chapter can be found in the following GitHub repository: https:/ ​/
github.​com/​PacktPublishing/ ​Learn- ​PostgreSQL.

Introducing transactions
A transaction is an atomic unit of work that either succeeds or fails. Transactions are a key
feature of any database system and are what allow a database to implement the ACID
properties: atomicity, consistency, isolation, and durability. Altogether, the ACID
properties mean that the database must be able to handle units of work on its whole
(atomicity), store data in a permanent way (durability), without inter-mixed changes to the
data (consistency), and in a way that concurrent actions are executed as if they were alone
(isolation).

You can think of a transaction as a bunch of related statements that, in the end, will either
all succeed or all fail. Transactions are everywhere in the database, and you have already
used them even if you did not realize it: function calls, single statements, and so on are
executed in a transaction block. In other words, every action you issue against the database
is executed within a transaction, even if you did not ask for it explicitly. Thanks to this
automatic wrapping of any statement into a transaction, the database engine can assure its
data is always consistent and somehow protected from corruption, and we will see later in
this chapter how PostgreSQL guarantees this.

Sometimes, however, you don't want the database to have control over your statements;
rather, you want to be able to define the boundaries of transactions yourself, and of course,
the database allows you to do it. For this reason, we call "implicit transactions" transactions
the database starts for you without you needing to ask, and "explicit transactions" those
that you ask the database to start.

Before we can examine both types of transactions and compare them, we need a little more
background on transaction concepts.

https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL


Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 320 ]

First of all, any transaction is assigned a unique number, called the transaction identifier, or
xid for short. The system automatically assigns an xid to newly created transactions –
either implicit or explicit – and guarantees that no two transactions with the very same xid
exist in the database.

The other main concept that we need to understand early in our transaction explanation is
that PostgreSQL stores the xid that generates and or modifies a certain tuple within the
tuple itself. The reason will be clear when we see how PostgreSQL handles transaction
concurrency, so for the sake of this part, let's just assume that every tuple in every table is
automatically labeled with the xid value of the transaction that created the tuple.

You can inspect what the current transaction is by means of the special function
txid_current(). So, for example, if you ask your system a couple of simple statements
such as the current time, you will see that every SELECT statement is executed as a different
transaction:

forumdb=> SELECT current_time, txid_current();
    current_time    | txid_current
--------------------+--------------
 16:51:35.042584+01 |         4813
(1 row)

forumdb=> SELECT current_time, txid_current();
    current_time    | txid_current
--------------------+--------------
 16:52:23.028124+01 |         4814
(1 row)

As you can see from the preceding example, the system has assigned two different
transaction identifiers, respectively 4813 and 4814, to every statement, confirming that
those statements have executed in different implicit transactions. You will probably get
different numbers on your system.

If you inspect the special hidden column xmin in a table, you can get information about
what transaction created the tuples; take the following example:

forumdb=> SELECT xmin, * FROM categories;
 xmin | pk |         title         |           description
------+----+-----------------------+---------------------------------
  561 |  1 | DATABASE              | Database related discussions
  561 |  2 | UNIX                  | Unix and Linux discussions
  561 |  3 | PROGRAMMING LANGUAGES | All about programming languages
(3 rows)



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 321 ]

As you can see, all the tuples in the preceding table have been created by the very same
transaction, number 561.

PostgreSQL manages a few different hidden columns that you need to
explicitly ask for when querying a table to be able to see them. In
particular, every table has the xmin, xmax, cmin, and cmax hidden
columns. Their use and aim will be explained later in this chapter.

Now that you know that every transaction is numbered and that such numbers are used to
label tuples in every table, we can move forward and see the difference between implicit
and explicit transactions.

Comparing implicit and explicit transactions
Implicit transactions are those that you don't ask for, but that the system applies to your
statements. In other words, it is PostgreSQL that decides where the transaction starts and
when it ends (transaction boundaries) and the rule is simple: every single statement is
executed in its own separate transaction.

In order to better understand this concept, let's insert a few records into a table:

forumdb=> INSERT INTO tags( tag ) VALUES( 'linux' );
INSERT 0 1
forumdb=> INSERT INTO tags( tag ) VALUES( 'BSD' );
INSERT 0 1
forumdb=> INSERT INTO tags( tag ) VALUES( 'Java' );
INSERT 0 1
forumdb=> INSERT INTO tags( tag ) VALUES( 'Perl' );
INSERT 0 1
forumdb=> INSERT INTO tags( tag ) VALUES( 'Raku' );
INSERT 0 1

And let's query what the data in the table is:

forumdb=> SELECT xmin, * FROM tags;
 xmin | pk |  tag  | parent
------+----+-------+--------
 4824 |  9 | linux |
 4825 | 10 | BSD   |
 4826 | 11 | Java  |
 4827 | 12 | Perl  |
 4828 | 13 | Raku  |
(5 rows)



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 322 ]

As you can see, the  xmin field has a different (incremented) value for every single tuple
inserted, which means a new transaction identifier (xid) has been assigned to the tuple or,
more precisely, to the statement that executed INSERT. This means that every single
statement has executed in its own single-statement transaction.

The fact that you are seeing instances of xid incremented by a single unit
is because on the machine used for the examples, there is no concurrency;
that is, no other database activity is going on. However, you cannot make
any predictions about what the next xid will be in a live system with
different concurrent connections and running statements.

What if we had inserted all the preceding tags in one shot, being sure that if only one of
them could not be stored for any reason, all of them would disappear? To this aim, we
could use explicit transactions. An explicit transaction is a group of statements with a well-
established transaction boundary: you issue a BEGIN statement to mark the start of the
transaction, and either  COMMIT or  ROLLBACK to end the transaction. If you issue  COMMIT,
the transaction is marked as successful, therefore the modified data is stored permanently;
on the other hand, if you issue  ROLLBACK, the transaction is considered failed and all
changes disappear.

Let's see this in practice – add another bunch of tags, but this time within a single explicit
transaction:

forumdb=> BEGIN;
BEGIN
forumdb=> INSERT INTO tags( tag ) VALUES( 'PHP' );
INSERT 0 1
forumdb=> INSERT INTO tags( tag ) VALUES( 'C#' );
INSERT 0 1
forumdb=> COMMIT;
COMMIT

The only difference with respect to the previous bunch of INSERT statements is the explicit
usage of BEGIN and COMMIT; since the transaction has committed, the data must be stored
in the table:

forumdb=> SELECT xmin, * FROM tags;
 xmin | pk |  tag  | parent
------+----+-------+--------
 4824 |  9 | linux |
 4825 | 10 | BSD   |
 4826 | 11 | Java  |
 4827 | 12 | Perl  |
 4828 | 13 | Raku  |
 4829 | 14 | PHP   |



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 323 ]

 4829 | 15 | C#    |
(7 rows)

As you can see, not only is the data stored as we expected, but both the last rows have the
very same transaction identifier; that is, 4829. This means that PostgreSQL has somehow
merged the two different statements into a single one.

Let's see what happens if a transaction ends with a ROLLBACK statement – the final result
will be that the changes must not be stored. As an example, modify the tag value of every
tuple to full uppercase:

forumdb=> BEGIN;
BEGIN
forumdb=> UPDATE tags SET tag = upper( tag );
UPDATE 7
forumdb=> SELECT tag FROM tags;
  tag
-------
 LINUX
 BSD
 JAVA
 PERL
 RAKU
 PHP
 C#
(7 rows)

forumdb=> ROLLBACK;
ROLLBACK
forumdb=> SELECT tag FROM tags;
  tag
-------
 linux
 BSD
 Java
 Perl
 Raku
 PHP
 C#
(7 rows)

We first changed all the descriptions to uppercase, and the SELECT statement proves the
database has done the job, but in the end, we changed our mind and issued a ROLLBACK
function. At this point, PostgreSQL throws away our changes and keeps the pre-transaction
state.



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 324 ]

Therefore, we can summarize that every single statement is always executed as an implicit
transaction, while if you need more control over what you need to atomically change, you
need to open (BEGIN) and close (COMMIT or ROLLBACK) an explicit transaction.

Being in control of an explicit transaction does not mean that you will always have a choice
about how to terminate it: sometimes PostgreSQL cannot allow you to COMMIT and
consolidate a transaction because there are unrecoverable errors in it.
The most trivial example is when you do a syntax error:

forumdb=> BEGIN;
BEGIN
forumdb=> UPDATE tags SET tag = uppr( tag );
ERROR:  function uppr(text) does not exist
LINE 1: UPDATE tags SET tag = uppr( tag );
                              ^
HINT:  No function matches the given name and argument types. You might
need to add explicit type casts.
forumdb=> COMMIT;
ROLLBACK

When PostgreSQL issues an error, it aborts the current transaction. Aborting a transaction
means that, while the transaction is still open, it will not honor any following command nor
COMMIT and will automatically issue a ROLLBACK command as soon as you close the
transaction. Therefore, even if you try to work after a mistake, PostgreSQL will refuse to
accept your statements:

forumdb=> BEGIN;
BEGIN
forumdb=> INSERT INTO tags( tag ) VALUES( 'C#' );
INSERT 0 1
forumdb=> INSERT INTO tags( tag ) VALUES( PHP );
ERROR:  column "php" does not exist
LINE 1: INSERT INTO tags( tag ) VALUES( PHP );
forumdb=> INSERT INTO tags( tag ) VALUES( 'Ocaml' );
ERROR:  current transaction is aborted, commands ignored until end of
transaction block
forumdb=> COMMIT;
ROLLBACK



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 325 ]

Anyway, handling syntax errors or misspelled object names is not the only problem you
can find when running a transaction, and after all, it is somehow quite simple to fix, but
you can find that your transaction cannot continue because there is some data constraint
that prevents the statement from completing successfully. Imagine we don't allow any tags
with a description shorter than two characters:

forumdb=> ALTER TABLE tags
          ADD CONSTRAINT constraint_tag_length
          CHECK ( length( tag ) >= 2 );
ALTER TABLE

Consider a unit of work that performs two different INSERT statements as follows:

forumdb=> BEGIN;
BEGIN
forumdb=> INSERT INTO tags( tag ) VALUES( 'C' );
ERROR:  new row for relation "tags" violates check constraint
"constraint_tag_length"
DETAIL:  Failing row contains (17, C, null).
forumdb=> INSERT INTO tags( tag ) VALUES( 'C++' );
ERROR:  current transaction is aborted, commands ignored until end of
transaction block
forumdb=> COMMIT;
ROLLBACK

As you have seen, as soon as a DML statement fails, PostgreSQL aborts the transaction and
refuses to handle any other statement. The only way you have to clear the situation is by
ending the explicit transaction, and no matter the way you end it (either  COMMIT
or  ROLLBACK), PostgreSQL will throw away your changes, rolling back the current
transaction.

In the preceding examples, we have always shown  COMMIT ending for a transaction, but it
is clear that when you are in doubt about your data, changes you have made, or an
unrecoverable error, you should issue  ROLLBACK. We have shown  COMMIT to make it clear
that PostgreSQL will prevent erroneous work from successfully terminating.

So when are you supposed to use an explicit transaction? Every time you have a workload
that must either succeed or fail, you have to wrap it in an explicit transaction. In particular,
when losing a part of the work could compromise the remaining data, that is a good time to
use a transaction. As an example, imagine an online shopping application: you surely do
not want to charge your client before you have updated their cart and checked the
availability of the products in storage. On the other hand, as a client, I would not want to
get a message saying that my order has been confirmed just to discover that the payment
has failed for any reason.



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 326 ]

Therefore, since all the steps and actions have to be atomically performed (check the 
availability of the products, update the cart, take the payment, confirm the order), an
explicit transaction is what we need to keep our data consistent.

Time within transactions
Transactions are time-discrete: the time does not change during a transaction. You can easily
see this by opening a transaction and querying the current time multiple times:

forumdb=> BEGIN;
BEGIN
forumdb=> SELECT CURRENT_TIME;
    current_time
--------------------
 14:51:50.730287+01
(1 row)

forumdb=> SELECT pg_sleep_for( '5 seconds' );
 pg_sleep_for
--------------

(1 row)

forumdb=> SELECT CURRENT_TIME;
    current_time
--------------------
 14:51:50.730287+01
(1 row)

forumdb=> ROLLBACK;
ROLLBACK

If you really need a time-continuous source, you can use clock_timestamp():

forumdb=> BEGIN;
BEGIN
forumdb=> SELECT CURRENT_TIME, clock_timestamp()::time;
    current_time    | clock_timestamp
--------------------+-----------------
 14:53:17.479177+01 | 14:53:22.152435
(1 row)

forumdb=> SELECT pg_sleep_for( '5 seconds' );
 pg_sleep_for
--------------



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 327 ]

(1 row)

forumdb=> SELECT CURRENT_TIME, clock_timestamp()::time;
    current_time    | clock_timestamp
--------------------+-----------------
 14:53:17.479177+01 | 14:53:33.022884

forumdb=> ROLLBACK;
ROLLBACK

How can we identify a transaction from another? Every transaction gets an identifier, as is
explained in the following section.

More about transaction identifiers – the XID
wraparound problem
PostgreSQL does not allow two transactions to share the same xid in any case. However, 
being an automatically incremented counter, xid will sooner or later do a wraparound,
which means it will start counting over. This is known as the xid wraparound problem and
PostgreSQL does a lot of work to prevent this from happening, as you will see later. But if
the database is near the wraparound, PostgreSQL will start claiming it in the logs with
messages like the following:

WARNING:  database "forumdb" must be vacuumed within 177009986 transactions
HINT:  To avoid a database shutdown, execute a database-wide VACUUM in
"forumdb".

If you carefully read the warning message, you will see that the system is talking about a
shutdown: if the database undergoes a xid wraparound, data could be lost, so in order to
prevent this, the system will automatically shut down if the xid wraparound is
approaching.

There is, however, a way to avoid this automatic shutdown, by forcing a cleanup by means
of running VACUUM. As you will see later in this chapter, one of the capabilities of VACUUM is
to freeze old tuples so as to prevent the side effects of the xid wraparound, and therefore
allowing the continuity of the database service. But what are the effects of the xid
wraparound?

In order to understand such problems, we have to remember that every transaction is
assigned a unique xid and that the next assignable xid is obtained by incrementing the last
one assigned by a single unit.



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 328 ]

This means that a transaction with a higher xid has started later than a transaction with a
lower xid. In other words, a higher xid means the transaction is in the near future as
opposed to a transaction with a lower xid. And since the xid is stored along with every
tuple, a tuple with a higher xmin has been created later than a tuple with a lower xmin.

But when the xid overflows and therefore restarts its numbering from low numbers,
transactions started later will appear with a lower xid than already running transactions,
and therefore they will suddenly appear in the past. As a consequence, tuples with a lower
transaction xid could also become in the past, instead of being in the future after the
overflow, and therefore there will be a mismatch of the temporal workflow and tuple
storage.

To avoid the xid wraparound, PostgreSQL implements a couple of tricks. First of all, the
xid counter does not start from zero, but from the value 3. Values before 3 are reserved for
internal use and no one transaction is allowed to store such a xid. Second, every tuple is
enhanced with a status bit that indicates whether the tuple has been frozen or not: once a
tuple has been frozen, its xmin must always be considered in the past, even if the value is
greater than the current one.

Therefore, as the xid overflow is approaching, VACUUM performs a wide freeze execution,
marking all the tuples in the past as frozen, so that even if the xid restarts its counting from
lower numbers, the tuple already in the database will always appear in the past.

In older PostgreSQL versions, VACUUM was literally removing the xmin
value of the tuples to freeze substituting its value with the special value 2,
which, being lower than the minimum usable value of 3, indicated that
the tuple was in the past. However, when a forensic analysis is required,
having the original xmin is valuable, and therefore PostgreSQL now uses
a status bit to indicate whether the tuple has been frozen.

Virtual and real transaction identifiers
Being such an important resource, PostgreSQL is smart enough to avoid wasting
transaction identifier numbers. In particular, when a transaction is initiated, the cluster uses
a "virtual xid," something that works like an xid but is not obtained from the transaction
identifier counter. In this way, every transaction does not consume an xid number from the
very beginning. Once the transaction has done some work that involves data manipulation
and changes, the virtual xid is transformed into a "real" xid, that is, one obtained from the
xid counter.



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 329 ]

Thanks to this extra work, PostgreSQL does not waste transaction identifiers on those
transactions that do not strictly require strong identification. For example, there is no need
to waste an xid on a transaction block like the following:

forumdb=> BEGIN;
BEGIN
forumdb=> ROLLBACK;
ROLLBACK

Since the preceding transaction does nothing at all, why should PostgreSQL involve all the
xid machinery? There is no reason to use an xid that will not be attached to any tuple in
the database and therefore will not interfere with any active snapshot.

There is, however, an important thing to note: the usage of the txid_current()
function always materializes an xid even if the transaction has not got one yet. For that
reason, PostgreSQL provides another introspection function named
txid_current_if_assigned(), which returns NULL if the transaction is still in the
"virtual xid" phase. It is important to note that PostgreSQL will not assign a real xid unless
the transaction has manipulated some data, and this can easily be proven with a workflow
like the following one:

forumdb=> BEGIN;
BEGIN
forumdb=> SELECT txid_current_if_assigned();
 txid_current_if_assigned
--------------------------

(1 row)

forumdb=> SELECT count(*) FROM tags;
 count
-------
     7
(1 row)

forumdb=> SELECT txid_current_if_assigned();
 txid_current_if_assigned
--------------------------

(1 row)

forumdb=> UPDATE tags SET tag = upper( tag );
UPDATE 7
forumdb=> SELECT txid_current_if_assigned();
 txid_current_if_assigned
--------------------------



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 330 ]

                     4837
(1 row)

forumdb=> SELECT txid_current();
 txid_current
--------------
         4837
(1 row)

forumdb=> ROLLBACK;
ROLLBACK

At the beginning of the transaction, there is no xid assigned, and in fact
txid_current_if_assigned() returns NULL. Even after a data read (that is, SELECT) the
xid has not been assigned. However, as soon as the transaction performs some write
activity (for example, an UPDATE), the xid is assigned and the results of both
txid_current_if_assigned() and txid_current() are the same.

Multi-version concurrency control
What happens if two transactions, either implicit or explicit, try to perform conflicting
changes over the same data? PostgreSQL must ensure the data is always consistent, and
therefore it must have a way to "lock" (that is, block and protect) data subject to conflicting
changes. Locks are a heavy mechanism that limits the concurrency of the system: the more
locks you have, the more your transactions are going to wait to acquire the lock. To mitigate
this problem, PostgreSQL implements MVCC, a well-known technique used in enterprise-
level databases.

MVCC dictates that, instead of modifying an existing tuple within the database, the system
has to replicate the tuple, apply the changes, and invalidate the original one. You can think
of this as a copy-on-write mechanism used in operating filesystems such as ZFS.



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 331 ]

To better understand what this means, let's assume the categories table has three tuples,
and that we update one of them, to alter its description. What happens is that a new tuple,
derived from the one we are going to apply UPDATE to, is inserted into the table, and the
original one is invalidated:

Why is PostgreSQL and MVCC dealing with this extra work instead of doing an in-place
update of the tuple? The reason is that this way, the database can cope with multiple
versions of the same tuple, and every version is valid within a specific time window. This
means that fewer locks are required to modify the data since the database is able to handle
multiple versions of the same data at the same time and different transactions are going to
see potentially different values.

For MVCC to work properly, PostgreSQL must handle the concept of snapshots: a snapshot
indicates the time window in which a certain transaction is allowed to perceive data. A
snapshot is, at its bare meaning, the range of transaction xids that define the boundaries of
data available to a current transaction: every row in the database labeled with an
xid within the range will be perceivable and usable by the current transaction. In other
words, every transaction "sees" a dedicated subset of all the available data in the database.

The special function txid_current_snapshot() returns the minimum and maximum
transaction identifiers that define the current transaction time boundaries. It becomes quite
easy to demonstrate the concept with a couple of parallel sessions.
In the first session, let's run an explicit transaction, extract the identifier and the snapshot
for future reference, and perform an operation:

-- session 1
forumdb=> BEGIN;
BEGIN
forumdb=> SELECT txid_current(), txid_current_snapshot();
 txid_current | txid_current_snapshot
--------------+------------------------
   4928 | 4928:4928:
(1 row)

forumdb=> UPDATE tags SET tag = lower( tag );
UPDATE 5



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 332 ]

As you can see in the preceding example, the transaction is number 4928 and its snapshot
is bounded to itself, meaning that the transaction will see everything has been already
consolidated in the database.

Now let's pause for a moment, and open another session to the same database – perform a
single INSERT statement that is wrapped in an implicit transaction and get back the 
information about its xid:

forumdb=> INSERT INTO tags( tag ) VALUES( 'KDE' ) RETURNING txid_current();
 txid_current
--------------
   4929
(1 row)

The single-shot transaction has been assigned xid 4929, which is, of course, the very next
xid available after the former explicit transaction (the system is running no other
concurrent transactions to make it simpler to follow the numbering).
Go back to the first session and again inspect the information about the transaction
snapshot:

-- session 1
forumdb=> SELECT txid_current(), txid_current_snapshot();
 txid_current | txid_current_snapshot
--------------+------------------------
   4928       | 4928:4930:
(1 row)

This time, the transaction has grown its snapshot from itself to transaction 4930, which has
not yet been started (txid_current_snapshot() reports its upper bound as non-
inclusive). In other words, the current transaction now sees data consolidated even from a
transaction that began after it, 4929. This can be even more explicit if the transaction
queries the table:

-- session 1
forumdb=> SELECT xmin, tag FROM tags;
    xmin    |  tag
------------+-------
 4928 | linux
 4928 | bsd
 4928 | java
 4928 | perl
 4928 | raku
 4929 | KDE
(6 rows)



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 333 ]

As you can see, all the tuples but the last have been generated by the current transaction,
and the last has been generated by xid 4929. But the preceding transaction is just a part of
the story; while the first transaction is still incomplete, let's inspect the same table from
another parallel session:

forumdb=> SELECT xmin, tag FROM tags;
    xmin    |  tag
------------+-------
 4922 | linux
 4923 | BSD
 4924 | Java
 4925 | Perl
 4926 | Raku
 4929 | KDE
(6 rows)

All but the last tuple have different descriptions and, most notably, a different value
for xmin from what transaction 4928 is seeing. What does it mean? It means that while the
table has undergone an almost full rewrite of every tuple (an UPDATE on all but the last
tuples), other concurrent transactions can still get access to the data in the table without
having been blocked by a lock. This is the essence of MVCC: every transaction perceives a
different view of the storage, and the view is valid depending on the time window (snapshot)
associated with the transaction.

Sooner or later, the data on the storage has to be consolidated, and therefore when
transaction 4928 completes the COMMIT of its work, the data in the table will become the
truth that every transaction from there on will perceive:

-- session 1
forumdb=> COMMIT;
COMMIT

-- out from the transaction now
-- we all see consolidated data
forumdb=> SELECT xmin, tag FROM tags;
    xmin    |  tag
------------+-------
 4928 | linux
 4928 | bsd
 4928 | java
 4928 | perl
 4928 | raku
 4929 | KDE
(6 rows)



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 334 ]

MVCC does not always prevent the usage of locks: if two or more concurrent transactions
start manipulating the same set of data, the system has to apply ordered changes, and
therefore must force a lock on every concurrent transaction so that only one can proceed. It
is quite simple to prove this with two parallel sessions similar to the preceding one:

-- session 1
forumdb=> BEGIN;
BEGIN
forumdb=> SELECT txid_current(), txid_current_snapshot();
 txid_current | txid_current_snapshot
--------------+------------------------
   4930 | 4930:4930:
(1 row)

forumdb=> UPDATE tags SET tag = upper( tag );
UPDATE 6

In the meantime, in another session, execute the following statements:

-- session 2
forumdb=> BEGIN;
BEGIN
forumdb=> SELECT txid_current(), txid_current_snapshot();
 txid_current | txid_current_snapshot
--------------+------------------------
   4931 | 4930:4930:
(1 row)

forumdb=> UPDATE tags SET tag = lower( tag );
-- BLOCKED!!!!

Transaction 4931 is locked because PostgreSQL cannot decide which data manipulation to
apply. On one hand, transaction 4930 is applying uppercase to all the tags, but at the same
time, transaction 4931 is applying lowercase to the very same data.

Since the two changes conflict, and the final result (that is, the result that will be
consolidated in the database) depends on the exact order in which changes will be applied
(and in particular on the last one applied), PostgreSQL cannot allow both transactions to
proceed. Therefore, since 4930 applied the changes before 4931, the latter is suspended,
waiting for transaction 4930 to complete either with success or failure. As soon as you end
the first transaction, the second one will be unblocked (showing the message status for the
UPDATE statement):

-- session 1
forumdb=> COMMIT;
COMMIT



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 335 ]

-- session 2
UPDATE 6
-- unblocked, can proceed further ...
forumdb=>

Therefore, MVCC is not a silver bullet against lock usage but allows better concurrency in
the overall usage of the database.

From the preceding description, it should be clear that MVCC comes at a cost: since the
system has to maintain different tuple versions depending on the active transactions and
their snapshots, the storage will literally grow over the effective size of consolidated data.

To prevent this problem, a specific tool named VACUUM, along with its background-running
brother autovacuum, is in charge of scanning tables (and indexes) for tuple versions that
can be thrown away, therefore reclaiming storage space. But when is a tuple version
eligible for being destroyed by VACUUM? When there are no more transactions
referencing the tuple xid (that is, xmin), that is when the tuple is no longer consolidated.

In the next section, you will explore transaction isolation levels, a way to control the
expected transaction behavior when operating in a concurrent environment.

Transaction isolation levels
In a concurrent system, you could encounter three different problems:

Dirty reads: A dirty read happens when the database is allowing a transaction to
see work-in-progress data from other not-yet-finished transactions. In other
words, data that has not been consolidated is visible to other transactions. No
production-ready database allows that, and PostgreSQL is no exception: you are
assured your transaction will only perceive data that has been consolidated and,
in order to be consolidated, the transactions that created such data must be
complete.
Nonrepeatable reads: An unrepeatable read happens when the same query,
within the same transaction, executed multiple times, perceives a different set of
data. This essentially means that the data has changed between two sequential
executions of the same query in the same transaction. PostgreSQL does not allow
this kind of problem by means of snapshots: every transaction can perceive the
snapshot of the data available depending on specific transaction boundaries.



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 336 ]

Phantom reads: A phantom read is somehow similar to an unrepeatable read,
but what changes between the sequential execution of the same query is the size
of the result set. This means that the data has not changed, but new data has been
"appended" to the last execution result set.

The SQL standard provides four isolation levels that a transaction can adopt to prevent any
of the preceding problems:

Read uncommitted: The lowest level possible.
Read committed: The default isolation level in PostgreSQL.
Repeatable read: Useful for long jobs as the system does not see the effects of
concurrent transactions; this offers us the possibility to work on a consistent
snapshot during the entire execution of the transaction.
Serializable: The strongest isolation level available.

Each level provides increasing isolation upon the previous level, so for example, Read
committed enhances the behavior of Read uncommited, Repeatable read enhances Read
committed (and Read uncommitted), and Serializable enhances all of the previous levels.

PostgreSQL does not support all the preceding levels, as you will see in detail in the
following subsections. You can always specify the isolation level you desire for the explicit
transaction at the transaction's beginning; every isolation level has the very same name as
reported in the preceding list. So, for example, the following begins a transaction in Read
committed mode:

forumdb=> BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;
BEGIN

You can omit the optional keyword TRANSACTION, even if in our opinion this improves
readability. It is also possible to explicitly set the transaction isolation level by means of a
SET TRANSACTION statement. As an example, the following snippet produces the same
effects as the preceding one:

forumdb=> BEGIN;
BEGIN
forumdb=> SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
SET



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 337 ]

It is important to note that the transaction isolation level cannot be changed once the
transaction has started. In order to have an effect, SET TRANSACTION statement must be the
very first statement executed in a transaction block. Every subsequent SET
TRANSACTION statement that changes the already set isolation level will produce a failure
and put the transaction in an aborting state, otherwise, if the subsequent SET
TRANSACTION does not change the isolation level, they will have no effect and will produce
no errors.

To better understand this case, the following is an example of an incorrect workflow where
the isolation level is changed after the transaction has already executed a statement, even if
it's not changing any data:

forumdb=> BEGIN;
BEGIN
forumdb=> SELECT count(*) FROM tags;
 count
-------
     7
(1 row)

-- a query has been executed, the SET TRANSACTION
-- is not anymore the very first command
forumdb=> SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
ERROR:  SET TRANSACTION ISOLATION LEVEL must be called before any query

In the following sections, we will discuss every isolation level in detail.

Read uncommitted
The Read uncommitted isolation level allows a transaction to be subjected to the dirty reads
problem, which means it can perceive unconsolidated data from other incomplete
transactions.

PostgreSQL does not support this isolation level, because, after all, it is not a true isolation
level. In fact, Read uncommitted means that there is no isolation at all among transactions,
and this is certainly a situation where interleaving data corruption happens.

You can set the isolation level explicitly, but PostgreSQL will ignore your will and set it
silently to the most robust Read committed one.



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 338 ]

Read Committed
The isolation level READ COMMITTED is the default one used by PostgreSQL: if you don't set
a level, every transaction (implicit or explicit) will have this isolation level.

This level prevents dirty reads and allows the current transaction to see all the already
consolidated data at the time every single statement in the transaction is executed. We have
already seen this behavior in practice in the snapshot example.

Repeatable Read
The REPEATABLE READ isolation level imposes that every statement in the transaction will
perceive only data already consolidated at the time the transaction started, or better, at the
time the first statement of the transaction is started.

Serializable
The SERIALIZABLE isolation level imposes the REPEATABLE READ level and assures that
two concurrent transactions will be able to successfully complete only if the end result
would have been the same if the two transactions ran in sequential order.

In other words, if two (or more) transactions have the SERIALIZABLE isolation level and try
to modify the same subset of data in a conflicting way, PostgreSQL will ensure that only
one transaction can complete and will make the other fail.

Let's see this in action by creating an initial transaction and modifying a subset of data:

-- session 1
forumdb=> BEGIN TRANSACTION ISOLATION LEVEL SERIALIZABLE;
BEGIN
forumdb=> UPDATE tags SET tag = lower( tag );
UPDATE 7

To simulate concurrency, let's pause this transaction and open a new one in another
session, applying other changes to the same set of data:

-- session 2
forumdb=> BEGIN TRANSACTION ISOLATION LEVEL SERIALIZABLE;
BEGIN
forumdb=> UPDATE tags SET tag = '[' || tag || ']';
-- blocked



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 339 ]

Since the manipulated set of data is the same, the second transaction is locked as we saw in
other examples before. Now assume the first transaction completes successfully:

-- session 1
forumdb=> COMMIT;
COMMIT

PostgreSQL realizes that also making the other transaction able to proceed would break the
SERIALIZABLE promise because applying the transaction sequentially would produce
different results depending on their order. Therefore, as soon as the first transaction
commits, the second one is automatically aborted with a serializable error:

-- session 2
forumdb=> UPDATE tags SET tag = '[' || tag || ']';
ERROR:  could not serialize access due to concurrent update

What happens if the transaction manipulates data that apparently is not related? One
transaction may fail again, in fact, let's modify one single tuple from one transaction:

-- session 1
forumdb=> BEGIN TRANSACTION ISOLATION LEVEL SERIALIZABLE;
BEGIN
forumdb=> UPDATE tags SET tag = '{' || tag || '}' WHERE tag = 'java';
UPDATE 1

In the meantime, modify exactly one other transaction from another session:

-- session 2
forumdb=> BEGIN TRANSACTION ISOLATION LEVEL SERIALIZABLE;
BEGIN
forumdb=> UPDATE tags SET tag = '[' || tag || ']' WHERE tag = 'perl';
UPDATE 1

This time, there is no locking of the second transaction because the touched tuples are
completely different. However, as soon as the first transaction executes a COMMIT, the
second transaction is no longer able to COMMIT by itself:

-- session 2 (assume session 1 has issued COMMIT)
forumdb=> COMMIT;
ERROR:  could not serialize access due to read/write dependencies among
transactions
DETAIL:  Reason code: Canceled on identification as a pivot, during commit
attempt.
HINT:  The transaction might succeed if retried.



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 340 ]

This is quite a common problem when using serializable transactions: the application or the
user must be ready to execute their transaction over and over because PostgreSQL could
make it fail due to the serializability of the workflows.

Explaining MVCC
xmin is only a part of the story of managing MVCC. PostgreSQL labels every tuple in the
database with four different fields named xmin (already described), xmax, cmin, and cmax.
Similar to what you have learned about xmin, in order to make those fields appear in a
query result, you need to explicitly reference them; for instance:

forumdb=> SELECT xmin, xmax, cmin, cmax, * FROM tags ORDER BY tag;
 xmin | xmax | cmin | cmax | pk | tag  | parent
------+------+------+------+----+------+--------
 4854 |    0 |    0 |    0 | 24 | c++  |
 4853 |    0 |    0 |    0 | 23 | java |
 4852 |    0 |    0 |    0 | 22 | perl |
 4855 |    0 |    0 |    0 | 25 | unix |
(4 rows)

The meaning of xmin has been already described in a previous section: it indicates the
transaction identifier of the transaction that created the tuple. The xmax field, on the other
hand, indicates the xid of the transaction that invalidated the tuple, for example, because it
has deleted the data. The cmin and cmax fields indicate respectively the command
identifiers that created and invalidated the tuple within the same transaction (PostgreSQL
numbers every statement within a transaction starting from zero).

Why is it important to keep track of the statement identifier (cmin, cmax)? Since the lowest
isolation level that PostgreSQL applies is Read Committed, every single statement (that is,
command) in a transaction must see the snapshot of the data consolidated when the
command is started.

You can see the usage of cmin and cmax within the same transaction in the following
example. First of all, we begin an explicit transaction, then we insert a couple of tuples with
two different INSERT statements; this means that the created tuples will have a different
cmin:

forumdb=> BEGIN;
BEGIN

forumdb=> SELECT xmin, xmax, cmin, cmax, tag, txid_current()
          FROM tags ORDER BY tag;



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 341 ]

 xmin | xmax | cmin | cmax | tag  | txid_current
------+------+------+------+------+--------------
 4854 |    0 |    0 |    0 | c++  |         4856
 4853 |    0 |    0 |    0 | java |         4856
 4852 |    0 |    0 |    0 | perl |         4856
 4855 |    0 |    0 |    0 | unix |         4856
(4 rows)

-- first writing command (number 0)
forumdb=> INSERT INTO tags( tag ) values( 'raku' );
INSERT 0 1

-- second writing command (number 1)
forumdb=> INSERT INTO tags( tag ) values( 'lua' );
INSERT 0 1

-- fourth command within transaction (number 3)
forumdb=> SELECT xmin, xmax, cmin, cmax, tag, txid_current()
          FROM tags ORDER BY tag;

 xmin | xmax | cmin | cmax | tag  | txid_current
------+------+------+------+------+--------------
 4854 |    0 |    0 |    0 | c++  |         4856
 4853 |    0 |    0 |    0 | java |         4856
 4856 |    0 |    1 |    1 | lua  |         4856
 4852 |    0 |    0 |    0 | perl |         4856
 4856 |    0 |    0 |    0 | raku |         4856
 4855 |    0 |    0 |    0 | unix |         4856
(6 rows)

So far, within the same transaction, the two new tuples inserted have an xmin that is the
same as txid_current(). Obviously, those tuples have been created by the same
transaction. However, please note that the second tuple, being in the second writing
command, has a cmin that holds 1 (command counting starts from zero).

Therefore, PostgreSQL knows every tuple when it has been created by means of a
transaction and command within that transaction.

Let's move on with our transaction: declare a cursor that holds a query against the tags
table and delete all tuples but two. The transaction session continues as follows:

forumdb=> DECLARE tag_cursor CURSOR FOR SELECT xmin, xmax, cmin, cmax, tag,
txid_current() FROM tags ORDER BY tag;
DECLARE CURSOR

forumdb=> DELETE FROM tags WHERE tag NOT IN ( 'perl', 'raku' );
DELETE 4



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 342 ]

forumdb=> SELECT xmin, xmax, cmin, cmax, tag, txid_current()
          FROM tags ORDER BY tag;
 xmin | xmax | cmin | cmax | tag  | txid_current
------+------+------+------+------+--------------
 4852 |    0 |    0 |    0 | perl |         4856
 4856 |    0 |    0 |    0 | raku |         4856
(2 rows)

As you can see, the table now holds only two tuples – this is the expected behavior after all.

But the cursor has started before the DELETE statement, and therefore it must perceive the
data as it was before the DELETE statement. In fact, if we ask the cursor what data it can
obtain, we see that it returns all the tuples as they were before the DELETE statement:

forumdb=> FETCH ALL FROM tag_cursor;
 xmin | xmax | cmin | cmax | tag  | txid_current
------+------+------+------+------+--------------
 4854 | 4856 |    2 |    2 | c++  |         4856
 4853 | 4856 |    2 |    2 | java |         4856
 4856 | 4856 |    0 |    0 | lua  |         4856
 4852 |    0 |    0 |    0 | perl |         4856
 4856 |    0 |    0 |    0 | raku |         4856
 4855 | 4856 |    2 |    2 | unix |         4856
(6 rows)

There is an important thing to note: every deleted tuple has a value in xmax that holds the
current transaction identifier (4856), meaning that this very transaction has deleted the
tuples. However, the transaction has not committed yet, therefore the tuples are still there
but are marked to be tied to the snapshot that ends in 4856. Moreover, the deleted tuples
have a cmax that holds the value 2, which means that the tuples have been deleted from the
third writing command in the transaction.

Since the cursor has been defined before the statement, it is able to "see" the tuples as they
were, even if PostgreSQL knows exactly from which point in time they have disappeared.

Readers may have noted that cmin and cmax hold the same value, and
that is due to the fact that the fields are overlapping the very same
storage.

In the following section, you are going to see how to disassemble a transaction into smaller
pieces by means of savepoints.



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 343 ]

Savepoints
A savepoint is a way to split a transaction into smaller blocks that can be rolled back
independently of each other. Thanks to savepoints, you can divide a big transaction (one
transaction with multiple statements) into smaller chunks, allowing a subset of the bigger
transaction to fail without having the overall transaction fail. PostgreSQL does not handle
transaction nesting, so you cannot issue a nested set of BEGIN, nor COMMIT/ROLLBACK
statements. Savepoints allow PostgreSQL to mimic the nesting of transaction blocks.

Savepoints are marked with a mnemonic name, which you can use to commit or rollback.
The name must be unique within the transaction, and if you reuse the same over and over,
the previous savepoints with the same name will be discarded. Let's see an example:

forumdb=> BEGIN;
BEGIN
forumdb=> INSERT INTO tags( tag ) VALUES ( 'Eclipse IDE' );
INSERT 0 1
forumdb=> SAVEPOINT other_tags;
SAVEPOINT
forumdb=> INSERT INTO tags( tag ) VALUES ( 'Netbeans IDE' );
INSERT 0 1
forumdb=> INSERT INTO tags( tag ) VALUES ( 'Comma IDE' );
INSERT 0 1
forumdb=> ROLLBACK TO SAVEPOINT other_tags;
ROLLBACK
forumdb=> INSERT INTO tags( tag ) VALUES ( 'IntelliJIdea IDE' );
INSERT 0 1
forumdb=> COMMIT;
COMMIT

forumdb=> SELECT tag FROM tags WHERE tag like '%IDE';
       tag
------------------
 Eclipse IDE
 IntelliJIdea IDE
(2 rows)

In the preceding transaction, the first statement does not belong to any savepoint and
therefore follows the life of the transaction itself. After the other_tags savepoint is
created, all the following statements follow the lifecycle of the savepoint itself, therefore
once ROLLBACK TO SAVEPOINT is issued, the statements within the savepoint are
discarded. After that, other statements belong to the outer transaction, and therefore follow
the lifecycle of the transaction itself. In the end, the result is that everything that has been
executed outside the savepoint is stored in the table.



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 344 ]

Once you have defined a savepoint, you can also change your mind and release it, so that
statements within the savepoint follow the same lifecycle of the main transaction. Here's an
example:

forumdb=> BEGIN;
BEGIN
forumdb=> SAVEPOINT editors;
SAVEPOINT
forumdb=> INSERT INTO tags( tag ) VALUES ( 'Emacs Editor' );
INSERT 0 1
forumdb=> INSERT INTO tags( tag ) VALUES ( 'Vi Editor' );
INSERT 0 1
forumdb=> RELEASE SAVEPOINT editors;
RELEASE
forumdb=> INSERT INTO tags( tag ) VALUES ( 'Atom Editor' );
INSERT 0 1
forumdb=> COMMIT;
COMMIT

forumdb=> SELECT tag FROM tags WHERE tag LIKE '%Editor';
     tag
--------------
 Emacs Editor
 Vi Editor
 Atom Editor
(3 rows)

When RELEASE SAVEPOINT is issued, it is like the savepoint has disappeared and therefore
the two INSERT statements follow the main transaction lifecycle. In other words, it is like
the savepoint has never been defined.

In a transaction, you can have multiple savepoints but once you roll back a savepoint, you
roll back all the savepoints that follow it:

forumdb=> BEGIN;
BEGIN
forumdb=> SAVEPOINT perl;
SAVEPOINT
forumdb=> INSERT INTO tags( tag ) VALUES ( 'Rakudo Compiler' );
INSERT 0 1
forumdb=> SAVEPOINT gcc;
SAVEPOINT
forumdb=> INSERT INTO tags( tag ) VALUES ( 'Gnu C Compiler' );
INSERT 0 1
forumdb=> ROLLBACK TO SAVEPOINT perl;
ROLLBACK
forumdb=> COMMIT;



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 345 ]

COMMIT

forumdb=> SELECT tag FROM tags WHERE tag LIKE '%Compiler';
 tag
-----
(0 rows)

As you can see, even if the transaction has issued a COMMIT, everything that has been done
after the perl savepoint, to which the transaction has rolled back, has been rolled back to.

In other words, rolling back to a savepoint means you roll back everything after said
savepoint.

Transactions can lead to a situation where the cluster is unable to proceed. These situations
are named deadlocks and are described in the next section.

Deadlocks
A deadlock is an event that happens when different transactions depend on each other in a
circular way. Deadlocks are, to some extent, normal events in a concurrent database
environment and nothing an administrator should worry about, unless they become
extremely frequent, meaning there is some dependency error in the applications and the
transactions.

When a deadlock happens, there is no choice but to terminate the locked transactions.
PostgreSQL has a very powerful deadlock detection engine that does exactly this job: it
finds stalled transactions and, in the case of a deadlock, terminates them (producing
ROLLBACK).

In order to produce a deadlock, imagine two concurrent transactions applying changes to
the very same tuples in a conflicting way. For example, the first transaction could do
something like the following:

-- session 1
forumdb=> BEGIN;
BEGIN
forumdb=> SELECT txid_current();
 txid_current
--------------
         4875
(1 row)

forumdb=> UPDATE tags SET tag = 'Perl 5' WHERE tag = 'perl';
UPDATE 1



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 346 ]

And in the meantime, the other transaction performs the following:

-- session 2
forumdb=> BEGIN;
BEGIN
forumdb=> SELECT txid_current();
 txid_current
--------------
         4876
(1 row)

forumdb=> UPDATE tags SET tag = 'Java and Groovy' WHERE tag = 'java';
UPDATE 1

So far, both transactions have updated a single tuple without conflicting with each other.
Now imagine that the first transaction tries to modify the tuple that the other transaction
has already changed; as we have already seen in previous examples, the transaction will
remain locked, waiting to acquire the lock on the tuple:

-- session 1
forumdb=> UPDATE tags SET tag = 'The Java Language' WHERE tag = 'java';
-- locked

If the second transactions tries, on the other hand, to modify a tuple already touched by the
first transaction, it will be locked waiting for the lock acquisition:

-- session 2
forumdb=> UPDATE tags SET tag = 'Perl and Raku' WHERE tag = 'perl';
ERROR:  deadlock detected
DETAIL:  Process 78918 waits for ShareLock on transaction 4875; blocked by
process 80105.
Process 80105 waits for ShareLock on transaction 4876; blocked by process
78918.
HINT:  See server log for query details.
CONTEXT:  while updating tuple (0,1) in relation "tags"

This time, however, PostgreSQL realizes the two transactions cannot solve the problem
because they are waiting on a circular dependency, and therefore decides to kill the second
transaction in order to give the first one a chance to complete. As you can see from the error
message, PostgreSQL knows that transaction 4875 is waiting for a lock hold by transaction
4876 and vice versa, so there is no solution to proceed but killing one of the two.

Being natural events in a concurrent transactional system, deadlocks are something you
have to deal with, and your applications must be prepared to replay a transaction in case
they are forced to ROLLBACK by deadlock detection.



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 347 ]

Deadlock detection is a complex and resource-expensive process, therefore PostgreSQL
does it on a scheduled basis. In particular, the deadlock_timeout configuration
parameter expresses how often PostgreSQL should search for dependency among stalled
transactions. By default, this value is set at 1 second, and is expressed in milliseconds:

forumdb=> SELECT name, setting
          FROM pg_settings
          WHERE name like '%deadlock%';
       name       | setting
------------------+---------
 deadlock_timeout | 1000
(1 row)

Decreasing this value is often a bad idea: while your applications and transactions will fail
sooner, your cluster will be forced to consume extra resources in dependency analysis.

In the following section, you will discover how PostgreSQL ensures that data is made
persistent on storage, even in the case of a crashing cluster.

How PostgreSQL handles persistency and
consistency: WALs
In the previous sections, you have seen how to interact with explicit transactions, and most
notably how PostgreSQL executes every single statement within a transaction.

PostgreSQL goes to a lot of effort internally to ensure that consolidated data on storage
reflects the status of the committed transactions. In other words, data can be considered
consolidated only if the transaction that produced (or modified) it has been committed. But
this also means that, once a transaction has been committed, its data is "safe" on storage, no
matter what happens in the future.

PostgreSQL manages transactions and data consolidations by means of Write-Ahead Logs
(WALs). This section introduces you to the concept of WALs and their use within
PostgreSQL.



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 348 ]

Write-Ahead Logs (WALs)
Before we dig into the details, it is required to briefly explain how PostgreSQL internally
handles data. Tuples are stored in mass storage – usually, a disk – under the
$PGDATA/base directory, in files named only by numbers. When a transaction requests
access to a particular set of tuples, PostgreSQL loads the data from the $PGDATA/base
directory and places the requested data in one or more shared buffers. The shared buffers
are an in-memory copy of the on-disk data, and all the transactions access the shared data
because they provide much more performance and do not require every single transaction
to seek the data out of the storage.
The next figure shows the loading of a few data pages into the shared buffers memory
location:

When a transaction modifies some data, it does so by modifying the in-copy memory,
which means it modifies the shared buffers area.

At this point, the in-memory copy of the data does not correspond to the stored version,
and it is here that PostgreSQL has to guarantee consistency and persistency without losing
performance.



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 349 ]

What happens is that the data is kept in memory but is marked as dirty, meaning that it is a
copy not yet synchronized with the on-disk original source. Once the changes to a dirty
buffer have been committed, PostgreSQL consolidates the changes in the WALs and keeps
the dirty buffer in memory to be served as the most recent available copy for other
transactions.

Sooner or later, PostgreSQL will push the dirty buffer to the storage, replacing the original
copy with the modified version, but a transaction usually does not know and does not care
about when this is going to happen.

The following diagram explains the preceding workflow: the red buffer has been modified
by a transaction and therefore does not match what is on disk anymore; however, when the
transaction issues a COMMIT, the changes are forced and flushed to the WALs:

Why is the WAL space supposed to be faster than overwriting the original data block in the
$PGDATA/base directory? The trick is that in order to find the exact position on the disk
storage where the block has to be overwritten, PostgreSQL should have to perform what is
called a random-seek, which is a costly I/O operation. On the other hand, the WALs are
sequentially written as a journal, and therefore there is no need to perform a random-seek.
Therefore, writing the WALs prevents the I/O performance degradation and allows
PostgreSQL to overwrite the data block at a future time, when for instance, the cluster is not
overloaded and has I/O bandwidth available.



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 350 ]

Every time a transaction performs a COMMIT, its actions and modified data are permanently
stored in a piece of the WAL, in particular a specific part of the current WAL segment
(more on this later). Therefore, PostgreSQL can reproduce the transaction and its effects in
order to perform the very same data changes.

This, however, does not suffice in making PostgreSQL reliable: PostgreSQL makes a big
effort to ensure the data actually hits the disk storage. In particular, during the writing of
the WALs, PostgreSQL isolates itself from the outside world, disabling operating system
signals, so that it cannot be interrupted. Moreover, PostgreSQL issues fsync(2), a
particular operating system call that forces the filesystem cache to flush data on disk.

PostgreSQL does all of this in order to ensure that the data physically hits the disk layer,
but it must be clear that if the filesystem, or the disk controller (that is, the hardware), lies,
the data could not be physically on the disk. This is important, but PostgreSQL cannot do
anything about that and has to trust what the operating system (and thus the hardware)
reports back as feedback.

In any case, COMMIT will return success to the invoking transaction if and only if
PostgreSQL has been able to write the changes on the disk. Therefore, at the transaction
level, if a COMMIT succeeds (that is, there is no error), the data has been written in the
WALs, and therefore can be assumed to be "safe" on the storage layer.

WALs are split into so-called segments. A segment is a file made of exactly 16 MB of
changes in the data. While it is possible to modify the size of segments during initdb, we
strongly discourage this and will assume every segment is 16 MB.
This means that PostgreSQL writes, sequentially, a single file at a time (that is, a WAL
segment) and when this has reached the size of 16 MB, it is closed and a new 16 MB file is
created. The WAL segements (or WALs for short) are stored in the pg_wal directory under
$PGDATA. Every segment has a name made up of hexadecimal digits, and 24 characters
long. The first 8 characters indicate the so called "time-line" of the cluster (something
related to replication), the second 8 digits indicate an increasing sequence number named
the Log Sequence Number (LSN for short), and the last 8 digits provide the offset within
the LSN. Here's an example:

$ sudo -u postgres ls -1 $PGDATA/pg_wal
0000000700000247000000A8
0000000700000247000000A9
0000000700000247000000AA
0000000700000247000000AB
0000000700000247000000AC
0000000700000247000000AD
...



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 351 ]

In the previous content of the pg_wal, you can see that every WAL segment has the same
timeline, number 7, and the LSN is 247. Every file, then, has a different offset with the first
one being A8, the second A9, and so on. As you can imagine, WAL segment names are not
made for humans, but PostgreSQL knows exactly how and in which file it has to search for
information.

Sooner or later, depending on the memory resources and usage of the cluster, the data in
memory will be written back to its original disk positions, meaning that the WALs are
serving only as temporary safe storage on disk. The reason for that is not only tied to a 
performance bottleneck, as already explained, but also to allow data restoration in the event
of a crash.

WALs as a rescue method in the event of a crash
When you cleanly stop a running cluster, for example, by means of pg_ctl, PostgreSQL
ensures that all dirty data in memory is flushed to the storage in the correct order, and then
halts itself.

But what happens if the cluster is uncleanly stopped, for example by means of a power
failure?

This event is named a crash, and once PostgreSQL starts over, it performs a so-called crash-
recovery. In particular, PostgreSQL understands it has stopped in an unclean way, and
therefore the data on the storage could not be the last version that existed when the cluster
terminated its activity. But PostgreSQL knows that all committed data is at least present in
the WALs, and therefore starts reading the WALs in what is called WAL-replay, and
adjusts the data on the storage according to what is in the WALs. Until the crash recovery
has completed, the cluster is not usable and does not accept connections; once the crash
recovery has finished, the cluster knows that the data on the storage has been made
coherent and therefore normal operations can start again.

This process allows the cluster to somehow self-heal after an external event has caused the
lifecycle to abort. This makes it clear that the main aim of the WALs is not to avoid
performance degradations, but rather to ensure the cluster is able to recover after a
crash. And in order to be able to do that, it must have data written permanently to the
storage, but thanks to the sequential way in which WALs are written, data is made
persistent with less I/O penalties.



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 352 ]

Checkpoints
Sooner or later, the cluster must make every change that has already been written in the
WALs also available in the data files, that is, it has to write tuples in a random-seek way.
These writes happen at very specific times named checkpoints. A checkpoint is a point in
time at which the database makes an extra effort to ensure that everything already present
in the WALs is also written in the correct position in the data storage.

The following diagram helps with understanding what happens during a CHECKPOINT:

But why should the database make this extra synchronization effort?

If the synchronization does not happen, the WALs will keep growing and thus consume
storage space. Moreover, if the database crashes for any reason, the WAL-replay must walk
across a very long set of WALs.

Thanks to checkpoints, instead, the cluster knows that in the event of a crash, it has to
synchronize data between the storage and the WALs only after the last checkpoint is
successfully performed. In other words, the storage space and time required to replay the
WALs are reduced from the crash instant to the last checkpoint.



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 353 ]

But there is another advantage: since after a checkpoint PostgreSQL knows that the data in
the WALs has been synchronized with the data in the storage, it can throw away already
synchronized WALs. In fact, even in the event of a crash, PostgreSQL will not need any
WAL part that precedes the last checkpoint at all. Therefore, PostgreSQL performs WAL
recycling: after a checkpoint, a WAL segment is reused as an empty segment for the
upcoming checkpoint.

Thanks to this machinery, the space required to store WAL segments will pretty much
remain the same during the cluster lifecycle because, at every checkpoint, segments will be
reused. Most notably, in the event of a crash, the number of WAL segments to replay will
be the total number of those produced since the last checkpoint.

PostgreSQL 13 is able to provide you with some information about how
many WAL segments a specific query is going to consume, that is, how
much data is inserted into the WALs due to the execution of a query. The
special command EXPLAIN (detailed in Chapter 13, Indexes and
Performance Optimization) can provide you with the WAL information.

Checkpoint configuration parameters
The database administrator can fine-tune the checkpoints, meaning they can decide when
and how often a checkpoint can happen. Since checkpoints are consolidating points, the
more often they happen, the less time will be required to recover from a crash. On the other
hand, the more seldomly they are executed, the more the database will not suffer from I/O
bottlenecks. In fact, when a checkpoint is reached, the database must force every dirty
buffer from memory to disk, and this usually means that an I/O spike is introduced; during
such a spike, other concurrent database activities, such as getting new data from the
storage, will be penalized because the I/O bandwidth is temporarily exhausted from the
checkpoint activity.

For the preceding reasons, it is very important to carefully tune checkpoints and in
particular, their tuning must reflect the cluster workload.

Checkpoints can be tuned by means of three main configuration parameters that interact
with each other and that are explained in the following subsections.

checkpoint_timeout and max_wal_size
Checkpoint frequency can be tuned by two orthogonal parameters: max_wal_size
and checkpoint_timeout.



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 354 ]

The max_wal_size parameter dictates how much space the pg_wal directory can occupy.
Since at every checkpoint the WAL segments are recycled, the pg_wal directory tends to
occupy the very same size eventually. Tuning the max_wal_size parameter specifies after
how many data changes the checkpoint must be completed, and therefore this parameter is
a "quantity" specification.

checkpoint_timeout expresses after how much time the checkpoint must be forced.

The two parameters are orthogonal, meaning that the first that happens triggers the
checkpoint execution: your database produces data changes over the max_wal_size
parameter or when the checkpoint_timeout time has elapsed.

As an example, let's take a system with the following settings:

forumdb=> SELECT name, setting, unit FROM pg_settings
          WHERE name IN ( 'checkpoint_timeout', 'max_wal_size' );
        name        | setting | unit
--------------------+---------+------
 checkpoint_timeout | 300     | s
 max_wal_size       | 1024    | MB
(2 rows)

After 300 seconds (5 minutes) a checkpoint is triggered unless, in the meantime, 1024 MB of
data has been changed. Therefore if your database is not doing much activity, a checkpoint
is triggered by checkpoint_timeout, while in the case that the database is heavily
accessed, a checkpoint is triggered for every 1 GB of data produced.

Checkpoint throttling
In order to avoid an I/O spike at the execution of a checkpoint, PostgreSQL introduced a
third parameter named checkpoint_completion_target, which can handle values
between 0 and 1. This parameter indicates the amount of time the checkpoint can delay the
writing of dirty buffers for. In particular, the time provided to complete a checkpoint is
computed as checkpoint_timeout x checkpoint_completion_target.

For example, if checkpoint_completion_target is set to 0.2 and
checkpoint_timemout is 300 seconds, the system will have 60 seconds to write all the
data. The system calibrates the required I/O bandwidth to fulfill the dirty buffers' writing.



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 355 ]

Therefore, if you set checkpoint_completion_target to 0, you are going to see spikes in
the checkpoint executions, with the consequence of high usage of I/O bandwidth, while 
setting the parameter to 1 means you are going to see continuous I/O activity with low I/O
bandwidth.

Manually issuing a checkpoint
It is always possible for the cluster administrator to manually start a checkpoint process:
the PostgreSQL statement CHECKPOINT starts all the activities that would normally happen
at checkpoint_timeout or max_wal_size.

The checkpoint being such an invasive operation, why should someone want to perform it
manually? One reason could be to ensure that all the data on the disk has been
synchronized, for example, before starting a streaming replication or a file-level backup.

In the following section, you will learn about the VACUUM process, the technique that
allows PostgreSQL to reclaim unused space, removing no longer visible tuples.

VACUUM
In the previous sections, you have learned how PostgreSQL exploits MVCC to store
different versions of the same data (tuples) that different transactions can perceive
depending on their active snapshot. However, keeping different versions of the same tuples
requires extra space with regard to the last active version, and this space could fill your
storage sooner or later. To prevent that, and reclaim storage space, PostgreSQL provides an
internal tool named vacuum, the aim of which is to analyze stored tuple versions and
remove the ones that are no longer perceivable.

Remember: a tuple is not perceivable when there are no more active
transactions that can reference the version, which means having the tuple
version within their snapshot.

Vacuum can be an I/O-intensive operation since it must reclaim no more used disk space,
and therefore can be an invasive operation. For that reason, you are not supposed to run
vacuum very frequently and PostgreSQL also provides a background job, named
autovacuum, which can run a vacuum for you depending on the current database activity.

The following subsections will show you both manual and automatic vacuum.



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 356 ]

Manual VACUUM
Manual vacuum can be run against a single table, a subset of table columns, or a whole
database, and the synopsis is as follows:

VACUUM [ FULL ] [ FREEZE ] [ VERBOSE ] [ ANALYZE ] [ table_and_columns [,
...] ]

There are three main versions of VACUUM that perform progressively more aggressive
refactoring:

Plain VACUUM (the default) does a micro-space-reclaim, which means it throws
away dead tuple versions but does not defragment the table, and therefore the
final effect is no space being reclaimed.
VACUUM FULL performs a whole table rewrite, throwing away dead tuples and
removing defragmentation, thus also reclaiming disk space.
VACUUM FREEZE marks already consolidated tuples as frozen, preventing the
xid wraparound problem.

VACUUM cannot be executed within a transaction, nor a function or procedure. The extra
options VERBOSE and ANALYZE provide a verbose output and perform a statistic update of
the table contents (this is useful for performance gain)  respectively.

In order to see the effects of VACUUM, let's build a simple example. First of all, ensure that
autovacuum is set to off. If it's not, edit the $PGDATA/postgresql.conf configuration
file and set the parameter to off, then restart the cluster. After that, inspect the size of the
tags table:

forumdb=> SHOW autovacuum;
 autovacuum
------------
 off
(1 row)

forumdb=> SELECT relname, reltuples, relpages, pg_size_pretty(
pg_relation_size( 'tags' ) )
FROM pg_class WHERE relname = 'tags' AND relkind = 'r';
 relname | reltuples | relpages | pg_size_pretty
---------+-----------+----------+----------------
 tags    |         6 |        1 | 8192 bytes
(1 row)



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 357 ]

As you can see, the table has only six tuples and occupies a single data page on disk, of the
size 8 KB. Now let's populate the table with about 1 million random tuples:

forumdb=> INSERT INTO tags( tag )
SELECT 'FAKE-TAG-#' || x
FROM generate_series( 1, 1000000 ) x;
INSERT 0 1000000

Since we have stopped autovacuum, PostgreSQL does not know the real size of the table,
and therefore we need to perform a manual ANALYZE to inform the cluster about the new
data in the table:

forumdb=> ANALYZE tags;
ANALYZE
forumdb=> SELECT relname, reltuples, relpages, pg_size_pretty(
pg_relation_size( 'tags' ) )
FROM pg_class WHERE relname = 'tags' AND relkind = 'r';
 relname |  reltuples  | relpages | pg_size_pretty
---------+-------------+----------+----------------
 tags    | 1.00001e+06 |     6370 | 50 MB

It is now time to invalidate all the tuples we have inserted, for example, by overwriting
them with an UPDATE (which, due to MVCC, will duplicate the tuples):

forumdb=> UPDATE tags SET tag = lower( tag ) WHERE tag LIKE 'FAKE%';
UPDATE 1000000

The table now still has around 1 million valid tuples, but the size has almost doubled
because every tuple now exists in two versions, one of which is dead:

forumdb=> ANALYZE tags;
ANALYZE
forumdb=> SELECT relname, reltuples, relpages, pg_size_pretty(
pg_relation_size( 'tags' ) )
FROM pg_class WHERE relname = 'tags' AND relkind = 'r';
 relname |  reltuples  | relpages | pg_size_pretty
---------+-------------+----------+----------------
 tags    | 1.00001e+06 |    12739 | 100 MB
(1 row)

We have now built something that can be used as a test lab for VACUUM. If we execute plain
VACUUM, every single data page will be freed of dead tuples but pages will not be
reconstructed, so the number of data pages will remain the same, and the final table size on
storage will be the same too:

forumdb=> VACUUM VERBOSE tags;
...



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 358 ]

INFO:  "tags": found 1000000 removable, 1000006 nonremovable row versions
in 12739 out of 12739 pages

VACUUM

forumdb=> ANALYZE tags;
ANALYZE

forumdb=> SELECT relname, reltuples, relpages, pg_size_pretty(
pg_relation_size( 'tags' ) )
FROM pg_class WHERE relname = 'tags' AND relkind = 'r';
 relname |  reltuples  | relpages | pg_size_pretty
---------+-------------+----------+----------------
 tags    | 1.00001e+06 |    12739 | 100 MB
(1 row)

VACUUM informs us that 1 million tuples can be safely removed, while 1 million (plus the
original 6 tuples) cannot be removed because they represent the last active version.
However, after this execution, the table size has not changed: all data pages are essentially
fragmented.

So what is the aim of plain VACUUM? This kind of VACUUM provides new free space on every
single page, so the table can essentially sustain 1 million new tuples without changing its
own size. We can prove this by performing the same tuple invalidation we have already
done:

forumdb=> UPDATE tags SET tag = upper( tag ) WHERE tag LIKE 'fake%';
UPDATE 1000000
forumdb=> ANALYZE tags;
ANALYZE
forumdb=> SELECT relname, reltuples, relpages, pg_size_pretty(
pg_relation_size( 'tags' ) )
FROM pg_class WHERE relname = 'tags' AND relkind = 'r';
 relname |  reltuples  | relpages | pg_size_pretty
---------+-------------+----------+----------------
 tags    | 1.00001e+06 |    12739 | 100 MB
(1 row)

As you can see, nothing has changed in the number of tuples, pages, and table size.
Essentially, it went like this: we introduced 1 million new tuples in the beginning, then we
updated all of them, making the 1 million become 2 million, then we used VACUUM on the
table, lowering the number again to 1 million but leaving the free space already allocated so
that the table was occupying space for 2 million but only half of that storage was full. After
that, we created 1 million new tuple versions but the system did not need to allocate more
space because there was enough free, even if scattered across the whole table.



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 359 ]

On the other hand, VACUUM FULL not only frees the space within the table, but also
reclaims all such space, compacting the table to its mimimum size. If we execute VACUUM
FULL right now, at least 50 MB of data space will be reclaimed because 1 million tuples will
be thrown away:

forumdb=> VACUUM FULL VERBOSE tags;
INFO:  vacuuming "public.tags"
INFO:  "tags": found 1000000 removable, 1000006 nonremovable row versions
in 12739 pages
DETAIL:  0 dead row versions cannot be removed yet.
CPU: user: 0.18 s, system: 0.61 s, elapsed: 1.03 s.
VACUUM
forumdb=> ANALYZE tags;
ANALYZE
forumdb=> SELECT relname, reltuples, relpages, pg_size_pretty(
pg_relation_size( 'tags' ) )
FROM pg_class WHERE relname = 'tags' AND relkind = 'r';
 relname |  reltuples  | relpages | pg_size_pretty
---------+-------------+----------+----------------
 tags    | 1.00001e+06 |     6370 | 50 MB
(1 row)

The output of VACUUM FULL is pretty much the same as plain VACUUM: it shows that 1
million tuples can be thrown away. The end result, however, is that the whole table has
gained the space occupied by said tuples. It is important to remember, however, that, while
tempting, VACUUM FULL forces a complete table rewrite and therefore pushes a lot of work
down to the I/O system, thus incurring potential performance penalties.

It is possible to summarize the main effects of VACUUM in diagrams. Imagine a situation like
the one depicted in the following diagram, where a table is occupying two data pages,
respectively with four and three valid tuples:



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 360 ]

If plain VACUUM executes, the total number of pages will remain the same but every page
will free the space occupied by dead tuples and will compact valid tuples together, as
shown in the following diagram:



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 361 ]

If VACUUM FULL executes, the table's data pages are fully rewritten to compact all valid
tuples together. In this situation, the second page of the table results is empty, and therefore
is discarded, and therefore there is a gain in the space consumption on the storage device.
The situation becomes the one depicted in the following diagram:

In the event that you are approaching an xid wraparound, VACUUM FREEZE solves the
problem by marking the tuples as "always in the past."

For other usages of VACUUM, please see the official documentation.

Automatic VACUUM
Since PostgreSQL 8.4, there is a background job named autovacuum, which is responsible for
running VACUUM on behalf of the system administrator.

The idea is that, VACUUM being an I/O-intensive operation, a background job can perform
small micro-vacuums without interfering with the normal database activity.

Usually, you don't have to worry about autovacuum, since it is enabled by default and has
general settings that can be useful in many scenarios. However, there are different settings
that can help you to fine-tune autovacuum. A system with a good autovacuum
configuration usually does not need manual VACUUM, and often the traits of a manual
VACUUM are that autovacuum must be configured to run more frequently.



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 362 ]

The main settings for autovacuum can be inspected from the
$PGDATA/postgresql.conf configuration file or, as usual, the pg_settings catalog. The
most important configuration parameters are the following:

autovacuum enables or disables the autovacuum background machinery. There
is no reason, beyond doing experiments as we did in the previous section, to
keep autovacuum disabled.
autovacuum_vacuum_threshold indicates how many new tuple versions will
be allowed before autovacuum can be activated on a table. The idea is that we
don't want autovacuum to trigger if only a small amount of tuples have changed
in a table, because that will produce an I/O penalty without an effective gain in
space.
autovacuum_vacuum_scale_factor indicates the amount, as a percentage, of
tuples that have to be changed before autovacuum performs a concrete vacuum
on a table. The idea is that the more the table grows, the more autovacuum will
wait for dead tuples before it performs its activities.
autovacuum_cost_limit is a value that measures the maximum threshold over
which the background process must suspend itself to resume later on.
autovacuum_cost_delay indicates how many milliseconds (in multiples of ten)
autovacuum will be suspended to not interfere with other database activities.
The suspension is performed only when the cost delay is reached.

Essentially, the activity of autovacuum goes like this: if the number of changed tuples is
greater than autovacuum_vacuum_threshold + ( table-tuples *
autovacuum_vacuum_scale_factor ), the autovacuum process activates. It then
performs a vacuum on the table measuring the amount of work. If the amount of work
reaches what autovacuum_cost_limit is set to, the process suspends itself for
autovacuum_cost_delay milliseconds, and then resumes and proceeds further. Any time 
autovacuum reaches the threshold, it suspends itself, producing the effect of an incremental
vacuum.

But how does autovacuum compute the cost of the activity it is doing? There are a set of
tunable values that express how much it costs to fetch a new data page, to scan a dirty
page, and so on:

forumdb=> SELECT name, setting   FROM pg_settings
   WHERE name like 'vacuum_cost%';
          name          | setting
------------------------+---------
 vacuum_cost_delay      | 10
 vacuum_cost_limit      | 10000
 vacuum_cost_page_dirty | 20



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 363 ]

 vacuum_cost_page_hit   | 1
 vacuum_cost_page_miss  | 10

Such values are used for both manual VACUUM and autovacuum, with the exception that
autovacuum has its own autovacuum_vacuum_cost_limit, which is usually is set to 200.

Manual VACUUM is never subjected to the cost machinery and therefore performs until it
finishes its job.

Similar parameters exist for the ANALYZE part because the autovacuum background process
performs VACUUM ANALYZE and therefore you have autovacuum_analyze_threshold
and autovacuum_analyze_scale_factor, which are in charge of defining the window
of activity for the ANALYZE part (that is related to updating the statics on the content of the
table).

You can have more than one background process doing the autovacuum activity. In
particular, the autovacuum_max_workers parameter defines how many background
processes PostgreSQL can start in parallel to perform autovacuum activities. On a single
database, there will be only one worker active in a specific instant, therefore it does not
make sense to raise this value over the number of actively used databases in the system.

Summary
PostgreSQL exploits MVCC to enable high concurrent access to the underlying data, and
this means that every transaction perceives a snapshot of the data while the system keeps
different versions of the same tuples. Sooner or later, invalid tuples will be removed and
the storage space will be reclaimed. On one hand, MVCC provides better concurrency, but
on the other hand, it requires extra effort to reclaim the storage space once transactions no
longer reference dead tuples. PostgreSQL provides VACUUM with this aim and also has a
background process named autovacuum to periodically and non-invasively reclaim storage
space and keep the system clean and healthy.

In order to improve I/O and reliability, PostgreSQL stores data in a journal written
sequentially, the WAL. The WAL is split into segments, and at particular time intervals,
named checkpoints, all the dirty data in memory is forced to a specified position in the
storage and WAL segments are recycled.

In this chapter, you have learned about WAL and MVCC internals, as well as transaction
boundaries and savepoints. You have also seen how to impose a specific transaction
isolation level that, depending on your needs, can protect your data against concurrent
updates of the same tuples.



Transactions, MVCC, WALs, and Checkpoints Chapter 11

[ 364 ]

In the next chapter, you will discover how PostgreSQL can be extended beyond its normal
functionalities by means of pluggable modules named extensions.

References
PostgreSQL Transaction Isolation Levels, official
documentation: https://www.postgresql.org/docs/12/sql-set-transaction.h
tml

PostgreSQL Transaction Isolation Level SERIALIZABLE, official documentation:
https://www.postgresql.org/docs/current/transaction-iso.html#XACT-SERI
ALIZABLE

PostgreSQL Savepoints, official documentation:
https://www.postgresql.org/docs/12/sql-savepoint.html

PostgreSQL VACUUM, official documentation:
https://www.postgresql.org/docs/12/sql-vacuum.html

https://www.postgresql.org/docs/12/sql-set-transaction.html
https://www.postgresql.org/docs/12/sql-set-transaction.html
https://www.postgresql.org/docs/current/transaction-iso.html#XACT-SERIALIZABLE
https://www.postgresql.org/docs/current/transaction-iso.html#XACT-SERIALIZABLE
https://www.postgresql.org/docs/12/sql-savepoint.html
https://www.postgresql.org/docs/12/sql-vacuum.html


12
Extending the Database - the

Extension Ecosystem
Extensions are a powerful way of packaging together related database objects, such as
tables, functions, and routines, making the management of the objects as a single unit
easier. Extensions allow you and other developers to literally extend the already rich
PostgreSQL set of features by providing a clear, concise, and accurate way of installing,
upgrading, and removing features and objects. In this chapter, you will see what extensions
are and how they can be installed, upgraded, or removed by means of automated tools or
manually. Moreover, you will learn how to build your own extension from scratch so that
you will be immediately productive in packaging your own scripts and tools to distribute
across other databases and PostgreSQL instances.

The chapter consists of the following topics:

Introducing extensions
Managing extensions
Exploring the PGXN client
Installing extensions
Creating your own extension



Extending the Database - the Extension Ecosystem Chapter 12

[ 366 ]

Introducing extensions
SQL is a declarative language that allows you to create and manipulate objects, as well as
data. You can group SQL statements into scripts so that you can run the scripts in a more
predictable and reproducible way. However, such scripts are seen by PostgreSQL as a
sequence of unrelated commands, that is, you are responsible for correlating such
commands into appropriate scripts. Things get even worse when you have to deal with
foreign languages or binary libraries; the cluster knows nothing about your aim and how
every single object is related to each other. Luckily, extensions help in getting order out of
chaos.

An extension is a packaged set of files that can be installed into the cluster in order to
provide more functionalities, therefore to "extend" the current cluster set of features.

An extension can be something general, like a new data type, a new index type, or a service
to send emails directly from within PostgreSQL, or it can be something really specific to a
particular use case, like a set of tables and data to provide ad hoc configuration. An
extension does not have any opinion on how you are going to use it, and therefore you are
free to install and forget it or use it in every database of your cluster.

The main aim of the extension mechanism is to provide a common interface for
administering new features. Thanks to extensions, you have a common set of statements to
deploy, install, upgrade, and remove an extension as a whole thing within the cluster. It
does not matter whether your extension is made up of a single function or a whole set of
linked objects, the extension mechanism will handle all the objects at once, making the
administration easier.

PostgreSQL has built a whole ecosystem around the concept of extensions, and therefore
not only does it provide statements to manage extensions, but also a platform to build new
extensions and convert existing scripts into extensions. Then, extensions can be made
publicly available by means of a global repository known as the PostgreSQL eXtensions
Network (PGXN).

You can think of PostgreSQL extensions as being like libraries in programming languages,
such as modules for Perl or, similarly, gems in Ruby, JARs in Java, and so on. Similarly, the 
PGXN infrastructure can be thought of as the CPAN for Perl (or PEAR to PHP, and so on).



Extending the Database - the Extension Ecosystem Chapter 12

[ 367 ]

The extension ecosystem
The beauty of extensions is that they provide a uniform way to bundle modules that can be
deployed (installed) and used in PostgreSQL. Developers are free to contribute to
expanding the number of modules available for PostgreSQL, and this has rapidly grown to
what is now a full ecosystem.

Similar to programming languages, like Perl, Python, and others, PostgreSQL can now be
customized by means of add-ons and modules that share a common infrastructure and
architecture and can be managed by the same statements without any regard for the
features they provide.

Extensions are mainly collected in the PostgreSQL eXtension Network (PGXN), a
repository that can be queried to get information about an extension or to download an
extension (and a particular version of it), and can be updated with new modules.

The PGXN is as similar as CPAN to Perl, CTAN to LaTeX, PEAR to PHP,
and so on.

While you can find PostgreSQL extensions all around the internet, chances are you will
interface with PGXN almost every time you need a new extension. PGXN is not a simple
website or a code repository, but it is a full specification about four main parts: a search
engine, an extension manager, an API (application programming interface), and a client.

The search engine allows users to search for the PGXN content for a specific extension. The
manager is responsible for accepting new extensions (or new extension versions) and
letting users obtain them (that is, distributing the extensions). The API defines how
applications can interact with the manager and the search engine, and therefore how a
client can be built. There are two main clients available—the PGXN website and the
pgxnclient command-line application. While we will discuss the pgxnclient application
in the following subsections, you will see an example of usage of the PGXN website later in
the chapter.



Extending the Database - the Extension Ecosystem Chapter 12

[ 368 ]

Extensions are built on top of the PostgreSQL eXtension System (PGXS), which is a basic
set of rules an extension must adhere to in order to expose a common manageable interface.
In particular, PostgreSQL provides a uniform Makefile that every extension should use to
provide a set of common functionalities to install, upgrade, and remove an extension. You
can inspect the PGXS base Makefile, finding its location with pg_config:

 $ pg_config --pgxs
 /usr/local/lib/postgresql/pgxs/src/makefiles/pgxs.mk

pgxs.mk is the base makefile that provides common functionalities to every extension, and
its usage will become more clear when we show how to create an extension from scratch.

Extension components
An extension is made up of two main components—a control file and a script file:

The control file provides information about the extension and how to manage it,
for instance, where and how to install it, how to upgrade it, and so on. The
control file is somehow the metadata of the extension.
The script file is a SQL file that contains statements to create database objects that
are part of the extension. To some extent, this is the content of the extension. The
script file can, in turn, load other files that complete the extension, like a shared
library and the like.

When you ask PostgreSQL to install an extension, the system inspects the control file to get
information about the extension, ensures the extension has not been already installed, and
then proceeds to execute the script file within a transaction. As the end result, you have the
extension available on your database.

Every extension has a version so that you can decide precisely which version to install. If
you do not specify any target version, PostgreSQL will suppose you want to interact with
the latest version available.

Extensions are installed in the share-directory of the cluster, usually found by executing the
pg_config command with the --sharedir option. Here's an example:

$ pg_config --sharedir
/postgres/12/share/postgresql



Extending the Database - the Extension Ecosystem Chapter 12

[ 369 ]

All the files that make up the extension will be placed in the shared directory, and the
cluster expects the files to be available there to the user that runs the cluster (usually the
operating system user postgres). Once the files are available to the cluster, the extension
must be selectively installed in every database that needs it; remember that PostgreSQL
provides very strong isolation between databases, and therefore an extension loaded into a
database is not automatically available in another database. However, please remember
that template databases (see Chapter 1, Introduction to PostgreSQL) can be used as a
skeleton for newly created databases, and therefore once you install an extension in a
template database, you will find such an extension already available in all the other created
databases.

The control file
An extension control file must have a name that is related to the extension and the
.control suffix. For example, a valid name could be learnpg12.control.

The control file is a text file where you can specify directives, which are instructions and
metadata to let PostgreSQL handle the extension installation. Every directive has a name
and a value. The most common directives are as follows:

directory specifies the path to the extension script path.
default_version specifies the version of the extension to install when the user
does not specify any.
comment is a description of the extension and its aim.
requires is an optional list of other extensions needed to install and use this,
and therefore represents a dependency list.
schema is an SQL schema into which extension objects will be installed.
relocatable indicates whether the extension can be moved into a user-selected
schema.
superuser indicates whether the extension can also be installed by non-
superuser accounts (defaults to yes, meaning that only superusers can install the
extension).

There must be at least one control file per extension, and such a file is known as the main
control file. However, an extension can have additional control files (named secondary control
files).



Extending the Database - the Extension Ecosystem Chapter 12

[ 370 ]

Every secondary control file must target a specific version and must have the same name as
the main control file with the version number prefixed with double dashes; for instance, if
the main control file is learnpg12.control, the secondary files could be learnpg12-
-1.1.control, learnpg12--1.2.control, and so on.

The script file
The script file contains plain SQL used to create extension objects. An extension object
could be a table, a trigger, a function, or a binding for an external language.

Every script file must be named after the extension name and with a suffix of .sql; the
version of the extension is specified with a number preceded by a double dash. As an
example, the file learnpg12--1.0.sql creates objects for version 1.0 of the extension.

There must be at least one script file per extension, but it is possible to specify more than
one: in such cases, every additional file must include the version to upgrade to and the final
target version. For example, the file learnpg12--1.0-1.1.sql provides an upgrade from
version 1.0 to version 1.1.

As already specified, the script file is executed in a transaction and therefore cannot interact
with the transaction boundaries (that is, it can issue neither a COMMIT nor a ROLLBACK).
Similarly, executing in a transaction, a script file is prevented from executing anything that
cannot be executed in a transaction block (for example, utility commands such as VACUUM).

Managing extensions
Every extension is managed at a database level, meaning that every database that needs an
extension must manage such an extension life cycle. In other words, there is not a per-
cluster way of managing an extension and applying it to every database within the cluster.

Extensions are mainly managed by means of three SQL statements: CREATE EXTENSION,
DROP EXTENSION, and ALTER EXTENSION, to respectively install an extension in a
database, remove the extension from the database, and modify extension attributes or
upgrade them.



Extending the Database - the Extension Ecosystem Chapter 12

[ 371 ]

Every extension is specified by a mnemonic and a version; if a version is not specified,
PostgreSQL assumes you want to deal with the latest available version or the one that is
already installed.

In the following subsections, each of the three management statements will be explained.

Creating an extension
The CREATE EXTENSION statement allows you to install an existing extension into the
current database.

The synopsis of the statement is as follows:

CREATE EXTENSION [ IF NOT EXISTS ] extension_name
    [ WITH ] [ SCHEMA schema_name ]
             [ VERSION version ]
             [ FROM old_version ]
             [ CASCADE ]

The extension name is the mnemonic for the extension, and as you can see, you can specify
the version number of the extension to install. In the case that the extension depends on any
other extension, the CASCADE option allows the system to automatically execute a recursive
CREATE EXTENSION for the dependency. You can decide the schema into which the
extension objects must be placed, and of course, that makes sense only for such extensions
that can be relocated.

The FROM keyword is used for creating an extension with a non-extension module, and the
latter is an obsolete way of packaging PostgreSQL objects and therefore will not be
explained here.

Lastly, as you can imagine, IF NOT EXITS allows the command to gracefully fail in the
case that the extension has been already installed. More precisely, doing nothing in the case
that the extension has been already installed in the database.

In order to better see how CREATE EXTENSION works, assume we want to install the
PL/Perl procedural language in the forumdb database; since the PL/Perl extension is
available as the PostgreSQL contrib module, you should have the extension already
available within the cluster. Therefore, in order to install it, you have to do the following:

forumdb=# CREATE EXTENSION plperl;
CREATE EXTENSION



Extending the Database - the Extension Ecosystem Chapter 12

[ 372 ]

Please note that the PL/Perl extension (mnemonic plperl) requires installation by means of
the database administrator. If you try to install the same extension again, the command fails
unless you use the IF NOT EXISTS clause:

forumdb=# CREATE EXTENSION plperl;
ERROR:  extension "plperl" already exists

forumdb=# CREATE EXTENSION IF NOT EXISTS plperl;
NOTICE:  extension "plperl" already exists, skipping
CREATE EXTENSION

As another easy example, we can install the pg_stat_statements extension at a specific
version:

forumdb=# CREATE EXTENSION pg_stat_statements VERSION '1.4';
CREATE EXTENSION

Viewing installed extensions
In the psql terminal, it is possible to get a list of installed extensions by means of the \dx
special command:

forumdb=# \dx
                                     List of installed extensions
        Name        | Version |   Schema   |
Description
--------------------+---------+------------+-------------------------------
----------------------------
 pg_stat_statements | 1.4     | public     | track execution statistics of
all SQL statements executed
 plperl             | 1.0     | pg_catalog | PL/Perl procedural language
 plpgsql            | 1.0     | pg_catalog | PL/pgSQL procedural language
(3 rows)

The very same information can be found out from the special catalog pg_extension,
which can be joined with pg_namespace to extract human-readable information about the
schema the extension is living in:

forumdb=# SELECT x.extname, x.extversion, n.nspname
          FROM pg_extension x JOIN pg_namespace n
          ON n.oid = x.extnamespace;

      extname       | extversion |  nspname
--------------------+------------+------------



Extending the Database - the Extension Ecosystem Chapter 12

[ 373 ]

 plpgsql            | 1.0        | pg_catalog
 plperl             | 1.0        | pg_catalog
 pg_stat_statements | 1.4        | public
(3 rows)

Finding out available extension versions
It is possible to inspect the cluster to get information about available extension versions,
which means versions you can actually install in a database. The special catalog
pg_available_extension_versions allows you to get all the available versions for any
available extension. As an example, the pg_stat_statements extension has the following
values available in the cluster:

forumdb=# SELECT name, version
          FROM pg_available_extension_versions
          WHERE name = 'pg_stat_statements';

        name        | version
--------------------+---------
 pg_stat_statements | 1.4
 pg_stat_statements | 1.5
 pg_stat_statements | 1.6
(3 rows)

It is useful to know that the pg_stat_statements extension can be installed in a version
between 1.4 and 1.6.

You should always install the latest version of an extension, that is, the
one with the highest version number, unless you are forced to install a
specific version for backward compatibility.

Altering an existing extension
The ALTER EXTENSION statement is very rich and complex and allows you to fully modify
an existing extension. The statement allows four main changes to an existing extension:

Upgrading the extension to a new version
Setting the schema of a relocatable extension
Adding a database object to the extension
Removing a database object from the extension



Extending the Database - the Extension Ecosystem Chapter 12

[ 374 ]

In order to upgrade an already installed extension, you must specify the UPDATE clause,
specifying the target version number. As a simple example, imagine we want to upgrade
the pg_stat_statements extension from version 1.4 to version 1.6; assuming the
upgrade files are already installed in the cluster, you can simply do the following:

forumdb=# ALTER EXTENSION pg_stat_statements UPDATE TO '1.6';
ALTER EXTENSION

forumdb=# \dx pg_stat_statements
                                   List of installed extensions
        Name        | Version | Schema |                        Description
--------------------+---------+--------+-----------------------------------
------------------------
 pg_stat_statements | 1.6     | public | track execution statistics of all
SQL statements executed
(1 row)

Moving a relocatable extension from one schema to another is done by specifying the SET
SCHEMA clause, for example:

forumdb=# ALTER EXTENSION pg_stat_statements SET SCHEMA my_schema;
ALTER EXTENSION

forumdb=# \dx pg_stat_statements
                                     List of installed extensions
        Name        | Version |  Schema   |
Description
--------------------+---------+-----------+--------------------------------
---------------------------
 pg_stat_statements | 1.6     | my_schema | track execution statistics of
all SQL statements executed
(1 row)

That will move all the extension objects into the schema my_schema, which was created
earlier.

If you want to remove an existing database object from one extension, for instance, a table,
you can use the DROP clause followed by the type of the object and, of course, its name. As
an example, if we remove the view pg_stat_statements from the extension with the
same name, we can specify the object type (VIEW) after the DROP clause as follows:

 forumdb=# ALTER EXTENSION pg_stat_statements
           DROP VIEW my_schema.pg_stat_statements;
 ALTER EXTENSION



Extending the Database - the Extension Ecosystem Chapter 12

[ 375 ]

What happens is that the view is still there, but unrelated to the extension, and therefore the
view and the extension now have a different life cycle. In other words, changing the
extension does not imply any more changes to the view itself because the latter is now a
user-defined object, not an extension-defined one.

Of course, it is possible to add a new object to an extension with the ADD clause, which
works as the opposite of the DROP one and requires the type and name of the object. For
instance, to add the pg_stat_statements view back to the extension, it is possible to do
the following:

 forumdb=# ALTER EXTENSION pg_stat_statements
           ADD VIEW my_schema.pg_stat_statements;
 ALTER EXTENSION

You can also add your own objects to the extension, so for example, adding a new table to
the extension means that the extension will undergo the extension life cycle:

 forumdb=# ALTER EXTENSION pg_stat_statements
           ADD TABLE my_schema.foo;
 ALTER EXTENSION

The foo table is now part of the extension, and as such, it cannot be manipulated anymore
with statements that do not take care of the extension. For instance, if you try to delete the
table, PostgreSQL will prevent you from damaging the extension:

 forumdb=# DROP TABLE my_schema.foo;
 ERROR:  cannot drop table my_schema.foo because extension
pg_stat_statements requires it
 HINT:  You can drop extension pg_stat_statements instead.

You can now remove the table from the extension, or drop the whole extension.

As you have seen, having extensions packages objects together in a way that prevents a
single object being alone in a different life cycle.

Removing an existing extension
DROP EXTENSION deletes an extension from the current database. The synopsis of the
statement is the following:

DROP EXTENSION [ IF EXISTS ] name [, ...] [ CASCADE | RESTRICT ]

The command supports the IF EXISTS clause as many other statements do. Moreover, it is
possible to specify more than one name of the extension to be removed from the database.



Extending the Database - the Extension Ecosystem Chapter 12

[ 376 ]

The CASCADE option also removes database objects that depend on the objects of the
extension, while its counterpart RESTRICT makes the command fail if there are other
objects that still depend on this extension. As an example, the following statement removes
two extensions in a single pass, also removing all the objects that depend on those
extensions:

forumdb=# DROP EXTENSION plperl, plpgsql CASCADE;
NOTICE:  drop cascades to function get_max(integer,integer)
DROP EXTENSION

As you can see, since the user-defined function get_max() was dependent on one of the
two extensions, the CASCADE option made the process to drop the function too.

To summarize, you have learned how to manually manage an extension, from installing it
to upgrading it or removing it; in the next section, you will learn how to perform the same
steps in a more automated way.

Exploring the PGXN client
The PGXN client is an external application, written in Python, that works as a command-
line interface to PGXN. The application, named pgxnclient, works by means of
commands, which are actions such as install, download, uninstall, and so on, allowing a
database administrator to instrument PGXN and work with extensions.

To some extent, pgxnclient works the same as the command cpan (or
cpanm) for Perl, zef for Raku, pip for Python, and so on.
Being an external application means that pgxnclient is not distributed
with PostgreSQL, and therefore you need to install it on your machines
before you can use it. Installing pgxnclient is not mandatory in order to
use PostgreSQL extensions, but it can make your life a lot easier.



Extending the Database - the Extension Ecosystem Chapter 12

[ 377 ]

In the following subsections, you will see how to install pgxnclient on main Unix and
Unix-like operating systems, but before that, it is important to let you know that, once
installed, you will find two executables on your system: pgxn and pgxnclient. You can
think of those executables as aliases of one another, even if this is not really true (one wraps
the other); however, you can use either one you please, obtaining the very same result. In
this chapter, we will use pgxn as the main executable.

Installing pgxnclient on Debian GNU/Linux and
derivates
pgxnclient is packaged for Debian GNU/Linux and derivates, and that means you can
simply ask apt to install it:

$ sudo apt install pgxnclient
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages were automatically installed and are no longer
required:
  libecpg-compat3 libecpg-dev libecpg6 libgd-perl libgdbm5 libicu60
libperl5.26 libpgtypes3 libpython3.6 libpython3.6-minimal libpython3.6-
stdlib
  libreadline7 libtinfo5 perl-modules-5.26 pgadmin4-doc
Use 'sudo apt autoremove' to remove them.
The following NEW packages will be installed
  pgxnclient
0 to upgrade, 1 to newly install, 0 to remove and 2 not to upgrade.
Need to get 31,4 kB of archives.
After this operation, 162 kB of additional disk space will be used.
Get:1 http://apt.postgresql.org/pub/repos/apt disco-pgdg/main amd64
pgxnclient all 1.3-1.pgdg19.04+1 [31,4 kB]
Fetched 31,4 kB in 1s (54,5 kB/s)
Selecting previously unselected package pgxnclient.
(Reading database ... 392532 files and directories currently installed.)
Preparing to unpack .../pgxnclient_1.3-1.pgdg19.04+1_all.deb ...
Unpacking pgxnclient (1.3-1.pgdg19.04+1) ...
Setting up pgxnclient (1.3-1.pgdg19.04+1) ...
Processing triggers for man-db (2.8.5-2) ...

Once the program has been installed, you can simply test it with the --version option,
which will print the version number you installed:

$ pgxn --version
pgxnclient 1.3



Extending the Database - the Extension Ecosystem Chapter 12

[ 378 ]

Installing pgxnclient on Fedora Linux
pgxnclient is packaged for Fedora as well, so you can install it with the operating system
package manager:

$ sudo dnf install -y pgxnclient
...

Total download size: 105 k
Installed size: 406 k
Downloading Packages: pgxnclient-1.3-1.f30.x86_64.rpm
...
Installed:
  pgxnclient-1.3-1.f30.x86_64
Complete!

Once the process has completed, you can query the application to verify it is actually
working:

$ pgxn --version
pgxnclient 1.3

Installing pgxnclient on FreeBSD
pgxnclient is packaged for FreeBSD, so you can install it via the pkg tool or via the ports.
The fastest way is by means of pkg, and all you have to do is ask to install the program:

$ sudo pkg install --yes pgxnclient
Updating FreeBSD repository catalogue...
FreeBSD repository is up to date.
All repositories are up to date.
New packages to be INSTALLED:
        pgxnclient: 1.2.1_3

Number of packages to be installed: 1

108 KiB to be downloaded.
[1/1] Fetching pgxnclient-1.2.1_3.txz: 100%  108 KiB 110.4kB/s    00:01
Checking integrity... done (0 conflicting)
[1/1] Installing pgxnclient-1.2.1_3...
[1/1] Extracting pgxnclient-1.2.1_3: 100%

Once the process has finished, you can query the tool for its version to see if it is working:

$ pgxn --version
pgxnclient 1.2.1



Extending the Database - the Extension Ecosystem Chapter 12

[ 379 ]

Installing pgxnclient from sources
You can always install pgxnclient from sources, even if this is suggested only if you are
on an operating system that does not provide a packaged version, or if the version is out of
date with regard to your needs. You can download a compressed version of the latest
release from the official project GitHub repository, for example:

$ wget https://github.com/pgxn/pgxnclient/archive/v1.3.zip
Connecting to github.com (github.com)|140.82.118.4|:443... connected.
HTTP request sent, awaiting response... 302 Found
Location: https://codeload.github.com/pgxn/pgxnclient/zip/v1.3 [following]
--2020-02-28 19:53:23--
https://codeload.github.com/pgxn/pgxnclient/zip/v1.3
Resolving codeload.github.com (codeload.github.com)... 140.82.114.9
Connecting to codeload.github.com
(codeload.github.com)|140.82.114.9|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: unspecified [application/zip]
Saving to: ‘v1.3.zip’

2020-02-28 19:53:24 (313 KB/s) - ‘v1.3.zip’ saved [101925]

Once you have the compressed archive, you need to decompress it and enter the directory
that will be created with it – named after the version of PXGN you have downloaded – in
our case, pgxnclient-3.1. Once you are in the directory, executing the Python script
setup.py will allow you to install the application:

$ unzip v1.3.zip
...
$ cd pgxnclient-1.3
$ sudo python setup.py install
...
Installed /usr/lib/python2.7/site-packages/pgxnclient-1.3-py2.7.egg
Processing dependencies for pgxnclient==1.3
Searching for six==1.12.0
Best match: six 1.12.0
Processing six-1.12.0-py2.7.egg
six 1.12.0 is already the active version in easy-install.pth

Using /usr/lib/python2.7/site-packages/six-1.12.0-py2.7.egg
Finished processing dependencies for pgxnclient==1.3

Once you have completed the installation, you can query the application to verify that it is
working:

$ pgxn --version
pgxnclient 1.3



Extending the Database - the Extension Ecosystem Chapter 12

[ 380 ]

The pgxnclient command-line interface
The PGXN client application provides a command-line interface similar to other command-
based applications, such as cpan and git. You can get a list of the main commands
by asking for help:

$ pgxn help
usage: pgxn [--version] [--help] COMMAND ...

Interact with the PostgreSQL Extension Network (PGXN).

optional arguments:
  --version  print the version number and exit
  --help     show this help message and exit

available commands:
  COMMAND    the command to execute. The complete list is available using
             `pgxn help --all`. Builtin commands are:
    check    run a distribution's test
    download
             download a distribution from the network
    help     display help and other program information
    info     print information about a distribution
    install  download, build and install a distribution
    load     load a distribution's extensions into a database
    mirror   return information about the available mirrors
    search   search in the available extensions
    uninstall
             remove a distribution from the system
    unload   unload a distribution's extensions from a database

Usually, you will use the following subset of commands:

search to search for distributions by means of keywords.
info to have a closer look at an extension.
download to download (but not install) an extension.
install to download and install an extension in the cluster.
load to execute CREATE EXTENSION against a specific database.
unload to execute DROP EXTENSION against a specific database.
uninstall to remove an extension from a cluster.

The smallest set of commands you will probably use are search, install, and
uninstall.



Extending the Database - the Extension Ecosystem Chapter 12

[ 381 ]

For every command, you can get more detailed help if you specify the command as an
argument to the help command itself. For example, to get more information about the
search command, you can do the following:

$ pgxn help search
usage: pgxn search [--help] [--mirror URL] [--verbose] [--yes]
                   [--docs | --dist | --ext]
                   TERM [TERM ...]

search in the available extensions

positional arguments:
  TERM          a string to search

optional arguments:
  --help        show this help message and exit
  --docs        search in documentation [default]
  --dist        search in distributions
  --ext         search in extensions

global options:
  --mirror URL  the mirror to interact with [default:
https://api.pgxn.org/]
  --verbose     print more information
  --yes         assume affirmative answer to all questions

In the following sections, you will see how to use PXGN effectively to install an extension.

Installing extensions
Usually, the workflow for getting an extension up and running involves a few steps. First,
you need to find out which extension to use, which version, and the compatibility with
your cluster. Once you have found out the extension you need, you have to install it in the
cluster.

Installing it in the cluster really means deploying it in the cluster, that is, moving all the
extension-related files and libraries into the shared directory of the cluster so that
PostgreSQL can seek the code required to run the extension. 

Lastly, you need to create the extension in every single database that needs it. Creating an
extension is like enabling the usage of the extension within a specific database.



Extending the Database - the Extension Ecosystem Chapter 12

[ 382 ]

In order to demonstrate the usage of an extension, we will install Orafce, the Oracle
compatibility functions extension. Describing the whole extension is not the aim of this
section, so let's just say that this extension provides a set of functions, data types, and other
stuff that makes PostgreSQL look like an Oracle database so that migrating an Oracle-based
application becomes easier.

The following subsections describe every single step required to get the extension up and
running.

Installing the extension via pgxnclient
Usually, the first step in installing an extension is getting details about it– that means
searching for an extension. In this particular case, we already know what extension we are
looking for, but let's search it via pgxn:

$ pgxn search --ext orafce
orafce 3.9.0
    Oracle's compatibility functions and packages

The search command explores the ecosystem to find every extension related to our search
criteria – in this particular case, the extension name (--ext). Thanks to pgxn, we now know
that we need to install orafce version 3.9.0, the latest stable version available at the time
of writing.

Once you have decided which extension you need, you can run the install command of
pgxn to let the installation proceed. The installation workflow includes downloading,
compiling (if needed) the source tree, packaging it, and placing it in the shared directory of
the PostgreSQL cluster.

You can inspect the ongoing process in very rich detail thanks to the --verbose option,
and if you are using pgxn with a different user from the one that runs the cluster, you can
use the --sudo option to inform pgxn to switch the user when needed:

$ pgxn install orafce --verbose --sudo
DEBUG: running pg_config --libdir
DEBUG: running command: ['/usr/local/bin/pg_config', '--libdir']
DEBUG: testing if /usr/local/lib is writable
DEBUG: opening url: http://api.pgxn.org/index.json
DEBUG: opening url: http://api.pgxn.org/dist/orafce.json
INFO: best version: orafce 3.9.0
...
/usr/bin/install -c -m 755  orafce.so '/usr/local/lib/postgresql/orafce.so'
/usr/bin/install -c -m 644 .//orafce.control



Extending the Database - the Extension Ecosystem Chapter 12

[ 383 ]

'/usr/local/share/postgresql/extension/'
/usr/bin/install -c -m 644 .//orafce--3.9.sql .//orafce--3.2--3.3.sql
.//orafce--3.3--3.4.sql .//orafce--3.4--3.5.sql .//orafce--3.5--3.6.sql
.//orafce--3.6--3.7.sql .//orafce--3.7--3.8.sql .//orafce--3.8--3.9.sql
'/usr/local/share/postgresql/extension/'
/usr/bin/install -c -m 644 .//README.asciidoc .//COPYRIGHT.orafce
.//INSTALL.orafce '/usr/local/share/doc/postgresql/extension/'

Installing the extension manually
The starting point is the PGXN website, where you can search for a specific extension by
name or by keywords. Once you browse the PGXN site, you have a textbox where you can
insert the keyword for the search, and since we already know the extension name, we can
choose Extensions from the pull-down menu. The web interface is shown in the following
screenshot:



Extending the Database - the Extension Ecosystem Chapter 12

[ 384 ]

The result of our search will be displayed, as shown in the following screenshot, so we can
enter the extensions page with all the information and the documentation for the
installation process:

Once we have found the extension we are looking for, we can download it by clicking on
the download icon from the page like the one shown in the following screenshot. The result
is that we will download a compressed zip file with all the stuff related to the extension:

In order to proceed further, you first have to decompress the archive you downloaded:

$ unzip orafce-3.9.0.zip
Archive:  orafce-3.9.0.zip
   creating: orafce-3.9.0/
...



Extending the Database - the Extension Ecosystem Chapter 12

[ 385 ]

Now you can enter the directory created for this extension and compile it:

$ cd orafce-3.9.0
$ make
cc -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-statement
-Werror=vla -Wendif-labels -Wmissing-format-attribute -Wformat-security -
fno-strict-aliasing -fwrapv -Wno-unused-command-line-argument -O2 -pipe  -
fstack-protector-strong -fno-strict-aliasing  -fPIC -DPIC -I. -I./ -
I/usr/local/include/postgresql/server -
I/usr/local/include/postgresql/internal  -I/usr/local/include -
I/usr/local/include -I/usr/local/include  -c -o parse_keyword.o
parse_keyword.c
cc -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-statement
-Werror=vla -Wendif-labels -Wmissing-format-attribute -Wformat-security -
fno-strict-aliasing -fwrapv -Wno-unused-command-line-argument -O2 -pipe  -
fstack-protector-strong -fno-strict-aliasing  -fPIC -DPIC -I. -I./ -
I/usr/local/include/postgresql/server -
I/usr/local/include/postgresql/internal  -I/usr/local/include -
I/usr/local/include -I/usr/local/include  -c -o convert.o convert.c
...

Once the compilation process has finished, you can install the extension (but this will
require you to either run it as the operating system user that manages the cluster or via
sudo):

$ sudo make install
/bin/mkdir -p '/usr/local/lib/postgresql'
/bin/mkdir -p '/usr/local/share/postgresql/extension'
/bin/mkdir -p '/usr/local/share/postgresql/extension'
/bin/mkdir -p '/usr/local/share/doc/postgresql/extension'
/usr/bin/install -c -m 755  orafce.so '/usr/local/lib/postgresql/orafce.so'
/usr/bin/install -c -m 644 .//orafce.control
'/usr/local/share/postgresql/extension/'
/usr/bin/install -c -m 644 .//orafce--3.9.sql .//orafce--3.2--3.3.sql
.//orafce--3.3--3.4.sql .//orafce--3.4--3.5.sql .//orafce--3.5--3.6.sql
.//orafce--3.6--3.7.sql .//orafce--3.7--3.8.sql .//orafce--3.8--3.9.sql
'/usr/local/share/postgresql/extension/'
/usr/bin/install -c -m 644 .//README.asciidoc .//COPYRIGHT.orafce
.//INSTALL.orafce '/usr/local/share/doc/postgresql/extension/'

And you are done: the extension has been deployed to the cluster and you can use it in
your databases via the CREATE EXTENSION statement.



Extending the Database - the Extension Ecosystem Chapter 12

[ 386 ]

Using the installed extension
Once the extension has been installed – that means deployed to the PostgreSQL cluster either
manually or via pgxn – you can create the extension in every single database you need it
for.

The Orafce extension must be created by a superuser, so you need to connect to the
database as an administrator in order to execute the CREATE EXTENSION statement:

 $ psql  -U postgres forumdb
 psql (12.1, server 12.2)
 Type "help" for help.

 forumdb=# CREATE EXTENSION orafce;
 CREATE EXTENSION

If you now inspect the extensions installed in the database, you will see the freshly created
Orafce at version 3.9 – the same as we found when searching the extension with pgxn or
on the website:

forumdb=# \dx
                                                   List of installed
extensions
   Name   | Version |   Schema   |
Description
 ---------+---------+------------+-----------------------------------------
------------------------------------------------------
  orafce  | 3.9     | public     | Functions and operators that emulate a
subset of functions and packages from the Oracle RDBMS
  plpgsql | 1.0     | pg_catalog | PL/pgSQL procedural language
 (2 rows)

Once the extension has been installed in the database, every user can use it. As a simple
test, you can query the DUAL table that Oracle has and that Orafce created for your legacy
queries to continue to run:

 $ psql -U luca forumdb
 psql (12.1, server 12.2)
 Type "help" for help.

 forumdb=> SELECT 1 FROM dual;
  ?column?
 ----------
         1
 (1 row)



Extending the Database - the Extension Ecosystem Chapter 12

[ 387 ]

Removing an installed extension
It could happen that you don't need an extension anymore, and therefore you want to
remove it from your cluster.

If a database does not need the extension and its related stuff anymore, you can issue a
DROP EXTENSION statement and the extension will disappear from your database. Of
course, if the extension has been installed as a database superuser, you need to issue the
statement as a superuser too. With regard to the Orafce example, as a superuser, you can do
the following:

$ psql -U postgres forumdb
psql (12.1, server 12.2)
Type "help" for help.

forumdb=# DROP EXTENSION orafce;
DROP EXTENSION

As you can imagine, inspecting the extension list does not show the Orafce entry anymore,
and all the features, including the DUAL table, have disappeared:

forumdb=# \dx
ù                 List of installed extensions
  Name   | Version |   Schema   |         Description
---------+---------+------------+------------------------------
 plpgsql | 1.0     | pg_catalog | PL/pgSQL procedural language
(1 row)

forumdb=# SELECT 1 FROM DUAL;
ERROR:  relation "dual" does not exist
LINE 1: SELECT 1 FROM DUAL;

Having removed an extension from a single database does not remove it from other
databases where you have executed an explicit CREATE EXTENSION function. It doesn't
remove the extension files and libraries from the cluster share directory either.
The exact way of removing (undeploying) the extension from your cluster depends on the
way you first installed it in the cluster.



Extending the Database - the Extension Ecosystem Chapter 12

[ 388 ]

Removing an extension via pgxncliet
The uninstall command of pgxn performs the exact opposite actions to the install one: it 
removes all files related to an extension. The command-line options are the same, and this
leads us to execute a command as simple as the following one:

$ pgxn uninstall orafce --sudo --verbose
DEBUG: running pg_config --libdir
DEBUG: running command: ['/usr/local/bin/pg_config', '--libdir']
DEBUG: testing if /usr/local/lib is writable
DEBUG: opening url: http://api.pgxn.org/index.json
DEBUG: opening url: http://api.pgxn.org/dist/orafce.json
INFO: best version: orafce 3.9.0
...
rm -f '/usr/local/lib/postgresql/orafce.so'
rm -f '/usr/local/share/postgresql/extension'/orafce.control
rm -f '/usr/local/share/postgresql/extension'/orafce--3.9.sql
'/usr/local/share/postgresql/extension'/orafce--3.2--3.3.sql
'/usr/local/share/postgresql/extension'/orafce--3.3--3.4.sql
'/usr/local/share/postgresql/extension'/orafce--3.4--3.5.sql
'/usr/local/share/postgresql/extension'/orafce--3.5--3.6.sql
'/usr/local/share/postgresql/extension'/orafce--3.6--3.7.sql
'/usr/local/share/postgresql/extension'/orafce--3.7--3.8.sql
'/usr/local/share/postgresql/extension'/orafce--3.8--3.9.sql
rm -f '/usr/local/share/doc/postgresql/extension'/README.asciidoc
'/usr/local/share/doc/postgresql/extension'/COPYRIGHT.orafce
'/usr/local/share/doc/postgresql/extension'/INSTALL.orafce

As you can see from the bottom lines, all the files have been removed from the cluster
shared directory. The extension is therefore gone forever, and if you need to install it again,
you will need to restart from the very first step.

Removing a manually installed extension 
You need to use make again, this time with the uninstall command, from the directory
where you extracted the downloaded compressed archive:

$ cd orafce-3.9.0
$ sudo make uninstall
rm -f '/usr/local/lib/postgresql/orafce.so'
rm -f '/usr/local/share/postgresql/extension'/orafce.control
rm -f '/usr/local/share/postgresql/extension'/orafce--3.9.sql
'/usr/local/share/postgresql/extension'/orafce--3.2--3.3.sql
'/usr/local/share/postgresql/extension'/orafce--3.3--3.4.sql



Extending the Database - the Extension Ecosystem Chapter 12

[ 389 ]

'/usr/local/share/postgresql/extension'/orafce--3.4--3.5.sql
'/usr/local/share/postgresql/extension'/orafce--3.5--3.6.sql
'/usr/local/share/postgresql/extension'/orafce--3.6--3.7.sql
'/usr/local/share/postgresql/extension'/orafce--3.7--3.8.sql
'/usr/local/share/postgresql/extension'/orafce--3.8--3.9.sql
rm -f '/usr/local/share/doc/postgresql/extension'/README.asciidoc
'/usr/local/share/doc/postgresql/extension'/COPYRIGHT.orafce
'/usr/local/share/doc/postgresql/extension'/INSTALL.orafce

To summarize, you have seen how to deal with an extension by means of the PGXN client
or manually by obtaining it through the PGXN infrastructure. In the following section, you
will learn how to build your own extension.

Creating your own extension
In this section, we will build an extension from scratch, so that you will better understand
how they are made up. The idea is to let you know how to convert even your own SQL
scripts into an extension, with all the advantages that an extension can provide in terms of
manageability.

Defining an example extension
In order to demonstrate how to build your own extension, we are going to create a simple
extension that applies to the forum database, providing some more features. In particular,
we are going to define an extension named tagext that will provide a utility function that,
given a particular tag within the tag table, will return the full path to that tag with all
ancestors. For example, the tag Linux is a child of the tag Operating Systems and
therefore the path to the tag Linux is Operating System > Linux.

In particular, we want our extension to provide us with a function named tag_path that,
given a tag, provides the tag path as in the following example:

forumdb=> SELECT tag_path( 'Kubuntu' );
                   tag_path
----------------------------------------------
 Operating Systems > Linux > Ubuntu > Kubuntu
(1 row)

In the following sections, you will see how to reach the preceding result by implementing
the example extension.



Extending the Database - the Extension Ecosystem Chapter 12

[ 390 ]

Creating extension files
Let's start with the control file first, where we insert some basic information about our
extension:

comment = 'Tag Programming Example Extension'
default_version = '1.0'
superuser       = false
relocatable     = true

The preceding control file, named tagext.control, contains a comment that describes the
extension to other administrators, specifies the default_version, that is the version to be
installed if none is specified by the user, and dictates that this extension can be installed by
any user (superuser = false) and moved to any schema the user wishes to
(relocatable = true).

Then comes the Makefile, that is, the file that will build and install the extension:

EXTENSION = tagext
DATA = tagext--1.0.sql

PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)
include $(PGXS)

The Makefile is very simple and can be used as a skeleton for other extension Makefiles. In
particular, we define the name of the extension we are going to manage via this Makefile, as
well as the file to use for producing the extension content: this is specified in the DATA
variable and therefore we are instrumenting the system to use the tagext--1.0.sql file to
be used to create the objects this extension provides.

The trailing lines define the use of the PGXS build infrastructure and in particular, are used
to include the PGXS base Makefile, which is computed from the output of the pg_config
command.

With all the infrastructure in place, it is now possible to define the content of the extension,
therefore the tagext--1.0.sql file contains the definition of a function (see Chapter 7,
Server Side Programming) that, given a specific tag, returns the text representation of the tag
path with all the ancestors:

CREATE OR REPLACE FUNCTION tag_path( tag_to_search text )
RETURNS TEXT
AS $CODE$
DECLARE



Extending the Database - the Extension Ecosystem Chapter 12

[ 391 ]

  tag_path text;
  current_parent_pk int;
BEGIN

  tag_path = tag_to_search;

  SELECT parent
  INTO   current_parent_pk
  FROM   tags
  WHERE  tag = tag_to_search;

  -- here we must loop
  WHILE current_parent_pk IS NOT NULL LOOP
      SELECT parent, tag || ' > ' || tag_path
      INTO   current_parent_pk, tag_path
      FROM   tags
      WHERE  pk = current_parent_pk;
  END LOOP;

  RETURN tag_path;
END
$CODE$
LANGUAGE plpgsql;

The function works by taking a tag as an argument, then querying the tags table to get the
parent primary key, and then looping on every parent tag. At every loop, the tag_path
text string is enriched by the parent tag name, so that the end result is to have a string like
parent 1 > parent 2 > child.

Once all the files are ready, we will have a situation like the following, with the Makefile,
the control file, and the extension content file:

$ ls -1
Makefile
tagext--1.0.sql
tagext.control

Installing the extension
Having all the pieces in place, it is possible to use the Makefile to install (deploy) the
extension in the cluster:

$ sudo make install
/bin/mkdir -p '/usr/local/share/postgresql/extension'
/bin/mkdir -p '/usr/local/share/postgresql/extension'



Extending the Database - the Extension Ecosystem Chapter 12

[ 392 ]

/usr/bin/install -c -m 644 .//tagext.control
'/usr/local/share/postgresql/extension/'
/usr/bin/install -c -m 644 .//tagext--1.0.sql
'/usr/local/share/postgresql/extension/'

And it is now possible to install the extension in the forumdb database by means of CREATE
EXTENSION and then try to execute the function the extension defines:

forumdb=> CREATE EXTENSION tagext;
CREATE EXTENSION

forumdb=> \dx tagext
                 List of installed extensions
  Name  | Version | Schema |            Description
--------+---------+--------+-----------------------------------
 tagext | 1.0     | public | Tag Programming Example Extension
(1 row)

forumdb=> SELECT tag_path( 'Kubuntu' );
                   tag_path
----------------------------------------------
 Operating Systems > Linux > Ubuntu > Kubuntu
(1 row)

The function works and can build up a tag tree or path for the specified tag, with all its
ancestors, as well as PostgreSQL reporting that the extension is at version 1.0.

Creating an extension upgrade
Imagine we want to enrich our extension function so that the user is able to specify the tag
separator in the path output. We can produce a new version of the function, drop the old
one, and allow the user to upgrade the extension with the new content.

Let's start by creating an upgrade of the content of the extension, that is, the function the
extension provides. First of all, create a file named tagext--1.0--1.1.sql and place the
following content in it:

DROP FUNCTION IF EXISTS tag_path( text );

CREATE OR REPLACE FUNCTION tag_path( tag_to_search text,
                                     delimiter text DEFAULT ' > ' )
RETURNS TEXT
AS $CODE$
DECLARE



Extending the Database - the Extension Ecosystem Chapter 12

[ 393 ]

  tag_path text;
  current_parent_pk int;
BEGIN

  tag_path = tag_to_search;

  SELECT parent
  INTO   current_parent_pk
  FROM   tags
  WHERE  tag = tag_to_search;

  -- here we must loop
  WHILE current_parent_pk IS NOT NULL LOOP
      SELECT parent, tag || delimiter || tag_path
      INTO   current_parent_pk, tag_path
      FROM   tags
      WHERE  pk = current_parent_pk;
  END LOOP;

  RETURN tag_path;
END
$CODE$
LANGUAGE plpgsql;

The file first performs a drop of the older version of the function (if that exists and has been
installed by the previous version of this extension). After that, a new function with an
additional optional parameter is created. The function does exactly the same job as the
previous one, but this time it exploits the variable delimiter to separate multiple tags.

Since we added a new file to the extension, we need to inform the Makefile about the file
and therefore we have to add the new file to the DATA variable so that the Makefile
content looks like the following:

EXTENSION = tagext
DATA = tagext--1.0.sql tagext--1.0--1,1.sql

PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)
include $(PGXS)



Extending the Database - the Extension Ecosystem Chapter 12

[ 394 ]

Performing an extension upgrade
With the new Makefile and the tagext--1.0--1.1.sql files, the situation on the disk
looks like the following:

$ ls -1
Makefile
tagext--1.0--1.1.sql
tagext--1.0.sql
tagext.control

It is therefore now possible to install (deploy) the extension to the cluster, again running an
install command:

$ sudo make install
/bin/mkdir -p '/usr/local/share/postgresql/extension'
/bin/mkdir -p '/usr/local/share/postgresql/extension'
/usr/bin/install -c -m 644 .//tagext.control
'/usr/local/share/postgresql/extension/'
/usr/bin/install -c -m 644 .//tagext--1.0.sql .//tagext--1.0--1.1.sql
'/usr/local/share/postgresql/extension/'

And within the database, it is possible to upgrade the extension with ALTER EXTENSION:

forumdb=> ALTER EXTENSION tagext UPDATE TO '1.1';
ALTER EXTENSION

forumdb=> \dx tagext
                 List of installed extensions
  Name  | Version | Schema |            Description
--------+---------+--------+-----------------------------------
 tagext | 1.1     | public | Tag Programming Example Extension
(1 row)



Extending the Database - the Extension Ecosystem Chapter 12

[ 395 ]

As you can see, the extension version is now at 1.1, so it is possible to invoke the
tag_path function with or without the new argument:

forumdb=> SELECT tag_path( 'Kubuntu' );
                   tag_path
----------------------------------------------
 Operating Systems > Linux > Ubuntu > Kubuntu
(1 row)

forumdb=> SELECT tag_path( 'Kubuntu', ' --> ' );
                      tag_path
----------------------------------------------------
 Operating Systems --> Linux --> Ubuntu --> Kubuntu
(1 row)

You now have the knowledge to manage the whole life cycle of your own extensions.

Summary
This chapter has introduced you to the extension ecosystem, a very rich and powerful
system to package related objects and manage them as a single unit. Extensions provide a
way to add new features to your cluster and your databases and most notably provide a
clear and concise way of building updates and repeatable installation, therefore easing the
distribution of the features to other clusters and databases.

Thanks to the PGXS building infrastructure, creating an extension from scratch is
comprehensive and quite easy, while thanks to tools such as pgxnclient, managing a lot
of extensions can be automated.

In the next chapter, you will learn how to take care of the status and performance of your
cluster.



Extending the Database - the Extension Ecosystem Chapter 12

[ 396 ]

References
PostgreSQL official documentation about extensions: https:/ ​/​www. ​postgresql.
org/​docs/ ​12/ ​extend- ​extensions. ​html

PostgreSQL official documentation about the extension build system
(PGXS): https:/ ​/ ​www. ​postgresql. ​org/ ​docs/ ​12/​extend- ​pgxs. ​html

The pgxnclient official repository: https:/ ​/ ​pypi. ​org/​project/ ​pgxnclient/ ​

The pgxnclient official documentation: https:/ ​/​pgxn. ​github. ​io/ ​pgxnclient/ ​

PostgreSQL 11 Server Side Programming – Quick Start Guide, Packt Publishing

https://www.postgresql.org/docs/12/extend-extensions.html
https://www.postgresql.org/docs/12/extend-extensions.html
https://www.postgresql.org/docs/12/extend-extensions.html
https://www.postgresql.org/docs/12/extend-extensions.html
https://www.postgresql.org/docs/12/extend-extensions.html
https://www.postgresql.org/docs/12/extend-extensions.html
https://www.postgresql.org/docs/12/extend-extensions.html
https://www.postgresql.org/docs/12/extend-extensions.html
https://www.postgresql.org/docs/12/extend-extensions.html
https://www.postgresql.org/docs/12/extend-extensions.html
https://www.postgresql.org/docs/12/extend-extensions.html
https://www.postgresql.org/docs/12/extend-extensions.html
https://www.postgresql.org/docs/12/extend-extensions.html
https://www.postgresql.org/docs/12/extend-extensions.html
https://www.postgresql.org/docs/12/extend-extensions.html
https://www.postgresql.org/docs/12/extend-extensions.html
https://www.postgresql.org/docs/12/extend-extensions.html
https://www.postgresql.org/docs/12/extend-extensions.html
https://www.postgresql.org/docs/12/extend-pgxs.html
https://www.postgresql.org/docs/12/extend-pgxs.html
https://www.postgresql.org/docs/12/extend-pgxs.html
https://www.postgresql.org/docs/12/extend-pgxs.html
https://www.postgresql.org/docs/12/extend-pgxs.html
https://www.postgresql.org/docs/12/extend-pgxs.html
https://www.postgresql.org/docs/12/extend-pgxs.html
https://www.postgresql.org/docs/12/extend-pgxs.html
https://www.postgresql.org/docs/12/extend-pgxs.html
https://www.postgresql.org/docs/12/extend-pgxs.html
https://www.postgresql.org/docs/12/extend-pgxs.html
https://www.postgresql.org/docs/12/extend-pgxs.html
https://www.postgresql.org/docs/12/extend-pgxs.html
https://www.postgresql.org/docs/12/extend-pgxs.html
https://www.postgresql.org/docs/12/extend-pgxs.html
https://www.postgresql.org/docs/12/extend-pgxs.html
https://www.postgresql.org/docs/12/extend-pgxs.html
https://www.postgresql.org/docs/12/extend-pgxs.html
https://www.postgresql.org/docs/12/extend-pgxs.html
https://pypi.org/project/pgxnclient/
https://pypi.org/project/pgxnclient/
https://pypi.org/project/pgxnclient/
https://pypi.org/project/pgxnclient/
https://pypi.org/project/pgxnclient/
https://pypi.org/project/pgxnclient/
https://pypi.org/project/pgxnclient/
https://pypi.org/project/pgxnclient/
https://pypi.org/project/pgxnclient/
https://pypi.org/project/pgxnclient/
https://pypi.org/project/pgxnclient/
https://pypi.org/project/pgxnclient/
https://pgxn.github.io/pgxnclient/
https://pgxn.github.io/pgxnclient/
https://pgxn.github.io/pgxnclient/
https://pgxn.github.io/pgxnclient/
https://pgxn.github.io/pgxnclient/
https://pgxn.github.io/pgxnclient/
https://pgxn.github.io/pgxnclient/
https://pgxn.github.io/pgxnclient/
https://pgxn.github.io/pgxnclient/
https://pgxn.github.io/pgxnclient/
https://pgxn.github.io/pgxnclient/
https://pgxn.github.io/pgxnclient/


13
Indexes and Performance

Optimization
Performance tuning is one of the most complex tasks in the daily job of a database
administrator. SQL is a declarative language, and therefore it does not define how to access
the underlying data – that responsibility is left to the database engine. PostgreSQL,
therefore, must select, for every statement, the best available access to the data.

A particular component, the planner, is responsible for deciding on the best among all the
available paths to the underlying data and another component, the optimizer, is responsible
for executing the statement with such a particular access plan.

The aim of this chapter is to teach you how PostgreSQL executes a query, how the planner
computes the best execution plan, and how you can help in improving the performance by
means of indexes.

You will learn about the following topics in this chapter:

Execution of a statement
Indexes
The EXPLAIN statement
An example of query tuning
ANALYZE and how to update statistics
Auto-explain



Indexes and Performance Optimization Chapter 13

[ 398 ]

Technical requirements
You need to know the following:

How to execute queries against the database
How to execute data description language (DDL) statements

The code for this chapter can be found in the following GitHub repository: https:/ ​/
github.​com/​PacktPublishing/ ​Learn- ​PostgreSQL.

Execution of a statement
SQL is a declarative language: you ask the database to execute something on the data it
contains, but you do not specify how the database is supposed to complete the SQL
statement. For instance, when you ask to get back some data, you execute a SELECT
statement, but you only specify the clauses that specify which subset of data you need, not
how the database is supposed to pull the data from its persistent storage. You have to trust
the database – in particular, PostgreSQL – to be able to do its job and get you the fastest
path to the data, always, under any circumstance of workload. The good news is that
PostgreSQL is really good at doing this and is able to understand (and to some extent,
interpret) your SQL statements and its current workload to provide you with access to the
data in the fastest way.

However, finding the fastest path to the data often requires an equilibrium between
searching for the absolute fastest path and the time spent in reasoning about this path; in
other words, PostgreSQL sometimes chooses a compromise to get you data in a fast-enough
way, even if that is not the absolute fastest one.

Sometimes, on the other hand, PostgreSQL cannot understand very well how to find the
fastest path to the data, and therefore, it needs some help from the database administrator.
Usually, a slow statement hides a miswritten statement, which means a statement written
with wrong or in-contrast clauses. Other times, a slow query is due to PostgreSQL
reasoning about the wrong size of the dataset it has to handle. In all these cases, the
database administrator has to provide some tuning in the database or the statements to
help PostgreSQL make the best decisions.

In order to be able to help your cluster optimize your statements, you need to understand
how PostgreSQL handles a SQL statement first. In the following section, you will learn all
the fundamentals about how a SQL statement is converted into a set of actions that 
PostgreSQL executes to manage data.

https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL


Indexes and Performance Optimization Chapter 13

[ 399 ]

Execution stages
A SQL statement – a query, for short – is handled in four main stages:

The first stage is parsing; a dedicated component, the parser, handles the textual1.
form of the statement (the SQL text) and verifies whether it is correct or not. If
the statement has any syntax errors, the execution stops at this early stage;
otherwise, the parser disassembles the statement into its main part, for example,
the list of involved tables and columns, the clauses to filter data, sorting, and so
on.
Once the parser has completed successfully, the statement goes to the second2.
stage: the rewriting phase. The rewriter is responsible for applying any syntactic
rules to rewrite the original SQL statement into what will be effectively executed.
In particular, the rewriter is responsible for applying rules (refer to Chapter 8, 
Triggers and Rules). When the rewriter has completed its task, producing the
effective statement that the database is going to handle, this statement passes to
the next stage: optimization.
At the optimization phase, the query is handled by the optimizer, which is3.
responsible for finding the very fastest path to the data that the statement needs.
Finding the fastest path to the data is not a simple task: the optimizer must
decide how, from among all the available access methods, such as indexes, to get
to the data. As you can imagine, reasoning and iterating among all the available
access methods consumes time and resources, so the task of the optimizer is not
only to find out the fastest access method but also to find it out in a short time.
Lastly, when the optimizer has decided how to access the data, the query goes to4.
the last phase: execution. The execution phase is handled by the executor
component, which is responsible for effectively going to the storage and
retrieving (or inserting) the data using the access method decided by the
executor.

Predicate pushdowns are a nice example of optimization, and pretty easy
to understand, even for a beginner.



Indexes and Performance Optimization Chapter 13

[ 400 ]

To summarize, a single SQL statement goes through four stages, all shown in the following
diagram: a parsing phase that checks the syntax of the statement, a rewriting phase that
transforms the query into something more specific, the optimization phase that decides
how to access the data requested by the query, and lastly, the execution phase, which gets
physical access to the data. This can be visualized in the following diagram:

The database administrator can only hook in the optimization phase, trying to help
PostgreSQL better understand the statement and optimize it correctly whenever 
PostgreSQL is not doing an optimal job. The following section takes a closer look at the
optimizer, in order to prepare you for the ways you can tune your queries and your
database to handle queries in a smarter and faster way.



Indexes and Performance Optimization Chapter 13

[ 401 ]

The optimizer
The optimizer is the component responsible for deciding what to use to access the data as
quickly as possible. How can the optimizer choose among the different ways to access the
data? The optimizer decides to depend on the concept of cost: every way to access the data
is assigned a cost and the way that has the lowest cost wins and is chosen as the best access
method.
It is for this reason that the PostgreSQL optimizer is called a cost-based optimizer.

PostgreSQL is configured to assign a specific cost to every operation it performs: seeking
data from the storage, performing some CPU-based operation (for example, sorting in
memory), and so on. The optimizer iterates over all the possible ways of accessing data and
mangling it to return to the user the desired result, computing the total amount of cost for
every way – that is the sum of the costs of every operation PostgreSQL will perform. After
this, the plan with the lowest cost is passed to the executor as a sequence of actions to
perform, and thus data is managed.

This is only half of the story, though. There are cases where the job of the optimizer is really
simple: if there is only an access method, it is trivial to decide how to access data. However,
there are statements that involve so many objects and tables that iterating over all the
possibilities would require a lot of time, so much time that the result will be overtaken by
the time spent in computing the optimal way to access the data. For this reason, if the
statement involves more than 12 table joins, the optimizer does not iterate all the
possibilities but rather executes a genetic algorithm to find a compromise way to access the
data. The compromise is between the time spent in computing the path to the data and
finding a not-too-bad access path.

Since PostgreSQL 9.6, the executor can also perform data access using parallel jobs. This
means, for instance, that retrieving a very large set of data can be performed by dividing
the amount of work between different parallel workers (for example, threads).

In all the cases, the optimizer divides the set of actions to pass to the executor in nodes: a
node is an action to execute in order to provide the final or an intermediate result. For
example, say you execute a generic query asking for data in a specific order, as follows:

SELECT * FROM categories ORDER BY description;

The optimizer will pass two actions to the executor, and thus the nodes: one to retrieve all
the data and one to sort the data.



Indexes and Performance Optimization Chapter 13

[ 402 ]

In the following subsections, we will present the main nodes that the optimizer considers
and passes to the executor. We will start from the sequential nodes – those nodes that will
be executed with a single job – and then we will see how PostgreSQL builds parallelism on
top of them.

Nodes that the optimizer uses
In this section, we will present the main nodes you can encounter in the optimizer plan.
There are different nodes for every operation that can be performed, and for every different
access method that PostgreSQL accepts.

It is important to note that nodes are stackable: the output of a node can be used as the
input to another node. This allows the construction of very complex execution plans made
by different nodes, which can produce a fine-grain access method to the data.

Sequential nodes
Sequential nodes are those nodes that will be executed sequentially, one after the other, in
order to achieve the final result. The main nodes are listed here and will be explained in the
following subsections:

Sequential Scan
Index Scan, Index Only Scan, and Bitmap Index Scan
Nested Loop, Hash Join, and Merge Join
The Gather and Merge parallel nodes

Sequential Scan
Sequential Scan (Seq Scan) is the only node that is always available to the optimizer and
the executor, in particular when there is no other valuable alternative. In a sequential scan,
the executor will go to the beginning of the dataset on the disk – for example, the beginning
of the file corresponding to a table – and will read all the data one block after the other in
sequential order.

This node is, for example, always used when you ask for the contents of a table without any
particular filtering clause, such as in the following example:

SELECT * FROM categories;



Indexes and Performance Optimization Chapter 13

[ 403 ]

The Sequential Scan node is also used when the filtering clause is not very limiting in the
query so that the end result will be to get almost the whole table contents. In such a case,
the database can perform a sequential read-all operation faster, throwing away those tuples
that are filtered out by the query clauses.

Index nodes
An index scan has access to the data that involves an index in order to find quickly the
requested dataset. In PostgreSQL, all indexes are secondary, meaning that they live
alongside the table; therefore, you will have in storage a data file for the table and one for
every index you build on the table. This means that an index scan always requires two
distinct accesses to the storage: one to read the disk and extract the information of where in
the table the requested tuples are, and another to access the disk to seek the tuples pointed
out by the index.

From this, it should be clear that PostgreSQL avoids using indexes when they are not
useful, which is when the previously mentioned double storage access accounts for more
disadvantages than advantages.

However, when PostgreSQL believes that accessing the data through an index could be
valuable, it will produce an index node that can specialize in three different types.

Index Scan is, as the name suggests, the "classical" index access method: PostgreSQL reads
the chosen index, and from that, it goes seeking the tuples, reading again from the storage.

Index Only Scan is a particular degeneration of Index Scan: if the requested
data only involves columns that belong to the index, PostgreSQL is smart enough to avoid
the second trip to storage since it can extract all the required information directly from the
index.

The last type of index-based node you can encounter is Bitmap Index Scan: PostgreSQL
builds a memory bitmap of where tuples that satisfy the statement clauses are, and then
this bitmap is used to get from the storage to the tuples. Bitmap Index Scan is usually 
associated with Bitmap Heap Scan, as you will see in the examples in the following
sections.



Indexes and Performance Optimization Chapter 13

[ 404 ]

Join nodes
When PostgreSQL performs a join between two (or more) tables, it uses one out of three 
possible nodes. In this section, we will describe these join nodes, considering a join between
two tables: an outer table (to the left of a join) and an inner one (the table on the right side
of a join).

The most simple node to understand is Nested Loop: both tables are scanned in a
sequential or indexed-based method and every tuple is checked to see whether there is a
match. Essentially, the algorithm can be described by the following piece of pseudo-Java
code:

for ( Tuple o : outerTable )
   for ( Tuple i : innerTable )
     if ( o.matches( i ) )
        appendTupleToResultDataSet( o, i );

As you can see from the preceding pseudo-code, Nested Loop is named after the nesting of
the loops it performs in order to evaluate every tuple between the inner and the outer
tables.

Anyway, a nested loop is not forced to perform a sequential scan on both tables, and, in
fact, depending on the context, every table could be walked in a sequential or indexed-
based access method. However, the core of the nested loop does not change: there will
always be a nested double loop to search for matches among the tuples.

The following diagram shows the behavior of a Nested Loop join:



Indexes and Performance Optimization Chapter 13

[ 405 ]

PostgreSQL chooses Nested Loop only if the inner table is small enough so that looping
every time against it does not introduce any particular penalties.

Another way to perform a join is by using a Hash Join node: the inner table is mapped into
a hash, which is a set of buckets containing the tuples of the table; the outer table is then
walked and for every tuple extracted from the outer table, the hash is searched to see
whether there is a match. The following piece of pseudo-Java code illustrates the mechanics
of Hash Join:

Hash innerHash = buildHash( innerTable );
for ( Tuple o : outerTable )
    if ( innerHash.containsKey( buildHash( o ) ) )
       appendTupleToResultDataSet( o, i );

As you can see from the preceding example, the first step involves having the dinner table
and then walking across the outer table to see whether any of its tuples can match the
values in the hash map of the inner table.

The following diagram shows the Hash Join algorithm:



Indexes and Performance Optimization Chapter 13

[ 406 ]

The last type of join you can encounter in PostgreSQL is Merge Join. As the name suggests,
Merge Join involves a step of sorting: both the tables are first sorted by the join key(s), and
then they are walked sequentially. For every tuple of the outer table, all the tuples that do
match in the inner table are extracted. Since both tables are sorted, a non-matching tuple
indicates that it is time to move on to the next join key.

The following pseudo-Java code illustrates the algorithm of a merge join:

outerTable = sort( outerTable );
innerTable = sort( innerTable );
int innerIdx = 0;

for ( Tuple o : outerTable )
   for ( ; innerIdx < innerTable.length(); innerIdx++ ){
      Tuple i = innerTable[ innerIdx ];
     if ( o == i )
        appendTupleToResultSet( o, i );
     else
        break;
   }

As you can see, once the tables have been sorted, a tuple is extracted from the outer table
and is compared with all the tuples within the inner table. As soon as the tuples do not
match anymore, another tuple from the outer table is extracted and the inner table restarts
its loop from the previous position. In other words, both tables are walked exactly once and
only one time.

The following diagram depicts Merge Join, where both the tables are displayed after the
sorting step:

We will now move on to parallel nodes.



Indexes and Performance Optimization Chapter 13

[ 407 ]

Parallel nodes
Parallel nodes are those nodes that PostgreSQL can execute that distribute the amount of
work among parallel processes, therefore getting to the final result faster. It is important to
note that parallel execution is not always the right choice: there is a set time to distribute the
job among parallel processes, as well as the time and resources needed to return the results
of every single process. For this reason, PostgreSQL enables parallel execution of certain
nodes only if the estimated parallel version will provide a benefit over sequential execution.

As a simple example, consider a case where you have a very tiny table made by only a few
tuples, such as four. If you require all the table content, the resources and time spent in
launching and synchronizing parallel processes will be much greater than going directly to
the table and getting back the result dataset sequentially. The rule of thumb is: if the
requested dataset is small enough, PostgreSQL will never choose parallel execution.

It is important to understand the fact that just because the planner produces a parallel plan,
which is an execution plan made of parallel nodes, it does not mean that the executor will
follow this parallelism. There could be conditions, in particular at runtime, that prevent
PostgreSQL for executing a parallel plan, even if that would be the optimal choice (for
instance, PostgreSQL does not have enough room to spawn the required amount of parallel
processes).

In the following subsection, you will learn what the main parallel nodes available are.

Gather nodes
A parallel execution plan always involves two types of Gather nodes: a plain Gather node
and a Gather Merge node.

Gather nodes are responsible for collecting back results from parallel execution nodes,
assembling them together to produce the final result. The difference is that a Gather Merge
node requires the parallel processes to provide it sorted output so that the assembling of
the set of results is done following the ordering of the data.

A plain Gather node does not require the sorting of the batch results, so it simply assembles
all the pieces together to provide the final result.

Parallel scans
All the main nodes that you can find in a sequential access method can be made parallel.

In a Parallel Seq scan, all the data pages of a table are split across all the available parallel
processes, so every process walks through a smaller set of the table in a sequential way.



Indexes and Performance Optimization Chapter 13

[ 408 ]

In a Parallel Index scan and a Parallel Index Only scan, blocks of the index are assigned to
every parallel process so that every process walks through a subset of the index and,
therefore, of the table.

Last, in a Parallel Bitmap Heap scan, a bitmap of the table is first built, and then the map is
split across different parallel processes.

Parallel joins
When PostgreSQL decides to go for a parallel join method, it tries to keep the inner table
accessed in a non-parallel way (assuming such a table is small enough) and performs
parallel access to the outer table using one of the nodes presented in the last section.

However, in the case of Hash Join, the inner table is computed as a hash by every parallel
process, which therefore requires every parallel process working on the outer table to
compute the same results for the inner table. For that reason, there is also Parallel Hash
Join, which allows a hash map of the inner table to be computed in parallel by every
process working on the outer table.

Parallel aggregations
When the final result set is made by the aggregation of different parallel subqueries, there
must be a parallel aggregation, which is the aggregation of every single parallel part.

This aggregation happens in different steps: first, there is a Partial Aggregate node, done by
every parallel process that produces a partial result set. After that, a Gather node (or
Gather Merge) collects all the partial results and passes the whole set to the Finalize
Aggregate node, which sequentially assembles the final result.

When does the optimizer choose a parallel plan?
As already stated, PostgreSQL does not even consider a parallel plan as a choice if the
expected size of the result set is too small. In particular, if the table to seek data for has a
dimension lower than the min_parallel_table_scan_size parameter(defaults to 8 MB),
or the index to walk through is smaller than min_parallel_index_scan_size (defaults
to 512 kB), PostgreSQL will not take into account a parallel plan at all.

You can force PostgreSQL to perform a parallel plan, even if the preceding values are not
satisfied, with an extra configuration parameter – force_parallel_mode – which is set to
off by default.



Indexes and Performance Optimization Chapter 13

[ 409 ]

In any case, when PostgreSQL considers the parallel plan to be an option, it does not
default to using it: it rather evaluates carefully the costs of a sequential plan and the costs of
the parallel plan to see whether it is still worth the extra setup effort.

There are, however, other restrictions to the application of a parallel plan: PostgreSQL must
ensure not to spawn too many parallel processes, so if there are already too many parallel
processes working on the system, the parallel execution will not be considered as an option.
Moreover, any statement that produces a data write – that is, anything different from a
SELECT statement – will not be a valid candidate for a parallel plan, as well as any
statement that can be suspended and resumed, such as the usage of a cursor.

Lastly, any query that involves the invocation of a function marked as PARALLEL UNSAFE
will not produce a parallel plan candidate.

Utility nodes
Besides the already-introduced nodes that are used to access the data in a single table – or
in multiple ones, in the case of joins – there are also some utility nodes that are used in a
plan to achieve the final result.

When your statement involves an ordering of the result that is a clause such as ORDER BY,
the planner inserts a Sort node. If the query has an output limitation, such as a LIMIT
clause, a Limit node is inserted in the plan to reduce the final result set.

In that case, instead of a UNION ALL statement, the node used is an Append one (remember
that UNION ALL allows duplicated tuples, while UNION does not).

If your statement involves the aggregation of different queries, like UNION, a Distinct node
is inserted. The very same node has another feature: it can serve a DISTINCT tuple
selection.

When a statement uses a GROUP BY clause, the planner inserts a GroupAggregate node
responsible for the tuple squashing. Similarly, when the statement involves a window
function (refer to Chapter 7, Server Side Programming), the planner introduces a
WindowAgg node for managing the tuple aggregation required by the window function.

In the case of a Common Table Expression (CTE), the planner introduces a CTEScan node
responsible for the join between the CTE subquery and the real table. If a join requires the
materialization of a dataset – that is, if there is the need to simulate a table from a set of
query results – the planner introduces a Materialize node.



Indexes and Performance Optimization Chapter 13

[ 410 ]

Node costs
Every node is associated with a cost, which is the estimation of how expensive, in terms of
computational resources, the execution of the node will be. Of course, every node has a
variable cost that depends on the type and quantity of the input, as well as the node type.

PostgreSQL provides a list of costs, expressed in arbitrary units, for the main type of
operations that a node can perform. Computing the cost of a node is, therefore, the
computation of the cost of the single operations that the node performs multiplied by the
number of times these operations are repeated, and this depends on the size of the data that
the node has to evaluate.

The costs can be adjusted in the cluster configuration – that is, in the postgresql.conf
main file or in the pg_settings catalog. In particular, it is possible to query the cluster
about the main costs involved in a node execution:

forumdb=> SELECT name, setting
            FROM pg_settings
            WHERE name LIKE 'cpu%\_cost'
               OR name LIKE '%page\_cost'
           ORDER BY setting DESC;

         name         | setting
----------------------+---------
 random_page_cost     | 4
 seq_page_cost        | 1
 cpu_tuple_cost       | 0.01
 cpu_index_tuple_cost | 0.005
 cpu_operator_cost    | 0.0025

The preceding are the default costs for a fresh installation of PostgreSQL, and you should
not change any of the preceding values unless you are really sure about what you are
doing. Remember that the costs are what make the planner choose from different plans, so
setting the costs to wrong values will lead the optimizer to adopt the wrong execution
plans.

As you can see from the preceding list of costs, the base for all the optimizer computation is
the cost of a single data page access in sequential mode: this value is set to the unit of cost.
CPU costs, which are costs related to the analysis of a tuple already in memory, are much
smaller than a unit, while the access to the storage in a random way is much more
expensive than sequential access.

Costs can change depending on the computation power of your system; in particular,
having enterprise-level SSD storage disks can make you decrease random_page_cost to
1.5, which is almost the same as a sequential page cost.



Indexes and Performance Optimization Chapter 13

[ 411 ]

Changing the optimizer cost is very difficult and is discouraged in pretty much all
scenarios, and it is not within the scope of this book. Rather, you are going to understand
how the planner estimates the costs of accessing the data.

Later in this chapter, you will see how the preceding costs are applied to compute the cost
of a query plan.

In the following section, you will learn about indexes, the way PostgreSQL can access your
data using a faster path.

Indexes
An index is a data structure that allows faster access to the underlying table so that specific
tuples can be found quickly. Here, "quickly" means faster than scanning the whole
underlying table and analyzing every single tuple.

PostgreSQL supports different types of indexes, and not all types are optimal for every
scenario and workload. In the following sections, you will discover the main types of
indexes that PostgreSQL provides, but in any case, you can extend PostgreSQL with your
own indexes or indexes provided by extensions.

An index in PostgreSQL can be built on a single column or multiple columns at once;
PostgreSQL supports indexes with up to 32 columns.

An index can cover all the data in the underlying table, or can index specific values only
– in that case, the index is known as "partial." For example, you can decide to index only
those values of certain columns that you are going to use the most.

An index can also be unique, meaning that it is used to ensure the uniqueness of the values
it indexes, such as, for example, the primary keys of a table. Moreover, an index can be built
on top of a user-defined function, which means the index is going to index the return
values of those functions.

In order to be used in an index, a user-defined function must be declared
as IMMUTABLE, which means its output must be the same for the very
same input.

PostgreSQL is able to mix and match indexes together; therefore, multiple different indexes
can be used to satisfy the query plan. Thanks to this important feature of PostgreSQL, you
don't have to define all the possible column permutation indexes, since PostgreSQL will try
to mix unrelated indexes together.



Indexes and Performance Optimization Chapter 13

[ 412 ]

In the following subsections, you will learn all the available indexes types in a PostgreSQL
12 cluster, as well as how to create or drop an index.

Index types
The default index PostgreSQL uses is Balanced Tree (B-Tree), a particular implementation
of a balanced tree that keep its depth constant even with large increases in the size of the
underlying table. A B-Tree index can be used for most operators and column types, even
string comparison in LIKE-based queries, but is effective only if the pattern starts with a
fixed string. The B-Tree index also supports the UNIQUE condition and is therefore used to
build the primary key indexes.

One drawback of the B-Tree index is that it does copy the whole column(s)' values into the
tree structure, and therefore if you use B-Tree to index large values (for example, long
strings), the index will rapidly grow in size and space.

Another type of index that PostgreSQL provides is the hash index: this index is built on the
result of a hash function for the value of the column(s). It is important to note that the hash
index can be used only for equality operators, not for range nor disequality operators. In
fact, being an index built on a hash function, the index cannot compare two hash values to
understand their ordering; only the equality (which produces the very same hash value)
can be evaluated.

Block Range Index (BRIN) is a particular type of index that is based on the range of values
in data blocks on storage. The idea is that every block has a minimal and maximal value,
and the index then stores a couple of values for every data block on the storage. When a
particular value is searched from a query, the index knows in which data block the values
can be found, but all the tuples in the block must be evaluated.

Therefore, this type of index is not as accurate as a B-Tree and is called lossy, but it is much
smaller in size with respect to all the other types of indexes since it only stores a couple of
values for every data block.

GIN is a type of index that instead of pointing to a single tuple points to multiple values,
and to some extent to an array of values. Usually, this kind of index is used in full text
search scenarios, where you are indexing a written text where there are multiple duplicated
keys (for example, the same word or term) that point to different places (for example,
different phrases and lines).



Indexes and Performance Optimization Chapter 13

[ 413 ]

Then comes Generalized Index Search Tree (GIST), which is a platform on top of which
new index types can be built. The idea is to provide a pluggable infrastructure where you
can define operators and features that can index a data structure. An example is SP-GIST, a 
spatial index used in geographical applications.

Creating an index
Indexes can be created by means of the CREATE INDEX statement, which has the following
synopsis:

CREATE [ UNIQUE ] INDEX [ CONCURRENTLY ] [ [ IF NOT EXISTS ] name ] ON [
ONLY ] table_name [ USING method ]
    ( { column_name | ( expression ) } [ COLLATE collation ] [ opclass ] [
ASC | DESC ] [ NULLS { FIRST | LAST } ] [, ...] )
    [ INCLUDE ( column_name [, ...] ) ]
    [ WITH ( storage_parameter = value [, ... ] ) ]
    [ TABLESPACE tablespace_name ]
    [ WHERE predicate ]

Indexes are identified by a mnemonic name, similar to the tables that they are related to. It
is interesting to note that the index name is always unqualified, which means it does not
includes the schema where the index is going to live: an index is always found within the
very same schema as the underlying table. However, it is possible to store an index in
another tablespace than that of the underlying table, and this can be useful to store
important indexes in faster storage. The statement supports the IF NOT EXISTS clause to
abort the creation in a gentle way if an index with the same name already exists.

The UNIQUE clause specifies that the index is going to verify the uniqueness of its columns.
The WHERE clause allows the creation of a partial index, which is an index that contains
information only about those tuples that satisfy the WHERE condition(s).

The INCLUDE clause allows you to specify some extra columns of the underlying table that
are going to be stored in the index, even if not indexed. The idea is that if the index is useful
for an index-only scan, you can still get extra information without the trip to the underlying
table. Of course, having a covering index (which is the name of an INCLUDE clause index)
means that the index is going to grow in size and, at the same time, every tuple update
could require extra index update effort.

The USING clause allows the specification of the type of index to be built, and if none is
specified, the default B-Tree is used.



Indexes and Performance Optimization Chapter 13

[ 414 ]

The ONCURRENTLY clause allows the creation of an index in a concurrent way: when an
index is in its building phase, the underlying table is locked against changes so that the
index can finish its job of indexing the tuple values. In a concurrent index creation, the table
allows changes even during index creation, but once the index has been built, another pass
on the underlying table is required to "adjust" what has changed in the meantime.

In order to make it more practical, let's see how to build a simple index on the posts table.
Let's say we want to index the category a post belongs to:

forumdb=> CREATE INDEX idx_post_category
          ON posts( category );
CREATE INDEX

The preceding code will create an index named idx_post_category on the table posts,
using the single-column category and the default index type (B-Tree).

The following does something similar, creating a multi-column index:

forumdb=> CREATE INDEX idx_author_created_on
          ON posts( author, created_on );
CREATE INDEX

It is important to note that, when creating multi-column indexes, you should always place
the most selective columns first. PostgreSQL will consider a multi-column index from the
first column onward, so if the first columns are the most selective, the index access method
will be the cheapest. In the preceding example, assuming we want to search for a
combination of authors and dates, we could expect many authors to publish on a specific
day, so the date (the created_on column) is not going to be very selective, at least not as
selective as the specific author; it is for that reason that we pushed the created_on column
to the right in the column list.

If we would like to create a hash index, we could do something such as the following:

forumdb=> CREATE INDEX idx_post_created_on
          ON posts USING hash ( created_on );
CREATE INDEX

Of course, such an index will be useful only for equality comparison, so a query such as the
following will never use the preceding index:

SELECT * FROM posts WHERE created_on < CURRENT_DATE;



Indexes and Performance Optimization Chapter 13

[ 415 ]

But a query like the following could use the hash index:

SELECT * FROM posts WHERE created_on = CURRENT_DATE;

This is because we are asking for equality comparison.

Inspecting indexes
Indexes are "attached" to their underlying tables, and so psql shows the defined indexes
whenever you ask it to describe a table with the \d special command:

forumdb=> \d posts

                                     Table "public.posts"
     Column     |           Type           | Collation | Nullable |
Default
----------------+--------------------------+-----------+----------+--------
----------------------
 pk             | integer                  |           | not null |
generated always as identity
 title          | text                     |           |          |
 content        | text                     |           |          |
 author         | integer                  |           | not null |
 category       | integer                  |           | not null |
 reply_to       | integer                  |           |          |
 created_on     | timestamp with time zone |           |          |
CURRENT_TIMESTAMP
 last_edited_on | timestamp with time zone |           |          |
CURRENT_TIMESTAMP
 editable       | boolean                  |           |          | true
Indexes:
    "posts_pkey" PRIMARY KEY, btree (pk)
    "idx_author_created_on" btree (author, created_on)
    "idx_post_category" btree (category)
    "idx_post_created_on" hash (created_on)

As you can see from the preceding snippet of code, the command shows all the available
indexes with their method (for example, btree) and a list of the columns the index is built
on top of.



Indexes and Performance Optimization Chapter 13

[ 416 ]

The pg_index special catalog contains information about the indexes and their main
attributes, and so it can be queried to get the very information (and more) that is provided
by psql. In particular, since an index is registered into pg_class with the special
relkind value of i, we can join pg_class and pg_index to get detailed information in a
statement, as follows:

forumdb=> SELECT relname, relpages, reltuples,
          i.indisunique, i.indisclustered, i.indisvalid,
          pg_catalog.pg_get_indexdef(i.indexrelid, 0, true)
          FROM pg_class c JOIN pg_index i on c.oid = i.indrelid
          WHERE c.relname = 'posts';

-[ RECORD 1 ]---+----------------------------------------------------------
-------------------
relname         | posts
relpages        | 43
reltuples       | 2000
indisunique     | t
indisclustered  | f
indisvalid      | t
pg_get_indexdef | CREATE UNIQUE INDEX posts_pkey ON posts USING btree (pk)
-[ RECORD 2 ]---+----------------------------------------------------------
-------------------
relname         | posts
relpages        | 43
reltuples       | 2000
indisunique     | f
indisclustered  | f
indisvalid      | t
pg_get_indexdef | CREATE INDEX idx_post_category ON posts USING btree
(category)
...

The indisunique column is set to true if the index has been created with the UNIQUE
clause, as it happens for the primary key index. indisvalid is a Boolean value that
indicates whether the index is usable or not (as you will see later on, you can decide to
disable an index for any reason). Since you can cluster a table against an index – that is, you
can sort the table depending on a specific index – indisclustered indicates whether the
table is clustered against the specific index.

The pg_get_indexdef() special function provides a textual representation of the CREATE
INDEX statement used to produce every index and can be very useful to decode and learn
how to build complex indexes.



Indexes and Performance Optimization Chapter 13

[ 417 ]

Therefore, either using the psql \d command or querying pg_index, you can get details
about existing indexes and their status.

Dropping an index
In order to discard an index, you need to use the DROP INDEX statement, which has the
following synopsis:

DROP INDEX [ CONCURRENTLY ] [ IF EXISTS ] name [, ...] [ CASCADE | RESTRICT
]

The statement accepts the name of the index, and can drop more than one index at the same
time if you specify multiple names on the same statement.

The CONCURRENTLY clause prevents the command from acquiring an exclusive lock on the
underlying table, preventing other queries from accessing the table until the index has been
dropped.

The CASCADE option drops the index and all other objects that depend on the index, while
the RESTRICT option is its counterpart and prevents the index from being dropped if any
object still insists on the index. The RESTRICT clause is the default.

Lastly, the IF EXISTS option allows the command to gracefully abort if the index has
already been dropped.

Invalidating an index
It is possible to invalidate an index, which is a way to tell PostgreSQL to not consider that
index at all without dropping the index and building it again. This can be useful in
situations where you are studying your cluster's behavior and want to force the optimizer
to choose another path to access the data that does not include a specific index, or it can be
necessary because there is a problem with an index.

In order to invalidate an index, you have to directly manipulate the pg_index system
catalog to set the indisvalid attribute to false. For example, in order to suspend the usage
of the idx_author_created_on index, you have to do an update against pg_index, as
follows:

forumdb=# UPDATE pg_index SET indisvalid = false
          WHERE indexrelid = ( SELECT oid FROM pg_class
                               WHERE relkind = 'i'



Indexes and Performance Optimization Chapter 13

[ 418 ]

                               AND relname = 'idx_author_created_on' );
UPDATE 1

forumdb=# \d posts
...
Indexes:
    "posts_pkey" PRIMARY KEY, btree (pk)
    "idx_author_created_on" btree (author, created_on) INVALID
    "idx_post_category" btree (category)
    "idx_post_created_on" hash (created_on)
...

You need to invalidate an index as an administrator user, even if you are
the user that created the index. This is due to the fact that you need to
manipulate the system catalog, which is something that is restricted to
only administrator users.

As you can see, the index is then marked as INVALID, to indicate that PostgreSQL will not ever try to
consider it for its execution plans. You can, of course, reset the index to its original status, making the same
update as the preceding and setting the indisvalid column to a true value.

Rebuilding an index
Since an index is detached from the data stored in the table, it is possible that the
information within the index gets corrupted or somehow out of date. This is not a normal
condition, and it does not happen in day-to-day usage of the database. However, knowing
how you can rebuild an index is important knowledge because it helps you prevent
anomalies and allows you to revalidate indexes that have been kept out of date (because
they were not valid).

You can always rebuild an index starting from the data in the underlying table by use of
the REINDEX command, which has the following synopsis:

REINDEX [ ( VERBOSE ) ] { INDEX | TABLE | SCHEMA | DATABASE | SYSTEM } [
CONCURRENTLY ] name

You can decide to rebuild a single index by means of the INDEX argument followed by the
name of the index, or you can rebuild all the indexes of a table by means of the TABLE
argument followed, as you can imagine, by the table name.



Indexes and Performance Optimization Chapter 13

[ 419 ]

Going further, you can rebuild all the indexes of all the tables within a specific schema by
means of the SCHEMA argument (followed by the name of the schema) or the whole set of
indexes of a database using the DATABASE argument and the name of the database you
want to reindex. Lastly, you can also rebuild indexes on system catalog tables by means of
the SYSTEM argument.

You can execute REINDEX within a transaction block but only for a single index or table,
which means only for the INDEX and TABLE options. All the other forms of the REINDEX
command cannot be executed in a transaction block.

The CONCURRENTLY option prevents the index from acquiring exclusive locks on the
underlying table in a way similar to that of building a new index.

The EXPLAIN statement
EXPLAIN is the statement that allows you to see how PostgreSQL is going to execute a
specific query. You have to pass the statement you want to analyze to EXPLAIN, and the
execution plan will be shown.

There are a few important things to know before using EXPLAIN:

It will only show the best plan, which is the one with the lowest cost among all
the evaluated plans.
It will not execute the statement you are asking the plan for, therefore the
EXPLAIN execution is fast and pretty much constant each time.
It will present you with all the execution nodes that the executor will use to
provide you with the dataset.

Let's see an example of EXPLAIN in action to better understand. Imagine we need to
understand the execution plan of the SELECT * FROM categories statement. In this case,
you need to prefix the statement with the EXPLAIN command, as follows:

forumdb=> EXPLAIN SELECT * FROM categories;
                        QUERY PLAN
-----------------------------------------------------------
 Seq Scan on categories  (cost=0.00..1.01 rows=1 width=68)
(1 row)



Indexes and Performance Optimization Chapter 13

[ 420 ]

As you can see, the output of EXPLAIN reports the query plan. There is a single execution
node, of the Seq Scan type, followed by the table against which the node is executed (on
categories). In the output of the EXPLAIN command, you will find all the types of
execution nodes already discussed in the previous sections.

For every node, EXPLAIN will report some more information between parentheses: the cost,
the number of rows, and the width. The cost is the amount of effort required to execute the
node, and is always expressed as a "startup cost" and a "final cost." The startup cost is how
much work PostgreSQL has to do before it begins executing the node; in the preceding
example, the cost is 0, meaning the execution of the node can begin immediately. The final
cost is how much effort PostgreSQL has to do to provide the last bit of the dataset – that is,
to complete the execution of the node.

The rows field indicates how many tuples the node is expected to provide in the final
dataset, and is a pure estimation. Being an estimation, the value will never be correct and
you have to keep in mind that it will never be zero: when PostgreSQL estimates a very low
number of tuples, it always provides 1 as the number of rows.

Lastly, the width field indicates how many bits every tuple will occupy, as an average.
Essentially, this information is used to estimate the network traffic that the query will
produce: in the preceding example, it is possible to estimate 68 bytes per tuple.

Now consider another example, just to get used to the EXPLAIN output: the query changes
a little to produce a few more nodes, as follows:

forumdb=> EXPLAIN
          SELECT title
          FROM categories ORDER BY description DESC;
                           QUERY PLAN
-----------------------------------------------------------------
 Sort  (cost=1.02..1.02 rows=1 width=64)
   Sort Key: description DESC
   ->  Seq Scan on categories  (cost=0.00..1.01 rows=1 width=64)
(3 rows)

Here, we have two different nodes: the first at the top is the Sort node (due to the ORDER
BY clause), and the second node is Seq Scan, as in the previous example. Please note that
there are three output rows, so how do we determine which rows are nodes and which are
not? The first row in the plan is always a node, and the other node rows are indented to the
right and have an arrow as a prefix (->). The other lines in the plan provide information
about the node they are under; therefore, in the preceding example, the Sort Key row is
additional information to the Sort node.



Indexes and Performance Optimization Chapter 13

[ 421 ]

Another approach to distinguish node rows from additional information is to consider that
every node line has the cost, rows, and width attribute in parentheses.

Once you have discovered the nodes of the query, you have to find out the very first node,
which is usually the most indented one, and also the one with the lowest startup cost: in the
preceding example, Seq Scan is the first node executed. This node does the very same
thing explained in the previous example: it forces the executor to go to the table on the
physical storage and retrieve, in sequential order, all the table content. One thing, however,
is different in the preceding example: the average width has decreased, and this is due to
the fact that the query does not require all the columns of every tuple, only the title one.

Once the sequential scan node has completed, its output is used as input for the Sort node,
which performs the desired ORDER BY operation. As you can easily read, the sort key of the
original statement is printed to provide you with enough information to understand what
the executor will sort data on. The Sort node has a startup cost that is greater (better or
pretty much the same) as the previous node's final cost: the sequential scan has a final cost
of 1.01 and the sort starts with a cost of 1.02. This emphasizes again how nodes are
executed in a pipeline, and also tells you that the sort cannot start before the other node has
completed. The sort node has a final cost equal to the startup cost, meaning that this node is
straightforward for PostgreSQL to be executed.

You can try to execute EXPLAIN on different statements to see how a plan changes, and
which nodes can be generated, in order to be used to recognize the nodes and the resource
information.

In the following subsections, you will see different options to explain a statement.

EXPLAIN output formats
By default, EXPLAIN provides a text-based output, but it can also provide much more
structured output in XML, JSON, and YAML. These other formats are not only useful when
you have to cope with external tools and applications but can also be useful because they
provide more information for tuning a query plan.

You can specify the format you want with the FORMAT option followed by the name of the
format, which can be TEXT, XML, JSON, or YAML. Take the following example:

forumdb=> EXPLAIN ( FORMAT JSON ) SELECT * FROM categories;
              QUERY PLAN
--------------------------------------
 [                                   +



Indexes and Performance Optimization Chapter 13

[ 422 ]

   {                                 +
     "Plan": {                       +
       "Node Type": "Seq Scan",      +
       "Parallel Aware": false,      +
       "Relation Name": "categories",+
       "Alias": "categories",        +
       "Startup Cost": 0.00,         +
       "Total Cost": 1.01,           +
       "Plan Rows": 1,               +
       "Plan Width": 68              +
     }                               +
   }                                 +
 ]
(1 row)

As you can see, the JSON format provides not only a different structure to the query plan
but also a different and more rich set of information. For example, from the preceding
example, we can see that the query has been executed in a nonparallel mode (Parallel
Aware = false).

If you need to parse the EXPLAIN output with an application or tool, you should stick to
one of the structured formats, not the default text one.

EXPLAIN ANALYZE
The ANALYZE mode of EXPLAIN enhances the command by effectively running the query to
explain. Therefore, the command does a double task: it prints out the best plan to execute
the query and it runs the query, also reporting back some statistical information.

To better understand the concept, consider the output of EXPLAIN ANALYZE compared to
the output of a plain EXPLAIN command:

forumdb=> EXPLAIN SELECT * FROM categories;
                        QUERY PLAN
-----------------------------------------------------------
 Seq Scan on categories  (cost=0.00..1.01 rows=1 width=68)
(1 row)

forumdb=> EXPLAIN ANALYZE SELECT * FROM categories;
            QUERY PLAN
---------------------------------------------------------------------------
--------------------------
 Seq Scan on categories  (cost=0.00..1.01 rows=1 width=68) (actual
time=0.023..0.025 rows=1 loops=1)
 Planning Time: 0.102 ms



Indexes and Performance Optimization Chapter 13

[ 423 ]

 Execution Time: 0.062 ms
(3 rows)

The output of the EXPLAIN ANALYZE command is enhanced by the "actual" part of every
node: the executor reports back how the execution of the node went exactly. Therefore,
while EXPLAIN can only estimate the costs of a node, the EXPLAIN ANALYZE provides
feedback on the execution time (expressed in milliseconds), the effective number of rows,
and how many times a node has been executed (loops).

The node time is expressed, similarly to the cost, in a startup time and a final time, which is
the time taken for the node to complete its execution. Therefore, in the preceding example,
PostgreSQL took 0.023 milliseconds to "warm-up" and completed the query execution in
0.025 milliseconds, so the node required 0.002 milliseconds to complete its job.

At the very end of the command output, EXPLAIN ANALYZE provides overall time
information, which includes the planning time, which is the time the optimizer has spent
producing the best candidate access plan, and the execution time, which is the total time
spent running the query (excluding the parsing and planning time).

Therefore, the preceding example took 0.062 milliseconds to "fetch data" and 0.102
milliseconds in deciding how to fetch the data, so the query took 0.164 milliseconds.

When the data to access is really small, the planning time is longer than
the execution time.

The execution time also includes time spent running BEFORE triggers, while AFTER triggers
are not counted because their function is executed once the plan has completed.

The planning time, similarly, accounts only for the time spent in producing the best access
plan, not the time required to process rules and writing of the statement, as well as parsing.

EXPLAIN ANALYZE executes always the query you want to analyze,
therefore in order to avoid side-effects, you should wrap EXPLAIN
ANALYZE in a transaction and rollback the work once the analysis has
complete.

EXPLAIN ANALYZE can also be invoked by passing ANALYZE as an option to EXPLAIN, as
follows:

forumdb=> EXPLAIN ( ANALYZE ) SELECT * FROM categories ORDER BY title DESC;



Indexes and Performance Optimization Chapter 13

[ 424 ]

The option form of EXPLAIN ANALYZE is handy when you want to adds other options to
EXPLAIN, as shown in the following subsection.

EXPLAIN options
EXPLAIN provides a rich set of options, most of which can only be used in the ANALYZE
form. All of the EXPLAIN options presented in this section are Boolean, which means they
can be turned on and off but nothing more.

The VERBOSE option allows every node to report more detailed information, such as the list
of the output columns, even when not specified. For example, even if the query does not
explicitly ask for the list of columns, note how thanks to VERBOSE, you can find out which
columns a node will provide to the output dataset:

forumdb=> EXPLAIN (VERBOSE on) SELECT * FROM categories;
                            QUERY PLAN
------------------------------------------------------------------
 Seq Scan on public.categories  (cost=0.00..1.01 rows=1 width=68)
   Output: pk, title, description
(2 rows)

The COSTS option, which is turned on by default, shows the costs part of a node. As an
example, turning it off removes the startup and final costs, as well as the average width and
the number of rows:

forumdb=> EXPLAIN (COSTS off) SELECT * FROM categories;
       QUERY PLAN
------------------------
 Seq Scan on categories
(1 row)

forumdb=> EXPLAIN (COSTS on) SELECT * FROM categories;
                   QUERY PLAN
-----------------------------------------------------------
 Seq Scan on categories  (cost=0.00..1.01 rows=1 width=68)
(1 row

The TIMING option, which is on by default, shows the effective execution time when
EXPLAIN is invoked with ANALYZE. In other words, setting TIMING to off means that the
output of EXPLAIN will not show the time of the query execution. For example, note in the
following EXPLAIN statement how the actual time is missing from the output:

forumdb=> EXPLAIN (ANALYZE on, TIMING off) SELECT * FROM categories;
                                    QUERY PLAN



Indexes and Performance Optimization Chapter 13

[ 425 ]

---------------------------------------------------------------------------
--------
 Seq Scan on categories  (cost=0.00..1.01 rows=1 width=68) (actual rows=1
loops=1)
 Planning Time: 0.091 ms
 Execution Time: 0.050 ms
(3 rows)

The SUMMARY option reports the total time spent in planning for the execution and the time
spent for the query execution so that you can get an idea of how much effort the planner
has used to find out the best execution plan. As an example, note how the planning and
execution times are reported at the end of the output:

forumdb=> EXPLAIN (ANALYZE, SUMMARY on) SELECT * FROM categories;
                                             QUERY PLAN
---------------------------------------------------------------------------
--------------------------
 Seq Scan on categories  (cost=0.00..1.01 rows=1 width=68) (actual
time=0.021..0.022 rows=1 loops=1)
 Planning Time: 0.097 ms
 Execution Time: 0.059 ms
(3 rows)

The BUFFERS option, which defaults to off, provides information about the data buffers the
query used to complete. For example, note how there is buffer-related information on the
execution node in the following query:

forumdb=> EXPLAIN (ANALYZE, BUFFERS on) SELECT * FROM categories;

                                             QUERY PLAN
---------------------------------------------------------------------------
--------------------------
 Seq Scan on categories  (cost=0.00..1.01 rows=1 width=68) (actual
time=0.014..0.015 rows=1 loops=1)
   Buffers: shared hit=1
 Planning Time: 0.076 ms
 Execution Time: 0.042 ms
(4 rows)

The buffer information is not trivial to analyze and can be split into two parts: a prefix and
a suffix.



Indexes and Performance Optimization Chapter 13

[ 426 ]

The prefix can be any of the following:

shared, meaning a PostgreSQL shared buffer, which is the database in-memory
cache
temp, meaning temporary memory (used for sorting, hashing, and so on)
local, meaning temporary database objects space (for instance, temporary
tables)

The suffix can be any of the following:

hit, providing the number of memory successes
read, providing the number of buffers read from the storage (and therefore not
in the cache)
dirtied, the number of buffers modified by the query
written, the number of buffers removed from the PostgreSQL cache and written
to disk
lossy, the number of buffers that PostgreSQL has checked in memory in a
second pass

Combining the prefix and the suffix provides information on the buffers. For example, in
the previous query, the buffer line contained shared hit=1, which reads as "1 buffer has
been successfully found in the database cache, no more operations on buffers are required."

The WAL option, available since PostgreSQL 13, provides information about the WAL usage
of a statement. Clearly, this option also requires the ANALYZE one to actually execute the
query; the system is not able to estimate the WAL traffic. As an example, consider the
following query, which adds a bunch of fake usernames to the users table:

forumdb=> EXPLAIN (WAL on, ANALYZE on, FORMAT yaml)
 insert into users( username, gecos, email)
 select 'username'||v, v, v||'@c.b.com' from generate_series(1, 100000) v;
                QUERY PLAN
------------------------------------------
 - Plan:
...
     WAL Records: 303959                 +
     WAL FPI: 0                          +
     WAL Bytes: 25730509                 +
...

As you can see, the output reports information about the number of WAL records that have
been generated, the number of WAL Full Page Images (FPIs), and the number of bytes 
written into the WAL logs.



Indexes and Performance Optimization Chapter 13

[ 427 ]

An example of query tuning
In the previous section, you have learned how to use EXPLAIN to understand how
PostgreSQL is going to execute a query; it is now time to use EXPLAIN in action to tune
some slow queries and improve performance.

This section will show you some basic concepts of the day-to-day usage of EXPLAIN as a
powerful tool to determine where and how to instrument PostgreSQL in doing faster data
access. Of course, query tuning is a very complex subject and often requires repeated trial-
based optimization, so the aim of this section is not to provide you with true knowledge
about query tuning but rather a basic understanding of how to improve your own database
and queries.

Sometimes, tuning a query involves simply rewriting it a way that is more comfortable – or
better, more comprehensible –to PostgreSQL, but most often, that means using an
appropriate index to speed up access to the underlying data.

Let's start with a simple example: we want to extract all the posts ordered by creation day,
so the query is as follows:

SELECT * FROM posts ORDER BY created_on;

We can pass it to EXPLAIN to get an idea about how PostgreSQL is going to execute it:

forumdb=> EXPLAIN SELECT * FROM posts ORDER BY created_on;
                              QUERY PLAN
-----------------------------------------------------------------------
 Sort  (cost=1009871.99..1022372.04 rows=5000000 width=55)
   Sort Key: created_on
   ->  Seq Scan on posts  (cost=0.00..111729.20 rows=5000000 width=55)
(3 rows)

In our demo database, there are 1,000 users (authors), each with 5,000
posts. The posts table requires around 480 megabytes of disk space.

As you can see, the first node to be executed is the sequential scan (the initial cost is 0),
which is going to produce 5,000,000 tuples as output. Why a sequential scan? First of all,
there is no filtering clause – we want to retrieve all the data stored in the table – and second,
there is no access method on the table (there are no indexes).

Since we asked to sort the output, the following node to execute is a sorting node, which
produces the very same number of tuples as a result.



Indexes and Performance Optimization Chapter 13

[ 428 ]

How much does it take to complete the preceding query? EXPLAIN ANALYZE can help us
answer that question:

forumdb=> EXPLAIN ANALYZE SELECT * FROM posts ORDER BY created_on;
                                                        QUERY PLAN
---------------------------------------------------------------------------
-----------------------------------------------
 Sort  (cost=1009871.99..1022372.04 rows=5000020 width=55) (actual
time=31321.217..32806.986 rows=5000000 loops=1)
   Sort Key: created_on
   Sort Method: external merge  Disk: 367024kB
   ->  Seq Scan on posts  (cost=0.00..111729.20 rows=5000020 width=55)
(actual time=0.078..2546.672 rows=5000000 loops=1)
 Planning Time: 0.148 ms
 Execution Time: 33138.966 ms

The pure execution time is more than 33 seconds. Is it possible to reduce the total amount of
time by building a specific index on the created_on field:

forumdb=> CREATE INDEX idx_posts_date ON posts( created_on );
CREATE INDEX
forumdb=> EXPLAIN ANALYZE SELECT * FROM posts ORDER BY created_on;
                                                                QUERY PLAN
---------------------------------------------------------------------------
----------------------------------------------------------------
 Index Scan using idx_posts_date on posts  (cost=0.43..376844.33
rows=5000000 width=55) (actual time=0.768..8694.662 rows=5000000 loops=1)
 Planning Time: 6.357 ms
 Execution Time: 9128.668 ms
(3 rows)

The query is now running at almost one-third of the time required without the index, and,
in fact, the query plan has changed from a sequential scan to an index scan with the freshly
created new index.

Of course, the newly created index has a penalty in terms of storage space: as you can
imagine, the increase in speed comes with an extra space cost that can be checked as
follows:

forumdb=> SELECT pg_size_pretty( pg_relation_size( 'posts' ) ) AS
table_size,
  pg_size_pretty( pg_relation_size( 'idx_posts_date' ) ) AS index_size;
 table_size | index_size
------------+------------



Indexes and Performance Optimization Chapter 13

[ 429 ]

 482 MB     | 107 MB
(1 row)

The index requires around 22% of the disk space occupied by the whole table data.

Now, whether this extra disk space is too much or not depends on your resources and your
final aim: in the preceding case, assuming you are executing the query quite often, the
increased speed is justified by the extra space.

Let's now concentrate on a more typical query: finding out all the posts of a specific user in
a specific period of time. The resulting query will be something like the following one,
assuming a 2-day period:

SELECT p.title, u.username
FROM posts p
JOIN users u ON u.pk = p.author
WHERE u.username = 'fluca1978'
AND   daterange( CURRENT_DATE - 2, CURRENT_DATE ) @> p.created_on::date

How does PostgreSQL execute the preceding query? Again, EXPLAIN can help us
understand what the database thinks the best query plan is:

forumdb=> EXPLAIN
    SELECT p.title, u.username
    FROM posts p
    JOIN users u ON u.pk = p.author
    WHERE u.username = 'fluca1978'
    AND   daterange( CURRENT_DATE - 2, CURRENT_DATE ) @>
p.created_on::date;

                                       QUERY PLAN
---------------------------------------------------------------------------
--------------
 Nested Loop  (cost=0.28..187049.79 rows=25 width=22)
   Join Filter: (p.author = u.pk)
   ->  Index Scan using users_username_key on users u  (cost=0.28..8.29
rows=1 width=14)
         Index Cond: (username = 'fluca1978'::text)
   ->  Seq Scan on posts p  (cost=0.00..186729.00 rows=25000 width=16)
         Filter: (daterange((CURRENT_DATE - 2), CURRENT_DATE) @>
(created_on)::date)



Indexes and Performance Optimization Chapter 13

[ 430 ]

The very first node to be executed is a sequential scan on the posts table, where the date
filter is applied. This node will produce around 25,000 tuples that are going to be merged in
a nested loop with the resulting tuples from the index scan node on the users' table. Since
the username is a unique attribute of the users' table, PostgreSQL knows it can find a single
username using an index, and so it does. This makes the result of the users' table really
small, a single tuple, and therefore, it is possible to use a nested loop to join the two result
sets. PostgreSQL is expecting 25 rows as the final result.

How can we check whether this is correct? EXPLAIN ANALYZE can help us compare what
PostgreSQL estimates with the reality:

forumdb=> EXPLAIN ANALYZE
    SELECT p.title, u.username
    FROM posts p
    JOIN users u ON u.pk = p.author
    WHERE u.username = 'fluca1978'
    AND   daterange( CURRENT_DATE - 2, CURRENT_DATE ) @>
p.created_on::date;

                                                            QUERY PLAN
---------------------------------------------------------------------------
--------------------------------------------------------
 Nested Loop  (cost=0.28..187049.79 rows=25 width=22) (actual
time=152.156..5008.775 rows=10 loops=1)
   Join Filter: (p.author = u.pk)
   Rows Removed by Join Filter: 9990
   ->  Index Scan using users_username_key on users u  (cost=0.28..8.29
rows=1 width=14) (actual time=1.174..1.203 rows=1 loops=1)
         Index Cond: (username = 'fluca1978'::text)
   ->  Seq Scan on posts p  (cost=0.00..186729.00 rows=25000 width=16)
(actual time=150.959..4755.512 rows=10000 loops=1)
         Filter: (daterange((CURRENT_DATE - 2), CURRENT_DATE) @>
(created_on)::date)
         Rows Removed by Filter: 4990000
 Planning Time: 0.582 ms
 Execution Time: 5012.352 ms

The final result is near enough to what PostgreSQL estimated: instead of 25 final tuples,
there were only 10. This small error propagates from the sequential scan on the posts table,
where the planner estimated 25,000 rows instead of 10,000. Also, it is interesting to note that
the query execution requires 5 seconds.



Indexes and Performance Optimization Chapter 13

[ 431 ]

What happens if we add an index to the author column of the table posts?

forumdb=> CREATE INDEX idx_posts_author ON posts( author );
CREATE INDEX
forumdb=> EXPLAIN ANALYZE
    SELECT p.title, u.username
    FROM posts p
    JOIN users u ON u.pk = p.author
    WHERE u.username = 'fluca1978'
    AND   daterange( CURRENT_DATE - 2, CURRENT_DATE ) @>
p.created_on::date;

                                                             QUERY PLAN
---------------------------------------------------------------------------
-----------------------------------------------------------
 Nested Loop  (cost=94.21..15440.96 rows=25 width=22) (actual
time=0.711..11.865 rows=5 loops=1)
   ->  Index Scan using users_username_key on users u  (cost=0.28..8.29
rows=1 width=14) (actual time=0.021..0.215 rows=1 loops=1)
         Index Cond: (username = 'fluca1978'::text)
   ->  Bitmap Heap Scan on posts p  (cost=93.94..15432.42 rows=25 width=16)
(actual time=0.677..11.451 rows=5 loops=1)
         Recheck Cond: (author = u.pk)
         Filter: (daterange((CURRENT_DATE - 1), CURRENT_DATE) @>
(created_on)::date)
         Rows Removed by Filter: 4995
         Heap Blocks: exact=66
         ->  Bitmap Index Scan on idx_posts_author  (cost=0.00..93.93
rows=5000 width=0) (actual time=0.628..0.671 rows=5000 loops=1)
               Index Cond: (author = u.pk)
 Planning Time: 0.630 ms
 Execution Time: 12.310 ms
(12 rows)

First of all, the query now takes only 12 milliseconds, compared to the 5 seconds of the
previous execution plan. What has changed is that the posts table is now seeking to use the
fresh index, and the bitmap built out of that index is then used to join the result of the index
scan on the users' table. The date clause has been pushed as a check condition within the
index scan of the posts table. Why has the plan changed so much? Clearly, the author
column filters much more of the table tuples than the range of dates, so PostgreSQL decides
to use this clause as a first approach to filtering the data. Since PostgreSQL expects no more
than 5,000 tuples out of the author filter condition, and we know it is right about that,
filtering on the created_on column after will be faster (if you remember, the created_on
filter clause was causing 10,000 tuples compared to the 5,000 out of the author column).



Indexes and Performance Optimization Chapter 13

[ 432 ]

It is also interesting to note that there is no longer any reason to keep around the index on
the created_on column, since the preceding query plan is not using it anymore.

What is the space required by the indexes now? Again, it is quite simple to check:

forumdb=> SELECT pg_size_pretty( pg_relation_size( 'posts') ) AS
table_size,
       pg_size_pretty( pg_relation_size( 'idx_posts_date' ) ) AS
idx_date_size,
       pg_size_pretty( pg_relation_size( 'idx_posts_author' ) ) AS
idx_author_size;

 table_size | idx_date_size | idx_author_size
------------+---------------+-----------------
 482 MB     | 107 MB        | 107 MB
(1 row)

Both the indexes require the same space, but as we already said, we can drop the date-
based index since it is no longer required. In fact, even with a specific date clause, the index
is not used anymore:

forumdb=> EXPLAIN ANALYZE
    SELECT p.title, u.username
    FROM posts p
    JOIN users u ON u.pk = p.author
    WHERE u.username = 'fluca1978'
    AND   p.created_on::date = CURRENT_DATE -2;

---------------------------------------------------------------------------
-----------------------------------------------------------
 Nested Loop  (cost=94.21..15415.96 rows=25 width=22) (actual
time=0.851..6.264 rows=5 loops=1)
   ->  Index Scan using users_username_key on users u  (cost=0.28..8.29
rows=1 width=14) (actual time=0.022..0.027 rows=1 loops=1)
         Index Cond: (username = 'fluca1978'::text)
   ->  Bitmap Heap Scan on posts p  (cost=93.94..15407.42 rows=25 width=16)
(actual time=0.815..6.218 rows=5 loops=1)
         Recheck Cond: (author = u.pk)
         Filter: ((created_on)::date = (CURRENT_DATE - 2))
         Rows Removed by Filter: 4995
         Heap Blocks: exact=66
         ->  Bitmap Index Scan on idx_posts_author  (cost=0.00..93.93
rows=5000 width=0) (actual time=0.755..0.756 rows=5000 loops=1)
               Index Cond: (author = u.pk)



Indexes and Performance Optimization Chapter 13

[ 433 ]

Identifying unused indexes is important because it allows us to reclaim disk space and
simplifies the management and data insertion: remember that every time the table changes,
the index has to be updated, and this also requires extra resources, such as time and disk
space.

Therefore, as you can see, it is really important to analyze the queries your applications
execute the most and identify whether an index can help improve the execution speed, but
also remember that an index has an extra cost in both space and maintenance, so don't
abuse the use of indexes.

But how can you identify unused indexes without even knowing about the ongoing
queries?

Luckily, PostgreSQL provides you with detailed information about the usage of every
index: the special pg_stat_user_indexes view provides information about how many
times an index has been used and how. For example, to get information about the indexes
over the posts table, you can execute something such as the following:

forumdb=> SELECT indexrelname, idx_scan, idx_tup_read, idx_tup_fetch FROM
pg_stat_user_indexes WHERE relname = 'posts';
   indexrelname   | idx_scan | idx_tup_read | idx_tup_fetch
------------------+----------+--------------+---------------
 posts_pkey       |        0 |            0 |             0
 idx_posts_date   |        3 |      5000002 |       5000002
 idx_posts_author |       15 |        25010 |            10
(3 rows)

This tells us that idx_posts_date has been used 3 times, providing over 5 million tuples,
while idx_posts_author has been used 15 times and also provided much fewer tuples
(only 10), meaning it is very effective.

If the trend is confirmed, and idx_posts_date is seldomly used, you can safely drop it.

ANALYZE and how to update statistics
PostgreSQL exploits a statistical approach to evaluate different execution plans. This means
that PostgreSQL does not know how many tuples there are in a table, but has a good
approximation that allows the planner to compute the cost of the execution plan.

Statistics are not only related to the quantity (how many tuples) but also to the quality of
the underlying data – for example, how many distinct values, which values are more
frequent in a column, and so on. Thanks to the combination of all of this data, PostgreSQL
is able to make a good decision.



Indexes and Performance Optimization Chapter 13

[ 434 ]

There are times, however, when the quality of the statistical data is not good enough for
PostgreSQL to choose the best plan, a problem commonly known as "out-of-date statistics."
In fact, statistics are not updated in real time; rather, PostgreSQL keeps track of what is
ongoing in every table in every database and summarizes the number of new tuples,
updated ones, and deleted ones, as well as the quality of their data. It could happen that the
statistics are not updated frequently enough or not at all for different reasons we are going
to explain later, so the database administrator should always have a way to force
PostgreSQL to start from scratch and "rebuild" the statistics.

The command that does this is ANALYZE.

ANALYZE accepts a table (and, optionally, a list of columns) and builds all the statistics for
the specified table (or the specified columns only).

ANALYZE is a very intrusive command and requires a lot of I/O resources, so it is not a good
idea to run it manually, and it is for that reason that the auto-analyze daemon is in charge
of periodically updating the statistics when enough changes on a table happen.

ANALYZE has nothing to do with the argument to EXPLAIN: EXPLAIN
ANALYZE looks to the query plan and executes the query, while ANALYZE
updates PostgreSQL statistics.

The synopsis for the ANALYZE command is the following:

ANALYZE [ ( option [, ...] ) ] [ table_and_columns [, ...] ]

Essentially, you are going to launch it against a single table, as follows:

forumdb=> \timing
forumdb=> ANALYZE posts;
ANALYZE
Time: 17674,106 ms (00:17,674)

Please consider the time the preceding ANALYZE command required: 17 seconds to analyze
a table with 5 million tuples. As already stated, ANALYZE is a very intrusive command and
can lock a table (and the ongoing activity against it) for a long time.

You can inspect the times required to execute commands and queries with
the \timing psql special command, which will print a summary of the
elapsed time after every statement. This is not a solid way to measure
performances, only to get an idea of how much time a task is spending.



Indexes and Performance Optimization Chapter 13

[ 435 ]

ANALYZE does not support a lot of options, mainly VERBOSE to display verbose output of
what ANALYZE is doing, and SKIP_LOCKED, which makes ANALYZE skip a table if it cannot
acquire the appropriate locks because there are other ongoing operations that have already
acquired an incompatible lock.

Where does PostgreSQL store the statistics that ANALYZE collects? The pg_stats special
catalog contains all the statistics used by the planner to determine the values and
constraints to examine the attribute. For example, let's see what PostgreSQL knows about
the author column of the posts table, and in particular, how many distinct values there are:

forumdb=> SELECT n_distinct
          FROM pg_stats
          WHERE attname = 'author' AND tablename = 'posts';
 n_distinct
------------
       1000
(1 row)

PostgreSQL knows that we have 1,000 different authors that have posted at least one post
in our example database, as demonstrated by the EXPLAIN ANALYZE command in the
previous section.

One bit of important information you can find in the pg_stats catalog is the most common
values, correlated by the frequency that these values appear. Extracting this information
requires a little more attention since both values and frequencies are stored as arrays, so the
following query provides the most common values and frequency for the author column:

forumdb-> SELECT * FROM pg_stats;
 mcv  |     mcf
------+--------------
 2358 |     0.001039
 2972 |     0.001037
 2155 |     0.001035
 2794 | 0.0010336667
 2648 | 0.0010313333
 2649 | 0.0010286666
 2917 | 0.0010286666
 2629 | 0.0010276666
 2906 |     0.001027
 ...



Indexes and Performance Optimization Chapter 13

[ 436 ]

What the preceding output means is that every author that appears in the mcv column – for
instance, the author with primary key 2358 appears in the posts table with a frequency of
0.001039. This leads to the fact that this author appears 0.001039 multiplied by the number
of tuples (5 million) times and produces 5,195 tuples, confirmed by a trivial counting:

forumdb=> SELECT count(*) FROM posts WHERE author = 2358;
 count
-------
  5000

Of course, remember that the information in pg_stats is an approximation of the real
situation on the underlying table, so values can be slightly different but must be of the same
order of magnitude to let the planner produce a good access method.

There is other information in pg_stats, such as the number of NULL values for a column,
and so on.

In conclusion, PostgreSQL keeps track of the statistics of every column in every table; the
statistics are updated by ANALYZE or the auto-analyze daemon so that the planner can
always be trusted to have a good approximation of the quantity and quality of data that is 
stored in a table.

Auto-explain
Auto-explain is an extension that helps the database administrator get an idea of slow
queries and their execution plan. Essentially, auto-explain triggers when a running query is
slower than a specified threshold, and then dumps in the PostgreSQL logs (refer to Chapter
14, Logging and Auditing) the execution plan of the query.

In this way, the database administrator can get an insight into slow queries and their
execution plan without having to re-execute these queries. Thanks to this, the database
administrator can inspect the execution plans and decide if and where to apply indexes or
perform a deeper analysis.

The auto-explain module is configured via a set of auto_explain parameter options that
can be inserted in the PostgreSQL configuration (the postgresql.conf file), but you need
to remember that in order to activate the module, you need to restart the cluster.

The auto-explain module can do pretty much the same things that a manual
EXPLAIN command can do, including EXPLAIN ANALYZE, but it has to be properly
configured.



Indexes and Performance Optimization Chapter 13

[ 437 ]

In order to install and configure the module, let's start simple and add the following two
settings to the cluster configuration in postgresql.conf:

session_preload_libraries = 'auto_explain'
auto_explain.log_min_duration = '500ms'

The first line tells PostgreSQL to load the library related to the auto-explain module, while
the second instruments the module to triggers whenever a query takes longer than half of a
second to conclude. Of course, you can raise the query duration or lower it depending on
your needs.

With that configuration in place, it is now possible to execute quite a long query, as follows
(assuming you have dropped/disabled the indexes created in the previous section):

forumdb=> \timing
forumdb=> SELECT count(*) -- p.title, u.username
FROM posts p
JOIN users u ON u.pk = p.author
WHERE u.username = 'fluca1978'
AND   daterange( CURRENT_DATE - 20, CURRENT_DATE ) @> p.created_on::date;
 count
-------
    80
(1 row)

Time: 6650,378 ms (00:06,650)

The query took 6 and a half seconds, enough time to trigger our auto-explain, and in fact, in
the PostgreSQL logs, you can see the following:

$ sudo tail -f /postgres/12/log/postgresql.log
2020-04-08 18:36:15.901 CEST [79192] LOG:  duration: 5991.394 ms  plan:
        Query Text: SELECT count(*)
        FROM posts p
        JOIN users u ON u.pk = p.author
        WHERE u.username = 'fluca1978'
        AND   daterange( CURRENT_DATE - 20, CURRENT_DATE ) @>
p.created_on::date
        ;
        Finalize Aggregate  (cost=114848.33..114848.34 rows=1 width=8)
          ->  Gather  (cost=114848.12..114848.33 rows=2 width=8)
                Workers Planned: 2
                ->  Partial Aggregate  (cost=113848.12..113848.13 rows=1
width=8)
                      ->  Hash Join  (cost=8.30..113848.09 rows=10 width=0)
                            Hash Cond: (p.author = u.pk)
                            ->  Parallel Seq Scan on posts p



Indexes and Performance Optimization Chapter 13

[ 438 ]

(cost=0.00..113812.33 rows=10417 width=4)
                                  Filter: (daterange((CURRENT_DATE - 20),
CURRENT_DATE) @> (created_on)::date)
                            ->  Hash  (cost=8.29..8.29 rows=1 width=4)
                                  Buckets: 1024  Batches: 1  Memory Usage:
9kB
                                  ->  Index Scan using users_username_key
on users u  (cost=0.28..8.29 rows=1 width=4)
                                        Index Cond: (username =
'fluca1978'::text)

That is exactly the output a normal EXPLAIN command would have produced for the same
query.

The beauty of this approach is that you don't have to worry about or remember to execute
EXPLAIN on queries or collected queries; you simply have to inspect the logs to find out the
execution plan of slow queries. Once you have fixed queries such as the preceding, by
creating indexes, for example, you can raise the threshold of auto-explain to catch slower
queries and iterate the process again.

There is a full set of options you can configure to take greater advantage of the auto-explain
module, but discussing all of them is beyond the scope of this section. However, a few
interesting ones are discussed as follows. If you need to perform EXPLAIN ANALYZE, you
can set the auto_explain.log_analyze parameter to on. As an example, enabling the
parameter in your configuration file would look as follows:

session_preload_libraries = 'auto_explain'
auto_explain.log_min_duration = '500ms'
auto_explain.log_analyze = on

This will produce the following output in the logs whenever you execute the same query of
the preceding example:

2020-04-08 09:15:55.046 CEST [88277] LOG:  duration: 5193.342 ms  plan:
        Query Text: SELECT count(*)
        FROM posts p
        JOIN users u ON u.pk = p.author
        WHERE u.username = 'fluca1978'
        AND   daterange( CURRENT_DATE - 20, CURRENT_DATE ) @>
p.created_on::date
        ;
        Finalize Aggregate  (cost=114848.33..114848.34 rows=1 width=8)
(actual time=5190.322..5190.323 rows=1 loops=1)
          ->  Gather  (cost=114848.12..114848.33 rows=2 width=8) (actual
time=5189.678..5193.226 rows=3 loops=1)
                Workers Planned: 2



Indexes and Performance Optimization Chapter 13

[ 439 ]

                Workers Launched: 2
                ->  Partial Aggregate  (cost=113848.12..113848.13 rows=1
width=8) (actual time=4861.705..4861.712 rows=1 loops=3)
                      ->  Hash Join  (cost=8.30..113848.09 rows=10 width=0)
(actual time=2477.949..4861.639 rows=27 loops=3)
                            Hash Cond: (p.author = u.pk)
                            ->  Parallel Seq Scan on posts p
(cost=0.00..113812.33 rows=10417 width=4) (actual time=214.443..4761.128
rows=26667 loops=3)
                                  Filter: (daterange((CURRENT_DATE - 20),
CURRENT_DATE) @> (created_on)::date)
                                  Rows Removed by Filter: 1640000
                            ->  Hash  (cost=8.29..8.29 rows=1 width=4)
(actual time=0.296..0.296 rows=1 loops=3)
                                  Buckets: 1024  Batches: 1  Memory Usage:
9kB
                                  ->  Index Scan using users_username_key
on users u  (cost=0.28..8.29 rows=1 width=4) (actual time=0.109..0.144
rows=1 loops=3)
                                        Index Cond: (username =
'fluca1978'::text)

As you can see, the output now includes the same information as EXPLAIN ANALYZE
would report. Another interesting feature of auto-explain is that it can log information
about the trigger's execution, therefore providing a hint as to which triggers have fired and
could be responsible for slowing down your query execution: the
auto_explain.log_triggers Boolean parameter can be set for this purpose.

Lastly, you can change the output of the auto-explain information in the logs, choosing
from plain text, XML, JSON, and YAML, exactly as you would do with the manual
EXPLAIN command, and you can set your preferred log style via the
auto_explain.log_format option.

Since PostgreSQL 13, you can also get information about WAL usage out from
auto_explain, in a way that is similar to what EXPLAIN with the WAL option does.
The auto_explain.log_wal special configuration parameter can be turned on
to automatically log information about records and segments inserted in the write-ahead
logs.

For other interesting features and tunables, refer to the official documentation of this
module.



Indexes and Performance Optimization Chapter 13

[ 440 ]

Summary
PostgreSQL provides very rich features for creating and managing indexes, both single
column-based or multi-column-based, as well as multiple types of indexes that can be built.

Thanks to the EXPLAIN command, a database administrator can inspect a slow query and
see how the optimizer has thought about what the best access to the underlying data is, and
thanks to an understanding of how PostgreSQL works, the administrator can decide which
indexes to create in order to tune the performances.

PostgreSQL also provides a rich set of statistics that is used to both extract the quality and
the quantity of data within every table, therefore being able to generate an execution plan,
and to monitor which indexes are used and when. Auto-explain is another useful module
that can be used to silently monitor slow queries and execution plans and see how the
cluster is performing without any need to manually execute every suspect statement.

It is important to emphasize that performance tuning is one of the most complex tasks in
database administration, and that there is no one silver bullet or one-size-fits-all solution, so
experience and a lot of practice are required. In the next chapter, we will look into how to
do so, using logging and auditing.

References
PostgreSQL official documentation about CREATE INDEX: https:/ ​/ ​www.
postgresql. ​org/ ​docs/ ​12/ ​sql- ​createindex. ​html

PostgreSQL official documentation about pg_stats: https:/ ​/ ​www.​postgresql.
org/​docs/ ​12/ ​view- ​pg- ​stats. ​html

PostgreSQL official documentation about EXPLAIN: https:/ ​/ ​www.​postgresql.
org/​docs/ ​12/ ​using- ​explain. ​html

PostgreSQL official documentation about ANALYZE: https:/ ​/ ​www.​postgresql.
org/​docs/ ​12/ ​sql- ​analyze. ​html

Auto-explain official documentation: https:/ ​/​www. ​postgresql. ​org/ ​docs/ ​12/
auto-​explain. ​html

https://www.postgresql.org/docs/12/sql-createindex.html
https://www.postgresql.org/docs/12/sql-createindex.html
https://www.postgresql.org/docs/12/sql-createindex.html
https://www.postgresql.org/docs/12/sql-createindex.html
https://www.postgresql.org/docs/12/sql-createindex.html
https://www.postgresql.org/docs/12/sql-createindex.html
https://www.postgresql.org/docs/12/sql-createindex.html
https://www.postgresql.org/docs/12/sql-createindex.html
https://www.postgresql.org/docs/12/sql-createindex.html
https://www.postgresql.org/docs/12/sql-createindex.html
https://www.postgresql.org/docs/12/sql-createindex.html
https://www.postgresql.org/docs/12/sql-createindex.html
https://www.postgresql.org/docs/12/sql-createindex.html
https://www.postgresql.org/docs/12/sql-createindex.html
https://www.postgresql.org/docs/12/sql-createindex.html
https://www.postgresql.org/docs/12/sql-createindex.html
https://www.postgresql.org/docs/12/sql-createindex.html
https://www.postgresql.org/docs/12/sql-createindex.html
https://www.postgresql.org/docs/12/view-pg-stats.html
https://www.postgresql.org/docs/12/view-pg-stats.html
https://www.postgresql.org/docs/12/view-pg-stats.html
https://www.postgresql.org/docs/12/view-pg-stats.html
https://www.postgresql.org/docs/12/view-pg-stats.html
https://www.postgresql.org/docs/12/view-pg-stats.html
https://www.postgresql.org/docs/12/view-pg-stats.html
https://www.postgresql.org/docs/12/view-pg-stats.html
https://www.postgresql.org/docs/12/view-pg-stats.html
https://www.postgresql.org/docs/12/view-pg-stats.html
https://www.postgresql.org/docs/12/view-pg-stats.html
https://www.postgresql.org/docs/12/view-pg-stats.html
https://www.postgresql.org/docs/12/view-pg-stats.html
https://www.postgresql.org/docs/12/view-pg-stats.html
https://www.postgresql.org/docs/12/view-pg-stats.html
https://www.postgresql.org/docs/12/view-pg-stats.html
https://www.postgresql.org/docs/12/view-pg-stats.html
https://www.postgresql.org/docs/12/view-pg-stats.html
https://www.postgresql.org/docs/12/view-pg-stats.html
https://www.postgresql.org/docs/12/view-pg-stats.html
https://www.postgresql.org/docs/12/using-explain.html
https://www.postgresql.org/docs/12/using-explain.html
https://www.postgresql.org/docs/12/using-explain.html
https://www.postgresql.org/docs/12/using-explain.html
https://www.postgresql.org/docs/12/using-explain.html
https://www.postgresql.org/docs/12/using-explain.html
https://www.postgresql.org/docs/12/using-explain.html
https://www.postgresql.org/docs/12/using-explain.html
https://www.postgresql.org/docs/12/using-explain.html
https://www.postgresql.org/docs/12/using-explain.html
https://www.postgresql.org/docs/12/using-explain.html
https://www.postgresql.org/docs/12/using-explain.html
https://www.postgresql.org/docs/12/using-explain.html
https://www.postgresql.org/docs/12/using-explain.html
https://www.postgresql.org/docs/12/using-explain.html
https://www.postgresql.org/docs/12/using-explain.html
https://www.postgresql.org/docs/12/using-explain.html
https://www.postgresql.org/docs/12/using-explain.html
https://www.postgresql.org/docs/12/sql-analyze.html
https://www.postgresql.org/docs/12/sql-analyze.html
https://www.postgresql.org/docs/12/sql-analyze.html
https://www.postgresql.org/docs/12/sql-analyze.html
https://www.postgresql.org/docs/12/sql-analyze.html
https://www.postgresql.org/docs/12/sql-analyze.html
https://www.postgresql.org/docs/12/sql-analyze.html
https://www.postgresql.org/docs/12/sql-analyze.html
https://www.postgresql.org/docs/12/sql-analyze.html
https://www.postgresql.org/docs/12/sql-analyze.html
https://www.postgresql.org/docs/12/sql-analyze.html
https://www.postgresql.org/docs/12/sql-analyze.html
https://www.postgresql.org/docs/12/sql-analyze.html
https://www.postgresql.org/docs/12/sql-analyze.html
https://www.postgresql.org/docs/12/sql-analyze.html
https://www.postgresql.org/docs/12/sql-analyze.html
https://www.postgresql.org/docs/12/sql-analyze.html
https://www.postgresql.org/docs/12/sql-analyze.html
https://www.postgresql.org/docs/12/auto-explain.html
https://www.postgresql.org/docs/12/auto-explain.html
https://www.postgresql.org/docs/12/auto-explain.html
https://www.postgresql.org/docs/12/auto-explain.html
https://www.postgresql.org/docs/12/auto-explain.html
https://www.postgresql.org/docs/12/auto-explain.html
https://www.postgresql.org/docs/12/auto-explain.html
https://www.postgresql.org/docs/12/auto-explain.html
https://www.postgresql.org/docs/12/auto-explain.html
https://www.postgresql.org/docs/12/auto-explain.html
https://www.postgresql.org/docs/12/auto-explain.html
https://www.postgresql.org/docs/12/auto-explain.html
https://www.postgresql.org/docs/12/auto-explain.html
https://www.postgresql.org/docs/12/auto-explain.html
https://www.postgresql.org/docs/12/auto-explain.html
https://www.postgresql.org/docs/12/auto-explain.html
https://www.postgresql.org/docs/12/auto-explain.html
https://www.postgresql.org/docs/12/auto-explain.html


14
Logging and Auditing

PostgreSQL provides a very rich logging infrastructure. Being able to examine the log is a
key skill for every database administrator—logs provide hints and information about what
the cluster has done, what it is doing, and what happened in the past. This chapter will
explain the basics about PostgreSQL log configuration, providing you with an explanation
of how to examine logs using either manual approaches, such as reading every log line the
cluster produces, or by using automated tools that can help in getting a complete overview
of the cluster activity. Related to logging is the topic of auditing, which is the capability of
tracking who did what to which data. Auditing is often enforced by government laws,
rather than the needs of the database administrators. However, a good auditing system can
also help administrators in identifying what happened in the database.

In this chapter, you will learn about the following topics:

Introduction to logging
Extracting information from logs using PgBadger
Implementing auditing

Technical requirements
You will need to know the following:

How to manage PostgreSQL configuration
How to start, restart, and monitor PostgreSQL and interact with PGDATA files

You can find the code for this chapter at the following GitHub repository: https:/ ​/​github.
com/​PacktPublishing/ ​Learn- ​PostgreSQL.

https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL


Logging and Auditing Chapter 14

[ 442 ]

Introduction to logging
Like many other services and databases, PostgreSQL provides its own logging
infrastructure so that the administrator can always inspect what the daemon process is
doing and what the current status of the database system is. While logs are not vital for the
data and database activities, they represent very important knowledge about what has
happened or is happening in the whole system and represent an important clue by means
of which an administrator can take action.

PostgreSQL has a very flexible and configurable log infrastructure that allows different
logging configuration, rotation, archiving, and post-analysis.

Logs are stored in a textual form, so that they can be easily analyzed with common log
analysis tools, including operating system utilities such as grep(1), sed(1), and text
editors.

The term "log," as used in this chapter, refers only to the system's textual
logs, and not to the write-ahead logs that, on the other hand, are crucial in
the database life cycle.

Usually, logs are contained in a specific sub-folder of the PGDATA directory, but as you will
see in the following subsections, you are free to move logs to pretty much wherever you
want in your operating system storage.

Every event that happens in the database is logged in a separate line of text within the logs,
an important and useful aspect when you want to analyze logs with line-oriented tools
such as the common Unix commands (for example, grep(1)). Of course, writing a huge
amount of information into logs has drawbacks; it requires system resources and can fill the
storage where the logs are placed. For this reason, it is important to manage the logging
infrastructure according to the aim of the cluster, therefore logging only the minimum
amount of information that can be used for post-analysis.

Logs can quickly fill your disk storage if you don't configure them
appropriately, and therefore you should be sure your cluster is not
producing more logs than your system can handle.



Logging and Auditing Chapter 14

[ 443 ]

Following the common Unix philosophy, PostgreSQL allows you to send logs to an external
component named the syslog. The idea is that there could be, in your own infrastructure, a
component or a machine that is responsible for collecting logs from all the available
services, including databases, web servers, application servers, and so on. Therefore, you
can redirect PostgreSQL logs to the same common syslog facility and get the cluster logs
collected in the very same place as you already do for the other services. However, this is
not always a good choice, and it is for this reason that PostgreSQL provides its own
component, named the logging collector, to store logs.

In fact, under a heavy load, the syslog component could start to lose log entries, while the
PostgreSQL logging collector has been designed explicitly to not lose a single piece of log
information. Therefore, the logging collector shipped with PostgreSQL is usually the
preferred way of keeping track of logs, so that you can be sure that once you have to
analyze the logs, you have all the information the cluster has produced, without any
missing bits.

PostgreSQL logging is configured via tunables contained in the main cluster configuration,
namely the postgresql.conf file. In the following subsections, you will be introduced to
the PostgreSQL logging configuration, and you will see how to tune your own log to match
your needs.

Where to log
The first step in configuring the logging system is to decide where and how to store textual
logs. The main parameter that controls the logging system is log_destination, which can
assume one or more of the following values:

stderr means the cluster logs will be sent to the standard error of the
postmaster process, which commonly means they will appear on the console
from which the cluster has been started.
syslog means that the logs will be sent to an external syslog component.
csvlog means that the logs will be produced as comma-separated values, useful
for the automatic analysis of logs (more on this later).
eventlog is a particular component available only on Microsoft Windows
platforms that collects the logs of a whole bunch of services.



Logging and Auditing Chapter 14

[ 444 ]

It is possible to set up the logging to send logs to multiple destinations, such as to the
stderr and csvlog facilities at once, but most of the time you will choose a single
destination and use that.

Another important setting of the logging infrastructure is log_collector, which is a
Boolean value that switches on a process (named the logging collector) that captures all the
logs sent to the standard error and stores them where you want.

To summarize, the two preceding parameters are somehow inter-dependent: you need to
choose where to send the logs that PostgreSQL will always produce (log_destination),
and in the case that you send them only (or also) to the standard error or to the csvlog
facility, you can turn on a dedicated process (the logging_collector value) to catch any
log entry and store it on disk. This means that your logging configuration will always be
something like the following one:

log_destination = 'stderr'
logging_collector = on

Here, the first line tells the cluster to send the produced logs to the standard error, but from
there to be managed and stored by a dedicated process named the logging collector.

In the rest of this section, we will concentrate on the configuration of the logging collector.
The logging collector can be configured to place logs in the directory you desire, to name
the log files as you wish, and to automatically rotate them. Log rotation is a quite common
feature in every logging system and means that once a single log file has grown to a
specified size, or when enough time has passed, the file log is closed and a new one (with a
different name) is created. For example, you can decide to automatically rotate your log
files once a single file becomes 100 MB or every 2 days: the first condition that happens
triggers the rotation so that PostgreSQL produces a different log file at least every 2 days or
every 100 MB of textual information.

Log rotation is useful because it allows you to produce smaller log files
that can be constrained to a specific period of time and that are smaller
than a single log file, therefore helping you select the right field to analyze
depending on the time of the event you are interested in.



Logging and Auditing Chapter 14

[ 445 ]

Once you have enabled the logging collector, you have to configure it so that it will store
the logs as you want and where you want. In fact, you can use the following parameters to
configure the logging collector process, by placing the right value for any of the following
settings in the PostgreSQL configuration file:

log_directory: This is a directory where individual log files must be stored. It
can be a relative path, considered with regard to PGDATA, or an absolute path
(that the process must be able to write into).
log_filename: This is a single filename or a pattern to specify the name of every
log file (within log_directory). The pattern can be specified
following strftime(3) to format it with a date and time. For example, the value
postgresql-%Y-%m-%d.log will produce a log filename with the date
(respectively, year, month, and day), for example,
postgresql-2020-04-17.log.
log_rotation_age: This indicates how much time the log should wait before
applying automatic log rotation. For example, 1d means 1 day and specifies that
the logs will be rotated once per day.
log_rotation_size: This specifies the size of the log file before it is rotated to a
new one.

With the preceding settings, our logging configuration within the postgresql.conf file
will be as follows:

log_destination   = 'stderr'
logging_collector = on
log_directory     = 'log'
log_filename      = 'postgresql-%Y-%m-%d.log'
log_rotation_age  = '1d'
log_rotation_size = '100MB'

With the preceding settings, the cluster will produce a new log file every one day (or 100
MB of information) within the log directory (relative to PGDATA) using the logging collector,
and every log file will have the indication of the year, month, and day it was created. In 
other words, things on disk will be as follows:

$ sudo ls -1 /postgres/12/log
postgresql-2020-04-13.log
postgresql-2020-04-15.log
postgresql-2020-04-16.log
...



Logging and Auditing Chapter 14

[ 446 ]

When to log
It is important to decide when an event must be reported in the logs. There are a lot of
options to control the triggering of a log action, specified by means of a threshold. The
logging threshold can assume a mnemonic value that indicates the minimum value over
which the log event will be inserted into the logs.

The most common values are, in order, info, notice, warning, error, log, fatal, and
panic, with info being the minimum and fatal being the highest value.

This means that if you decide that warning is the threshold you want to accept as a
minimum, every log event with a lower threshold (such as info and notice) will not be
inserted into the logs. As you can see, the threshold increases as it moves toward error
values such as fatal and panic, which are always logged automatically because they
represent unrecoverable problems. There are also the lowest levels named debug1 through
debug5 to get development information and inner details about the processes executions
(that is, they are usually used when developing with PostgreSQL).

The cluster will therefore produce different log events at different times, and all with
different levels of priority, which in turn will be inserted into the logs depending on the
threshold you have configured.

In particular, there are two parameters that can be used to tune the log threshold:
log_min_messages and client_min_messages.

The former, log_min_messages, decides the threshold of the logging system, while the
latter decides the threshold of every new user connection. How are they different?

log_min_messages specifies what the cluster has to insert into the logs without any
regard for incoming user connections, nor their settings. client_min_messages decides
which log events the client has to report to the user during the connection. Both these
settings can assume a value from the preceding list of thresholds.

A typical use case of a development or test environment could be the following one:

log_min_messages    = 'info'
client_min_messages = 'debug1'

With the preceding configuration, the cluster will log only info messages in the textual logs,
which is something related to the normal execution of the processes, while incoming user
connections will report more detailed messages such as development ones back to the user.



Logging and Auditing Chapter 14

[ 447 ]

Setting thresholds is not the only way you can decide when to trigger log insertion: there
are another couple of settings that can be used to take care of the duration of statements
and utilities. For example, log_min_duration_statement inserts into the logs the textual
representation of an SQL statement that has run for more than the specified amount of time
(expressed in milliseconds). log_autovacuum_min_duration logs the autovacuum
actions that took more than the specified amount of milliseconds.

Another very important parameter to decide when to log activity is
log_transaction_sample_rate. This setting was introduced in PostgreSQL 12 and logs
every statement within an explicit transaction with a sample rate. The sample rate is a value
between 0 (no sampling) and 1 (full sampling), and therefore is a value of 0.5:

log_transaction_sample_rate = 0.5

This will log every single statement from every explicit transaction out of two. As another
example, consider setting it to a very low value as follows:

log_transaction_sample_rate = 0.01

Having a low value as in the preceding will log a transaction every 100 transactions. The
aim of this parameter is to get a sample of a full transaction on a heavily loaded system, so
as to help to get an idea of what transaction is executing without the need to log every
single statement of every single transaction. As you can imagine, the sampling is not an
absolute value, but rather an approximation of the number of transactions to wait before
activating the logging.

As an example, assume there is a log_transaction_sample_rate of 0.5 (half of the
transactions) and assume you repeatedly execute a transaction like the following:

BEGIN;
SELECT 'Transaction 1'; -- increase the number to identify the transaction
COMMIT;

The effect of the preceding simple transaction is to change, at every run, the counter in the
message – with the preceding configuration, you will end up with something like the
following in the logs:

2020-04-16 18:27:21 CEST [59924]: [4]
user=luca,db=forumdb,app=psql,client=192.168.222.1 LOG:  duration: 0.000 ms
statement: SELECT 'transaction 3';
2020-04-16 18:27:35 CEST [59924]: [7]
user=luca,db=forumdb,app=psql,client=192.168.222.1 LOG:  duration: 0.159 ms
statement: SELECT 'transaction 4';
2020-04-16 18:27:55 CEST [59924]: [10]
user=luca,db=forumdb,app=psql,client=192.168.222.1 LOG:  duration: 0.150 ms



Logging and Auditing Chapter 14

[ 448 ]

statement: SELECT 'transaction 6';
2020-04-16 18:28:06 CEST [59924]: [13]
user=luca,db=forumdb,app=psql,client=192.168.222.1 LOG:  duration: 0.152 ms
statement: SELECT 'transaction 7';

As you can see, the system is not logging the even transactions but is trying to honor the
logging of half of the transactions depending on how many transactions the system is
executing and has executed. In other words, the sampling cannot be exactly determined in
advance.

What to log
The quality of the information to log is configured with a rich set of parameters, usually a
Boolean to turn a particular event to log on or off.

One very used and abused setting is log_statement: if turned on, it will log every
statement executed against the cluster from every connection. This can be very useful
because it allows you to reconstruct exactly what the database did and with which
statements, but on the other hand, it can also be very dangerous. Logging every statement
could make private or sensitive data available in the logs, which could, therefore, become
available to unauthorized people. Moreover, logging all the statements could quickly fill up
the log storage, in particular, if the cluster is under a heavy load and high concurrency.

Usually, it is much more useful to configure the
log_min_duration_statement setting to log only "slow" statements,
instead of logging them all.

It is possible to fine-tune the category of statements to log via log_statement: the setting
can value any of off, ddl, mod, or all. It is quite trivial to understand what off and all
mean, while ddl means that all Data Definition Language statements (for example, CREATE
TABLE, ALTER TABLE, and so on) are logged, while mod means that all data manipulation
statements (for example, INSERT, UPDATE, DELETE, and SELECT) are logged.

Other useful logging tunables are log_checkpoints, log_connections, and
log_disconnections, which can be turned on to log, respectively, when a checkpoint
happens, and an incoming connection is established or closed.



Logging and Auditing Chapter 14

[ 449 ]

The quality of the information in the log is also established by the log_line_prefix
parameter. log_line_prefix is a pattern string that defines what to insert at the
beginning of every logline, and therefore can be used to detail the event that is logged. The
pattern is created with a few placeholders in the same way as sprintf(3), and
documenting every option here is out of the scope of the book. It does suffice to say that
useful and common placeholders are as follows:

%a represents the application name (for example, psql).
%u represents the username connected to the cluster (role name).
%d is the database where the event happened.
%p is the operating system process identifier (PID).
%h represents the remote host from which the connection to the cluster has been
established.
%l is the session line number, an autoincrement counter that helps us to
understand the ordering of every statement executed in an interactive session.
%t is the timestamp at which the event happened.

For example, the following configuration will produce a logline that begins with the
timestamp of the event, followed by the process identifier of the backend process, then the
counter of the command within the session, and then the user, database, and application
used to connect to the cluster from the remote host:

log_line_prefix = '%t [%p]: [%l] user=%u,db=%d,app=%a,client=%h '

The end result of the preceding configuration will be something like the following logline:

2020-04-16 11:49:32 CEST [97734]: [4-1]
user=luca,db=digikamdb,app=psql,client=192.168.222.1 LOG:  duration: 16.163
ms  statement: SELECT count(*) FROM get_images( 2019 );

You can have a look at how it has been built by referring to the single escaping sequences
as shown here:

        %t                [%p]  : [%l] user=%u,  db=%d,       app=%a,
client=%h
2020-04-16 11:49:32 CEST [97734]: [4]
user=luca,db=digikamdb,app=psql,client=192.168.222.1

Thanks to the configuration of the logline prefix, it is possible to tune log events in a way
that automated applications can identify and analyze log events for you, or at least the
administrator can have extra information about the event itself.



Logging and Auditing Chapter 14

[ 450 ]

A complete example of logging configuration
With all the notions explained in the previous sections, it is possible to set up the logging
infrastructure and see the result in action.

Instead of modifying the postgresql.conf main file in place, we are going to create a
supplementary configuration file, named logging.conf, to be included in the main cluster
configuration file. In this way, we will be able to switch back to the original logging
configuration or replicate it on other systems by simply copying the new file.

The logging.conf file will have the following content:

$ sudo cat /postgres/12/logging.conf
log_destination             = 'stderr'
logging_collector           = on
log_directory               = 'log'
log_filename                = 'postgresql-%Y-%m-%d.log'
log_rotation_age            = '1d'
log_rotation_size           = '100MB'
log_line_prefix             = '%t [%p]: [%l] user=%u,db=%d,app=%a,client=%h
'
log_checkpoints             = on
log_connections             = on
log_disconnections          = on
log_min_duration_statement  = '100ms'

In order to activate the preceding settings, we need to insert, at the end of the
postgresql.conf file, the following configuration line:

include_if_exists='logging.conf'

This will load and override the settings with the one coming from the logging.conf file
(if found). Restart the cluster to be sure you have applied the changes, and you will start to
see the new logging configuration in action:

$ sudo -u postgres pg_ctl -D /postgres/12 restart

In order to test the logging configuration, let's execute a few queries against the database so
that it has to log some activity. For example, the following session has lasted less than a
minute:

$ date
thu 16 apr 2020, 18.04.57, CEST

$ psql -U luca forumdb
psql (12.2 (Ubuntu 12.2-2.pgdg18.04+1))



Logging and Auditing Chapter 14

[ 451 ]

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits:
256, compression: off)
Type "help" for help.

forumdb=> \timing
Timing is on.

forumdb=> SELECT CURRENT_DATE;
 current_date
--------------
 2020-04-16
(1 row)

Time: 1,479 ms

forumdb=> SELECT 1 + 1;
 ?column?
----------
        2
(1 row)

Time: 6,605 ms

forumdb=> SELECT count(*) FROM posts;
  count
---------
 5000000
(1 row)

Time: 1019,322 ms (00:01,019)
forumdb=> \q

$ date
thu 16 apr 2020, 18.05.09, CEST

What has been logged in the PostgreSQL logs? We can inspect the file
postgresql-2020-04-16.log within the PGDATA/log directory (respectively from
the log_filename and log_directory settings):

$ sudo tail /postgres/12/log/postgresql-2020-04-016.log

2020-04-16 18:05:00 CEST [29759]: [1]
user=[unknown],db=[unknown],app=[unknown],client=192.168.222.1 LOG:
connection received: host=192.168.222.1 port=45106

2020-04-16 18:05:00 CEST [29759]: [2]
user=luca,db=forumdb,app=[unknown],client=192.168.222.1 LOG:  connection
authorized: user=luca database=forumdb application_name=psql SSL enabled



Logging and Auditing Chapter 14

[ 452 ]

(protocol=TLSv1.3, cipher=TLS_AES_256_GCM_SHA384, bits=256,
compression=off)

2020-04-16 18:05:05 CEST [29759]: [3]
user=luca,db=forumdb,app=psql,client=192.168.222.1 LOG:  duration: 1018.650
ms  statement: SELECT count(*) FROM posts;

2020-04-16 18:05:08 CEST [29759]: [4]
user=luca,db=forumdb,app=psql,client=192.168.222.1 LOG:  disconnection:
session time: 0:00:07.159 user=luca database=forumdb host=192.168.222.1
port=45106

There are four lines in the logs, each one starting with a timestamp. The first two lines
report the connection request and establishment (the log_connections setting); it is
possible to better read this information by removing part of the line prefix and getting to
the event that has been logged:

2020-04-16 18:05:00 CEST [29759]: [1] ... LOG:  connection received ...
2020-04-16 18:05:00 CEST [29759]: [2] ... LOG:  connection authorized:
user=luca database=forumdb application_name=psql

The third line in the logs reports the execution of a slow statement: thanks to the
log_min_duration_statement setting, PostgreSQL is logging every statement that
requires more than 100 milliseconds, and in fact, only one of the three statements executed
has taken more time:

2020-04-16 18:05:05 CEST [29759]: [3]
user=luca,db=forumdb,app=psql,client=192.168.222.1 LOG:  duration: 1018.650
ms  statement: SELECT count(*) FROM posts;

The preceding logline has not been mangled, because this is a typical use case for an
administrator: the line reports a slow statement, which has been executed on the forumdb
database by the user luca at time 18:05.

The fourth and last line in the logs is a disconnection notification:

2020-04-16 18:05:08 CEST [29759]: [4] ...  disconnection: session time:
0:00:07.159 user=luca database=forumdb host=192.168.222.1 port=45106



Logging and Auditing Chapter 14

[ 453 ]

After 7 seconds, the user luca disconnected from the database forumdb. Please note that
the timestamp at the beginning of each log line corresponds to the output of the date
command in the example session. It is also interesting to note that the logging reports
exactly four events, but the connection produced much more. In fact, the session has
performed three SELECT statements, but only one has been logged (the slowest one) and
therefore the session counter has not been increased for the unlogged events, so the 
disconnection is event number 4.

Now that we have learned all about logging, we will move on to extracting information
from the logs that are created, using a special tool called PgBadger.

Extracting information from logs – PgBadger
Thanks to the rich set of information that can be included in the logs, it is possible to
automate log information analysis and extraction. There are several tools with this aim, and
one of the most popular is PgBadger.

PgBadger is a self-contained Perl 5 application that carefully reads and extracts information
from PostgreSQL logs, producing a web dashboard with a summary of all the information
it has found in the logs. The aim of this application is to provide you with a more useful
insight into the logs without having to manually search for specific information with low-
level tools such as grep, awk, and text editors.

Using PgBadger is not mandatory; your cluster will work fine without it and you will be
able to seek information and problems in the logs anyway. However, using PgBadger
deeply simplifies log management and provides you with more useful hints about what
your server has done.

It is important to note that using PgBadger, as well as performing any automated or
manual log analysis, does not provide real-time information, but rather, a look at the past in
the server activities.

In the following subsections, you will learn how to install and use PgBadger.



Logging and Auditing Chapter 14

[ 454 ]

Installing PgBadger
PgBadger requires Perl 5 to be installed on the system it will run on, and that is the only
dependency it has. You can run PgBadger on the same host the PostgreSQL cluster is
running on, or on a remote system (as will be shown in a later subsection). In this section,
we will assume PgBadger will be installed and executed on the very same machine the
PostgreSQL cluster is running on.

The first step to get PgBadger installed is to download a recent version; for example, to get
version 11.2, you can do the following:

$ wget https://github.com/darold/pgbadger/archive/v11.2.tar.gz

Once the download has completed, you have to extract the download archive as in the
following snippet of code, and then run the build and installation process using make:

$  tar xzvf v11.2.tar.gz
...
$ cd pgbadger-11.2
$ perl Makefile.PL
Checking if your kit is complete...
Looks good
Generating a Unix-style Makefile
Writing Makefile for pgBadger
Writing MYMETA.yml and MYMETA.json

$ make
cp pgbadger blib/script/pgbadger
"/usr/local/bin/perl" -MExtUtils::MY -e 'MY->fixin(shift)' --
blib/script/pgbadger
echo "=head1 SYNOPSIS" > doc/synopsis.pod
./pgbadger --help >> doc/synopsis.pod
echo "=head1 DESCRIPTION" >> doc/synopsis.pod
sed -i.bak 's/ +$//g' doc/synopsis.pod
rm doc/synopsis.pod.bak
sed -i.bak '/^=head1 SYNOPSIS/,/^=head1 DESCRIPTION/d' doc/pgBadger.pod
sed -i.bak '4r doc/synopsis.pod' doc/pgBadger.pod
rm doc/pgBadger.pod.bak
Manifying 1 pod document
rm doc/synopsis.pod

$ sudo make install
echo "=head1 SYNOPSIS" > doc/synopsis.pod
./pgbadger --help >> doc/synopsis.pod
echo "=head1 DESCRIPTION" >> doc/synopsis.pod
sed -i.bak 's/ +$//g' doc/synopsis.pod



Logging and Auditing Chapter 14

[ 455 ]

rm doc/synopsis.pod.bak
sed -i.bak '/^=head1 SYNOPSIS/,/^=head1 DESCRIPTION/d' doc/pgBadger.pod
sed -i.bak '4r doc/synopsis.pod' doc/pgBadger.pod
rm doc/pgBadger.pod.bak
Manifying 1 pod document
Installing /home/luca/perl5/man/man1/pgbadger.1p
Installing /home/luca/perl5/bin/pgbadger
Appending installation info to /home/luca/perl5/lib/perl5/amd64-freebsd-
thread-multi/perllocal.pod
rm doc/synopsis.pod

Ensure you have the binary script, pgbadger, in your PATH and test its functionality by
running the script followed by the version argument as follows:

$ pgbadger --version
pgBadger version 11.2

If the program replies with the version number, everything should be fine and ready to be
used.

Configuring PostgreSQL logging for PgBadger
usage
PgBadger is not a magic tool: it cannot understand PostgreSQL logs unless they are 
produced in a suitable format. It is therefore important to configure PostgreSQL logging
infrastructure in a suitable way for PgBadger.

The following is an example of the minimum set of configuration parameters that make
PostgreSQL produce logs that PgBadger can mangle correctly:

log_destination = 'stderr'
logging_collector = on
log_directory      = 'log'
log_filename       = 'postgresql-%Y-%m-%d.pgbadger.log'
log_rotation_age   = '1d'
log_rotation_size  = '100MB'
log_min_duration_statement = 0
log_line_prefix = '%t [%p]: [%l] user=%u,db=%d,app=%a,client=%h '
log_checkpoints = on
log_connections = on
log_disconnections = on
log_lock_waits = on
log_temp_files = 0
log_autovacuum_min_duration = 0
log_error_verbosity = default



Logging and Auditing Chapter 14

[ 456 ]

Most of the parameters have already been discussed in the previous sections. Please note
that the filename for every log has changed to include a pgbadger suffix in order to
discriminate older logs from PgBadger-compatible ones.

Please also note that we decided to include log_min_duration_statement with a zero
value, which means PostgreSQL will log every statement that requires more than 0
milliseconds to run, which is short for "log all the statements." As already explained, this
can lead to private data being included in the logs, so you should consider carefully
whether you need such detail or not.

It is possible to store the preceding configuration parameter in a small configuration file.
Let's call it pgbadger.conf and import it in the main cluster configuration as already seen,
inserting at the end of postgresql.conf a line as follows:

include_if_exists='pgbadger.conf'

Once the server has been restarted to get the new log configuration, you can start using
PgBadger.

Using PgBadger
Once PostgreSQL has begun producing logs, you can analyze the results with PgBadger.
Before you run PgBadger, especially on a test system, you should generate (or wait for)
some traffic and statements (as well as transactions), or the produced dashboard will be
empty.

Before starting to use PgBadger, it is appropriate to create a location to store the reports and
all the related stuff. This is not mandatory, but simplifies maintenance and archiving of
reports later on when you could need to keep them. Let's create a directory, and let's assign
the same Postgres user that runs the cluster the ownership of the directory (again, this is
not mandatory but simplifies the workflow a little):

$ sudo mkdir /postgres/reports
$ sudo chown postgres:postgres /postgres/reports

It is now time to launch PgBadger for the first time:

$ sudo -u postgres pgbadger -o /postgres/reports/first_report.html
/postgres/12/log/postgresql-2020-04-17.pgbadger.log
[========================>] Parsed 313252 bytes of 313252 (100.00%),
queries: 801, events: 34
LOG: Ok, generating html report..



Logging and Auditing Chapter 14

[ 457 ]

The first argument, -o, specifies a filename where we want the report to be stored.
PgBadger produces exactly one file for every run, so you need to change the filename if you
want to generate another report without overwriting an existing report.
The second argument is the PostgreSQL log file to analyze.

The program runs for a few seconds, or minutes depending on the size of the log file, and
reports some statistical information about what it found on the log file (in this example, 801
statements). You can check the generated report file quite easily:

If you are going to analyze big log files, or many of them, you can use the
parallel mode of PgBadger with the -j option followed by the number of
parallel processes to spawn. For example, passing -j 4 means that every
log file will be divided into four parts, each one analyzed by a single
process. Thanks to parallelism, you can exploit all the cores of your
machine and get results faster for a large amount of logs.

$ ls /postgres/reports
first_report.html

If you point your web browser to the local file, you will see the report shown here. The
report provides a glance at the cluster activity, including the number of statements, the time
spent serving such statements, and graphs showing the statement traffic with regard to the
period of time:



Logging and Auditing Chapter 14

[ 458 ]

At the top of the web page, there is a menu bar that inludes several menus that allow you to
look at different graphs and dashboards. For example, the Connections menu allows you to
get information about how many concurrent connections you had, as shown in the example
here:

The Queries menu allows you to get an overview of the type and frequency of statements, as shown in the following screenshot, where the main percentage of queries has been of
type SELECT:

The Top menu allows to see the "top events," such as the slowest queries and the most
time-consuming queries, shown respectively in the following screenshot:



Logging and Auditing Chapter 14

[ 459 ]

And the detailed version is shown in this screenshot:

Discussing all the features and graphs of PgBadger is out of the scope of this book, so
please see the official documentation for more details and a clear and accurate explanation
of every single option.

Scheduling PgBadger
PgBadger can be used in a scheduled way so that it can produce accurate reports during a
specific period of time. This is possible because PgBadger includes an incremental feature,
with which the report is not overwritten every time but the program can produce a per-
hour report and a per-week summary report.



Logging and Auditing Chapter 14

[ 460 ]

This is handy because you can schedule pgbadger execution with, for example, cron(1)
and forget about it. Let's first see how PgBadger can be run in incremental mode:

$ sudo -u postgres pgbadger -I --outdir /postgres/reports/
/postgres/12/log/postgresql-2020-04-17.pgbadger.log
[========================>] Parsed 313252 bytes of 313252 (100.00%),
queries: 801, events: 34
LOG: Ok, generating HTML daily report into
/postgres/reports//2020/04/17/...
LOG: Ok, generating HTML weekly report into
/postgres/reports//2020/week-16/...
LOG: Ok, generating global index to access incremental reports...

The -I argument specifies the incremental mode, so PgBadger will produce separate files
for the hourly and weekly reports. Please note that instead of specifying the output file, the
--outdir option has been used to specify the directory to place the files in. Lastly, as
usual, there is the log file to analyze.

The end result, as you can guess from the output of the program, is that a directory tree has
been produced, something like the following:

/postgres/reports
  - index.html
  + 2020
     + 04
       + 17
         index.html

The main index.html file is the entry point for the whole incremental report. Then there is
a tree that has a directory for the year (2020), the month (04), the day (17), and an
index.html file for that day. The tree is therefore going to be expanded as more days come
into play.

If you point your web browser to the main index file, you will see a calendar like the one in
the following screenshot, where you can select the month and day to see the per-day report.
The everyday report has the same structure as shown in the previous section:



Logging and Auditing Chapter 14

[ 461 ]

Thanks to the incremental approach, you can now schedule the execution in your own
scheduler, for example, in cron(1) you can insert a line like the following:

59 23 * * * pgbadger -I --outdir /postgres/reports/
/postgres/12/log/postgresql-`date +'%Y-%m-%d'`.pgbadger.log

That is essentially the same command line as the preceding with the current date
automatically computed. The preceding line will produce, at the end of every day, the
report for the current day, so you will have the population of the report tree.

The previous crontab entry is just an example. Please consider wrapping
everything in a robust script and testing the correctness of its execution.

Lastly, it is possible to run PgBadger from a remote host, so that you can dedicate a single
machine to collect all the reports and information in a single place. In fact, PgBadger
accepts a URI parameter that is the remote location of the log directory (or file) and can be
accessed in either FTP or SSH (the recommended way).



Logging and Auditing Chapter 14

[ 462 ]

As an example, the following represents the same command line as previously, which pulls
in incremental mode the logs from a remote PostgreSQL host named miguel:

$ pgbadger -I --outdir /postgres/reports
ssh://postgres@miguel//postgres/12/log/postgresql-`date +'%Y-%m-
%d'`.pgbadger.log
[========================>] Parsed 313252 bytes of 313252 (100.00%),
queries: 841, events: 34
LOG: Ok, generating HTML daily report into /postgres/reports/2020/04/17/...
LOG: Ok, generating HTML weekly report into
/postgres/reportsy/2020/week-16/...
LOG: Ok, generating global index to access incremental reports...

Please note that the log file has been specified via an SSH URL. It is highly recommended to
use a remote user that has access to the logs and perform an SSH key exchange to automate
the login between the hosts.

Now that we know how to use logs, we will move on to another way of looking at tasks,
auditing.

Implementing auditing
Auditing is the capability of performing introspection over an application or user session,
in other words, to be able to reproduce, step by step, what the user or the application asked
the cluster to do.

Auditing is slightly different from logging, as logging provides a simple way of saving
whatever action of the user, but without providing an easy way to reconstruct the user or
application interactions with the cluster. In fact, in a highly concurrent cluster, many
actions made by different users will coexist in the logs in a mixed bunch of lines. Moreover,
logging does not provide any particular logic on what it is storing, and therefore it becomes
hard to find out what a user has done. This becomes even more true when the user or the
application executes complex statements, in particular, statements where parameters and
values are not explicitly provided.

As an example, consider the following simple section:

forumdb=> PREPARE my_query( text ) AS SELECT * FROM categories WHERE title
like $1;
PREPARE
forumdb=> EXECUTE my_query( 'PROGRAMMING%' );
 pk |         title         |           description
----+-----------------------+---------------------------------



Logging and Auditing Chapter 14

[ 463 ]

  3 | PROGRAMMING LANGUAGES | All about programming languages
(1 row)

That will reveal, with verbose logging, the following:

LOG:  duration: 19.011 ms  statement: PREPARE my_query( text ) AS SELECT *
FROM categories WHERE title like $1;
LOG:  duration: 6.539 ms  statement: EXECUTE my_query( 'PROGRAMMING%' );

As you can see, in the logs, there is everything you need to reconstruct what the user has
done, but that is not so simple. You have to understand that the two lines are related to
each other and that the session from which the statements have been executed is the same.
This is not always possible – especially if other queries are logged between the two lines
you are interested in.

Moreover, it could happen that the logs do not report all the information you need –
perhaps because you chose to not log statements that execute faster than a threshold.

Therefore, while you can use logging to perform auditing, that is not always the best
choice. In this section, you will learn about the PgAudit extension, which was born to
provide a reliable and easy-to-use auditing infrastructure. PgAudit exploits the excellent
PostgreSQL logging facility, therefore, you need to configure your logging infrastructure in
an appropriate way, as you will see in the next subsections.

Before we dig into the configuration and usage of PgAudit, there are some details and
concepts that have to be explained. PgAudit can work in two different ways: auditing by
session or by object. The former is a quick and simple way to audit a part (or a whole)
session by a user or an application; the latter is a more complex and fine-grained way of
logging actions related to specific database objects (for example, who deleted rows from
that table?).

Auditing by session works by simply configuring the categories of statements to audit
within a session. On the other hand, auditing by object requires you to configure individual
database roles that, depending on their set of permissions, will trigger the auditing of
specific actions. In the following subsections, you will see both ways used to audit.



Logging and Auditing Chapter 14

[ 464 ]

Installing PgAudit
PgAudit is an extension that has to be built against the PostgreSQL version it will be
installed on. The first step is to download the source code from the official GitHub
repository:

$ wget https://github.com/pgaudit/pgaudit/archive/1.4.0.tar.gz
...
$ tar xzvf 1.4.0.tar.gz
...

Once you have downloaded and extracted the archive, you can enter the source directory
and start compiling the extension by using make:

$ cd pgaudit-1.4.0
$ make USE_PGXS=1
cc -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-statement
-Werror=vla -Wendif-labels -Wmissing-format-attribute -Wformat-security -
fno-strict-aliasing -fwrapv -Wno-unused-command-line-argument -O2 -pipe  -
fstack-protector-strong -fno-strict-aliasing  -fPIC -DPIC -I. -I./ -
I/usr/local/include/postgresql/server -
I/usr/local/include/postgresql/internal  -I/usr/local/include -
I/usr/local/include -I/usr/local/include  -c -o pgaudit.o pgaudit.c
cc -Wall -Wmissing-prototypes -Wpointer-arith -Wdeclaration-after-statement
-Werror=vla -Wendif-labels -Wmissing-format-attribute -Wformat-security -
fno-strict-aliasing -fwrapv -Wno-unused-command-line-argument -O2 -pipe  -
fstack-protector-strong -fno-strict-aliasing  -fPIC -DPIC -shared -o
pgaudit.so pgaudit.o  -L/usr/local/lib   -L/usr/local/lib -lpthread -
L/usr/local/lib  -fstack-protector-strong   -L/usr/local/lib -Wl,--as-
needed -Wl,-R'/usr/local/lib'

$ sudo make USE_PGXS=1 install
/bin/mkdir -p '/usr/local/lib/postgresql'
/bin/mkdir -p '/usr/local/share/postgresql/extension'
/bin/mkdir -p '/usr/local/share/postgresql/extension'
/usr/bin/install -c -m 755  pgaudit.so
'/usr/local/lib/postgresql/pgaudit.so'
/usr/bin/install -c -m 644 .//pgaudit.control
'/usr/local/share/postgresql/extension/'
/usr/bin/install -c -m 644 .//pgaudit--1.4.sql
'/usr/local/share/postgresql/extension/'

Now that the extension is available among those of the cluster, you have to configure
PostgreSQL to use PgAudit.



Logging and Auditing Chapter 14

[ 465 ]

Configuring PostgreSQL to exploit PgAudit
PgAudit is an extension that needs to be loaded at server startup, therefore you have to 
change the main configuration file, postgresql.conf, to include the pgaudit library as
follows:

shared_preload_libraries = 'pgaudit'

Then, restart your cluster to make the changes take effect:

$ sudo pg_ctl -D /postgres/12 restart

Since PgAudit is an extension, you have to enable it within the database you want to audit
in order to activate it. For the sake of simplicity, let's enable it within our forumdb database
(you need to connect as a database superuser):

forumdb=# CREATE EXTENSION pgaudit;
CREATE EXTENSION

It is now time to decide when and how to apply auditing.

Configuring PgAudit
PgAudit ships with a rich set of configuration parameters that allow you to specify exactly
what to log, when, what to exclude from auditing, and so on. All configuration parameters
live within the pgaudit namespace so that they will not clash with other existing settings
with the same name.

The most important setting is pgaudit.log, which defines which statements and actions
you want to audit. The parameter can assume any of the following values:

ALL to audit every statement
NONE to audit nothing at all
READ to audit only SELECT and COPY statements
WRITE to audit every statement that modifies data (INSERT, UPDATE, and COPY)
ROLE to audit role changes or creation
DDL to audit all the data-definition statements, and therefore any change to the
database structure
FUNCTION to audit all code execution, including DO blocks



Logging and Auditing Chapter 14

[ 466 ]

MISC to audit all the values not explicitly categorized above
MISC_SET to audit all SET like commands

You are free to specify more than one setting at the same time by separating single names
with a comma, for example:

pgaudit.log = 'WRITE,FUNCTION';

This function can be used to audit all data changes and code executions.

Another important configuration parameter is pgaudit.log_level, which specifies the
log level that PgAudit will use to make the auditing messages appear in the logs. By
default, this setting assumes the value log, but you can change it to any other log threshold
except error ones (such as ERROR, FATAL, and PANIC).

In order to insert more details in the audit information, you will likely want to enable
pgaudit.log_parameter to dump any query parameters (you will see an example later).

If you are going to configure PgAudit by object, you will set the pgaudit.role parameter
as you will see later in this chapter.

Auditing by session
The first, and most simple to understand and try, way of using PgAudit is by session.

You don't have to manipulate any configuration files; you can set pgaudit.log directly in
your interactive session and perform some actions to see what happens. As an example,
suppose we want to audit any changes to the data:

forumdb=# SET pgaudit.log TO 'write, ddl';
SET
forumdb=# SELECT count(*) FROM categories;
 count
-------
     3
(1 row)

forumdb=# INSERT INTO categories( description, title ) VALUES( 'Fake', 'A
Malicious Category' );
INSERT 0 1

forumdb=# SELECT count(*) FROM categories;
 count
-------



Logging and Auditing Chapter 14

[ 467 ]

     4
(1 row)

forumdb=# INSERT INTO categories( description, title ) VALUES( 'Fake2',
'Another Malicious Category' );
INSERT 0 1

The pgaudit.log parameter can be set only by superusers, therefore if
you want to try it dynamically in an interactive session, you need to
connect as a database administrator. You can, of course, set for all users at
a cluster-wide level setting the parameter in the postgresql.conf
configuration file.

In the logs, PostgreSQL will write something like the following:

2020-04-20 18:40:03.582 CEST [25760] LOG:  AUDIT:
SESSION,1,1,WRITE,INSERT,,,"INSERT INTO categories( description, title )
VALUES( 'Fake', 'A Malicious Category' );",<not logged>
2020-04-20 18:41:32.326 CEST [25760] LOG:  AUDIT:
SESSION,2,1,WRITE,INSERT,,,"INSERT INTO categories( description, title )
VALUES( 'Fake2', 'Another Malicious Category' );",<not logged>

There are several details in such a logline, but before we examine the fields, please note that
nothing has been written about the two SELECT statements: since we asked PgAudit to not
audit READ queries, the SELECT statements have been discarded from auditing.

Please note that every audit line has a quite self-explanatory prefix, AUDIT, which makes it
simple to understand whether the logline has been produced by PgAudit or by some other
event internal to PostgreSQL.

Every line has the type of auditing – in the preceding, SESSION – and a counter that
increments to indicate the chronological order in which statements have been audited. Then
there is the category of statement that PgAudit recognizes – in the preceding, both are
WRITE events – and then follows the complete statements that have been executed. There is
room for other details, which will be discussed in further examples.



Logging and Auditing Chapter 14

[ 468 ]

Let's move on with another example – consider the execution of a dynamically built query
like the following one:

forumdb=# DO $$ BEGIN
EXECUTE 'TRUNCATE TABLE ' || 'tags CASCADE';
END $$;
NOTICE:  truncate cascades to table "j_posts_tags"
DO

Instead of executing a TRUNCATE TABLE tags statement, the statement has been built
concatenating two strings. In the logs, PgAudit inserts a line as follows:

2020-04-20 18:46:45.640 CEST [25760] LOG:  AUDIT:
SESSION,3,1,WRITE,TRUNCATE TABLE,,,TRUNCATE TABLE tags CASCADE,<not logged>

Again, the line reports the auditing mode (SESSION), the auditing statement number (3),
the category (WRITE), and the statement (TRUNCATE TABLE), as well as the fully executed
statement. This last detail is important: if you execute the same statement without auditing,
PostgreSQL logs will contain a line as follows:

2020-04-20 18:50:00.122 CEST [29365] LOG:  duration: 12.616 ms  statement:
DO $$ BEGIN
        EXECUTE 'TRUNCATE TABLE ' || 'tags CASCADE';
        END $$;

Here, you can see the logs have blindly copied the source statement, including string
concatenation and newlines, making it difficult to read and search for.

Auditing by role
The auditing by role mechanism of PgAudit allows you to define in a very fine-grained
way what events you are interested in auditing.

The idea is that you define a database role, and grant permissions related to the action you
want to audit to the role. Once the role and its permissions are set, you inform PgAudit to
audit by that role, which means PgAudit will report in the logs any action that matches the
one granted to the auditing role without any regard to the role that has performed it.

The first step is therefore the creation of a role that is used only to specify which actions to
audit, and therefore will not be used as an ordinary role for interactive sessions:

forumdb=# CREATE ROLE auditor WITH NOLOGIN;
CREATE ROLE



Logging and Auditing Chapter 14

[ 469 ]

In order to specify which actions the role must audit, we simply have to GRANT those to the
role. For example, assuming we want to audit all DELETE on every table and INSERT only
on posts and categories, we have to grant the role with the following set of permissions:

forumdb=# GRANT DELETE ON ALL TABLES IN SCHEMA public TO auditor;
GRANT
forumdb=# GRANT INSERT ON posts TO auditor;
GRANT
forumdb=# GRANT INSERT ON categories TO auditor;
GRANT

Everything is now prepared for PgAudit to do its job, but it is fundamental that the
auditing system knows that the auditor role has to be used, therefore we need either to
configure pgaudit.role in the cluster configuration or in the current session. The former
method is, of course, the right one to use with a production environment, while setting the
configuration parameter in a single session is useful for testing purposes. Let's set the
parameter in the session, as a database administrator, to test it in action:

forumdb=# SET pgaudit.role TO auditor;
SET

Now it is time to execute a few statements and see what the PgAudit stores in the cluster
logs:

forumdb=# INSERT INTO categories( title, description ) VALUES( 'PgAudit',
'Topics related to auditing in PostgreSQL' );
INSERT 0 1

-- this will not be logged
forumdb=# INSERT INTO tags( tag ) VALUES( 'pgaudit' );
INSERT 0 1

forumdb=# DELETE FROM posts WHERE author NOT IN ( SELECT pk FROM users
WHERE username NOT IN ( 'fluca1978', 'sscotty71' ) );
DELETE

As you can imagine, PgAudit will log the first and last statement of the preceding example
session: in fact, only those statements are related to tables and actions the auditor role has
been granted. In the PostgreSQL logs, you will find something similar to the following
lines:

2020-04-26 10:28:10.414 CEST [29550] LOG:  AUDIT:
OBJECT,1,1,WRITE,INSERT,TABLE,public.categories,"INSERT INTO categories(
title, description ) VALUES( 'PgAudit', 'Topics related to auditing in
PostgreSQL' );",<not logged>
2020-04-26 10:30:11.319 CEST [29550] LOG:  AUDIT:



Logging and Auditing Chapter 14

[ 470 ]

OBJECT,2,1,WRITE,DELETE,TABLE,public.posts,"DELETE FROM posts WHERE author
NOT IN ( SELECT pk FROM users WHERE username NOT IN ( 'fluca1978',
'sscotty71' ) );",<not logged>

Please note that the tuple insertion against the tags table is missing: it has not been audited
and logged because the auditor role does not include a specific GRANT permission for it.

Once our auditing role has been properly configured, we can save the configuration,
modifying the configuration file, postgresql.conf, and setting the pgaudit.role
tunable:

pgaudit.role = 'auditor'

As you can see, role-based auditing is much more flexible than session-only-based: while
the latter allows you to specify only the categories of actions to audit, the former allows the
fine-grained definition of exactly which statements to audit.

Summary
PostgreSQL provides a reliable and flexible infrastructure for logging that allows a database
administrator to monitor what the cluster has done in the very near past. Thanks to its
flexibility, the logs can be configured to be mangled by external tools for cluster analysis,
such as PgBadger. Moreover, the same logging infrastructure can be exploited to perform
auditing, a kind of introspection often required by local government laws.

In this chapter, you have learned how to configure the PostgreSQL logging system to match
your needs, how to monitor your cluster by means of the web dashboards provided by
PgBadger, and finally, how to perform auditing on your users and applications.

In the following chapter, you will learn how to back up your own cluster.

References
The PgBadger official documentation available at https:/ ​/​pgbadger. ​darold.
net/​documentation. ​html

The PostgreSQL log settings, official documentation available at https:/ ​/​www.
postgresql. ​org/ ​docs/ ​12/ ​runtime- ​config- ​logging. ​html

PgAudit official website and documentation available at https:/ ​/​www. ​pgaudit.
org/​

https://pgbadger.darold.net/documentation.html
https://pgbadger.darold.net/documentation.html
https://pgbadger.darold.net/documentation.html
https://pgbadger.darold.net/documentation.html
https://pgbadger.darold.net/documentation.html
https://pgbadger.darold.net/documentation.html
https://pgbadger.darold.net/documentation.html
https://pgbadger.darold.net/documentation.html
https://pgbadger.darold.net/documentation.html
https://pgbadger.darold.net/documentation.html
https://pgbadger.darold.net/documentation.html
https://pgbadger.darold.net/documentation.html
https://www.postgresql.org/docs/12/runtime-config-logging.html
https://www.postgresql.org/docs/12/runtime-config-logging.html
https://www.postgresql.org/docs/12/runtime-config-logging.html
https://www.postgresql.org/docs/12/runtime-config-logging.html
https://www.postgresql.org/docs/12/runtime-config-logging.html
https://www.postgresql.org/docs/12/runtime-config-logging.html
https://www.postgresql.org/docs/12/runtime-config-logging.html
https://www.postgresql.org/docs/12/runtime-config-logging.html
https://www.postgresql.org/docs/12/runtime-config-logging.html
https://www.postgresql.org/docs/12/runtime-config-logging.html
https://www.postgresql.org/docs/12/runtime-config-logging.html
https://www.postgresql.org/docs/12/runtime-config-logging.html
https://www.postgresql.org/docs/12/runtime-config-logging.html
https://www.postgresql.org/docs/12/runtime-config-logging.html
https://www.postgresql.org/docs/12/runtime-config-logging.html
https://www.postgresql.org/docs/12/runtime-config-logging.html
https://www.postgresql.org/docs/12/runtime-config-logging.html
https://www.postgresql.org/docs/12/runtime-config-logging.html
https://www.postgresql.org/docs/12/runtime-config-logging.html
https://www.postgresql.org/docs/12/runtime-config-logging.html
https://www.pgaudit.org/
https://www.pgaudit.org/
https://www.pgaudit.org/
https://www.pgaudit.org/
https://www.pgaudit.org/
https://www.pgaudit.org/
https://www.pgaudit.org/
https://www.pgaudit.org/
https://www.pgaudit.org/


15
Backup and Restore

It doesn't matter how solid your hardware and software is – sooner or later, you will need
to go back in time to recover accidentally deleted or damaged data. That is the aim of
backups – a safe copy that you can keep for a specific amount of time that allows you to
recover from data loss. Being an enterprise-level database cluster, PostgreSQL provides a
set of specific tools that allow a database administrator to take care of backups and
restorations, and this chapter will show you all the main tools that you can exploit to be
sure your data will last any accidental abuse.

Backup and restore isn't a very complex topic, but it's fundamental in any production
system and requires careful planning. In fact, with a backup copy, you are holding another
exact copy of your database just in case something nasty happens; this extra copy will
consume resources, most notably storage space. Deciding how many extra copies, how
frequently you grab them, and how long they must be kept is something that requires
careful attention and is beyond the scope of this chapter. In this chapter, you will look at
the main ways of performing a backup, either logically or physically, and all the provided
tools that a PostgreSQL distribution provides so that you can manage backups.

In this chapter, we will cover the following topics:

Introducing various types of backups and restores
Exploring logical backups
Exploring physical backups

Let's get started!

Technical requirements
You need to know about the following to complete this chapter:

How to interact with command-line tools
How to inspect your filesystem and the PGDATA directory



Backup and Restore Chapter 15

[ 472 ]

The code for this chapter can be found in the following GitHub repository: https:/ ​/
github.​com/​PacktPublishing/ ​Learn- ​PostgreSQL.

Introducing various types of backups and
restores
There are mainly two types of backups that apply to PostgreSQL: the logical backup (also
known as a cold backup) and the physical backup (also known as a hot backup).
Depending on the type of backup you choose, the restore process will differ accordingly.
PostgreSQL ships will all the integrated tools to perform the classical logical backup, which
in most cases suffices. However, PostgreSQL can easily be configured to support physical
backups, which are useful when the size of the cluster becomes huge, as well as when you
have particular needs, as you will discover later in this chapter.

But what is the difference between these two backup methods? As you can imagine, they
both achieve the very same aim: allowing you to get a usable "copy" of your data to restore
either on the same cluster or against another cluster. However, the difference between the
two backup strategies come from the way data is extracted from the cluster.

A logical backup works as a database client that asks for all the data in a database, table by
table, and stores the result in a storage system. It is like an application opening a
transaction and performing a SELECT on every table, before saving the result on a disk file.
Of course, it is much more complex than that, but this example gives you a simple idea of
what happens under the hood.

This kind of backup is "logical" because it runs alongside other database connections and
activities, as a dedicated client application, and relies on the database to provide data that is
"logically" consistent. In fact, the backup is executed within a snapshot of the database so
that all the foreign keys are consistent with each other.

The advantages of this backup strategy are that it is simple to implement since PostgreSQL
provides all the software to perform a full backup, it is consistent, and it can be restored
easily. However, this backup method also has a few drawbacks: being performed on a live
system by means of a snapshot can slow down other concurrent database accesses, and it
also requires the database to keep track of the ongoing backup process without trashing the
snapshot as long as the backup is running. Moreover, the produced backup set is consistent
at the time the backup has started; that is, if the backup requires a very long time to
complete, data changes that occurred in the meantime will not be present in the backup
(because it has to be consistent).

https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL


Backup and Restore Chapter 15

[ 473 ]

A physical backup, on the other hand, is not invasive of cluster operations: the backup
requires a file-level copy of the PGDATA content – mainly the database file (PGDATA/base)
and the WALs from the backup's start instance to the backup's end. The end result will be
an inconsistent copy of the database that needs particular care to be restored properly.
Essentially, the restore will proceed since the database has crashed and will redo all the
transactions (extracted from the WALs) in order to achieve a consistent state.

This kind of backup is much more complex to set up, and while you can perform it on your
own, as you will see in this chapter, several tools have emerged to help you perform this
kind of backup in a more proficient and secure way. The main advantage of this kind of
backup strategy is its less invasive nature – the database is not going to notice any
particular activity related to the backup except for the storage I/O required to perform the
file-level copy. Another important advantage of this backup strategy is that it allows
for point-in-time recovery (PITR), which allows a database administrator to recover the
database to any instance since the original backup. The main disadvantage of this is the
complexity required to set up the backup.

There is another consideration to take into account here: logical backups are supposed to
always work, regardless of the database version you are running (assuming you are
running the latest version already) and, to some extent, regardless of whether the target
database is PostgreSQL. On the other hand, physical backups will only work between the
very same major versions of PostgreSQL instances. These are important considerations to
take into account when dealing with backup and restores.

In the next section, you will learn how to perform both backup methods, as well as how to
restore a backup. We'll start with logical backups.

Exploring logical backups
PostgreSQL ships with all the required tools to perform a logical backup and restore. Many
operating systems, including FreeBSD and GNU/Debian, provide scripts and wrappers for
the PostgreSQL backup and restore tools to ease the system administrator in scheduling
backups and restores. Such scripts and wrappers will not be explained here. For more
information, consider reading your operating system's PostgreSQL package
documentation.

There are three main applications involved in backup and restore – pg_dump, pg_dumpall,
and pg_restore. As you can imagine from their names, pg_dump and pg_dumpall are
related to extracting (dumping) the content of a database, thus creating a backup, while
pg_restore is their counterpart and allows you to restore an existing backup.



Backup and Restore Chapter 15

[ 474 ]

PostgreSQL does not require any special "backup" permissions. In order to
perform a backup, the user must have all the required grants to access
individual objects, such as tables and functions. The same applies to
restoring a backup.

The pg_dump application is used to dump a single database within a cluster, pg_dumpall
provides us with a handy way to dump all the cluster content, including roles and other
intra-cluster objects, and pg_restore can handle the output of the former two applications
to perform a restoration.

Remember that a backup is only good if it can be restored. pg_dump and
pg_dumpall will not produce a corrupted backup, but your storage could
accidentally damage your backup files, so to ensure you have a valid
backup, you should always try to restore it on another machine or cluster.

All three commands can work locally or remotely on the cluster to backup or restore, which
means you can use them from a remote backup machine or on the same server the cluster is
running on. The applications follow the same parameter and variable conventions that
psql does, so, for instance, you can specify the username that is going to perform the
backup (or restore) via the -U command-line flag, as well as the remote host on which the
cluster is running via -h, and so on. If no parameters are provided, the application assumes
the cluster is running locally and connects to it via the current operating system user, just
like psql does.

In the next subsections, you will learn how to back up and restore your own databases.

Dumping a single database
In order to dump – that is, to create a backup copy of – a database, you need to use the
pg_dump command.
pg_dump allows three main backup formats to be used:

A plain text format: Here, the backup is made of SQL statements that are
reproducible.
A compressed format: Here, the backup is automatically compressed to reduce
storage space consumption.
A custom format: This is more suitable for a selective restore by means of
pg_restore.



Backup and Restore Chapter 15

[ 475 ]

By default, pg_dump uses plain text format, which produces SQL statements that can be
used to rebuild the database structure and content, and outputs the backup directly to the
standard output. This means that if you back up a database without using any particular
option, you are going to see a long list of SQL statements:

$  pg_dump -U postgres forumdb
-- PostgreSQL database dump
...
SET client_encoding = 'UTF8';
SET standard_conforming_strings = on;
SELECT pg_catalog.set_config('search_path', '', false);
...
CREATE TABLE public.categories (
    pk integer NOT NULL,
    title text NOT NULL,
    description text
);

...
COPY public.categories (pk, title, description) FROM stdin;
1       DATABASE        Database related discussions
2       UNIX    Unix and Linux discussions
\.
...

As you can see, pg_dump has produced a set of ordered SQL statements that, if pushed to
an interactive connection, allow you to rebuild not only the database structure (tables and
functions) but also its content (data within tables), as well as permissions (grants and
revokes) and other required objects. All lines beginning with a double dash are SQL
comments that pg_dump has diligently placed to help you analyze and understand the
database's backup content.

There are a few important things to note related to the backup content. The first is that
pg_dump places a bunch of SET statements at the very beginning of the backup; such SET
statements are not mandatory for the backup, but for restoring from this backup's content.
In other words, the first few lines of the backup are not related to the content of the backup,
but to how to use such a backup.



Backup and Restore Chapter 15

[ 476 ]

An important line among those SET statements is the following one, which has been
introduced in recent versions of PostgreSQL:

SELECT pg_catalog.set_config('search_path', '', false);

Such lines remove the search_path variable, which is the list of schema names among
those to search for an unqualified object. The effect of such a line is that every object that's
created from the backup during a restore will not exploit any malicious code that could
have tainted your environment and your search_path. The side effect of this, as will be
shown later on, is that after restoration, the user will have an empty search path and will
not be able to find any not fully qualified objects by their names.

Another important thing about the backup content is that pg_dump defaults to using COPY
as a way to insert the data into single tables. COPY is a PostgreSQL command that acts like
INSERT but allows for multiple tuples to be specified at once and, most notably, is
optimized for bulk loading, resulting in a faster recovery. However, this can make the
backup not portable across different database engines, so if your aim is to dump the
database content in order to migrate it to another engine, you have to specify pg_dump to
use regular INSERT statements by means of the --inserts command-line flag:

$  pg_dump -U postgres forumdb

...
INSERT INTO public.categories OVERRIDING SYSTEM VALUE VALUES (1,
'DATABASE', 'Database related discussions');
INSERT INTO public.categories OVERRIDING SYSTEM VALUE VALUES (2, 'UNIX',
'Unix and Linux discussions');
...

The entire content of the backup is the same, but this time, the tables are populated by
standard INSERT statements. As you can imagine, the end result is a more portable but also
longer (and therefore much heavier) backup content. However, note how, in the previous
example, the INSERT statements did not include the list of columns every field value maps
to; it is possible to get a fully portable set of INSERT statements by replacing the --inserts
option with --column-inserts:

$ pg_dump -U postgres --column-inserts  forumdb
...
INSERT INTO public.categories (pk, title, description) OVERRIDING SYSTEM
VALUE VALUES (1, 'DATABASE', 'Database related discussions');
INSERT INTO public.categories (pk, title, description) OVERRIDING SYSTEM
VALUE VALUES (2, 'UNIX', 'Unix and Linux discussions');
...



Backup and Restore Chapter 15

[ 477 ]

Being able to dump the database content is useful, but being able to store such content in a
file is much more useful and allows for restoration to occur at a later date. There are two
main ways to save the output of pg_dump into a file. One requires that we redirect the
output to a file, as shown in the following example:

$  pg_dump -U postgres --column-inserts  forumdb > backup_forumdb.sql

The other (suggested) way is to use the pg_dump -f option, which allows us to specify the
filename that the content will be placed in. Here, the preceding command line can be
rewritten as follows:

$  pg_dump -U postgres --column-inserts -f backup_forumdb.sql forumdb

This has the very same effect as producing the backup_forumdb.sql file, which contains
the same SQL content that was shown in the previous examples.

pg_dump also allows for verbose output, which will print what the backup is performing
while it is performing. The -v command-line flag enables this verbose output:

$  pg_dump -U postgres -f backup_forumdb.sql -v forumdb
pg_dump: last built-in OID is 16383
pg_dump: reading extensions
pg_dump: identifying extension members
pg_dump: reading schemas
pg_dump: reading user-defined tables
pg_dump: reading user-defined functions
pg_dump: reading user-defined types
pg_dump: reading procedural languages
...
...

Once you have your backup file ready, you can restore it easily. We'll learn how to do this
in the next section.

Restoring a single database
If the backup you have produced is plain SQL, you don't need anything other than a
database connection to restore it – after all, you will execute a bunch of statements in the
correct order to recreate the database content.

pg_dump is smart enough to figure out the correct order by which tables
and their content must be dumped to allow for foreign key recreation.



Backup and Restore Chapter 15

[ 478 ]

It is important to note that, by default, pg_dump does not issue, in its backup content, a
CREATE DATABASE statement. In fact, let's say we produce a backup file as follows:

$  pg_dump -U postgres --column-inserts -f backup_forumdb.sql forumdb

The created backup_forumd.sql file will not include any instructions on how to create a
new database. This can be handy, but also dangerous: this means that the restoration will
happen within the database you are connected to.

Let's assume that we want to restore the database content to another local database that we
are going to name forumdb_test. Here, the first step is to create a database, as follows:

$  psql -U postgres template1
psql (12.2)
Type "help" for help.

template1=# CREATE DATABASE forumdb_test WITH OWNER luca;
CREATE DATABASE
template1=# \q

Now, it is possible to connect to the target database and ask psql to execute the entire
content of the backup file:

 $ psql -U luca forumdb_test
psql (12.2)
Type "help" for help.

forumdb_test=> \i backup_forumdb.sql

You are going to see a list of command output codes such as INSERT 0 1, which means a
single INSERT happened, as well as confirmation of the occurrence of ALTER TABLE,
GRANT, and every other command the backup contains. Depending on the size of the
backup, as well as the performance of the machine, the restoration could take a few seconds
to minutes.

Once the restore has completed, it is possible to test whether the backup has been restored;
for example, by querying a single table for its data:

forumdb_test=> SELECT * FROM tags;
ERROR:  relation "tags" does not exist
LINE 1: SELECT * FROM tags;
                      ^



Backup and Restore Chapter 15

[ 479 ]

Hold on – this does not mean that the backup and restore process didn't work properly!
Remember that pg_dump has inserted an appropriate instruction to remove every entry
from search_path, so psql doesn't know how to look up a table named tags, while it can
regularly find a table with a fully qualified name such as public.tags:

forumdb_test=> SELECT * FROM public.tags;
 pk |   tag   | parent
----+---------+--------
 44 | pgaudit |
...

You can either close the connection and start it over to get a regularly set up version of
search_path or set it manually in your current connection by means of set_config(),
for example:

forumdb_test=> SELECT pg_catalog.set_config('search_path', 'public,
"$user"', false);
   set_config
-----------------
 public, "$user"
(1 row)

forumdb_test=> SELECT * FROM tags;
 pk |   tag   | parent
----+---------+--------
 44 | pgaudit |
...

As you can see, now, the connection works just fine.

It is also possible to perform a backup (and a restore) in the very same database. First of all,
pg_dump must include a special option called --create, which instructs the application to
issue CREATE DATABASE as the very first instruction for the restoration:

$ pg_dump -U postgres --column-inserts --create -f backup_forumdb.sql
forumdb
$ less backup_forumdb.sql
...
CREATE DATABASE forumdb WITH TEMPLATE = template0 ENCODING = 'UTF8'
LC_COLLATE = 'C' LC_CTYPE = 'C';
ALTER DATABASE forumdb OWNER TO luca;
\connect forumdb
...



Backup and Restore Chapter 15

[ 480 ]

As you can see, the output of pg_dump now includes the creation of the database, as well as
the special \c command to connect immediately to such a database. In other words,
launching this file through psql will restore the full content in the right database when the
latter does not exist.

In order to test this, let's destroy our beloved database and restore it by means of initially
connecting to template1:

$ psql -U postgres template1
psql (12.2)
Type "help" for help.

template1=# DROP DATABASE forumdb;
DROP DATABASE
template1=# \i backup_forumdb.sql
...
forumdb=#

Note how the Command Prompt has changed to reflect the fact that we are now connected
to the restored forumdb database.

So, which version of dump and restoration should you use? If you are going to replicate the
database in another cluster, for example, to migrate a staging database to production, you
should include the --create option to let the database engine create the database for you.
If you are migrating the database content to an existing database, then the --create option
must not be present at all because there is no need to set up a database; this can be risky
because you could restore objects to the wrong database, so you need to carefully check that
you are connected into the right database before reloading the backup script.
If you are going to migrate the content of the database to another engine, such as another
relational database, you should use options such as --inserts or --column-inserts to
make the database backup more portable.

Limiting the amount of data to back up
pg_dump allows an extensive set of filters and flags to be used to limit the amount of data to
back up. For example, you could decide to dump only the database schema without any
data in it, and this can be achieved by means of the -s flag. On the other hand, you could
already have the database schema in place, and you may only need the database content
without any DDL statement. This can be achieved with the -a option. You can, of course,
combine different pg_dump commands to get separate backups:

$ pg_dump -U postgres -s -f database_structure.sql forumdb
$ pg_dump -U postgres -a -f database_content.sql forumdb



Backup and Restore Chapter 15

[ 481 ]

You will end up with a file called database_structure.sql that contains all the
different CREATE TABLE statements and another that contains only the COPY (or
INSERT statements if you specified --inserts) statements.

You can also decide to limit your backup scope, either by schema or data, to a few tables by
means of the -t command-line flag or, on the other hand, to exclude some tables by means
of the -T parameter. For example, if we want to back up only the users table and
users_pk_seq sequence, we can do the following:

$ pg_dump -U postgres  -f users.sql -t users -t user_pk_seq forumdb

The created users.sql file will contain only enough data to recreate the user-related stuff
and nothing more. On the other hand, if we want to exclude the users table from the
backup, we can do something similar to the following:

$  pg_dump -U postgres  -f users.sql -T users -T user_pk_seq forumdb

Of course, you can mix and match any option in a way that makes sense to you and, more
importantly, allows you to restore exactly what you need. As an example, if you want to get
all the data contained in the posts table and the table structure itself, you can do the
following:

$  pg_dump -U postgres  -f posts.sql -t posts -a  forumdb
pg_dump: warning: there are circular foreign-key constraints on this table:
pg_dump:   posts
pg_dump: You might not be able to restore the dump without using --disable-
triggers or temporarily dropping the constraints.
pg_dump: Consider using a full dump instead of a --data-only dump to avoid
this problem.

pg_dump is smart enough to see that the table posts have different dependencies and
foreign keys, so it warns you about the fact that your dump won't be able to restore all the
content of the posts table. It is up to you to manage such dependencies in a correct way
since you asked pg_dump to not perform a full backup (which, on the other hand, is always
complete and consistent).

Dump formats and pg_restore
In the previous sections, you have only seen the plain SQL format for backups and restores,
but pg_dump allows for more complex and smart formats. All formats except plain SQL
must be used with pg_restore for restoration, and therefore are not suitable for manual
editing.



Backup and Restore Chapter 15

[ 482 ]

Backup formats are specified by the -F command-line argument to pg_dump, which allows
for one of the following values:

c (custom) is the PostgreSQL-specific format within a single file archive.
d (directory) is a PostgreSQL-specific format that's compressed where every
object is split across different files within a directory.
t (tar) is a .tar uncompressed format that, once extracted, results in the same
layout as the one provided by the directory format.

Let's start with the first format: the custom single-file format. The command to back up a
database resembles the one used for the plain SQL format, where you have to specify the
output file, but this time, the file is not a plain text one:

$  pg_dump -U postgres -Fc --create -f backup_forumdb.backup forumdb
$ ls -lh backup_forumdb*
-rw-r--r--  1 luca  luca    24K May  2 17:20 backup_forumdb.backup
-rw-r--r--  1 luca  luca   168K May  2 17:04 backup_forumdb.sql
$ file backup_forumdb.backup
backup_forumdb.backup: PostgreSQL custom database dump - v1.14-0

The produced output file is smaller in size than the plain SQL one and can't be edited as
text because it is binary. Many of the pg_dump command-line arguments apply the same to
the custom formats, while others do not make sense at all. In any case, pg_dump is smart
enough to know what to take into account and what to discard, so the following command
lines will produce the same backup shown in the preceding example:

$ pg_dump -U postgres -Fc --create --inserts -f backup_forumdb.backup
forumdb
$ pg_dump -U postgres -Fc --create --column-inserts -f
backup_forumdb.backup forumdb

Once you have the custom backup, how can you restore the database content? Remember
that custom backup formats require pg_restore to be used for a successful restoration. As
we did previously, let's destroy our database again and restore it by means of pg_restore:

$ psql -U postgres -c 'DROP DATABASE forumdb;' template1                                      
$ pg_restore -U postgres -C -d template1 backup_forumdb.backup



Backup and Restore Chapter 15

[ 483 ]

pg_restore runs silently and restores the specified database. The -C option indicates
that pg_restore will recreate the database before restoring inside it. The -d option tells
the program to connects to the template1 database first, issue a CREATE DATABASE, and
then connect to the newly created database to continue the restore, similar to what the plain
backup format did. Clearly, pg_restore requires a mandatory file to operate on; that is,
the last argument specified on the command line.
It is interesting to note that pg_restore can produce a list of SQL statements that are going
to be executed without actually executing them. The -f command-line option does this and
allows you to store plain SQL in a file or inspect it before proceeding any further with the
restoration:

$ pg_restore backup_forumdb.backup -f restore.sql
$ less restore.sql
--
-- PostgreSQL database dump
--

CREATE EXTENSION IF NOT EXISTS pgaudit WITH SCHEMA public;
...

As you can see, the content of the restore.sql file is plain SQL, similar to the output of a
plain dump by means of pg_dump.

Another output format for pg_dump is the directory one, specified by means of the -Fd
command-line flag. In this format, pg_dump creates a set of compressed files in a directory
on disk; in this case, the -f command-line argument specifies the name of a directory
instead of a single file. As an example, let's do a backup in a backup folder:

$ pg_dump -U postgres -Fd -f backup forumdb
$ ls -lh backup
total 56
-rw-r--r--  1 luca  luca   202B May  2 17:42 3342.dat.gz
-rw-r--r--  1 luca  luca    25B May  2 17:42 3344.dat.gz
-rw-r--r--  1 luca  luca    25B May  2 17:42 3345.dat.gz
-rw-r--r--  1 luca  luca    25B May  2 17:42 3346.dat.gz
-rw-r--r--  1 luca  luca    25B May  2 17:42 3347.dat.gz
-rw-r--r--  1 luca  luca    25B May  2 17:42 3348.dat.gz
-rw-r--r--  1 luca  luca    39B May  2 17:42 3350.dat.gz
-rw-r--r--  1 luca  luca   9.1K May  2 17:42 3352.dat.gz
-rw-r--r--  1 luca  luca    14K May  2 17:42 toc.dat



Backup and Restore Chapter 15

[ 484 ]

The directory is created, if needed, and every database object is placed in a single
compressed file. The toc.dat file represents a Table Of Contents, an index that
tells pg_restore where to find any piece of data inside the directory. The following
example shows how to destroy and restore the database by means of a backup directory:

$ psql -U postgres -c "DROP DATABASE forumdb;" template1
DROP DATABASE
$ pg_restore -C -d template1 -U postgres backup/
$ psql -U luca forumdb
psql (12.2)
Type "help" for help.

forumdb=> \q

The directory backup format is useful when the database grows in size since it can become
a problem to store a single huge file that could overtake the filesystem's limitations.

The very last pg_dump format is the .tar one, which can be obtained by means of the -Ft
command-line flag. The result is the creation of a tar(1) uncompressed archive that
contains the same directory structure that we created in the previous example, but where
every file is not compressed:

$ pg_dump -U postgres -Ft -f backup_forumdb.tar forumdb
$ tar tvf backup_forumdb.tar
-rw-------  0 postgres postgres 14637 May  2 17:47 toc.dat
-rw-------  0 postgres postgres   249 May  2 17:47 3342.dat
-rw-------  0 postgres postgres     5 May  2 17:47 3344.dat
-rw-------  0 postgres postgres     5 May  2 17:47 3345.dat
-rw-------  0 postgres postgres     5 May  2 17:47 3346.dat
-rw-------  0 postgres postgres     5 May  2 17:47 3347.dat
-rw-------  0 postgres postgres     5 May  2 17:47 3348.dat
-rw-------  0 postgres postgres    19 May  2 17:47 3350.dat
-rw-------  0 postgres postgres 63185 May  2 17:47 3352.dat

Next, we will look at running a selective restore, which will help you choose which
elements of a database you want to restore.



Backup and Restore Chapter 15

[ 485 ]

Performing a selective restore
When performing a plain SQL database dump, you are allowed to manually edit the result,
since it is plain text, and selectively remove parts you don't want to restore. With custom
formats and pg_restore, you can do the very same thing, but you need to perform a few
steps to do so.

First of all, you can always inspect the content of a binary dump by means of pg_restore
and its --list option, which allows you to get a printed out index (Table of Contents or
TOC for short) about the content of the backup. You need to specify, after the --list
option, either the single file or directory that contains the backup to get the TOC printed:

$ pg_restore --list backup/
;
; Archive created at 2020-05-02 17:42:46 CEST
;     dbname: forumdb
;     TOC Entries: 56
;     Compression: -1
;     Dump Version: 1.14-0
;     Format: DIRECTORY
...
3360; 0 0 ACL - SCHEMA public postgres
2; 3079 34878 EXTENSION - pgaudit
3361; 0 0 COMMENT - EXTENSION pgaudit
218; 1255 34883 FUNCTION public f_load_data() luca
...

Lines beginning with a semicolon are comments, and as you can see, the first few lines that
are printed out are a banner that describes the content of the backup, the date the backup
was realized, the format (in this example, "directory"), and how many entries (objects) are
in the backup.

Every line that is not a comment represents a database object or a single action that the
restore process will perform. As an example, take a look at the following line:

218; 1255 34883 FUNCTION public f_load_data() luca

This indicates that the f_load_data() function will be restored by luca within the
public schema.



Backup and Restore Chapter 15

[ 486 ]

Similarly, the following line means that the public.tags table will be created and
assigned to the user luca:

211; 1259 34915 TABLE public tags luca

The following line means that the same table will be filled with the data:

3350; 0 34915 TABLE DATA public tags luca

Thanks to this table of contents, you can take control of the restoration process. In fact, if
you move or delete lines from the table of contents, you can instruct pg_restore to change
its execution. As an example, first, let's store the table of contents in a text file:

$  pg_restore --list backup/ > my_toc.txt

Now, edit the my_toc.txt file with your favorite editor and comment out the mentioned
part as follows, by placing a semicolon as the first character of the line or by removing the
line that fills the tags table:

;3350; 0 34915 TABLE DATA public tags luca

Now, save the my_toc.txt file. With that, it is possible to restore the database by means of
pg_restore, but you have to instruct the program to follow your own table of contents
and not the full and unmodified one that ships with the backup itself. To this aim,
pg_restore allows the -L flag to be specified with the table of contents to use:

$ pg_restore -C -d template1 -U postgres -L my_toc.txt   backup/
$ psql -U luca forumdb
psql (12.2)
Type "help" for help.

forumdb=> SELECT count(*) FROM tags;
 count
-------
     0
(1 row)

As you can see, the table has been created, but it is empty. This is the result of using an ad
hoc table of contents.

It is also possible to rearrange lines to make some objects be restored before others, but this
is much more complicated, particularly when cross-references and dependencies between
objects exist. Anyway, this is an incredibly flexible way to selectively decide what to restore
and, moreover, create a different table of contents to restore the same format backup in
different working sets.



Backup and Restore Chapter 15

[ 487 ]

Dumping a whole cluster
pg_dumpall is the tool to use to dump a full cluster. Here, pg_dumpall loops over all the
databases available in the cluster and performs a single pg_dump on each, then dumps the
specific objects that are at a cluster level, such as roles.
pg_dumpall works similarly to pg_dump, so pretty much all the concepts and options you
have seen in the previous sections apply to pg_dumpall too. If you don't specify any
output format and file, pg_dumpall prints all the required SQL statements on the standard
output. Assuming you want to store the whole database content in a single SQL file, the
following command line provides a full backup:

$ pg_dumpall -U postgres -f cluster.sql

The file can become large quickly, and this time, it begins by creating all the required roles:

$  less cluster.sql
...
CREATE ROLE auditor;
ALTER ROLE auditor WITH NOSUPERUSER INHERIT NOCREATEROLE NOCREATEDB NOLOGIN
NOREPLICATION NOBYPASSRLS;
CREATE ROLE book_authors;
ALTER ROLE book_authors WITH NOSUPERUSER INHERIT NOCREATEROLE NOCREATEDB
NOLOGIN NOREPLICATION NOBYPASSRLS;
CREATE ROLE enrico;
...

It then continues by restoring every single database, including template1. Then, all the
databases are populated by means of SQL statements produced by single pg_dump runs.

pg_dumpall only produces an SQL script, so you need to restore your cluster by means of
psql or an interactive connection. All the main options you can use with pg_dump that
have been presented in the previous sections apply to pg_dumpall too.

Parallel backups
It is possible to use parallelization to speed up backups and restores. The basic idea is to
have multiple processes (and database connections), each assigned a smaller task to
perform, so that performing all the tasks in parallel will provide you with better
performance, or at least lower times.



Backup and Restore Chapter 15

[ 488 ]

It is important to note that, often, it is not doing the backup faster that's the problem –
rather, it's being able to perform the restoration as fast as you can. So, while it is possible to
perform both backups and restoration in parallel mode, you will find restoration to be the
most important one.

pg_dump allows you to specify the parallelism level via the -j command-line argument, to
which you must assign a positive integer; that is, the number of parallel processes to start.
pg_dump will then open parallel connections to the database in number equal to the
parallelism, plus one connection to rule them all, and will force every connection to dump a
separate table. This clearly means it does not make any sense to start more processes than
the number of tables in your database that you need to back up.
Since all the processes will dump a single table, parallel mode is only available for the
directory (-Fd) format where every table is stored in a separate file so that processes don't
mix their writes together.

As an example, the following instruction will dump the database with three parallel jobs,
thus opening four database connections:

$ pg_dump -U postgres -Fd -f backup_forumdb -v -j 3 forumdb
...
finished item 3350 TABLE DATA tags
dumping contents of table "public.categories"
pg_dump: finished item 3344 TABLE DATA foo
pg_dump: finished item 3342 TABLE DATA categories

The messages such as "finished items" are the single dumping processes that are completed
as a single table, and will not be shown in the non-parallel verbose output of the pg_dump
command. It is important to consider the number of connections opened by a parallel
pg_dump: they are always done on every parallel job, plus one, to synchronize and manage
the whole backup procedure. This means that in order to execute a parallel backup, you
must ensure there are enough connections available against your database; otherwise, the
backup will fail.

Another important aspect of parallel backups is that they could fail under concurrent
circumstances. In fact, once pg_dump has started, the "master" process acquires light locks
(shared locks) on every object the parallel processes are going to dump, while when started,
every parallel process acquires an exclusive (heavy) lock on the object. This prevents the
object (a table) from being destroyed before the parallel process has finished doing its work.
However, between the acquisition of the first lock from the master process and the
acquisition of the heavy lock from its spawned parallel process, another concurrent
connection could try to acquire the lock on the table, resulting in a possible deadlock
situation. To prevent this, the master pg_dump process will detect the dependency and
abort the whole backup.



Backup and Restore Chapter 15

[ 489 ]

pg_restore does support parallel restoration too, by means of the same mnemonic -j
command-line argument. The command will spawn the indicated number of processes
involved in data loading, index creation, and all the other heavy and time-consuming
operations.

Unlike pg_dump, pg_restore can work in parallel for both the directory format and the
custom format. It is not simple to determine the number of parallel jobs to specify to
pg_restore, but usually, this is the number of CPU cores, even if values slightly greater
than that can produce a faster restoration.
As an example, the following command allows for parallel restoration of the backup we
took previously (the first line drops the database for the restoration to succeed):

$ psql -U postgres -c "DROP DATABASE forumdb;" template1
$ pg_restore -C -d template1 -U postgres -j 2 -v backup_forumdb/
...
pg_restore: launching item 3370 ACL TABLE users
pg_restore: creating ACL "public.TABLE users"
pg_restore: finished item 3369 ACL TABLE tags
...
pg_restore: finished main parallel loop

Thanks to the verbose flag, it is clear how pg_restore has executed a parallel restoration
of the data in the database. Messages such as "launching item" and "finished item" indicate
when and on what object a parallel worker has been involved.

Backup automation
By combining pg_dump and pg_dumpall, it is quite easy to create automated backups, for
example, to run every night or every day when the database system is not heavily used.
Depending on the operating system you are using, it is possible to schedule such backups
and have them be executed and rotated automatically.

If you're using Unix, for example, it is possible to schedule pg_dump via cron(1), as
follows:

$ crontab -e

After doing this, you would add the following line:

30 23 * * * pg_dump -Fc -f /backup/forumdb,backup  -U postgres forumdb

This takes a full backup in custom format every day at 23:30. However, the preceding
approach has a few drawbacks, such as managing already existing backups, dealing with
newly added databases that require another line to be added to the crontab, and so on.



Backup and Restore Chapter 15

[ 490 ]

Thanks to the flexibility of PostgreSQL and its catalog, it is simple enough to develop a
wrapper script that can handle backing up all the databases with ease. As a starting point,
the following script performs a full backup of every database except for template0:

#!/bin/sh

BACKUP_ROOT=/backup

for database in $( psql -U postgres -A -t -c "SELECT datname FROM
pg_database WHERE datname <> 'template0'" template1 )
do
    backup_dir=$BACKUP_ROOT/$database/$(date +'%Y-%m-%d')
    if [ -d $backup_dir ]; then
        echo "Skipping backup $database, already done today!"
        continue
    fi

    mkdir -p $backup_dir
    pg_dump -U postgres -Fd -f $backup_dir $database
    echo "Backup $database into $backup_dir done!"
done

The idea is quite simple: the system queries the PostgreSQL catalog, pg_database, for
every database that the cluster is serving, and for every database, it searches for a dedicated
directory named after the database that contains a directory named after the current date. If
the directory exists, the backup has already been done, so there is nothing to do but
continue to the next database. Otherwise, the backup can be performed. Therefore, the
system will back up the forumdb database to the /backup/forumd/2020-05-03 directory
one day, /backup/forumb/2020-05-04 the next day, and so on. Due to this, it is simple to
add the preceding script to your crontab and forget about adding new lines for new
databases, as well as removing lines that correspond to deleted databases:

30 23 * * * my_backup_script.sh

Of course, the preceding script does not represent a complex backup system, but rather a
starting point if you need a quick and flexible solution to perform an automated logical
backup with tools your PostgreSQL cluster and operating system are offering. As already
stated, many operating systems have already taken backing up a PostgreSQL cluster into
account and offer already crafted scripts to help you solve this problem. A very good
example of this kind of script is the 502.pgsql script, which is shipped with the FreeBSD
package of PostgreSQL.



Backup and Restore Chapter 15

[ 491 ]

Exploring physical backups
A physical backup is a low-level backup that's taken during the normal operations of the
database cluster. Here, low-level means that the backup is somehow performed "externally"
inside the backup cluster; that is, at the filesystem level.
As you already know from Chapter 10, Users, Roles, and Database Security, the database
cluster requires both the data files contained in PGDATA/base and the write-ahead logs
(WALs) contained in PGDATA/wal, as well as a few other files, to make the cluster work
properly. The main concept, however, is that the data files and the WALs can make the
cluster self-healing and recover from a crash. Hence, a physical backup performs a copy of
all the cluster files and then, when the restore is required, it simulates a database crash and
makes the cluster self-heal with the WALs in place.

The reason why physical backups are important is that they allow us to effectively clone a
cluster, starting from the files it is made of. This means that, on one hand, you cannot
restore a physically backed up cluster on a different PostgreSQL version, and on the other
hand, that you need essentially no interaction at all with the cluster during the backup
phase. The last point is particularly important: the physical backup can be taken pretty
much in every moment without impacting the database with a hue transaction, which
occurs in logical backups, and without interfering with the ongoing database activities such
as client connections and queries. Is it true that the storage system – in particular, the
filesystem – will be stressed during this kind of backup, but to the cluster, the backup is
almost transparent.
It is fair to say that the cluster must be informed that the backup is starting to allow it to
clearly mark that a backup is in progress inside the WALs, but apart from this "simple"
action, the backup is totally outside the scope of the database cluster.

Moreover, physical backups allow you to choose the best tool that fits the low-level file
copy. You are free to use any filesystem-specific command, such as cp(1), rsync(1),
tar(1), and so on; you can do the backup via a network by using any file copying
mechanism provided by your operating system, and you can even develop your own tool.
There are also a lot of backup solutions for PostgreSQL, including the authors' favorite,
pgBackRest, so you are free to tailor your backup strategy to the tools that best fit your
environment and requirements.

In the following subsections, you will learn how to perform a physical backup by means of
a tool shipped with PostgreSQL: pg_basebackup. This tool has been developed as the
primary tool for cloning a cluster, for example, as the starting point of a replicated system
(replication will be shown in later chapters).



Backup and Restore Chapter 15

[ 492 ]

Please consider that, in any case, what pg_basebackup does is perform a set of steps that
can be performed manually by any system administrator, so the tool is a convenient and
well-tested way of performing a physical backup.

Performing a manual physical backup
The pg_basebackup tool performs either a local or remote database cluster clone that can
be used as a backup. In order to work properly, the cluster that must be cloned must be set
up accordingly. Since pg_basebackup "asks" PostgreSQL to provide the WALs, it is
important that the target cluster has at least two WAL Sender processes active (WAL
Sender processes are responsible for serving WALs over a client connection).

Therefore, the first step to perform on the database you want to back up is to check that
the max_wal_senders configuration parameter (in the postgresql.conf file) has a value
of 2 or greater:

max_wal_senders = 2

Another important setting is to allow pg_basebackup to perform a connection to the
cluster: the tool will connect not as an ordinary client but as a "replication" client, and
therefore the pg_hba.conf file must allow a rule that allows an administrative user to
connect to the "replication" special database. Something similar to the following should
work for a local backup:

host    replication     postgres  127.0.0.1/32   trust

Here, the user postgres is allowed to connect from the very same host to the special
replication database without providing any authentication credentials.

The replication word that's used as the database that the user postgres is
going to connect to is not a real database; rather, it is a special keyword
that tells the PostgreSQL host-based access system to accept connections
marked with a replication purpose, like pg_basebackup is. In other
words, there is no effective "replication" database on any PostgreSQL
cluster.

Once the preceding settings have been put in place and the cluster has been restarted (due
to the max_wal_senders option), it is possible to take a new backup.



Backup and Restore Chapter 15

[ 493 ]

Let's assume we want to perform the physical backup to store the result – that is, the
backup itself – in the /backup/pg_backup directory. The following command will
perform the backup:

$ sudo -u postgres pg_basebackup -D /backup/pg_backup -l 'My Physical
Backup' -v -h localhost -p 5432 -U postgres
pg_basebackup: checkpoint completed
pg_basebackup: write-ahead log start point: D/4C000028 on timeline 1
pg_basebackup: starting background WAL receiver
pg_basebackup: created temporary replication slot "pg_basebackup_19254"
pg_basebackup: write-ahead log end point: D/4C000138
pg_basebackup: waiting for background process to finish streaming ...
pg_basebackup: syncing data to disk ...
pg_basebackup: base backup completed

The -D flag specifies the directory that you want the backup to be stored in, which in this
example is /backup/pg_backup. The -l optional flag allows you to provide a textual label
to your backup, which can be used to inspect the backup to get some extra information
about it. The -v flag enables verbose mode, which produces rich output about what the
command is performing at every step. The other arguments are typical PostgreSQL libpq
client flags that specify how to connect to the database so that it can be cloned, in this case
by means of the user postgres on localhost at port 5432.

If you inspect the directory where the backup has been stored, you will see that it is
effectively a clone of the PGDATA directory of the server you took the backup from,
including its configuration files.

pg_verifybackup
A new tool, named pg_verifybackup, can be used in PostgreSQL 13 to verify the integrity
of the backup that's done via pg_basebackup. At a glance, it works as follows:

$ sudo -u postgres pg_basebackup -D /backup/pg_backup -l 'My Physical
Backup' -v -h localhost -p 5432 -U postgres
...
$ sudo -u postgres pg_verifybackup /backup/pg_backup
backup successfully verified



Backup and Restore Chapter 15

[ 494 ]

The tool performs four main steps:

It evaluates the backup manifest to check if it is readable and contains valid1.
backup information.
It scans the backup content to search for missing or modified data files (some2.
configuration files are skipped in this step because the user could have changed
them).
It compares all the data file checksums with the manifest values to ensure the3.
files have not been corrupted.
By exploiting another utility, pg_waldump, it verifies that the WAL records that4.
are needed in order to restore the backup are in place and readable.

Thanks to pg_verifybackup, you can be sure that your backup has not been damaged by
a filesystem problem, a disk failure, or something else, and therefore you can resume from
such a backup.

Starting the cloned cluster
pg_basebackup does a complete clone of the target cluster, including the configuration
files. This means that the configuration of the cluster has not been "adapted" to where the
clone is, including the data directory and the listening options (for example, the TCP/IP
port). Therefore, you must be careful when starting the cloned cluster since it could clash
with the original one, especially if the backup is performed locally (on the same machine).
Here, you have the option of editing the configuration before attempting to start the backup
cluster, changing the main settings on the command line, or having the backup on a remote
host.

If you want to start the cloned cluster, assuming it has been kept local, as in the previous
section, you can, for example, start it over with the following command-line settings:

$ sudo -u postgres pg_ctl -D /backup/pg_backup -o '-p 5433' start
waiting for server to start....
2020-05-10 11:31:51.685 CEST [39379] LOG:  starting PostgreSQL 12.2 on
amd64-portbld-freebsd12.0, compiled by FreeBSD clang version 6.0.1
(tags/RELEASE_601/final 335540) (based on LLVM 6.0.1), 64-bit
2020-05-10 11:31:51.686 CEST [39379] LOG:  listening on IPv6 address "::",
port 5433
2020-05-10 11:31:51.686 CEST [39379] LOG:  listening on IPv4 address
"0.0.0.0", port 5433
2020-05-10 11:31:51.688 CEST [39379] LOG:  listening on Unix socket
"/tmp/.s.PGSQL.5433"
2020-05-10 11:31:51.705 CEST [39379] LOG:  redirecting log output to



Backup and Restore Chapter 15

[ 495 ]

logging collector process
2020-05-10 11:31:51.705 CEST [39379] HINT:  Future log output will appear
in directory "log".
 done
server started

Here, the server has been started on the cloned PGDATA directory and TCP/IP port 5433. If
you inspect the database cluster logs, you will see that the database has restored from a
"forced crash"; that is, the cloned cluster did self-healing on its first startup:

$ sudo cat /backup/pg_backup/log/postgresql-2020-05-10.log
...
2020-05-10 11:31:51.711 CEST [39821] LOG:  database system was interrupted;
last known up at 2020-05-10 11:19:09 CEST
2020-05-10 11:31:52.050 CEST [39821] LOG:  redo starts at D/4C000028
2020-05-10 11:31:52.050 CEST [39821] LOG:  consistent recovery state
reached at D/4C000138
2020-05-10 11:31:52.050 CEST [39821] LOG:  redo done at D/4C000138
2020-05-10 11:31:52.203 CEST [39379] LOG:  database system is ready to
accept connections

Restoring from a physical backup
If you need to restore from a backup, you need to overwrite the original PGDATA directory
with the cloned copy produced by pg_basebackup. This is a very risky operation because
you will be losing all the content of the PGDATA directory and replacing it with the
backup copy, which means the risk of errors occurring is high.

For that reason, instead of performing an online restoration, we suggest that you start a
cloned cluster somewhere else, as shown in the previous section, so that you can extract the
data you need to recover and restore only that data on the target cluster. For instance, you
can start the cloned server, extract the data you need to recover by means of pg_dump, and
restore it on the target cluster.

Of course, there are situations when you need to recover the entirety of the cluster, and
therefore you need to do PGDATA overwriting, but even in such cases, we suggest that you
use more advanced tools such as pgBackRest that drive and assist you in both the backup
and restore part.

Physical backup and restoration are very powerful mechanisms, but they require you to
deeply understand what is going on under the hood. So, take the time to experiment with
them carefully so that you're ready to apply them in production.



Backup and Restore Chapter 15

[ 496 ]

Summary
In this chapter, we learned that PostgreSQL provides advanced tools so that we can
perform backups and restorations. Backups are important because, even in a battle-tested
and high-quality product such as PostgreSQL, things can go wrong: often, the users may
accidentally damage their data, but other times, the hardware or the software could fail
miserably. Being able to restore data, partially or fully, is therefore very important and
every database administrator should carefully plan backup strategies.

We also learned that PostgreSQL ships with tools for both logical and physical backups.
Logical backups are taken by means of reading the data from the database itself, by means
of ordinary SQL interactions; physical backups are taken by means of cloning the PGDATA
directory either by using operating system tools or PostgreSQL ad hoc solutions.
Restoration is performed by specific tools in the case of logical backups, and by the
database self-healing mechanism in the case of physical backups.

Finally, it is important to stress the concept that a backup alone is not valid until it is
successfully restored, so to ensure that you will be able to recover your cluster, you need to
test your backups as well.

Now that you can back up and restore your clusters, in the next chapter, we will look at
configuration and monitoring.

Further reading
PostgreSQL pg_dump tool official documentation: https:/ ​/​www. ​postgresql.
org/​docs/ ​12/ ​app- ​pgdump. ​html

PostgreSQL pg_dumpall tool official documentation: https:/ ​/​www. ​postgresql.
org/​docs/ ​12/ ​app- ​pg- ​dumpall. ​html

PostgreSQL pg_restore tool official documentation: https:/ ​/​www. ​postgresql.
org/​docs/ ​12/ ​app- ​pgrestore. ​html

FreeBSD 502.pgsql backup script: https:/ ​/​www. ​freshports. ​org/ ​databases/
postgresql83- ​server/ ​files/ ​502.​pgsql

PostgreSQL pg_basebackup tool official documentation: https:/ ​/​www.
postgresql. ​org/ ​docs/ ​12/ ​app- ​pgbasebackup. ​html

PostgreSQL pg_verifybackup tool official documentation: https:/ ​/​www.
postgresql. ​org/ ​docs/ ​13/ ​app- ​pgverifybackup. ​html

pgBackRest external tool for physical backups: https://pgbackrest.org/

https://www.postgresql.org/docs/12/app-pgdump.html
https://www.postgresql.org/docs/12/app-pgdump.html
https://www.postgresql.org/docs/12/app-pgdump.html
https://www.postgresql.org/docs/12/app-pgdump.html
https://www.postgresql.org/docs/12/app-pgdump.html
https://www.postgresql.org/docs/12/app-pgdump.html
https://www.postgresql.org/docs/12/app-pgdump.html
https://www.postgresql.org/docs/12/app-pgdump.html
https://www.postgresql.org/docs/12/app-pgdump.html
https://www.postgresql.org/docs/12/app-pgdump.html
https://www.postgresql.org/docs/12/app-pgdump.html
https://www.postgresql.org/docs/12/app-pgdump.html
https://www.postgresql.org/docs/12/app-pgdump.html
https://www.postgresql.org/docs/12/app-pgdump.html
https://www.postgresql.org/docs/12/app-pgdump.html
https://www.postgresql.org/docs/12/app-pgdump.html
https://www.postgresql.org/docs/12/app-pgdump.html
https://www.postgresql.org/docs/12/app-pgdump.html
https://www.postgresql.org/docs/12/app-pg-dumpall.html
https://www.postgresql.org/docs/12/app-pg-dumpall.html
https://www.postgresql.org/docs/12/app-pg-dumpall.html
https://www.postgresql.org/docs/12/app-pg-dumpall.html
https://www.postgresql.org/docs/12/app-pg-dumpall.html
https://www.postgresql.org/docs/12/app-pg-dumpall.html
https://www.postgresql.org/docs/12/app-pg-dumpall.html
https://www.postgresql.org/docs/12/app-pg-dumpall.html
https://www.postgresql.org/docs/12/app-pg-dumpall.html
https://www.postgresql.org/docs/12/app-pg-dumpall.html
https://www.postgresql.org/docs/12/app-pg-dumpall.html
https://www.postgresql.org/docs/12/app-pg-dumpall.html
https://www.postgresql.org/docs/12/app-pg-dumpall.html
https://www.postgresql.org/docs/12/app-pg-dumpall.html
https://www.postgresql.org/docs/12/app-pg-dumpall.html
https://www.postgresql.org/docs/12/app-pg-dumpall.html
https://www.postgresql.org/docs/12/app-pg-dumpall.html
https://www.postgresql.org/docs/12/app-pg-dumpall.html
https://www.postgresql.org/docs/12/app-pg-dumpall.html
https://www.postgresql.org/docs/12/app-pg-dumpall.html
https://www.postgresql.org/docs/12/app-pgrestore.html
https://www.postgresql.org/docs/12/app-pgrestore.html
https://www.postgresql.org/docs/12/app-pgrestore.html
https://www.postgresql.org/docs/12/app-pgrestore.html
https://www.postgresql.org/docs/12/app-pgrestore.html
https://www.postgresql.org/docs/12/app-pgrestore.html
https://www.postgresql.org/docs/12/app-pgrestore.html
https://www.postgresql.org/docs/12/app-pgrestore.html
https://www.postgresql.org/docs/12/app-pgrestore.html
https://www.postgresql.org/docs/12/app-pgrestore.html
https://www.postgresql.org/docs/12/app-pgrestore.html
https://www.postgresql.org/docs/12/app-pgrestore.html
https://www.postgresql.org/docs/12/app-pgrestore.html
https://www.postgresql.org/docs/12/app-pgrestore.html
https://www.postgresql.org/docs/12/app-pgrestore.html
https://www.postgresql.org/docs/12/app-pgrestore.html
https://www.postgresql.org/docs/12/app-pgrestore.html
https://www.postgresql.org/docs/12/app-pgrestore.html
https://www.freshports.org/databases/postgresql83-server/files/502.pgsql
https://www.freshports.org/databases/postgresql83-server/files/502.pgsql
https://www.freshports.org/databases/postgresql83-server/files/502.pgsql
https://www.freshports.org/databases/postgresql83-server/files/502.pgsql
https://www.freshports.org/databases/postgresql83-server/files/502.pgsql
https://www.freshports.org/databases/postgresql83-server/files/502.pgsql
https://www.freshports.org/databases/postgresql83-server/files/502.pgsql
https://www.freshports.org/databases/postgresql83-server/files/502.pgsql
https://www.freshports.org/databases/postgresql83-server/files/502.pgsql
https://www.freshports.org/databases/postgresql83-server/files/502.pgsql
https://www.freshports.org/databases/postgresql83-server/files/502.pgsql
https://www.freshports.org/databases/postgresql83-server/files/502.pgsql
https://www.freshports.org/databases/postgresql83-server/files/502.pgsql
https://www.freshports.org/databases/postgresql83-server/files/502.pgsql
https://www.freshports.org/databases/postgresql83-server/files/502.pgsql
https://www.freshports.org/databases/postgresql83-server/files/502.pgsql
https://www.freshports.org/databases/postgresql83-server/files/502.pgsql
https://www.freshports.org/databases/postgresql83-server/files/502.pgsql
https://www.freshports.org/databases/postgresql83-server/files/502.pgsql
https://www.freshports.org/databases/postgresql83-server/files/502.pgsql
https://www.postgresql.org/docs/12/app-pgbasebackup.html
https://www.postgresql.org/docs/12/app-pgbasebackup.html
https://www.postgresql.org/docs/12/app-pgbasebackup.html
https://www.postgresql.org/docs/12/app-pgbasebackup.html
https://www.postgresql.org/docs/12/app-pgbasebackup.html
https://www.postgresql.org/docs/12/app-pgbasebackup.html
https://www.postgresql.org/docs/12/app-pgbasebackup.html
https://www.postgresql.org/docs/12/app-pgbasebackup.html
https://www.postgresql.org/docs/12/app-pgbasebackup.html
https://www.postgresql.org/docs/12/app-pgbasebackup.html
https://www.postgresql.org/docs/12/app-pgbasebackup.html
https://www.postgresql.org/docs/12/app-pgbasebackup.html
https://www.postgresql.org/docs/12/app-pgbasebackup.html
https://www.postgresql.org/docs/12/app-pgbasebackup.html
https://www.postgresql.org/docs/12/app-pgbasebackup.html
https://www.postgresql.org/docs/12/app-pgbasebackup.html
https://www.postgresql.org/docs/12/app-pgbasebackup.html
https://www.postgresql.org/docs/12/app-pgbasebackup.html
https://www.postgresql.org/docs/13/app-pgverifybackup.html
https://www.postgresql.org/docs/13/app-pgverifybackup.html
https://www.postgresql.org/docs/13/app-pgverifybackup.html
https://www.postgresql.org/docs/13/app-pgverifybackup.html
https://www.postgresql.org/docs/13/app-pgverifybackup.html
https://www.postgresql.org/docs/13/app-pgverifybackup.html
https://www.postgresql.org/docs/13/app-pgverifybackup.html
https://www.postgresql.org/docs/13/app-pgverifybackup.html
https://www.postgresql.org/docs/13/app-pgverifybackup.html
https://www.postgresql.org/docs/13/app-pgverifybackup.html
https://www.postgresql.org/docs/13/app-pgverifybackup.html
https://www.postgresql.org/docs/13/app-pgverifybackup.html
https://www.postgresql.org/docs/13/app-pgverifybackup.html
https://www.postgresql.org/docs/13/app-pgverifybackup.html
https://www.postgresql.org/docs/13/app-pgverifybackup.html
https://www.postgresql.org/docs/13/app-pgverifybackup.html
https://www.postgresql.org/docs/13/app-pgverifybackup.html
https://www.postgresql.org/docs/13/app-pgverifybackup.html
https://pgbackrest.org/


16
Configuration and Monitoring

One of the duties of a database administrator is to configure the cluster so that it behaves
well for the current workload and context. The configuration is not static: most of the time,
you will find yourself making changes to the configuration, so it is important that you feel
comfortable with inspecting and changing the cluster's configuration.

Another important task, partially related to configuration, is monitoring the cluster in order
to understand how the system is actually behaving, and whether there are bottlenecks and
problems to be solved. Such problems can sometimes be solved by making changes to the
configuration of the cluster, by using different hardware (for example, increasing the
available memory), and sometimes by fixing the applications that could be causing the
bottleneck.

This chapter will show you how to manage and inspect the cluster configuration, generate
it from scratch, find errors and mistakes, and how to interactively monitor the cluster's
activity via the rich statistics subsystem. Finally, you will discover a very powerful and
common extension, named pg_stat_statements, that allows you to monitor the cluster's
activity with great detail and flexibility.

This chapter will cover the following topics:

Cluster configuration
Monitoring the cluster
Advanced statistics with pg_stat_statements

Let's get started!



Configuration and Monitoring Chapter 16

[ 498 ]

Technical requirements
You need to know about the following to complete this chapter:

How to interact with configuration files within the PGDATA directory
How to connect to your cluster as a database administrator
How to execute SQL statements against the system catalogs

The code for this chapter can be found in this book's GitHub repository: https:/ ​/​github.
com/​PacktPublishing/ ​Learn- ​PostgreSQL.

Cluster configuration
PostgreSQL is configured by means of a bunch of text files that contain directives and
values used to bootstrap the cluster and get it running. We saw how configuration files are
handled at the beginning of this book and throughout, whenever we needed to perform
particular configurations, such as to manage logging. This section will revisit and explain
how to configure a cluster in more detail.

There are two main configuration files that present the starting point for any configuration:

postgresql.conf is the main cluster configuration file and contains all the data
required to start the cluster, set up processes (as WAL senders) and logging, and
configure how the cluster will accept connections (for example, on which TCP/IP
address).
pg_hba.conf is the file that's used to allow or deny the client connections to the
cluster. It was explained extensively in Chapter 3, Managing Users and
Connections, and is related to the users and roles authentication mechanisms.

There are other configuration files under the PGDATA directory, but they will not be
discussed here. Moreover, you are free to create your own configuration files and plug
them into the cluster, but these two files are the main ones you will work with. This section
will mainly be dedicated to postgresql.conf, the default configuration file.

The postgresql.conf file is a text file, usually annotated with useful comments, that
contains a set of configuration parameters. Each parameter is expressed in the form of key
= value, where the key is the configuration parameter name and the value is the
configuration value for the parameter. We saw a few configuration parameters in the
previous chapters. For example, the max_wal_senders = 2 configuration parameter sets
the max_wal_senders configuration parameter to the value of 2.

https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL
https://github.com/PacktPublishing/Learn-PostgreSQL


Configuration and Monitoring Chapter 16

[ 499 ]

Each configuration parameter must be on a single line, and all lines starting with a # sign
are comments, which will not be taken into account by the cluster. Comments are useful
since they allow you to add extra information about your intentions regarding a specific
configuration. For example, let's take a look at the following code snippet:

# set to 2 to allow pg_basebackup to work properly
max_wal_senders = 2

The previous example provides a clear hint about why the parameter has been configured
as such. You are not required to place comments in your configuration file, but it is a very
good habit to document what you are doing and why you are doing it.

If you don't want to configure a specific parameter, you can either delete the line of that
parameter, making it disappear totally from the configuration file, or place a comment sign
in front of it, transforming the line into a pure comment. It is important to note that if a
parameter is not configured in the file because it is either missing or commented out, then it
will take its default value. Every parameter has a default value, and you must look through
the documentation to understand each default value.

Each configuration parameter will accept only a specific set of values that depend on the
type of the configuration parameter itself. Mainly, you can encounter numeric values, string
values, and lists (separated by a comma); there are also values that can be expressed with a
measurement unit, such as time in 2ms (2 milliseconds).

Inspecting all the configuration parameters
You can inspect all the configuration parameters from a live system by issuing a query
against the pg_settings special catalog. This catalog contains every setting that the
current version of PostgreSQL will accept, along with default values, current values, and
much more.

As an example, with the following query, you can gather information about every
configuration parameter, including their short and long descriptions, default values, and
current values:

forumdb=> SELECT name, setting || ' ' || unit AS current_value, short_desc,
extra_desc, min_val, max_val, reset_val FROM pg_settings;
...
name          | authentication_timeout
current_value | 360 s
short_desc    | Sets the maximum allowed time to complete client
authentication.
extra_desc    |



Configuration and Monitoring Chapter 16

[ 500 ]

min_val       | 1
max_val       | 600
reset_val     | 60

In the preceding example, the authentication_timeout setting has been set to 360
seconds, and its value can be tuned in the range of 1 second to 600 seconds; reset_val is
the default value that the parameter will assume if it is not configured at all, and it is set to
60 seconds.

The pg_settings special catalog also contains other useful information, including the file
and the line number from where a parameter has been loaded. This information can be
used to quickly find where a configuration parameter has been set in the
postgresql.conf file or another configuration file. As an example, the following query
will show where each parameter has been loaded from:

forumdb=# SELECT name, setting AS current_value, sourcefile, sourceline,
pending_restart FROM pg_settings;
...
name            | log_destination
current_value   | stderr
sourcefile      | /postgres/12/logging.conf
sourceline      | 1
pending_restart | f

As you can see, the log_destination configuration parameter has been loaded from the
/postgres/12/logging.conf file. This is a custom-defined file, starting at line 1 of that
file. In other words, if you need to tune the log_destination setting, you need to edit
the /postgres/12/logging.conf file at line 1.

You need to have database superuser rights in order to gather extra
information, such as the file location and line number.

There is another important piece of information that you can get out of the pg_settings
special catalog: what happens if a parameter is changed at runtime? Depending on the
nature of the parameter, changes can be applied immediately, or they can be delayed while
waiting for a special event or even a cluster restart. The pending_restart column 
indicates whether the current parameter has changed from its boot time value and whether
the value has been applied to the cluster. In the previous example, pending_restart is
false, so the configuration you are seeing is effectively what is running on the cluster right
now.



Configuration and Monitoring Chapter 16

[ 501 ]

Finding configuration errors
PostgreSQL provides a very useful catalog called pg_file_settings that provides us
with a glance at all the configuration parameters and the file they have been loaded from,
thus also providing information about errors. The following query extracts all the
information from the catalog, and the trimmed output gives us some important
information:

forumdb=# SELECT name, setting, sourcefile, sourceline, applied, error FROM
pg_file_settings  ORDER BY name;
      name       | setting |          sourcefile          | sourceline |
applied | error
-----------------+---------+------------------------------+------------+---
------+-------
 log_destination | stderr  | /postgres/12/postgresql.conf |        420 | f
|
 log_destination | stderr  | /postgres/12/logging.conf    |          1 | f
|
 log_destination | stderr  | /postgres/12/pgbadger.conf   |          1 | t
|
...

As you can see, the log_destination configuration parameter has been loaded multiple
times: exactly three, from different source files. The applied one is the configuration
settings from the /postgres/12/pgbadger.conf file, at line 1, as reported by the status
of the applied column. This is not an error; instead, it's a possible contention in the
configuration. In the case that the parameter contains an error, the error column provides
a hint about the problem.

As an example of an error, consider the previous query again and look carefully at what
changes are in the output:

forumdb=# SELECT name, setting, sourcefile, sourceline, applied, error FROM
pg_file_settings  ORDER BY name;
      name       | setting  |          sourcefile          | sourceline |
applied |            error
-----------------+----------+------------------------------+------------+--
-------+------------------------------
 log_destination | stderr   | /postgres/12/postgresql.conf |        420 | f
|
 log_destination | stderr   | /postgres/12/logging.conf    |          1 | f
|
 log_destination | stderror | /postgres/12/pgbadger.conf   |          1 | f
| setting could not be applied
...



Configuration and Monitoring Chapter 16

[ 502 ]

First of all, none of the settings have been applied. The last line has an error column that
says that the setting has not been applied due to an invalid value. In fact, the value has been
mistakenly written as stderror instead of the valid choice stderr.

Therefore, whenever you suspect that a setting you have placed in your configuration files
has not been applied, look at pg_file_settings for hints about possible errors.

Nesting configuration files
In the example shown in the previous section, you saw how the same configuration
parameter was defined in three different files. This is possible because PostgreSQL provides
three main directives:

include_file: Includes a single file in the configuration
include_dir: Includes all the files contained in the specified directory
include_if_exists: Includes a file only if it exists

The last directive is very handy because if an included file does not exist, PostgreSQL will
throw an error, while with include_if_exists, the cluster will not warn you if the file to
include has not been created. This is useful for provisioning, for example, where you can
set up a main configuration file that includes multiple files and ships those files only to
those systems that really require such a configuration.

Adding custom files to the configuration can quickly lead to multiple definitions of the
same parameter. PostgreSQL handles multiple definitions in a very simple way: the last
definition that's found wins over the previous ones. This is also true for a single
configuration file; for example, if you place the following three lines in postgresql.conf,
only the last one will be applied:

work_mem = 4096MB;
work_mem = 2048MB;
work_mem = 512MB;

With this duplicated configuration, the system will run with work_mem set to 512
megabytes. The special catalog, pg_file_settings, can help us find multiple definitions
of the same configuration parameter, as explained in the previous section.



Configuration and Monitoring Chapter 16

[ 503 ]

Configuration contexts
Each configuration parameter belongs to a so-called context, a group that defines when a 
change to the parameter can be applied. There are parameters that can be changed during
the cluster's life cycle. However, others cannot and require the cluster to be restarted; the
context of a configuration parameter helps the system administrator understand when
changes will take effect.

Configuration contexts can be extracted from the pg_settings catalog, as shown in the
following example:

forumdb=> SELECT distinct context FROM pg_settings ORDER BY context;
      context
-------------------
 backend
 internal
 postmaster
 sighup
 superuser
 superuser-backend
 user
(7 rows)

As you can see, the allowed configuration contexts are as follows:

internal: The internal context means that the configuration value depends
on the PostgreSQL source code and is established at compile time, so it cannot be
changed unless you decide to compile it from scratch. For example, the size of
every memory page is defined in the source code.
postmaster: The postmaster configuration context means that the postmaster
process is responsible for getting changes. In other words, the whole cluster (and
its main process, postmaster) must be started over.
sighup: The sighup context makes the cluster aware of changes by signaling it
with a hang-up signal, typically a reload of the operating system service.
superuser-backend and backend: The backend and superuser-
backend contexts allow changes to be applied to client and administrator
connections, respectively. Such changes will be perceivable from the very next
connection of either type.
user: The user and superuser contexts apply changes to the current client
connection immediately, either by normal means or established by a database
administrator, respectively.



Configuration and Monitoring Chapter 16

[ 504 ]

Main configuration settings
PostgreSQL includes a lot of configuration options, and describing all of them here would
require an entire book. Moreover, configuration depends on many different factors,
including the cluster workload and the connection concurrency. Many parameters can
imply different behaviors for other parameters. Therefore, it is not possible to provide a 
simple and effective step-by-step guide to configuration, but it is possible to provide some
suggestions to help you start tuning your cluster.

In the following subsections, you will learn about the main configuration parameters,
depending on the main category they belong to. Take your time to clearly understand what
every setting does before applying a change, and keep in mind that the configuration
contexts could prevent you from seeing immediate results.

WAL settings
WALs are fundamental for the cluster to work properly and to be able to recover from
crashes. Therefore, settings related to WALs are vital for the cluster's life cycle.

The main settings are as follows:

fsync tells the cluster to issue an operating system call of fsync(2) every time a
COMMIT is performed; that is, every time something must be stored in the WAL
segments.
wal_sync_method tells PostgreSQL which effective fsync(2) system call to
use.
synchronous_commit tells PostgreSQL whether every COMMIT must be
followed by an immediate and synchronous fsync(2) or whether the flush can
be delayed a bit, depending on the value of wal_writer_delay.
checkpoint_timeout, checkpoint_completion_target, and
max_wal_size control checkpointing, as discussed in Chapter 11, Transactions,
MVCC, WALs, and Checkpoints, when we explained transactions and WALs.

The fsync settings must be kept set to on because disabling this will make the cluster
subject to data loss due to an incomplete communication and flushing data toward the
filesystem. Never, ever, set this parameter to off.

wal_sync_method allows the administrator to configure a specific operating system call to
sync dirty buffers. All the POSIX operating systems implement fsync(2), but some of
them provide special flavors that behave faster or better under heavy loads. It is possible to
specify the exact name of the system call to use via wal_sync_method.



Configuration and Monitoring Chapter 16

[ 505 ]

But how can you discover the best (or just the available) fsync(2) implementation that fits
your operating system? You can launch the pg_test_fsync program on your machine to
get a good guess about the possible methods you can use, as well as the best one. As an
example, on a FreeBSD machine, the program provides the following output:

$ pg_test_fsync
5 seconds per test
O_DIRECT supported on this platform for open_datasync and open_sync.

Compare file sync methods using one 8kB write:
(in wal_sync_method preference order, except fdatasync is Linux's default)
        open_datasync                                   n/a
        fdatasync                          6845.727 ops/sec     146
usecs/op
        fsync                              3685.769 ops/sec     271
usecs/op
        fsync_writethrough                              n/a
        open_sync                          2521.228 ops/sec     397
usecs/op
...

You should compare the available options and choose the fastest one. So, in the preceding
example, wal_sync_method = open_datasysnc is the best choice.

synchronous_commit is a boolean setting that's set to on by default set, meaning that
every time a COMMIT is issued, an immediate fsync(2) will be performed. Setting this to
off will not cause data consistency loss, instead improving performance since PostgreSQL
will schedule an fsync with a small delay, measured by one to three times the value of
wal_writer_delay. It is useful to turn this setting off when you are bulk loading data (for
example, restoring a database from a backup), but for normal activities, you should keep it
on.

Other important settings were explained in Chapter 10, Users, Roles, and Database Security,
when we discussed transaction management, so please go back to that chapter for more
details.

Memory-related settings
PostgreSQL exploits the volatile RAM memory of the system to cache the data coming from
the permanent storage and to manage data that is going to be stored later on.



Configuration and Monitoring Chapter 16

[ 506 ]

The main settings related to memory management are as follows:

shared_buffers is the amount of memory PostgreSQL will use to cache data in
memory.
work_mem is the amount of memory PostgreSQL will provide, on-demand, to
perform particular activities on data.
maintanance_work_mem is the amount of memory PostgreSQL reserves for its
internal operations.
wal_buffers is the cache used for WAL segments.

shared_buffers is probably the most important setting here since it determines the total
amount of memory PostgreSQL will use. This memory will be made exclusively available
to PostgreSQL and its spawn processes;  the memory will not be available to other services
running on the same machine. Usually, you should start with a value that is between 25%
and 45% of the total RAM your system has. Values that are too low will make PostgreSQL
change data from the permanent storage on and off, while values that are too high will
make PostgreSQL compete with the operating system's filesystem cache.

work_mem is the amount of memory that every connection can use to perform a particular
data rearrangement, such as what's done in a SORT or a Hash Join. If more memory is
required, PostgreSQL will exploit the permanent storage to swap data on and off; for
example, converting a sort into a merge sort.

maintanance_work_mem establishes the amount of memory, per session, related to
particularly intensive commands such as VACUUM and CREATE INDEX. Since only one of
those commands can be active at any moment in a connection, you can raise the value
depending on how many administrative connections you are supposed to serve.

wal_buffers is probably the easiest setting you can tune with regard to memory: it
indicates how much memory to use for caching WAL segments. Since WAL segments are
usually written in chunks of 16 megabytes, this is exactly the optimal value for such a
setting.



Configuration and Monitoring Chapter 16

[ 507 ]

Process information settings
PostgreSQL is a multi-process system, and it spawns a process for serving every incoming
connection. There are a couple of settings that can help with monitoring, from the operating
system's point of view, every PostgreSQL-related process:

update_process_title makes every process report what it is doing; for
example, what query it is executing when asked by operating system tools such
as ps(1) and top(1).
cluster_name is a mnemonic name used to recognize the cluster that every
process belongs to in the case that multiple clusters are running on the same
machine.

It is worth noting that these settings could make the system work slower on certain
operating systems, such as FreeBSD.

Log-related settings were explained in detail in Chapter 14, Logging and
Auditing, so they will not be discussed again here.

Networking-related settings
Usually, PostgreSQL listens on a TCP/IP address for incoming connections, which is
specified by a bunch of network-related settings. The main settings for this are as follows:

listen_address specifies the TCP/IP address to listen on.
port specifies the TCP/IP port the postmaster will wait for incoming connections
on.
max_connections and superuser_reserved_connections specify the
allowed incoming connections.
authentication_timeout and ssl indicate the authentication timeout and
encrypted mode.

listen_address can include multiple addresses, separated by a comma, in the case the
server is multi-homed. It can even be specified by the special value * to indicate the server
should listen on every available address. port specifies the TCP/IP port number, which is
5432 by default.



Configuration and Monitoring Chapter 16

[ 508 ]

max_connections is the max allowance for incoming connections: no more connections
will be allowed on the cluster if this threshold is reached. Since part of max_connection is
made by superuser_reserved_connections, this is the number of connections by a
system administrator that have been authorized.

authentication_timeout is the time before an authentication trial will expire, while ssl
enables the server to handle SSL handshakes on connections (SSL will not be explained
here).

Archive and replication settings
There are different archiving and replication settings that deal with how the cluster
archives its WALs and communicates with other clusters as either a master or a slave. All
the settings will be detailed in Chapter 17, Physical Replication, and Chapter 18, Logical
Replication, and they are listed here at a glance:

wal_level indicates how the information in the WALs will be used. This can be
minimal (for a standalone system), replica (for a replicated system), or
logical (for a logical replication).
archive_mode, archive_command, and archive_timeout manage the
archiving mode – that is, storing WALs to other locations for point-in-time
recovery or replication.
primary_conninfo and primary_slot_name is used if the secondary
instrument in the cluster has to be replicated from a master to which it must
connect, depending on the values of these parameters.
hot_standy, when used on a replicating system, allows for read-only queries.
max_logical_replication_workers and max_wal_senders are used to
define how many process will manage replication.

These settings and other replication-related settings will be discussed in the chapters
dedicated to physical and logical replication.

Vacuum andautovacuum-related settings
There are different settings that can be used to define and tune the vacuum and
autovacuum settings. These were discussed in Chapter 10, Users, Roles, and Database
Security.



Configuration and Monitoring Chapter 16

[ 509 ]

Optimizer settings
The PostgreSQL optimizer is driven by a cost-based approach. It is possible to tune these
costs, as discussed in Chapter 11, Transactions, MVCC, WALs, and Checkpoints, in the Indexes
and performances section.

Statistics collector
PostgreSQL exploits the statistics collector to gather facts about what happened in the
cluster, as you will learn later in this chapter in the Monitoring the cluster section.

Since collecting those numbers has a little runtime impact, it is possible to exclude the
collection entirely or filter the statistics collector to gather only the facts you are truly
interested in. The main settings for this are as follows:

track_activities enables other processes to monitor the current command or
query currently being executed.
track_counts gathers counting information about tables and index usage.
track_functions gather statistics about the use of functions and stored
procedures.
track_io_timing allows us to count the time spent in different input/output
operations.
stat_temp_directory is the (relative) directory name to use as temporary
storage for statistics collection.

Modifying the configuration from a live system
It is possible to modify the cluster configuration from within a database connection by
means of the ALTER SYSTEM command.

ALTER SYSTEM provides us with a SQL way to set a parameter value, and the parameter
will be appended to a special file name, postgresql.auto.conf, which lives within the
PGDATA directory. The postgresql.auto.conf file is loaded automatically at server boot
or when a reload signal (HUP) is issued. Therefore, parameters contained
in postgresql.auto.conf will take priority over those in postgresql.conf and the end
result will be that the changes will be applied as if you have manually edited the
postgresql.conf file.



Configuration and Monitoring Chapter 16

[ 510 ]

ALTER SYSTEM can only be executed from a database administrator. For example, let's say
you issue the following command:

forumdb=# ALTER SYSTEM SET archive_mode = 'on';
ALTER SYSTEM

The end result will be to have a postgresql.auto.conf file that looks as follows:

$ sudo cat /postgres/12/postgresql.auto.conf
# Do not edit this file manually!
# It will be overwritten by the ALTER SYSTEM command.
archive_mode = 'on'

As you can see, the changed parameter was placed in the file as you manually edited it. The
file contains a warning banner about the fact that you should not edit it manually because
the system will not take your changes into account and will overwrite its content.

It is also possible to specify DEFAULT as the value for an option, so that option will be
removed from the postgresql.conf.auto file. It is also possible to use RESET to reset a
setting to its default value, or to use RESET ALL to remove all the settings from
postgresql.auto.conf.

Therefore, the following two inputs are equivalent and result in removing the changed
settings from the postgresql.auto.conf file:

forumdb=# ALTER SYSTEM SET archive_mode TO DEFAULT;
ALTER SYSTEM
forumdb=# ALTER SYSTEM RESET archive_mode;
ALTER SYSTEM

The following input will remove every changed setting in postgresql.auto.conf:

forumdb=# ALTER SYSTEM RESET ALL;
ALTER SYSTEM

Configuration generators
Instead of starting from the annotated postgresql.conf file and tuning it by yourself,
you can exploit an automated tuning system to get a starting point for the configuration.



Configuration and Monitoring Chapter 16

[ 511 ]

A good configuration system is PGConfig, an online system where you can specify the
main settings of the host serving your cluster, such as memory, hard disk type,
concurrency, and so on. With those few details, as shown in the following screenshot, the
system can produce different configurations, depending on the workload you are going to
use the cluster for:

The following screenshot shows multiple configurations that you can use:



Configuration and Monitoring Chapter 16

[ 512 ]

Once you have selected the configuration that best fits your workload, you can export such
a configuration as a postgresql.conf  file or as a set of ALTER SYSTEM statements to be
executed as a SQL interactive script so that you can apply the configuration to your cluster:

As you can see, the result is a bunch of configuration parameters that you can copy and
paste into a "blank" configuration file. The idea is to start from this configuration and
continue tuning on top of it.

The following screenshot shows the very same configuration by means of ALTER SYSTEM
statements; that is, you can apply the configuration as a SQL script, depending on your
needs:



Configuration and Monitoring Chapter 16

[ 513 ]

PGConfig is just one option you can use to get a customized configuration that you can
start working on. Of course, there is no need to use it since PostgreSQL comes with a
default configuration, and this configuration generator does not represent a "silver bullet"
to provide you the optimal configuration for your cluster. In either case, you will need to
tune and fix your parameters to optimize the cluster, depending on your needs, workload,
and hardware.

In the next section, you are going to discover how to monitor your cluster, as well as how to
discover bottlenecks and problems that can be fixed by tuning your queries or cluster
configuration. 



Configuration and Monitoring Chapter 16

[ 514 ]

Monitoring the cluster
Monitoring the cluster allows you to understand what the cluster is doing at any given
point in time and potentially act and react accordingly to avoid degradation in the
performance and usability of databases. PostgreSQL provides a rich set of catalogs that
allow a database administrator to monitor the overall activity by issuing only SQL
statements and queries. You can also combine the results of the information coming from
the catalog with other external monitoring tools, ranging from your operating system's
tools to more complex ones such as Nagios.

In this section, we will have a look at the main PostgreSQL catalogs used to monitor and
collect information about database activities. As you can imagine, only a database
administrator can get complete information about overall cluster activities.

The cluster collects information about activities by means of the statistic collector, a
dedicated process that is responsible for collecting, and therefore providing, information in
a cluster-wide way. Statistics are not in real-time, even if you feel they are. This is because
statistics are updated no more frequently than every 500 milliseconds by backend
processes, assuming they are idle. Moreover, statistics within a transaction block are
"frozen", meaning you cannot observe changes in the statistics unless your transaction has
finished.

Statistics are kept across clean shutdowns and restarts of the cluster, but in the case of
recovering from a crash, all the statistics are deleted and collection starts from scratch.
There is also the possibility to manually reset the statistics for a specific database by
invoking the pg_stat_reset() function as a database superuser.

Information about running queries
The pg_stat_activity catalog provides one tuple for every backend process active in the
cluster, and therefore for every client connected. The following simple queries provide a
detailed output:

forumdb=# SELECT usename, datname, client_addr, application_name,
          backend_start, query_start,
          state, backend_xid, query
   FROM pg_stat_activity;
...
-[ RECORD 4 ]----+---------------------------------------------------------
---------------------
usename          | luca
datname          | forumdb
client_addr      | 192.168.222.1



Configuration and Monitoring Chapter 16

[ 515 ]

application_name | psql
backend_start    | 2020-05-13 16:42:50.9931+02
query_start      | 2020-05-13 16:44:20.601118+02
state            | idle
backend_xid      |
query            | INSERT INTO tags( tag ) SELECT 'A Fake Tag' FROM
generate_series( 1, 10000 );

As you can see, the user luca (ni the username field) was connected via psql
(the application_name field) from a remote host (the client_addr field) and executed
the INSERT INTO query called tags over the forumdb database. It is interesting to note the
state field, which reports the status of the running query. In the preceding example, it
says idle, meaning that the query is waiting for something else to happen, and may even be
finished.

It is important to note that pg_stat_activity only reports the very last executed query
from a session or connection. Remember that the catalog shows a tuple for every connected
client and that the statistics are not updated until a new statement is executed.

Inspecting locks
The pg_locks special catalog provides a clear and detailed view of any locks that are 
acquired by different transactions and statements. The idea is that by inspecting this
catalog, the system administrator can get a glance at possible bottlenecks and competition
among transactions. It is useful to query this catalog by joining it with pg_stat_activity
in order to get more detailed information about what is going on. The following is an
example of a query and a partial result:

forumdb=# SELECT a.usename, a.application_name, a.datname, a.query,
         l.granted, l.mode
     FROM pg_locks l
     JOIN pg_stat_activity a ON a.pid = l.pid;
...
-[ RECORD 5 ]----+---------------------------------------------------------
-
usename          | luca
application_name | psql
datname          | forumdb
query            | delete from tags;
granted          | t
mode             | RowExclusiveLock
...



Configuration and Monitoring Chapter 16

[ 516 ]

-[ RECORD 9 ]----+---------------------------------------------------------
-
usename          | luca
application_name | psql
datname          | forumdb
query            | insert into tags( tag ) values( 'FreeBSD' );
granted          | t
mode             | ExclusiveLock

There are two connections for the user luca to the forumdb database, and one connection
has acquired a lock to delete tuples while the other is inserting tuples into the tags table.
The granted column expresses whether the lock is acquired, so selecting only the non-
granted locks is a good starting point to get advice on blocked queries. The mode column
indicates what kind of lock the query is trying to acquire.

With these suggestions, and thanks again to an accurate join with pg_stat_activity, you
can find blocked queries, as shown in the following example (this is a continuation of the
same scenario depicted previously):

orumdb=# SELECT query, backend_start, xact_start, query_start,
         state_change, state,
         now()::time - state_change::time AS locked_since,
         pid, wait_event_type, wait_event
  FROM pg_stat_activity
  WHERE wait_event_type IS NOT NULL
  ORDER BY locked_since DESC;
...
-[ RECORD 6 ]---+---------------------------------------------
query           | insert into tags( tag ) values( 'FreeBSD' );
backend_start   | 2020-05-14 08:26:57.762887+02
xact_start      | 2020-05-14 08:27:00.017983+02
query_start     | 2020-05-14 08:27:14.745784+02
state_change    | 2020-05-14 08:27:14.775535+02
state           | idle in transaction
locked_since    | 00:07:33.411832
pid             | 60239
wait_event_type | Client
wait_event      | ClientRead

As you can see, the query has been waiting for 7 minutes and 33 seconds
(the locked_since column), but the query is idle in transaction (the state column)
and is waiting for input from a client (the wait_event and wait_event_type columns).
In other words, the query is waiting for the user to complete (either COMMIT or ROLLBACK)
the transaction.



Configuration and Monitoring Chapter 16

[ 517 ]

Taking advantage of pg_locks can help you follow the evolution of transactions and their
contention, as well as decide on how to terminate queries that are blocking other
workloads.

Inspecting databases
You can get detailed information about the status of your databases by querying the
pg_stat_database special catalog. This catalog provides information about commit and
rolled back transactions, deadlocks, and conflicts. Please consider that deadlocks and
rollbacks are a natural event in a database, but if you see the numbers grow quickly, this
could mean there's been an application error or that there are clients who are trying to do
things incorrectly in a database and thus are forced to roll back.

As an example, by using the following query, you can get details about your databases:

forumdb=# SELECT datname, xact_commit, xact_rollback, blks_read, conflicts,
deadlocks,
         tup_fetched, tup_inserted, tup_updated, tup_deleted, stats_reset
         FROM pg_stat_database;
...
-[ RECORD 6 ]-+------------------------------
datname       | forumdb_test
xact_commit   | 802
xact_rollback | 9
blks_read     | 1800
conflicts     | 0
deadlocks     | 0
tup_fetched   | 32977
tup_inserted  | 1391
tup_updated   | 46
tup_deleted   | 0
stats_reset   | 2020-05-02 17:37:20.226145+02

As you can see, the forumdb database doesn't have any conflicts or deadlocks, and the
number of committed transactions (the xact_commit column) is much higher than the
number of aborted transactions (the xact_rollback column). Therefore, we can assume
that the database is fine and that the applications are issuing good queries.

The last column, stats_reset, is particularly important since it indicates whenever the
statistics information for a database has been reset, meaning deleted. Knowing how much
time has elapsed since the statistics have been reset helps in validating the database.



Configuration and Monitoring Chapter 16

[ 518 ]

Inspecting tables and indexes
The pg_stat_user_tables and pg_stat_user_indexes special catalogs provide
detailed information about the usage of a table or an index, such as the number of tuples,
the number of reads and writes, and so on.

Regarding a specific table, the following query provides detailed information about the
status of the memory for that table:

forumdb=# SELECT relname, seq_scan, idx_scan,
          n_tup_ins, n_tup_del, n_tup_upd, n_tup_hot_upd,
          n_live_tup, n_dead_tup,
          last_vacuum, last_autovacuum,
          last_analyze, last_autoanalyze
          FROM pg_stat_user_tables;
...
-[ RECORD 6 ]----+------------------------------
relname          | tags
seq_scan         | 5
idx_scan         | 0
n_tup_ins        | 10000
n_tup_del        | 0
n_tup_upd        | 0
n_tup_hot_upd    | 0
n_live_tup       | 10000
n_dead_tup       | 0
last_vacuum      | 2020-05-02 17:47:35.325376+02
last_autovacuum  | 2020-05-13 16:46:35.325376+02
last_analyze     | 2020-04-28 18:42:25.337372+02
last_autoanalyze | 2020-05-13 16:46:35.325376+02

The last_vacuum, last_analyze, last_autovacuum, and last_autoanalyze columns
are particularly important to understand whether manual or automatic vacuuming and
analysis ran on the table; this knowledge can be crucial to understanding whether the
automatic daemons are working properly. The n_live_tup column reports the currently
visible tuples, according to MVCC (see Chapter 10, Users, Roles, and Database Security),
while the n_dead_tup column reports the number of no longer visible tuples that still
occupy space but will be reclaimed by a manual or automatic vacuum.



Configuration and Monitoring Chapter 16

[ 519 ]

The other columns are pretty much self-explanatory, with seq_scan and idx_scan being
the number of times the table has been accessed in a sequential scan or by an index among
those available; n_tup_ins, n_tup_upd, and n_tup_del provide information about how
many tuples have been inserted as new and how many have been updated or deleted,
respectively. The n_tup_upd_hot column reports the number of tuples that have been
updated in place, instead of being created as new, by means of a mechanism called Heap
Only Tuple (HOT).

The pg_stat_user_indexes special catalog provides detailed information about the
usage of the available indexes. In particular, the idx_scan, idx_tup_read, and
idx_tup_fetch fields specify the number of times the index has been used, how many
index tuples have been read, and how many table tuples have been obtained thanks to the
index. For more information, please see Chapter 11, Transactions, MVCC, WALs, and
Checkpoints.

There are other, dual, catalogs whose names include "all" or "sys" to indicate they refer to
all the available tables, including PostgreSQL internal tables, or to only the latter (system
tables). Therefore, pg_stat_all_tables is the same as pg_stat_user_tables but also
includes information about system tables, which is kept under pg_stat_sys_tables. The
same applies to pg_stat_all_indexes; that is, the union of pg_stat_user_indexes
and pg_stat_sys_indexes.

More statistics
PostgreSQL includes a very rich set of statistics-related catalogs, and not all of them can be
described here due to space limitations.

Some of the most important ones to mention include the following:

pg_stat_replication, pg_stat_wal_receiver, and
pg_stat_subscription gather information about the replication of the cluster.
pg_stat_bgwriter gets information about input/output.
pg_stat_archiver gets information about how WALs are being archived.
pg_statio_user_tables, pg_statio_user_indexes, and the related
pg_statio_all_tables and pg_statio_all_indexes provide information
about input/output at a table or index level, indicating the number of hits and
misses from the buffer cache and reading new pages from storage.

You should take the time to become comfortable with all the statistics catalogs in order to
be able to monitor your cluster with confidence.



Configuration and Monitoring Chapter 16

[ 520 ]

In the next section, you are going to learn about a very handy extension that can help you
manage your cluster and take control of cluster activities.

Advanced statistics with
pg_stat_statements
While the PostgreSQL statistics collector is rich and mature, having to monitor connection
activity can be a little tricky since the pg_stat_activity catalog does not provide historic
information. For example, as we explained previously, there will be a single tuple with the
last executed statement, so no history nor extended details will be provided.

The pg_stat_statements extension solves this problem by providing a single view that
gives you a full history of executed statements, timing, and other little details that can come
in very handy when doing introspection. Moreover, pg_stat_statements provides a
count of how many times the same statement has been executed, resulting in important
information that queries might need to pay attention to for optimization purposes.

In the following subsections, you will learn how to install this extension and use it.

Installing the pg_stat_statements extension
This extension is shipped with PostgreSQL, so the only thing you have to do is configure
the database cluster to use it. Since pg_stat_statements requires a shared library, you
need to configure the shared_preload_libraries setting of your configuration
(the postgrsql.conf file) and restart the cluster.

The first step is to set the following in postgresql.conf:

shared_preload_libraries = 'pg_stat_statements'

Then, you need to restart the cluster.

pg_stat_statements collects information about all your clusters, but it will only export
such information in the database you create the extension in, which in our example is the
forumdb database:

$ psql -U postgres -c "CREATE EXTENSION pg_stat_statements;" forumdb
CREATE EXTENSION

The extension is now ready to be used.



Configuration and Monitoring Chapter 16

[ 521 ]

Using pg_stat_statements
Once pg_stat_statements has been enabled, it will start collecting information. The
runtime overhead of the extension is really minimal, so you can keep it enabled in
production systems too.

Since pg_stat_statements collects data from the whole cluster, it is helpful to join
the pg_stat_statements special view with other catalogs, such as pg_database and
pg_authid, to gather information about the database and username a statement has been
executed inside of, respectively. The following query provides an example of this:

forumdb=# SELECT auth.rolname,query, db.datname, calls, min_time, max_time
 FROM pg_stat_statements
      JOIN pg_authid auth ON auth.oid = userid
      JOIN pg_database db ON db.oid = dbid
 ORDER BY calls DESC;
...
rolname             | postgres
query               | SELECT count(*) FROM posts WHERE last_edited_on >=
CURRENT_DATE - $1
datname             | forumdb
calls               | 11
min_time            | 0.181
max_time            | 4.442902

The preceding example shows that the query has been executed 11 times since
pg_stat_statements started collecting the data, and it required from 0.181 to 4.44
seconds to run. Depending on the frequency and timing of each query, it could be
interesting to inspect and optimize the query by means of an index, for example.

The pg_stat_statements extension also provides fields related to block and shared
buffer read and writes. This can be useful for inspecting the memory size of the database.

Resetting data collected from pg_stat_statements
It is possible, at any given time, to reset all the data that's been collected by the extension
that's invoking the pg_stat_statements_reset() function as a database administrator.
The function will erase all the data that's been collected and will allow the extension to
collect new data from scratch. This can be useful when you want to test new configuration
or hardware without having the collected data be biased due to old statistics:

forumdb=# SELECT pg_stat_statements_reset();



Configuration and Monitoring Chapter 16

[ 522 ]

By default, pg_stat_statements data is kept across clean database shutdowns and
restarts.

Tuning pg_stat_statements
The extension allows database administrators to limit the amount of data that's collected. In
particular, you can tune the following parameters in your postgresql.conf configuration
file:

pg_stat_statements.max indicates the maximum number of individual
queries to collect.
pg_stat_statements.save is a boolean that indicates whether the content of
the collected data must survive a clean system reboot. By default, this setting is
true.
pg_stat_statements.track allows you to specify the nesting level to track.
With the top value, the extension will collect data about the query that was
issued directly within clients and within tracking nested statements. This is
triggered by the execution of other statements (for example, in function
statements). With the value of all, the extension will trigger every statement and
its descendants, while with none, no data will be collected about user statements.
pg_stat_statements.track_utility tracks all statements that are not in
SELECT, INSERT, UPDATE, DELETE – in other words, "non-ordinary" statements.
By default, this setting is on.

Usually, you don't have to exploit these settings since pg_stat_statements comes
already configured to track what most use cases need.

Summary
In this chapter you learned how PostgreSQL manages configuration through a main text
file, postgresql.conf, that can be split into smaller pieces, depending on your needs.
Every configuration option can be edited in the configuration file and can be inspected
within the database thanks to dedicated system catalogs. This allows the database
administrator to not only have a clear understanding of the currently running configuration
but to also search for configuration errors and incorrectly loaded settings.



Configuration and Monitoring Chapter 16

[ 523 ]

PostgreSQL also collects statistics; that is, runtime data that was gathered during the
cluster's operational time. Those statistics can help an administrator understand what is
going on, or what happened in the past, in the cluster. Thanks to a different set of catalogs,
which was exposed in this chapter, you learned how to dig into the details of all the
information that PostgreSQL has collected for you. Being able to track and analyze what
single applications, users, and connections are doing in a specific moment against the
cluster provides database administrators with a great way to fix bottlenecks and other
problems, thus helping to improve the cluster experience.

Finally, you learned about the pg_stat_statements extension, thanks to which it is
possible to collect historical data about query execution and timing so that it is possible to
apply optimization and deep analysis of the cluster activity.

Now that you've understood how to configure and monitor your cluster, it is time to learn
how to replicate this. The next chapter will show you how to perform physical replication
by configuring the cluster appropriately.

Further Reading
PostgreSQL 12 cluster configuration, official documentation: https:/ ​/ ​www.
postgresql. ​org/ ​docs/ ​12/ ​runtime- ​config. ​html

PGConfig online configurator: https:/ ​/​www. ​pgconfig. ​org/ ​

PostgreSQL 12 statistics collector official documentation: https:/ ​/​www.
postgresql. ​org/ ​docs/ ​12/ ​monitoring- ​stats. ​html

PostgreSQL 12 pg_stat_statements official documentation: https:/ ​/​www.
postgresql. ​org/ ​docs/ ​12/ ​pgstatstatements. ​html

https://www.postgresql.org/docs/12/runtime-config.html
https://www.postgresql.org/docs/12/runtime-config.html
https://www.postgresql.org/docs/12/runtime-config.html
https://www.postgresql.org/docs/12/runtime-config.html
https://www.postgresql.org/docs/12/runtime-config.html
https://www.postgresql.org/docs/12/runtime-config.html
https://www.postgresql.org/docs/12/runtime-config.html
https://www.postgresql.org/docs/12/runtime-config.html
https://www.postgresql.org/docs/12/runtime-config.html
https://www.postgresql.org/docs/12/runtime-config.html
https://www.postgresql.org/docs/12/runtime-config.html
https://www.postgresql.org/docs/12/runtime-config.html
https://www.postgresql.org/docs/12/runtime-config.html
https://www.postgresql.org/docs/12/runtime-config.html
https://www.postgresql.org/docs/12/runtime-config.html
https://www.postgresql.org/docs/12/runtime-config.html
https://www.postgresql.org/docs/12/runtime-config.html
https://www.postgresql.org/docs/12/runtime-config.html
https://www.pgconfig.org/
https://www.pgconfig.org/
https://www.pgconfig.org/
https://www.pgconfig.org/
https://www.pgconfig.org/
https://www.pgconfig.org/
https://www.pgconfig.org/
https://www.pgconfig.org/
https://www.pgconfig.org/
https://www.pgconfig.org/
https://www.postgresql.org/docs/12/monitoring-stats.html
https://www.postgresql.org/docs/12/monitoring-stats.html
https://www.postgresql.org/docs/12/monitoring-stats.html
https://www.postgresql.org/docs/12/monitoring-stats.html
https://www.postgresql.org/docs/12/monitoring-stats.html
https://www.postgresql.org/docs/12/monitoring-stats.html
https://www.postgresql.org/docs/12/monitoring-stats.html
https://www.postgresql.org/docs/12/monitoring-stats.html
https://www.postgresql.org/docs/12/monitoring-stats.html
https://www.postgresql.org/docs/12/monitoring-stats.html
https://www.postgresql.org/docs/12/monitoring-stats.html
https://www.postgresql.org/docs/12/monitoring-stats.html
https://www.postgresql.org/docs/12/monitoring-stats.html
https://www.postgresql.org/docs/12/monitoring-stats.html
https://www.postgresql.org/docs/12/monitoring-stats.html
https://www.postgresql.org/docs/12/monitoring-stats.html
https://www.postgresql.org/docs/12/monitoring-stats.html
https://www.postgresql.org/docs/12/monitoring-stats.html
https://www.postgresql.org/docs/12/pgstatstatements.html
https://www.postgresql.org/docs/12/pgstatstatements.html
https://www.postgresql.org/docs/12/pgstatstatements.html
https://www.postgresql.org/docs/12/pgstatstatements.html
https://www.postgresql.org/docs/12/pgstatstatements.html
https://www.postgresql.org/docs/12/pgstatstatements.html
https://www.postgresql.org/docs/12/pgstatstatements.html
https://www.postgresql.org/docs/12/pgstatstatements.html
https://www.postgresql.org/docs/12/pgstatstatements.html
https://www.postgresql.org/docs/12/pgstatstatements.html
https://www.postgresql.org/docs/12/pgstatstatements.html
https://www.postgresql.org/docs/12/pgstatstatements.html
https://www.postgresql.org/docs/12/pgstatstatements.html
https://www.postgresql.org/docs/12/pgstatstatements.html
https://www.postgresql.org/docs/12/pgstatstatements.html
https://www.postgresql.org/docs/12/pgstatstatements.html


4
Section 4: Replication

In this section, you will learn how replication in PostgreSQL can be used in multi-instance
environments to provide high-availability, redundancy, and scalability.

This section contains the following chapters:

Chapter 17, Physical Replication
Chapter 18, Logical Replication



17
Physical Replication

When a database, after passing the development and testing phases, arrives in production,
the first problem that the DBA must address is managing replicas. Replicas must be
managed in real time and automatically updated. Replicas allow us to always have a copy
of our data updated in real time on another machine. This machine can be placed in the
same data center as our data or in a different one. This chapter differs from all that we have
seen previously in that we will be talking about physical replication. In Postgres, starting
from version 9.x, it is possible to have physical replication natively. We will talk about what
physical replication means and we will see how to create a replica server and how to
manage it. We will also see that there is the possibility of having synchronous or
asynchronous replicas and that there can be multiple replicas of the same database, as well
as the possibility of having replicas in a cascade.

In this chapter, we will return to the topic of WAL, something we have already discussed
in Chapter 11, Transactions, MVCC, WAL, and Checkpoints. In order to execute the
commands that will be shown in this chapter, we recommend installing a PostgreSQL
server on a new machine or installing another instance of PostgreSQL on the same machine
but on a different port. In the rest of the chapter, it will be presumed that you have two
PostgreSQL installations available on different machines, to better simulate the situation of
a real production environment.

In this chapter, we will talk about the following topics:

Exploring basic concepts
WAL archiving and PITR
Managing streaming replication



Physical Replication Chapter 17

[ 526 ]

Exploring basic concepts
In PostgreSQL, there are two kinds of replication techniques:

Asynchronous replication: In asynchronous replication, the primary device
(source) sends a continuous flow of data to the secondary one (target), without
receiving any return code from the target. This type of copying has the advantage
of speed, but it brings with it greater risks of data loss because the received data
is not checked.
Synchronous replication: In synchronous replication, a source sends the data to
a target, that is, the second server; at this point, the server sends back a code to
verify the correctness of the data. If the check is successful, the transfer is
completed. 

Both methods have advantages and disadvantages, and in the Managing streaming
replication section of this chapter, we will analyze them.

WAL
Let's briefly summarize what we saw in the chapter on MVCC and WAL: in that chapter,
we saw how PostgreSQL stores data on disk using WAL; as we saw in  Chapter 11,
Transactions, MVCC, WAL, and Checkpoints, WAL is mainly used in the event of a crash.
After a crash, PostgreSQL retraces WAL segments and re-applies them to data starting from
the last checkpoint; during the recovery time after a crash, the server puts itself in a
recovery state mode. Here is a summary of the key information about WAL segments:

The WAL size is fixed at 16 MB.
By default, WAL files are deleted as soon as they are older than the latest
checkpoint.
We can maintain extra WAL segments using wal_keep_segments.
WAL segments are stored in the pg_wal directory as shown here:

postgres@pg2:~/12/main/pg_wal$ ls -alh
totale 17M
drwx------ 3 postgres postgres 4,0K apr 18 20:10 .
drwx------ 19 postgres postgres 4,0K apr 19 14:13 ..
-rw------- 1 postgres postgres 16M apr 19 15:34
000000010000000000000001
drwx------ 2 postgres postgres 4,0K apr 18 20:10 archive_status



Physical Replication Chapter 17

[ 527 ]

The wal_level directive
The wal_level directive sets what kind of information should be stored in WAL segments.
The default value is minimal. With this value, all information that is stored in a WAL
segment can support archiving and physical replication.

For further information, see https:/ ​/​www. ​postgresql. ​org/ ​docs/ ​12/
runtime- ​config- ​wal. ​html#GUC- ​WAL- ​LEVEL.

So, in this chapter, we will use the wal_level=replica value, which is the default value,
and in the next chapter, we will use wal_level=logical. We have to remember that we
need to restart the PostgreSQL server every time we change the wal_level parameter.

Preparing the environment setup for streaming
replication
In this section, we will prepare the three servers that we need to proceed: the first one is the
master server machine, the second one is the replica server, and the third one is the
repository server of WAL segments. So, let's proceed with the installation of three virtual
machines. For example, in the following examples, we will be using two Debian Linux
virtual machines with 192.168.11.34 as the IP for the master server and 192.168.11.35
as the IP for the replication server, and 192.168.11.36 as the IP for the repository server.
In this chapter, all the paths are referred to PostgreSQL 12 installed on Debian (for
example, /usr/lib/postgresql/12/bin/); to have the correct path for version 13, in
beta at the moment, we need to replace 12 with 13, for
example, /usr/lib/postgresql/13/bin/:

For the master server, we will have the following output:1.

root@pg1# ip addr
enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast
state UP group default qlen 1000
    link/ether 52:54:00:cb:79:5f brd ff:ff:ff:ff:ff:ff
    inet 192.168.12.34/24 brd 192.168.12.255 scope global dynamic
enp1s0
       valid_lft 3757sec preferred_lft 3757sec
    inet6 fe80::5054:ff:fecb:795f/64 scope link
       valid_lft forever preferred_lft forever
# su - postgres
postgres@pg1:$ psql

https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL


Physical Replication Chapter 17

[ 528 ]

psql (12.2 (Debian 12.2-2.pgdg100+1))
Type "help" for help.
postgres=#

Similarly, for the replica server, we will have the following:2.

root@pg2# ip addr
2: enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
pfifo_fast state UP group default qlen 1000
    link/ether 52:54:00:c9:14:a2 brd ff:ff:ff:ff:ff:ff
    inet 192.168.12.35/24 brd 192.168.12.255 scope global dynamic
enp1s0
    valid_lft 5308sec preferred_lft 5308sec
    inet6 fe80::5054:ff:fec9:14a2/64 scope link
    valid_lft forever preferred_lft forever
root@pg2:~# su -  postgres
postgres@pg2:$ psql
psql (12.2 (Debian 12.2-2.pgdg100+1))
Type "help" for help.
postgres=#

For the repository server, we will have the following:3.

root@pg3:~# ip addr
2: enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
pfifo_fast state
UP group default qlen 1000
    link/ether 52:54:00:fa:3a:89 brd ff:ff:ff:ff:ff:ff
    inet 192.168.12.36/24 brd 192.168.12.255 scope global dynamic
enp1s0
       valid_lft 7027sec preferred_lft 7027sec
    inet6 fe80::5054:ff:fefa:3a89/64 scope link
       valid_lft forever preferred_lft forever

Let's check to see whether there is a connection between the two servers.4.

We will check for a connection from the master server to the replica
server/repository server:

postgres@pg1:~$ ping 192.168.12.35
PING 192.168.12.35 (192.168.12.35) 56(84) bytes of data.
64 bytes from 192.168.12.35: icmp_seq=1 ttl=64 time=0.819 ms
64 bytes from 192.168.12.35: icmp_seq=2 ttl=64 time=0.889 ms

postgres@pg1:/root$ ping 192.168.12.36
PING 192.168.12.36 (192.168.12.36) 56(84) bytes of data.
64 bytes from 192.168.12.36: icmp_seq=1 ttl=64 time=0.497 ms
64 bytes from 192.168.12.36: icmp_seq=2 ttl=64 time=0.286 ms



Physical Replication Chapter 17

[ 529 ]

We will check for a connection from the replica server to the master
server/repository server:

postgres@pg2:/root$ ping 192.168.12.34
PING 192.168.12.34 (192.168.12.34) 56(84) bytes of data.
64 bytes from 192.168.12.34: icmp_seq=1 ttl=64 time=0.460 ms
64 bytes from 192.168.12.34: icmp_seq=2 ttl=64 time=0.435 ms

postgres@pg2:~$  ping 192.168.12.36
PING 192.168.12.36 (192.168.12.36) 56(84) bytes of data.
64 bytes from 192.168.12.36: icmp_seq=1 ttl=64 time=0.840 ms
64 bytes from 192.168.12.36: icmp_seq=2 ttl=64 time=1.28 ms

We will check for a connection from the repository server to the master
server/replica server:

postgres@pg3:~$ ping 192.168.12.34
PING 192.168.12.34 (192.168.12.34) 56(84) bytes of data.
64 bytes from 192.168.12.34: icmp_seq=1 ttl=64 time=0.432 ms
64 bytes from 192.168.12.34: icmp_seq=2 ttl=64 time=0.954 ms
postgres@pg3:~$ ping 192.168.12.35
PING 192.168.12.35 (192.168.12.35) 56(84) bytes of data.
64 bytes from 192.168.12.35: icmp_seq=1 ttl=64 time=0.205 ms
64 bytes from 192.168.12.35: icmp_seq=2 ttl=64 time=1.15 ms

Now that everything is ready, let's start exploring the details of physical replication. In the
next section, we will talk about WAL and point-in-time recovery (PITR), which are the
building blocks of streaming replication.

Learning WAL archiving and PITR
In this section, we are going to look at the physical way of storing data in PostgreSQL in
more detail. We will begin to process segment WAL manually and then move on to
automatic modes, which make the work of the DBA much easier. Classic backups are made
using the pg_dump command, and they are also called logical backups. What we want to
do now is take a physical backup of the data; we want to obtain a continuous snapshot of
our database. This technique offers the DBA the possibility to restore the database to any
point in the past; this technique, called PITR, is widely used as a disaster recovery
technique. This technique allows us to go back to our PostgreSQL cluster at an exact point
in the past before a malicious event occurred (for example, a DROP of a table). This
technique is often used by DBAs if we want to take a certain snapshot of a production
environment back to a test environment.



Physical Replication Chapter 17

[ 530 ]

PITR – the manual way
In the Chapter 14, Backup and Restore chapter, we discussed physical backups. In this
section, we will resume the topics covered in that chapter to introduce physical replication.
Let's suppose we have a new machine that we will call pg1. What we want to conduct is a
continuous backup over time. On the pg1 machine, we have two directories, which we will
call wallbackup, where we will store WAL segments, and databackup, where we will
store the data.

The PITR technique works in this way:

WAL segments are copied to the walbackup directory (the wal archive).1.
A base backup is performed as a starting point for our archives.2.
During the recovery, the system starts from the last checkpoint before the3.
recovery point that we want to obtain, and then it performs all operations up to
the point in the past that we want to get to.

The WAL archive
Let's check out how the WAL archive works using the following steps:

Let's start by preparing the two directories, walbackup and databackup; they1.
have to be accessible for writing by the postgres user:

root@pg1:/# mkdir walbackup
root@pg1:/# chown postgres.postgres walbackup/
root@pg1:/# mkdir /databackup
root@pg1:/# chown postgres.postgres databackup
root@pg1:/# chmod 0700 databackup/

Then, let's modify some rows of the postgresql.conf file. We will add these2.
rows at the bottom of the file:

# Add settings for extensions here
archive_mode = on
archive_command = 'test ! -f /walbackup/%f && cp %p /walbackup/%f'
wal_level = replica
archive_timeout = 10 #optional



Physical Replication Chapter 17

[ 531 ]

Now let's check out the values we have set here:

archive_mode = on: With this directive, we tell PostgreSQL to make
the archiving of wal possible.
archive_command = 'test ! -f /walbackup/%f && cp %p

/walbackup/%f': With this directive, we tell PostgreSQL to copy
the wal files to the walbackup directory.
wal_level = replica: Replication is the default condition. In this
way, PostgreSQL stores all the information in the WAL segments so
that the cluster can be replicated physically.
archive_timeout = 10: This forces the number of seconds after
which PostgreSQL creates a new wal segment and also its copy. This is
optional.

Once we have added these lines to the postgresql.conf file, we have to restart3.
the service:

root@pg1:/# service postgresql stop
root@pg1:/# service postgresql start

Now, if we list the contents of the walbackup directory, we'll see that the system4.
has started to archive WAL segments:

root@pg1:# ls -l /walbackup
-rw------- 1 postgres postgres 16777216 apr 26 17:37
000000010000000000000001
-rw------- 1 postgres postgres 16777216 apr 26 17:37
000000010000000000000002
-rw------- 1 postgres postgres 16777216 apr 26 17:37
000000010000000000000003
-rw------- 1 postgres postgres 16777216 apr 26 17:37
000000010000000000000004
-rw------- 1 postgres postgres 16777216 apr 26 17:38
000000010000000000000005

Thus, we have learned how to use the WAL archive.



Physical Replication Chapter 17

[ 532 ]

Basebackup
To execute a basebackup, we use the rysnc command and we copy the data of the
$PGDATA directory to the databackup directory. Be sure to remove postmaster.pid and
postmaster.opts files. $PGDATA depends on the Linux distribution used, and in this
example, we will refer to a Debian Linux server version. Let's now proceed with the
basebackup process:

Let's open two shell windows; the first will be used to execute SQL commands1.
using the pgsql environment, and the second will be used to launch the
operating system commands.
The first thing to do is to inform the PostgreSQL server that we are starting the2.
basebackup procedure. So, let's return to the first shell window and perform the
following statement:

postgres=# SELECT pg_start_backup( 'MY_FIRST_PITR', true, false );
 pg_start_backup
-----------------
 0/A000028
(1 riga)

In the second shell window, we will execute the copy files commands:3.

root@pg1:/# sudo -u postgres rsync -a /var/lib/postgresql/12/main
/databackup/
root@pg1:/# sudo -u postgres rm /databackup/main/postmaster.pid
root@pg1:/# sudo -u postgres rm /databackup/main/postmaster.opts

Now, let's go back to the first window and run the following command:4.

postgres=# SELECT pg_stop_backup( false );
NOTICE: all required WAL segments have been archived
 pg_stop_backup
-------------------------------------------------------------------
--------
 (0/B000050,"START WAL LOCATION: 0/A000028 (file
00000001000000000000000A)+
 CHECKPOINT LOCATION: 0/A000060 +
 BACKUP METHOD: streamed +
 BACKUP FROM: master +
 START TIME: 2020-04-26 17:49:30 CEST +
 LABEL: MY_FIRST_PITR +
 START TIMELINE: 1 +
 ","")
(1 row)



Physical Replication Chapter 17

[ 533 ]

At this point, the basebackup procedure is finished.

To do some tests, we then populate our new database with the test data available5.
on GitHub:

postgres=# \i /tmp/setup_00-forum-database.sql

Let's try a test query on the categories table:6.

forumdb=# select * from categories;
 pk | title                 | description
----+-----------------------+---------------------------------
 1  | Database              | Database related discussions
 2  | Unix                  | Unix and Linux discussions
 3  | Programming Languages | All about programming languages
 4  | Database              | Database related discussions
 5  | Unix                  | Unix and Linux discussions
 6  | Programming Languages | All about programming languages
(6 rows)

Now let's check the last transaction in the database:7.

 forumdb=# SELECT txid_current(), current_timestamp;
 txid_current | current_timestamp
--------------+------------------------------
 499          | 2020-04-26 17:59:36.88933+02
(1 row)

Let's insert a new record:8.

forumdb=# insert into categories (title,description) values
('BSD','Unix BSD discussions');
INSERT 0 1

Let's check again what the last transaction is:9.

forumdb=# SELECT txid_current(), current_timestamp;
 txid_current | current_timestamp
--------------+------------------------------
 499          | 2020-04-26 17:59:36.88933+02
(1 riga)

Check the data in the categories table:10.

forumdb=# select * from categories;
 pk | title                 | description
----+-----------------------+---------------------------------
 1 | Database               | Database related discussions



Physical Replication Chapter 17

[ 534 ]

 2 | Unix                   | Unix and Linux discussions
 3 | Programming Languages  | All about programming languages
 4 | Database               | Database related discussions
 5 | Unix                   | Unix and Linux discussions
 6 | Programming Languages  | All about programming languages
 7 | BSD                    | Unix BSD discussions
(7 rows)

Thus, we have executed the basebackup process and found it to be effective.

Recovery
In this section, we will see how to make a recovery. Starting from the data copied to the
data backup directory, we want to start a new instance of PostgreSQL on port 5433 with
the cluster as it was at transaction 498.

We have to do some things to make the recovery possible:

Create an empty recovery.signal file in the /databackup /main directory.1.
Insert the pg_hba.conf, pg_ident.conf, and postgresql.conf configuration2.
files in the /databackup /main directory.
Modify the postgresql.conf file by adding these lines at the bottom of the file:3.

#------------------------------------------------------------------
------------
# CUSTOMIZED OPTIONS
#------------------------------------------------------------------
------------
# Add settings for extensions here
#----- PATH AND PORT OPTIONS
data_directory = '/databackup/main' # use data in another directory
 # (change requires restart)
hba_file = '/databackup/main//pg_hba.conf' # host-based
authentication file
 # (change requires restart)
ident_file = '/databackup/main/pg_ident.conf' # ident configuration
file
 # (change requires restart)
port = 5433 # (change requires restart)
#--- PITR OPTIONS -----
restore_command = 'cp /walbackup/%f "%p"'
recovery_target_xid = 498



Physical Replication Chapter 17

[ 535 ]

The restore_command option tells PostgreSQL where to go to pick up WAL
segments and the recovery_target_xid = 498 option tells PostgreSQL at
which transaction the recovery procedure should stop.

Now, as a root user, let's perform the following command:4.

# sudo -u postgres /usr/lib/postgresql/12/bin/pg_ctl -D
/databackup/main/ start

The system will begin the recovery and, as we can verify from the log file, the
recovery will end exactly at transaction 498:

2020-04-26 19:15:33.279 CEST [6294] LOG: starting point-in-time
recovery to XID 498
2020-04-26 19:15:33.299 CEST [6294] LOG: restored log file
"00000001000000000000000D" from archive
2020-04-26 19:15:33.375 CEST [6294] LOG: redo starts at 0/D0007E8
2020-04-26 19:15:33.396 CEST [6294] LOG: restored log file
"00000001000000000000000E" from archive
2020-04-26 19:15:33.487 CEST [6294] LOG: restored log file
"00000001000000000000000F" from archive
2020-04-26 19:15:33.576 CEST [6294] LOG: restored log file
"000000010000000000000010" from archive
2020-04-26 19:15:33.643 CEST [6294] LOG: consistent recovery state
reached at 0/10000088
2020-04-26 19:15:33.644 CEST [6293] LOG: database system is ready
to accept read only connections
LOG: recovery stopping after commit of transaction 498, time
2020-04-26 17:58:0
5.255896+02
2020-04-26 19:15:33.645 CEST [6294] LOG: recovery has paused
2020-04-26 19:15:33.645 CEST [6294] LOG: recovery has paused
2020-04-26 19:15:33.645 CEST [6294] HINT: Execute
pg_wal_replay_resume() to continue

Let's go back to the first shell and execute the following SQL command:5.

forumdb=# select * from categories;
pk  | title                 | description
----+-----------------------+---------------------------------
 1  | Database              | Database related discussions
 2  | Unix                  | Unix and Linux discussions
 3  | Programming Languages | All about programming languages
 4  | Database              | Database related discussions
 5  | Unix                  | Unix and Linux discussions
 6  | Programming Languages | All about programming languages
(6 righe)



Physical Replication Chapter 17

[ 536 ]

As we can see, the data on our system is data from prior to the 2020-04-26 17:
58: 0 timestamp, as set in the recovery configuration. At this point, the system
only accepts read-only transactions so that we can verify that everything is OK.

If we try to execute a write statement, PostgreSQL will return an error, as seen6.
here:

forumdb=# create table my_table(id integer);
ERROR: cannot execute CREATE TABLE in a read-only transaction

To make write operations possible, we must execute the following command:7.

forumdb=# select pg_wal_replay_resume();
pg_wal_replay_resume
----------------------

(1 riga)

Now it is possible to perform write operations on our database, as shown here:8.

forumdb=# create table my_table(id integer);
CREATE TABLE

The pg_wal_replay_resume command puts the system in full read/write mode and
deletes recovery.signal files; now it is possible to use our cluster in read/write mode.
Now that we have understood well how WAL and PITR work, in the next section, we will
talk about streaming replication.

Managing streaming replication
In this section, we will talk about replication. Why do we have to have replicas? The
problem with PITR is that recovery often takes a long time before a server can be restored:



Physical Replication Chapter 17

[ 537 ]

In a production environment, you often need to be able to restore the production
environment as quickly as possible after a system crash. In order do this, we have to use the
streaming replication technique. To make this possible, we need at least two servers, one
master server and one slave server. The master server performs all the operations that will
be requested by the application programs; the slave server will be available only for read
operations and will have the data copied in real time.

Basic concept
The idea behind streaming replication is to copy the WAL files from the master server to
another (slave) server. The slave server will be in a state of continuous recovery and it
continuously executes the WAL that is passed by the master machine; in this way, the slave
machine binarily replicates the data of the master machine through the WAL.

In a classic PITR situation, WAL segments are saved somewhere by the master and then
they are taken by the recovery machine using manual scripts:



Physical Replication Chapter 17

[ 538 ]

In a streaming replication context, a communication channel will be open between the slave
and master, and the master will send the WAL segments through it:

The slave server will receive the WAL segments and rerun them, remaining in a permanent
recovery state. 

We will now look at how to perform asynchronous physical replication. The technique is
very similar to PITR. 

Replication environment
Let's prepare our develop environment. We need two servers: the first one will be called
pg1 and its IP will be 192.168.12.34; the second one will be called pg2 and its IP will be
192.168.12.35.   Let's take a look at the preparatory steps for physical replication.

On the master server, we need to do the following:

The first thing we have to do is modify listen_address so that it is listening1.
to the network. If we set listen_address = '*', PostgreSQL will be listening
to any IP; otherwise, we can specify a list of IP addresses separated by commas.
This change requires a restart of the PostgreSQL service.
We need to create a new user that is able to perform the replication: 2.

CREATE USER replicarole WITH REPLICATION ENCRYPTED PASSWORD
'SuperSecret';



Physical Replication Chapter 17

[ 539 ]

We have to modify the pg_hba.conf file so that from the slave machine with the3.
user replicarole, it is possible to reach the master machine:

host replication replicarole 192.168.12.35/32 md5

To make this configuration active, we need to run a reload of the PostgreSQL4.
server. For example, we can run the following:

postgres=# select pg_reload_conf();
 pg_reload_conf
----------------
 t
(1 riga)

On the slave server, we have to turn off the PostgreSQL service, destroy the5.
PGDATA directory, and remake it, this time empty and with the right permissions.
To do this, we can use these statements:

root@pg1:/# systemctl stop postgresql
root@pg1:/# cd /var/lib/postgresql/12/
root@pg1:/# rm -rf main
root@pg1:/# mkdir main
root@pg1:/# chown postgres.postgres main
root@pg1:/# chmod 0700 main

All the paths used in this example are valid for Debian-based distributions; for other
distributions, please consult the respective official documentation.

The wal_keep_segments option
From what we have understood, physical replication is done through the transfer of WAL
segments. Now suppose for a moment that the slave server goes down for some reason.
How does the master behave? When the slave server becomes functional again, will it
realign itself with the master node or not? These are questions we need to ask ourselves if
we want our replication system to work correctly. 



Physical Replication Chapter 17

[ 540 ]

The  postgresql.conf directive that tells PostgreSQL how many WAL segments to keep
on disk is called wal_keep_segments; by default, wal_keep_segments is set to zero. This
means that PostgreSQL will not store any extra WAL segments as buffers. This means that
if the slave machine (standby) goes down, then it will no longer be able to realign itself
when it comes back up. This happens because in the time it takes the slave to get back up, it
is possible that the master machine has produced and deleted new WAL segments. The first
way to overcome this problem is to set the wal_keep_segments directive to a value
greater than zero in postgresql.conf. For example, if we set a value of
wal_keep_segments = 100, this means that at least 100 files of WAL segments will be
present in the pg_wal folder, for a total occupied disk space of 100 * 16 MB = 1.6 GB.

In this case, the master always keeps these extra WAL segments and, if the slave should go
down, then it will only be able to realign itself once back up if the master has produced a
number of WAL segments less than wal_keep_segments.

This solution offers a static buffer in that you can store old WAL segments and offers a save
anchor that is shorter than the time taken by the master to produce a number of WAL
segments greater than wal_keep_segments. This solution is a static solution; it also has
the disadvantage that the space occupied on disk is always equal to wal_keep_segments *
16 MB, even when it is no longer necessary to keep WAL segments on the master server
because they have already been processed by the replica server.

The slot way
In PostgreSQL 12, there is another approach that can be used to solve the problem of
storing WAL segments: the slot technique. Through the slot technique, we can tell
PostgreSQL to keep all the WAL segments on the master until they have been transferred to
the replica servers. In this way, we have dynamic, variable, and fully automated
management of the number of WAL segments that the master server must keep as a buffer.
This is a very easy way to manage our physical replicas and it is the way we will focus on
in this book. 

The instruction we need to perform on PostgreSQL to create a new slot is as follows:

postgres=#  SELECT * FROM pg_create_physical_replication_slot('master');
 slot_name | lsn
-----------+-----
 master    |
(1 row)



Physical Replication Chapter 17

[ 541 ]

The instruction we need to perform on PostgreSQL to drop a slot is this:

postgres=# select pg_drop_replication_slot('master');
 pg_drop_replication_slot
--------------------------

(1 riga)

Later on in this chapter, we will look more at these instructions.

The pg_basebackup command
In the PITR section, we talked about the base backup; it is a hot backup that is performed as
a starting base on which to then perform all the WAL segments. In that section, we made
the backup base using a combination of commands:

pg_start_backup

rsync

pg_stop_backup

There is another command called pg_basebackup that implements the procedures just
described almost automatically. It requires a configuration line in the pg_hba.conf file to
allow one connection to the source database of the type shown previously:

host replication replicarole 192.168.12.35/32 md5

It is also necessary that the max_wal_senders value is at least 2. It is a very useful
command for the DBA because it allows us to do everything we need to do with a single
instruction. We will use and better explain this command in the next section, where we will
implement our first asynchronous physical replication.

For further information about the pg_basebackup command, please refer to https:/ ​/​www.
PostgreSQL.​org/​docs/ ​12/ ​app- ​pgbasebackup. ​html.

https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html


Physical Replication Chapter 17

[ 542 ]

Asynchronous replication
We now have all the building blocks necessary for easily and quickly making our first 
asynchronous physical replication. By default, in PostgreSQL, physical replication is
asynchronous. Let's now start with the replication technique. By following the steps from
the previous sections of this chapter, we already have a master server ready to be connected
to the slave server, and we have the slave ready to receive information from the master. The
slave server will now have the PostgreSQL service turned off and the PGDATA data folder
created, empty, and with the right permissions:

Let's go inside the PGDATA directory as the system postgres user:1.

root@pg2:# su - postgres
postgres@pg2:~$ cd /var/lib/PostgreSQL/12/main

Now let's run the pg_basebackup command with the right options. This2.
command will execute the base_backup command from the master machine to
the slave machine and prepare the slave machine to receive and execute the
received WAL segments, causing the slave server to remain in a state of
permanent recovery:

postgres@pg2:~/12/main$ pg_basebackup -h pg1 -U replicarole -p 5432
-D /var/lib/PostgreSQL/12/main -Fp -Xs -P -R -S master
Password:
32725/32725 kB (100%), 1/1 tablespace
postgres@pg2:~/12/main$

The password that we have to insert is the password of the replicarole user; in
our case, this is SuperSecret.

Let's analyze this command in more detail:

-h: With this option, we see the host that we want the slave to connect to.
-U: This is the user created on the master server used for replication.
-p: This is the port where the master server is listening.
-D: This is the PGDATA value on the slave server.
-Fp: This performs a backup on the slave, maintaining the same data structure
present on the master.
-Xs: This opens a second connection to the master server and starts the transfer
of the WAL segments at the same time as the backup is performed.
-P: This shows the progress of the backup.
-S: This is the slotname created on the master server.



Physical Replication Chapter 17

[ 543 ]

Create the standby.signal file and add the connection settings to the3.
PostgreSQL.auto.conf file:

postgres@pg2:~/12/main$ cat postgresql.auto.conf
# Do not edit this file manually!
# It will be overwritten by the ALTER SYSTEM command.
primary_conninfo = 'user=replicarole password=SuperSecret host=pg1
port=5432 sslmode=prefer sslcompression=0 gssencmode=prefer
krbsrvname=postgres target_session_attrs=any'
primary_slot_name = 'master'

Now let's start the PostgreSQL service on the slave machine and physical4.
replication should work. As the root user, let's execute the following:

root@pg2:/var/lib/postgresql/12# systemctl start postgresql

As we can see from the PostgreSQL log file
(/var/log/postgresql/postgresql-12-main.log), the slave machine
started in stand_by mode and in read-only mode:

2020-05-01 17:09:59.072 CEST [1422] LOG:  entering standby mode
2020-05-01 17:09:59.079 CEST [1422] LOG:  redo starts at 0/22000060
2020-05-01 17:09:59.079 CEST [1422] LOG:  consistent recovery state
reached at 0/23000060
2020-05-01 17:09:59.080 CEST [1421] LOG:  database system is ready
to accept read only connections
2020-05-01 17:09:59.080 CEST [1422] LOG:  invalid record length at
0/23000060: wanted 24, got 0
2020-05-01 17:09:59.099 CEST [1426] LOG:  started streaming WAL
from primary at 0/23000000 on timeline 1

Let's connect to the replica server and try to see whether everything has been5.
replicated:

postgres=# \l
 List of databases
   Name    |  Owner   | Encoding |   Collate   |    Ctype    |
Access privileges
-----------+----------+----------+-------------+-------------+-----
------------------
 forumdb   | postgres | UTF8     | it_IT.UTF-8 | it_IT.UTF-8 |
 postgres  | postgres | UTF8     | it_IT.UTF-8 | it_IT.UTF-8 |
 template0 | postgres | UTF8     | it_IT.UTF-8 | it_IT.UTF-8 |
=c/postgres +
           |          |          |             |             |
postgres=CTc/postgres
 template1 | postgres | UTF8     | it_IT.UTF-8 | it_IT.UTF-8 |



Physical Replication Chapter 17

[ 544 ]

=c/postgres +
           |          |          |             |             |
postgres=CTc/postgres
(4 rows)

Let's go inside the forumdb database and try to create another table:6.

forumdb=# create table test_table (id integer);
ERROR:  cannot execute CREATE TABLE in a read-only transaction
forumdb=#

As we can see, the server is now in read-only mode.

Replica monitoring
After successfully installing our first asynchronous replica server, let's look at how we can
monitor the health of our replica. PostgreSQL offers us a view through which we can
monitor the status of replicas in real time; its name is pg_stat_replication. This view
must be queried by connecting to the master node.

For example, if we connect to the main node, we can see the following:

postgres=# select * from pg_stat_replication ;
-[ RECORD 1 ]----+------------------------------
pid              | 1435
usesysid         | 16471
usename          | replicarole
application_name | 12/main
client_addr      | 192.168.12.35
client_hostname  |
client_port      | 41306
backend_start    | 2020-05-01 17:09:59.085132+02
backend_xmin     |
state            | streaming
sent_lsn         | 0/23000060
write_lsn        | 0/23000060
flush_lsn        | 0/23000060
replay_lsn       | 0/23000060
write_lag        |
flush_lag        |
replay_lag       |
sync_priority    | 0
sync_state       | async
reply_time       | 2020-05-01 17:23:19.723054+02



Physical Replication Chapter 17

[ 545 ]

Using this view, we have a lot of information that we need in order to know whether our
stand_by server is in excellent health.

For example, we can see that the last reply message received from the replica server is
2020-05-01 17: 23: 19.723054 + 02, and we can see, thanks to the difference
between the sent_lsn value and the replay_lsn value, that our replication server is
perfectly aligned. For further information about pg_stat_replication, please refer to the
official documentation (https:/ ​/​www. ​postgresql. ​org/​docs/ ​12/ ​monitoring- ​stats.
html#PG-​STAT-​REPLICATION- ​VIEW).

Cascading replication
We have explored how to create an asynchronous replica starting from a master server.
However, in some cases, we may need multiple replicas, and the simplest way to do this is
to hook a second replica machine to the master machine with the procedure we have just
seen. This procedure, however, could increase the load on the master machine, so
PostgreSQL offers an alternative to it: cascading physical replication. The scheme we want
to achieve is this:

In order to make our example work, we will use a third machine called pg3.

The machines will have the following IPs:

master (pg1): IP 192.168.12.341.
standby1 (pg2): IP 192.168.12.352.
standby2 (pg3): IP 192.168.12.363.

https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.postgresql.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW


Physical Replication Chapter 17

[ 546 ]

In a similar way to what we did before, let's configure the pg2 machine1.
(standby1) so that it can receive requests from the pg3 machine. We have to add
this line to the pg_hba.conf file:

 IPv4 local connections:
host replication replicarole 192.168.12.36/32 md5

Now, we have to reload the PostgreSQL service:2.

 systemctl reload postgresql

On the pg2 machine, let's execute the following SQL command:3.

SELECT * FROM pg_create_physical_replication_slot('standby1');

As before, we have created a reference slot for cascade replication. Now let's go4.
to the pg3 machine and turn off the PostgreSQL service:

# systemctl stop postgresql

Let's delete the contents of the /var/lib/postgresql/12/main directory:5.

rm -rf /var/lib/postgresql/12/main/*

As a PostgreSQL user, let's perform the basebackup procedure:6.

postgres@pg3:~$ pg_basebackup -h pg2 -U replicarole -p 5432 -D
/var/lib/PostgreSQL/12/main -Fp -Xs -P -R -S standby1
Password:
32743/32743 kB (100%), 1/1 tablespace

At this point, we can restart the PostgreSQL service. As the root user, let's7.
execute the following:

# systemctl start postgresql

At this point, we are done! If we query the pg_stat_replication view on the
standby1 server, we will see that a second replica will exist. Now our system has
two replicas and we have achieved the goal that we set ourselves.

This is pg_stat_replication on the master server (pg1):8.

postgres=# select * from pg_stat_replication ;
-[ RECORD 1 ]----+------------------------------
pid              | 834
usesysid         | 16471
usename          | replicarole



Physical Replication Chapter 17

[ 547 ]

application_name | pg2
client_addr      | 192.168.12.35
client_hostname  |
client_port      | 34934
backend_start    | 2020-05-02 16:03:48.527444+02
backend_xmin     |
state            | streaming
sent_lsn         | 0/35000060
write_lsn        | 0/35000060
flush_lsn        | 0/35000060
replay_lsn       | 0/35000060
write_lag        |
flush_lag        |
replay_lag       |
sync_priority    | 1
sync_state       | async
reply_time       | 2020-05-02 16:41:14.1749+02

This is pg_stat_replication on the standby1 server (pg2):9.

postgres=# select * from pg_stat_replication;
-[ RECORD 1 ]----+------------------------------
pid              | 850
usesysid         | 16471
usename          | replicarole
application_name | 12/main
client_addr      | 192.168.12.36
client_hostname  |
client_port      | 55276
backend_start    | 2020-05-02 16:14:50.648676+02
backend_xmin     |
state            | streaming
sent_lsn         | 0/35000060
write_lsn        | 0/35000060
flush_lsn        | 0/35000060
replay_lsn       | 0/35000060
write_lag        |
flush_lag        |
replay_lag       |
sync_priority    | 0
sync_state       | async
reply_time       | 2020-05-02 16:43:55.007117+02

Thus, we have learned how cascade replication works.



Physical Replication Chapter 17

[ 548 ]

Synchronous replication
So far, we have talked about asynchronous replication; this means that the master server
passes information to the standby server without being sure that the standby server has
replicated the data. In asynchronous replication, the master server does not wait for the
slave server to actually replicate the data. In synchronous replication, when the master
performs a commit, all the slaves replicated synchronously commit. In synchronous
replication, after the execution of the commit, we are sure that the data is replicated on the
master and on all the replicas. When we want to achieve synchronous replication, it is good
practice to have all identical machines and a good network connection between the
machines; otherwise, performance can become slow.

PostgreSQL settings
Starting with what has been done for asynchronous replication and simply changing some
settings, it is possible to change from asynchronous replication to synchronous replication.

Master server
On the master server, we have to check whether the synchronous_commit parameter is
set to on. Now, synchronous_commit = on is the default value on a new PostgreSQL
installation.

After setting this parameter, we must add the synchronous_standby_names parameter,
listing the names of all standby servers that will replicate the data synchronously. We can
also use the '*' wildcard, thus indicating to PostgreSQL that each standby server can
potentially have a synchronous replica. For example, to transform the master of the
previous example so that it can support asynchronous replication for the pg2 server, we
have to write this:

synchronous_standby_names = 'pg2'
synchronous_commit = on



Physical Replication Chapter 17

[ 549 ]

After this, we need to restart our server:

# systemctl restart postgresql

Standby server
On the standby server, we have to add a parameter to the connection string to the master so
that the master knows from whom the reply request comes. We need to edit the
postgresql.auto.conf file; it is currently as follows:

# Do not edit this file manually!
# It will be overwritten by the ALTER SYSTEM command.
primary_conninfo = 'user=replicarole password=SuperSecret host=pg1
port=5432 sslmode=prefer sslcompression=0 gssencmode=prefer
krbsrvname=postgres target_session_attrs=any'
primary_slot_name = 'master

We need to change it to the following:

# Do not edit this file manually!
# It will be overwritten by the ALTER SYSTEM command.
primary_conninfo = 'user=replicarole password=SuperSecret host=pg1
port=5432 sslmode=prefer sslcompression=0 gssencmode=prefer
krbsrvname=postgres target_session_attrs=any application_name=pg2'
primary_slot_name = 'master

We have added the application_name=pg2 option.

After doing this, let's restart the standby server. Now if we get back on the master server
and re-check the g_stat_replication view, we will see this result:

postgres=# select * from pg_stat_replication ;
-[ RECORD 1 ]----+------------------------------
pid              | 571
usesysid         | 16471
usename          | replicarole
application_name | pg2
client_addr      | 192.168.12.35
client_hostname  |
client_port      | 45714
backend_start    | 2020-05-01 21:14:53.856502+02
backend_xmin     |
state            | streaming
sent_lsn         | 0/31000060
write_lsn        | 0/31000060
flush_lsn        | 0/31000060
replay_lsn       | 0/31000060



Physical Replication Chapter 17

[ 550 ]

write_lag        |
flush_lag        |
replay_lag       |
sync_priority    | 1
sync_state       | sync
reply_time       | 2020-05-01 21:23:03.619776+02

As shown here, the master server and standby servers are replicated in a synchronous way
and sync_state=sync.

Summary
In this chapter, we introduced the concept of physical replication. We started by reviewing
and deepening our knowledge of WAL segments from previous chapters. We have
introduced, seen, and configured an asynchronous physical replica and a synchronous
physical replica. We looked at the difference between the two modes and we saw how easy
it is to switch from one mode to another. We then explored some useful tools for
monitoring replicas and checking their good health.

In the next chapter, we use the concepts that we have discussed in this chapter to address
the topic of logical replication.

References
https:/​/ ​www. ​postgresql. ​org/ ​docs/ ​12/​runtime- ​config- ​wal. ​html#GUC- ​WAL-
LEVEL

https:/​/ ​www. ​postgresql.org/docs/12/app-pgbasebackup.html

https:/​/ ​www. ​postgresql. ​org/ ​docs/ ​12/​monitoring- ​stats. ​html#PG- ​STAT-
REPLICATION- ​VIEW

https:/​/ ​www. ​postgresql. ​org/ ​docs/ ​12/​runtime- ​config- ​replication. ​html

https:/​/ ​www. ​postgresql. ​org/ ​docs/ ​12/​high- ​availability. ​html

https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/runtime-config-wal.html#GUC-WAL-LEVEL
https://www.PostgreSQL.org/docs/12/app-pgbasebackup.html
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/monitoring-stats.html#PG-STAT-REPLICATION-VIEW
https://www.PostgreSQL.org/docs/12/runtime-config-replication.html
https://www.PostgreSQL.org/docs/12/runtime-config-replication.html
https://www.PostgreSQL.org/docs/12/runtime-config-replication.html
https://www.PostgreSQL.org/docs/12/runtime-config-replication.html
https://www.PostgreSQL.org/docs/12/runtime-config-replication.html
https://www.PostgreSQL.org/docs/12/runtime-config-replication.html
https://www.PostgreSQL.org/docs/12/runtime-config-replication.html
https://www.PostgreSQL.org/docs/12/runtime-config-replication.html
https://www.PostgreSQL.org/docs/12/runtime-config-replication.html
https://www.PostgreSQL.org/docs/12/runtime-config-replication.html
https://www.PostgreSQL.org/docs/12/runtime-config-replication.html
https://www.PostgreSQL.org/docs/12/runtime-config-replication.html
https://www.PostgreSQL.org/docs/12/runtime-config-replication.html
https://www.PostgreSQL.org/docs/12/runtime-config-replication.html
https://www.PostgreSQL.org/docs/12/runtime-config-replication.html
https://www.PostgreSQL.org/docs/12/runtime-config-replication.html
https://www.PostgreSQL.org/docs/12/runtime-config-replication.html
https://www.PostgreSQL.org/docs/12/runtime-config-replication.html
https://www.PostgreSQL.org/docs/12/runtime-config-replication.html
https://www.PostgreSQL.org/docs/12/runtime-config-replication.html
https://www.PostgreSQL.org/docs/12/runtime-config-replication.html
https://www.PostgreSQL.org/docs/12/high-availability.html
https://www.PostgreSQL.org/docs/12/high-availability.html
https://www.PostgreSQL.org/docs/12/high-availability.html
https://www.PostgreSQL.org/docs/12/high-availability.html
https://www.PostgreSQL.org/docs/12/high-availability.html
https://www.PostgreSQL.org/docs/12/high-availability.html
https://www.PostgreSQL.org/docs/12/high-availability.html
https://www.PostgreSQL.org/docs/12/high-availability.html
https://www.PostgreSQL.org/docs/12/high-availability.html
https://www.PostgreSQL.org/docs/12/high-availability.html
https://www.PostgreSQL.org/docs/12/high-availability.html
https://www.PostgreSQL.org/docs/12/high-availability.html
https://www.PostgreSQL.org/docs/12/high-availability.html
https://www.PostgreSQL.org/docs/12/high-availability.html
https://www.PostgreSQL.org/docs/12/high-availability.html
https://www.PostgreSQL.org/docs/12/high-availability.html
https://www.PostgreSQL.org/docs/12/high-availability.html
https://www.PostgreSQL.org/docs/12/high-availability.html
https://www.PostgreSQL.org/docs/12/high-availability.html


18
Logical Replication

In the previous chapter, we talked about WAL segments and physical replication in
synchronous, asynchronous, and cascading modes. In this chapter, we will cover the topic
of logical replication. We will look at how to perform a logical replica, how a logical
replication is different from a physical replication, and when it's better to use logical
replication instead of physical replication. We'll also see that logical replication can be used
to make a PostgreSQL hot upgrade. This chapter is intended to be just an introduction to
logical replication; for further information, refer to more advanced texts, such as Mastering
PostgreSQL 12, Hans-Jürgen Schönig, Packt Publishing. 

This chapter covers the following topics:

Understanding basic concepts
Exploring logical replication setup

Understanding basic concepts
Logical replication is a method that we can use to replicate data based on the concept of
identity replication. REPLICA IDENTITY is a parameter present in table management
commands (such as CREATE TABLE and ALTER TABLE); this parameter is used by
PostgreSQL to obtain additional information within WAL segments to recognize which
tuples have been eliminated and which tuples have been updated. The REPLICA IDENTITY
parameter can take four values:

DEFAULT

USING INDEX index_name

FULL

NOTHING



Logical Replication Chapter 18

[ 552 ]

The concept behind logical replication is to pass the logic of the commands executed on the
master machine to the server and not the exact copy of the blocks to be replicated byte by
byte. At the heart of logical replication, there is a reverse engineering process that, starting
from the WAL segments and using a logical decoding process, is able to extrapolate the
original SQL commands and pass them on to the replication machine using a logical
decoding process.

Let's analyze for a moment a flowchart that shows how PostgreSQL internally executes
queries:

As we can see, a query, before being executed, requires several internal steps; this is
because the system tries to execute the query in the best possible way according to the
conditions prevailing at that moment in the database. Now suppose we want to replicate
the data logically; at this point, we have two possibilities in front of us:

We can capture commands before they get to the parser and transfer these
commands to a second machine.
We can try, in some way, to get the queries that are already parsed.



Logical Replication Chapter 18

[ 553 ]

The first method is implemented by systems designed prior to native logical replication,
which was based on triggers; an example of the application of this method can be found on
Slony (https:/​/ ​www. ​slony. ​info/ ​).

The second way is used in logical replication.

In logical replication, we are going to take the commands to be sent to the replica server
within the WAL segments. The problem is that within the WAL segments, we have a
physical representation of the data. In other words, within the WAL segments, the data is
ready to be sent or archived to make physical copies, not to make logical copies.

In PostgreSQL 12, however, as we said earlier, we have the possibility of also having logical
replications, and the way in which it realizes them is the following:

As we can see from the diagram, using a reverse engineering process, instructions are
retrieved from the WAL segments, and these instructions are ready to be processed by the
executor of the replica server without any parsing action. This second method is much
faster than the first method. The first method was the only one that could be used for
PostgreSQL versions prior to 9.4; starting from 9.4, there is an extension called pglogical,
and starting from version 10.x, the logical replica is native.

https://www.slony.info/
https://www.slony.info/
https://www.slony.info/
https://www.slony.info/
https://www.slony.info/
https://www.slony.info/
https://www.slony.info/
https://www.slony.info/
https://www.slony.info/
https://www.slony.info/


Logical Replication Chapter 18

[ 554 ]

Comparing logical replication and physical
replication 
Let's now examine how a logical replica differs from a physical replica:

One of the positive characteristics of physical replicas is their speed. However, a
distinct disadvantage is that we have to replicate all the databases in the cluster.
Using a physical replica, it is not possible to replicate a single database belonging
to an instance of PostgreSQL, and it is not possible to replicate only some tables
of a database. Logical replication is a little bit slower than physical replication,
but in using logical replication, we can decide which databases we want to 
replicate within a cluster and/or which tables we want to replicate within a single
database.
Another thing we need to keep in mind if we use physical replicas is that
physical replication is only possible if the two servers have the same version of
PostgreSQL. With logical replication, since the logical instruction to be executed
is passed to the slave machine, it is also possible to perform replications between
different versions of PostgreSQL.
One last thing to consider in favor of physical replication is that, with the
exception of operations on temporary and unlogged tables, all other operations
are replicated. In a logical replication, only data manipulation language (DML)
operations are replicated, and data definition language (DDL) operations such
as ALTER operation TABLE are not replicated. 

Note: Because we can do replications between different versions of
PostgreSQL, logical replication is a tool that can be used to perform
PostgreSQL hot upgrades.

Logical replication is based on the concept that after being processed through a logical
decoding process, WAL segments are made available through a publication mechanism.
The master will then start a publication process and the replica will start a subscription
process that, by connecting to the master's publication, is able to pass the decoded
instructions directly to the query executor of the replica machine.

Exploring logical replication setup
Let's explore now how to perform logical replication. In this section, we will prepare the
environment we need to be able to perform our logical replication.



Logical Replication Chapter 18

[ 555 ]

Logical replication environment settings
Suppose we have two machines that we will call pg1 and pg2. We must remember to set
our internal DNS, or the /etc  hosts file, so that pg1 can reach pg2; for example, for
the pg1 server, the master server will have an IP of 192.168.122.20, and for the pg2
server, the replica server will have an IP of 192.168.122.36.

First of all, let's check whether there is a connection between the two servers:

pg1:~$ ping pg2
PING pg2.pgtraining.com (192.168.122.36) 56(84)  bytes of data.
64 bytes from pg2.pgtraining.com (192.168.122.36): icmp_seq=1 ttl=64
time=0.893 ms
64 bytes from pg2.pgtraining.com (192.168.122.36):  icmp_seq=2 ttl=64
time=0.639 ms

pg2:~$ ping pg1
64 bytes from pg1.pgtraining.com (192.168.122.20): icmp_seq=1 ttl=64
time=1.40 ms
64 bytes from pg1.pgtraining.com (192.168.122.20): icmp_seq=2 ttl=64
time=1.33 ms

As shown here, there is a connection between the two servers.

The replica role
In order to perform a logical replication, as we have already done in the previous chapter
when we talked about physical replication, we need a database user with replication
permissions. So, let's create the following user on both servers:

postgres=# CREATE USER replicarole WITH REPLICATION ENCRYPTED PASSWORD
'SuperSecret';

This user will be used to manage logical replication.



Logical Replication Chapter 18

[ 556 ]

Master server – postgresql.conf
Now we will modify the postgresql.conf file on both servers; this is to ensure that the
two servers are listening on port 5432 for network interfaces. We will then modify some
other values to try to optimize the logical replication procedure:

To the postgresql.conf file, we add the following line to the end of the file:1.

 # Add settings for extensions here
 listen_addresses = '*'
 wal_level = logical
 max_replication_slots = 10
 max_wal_senders = 10

Now let's look at each parameter:

listen addresses = '*': In this way, we make PostgreSQL listen on port
5432 on all network interfaces. We could also simply add the IP address of the
interface where we want the PostgreSQL service to listen.
wal level = logical: We changed the value from replica (default) to
logical; in this way, PostgreSQL, in addition to all the information present in
the  wal level = replica model, will add more information so that it can
make the reverse engineering process possible. With wal level = logical,
we make logical replication possible.
max_replication_slots = 10: This value must be set as at least one for each
subscriber plus some for the initialization of the tables.
max_wal_senders = 10: This value must be set to a number at least equal to
one for each replication slot plus those necessary for physical replication.

After setting these values, let's restart the master PostgreSQL server:2.

# systemctl restart postgresql

Once that is done, we will run this command from the shell: 3.

# netstat -an | grep 5432
tcp 0 0 0.0.0.0:5432 0.0.0.0:* LISTEN
tcp6 0 0 :::5432 :::* LISTEN
unix 2 [ ACC ] STREAM LISTENING 19910
/var/run/postgresql/.s.PGSQL.5432

As we can see, PostgreSQL is now listening to all the network interfaces available on the
server.



Logical Replication Chapter 18

[ 557 ]

Replica server – postgresql.conf
When it comes to the slave server, the changes to postgresql.conf are as follows:

# Add settings for extensions here
listen_addresses = '*'
wal_level = logical
max_logical_replication_workers = 4
max_worker_processes = 10

As we can see, the values of listen_addresses and wal_level are identical to the
master; here we don't have the values for max_replication_slots and
max_wal_senders, but we have the values for the following:

max_logical_replication_workers: This parameter must be set to one per
subscription, plus some values to consider for table synchronizations.
max_worker_processes: This must be set to at least one for each replication
worker plus one.

Here, as we did with the master, let's restart the PostgreSQL server:

# systemctl restart postgresql

Once restarted, run this command from the shell: 

# netstat -an | grep 5432
tcp 0 0 0.0.0.0:5432 0.0.0.0:* LISTEN
tcp6 0 0 :::5432 :::* LISTEN
unix 2 [ ACC ] STREAM LISTENING 19910 /var/run/postgresql/.s.PGSQL.5432

As we can see, PostgreSQL is now listening to all the network interfaces available on the
server.

The pg_hba.conf file
Let's now configure this file on the master server so that it is possible to connect the slave
machine and the master machine, using the user to replicate them. On the master machine,
we set the following:

# IPv4 local connections:
host all all 127.0.0.1/32 md5
host all replicarole 192.168.122.36/32 md5



Logical Replication Chapter 18

[ 558 ]

This allows the user to replicate them on the replica machine to query the master server. To
activate the change, it is necessary to reload the master server:

# systemctl reload postgresql

Logical replication setup
At this point, we have everything ready to begin preparing our logical replica:

Let's go to the master machine and create our database:1.

db_source# create database db_source;
CREATE DATABASE
db_source=# \c db_source
You are now connected to database "db_source" as user "postgres"

Let's now create a table, t1, making sure that it has the primary key:2.

db_source=# create table t1 (id integer not null primary key, name
varchar(64));

Now let's give the REPLICAROLE user SELECT permissions:3.

db_source=# SELECT ON ALL TABLES IN SCHEMA public TO replicarole;

Now let's create the publication on the master machine, where we are going to4.
indicate the list of tables that we want to replicate on the slave machine. We can
also indicate all the tables, as in our example:

db_source=# CREATE PUBLICATION all_tables_pub FOR ALL TABLES;
CREATE PUBLICATION

At this point, we go to the slave machine and create a new database:5.

postgres=# create database db_destination;
CREATE DATABASE
postgres=# \c db_destination
You are now connected to database "db_destination" as user
"postgres".

We recreate the exact structure of the table that we created in the master6.
machine:

create table t1 (id integer not null primary key, name
varchar(64));



Logical Replication Chapter 18

[ 559 ]

After this, we have to set the subscription so that the data from the publication is7.
replicated on the slave machine:

db_destination=# CREATE SUBSCRIPTION sub_all_tables CONNECTION
'user=replicarole password=SuperSecret host=pg1 port=5432
dbname=db_source' PUBLICATION all_tables_pub;
NOTICE: created replication slot "sub_all_tables" on publisher
CREATE SUBSCRIPTION

Now our logical replication setup is complete.

We can try to insert some data into the master server:8.

db_source=# insert into t1 values(1,'Linux'),(2,'FreeBSD');
INSERT 0

As we can see here, the same data has been replicated on the replica server:9.

 db_destination=# select * from t1;
 id | name
----+---------
 1 | Linux
 2 | FreeBSD
(2 rows)

Thus, we have successfully prepared our logical replica. We will now learn how to monitor
it in the next section.

Monitoring logical replication
Just as it does for physical replication, PostgreSQL provides the necessary tools also for
monitoring logical replication.

For logical replication, we must query the pg_stat_replication table, which is the same
table used for monitoring physical replication, as we can see here:

db_source=# select * from pg_stat_replication ;
-[ RECORD 1 ]----+------------------------------
pid              | 1311
usesysid         | 16384
usename          | replicarole
application_name | sub_all_tables
client_addr      | 192.168.122.36
client_hostname  |
client_port      | 45910
backend_start    | 2020-05-23 10:57:31.487134+02



Logical Replication Chapter 18

[ 560 ]

backend_xmin     |
state            | streaming
sent_lsn         | 0/19F0D18
write_lsn        | 0/19F0D18
flush_lsn        | 0/19F0D18
replay_lsn       | 0/19F0D18
write_lag        |
flush_lag        |
replay_lag       |
sync_priority    | 0
sync_state       | async
reply_time       | 2020-05-23 11:25:42.417701+02

The information shown by this query is the same as what we saw in the case of physical
replication, but we know this information refers to a logical replica. This query must be
performed on the master server (pg1).

If we run the same query on the replica machine (pg2), we do not get any results, as we can
see here:

db_destination=# select * from pg_stat_replication ;
(0 rows)

There are also two other catalog tables that we can query for more information about
publications and subscriptions. Say that, on the master server, we perform this:

db_source=# select * from pg_publication;
-[ RECORD 1 ]+---------------
oid          | 16410
pubname      | all_tables_pub
pubowner     | 10
puballtables | t
pubinsert    | t
pubupdate    | t
pubdelete    | t
pubtruncate  | t

If we do that, we get information about all publications created in the database. For more 
information about this, consult the official documentation: https:/ ​/​www. ​postgresql. ​org/
docs/​12/​catalog- ​pg- ​publication. ​html.

Similarly, say we run this other query on the replica server:

db_destination=# select * from pg_subscription;
 -[ RECORD 1 ]---+---------------------------------------------------------
-----------------
 oid             | 16409

https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html


Logical Replication Chapter 18

[ 561 ]

 subdbid         | 16393
 subname         | sub_all_tables
 subowner        | 10
 subenabled      | t
 subconninfo     | user=replicarole password=SuperSecret host=pg1 port=5432
dbname=db_source
 subslotname     | sub_all_tables
 subsynccommit   | off
 subpublications | {all_tables_pub}

We then have information about all subscriptions created in the database. For more
information about this, consult the official documentation: https:/ ​/​www. ​postgresql. ​org/
docs/​10/​catalog- ​pg- ​subscription. ​html.

Comparing physical replication and logical
replication
At this point in the discussion, let's consider the main differences between physical
replication and logical replication. Physical replication creates by definition a physical copy;
it binarily replicates all the content of the master on the replica server that passes through
the WAL. Logical replication, on the other hand, only replicates the instructions, that is, the
statements that we must give to the replica server, to have a copy of the data on the master
server.

Simulating on test versus bloating elimination
Physical replication, with the exception of unlogged tables, makes an identical copy of the
master on the replica server. Physical replication copies absolutely everything; so, because
the copy is physical at the page level, we copy not just the data but also the bloating
associated with it. Sometimes this can be useful, for example, if we want to simulate the
exact behavior of the production server in our test environment.

We can use physical replication to simulate the exact behavior of the
production server in our test environment.

https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html


Logical Replication Chapter 18

[ 562 ]

Logical replication, however, through a reverse engineering mechanism, passes the queries
to be executed directly to the query executor of the slave machine. For example, if I want to
get a copy of my database starting with a low bloating percentage, I can perform a logical
replica on a second machine and the second machine will initially begin with a very clean
starting point. This is because all data will be passed in a non-physical but logical way
to the second server.

We can use logical replication to replicate our database in a new server
with a very clean starting situation.

Read-only versus write allowed
In the previous chapter, we saw that we can access a physical replication server only using
read operations and that write operations are not allowed. We have also seen that physical
replication replicates any type of operations, both DML operations and DDL operations.
Using logical replication, we can also access write operations on the replica server, but, in a
logical replica, only DML operations are replicated to the replica server; the DDL
operations are not replicated. Let's conduct some tests and see what happens. In the
following examples, the master server will always be called pg1 and the server with logical
replication will always be called pg2.

This is our initial situation on the pg1 server:

db_source=# select * from t1;
 id | name
----+---------
 1  | Linux
 2  | FreeBSD
(2 rows)

This is our initial situation on the pg2 server:

db_destination=# select * from t1; 
 id |  name
----+---------
  1 | Linux
  2 | FreeBSD
(2 rows)



Logical Replication Chapter 18

[ 563 ]

Let's insert a record on the pg2 server:

db_destination=# insert into t1 values (3,'OpenBSD');
INSERT 0 1

This is now the situation on the pg2 server:

db_destination=# select * from t1;
 id | name
----+---------
 1  | Linux
 2  | FreeBSD
 3  | OpenBSD
(3 rows)

On the pg1 server, we still have the following:

db_source=# select * from t1;
 id | name
----+---------
 1  | Linux
 2  | FreeBSD
(2 rows)

The logical replica allows write operations on the replica server.

Let's see what happens if we add one record to the pg1 server: 

db_source=#  insert into t1 values(4,'Minix');   
 INSERT 0 1

The situation on the pg1 server is as follows:

db_source=# select * from t1;
 id  | name
 ----+---------
 1   | Linux
 2   | FreeBSD
 4   | Minix
 (3 rows)

The situation on the pg2 server is as follows:

db_destination=# select * from t1;
 id | name



Logical Replication Chapter 18

[ 564 ]

----+---------
 1  | Linux
 2  | FreeBSD
 3  | OpenBSD
 4  | Minix
(4 rows)

As we can see, the values have been inserted in the table of the master server pg1 and
replicated through the logical replica on the pg2 server. Let's now see what happens if we
try to insert a record with a key value already inserted on the pg2 server. For example, let's
try to insert this record:

db_source=# insert into t1 values(3,'Windows');
INSERT 0 1

The situation on the pg1 server is now this:

db_source=# select * from t1;
 id | name
----+---------
 1  | Linux
 2  | FreeBSD
 4  | Minix
 3  | Windows
(4 rows)

However, the situation on the pg2 server is now this:

db_destination=# select * from t1;
 id | name
----+---------
 1  | Linux
 2  | FreeBSD
 3  | OpenBSD
 4  | Minix
(4 rows)

No record has been inserted on the pg2 server. If we examine the postgresql.log file of
the pg2 replica server, we can see that there is this error:

20-05-23 17:58:53.698 CEST [431] LOG: background worker "logical
replication worker" (PID 3936) exited with exit code 1
2020-05-23 17:58:58.711 CEST [3938] LOG: logical replication apply worker
for subscription "sub_all_tables" has started
2020-05-23 17:58:58.732 CEST [3938] ERROR: duplicate key value violates
unique constraint "t1_pkey"
2020-05-23 17:58:58.732 CEST [3938] DETAIL: Key (id)=(3) already exists.



Logical Replication Chapter 18

[ 565 ]

If we examine the log of the pg1 master server, we see that there are these messages:

2020-05-23 17:59:54.074 CEST [4548] replicarole@db_source LOG:  logical
decoding found consistent point at 0/19FE398
2020-05-23 17:59:54.074 CEST [4548] replicarole@db_source DETAIL:  There
are no running transactions.
2020-05-23 17:59:59.103 CEST [4549] replicarole@db_source LOG:  starting
logical decoding for slot "sub_all_tables"
2020-05-23 17:59:59.103 CEST [4549] replicarole@db_source DETAIL:
Streaming transactions committing after 0/19FE3D0, reading WAL
from 0/19FE398.

The duplicate key error on the replica server has the effect of causing the message described
here on the master server.

So, now if we try to add another record on the master server, this record will not be 
inserted on the replica server. Say we tried on the pg1 server to perform this statement:

db_source=# insert into t1 values(5,'Unix');
INSERT 0 1

We would then have this on the pg1 server:

db_source=# select * from t1;
 id | name
----+---------
 1  | Linux
 2  | FreeBSD
 4  | Minix
 3  | Windows
 5  | Unix
(5 rows)

In the replica pg2 server, though, we would still have this:

db_destination=# select * from t1;
 id | name
----+---------
 1  | Linux
 2  | FreeBSD
 3  | OpenBSD
 4  | Minix
(4 rows)

From now on, logical replication no longer replicates data.



Logical Replication Chapter 18

[ 566 ]

If we want to write records on the replica server, we have to make sure
that these records do not conflict with the records on the master server.

A simple way to realign our replica server is to drop the subscription, truncate the table,
and make the subscription again:

db_destination=# drop subscription sub_all_tables ;
NOTICE: dropped replication slot "sub_all_tables" on publisher
DROP SUBSCRIPTION
db_destination=# truncate t1;
TRUNCATE TABLE
db_destination=# CREATE SUBSCRIPTION sub_all_tables CONNECTION
'user=replicarole password=SuperSecret host=pg1 port=5432 dbname=db_source'
PUBLICATION all_tables_pub;
NOTICE: created replication slot "sub_all_tables" on publisher
CREATE SUBSCRIPTION

Now if we check both servers, the master server and the replica server will have all data
aligned. On the pg1 server, we have the following:

db_source=# select * from t1;
 id | name
----+---------
 1  | Linux
 2  | FreeBSD
 4  | Minix
 3  | Windows
 5  | Unix
(5 rows)

On the replica pg2 server, we have this:

db_destination=# select * from t1;
 id | name
----+---------
 1  | Linux
 2  | FreeBSD
 4  | Minix
 3  | Windows
 5  | Unix
(5 rows)



Logical Replication Chapter 18

[ 567 ]

DDL commands
In the previous section, we said that logical replication does not replicate DDL commands,
but what happens if we apply a DDL statement on a master server that is already replicated
using the logical replication? DDL commands are as follows:

CREATE

ALTER

DROP

RENAME

TRUNCATE

COMMENT

Suppose now we want to add a field on the t1 table of the master server, pg1:

db_source=# alter table t1 add description varchar(64);
ALTER TABLE

The situation on the pg1 server is now as follows:

db_source=# \d t1
Table "public.t1"
Column       | Type                  | Collation | Nullable | Default
-------------+-----------------------+-----------+----------+---------
id           | integer               |           | not null |
name         | character varying(64) |           |          |
description  | character varying(64) |           |          |
Indexes:
 "t1_pkey" PRIMARY KEY, btree (id)
Publications:
 "all_tables_pub"

The situation on the replica server is the same as it was before:

db_destination=# \d t1
 Table "public.t1"
 Column  | Type                  | Collation | Nullable | Default
 --------+-----------------------+-----------+----------+---------
 id      | integer               |           | not null |
 name    | character varying(64) |           |          |
 Indexes:
 "t1_pkey" PRIMARY KEY, btree (id)



Logical Replication Chapter 18

[ 568 ]

Let's try now to make a DML command on the pg1 server. Some examples of DML
commands follow:

INSERT

DELETE

UPDATE

For example, say we tried to delete a record from the t1 table of the pg1 server: 

db_source=# delete from t1 where id=5;
DELETE 1

On the pg1 server, we would have the following:

db_source=# select * from t1;
 id | name    | description
----+---------+-------------
 1  | Linux   |
 2  | FreeBSD |
 4  | Minix   |
 3  | Windows |
(4 rows)

On the pg2 server, though, we would still have this:

db_destination=# select * from t1;
 id | name
----+---------
 1  | Linux
 2  | FreeBSD
 4  | Minix
 3  | Windows
 5  | Unix
(5 rows)

If we examine postgresql.log on the pg2 server, we'll see this:

2020-05-23 18:27:02.693 CEST [4231] ERROR: logical replication target
relation "public.t1" is missing some replicated columns
2020-05-23 18:27:02.696 CEST [431] LOG: background worker "logical
replication worker" (PID 4231) exited with exit code 1



Logical Replication Chapter 18

[ 569 ]

The logical replication does not work anymore because the logical replication target
relation public.t1 is missing some replicated columns, as the server log said. If we want
to solve this problem, we must execute the DDL on the replica server:

db_destination=# alter table t1 add description varchar(64);
ALTER TABLE

Now if we check the records on the pg2 server, we have the same records that are present
on the pg1 server:

db_destination=# select * from t1;
 id | name    | description
----+---------+-------------
 1  | Linux   |
 2  | FreeBSD |
 4  | Minix   |
 3  | Windows |
(4 rows)

DDL commands must always be replicated on the replica servers.

Disabling logical replication
In the previous section, we used the DROP SUBSCRIPTION command to drop a
subscription. There may be cases where we cannot use this command directly. For example,
suppose that the master server becomes unreachable and we need to drop the subscription
on the replica server. If we try to execute a DROP SUBSCRIPTION command, we will get the
following response:

db_destination=# drop subscription sub_all_tables ;
ERROR: could not connect to publisher when attempting to drop the
replication slot "sub_all_tables"
DETAIL: The error was: could not connect to server: Connection refused
 Is the server running on host "pg1" (192.168.122.20) and accepting
 TCP/IP connections on port 5432?
HINT: Use ALTER SUBSCRIPTION ... SET (slot_name = NONE) to disassociate the
subscription from the slot.



Logical Replication Chapter 18

[ 570 ]

PostgreSQL suggests using  ALTER SUBSCRIPTION ... SET (slot_name = NONE) to
disassociate the subscription from the slot. The problem is that we cannot execute this
command before having disabled the subscription. In fact, if we try to perform the
command suggested by PostgreSQL now, we will get this:

db_destination=# alter subscription sub_all_tables SET (slot_name = NONE);
ERROR: cannot set slot_name = NONE for enabled subscription

The correct steps that we have to execute are as follows:

Disable the subscription.1.
Set slot_name to NONE.2.
Drop the subscription.3.

We have to perform the following three statements:

db_destination=# alter subscription sub_all_tables disable;
ALTER SUBSCRIPTION
db_destination=# alter subscription sub_all_tables SET (slot_name = NONE);
ALTER SUBSCRIPTION
db_destination=# drop subscription sub_all_tables ;
DROP SUBSCRIPTION

These are the correct steps if we want to drop a subscription when the master server 
becomes unreachable. We can also use the ALTER SUBSCRIPTION sub_name DISABLE
command to detach the subscription from the publication and the ALTER SUBSCRIPTION
sub_name ENABLE command to re-attach the subscription to the publication.

Summary
In this chapter, we discussed logical replication. We have seen that logical replication is
based on a concept of reverse engineering that starts with the analysis of WAL segments to
extract the logical commands that have to be passed to a replica server. We saw that logical
replication is useful when we want to replicate parts of databases and when we want to
make hot migrations between different versions of PostgreSQL. Logical replication makes
this possible because it does not binarily replicate data but rather extracts the logical DML
commands from WAL, which are then replicated on the replica server. We have seen how
to make a logical replica in practice and have addressed some of the issues that can occur
when we work with logical replication.

In the next chapter, we'll talk about useful tools and useful extensions. We will see which
tools are best to make life easier for a PostgreSQL DBA.



Logical Replication Chapter 18

[ 571 ]

References
Slony website: https:/ ​/​www. ​slony. ​info

https:/​/ ​www. ​postgresql. ​org/ ​docs/ ​10/​logical- ​replication. ​html

https:/​/ ​www. ​postgresql. ​org/ ​docs/ ​12/​catalog- ​pg-​publication. ​html

https:/​/ ​www. ​postgresql. ​org/ ​docs/ ​10/​catalog- ​pg-​subscription. ​html

https://www.slony.info
https://www.slony.info
https://www.slony.info
https://www.slony.info
https://www.slony.info
https://www.slony.info
https://www.slony.info
https://www.slony.info
https://www.slony.info
https://www.postgresql.org/docs/10/logical-replication.html
https://www.postgresql.org/docs/10/logical-replication.html
https://www.postgresql.org/docs/10/logical-replication.html
https://www.postgresql.org/docs/10/logical-replication.html
https://www.postgresql.org/docs/10/logical-replication.html
https://www.postgresql.org/docs/10/logical-replication.html
https://www.postgresql.org/docs/10/logical-replication.html
https://www.postgresql.org/docs/10/logical-replication.html
https://www.postgresql.org/docs/10/logical-replication.html
https://www.postgresql.org/docs/10/logical-replication.html
https://www.postgresql.org/docs/10/logical-replication.html
https://www.postgresql.org/docs/10/logical-replication.html
https://www.postgresql.org/docs/10/logical-replication.html
https://www.postgresql.org/docs/10/logical-replication.html
https://www.postgresql.org/docs/10/logical-replication.html
https://www.postgresql.org/docs/10/logical-replication.html
https://www.postgresql.org/docs/10/logical-replication.html
https://www.postgresql.org/docs/10/logical-replication.html
https://www.postgresql.org/docs/10/logical-replication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/12/catalog-pg-publication.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html
https://www.postgresql.org/docs/10/catalog-pg-subscription.html


5
Section 5: The PostegreSQL

Ecosystem
In this section, you will be presented with useful tools and extensions that can make your
PostgreSQL experience better and more professional. You will also learn about various
features offered in the next version of PostgreSQL – PostgreSQL 13.

This section contains the following chapters:

Chapter 19, Useful Tools and Extensions
Chapter 20, Towards PostgreSQL 13



19
Useful Tools and Extensions

This chapter is to be considered as an appendix to the book. In this chapter, we will talk
about some tools and extensions that allow a DBA to maximize the efficiency of their work
by minimizing the effort needed to complete it.

We will talk about these extensions:

pg_trgm

Foreign data wrappers and the postgres_fdw extension
btree_gin

These are some of the official extensions for PostgreSQL. A site that can be very useful for
finding extensions available for PostgreSQL is https:/ ​/ ​pgxn. ​org/​.

In addition to extensions, we will also talk about useful tools for the PostgreSQL DBA.
There are dozens of tools available for PostgreSQL, but in this chapter, we will talk
about pgbackrest, a powerful tool useful to manage disaster recovery and point-in-time
recovery (PITR).

The first one is very useful for managing continuous backup and the second one is an out-
of-the-box tool that can help us to better monitor our PostgreSQL server. This chapter is
intended to be just a quick overview of some of the most useful PostgreSQL extensions.

The following topics will be covered here:

Exploring the pg_trgm extension
Using foreign data wrappers and the postgres_fdw extension
Exploring the btree_gin extension
Managing the pgbackrest tool

https://pgxn.org/
https://pgxn.org/
https://pgxn.org/
https://pgxn.org/
https://pgxn.org/
https://pgxn.org/
https://pgxn.org/
https://pgxn.org/


Useful Tools and Extensions Chapter 19

[ 574 ]

Exploring the pg_trgm extension
In previous chapters, we talked about query optimization and indexing. When we talked
about indexing, we learned how to make our queries faster through the use of indices.
However, B-tree indices do not index all types of operations. Now let's consider textual
data types (char, varchar, or text). We have seen that the B-tree, using
the varchar_pattern_ops opclass, is able to index like operations only as regards the
'search%' type queries, but it is not able to index queries with a where condition of the
'%search' or  'search%' type:

Before diving into our example, let's do set enable_seqscan to 'off' in1.
order to force PostgreSQL to use any index if it exists. We need to do this
because, in our example case, PostgreSQL would always use sequential scanning,
because we have less data in our table and all data that is present in the table is
stored on a single page:

db_source=# set enable_seqscan to 'off';
SET

In our database, we now have these records in the t1 table:2.

db_source=# select * from t1;
 id | name    | description
----+---------+-------------
 1  | Linux   |
 2  | FreeBSD |
 4  | Minix   |
 3  | Windows |
(4 rows)

Let's create a B-tree index with the varchar  opclass in order to check whether3.
PostgreSQL uses index access to the table when we perform a query with the
like operator:

db_source=# create index db_source_name_btree on t1 using
btree(name varchar_pattern_ops);
CREATE INDEX

Let's now perform some like queries:4.

Here's a like query using a 'search%' predicate:

 db_source=# explain analyze select * from t1 where name like
'Li%';
 QUERY PLAN



Useful Tools and Extensions Chapter 19

[ 575 ]

-------------------------------------------------------------------
------------------------------
 Index Scan using db_source_name_btree on t1 (cost=0.13..8.15
rows=1 width=104) (actual time=0.331..0.335 rows=1 loops=1)
 Index Cond: (((name)::text ~>=~ 'Li'::text) AND ((name)::text ~<~
'Lj'::text))
 Filter: ((name)::text ~~ 'Li%'::text)
 Planning Time: 2.102 ms
 Execution Time: 0.413 ms
(5 rows)

Here's a like query using a '%search' predicate:

 db_source=# explain analyze select * from t1 where name like
'%Li';
 QUERY PLAN
-------------------------------------------------------------------
------------------------------
 Seq Scan on t1 (cost=10000000000.00..10000000001.05 rows=1
width=104) (actual time=34.406..34.406 rows=0 loops=1)
 Filter: ((name)::text ~~ '%Li'::text)
 Rows Removed by Filter: 4
 Planning Time: 0.115 ms
 JIT:
 Functions: 2
 Options: Inlining true, Optimization true, Expressions true,
Deforming true
 Timing: Generation 0.900 ms, Inlining 11.458 ms, Optimization
15.832 ms, Emission 6.777 ms, Total 34.967 ms
 Execution Time: 35.442 ms
(9 rows)

Here's an ilike query using a '%search' predicate:

 db_source=# explain analyze select * from t1 where name ilike
'%Li';

QUERY PLAN
-------------------------------------------------------------------
-----------------------------
 Seq Scan on t1 (cost=10000000000.00..10000000001.05 rows=1
width=104) (actual time=28.874..28.874 rows=0 loops=1)
 Filter: ((name)::text ~~* '%Li'::text)
 Rows Removed by Filter: 4
 Planning Time: 0.136 ms
 JIT:
 Functions: 2
 Options: Inlining true, Optimization true, Expressions true,



Useful Tools and Extensions Chapter 19

[ 576 ]

Deforming true
 Timing: Generation 1.048 ms, Inlining 8.150 ms, Optimization
14.527 ms, Emission 6.054 ms, Total 29.778 ms
 Execution Time: 29.975 ms
(9 rows)

As we can see, only in the first case did PostgreSQL use an index approach. In the other
cases, PostgreSQL used a sequence scan; to improve this kind of search, we can use the
pg_trgm extension. pg_tgrm is an official extension and is included in the official
PostgreSQL contribs package. When we use this extension, PostgreSQL splits every word
into a set of trigrams and makes a GIST or GIN index on it. For example, if we consider a
word such as dog, its set of trigrams consists of d, do, og, and dog. Let's look at how this
works in practice:

First of all, let's install the extension:1.

db_source=# create extension pg_trgm;
CREATE EXTENSION

Now we can create a GIN or GIST index using the opclass trigram. For2.
example, let's create a GIN index using the gin_trgm_ops opclass:

db_source=# create index db_source_name_gin on t1 using gin
(name gin_trgm_ops);
CREATE INDEX

Now let's perform our ilike query:3.

db_source=# explain analyze select * from t1 where name ilike
'%Li';
QUERY PLAN
-------------------------------------------------------------------
----------------------------------
 Bitmap Heap Scan on t1 (cost=8.00..12.01 rows=1 width=104) (actual
time=0.062..0.062 rows=0 loops=1)
 Recheck Cond: ((name)::text ~~* '%Li'::text)
 -> Bitmap Index Scan on db_source_name_gin (cost=0.00..8.00 rows=1
width=0) (actual time=0.048..0.048 rows=0 loops=1)
 Index Cond: ((name)::text ~~* '%Li'::text)
 Planning Time: 5.786 ms
 Execution Time: 0.152 ms
(6 rows)



Useful Tools and Extensions Chapter 19

[ 577 ]

As can be seen here, PostgreSQL is now able to create an index access using a like query.
The same thing happens for all types of like and ilike queries; the pg_trgm
extension solves the access index to tables for this type of query. For further information
about the pg_trgm extension, see https:/ ​/​www. ​postgresql. ​org/ ​docs/ ​12/ ​pgtrgm. ​html.
Now, we will move on to the next extension, postgres_fdw.

Using foreign data wrappers and the
postgres_fdw extension
This section will provide a brief introduction to what foreign data wrappers are. Foreign
data wrappers allow us to access data that is hosted on an external database as if it was
kept on a normal local table. We can connect PostgreSQL to various data sources, we can
connect PostgreSQL to another PostgreSQL server, or we can connect PostgreSQL to
another data source that can be relational or non-relational. Once the foreign data wrapper
is connected, PostgreSQL is able to read the remote table as if it were local. There are
foreign data wrappers for well-known databases such as Oracle and MySQL, and there are
foreign data wrappers for lesser-known systems. A complete list of foreign data wrappers
available for PostgreSQL is available at https:/ ​/​wiki. ​postgresql. ​org/ ​wiki/ ​Foreign_
data_​wrappers.

In this section, we will consider an example using the postgresql_fdw foreign data
wrapper, which is used to connect a PostgreSQL server to another PostgreSQL server.

Our starting situation is with two servers. We have one server called pg1 server with an IP
address of 192.168.12.34 and a second server called pg2 with an IP address
of 192.168.12.35. In the pg1 server, there is a db1 database with a t1 table, and on the
pg2 server, there is a db2 database with a t2 table. Our goal will be to connect the pg2
server to the pg1 server and make it possible to query the t2 table, as if it were local, from
the pg1 server:

Our starting situation on the pg1 server is as follows:1.

db1=# select * from t1;
 id | name
----+-------
 1  | Linux

Our starting situation on the pg2 server is as follows:2.

db2=# select * from t2;
 id | name

https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers


Useful Tools and Extensions Chapter 19

[ 578 ]

----+------
 1  | Unix

Let's start with the installation of the postgres_fdw extension on the pg1 server:3.

forumdb=# create extension postgres_fdw ;
 CREATE EXTENSION

Suppose that on the pg2 server, pg_hba.conf is configured as follows:

host    all             all             192.168.12.0/24
trust

Now we have to create the connection between the two servers:4.

db1=# CREATE SERVER remote_pg2 FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (host '192.168.12.36', dbname 'db2');
 CREATE SERVER

Now, we have to write a user map between the two servers:5.

db1=#  CREATE USER MAPPING FOR CURRENT_USER SERVER remote_pg2
OPTIONS (user 'postgres', password '');
CREATE USER MAPPING

With the following statement, we say to PostgreSQL that the current user of the6.
pg1 server, which in this case is the postgres user, will be mapped to the
postgres user of the remote server:

db1=# create foreign table f_t2 (id integer, name varchar(64))
SERVER remote_pg2 OPTIONS (schema_name 'public', table_name 't2');
 CREATE FOREIGN TABLE

Now we can query the f_t2 table as if it were a local table:7.

db1# select * from f_t2;
 id | name
----+------
 1  | Unix

As we can see in the preceding example, we can query a foreign table as if it were on the
local server. For further information, please see https:/ ​/​www. ​postgresql. ​org/ ​docs/ ​12/
postgres-​fdw.​html. With this, we have learned all about that extension. We will now move
on to the next one, which is the btree_gin extension.

https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html


Useful Tools and Extensions Chapter 19

[ 579 ]

Exploring the btree_gin extension
Before we start talking about the actual extension, let's spend a moment on the concept of
GIN. GIN is an acronym for Generalized Inverted Index. In this chapter, we assume that
you know what an inverted index is. Using GIN libraries, it is possible to build indices for
different data types; it is also possible to create B-tree-type indices with the use of the GIN
library. The btree_gin extension can index the following data types: int2, int4, int8,
float4, float8, timestamp with time zone, timestamp without time zone, time
with time zone, time without time zone, date, interval, oid, money, char,
varchar, text, bytea, bit, varbit, macaddr, macaddr8, inet, cidr, uuid, name, bool,
bpchar, and enum types. 

The question we need to ask is, When should we use tree_gin indices instead of default b-tree
indices? As the structure of the GIN index is constructed, it is useful when we are dealing
with fields with many records but low cardinality; in this case, the btree_gin index will be
much smaller than the classic b-tree index. For those coming from the Oracle world, there
are bitmap indices in Oracle that are used for this purpose.

In PostgreSQL, b-tree GIN indices can be used like Oracle bitmap indices.

We will now see an example of this:

Let's start by installing the extension:1.

db1=# create extension btree_gin;
 CREATE EXTENSION

Now let's create an example table as follows:2.

db1=# create table users (id serial not null primary key,name
varchar(64) ,surname varchar(64),
 sex char(1));
 CREATE TABLE



Useful Tools and Extensions Chapter 19

[ 580 ]

Now let's populate it with some random data:3.

db1=# insert into users (name,surname) select
'name_'||generate_series(1,10000)::text,'surname_'||generate_series
(1,10000);
INSERT 0 10000
db1=# update users set sex = case when id%2 = 0 then 'M' else 'F'
end;
UPDATE 10000

In the users table, there are now 10,000 records, as shown here:

db1=# select count(*) from users;
 count
-------
 10000
(1 riga)

All the records with an even value for the id field will have sex=F and all records
with an odd value for id will have sex = M, as we can see here:

db1=# select * from users limit 4;
 id | name   | surname   | sex
----+--------+-----------+-----
 1  | name_1 | surname_1 | F
 2  | name_2 | surname_2 | M
 3  | name_3 | surname_3 | F
 4  | name_4 | surname_4 | M
(4 rows)

So, we have 5,000 records with sex='F', as shown here:

db1=# select count(*) from users where sex='F';
 count
-------
 5000
(1 row)

We have 5,000 records with sex='M':

db1=# select count(*) from users where sex='M';
 count
-------
 5000
(1 row)



Useful Tools and Extensions Chapter 19

[ 581 ]

Now that we have set up our environment, let's try to create two indices for the4.
sex field, the first one being of the btree type:

db1=# create index sex_btree on users using btree (sex);
CREATE INDEX

We'll also create another index of the btree_gin type:5.

db1=# create index sex_gin on users using gin (sex);
CREATE INDEX

We will see that the GIN index is much smaller than the b-tree index. The b-tree
index will be of this size:

db1=# select pg_size_pretty(pg_relation_size('sex_btree'));
 pg_size_pretty
----------------
 240 kB
(1 row)

The GIN index will be of this size:

db1=# select pg_size_pretty(pg_relation_size('sex_gin'));
 pg_size_pretty
----------------
 32 kB
(1 row)

We can use B-tree GIN indices to reduce index size for fields with very
low granularity.

We have looked at the GIN index and various other extensions that can be used in
PostgreSQL. We will now move on to the pgbackrest tool, which helps in disaster
management.



Useful Tools and Extensions Chapter 19

[ 582 ]

Managing the pgbackrest tool
In Chapter 18, Logical Replication, we talked about disaster recovery and PITR, and we
saw how to conduct them programmatically. In the real world, a DBA has to manage
multiple PostgreSQL servers and it is useful to have some tools to make life easier. The
open source world offers us a lot of solutions to address disaster recovery in an easy way.
Some of these tools are listed here:

WAL-E
pgbarman

OmniPITR

There are many others, and at https:/ ​/​wiki. ​postgresql. ​org/ ​wiki/ ​Binary_ ​Replication_
Tools, you can find a good comparison of them all.

In this section, we will give a nod to pgbackrest. The pgbackrest tool is a tool for
PostgreSQL disaster recovery and PITR, and it has been designed for heavy load servers. Its
official URL is https:/ ​/​pgbackrest. ​org/ ​.

These are some of the features of the tool:

It supports parallel backup and parallel restore.
It can make full base backups, incremental backups, or differential backups.
We can choose to make local operations or remote operations.
We can choose our policy retention for backups and archive expiration.
It supports a backup resume.
It is possible to make streaming compression and create checksums.
For a restore procedure, we can use the delta restore feature.
It is possible to use parallel WAL archiving.
It supports tablespaces and links.
It is supported by S3.

https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/


Useful Tools and Extensions Chapter 19

[ 583 ]

Basic concepts
pgbackrest has the concept of the stanza, and it can also use an external repository:

A stanza is a configuration of a remote server for backup. It is a set of targets to
be backed up. A stanza configuration can contain multiple servers, in which case
the first (pg1) is the master and the others are considered standby servers.
A repository is local or remote storage (SSH) to which backups are saved; it can
be encrypted. A repository can contain multiple definitions, but only the first one
(repo1) is currently supported.
It is important to have a public key exchange between users who use
pgbackrest. The simplest thing to do is to have public keys exchanged between
the Postgres user of the PostgreSQL server and the Postgres user of the server
where the pgbackrest repository is present.

Environment setting
Before starting and testing our pgbackrest tool, we must make sure we have what we
need to start working. We need the following:

A running PostgreSQL server
A new server where we will install and config the pgbackrest tool

In this scenario, we will continue to use our pg1 PostgreSQL server with ip=
192.168.12.35. We add another server called pgdr with an IP address
of 192.168.12.37.

The exchange of public keys
We will now see how to exchange public keys before we install pgbackrest:

First of all, let's create an ssh key for the Postgres user on both servers. As a1.
PostgreSQL user, let's execute the following:

postgres@pgdr:~$ ssh-keygen -t rsa -b 4096
Generating public/private rsa key pair.
Enter file in which to save the key
(/var/lib/postgresql/.ssh/id_rsa):
Created directory '/var/lib/postgresql/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:



Useful Tools and Extensions Chapter 19

[ 584 ]

Your identification has been saved in
/var/lib/postgresql/.ssh/id_rsa.
Your public key has been saved in
/var/lib/postgresql/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:PUT6Z7BTH83CNKyR3JLDLkbHjOTiYmE4OuO3Zrbwra0 postgres@pgdr
The key's randomart image is:
+---[RSA 4096]----+
|         .o* =o  |
|     .   +o %oo+ |
|    o o o.+o.=+ o|
|   . o o =o+o. o |
|  +   o S.*.o .  |
| . o . .   =     |
|  o .            |
|   +++           |
|   +E+o          |
+----[SHA256]-----+

When we execute the ssh-keygen command, we have to make sure to press only
the Enter key at the request of the passphrase.

Now, on both servers, we will have two files in the2.
/var/lib/postgresql/.ssh/ directory:

postgres@pg1:~/.ssh$ ls -l
totale 8
-rw------- 1 postgres postgres 3381 mag 30 11:41 id_rsa
-rw-r--r-- 1 postgres postgres 738 mag 30 11:41 id_rsa.pub

Now let's copy the public key of the pg1 server inside the3.
authorized_keys part of the pgdr server and vice versa. For the pg1 server, as
a Postgres user, we have to execute this:

postgres@pg1:$ cd $HOME/.ssh
postgres@pg1:~/.ssh$ touch authorized_keys
postgres@pg1:~/.ssh$ chmod 640 authorized_keys

Now let's go on the pgdr1 server and show the contents of the id_rsa.pub file:4.

postgres@pgdr:~/.ssh$ cat id_rsa.pub
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQC/evaUYDH1AzyajSfEPuuolHFT6GaLOI3lrbN
CYNyr3hgFzyr62jjoHYRofpX7iTGch/nLqvY9bqFHNxyKeNw96LS+aOHzF6JpgIg5Hg
xuIy3GbX8bF2p1tVek7yhEN/VTUIDTQM33w1vJ57YdyW2LbstVl0jn8cLjBmn9eLH7a
CjBGtRlSKZfNPbd26vBqZeV2nr0lBK5kAunalSRI8vZ9OWAEjqC4BoYSVL1Q+VyJrf2



Useful Tools and Extensions Chapter 19

[ 585 ]

QD17YVv2uCYBzGwIrsOG8tQBy3jEmnhOROraqKc6pr4AoSOIHiUAhgsvWf1Zo/ysBT2
oOdu+Vey0wJNv300wJWGAGqj3RdnrRe/3grTwJ2ZLnfck5FbFWji9wQuLND2vACztnV
RV/DWynLtIf9sia82PQgB4+xsh9yojrrOHN5QCOTKP/4x3ANTqqfM+nX6r5iBcFwQ92
nRzN1TwLopY9d+PlESb5l/PLX62FAE+YiYRECiyJIc/QMKjy34CkLu9sHI2E+i5Hpxb
AUk/9vjKCpSIDsnGHgCaom4QyPhUkItxHwQ0CCy9Qwh/cKreGD+9bOYl0XvhZexywyJ
jM4vZZ0XEgf36vWvFJed1TjLtlRntuqQjxpOLso+Yqb9mWorPtC9+ypLK1Faoiee8TS
aR917L/rV0OgpogGdyClReOqlPSIxQQqVHqKWEFzXQ2w== postgres@pgdr

Next, we copy and paste this content onto the authorized_keys part of the pg15.
server. After this operation, our authorized_keys file will be as follows:

postgres@pgdr:~/.ssh$ cat id_rsa.pub
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQC/evaUYDH1AzyajSfEPuuolHFT6GaLOI3lrbN
CYNyr3hgFzyr62jjoHYRofpX7iTGch/nLqvY9bqFHNxyKeNw96LS+aOHzF6JpgIg5Hg
xuIy3GbX8bF2p1tVek7yhEN/VTUIDTQM33w1vJ57YdyW2LbstVl0jn8cLjBmn9eLH7a
CjBGtRlSKZfNPbd26vBqZeV2nr0lBK5kAunalSRI8vZ9OWAEjqC4BoYSVL1Q+VyJrf2
QD17YVv2uCYBzGwIrsOG8tQBy3jEmnhOROraqKc6pr4AoSOIHiUAhgsvWf1Zo/ysBT2
oOdu+Vey0wJNv300wJWGAGqj3RdnrRe/3grTwJ2ZLnfck5FbFWji9wQuLND2vACztnV
RV/DWynLtIf9sia82PQgB4+xsh9yojrrOHN5QCOTKP/4x3ANTqqfM+nX6r5iBcFwQ92
nRzN1TwLopY9d+PlESb5l/PLX62FAE+YiYRECiyJIc/QMKjy34CkLu9sHI2E+i5Hpxb
AUk/9vjKCpSIDsnGHgCaom4QyPhUkItxHwQ0CCy9Qwh/cKreGD+9bOYl0XvhZexywyJ
jM4vZZ0XEgf36vWvFJed1TjLtlRntuqQjxpOLso+Yqb9mWorPtC9+ypLK1Faoiee8TS
aR917L/rV0OgpogGdyClReOqlPSIxQQqVHqKWEFzXQ2w== postgres@pgdr

Now we can connect ourselves using the ssh command from the pgdr server to6.
the pg1 server without using a password:

postgres@pgdr:~/.ssh$ ssh postgres@192.168.12.35
The authenticity of host '192.168.12.35 (192.168.12.35)' can't be
established.
ECDSA key fingerprint is
SHA256:ewMgh+/TdX0CsfrMErYRKxyliqvoIUwmZ8P7apADqJ4.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.12.35' (ECDSA) to the list of
known hosts.
Linux pg1 4.19.0-9-amd64 #1 SMP Debian 4.19.118-2 (2020-04-29)
x86_64The programs included with the Debian GNU/Linux system are
free software;the exact distribution terms for each program are
described in the
individual files in /usr/share/doc/*/copyright.Debian GNU/Linux
comes with ABSOLUTELY NO WARRANTY, to the extentpermitted by
applicable law.
Last login: Sat May 30 11:53:04 2020 from 192.168.12.37
postgres@pg1:~$



Useful Tools and Extensions Chapter 19

[ 586 ]

If we connect for a second time from the phdr host to the pg1 host, no question
will be shown.

We now have to perform the same operations for the pg1 host, and after we do7.
this, also on the pgdr1 server, we will have an authorized_key file with this
content:

postgres@pg1:~/.ssh$ cat id_rsa.pub
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQC9QAHzwQkAzFEDxhjpfIkL1I+lX0sVdeGrJHx
k08IKcBX40rrTC97FhjYJgAGai+MMe3JC5mHaY2FCTbM9iT66ai57kkqPUCPR6tnT6W
0zHtybgriboa/RDsLYhzsqhkezDnMMOZsvSeYJEcTW4M0KKO1HqlTQMSxXQNzyAvCPT
k9vdlT8I+KJsx/tGnYXs4mh/A2HrEQJ6IPMbd7ZKE/wgwp+wT7hEQreLec12F+www8T
wJTXT9xvERdDJCrqNdj0+XRhl0YmlpWOOAo2cjCSdWwVwAXPwiFUlICT9djNkQ5JuWa
GRFjp8PYi6Y+Meqm9pmGLCknMJzn5pGnC9fJL5Nhe3PQ1vkg6L8Fi3yh6P3JzAp7D4V
Z0YS627kZ8h8EC06ZSCNq2QQRHyGoiYBhYiS0qSa+uDrPyOzIcRIq1mZImZ8FrxVIZX
htNJtmaLBi9E0OAErFt4pHRz5XJ7Y/3Ccetp+bhTDNatjUHNoeyJhOyCHvX/4evtC/A
L4zoU2CWJ/04VpZchawUVpB5iA114BS6G/RW9bOKPWtLDtRogWVNd1qj+B/kLrKTjvM
QTEe3UjGZpmZn393ynTT6e3FefaD3OyMvGEoWtyKiMSl3NI18X51EAy5eSBvlX4qL45
i1/9d1XK7hmm52dshPmYg4FSTwtyRBimxNbZ8CdGCo5Q== postgres@pg1

Now, using the Postgres user, it is possible to connect the two servers together without
providing a password.

Installing pgbackrest
Before installing, we have to know that each host has the same version of pgbackrest
installed, so we have to install on the pgdr server and on the pg1 server. On a Debian-like
server as the root user, let's execute these commands on both servers:

# apt-get update
# apt-get install -y pgbackrest

If we use a RedHat-like server, we have to use the yum command instead of the apt-get
command.



Useful Tools and Extensions Chapter 19

[ 587 ]

Configuring pgbackrest
Now let's look at how to configure the pgbackrest tool. pgbackrest needs the
configuration of both servers; it needs the configuration of the repository server, which is 
where the data will be stored, and it needs the configuration of the PostgreSQL server so
that it is able to send all the data to the repository server. So, we will address both of these
configurations in turn:

The repository configuration of the pgdr server
The PostgreSQL configuration of the  pg1 server

The repository configuration 
The configuration file can be found here:

/etc/pgbackrest/pgbackrest.conf

Using a different configuration file is possible but this must be specified consistently in
each use of the program, so it is better to leave the default one. Each parameter specified in
the configuration file can be overwritten by the relative parameter provided on the
command line. Each parameter contained in a section is specified with a key-value pair. In
the stanza configuration, the parameters of a cluster always start with pgN-, with N being a
progressive number. The main (master) cluster is always number 1. The standby clusters
are therefore numbered 2 in sequence. Similarly, in global parameters, repositories are
numbered starting from 1 (repo1), but currently, multiple repositories are not supported.
pgbackrest is symmetric; that is, every command can be executed on the backup machine
or on the target machine. We will have a configuration file for the repository server and a
configuration file for the PostgreSQL server and the two configuration files are different.
pgbackrest by default has enabled the compression of WAL segments and basebackups
with a compression factor of six. We can force the compression to a different level using the
compress-level directive; for example, we can set the compression level to nine to have the
maximum compression.

It is also possible to encrypt the repository managed by pgbackrest; this feature is useful
for storing our backups on a low-cost cloud, for example.

Let's start now with a simple configuration; let's start with the global config section:

[global]
start-fast=y
archive-async=y
process-max=2
repo-path=/var/lib/pgbackrest



Useful Tools and Extensions Chapter 19

[ 588 ]

repo1-retention-full=2
repo1-retention-archive=5
repo1-retention-diff=3
log-level-console=info
log-level-file=info

We see the following options here:

start-fast=y: Forces a checkpoint on the remote server, so
that pg_start_backup () starts as soon as possible.
archive-async=y: Enables the asynchronous transfer of WAL for push/pull
operations.
process-max=2: Sets the maximum number of processes that the system can use
for transfer/compression operations.
repo-path=/var/lib/pgbackrest: Sets the path where the repository will be
stored; the user running the pgbackrest command must have read/write
permissions for this directory.
repo1-retention-full=2: The number of full backups to keep. When a full
backup expires, all differential and/or incremental backups associated with the
full backup will also expire. When the option is not defined, the system issues a
warning. If indefinite retention is desired, set the option to the maximum value
(9,999,999).
repo1-retention-archive=5: Represents the backup number of the WAL files
to keep. The WAL segments required to make a backup consistent are always
maintained until the backup expires, regardless of the configuration of this
option. If this value is not set, the expiring archive will automatically expire at
the repo-retention-full (or repo-retention-diff) value corresponding to
the type of repo-retention archive if set to full (or diff). This will ensure that
the WAL files are considered expired only for backups that have already expired.
repo1-retention-diff = 3: The number of differential backups to keep.
When a differential backup expires, all incremental backups associated with the
differential backup will also expire. If not defined, all differential backups will be
kept until the full backups on which they depend expire.
log-level-console=info/log-level-file=info log: Settings for log
management; set the terminal log level (log-level-console) and the logging
level on the log file (log-level-file). 

The configuration file shown here is just a simple example; if we want to add some more
features, we just need to add them to the configuration file.



Useful Tools and Extensions Chapter 19

[ 589 ]

For example, if we want to modify the compression level and increase it to level nine, we
can add these lines:

compress = y
compress-level = 9
compress-level-network = 9

In the same way, if we want to add the cipher feature, we can add these lines:

repo1-cipher-type = aes-256-cbc
repo1-cipher-pass = SuperSecret

After configuring the global section, we are ready to look at how to configure the stanza.
pgbackrest introduces the idea of stanzas; in practice, we can associate each stanza with a
cluster database. The following is an example of a room; it is only a coincidence that the
name of the stanza, [pg1], has the same name as the cluster. It is necessary to create a
stanza for each remote PostgreSQL server on which we want to manage backups using
pgbackrest. Each stanza must have a different name:

[pg1]
pg1-host = 192.168.12.35
pg1-host-user = postgres
pg1-path = /var/lib/postgresql/12/main
pg1-port = 5432

We see the following options here:

pg1-host: This is the remote host of the PostgreSQL master server.
pg1-host-user = postgres: When the pg-host parameter is set, this is the
user that we want to use to access the remote PostgreSQL server. This user will
also be the owner of the remote pgbackrest process and it starts the connection
to the PostgreSQL server. This user should be the owner of the PostgreSQL
database cluster. Usually, we can leave the default user, postgres, which is why
it is usually the same user for whom we made the exchange of public keys.
pg1-path = /var/lib/postgresql/12/main: The path on the PostgreSQL
cluster where the data is stored. We can find it in the data_directory
parameter inside the postgresql.conf file.
pg1-port = 5432: The listen port of the remote PostgreSQL server.

The PostgreSQL server configuration
On the PostgreSQL server, pg1, we need to modify the postgresql.conf file and we need
to set the pgbackrest.conf file as well.



Useful Tools and Extensions Chapter 19

[ 590 ]

The postgresql.conf file
For the postgresql.conf file, we have to set wal_level to replica or logical. It is
important that the WAL level is not set to minimal. We also need to tell PostgreSQL the
command that will send the WAL segment to the pgbackrest repository server.

Let's add these lines at the and of the postgresql.conf file:

#PGBACKREST
archive_mode = on
wal_level = logical
archive_command = 'pgbackrest --stanza=pg1 archive-push %p'

With the second line, we say to PostgreSQL that the WAL segments will be archived on the
pg1 stanza of the repository server using the pgbackrest command. After restarting
PostgreSQL, these new lines will be available. As the root user, let's perform a restart of the
PostgreSQL service:

# systemctl restart postgresql

The pgbackrest.conf file
Now, after modifying postgresql.conf, let's go to modify the pgbackrest.conf file of
the PostgreSQL server. Let's remember that the PostgreSQL server has ip=
192.168.12.35, and that the IP of the disaster recovery server is 192.168.12.35. Let's
now edit the /etc/pgbackrest.conf file; delete what is present and add these lines:

[global]
backup-host=192.168.12.37
backup-user=postgres
backup-ssh-port=22
log-level-console=info
log-level-file=info

[pg1]
pg1-path = /var/lib/postgresql/12/main
pg1-port = 5432

As for the repository configuration, the file is composed of sections: a global section and a
section for each stanza.



Useful Tools and Extensions Chapter 19

[ 591 ]

For the global section, we have the following options:

backup-host: The repository host
backup-user: The user used for the backup
backup-ssh-port: The ssh port
log-level-console=info - log-level-file=info: As per the
configuration seen in the previous section

For the stanza section, we have the following options:

pg1-path = /var/lib/postgresql/12/main: The path on the PostgreSQL
cluster where the data is stored. We can find it in
the data_directory parameter inside the postgresql.conf file.
pg1-port = 5432: The listen port of the remote PostgreSQL server.

Creating and managing continuous backups
Now that we have our system well configured, let's start to manage our backup.

Creating the stanza
The first thing we have to do is create the stanza on the repository server. To do this, as the
root user, let's perform this command:

# sudo -iu postgres pgbackrest --stanza=pg1 stanza-create
2020-05-30 15:31:46.777 P00 INFO: stanza-create command begin 2.27: --log-
level-console=info --log-level-file=info --pg1-host=192.168.12.35 --pg1-
host-user=postgres --pg1-path=/var/lib/postgresql/12/main --pg1-port=5432 -
-repo1-path=/var/lib/pgbackrest --stanza=pg1
2020-05-30 15:31:48.151 P00 INFO: stanza-create command end: completed
successfully (1375ms)

Now our stanza is created. If we go to /var/lib/pgbackrest, we can find the directory
structure that will be used by the continuous backup system:

# ls -l
totale 8
drwxr-x--- 3 postgres postgres 4096 mag 30 15:31 archive
drwxr-x--- 3 postgres postgres 4096 mag 30 15:31 backup



Useful Tools and Extensions Chapter 19

[ 592 ]

Checking the stanza
After creating our stanza, let's check whether the system is ready to accept the continuous
backup by performing this:

# sudo -iu postgres pgbackrest --stanza=pg1 check
2020-05-30 15:51:36.589 P00   INFO: check command begin 2.27: --log-level-
console=info --log-level-file=info --pg1-host=192.168.12.35 --pg1-host-
user=postgres --pg1-path=/var/lib/postgresql/12/main --pg1-port=5432 --
repo1-path=/var/lib/p
gbackrest --stanza=pg1
2020-05-30 15:51:46.614 P00   INFO: WAL segment 00000001000000000000000B
successfully archived to
'/var/lib/pgbackrest/archive/pg1/12-1/0000000100000000/00000001000000000000
000B-ef7b8a4cb2cad342a2c37131196d6ae0b3807950.gz'
2020-05-30 15:51:46.715 P00   INFO: check command end: completed
successfully (10126ms)

If everything is OK, we will receive a completed-successfully message; now we are ready to
manage continuous backup.

Managing basebackups
As we previously mentioned, pgbackrest is able to handle full backups, differential
backups, and incremental backups with a simple command-line statement.

To create a full basebackup, we can do this:

root@pgdr:/var/lib/pgbackrest# sudo -iu postgres pgbackrest --stanza=pg1 --
type=full backup

When we press the Enter key on the keyboard, if everything is OK, we get this message:

2020-05-30 15:58:09.374 P00 INFO: expire command end: completed
successfully (536ms)

Now, if we want information about our repository, we can use the info command as
follows:

# sudo -iu postgres pgbackrest --stanza=pg1 info
stanza: pg1
    status: ok
    cipher: none

    db (current)



Useful Tools and Extensions Chapter 19

[ 593 ]

        wal archive min/max (12-1):
000000010000000000000001/00000001000000000000000D

        full backup: 20200530-155639F
            timestamp start/stop: 2020-05-30 15:56:39 / 2020-05-30 15:58:07
            wal start/stop: 00000001000000000000000D /
00000001000000000000000D
            database size: 33.5MB, backup size: 33.5MB
            repository size: 4MB, repository backup size: 4MB

The info command tells us about WAL segments, the full backup start time, the original
database size, and the repository backup size.

In a similar way, starting with this full backup, we can make a differential backup:

root@pgdr:/var/lib/pgbackrest# sudo -iu postgres pgbackrest --stanza=pg1 --
type=diff backup

2020-05-30 16:06:49.684 P00 INFO: expire command end: completed
successfully (485ms)

We can also make an incremental backup:

# sudo -iu postgres pgbackrest --stanza=pg1 --type=incr backup

2020-05-30 16:07:32.044 P00   INFO: expire command end: completed
successfully (511ms)

Now an info command will track the three backups:

# sudo -iu postgres pgbackrest --stanza=pg1 info
stanza: pg1
    status: ok
    cipher: none

    db (current)
        wal archive min/max (12-1):
000000010000000000000001/000000010000000000000011

        full backup: 20200530-155639F
            timestamp start/stop: 2020-05-30 15:56:39 / 2020-05-30 15:58:07
            wal start/stop: 00000001000000000000000D /
00000001000000000000000D
            database size: 33.5MB, backup size: 33.5MB
            repository size: 4MB, repository backup size: 4MB

        diff backup: 20200530-155639F_20200530-160644D
            timestamp start/stop: 2020-05-30 16:06:44 / 2020-05-30 16:06:48



Useful Tools and Extensions Chapter 19

[ 594 ]

            wal start/stop: 00000001000000000000000F /
00000001000000000000000F
            database size: 33.5MB, backup size: 8.3KB
            repository size: 4MB, repository backup size: 430B
            backup reference list: 20200530-155639F

        incr backup: 20200530-155639F_20200530-160728I
            timestamp start/stop: 2020-05-30 16:07:28 / 2020-05-30 16:07:30
            wal start/stop: 000000010000000000000011 /
000000010000000000000011
            database size: 33.5MB, backup size: 8.3KB
            repository size: 4MB, repository backup size: 429B
            backup reference list: 20200530-155639F

As we have set repo1-retention-full=2 on the pgbackrest.conf file, pgbackrest
after two backups will delete the first full backup and its linked differential or incremental
backups. For example, here's the execution of two full backups:

# sudo -iu postgres pgbackrest --stanza=pg1 --type=full backup
2020-05-30 16:15:09.999 P00 INFO: expire command end: completed
successfully (695ms)
# sudo -iu postgres pgbackrest --stanza=pg1 --type=full backup
2020-05-30 16:16:45.930 P00   INFO: expire command end: completed
successfully (509ms)

We will then have the following outcome:

# sudo -iu postgres pgbackrest --stanza=pg1 info
stanza: pg1
    status: ok
    cipher: none

    db (current)
        wal archive min/max (12-1):
000000010000000000000001/000000010000000000000015

        full backup: 20200530-161343F
            timestamp start/stop: 2020-05-30 16:13:43 / 2020-05-30 16:15:08
            wal start/stop: 000000010000000000000013 /
000000010000000000000013
            database size: 33.5MB, backup size: 33.5MB
            repository size: 4MB, repository backup size: 4MB

        full backup: 20200530-161538F
            timestamp start/stop: 2020-05-30 16:15:38 / 2020-05-30 16:16:44
            wal start/stop: 000000010000000000000015 /
000000010000000000000015
            database size: 33.5MB, backup size: 33.5MB



Useful Tools and Extensions Chapter 19

[ 595 ]

            repository size: 4MB, repository backup size: 4MB
root@pgdr:/var/lib/pgbackrest#

As we can see, the system has automatically deleted the first full backup and its related
incremental and differential backups.

Managing PITR
In this section, we will look at how to restore a PostgreSQL cluster after a disaster.

To build an example, let's see what time it is on the PostgreSQL server:

db1=# select now();
 now
 -------------------------------
 2020-05-30 16:23:38.609572+02
 (1 riga)

Now let's see the records that are present in the users table:

db1=# select count(*) from users;
 count
-------
 10000
(1 riga)

Let's suppose that a disaster has happened after this point in time; for example, suppose
that we dropped a table after this time:

db1=# drop table users;
DROP TABLE

Now let's try to make a recovery at 2020-05-30 16:23:3, which is the time before the
disaster happened. On the pg1 server, we need to stop the postgresql server:

 # systemctl stop postgresql

Then we perform the pgbackrest restore command:

# sudo -u postgres pgbackrest --stanza=pg1 --delta --log-level-console=info
--type=time "--target=2020-05-30 16:23:38" restore

2020-05-30 16:40:02.588 P00   INFO: restore command end: completed
successfully (3406ms)



Useful Tools and Extensions Chapter 19

[ 596 ]

Now let's start the postgresql server:

# systemctl start postgresql

Then we check the postgresql log:

2020-05-30 16:53:38 CEST [1438]: user=,db=,app=,client= LOG:  restored log
file "000000020000000000000016" from archive
2020-05-30 16:53:38 CEST [1438]: user=,db=,app=,client= LOG:  recovery
stopping before commit of transaction 508, time 2020-05-30
16:52:48.399783+02
2020-05-30 16:53:38 CEST [1438]: user=,db=,app=,client= LOG:  recovery has
paused
2020-05-30 16:53:38 CEST [1438]: user=,db=,app=,client= HINT:  Execute
pg_wal_replay_resume() to continue.

As we can see, to end our PITR procedure, PostgreSQL suggests we
execute pg_wal_replay_resume(). So, let's go into the PostgreSQL environment and
perform the following:

postgres=# select pg_wal_replay_resume();
 pg_wal_replay_resume
----------------------

(1 riga)

Now if we go to check our database, db1, the users table is now present and the database
is now in the state that it was in at 2020-05-30 16:23:38:

Schema  |     Name     |      Type       | Owner
--------+--------------+-----------------+--------------
 public | f_t2         | foregn table    | postgres
 public | t1           | table           | postgres
 public | users        | table           | postgres
 public | users_id_seq | sequence        | postgres
(4 rows)

Finally, we can execute this: 

db1=# select count(*) from users;
 count
-------
 10000
(1 riga)

We have now restored the situation that was present before the disaster.



Useful Tools and Extensions Chapter 19

[ 597 ]

Summary
In this chapter, we have tried to show some extensions and some tools available
for PostgreSQL. We chose not to give a rundown of everything that is available for
PostgreSQL but instead to look specifically at some tools and extensions. We have talked
in more detail about pgbackrest, which is a very useful tool for managing recovery and
PITR. We also talked about how to do like searches using GIN indices and how to connect
PostgreSQL to other data sources using foreign data wrappers. We saw a different way of
using GIN indices in order to have a feature present on Oracle using the btree_gin
extension.

In the next chapter, we will look at the next stage of the evolution of PostgreSQL:
PostgreSQL 13.

References
https:/​/ ​www. ​postgresql. ​org/ ​docs/ ​12/​pgtrgm. ​html

https:/​/ ​wiki. ​postgresql. ​org/ ​wiki/ ​Foreign_ ​data_ ​wrappers

https:/​/ ​www. ​postgresql. ​org/ ​docs/ ​12/​postgres- ​fdw. ​html

https:/​/ ​en. ​wikipedia. ​org/ ​wiki/ ​Inverted_ ​index

https:/​/ ​www. ​postgresql. ​org/ ​docs/ ​12/​btree- ​gin. ​html

http:/​/​hlinnaka. ​iki. ​fi/ ​2014/ ​03/​28/ ​gin- ​as-​a- ​substitute- ​for- ​bitmap-
indexes/ ​

https:/​/ ​wiki. ​postgresql. ​org/ ​wiki/ ​Binary_ ​Replication_ ​Tools

https:/​/ ​pgbackrest. ​org/ ​

https:/​/ ​github. ​com/ ​darold/ ​pgbadgerhttp:/ ​/​pgbadger. ​darold. ​net/​samplev7.
html

http:/​/​pgbadger. ​darold. ​net/ ​

https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://www.postgresql.org/docs/12/pgtrgm.html
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://wiki.postgresql.org/wiki/Foreign_data_wrappers
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://www.postgresql.org/docs/12/postgres-fdw.html
https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Inverted_index
https://www.postgresql.org/docs/12/btree-gin.html
https://www.postgresql.org/docs/12/btree-gin.html
https://www.postgresql.org/docs/12/btree-gin.html
https://www.postgresql.org/docs/12/btree-gin.html
https://www.postgresql.org/docs/12/btree-gin.html
https://www.postgresql.org/docs/12/btree-gin.html
https://www.postgresql.org/docs/12/btree-gin.html
https://www.postgresql.org/docs/12/btree-gin.html
https://www.postgresql.org/docs/12/btree-gin.html
https://www.postgresql.org/docs/12/btree-gin.html
https://www.postgresql.org/docs/12/btree-gin.html
https://www.postgresql.org/docs/12/btree-gin.html
https://www.postgresql.org/docs/12/btree-gin.html
https://www.postgresql.org/docs/12/btree-gin.html
https://www.postgresql.org/docs/12/btree-gin.html
https://www.postgresql.org/docs/12/btree-gin.html
https://www.postgresql.org/docs/12/btree-gin.html
https://www.postgresql.org/docs/12/btree-gin.html
https://www.postgresql.org/docs/12/btree-gin.html
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
http://hlinnaka.iki.fi/2014/03/28/gin-as-a-substitute-for-bitmap-indexes/
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://wiki.postgresql.org/wiki/Binary_Replication_Tools
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
https://pgbackrest.org/
https://github.com/darold/pgbadgerhttp://pgbadger.darold.net/samplev7.html
https://github.com/darold/pgbadgerhttp://pgbadger.darold.net/samplev7.html
https://github.com/darold/pgbadgerhttp://pgbadger.darold.net/samplev7.html
https://github.com/darold/pgbadgerhttp://pgbadger.darold.net/samplev7.html
https://github.com/darold/pgbadgerhttp://pgbadger.darold.net/samplev7.html
https://github.com/darold/pgbadgerhttp://pgbadger.darold.net/samplev7.html
https://github.com/darold/pgbadgerhttp://pgbadger.darold.net/samplev7.html
https://github.com/darold/pgbadgerhttp://pgbadger.darold.net/samplev7.html
https://github.com/darold/pgbadgerhttp://pgbadger.darold.net/samplev7.html
https://github.com/darold/pgbadgerhttp://pgbadger.darold.net/samplev7.html
https://github.com/darold/pgbadgerhttp://pgbadger.darold.net/samplev7.html
https://github.com/darold/pgbadgerhttp://pgbadger.darold.net/samplev7.html
https://github.com/darold/pgbadgerhttp://pgbadger.darold.net/samplev7.html
https://github.com/darold/pgbadgerhttp://pgbadger.darold.net/samplev7.html
https://github.com/darold/pgbadgerhttp://pgbadger.darold.net/samplev7.html
https://github.com/darold/pgbadgerhttp://pgbadger.darold.net/samplev7.html
https://github.com/darold/pgbadgerhttp://pgbadger.darold.net/samplev7.html
https://github.com/darold/pgbadgerhttp://pgbadger.darold.net/samplev7.html
https://github.com/darold/pgbadgerhttp://pgbadger.darold.net/samplev7.html
https://github.com/darold/pgbadgerhttp://pgbadger.darold.net/samplev7.html
https://github.com/darold/pgbadgerhttp://pgbadger.darold.net/samplev7.html
https://github.com/darold/pgbadgerhttp://pgbadger.darold.net/samplev7.html
http://pgbadger.darold.net/
http://pgbadger.darold.net/
http://pgbadger.darold.net/
http://pgbadger.darold.net/
http://pgbadger.darold.net/
http://pgbadger.darold.net/
http://pgbadger.darold.net/
http://pgbadger.darold.net/
http://pgbadger.darold.net/
http://pgbadger.darold.net/


20
Toward PostgreSQL 13

In this final chapter of the book, you will discover the new features that the upcoming
PostgreSQL 13 release is going to introduce. You will also learn what the main differences
between PostgreSQL 13 and the previous stable 12 version are and how to prepare for a
version upgrade. Presenting every new feature in detail is out of the scope of the chapter,
and a few changes have been already introduced in the previous chapters and will be
reviewed here.

The new features have been organized into categories as follows:

Replication
Administration of the cluster
The command-line interface (psql)
Performance
Backup and related tools

As you can imagine, not every feature fits into a single category, and not every category can
summarize the new features, but what's presented in this chapter should help you get a
clear idea of what is new in PostgreSQL 13.

The following topics are covered here:

Introducing PostgreSQL 13 and its new features
Upgrading to PostgreSQL 13



Toward PostgreSQL 13 Chapter 20

[ 599 ]

Introducing PostgreSQL 13's new features
In every release, the PostgreSQL Global Development Group introduces a set of new
features that span from performance improvements to configuration management to
adherence to the SQL standard and so on. PostgreSQL 13 follows its own path and 
introduces a rich set of new features; many of them are "under the hood" and so you will
not perceive them during day-to-day database usage, but they are really important for the
cluster to work more efficiently.

This section provides you with a categorization of the main features introduced with the
upcoming PostgreSQL 13 release, which at the time of writing is still in beta 2 release, so
it's stable enough for usage and testing but not yet production-ready. As you can imagine, it
is not possible to explain (or even worth explaining) every single feature in detail, so you
will just get an at-a-glance idea of the main changes. The changes are presented in no
particular order.

Replication
There are several important changes to the replication aspects of the cluster. One important
change is related to streaming replication: now stand-bys can apply configuration
parameter changes without needing to be restarted, but rather by using a simple reload
event.

Another important change is to do with the fact that, during crash recovery, if the
recovery_target point in time specified is not reached, the server generates an error.
Before this, if, for example, you specified a non-existent point in time (for instance, a point
in time in the future), the server recovered all the WAL segments and promoted itself as
usable; now it will generate an error so that you can be sure that the recovery target point in
time is set up correctly.

It is now possible to promote a standby node even if it has paused; therefore, the promotion
has a higher priority against the action that pauses the standby node (that is, a mode where
the stand-by node waits to continue following the WAL segments).

Great care has been taken regarding replication slots: now WAL receiver processes that are
not using a permanent slot can get access to a temporary slot to follow changes from the
master (the wal_receiver_create_temp_slot tunable), and moreover there is a tunable
named max_wal_slot_keep_size that indicates how many slots must be kept,
invalidating those that exceed the mentioned size and therefore freeing resources.



Toward PostgreSQL 13 Chapter 20

[ 600 ]

Administration
In general, several administrative commands have been enhanced and enriched with new
options and behaviors to simplify the tasks they are related to.

VACUUM now has a PARALLEL option that allows the administrator to specify the number of
parallel worker processes that will work over indexes.

There is now an ALTER VIEW version that accepts RENAME to change the name of a column
in a view, something that was not possible before.

The DROP DATABASE statement now has a WITH FORCE option that immediately
disconnects users using a database that is going to be dropped, making sure, that the
database drop immediately succeeds. In previous PostgreSQL versions, the command fails
to drop a database if there are users connected to the database.

There is an OVERRIDING USER VALUE clause for the INSERT statement that allows the
overriding of all nonidentity and other columns in a table, in a way similar to the pre-
existing OVERRIDING SYSTEM VALUE (which acts on identity columns only).

The TRUNCATE statement is now faster on large tables.

The EXPLAIN command has now a WAL option that allows the inspection of WAL usage,
as explained in Chapter 13, Indexes and Performance Optimization.

Several system views have been introduced and improved:

pg_stat_progress_basebackup has been added to report information about a
streaming base backup.
pg_stat_progress_analyze has been added to report progress
about ANALYZE execution.
pg_stat_replication has been improved to report more information about
logical replication.
pg_stat_activity has been improved to report the leading process in the case
of parallel execution.



Toward PostgreSQL 13 Chapter 20

[ 601 ]

psql
The command-line client psql has been improved and now includes a more verbose
description of tables and data structures, as well as some other changes to the line prompt.
For example, it now automatically marks the presence of an unsaved transaction:

$ psql -U postgres template1
psql (13beta2)
Type "help" for help.

template1=# BEGIN;
BEGIN
template1=*# SELECT current_date;
 current_date
--------------
 2020-07-25
(1 row)

template1=*# ROLLBACK;
ROLLBACK
template1=#

As you can see, there is a * mark after BEGIN, making it clear that the user is within a new
transaction. If the transaction aborts, the symbol is changed into a !. Using the special \dt+
command, it is even possible to see the storage used by a table, whether it is permanent (the
default), unlogged, or temporary:

forumdb=> \dt+
                                List of relations
 Schema |    Name    | Type  |  Owner   | Persistence |    Size    |
Description
--------+------------+-------+----------+-------------+------------+-------
------
 public | categories | table | postgres | unlogged    | 16 kB      |
 public | users      | table | postgres | permanent   | 8192 bytes |
(2 rows)

Other minor changes to similar introspection commands have been introduced.



Toward PostgreSQL 13 Chapter 20

[ 602 ]

Performance
Pl/pgSQL has been improved and can now execute simple and immutable expressions in a
faster way.

There is now a lookup mechanism to speed-up the conversion between numbers and text.

The optimizer has been improved in order to get better row estimations in particular cases,
and moreover it is now possible to set the statistics target even for user-defined extended
statistics. What this means is that the optimizer can be instrumented to better understand
the underlying data, thus providing a better execution plan.

Sortings have been improved too, and now it is possible to specify
enable_incrementalsort (already activated by default) so that the system can exploit an
already-sorted result: if the result is sorted by a few leading keys, there is the possibility of
continuing the sorting while concentrating only on the remaining trailing keys for the final
result, instead of doing the whole sort over again.

The new configuration parameter wal_skip_threshold allows the specification of a limit
for the size of data, beyond which COMMIT will not force a WAL full-page write but rather
sync the data files on disk directly. If the WAL level is minimal (that is, no replication), and
at the COMMIT event the amount of data is greater than wal_skip_threshold, then the
data pages are synced on storage directly without the data page being included in the WAL
logs as a full-page write. This can help to fine-tune the concurrency about transactions.

Backup tools
The pg_verifybackup tool has already been introduced in Chapter 15, Backup and Restore,
and has been added to PostgreSQL 13 to allow you to rely on your backups to not have
been messed up by some disaster.

The other backup-related tools have been changed too. For example, pg_basebackup now
provides an estimation of the work to be performed, and this is used to feed the special
pg_stat_progress_basebackup view described earlier.

The pg_rewind tool, even if not strictly speaking a backup tool, has been improved to use
the stand-by recovery command to fetch needed WAL segments. Moreover, it now
supports the configuration of the stand-bys in a similar way to what pg_basebackup does
(that is, by writing the recovery.signal file).



Toward PostgreSQL 13 Chapter 20

[ 603 ]

Now that you know what the main new features of PostgreSQL 13 are, it is time to discuss
how to get PostgreSQL 13 running on top of your existing cluster, which means how to
upgrade to version 13. The next section briefly discusses the upgrading process.

Upgrading to PostgreSQL 13
When upgrading from a previous PostgreSQL version, there are different approaches that
you can follow depending on the specific context, the amount of data you need to migrate,
and the version you are coming from.

One approach that always works is to dump and restore the databases: you execute
pg_dumpall against your previous cluster and pg_restore against the PostgreSQL 13
one. The main advantages of this approach are that it is simple and works with any version
of PostgreSQL you are upgrading from and to. The main drawbacks are that it requires an
off-line migration, meaning you are going to have a period of time where the two databases
are not usable; plus, it can require a lot of time and space depending on how much data
you need to migrate.

Another approach is to use pg_upgrade, a tool designed to transfer and migrate data from
one cluster to another one side by side. The idea is that pg_upgrade will have access to
both the clusters at the same time and will perform all the required operations to "move"
data from one cluster to the other one, under some circumstances even without copying the
data but linking it to save storage space. Describing pg_upgrade in detail is out of the
scope of this book.

Lastly, if you are upgrading from a quite recent version of PostgreSQL (at least 10), you can
set up a logical replication between your current cluster and the PostgreSQL 13 one. Once
the replication has been completed, you can perform the switch over and leave PostgreSQL
13 as your new cluster.



Toward PostgreSQL 13 Chapter 20

[ 604 ]

Summary
PostgreSQL 13 presents a lot of changes: many of them will not be immediately visible to
the user, while others will be available to administrators, and others still will be integrated
into the command-line tools. Describing all the new features is almost impossible, because
every new release includes a lot of human work, and that work goes into making
PostgreSQL more stable, usable, and efficient.

Now, thanks to the knowledge you have gained throughout this whole book, you are able
to install PostgreSQL 13 or even a higher version and go find the features you like the most
and fit your needs best. Use this book as a teammate during your journey of exploring
PostgreSQL, and feel free to jump back and forth between chapters depending on what
aspect of PostgreSQL 13 you are learning about or faced with.

References
PostgreSQL 13 beta 2 release notes: https:/ ​/​www. ​postgresql. ​org/ ​docs/ ​13/
release- ​13. ​html

The pg_upgrade migration tool – official documentation available at https:/ ​/
www.​postgresql. ​org/ ​docs/ ​13/ ​pgupgrade. ​html

https://www.postgresql.org/docs/13/release-13.html
https://www.postgresql.org/docs/13/release-13.html
https://www.postgresql.org/docs/13/release-13.html
https://www.postgresql.org/docs/13/release-13.html
https://www.postgresql.org/docs/13/release-13.html
https://www.postgresql.org/docs/13/release-13.html
https://www.postgresql.org/docs/13/release-13.html
https://www.postgresql.org/docs/13/release-13.html
https://www.postgresql.org/docs/13/release-13.html
https://www.postgresql.org/docs/13/release-13.html
https://www.postgresql.org/docs/13/release-13.html
https://www.postgresql.org/docs/13/release-13.html
https://www.postgresql.org/docs/13/release-13.html
https://www.postgresql.org/docs/13/release-13.html
https://www.postgresql.org/docs/13/release-13.html
https://www.postgresql.org/docs/13/release-13.html
https://www.postgresql.org/docs/13/release-13.html
https://www.postgresql.org/docs/13/release-13.html
https://www.postgresql.org/docs/13/pgupgrade.html
https://www.postgresql.org/docs/13/pgupgrade.html
https://www.postgresql.org/docs/13/pgupgrade.html
https://www.postgresql.org/docs/13/pgupgrade.html
https://www.postgresql.org/docs/13/pgupgrade.html
https://www.postgresql.org/docs/13/pgupgrade.html
https://www.postgresql.org/docs/13/pgupgrade.html
https://www.postgresql.org/docs/13/pgupgrade.html
https://www.postgresql.org/docs/13/pgupgrade.html
https://www.postgresql.org/docs/13/pgupgrade.html
https://www.postgresql.org/docs/13/pgupgrade.html
https://www.postgresql.org/docs/13/pgupgrade.html
https://www.postgresql.org/docs/13/pgupgrade.html
https://www.postgresql.org/docs/13/pgupgrade.html
https://www.postgresql.org/docs/13/pgupgrade.html
https://www.postgresql.org/docs/13/pgupgrade.html


Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering PostgreSQL 12

Hans-Jürgen Schönig

ISBN: 978-1-83898-882-1

Understand the advanced SQL functions in PostgreSQL 12
Use indexing features in PostgreSQL to fine-tune the performance of
queries
Work with stored procedures and manage backup and recovery
Master replication and failover techniques to reduce data loss
Replicate PostgreSQL database systems to create backups and to scale
your database
Manage and improve the security of your server to protect your data
Troubleshoot your PostgreSQL instance for solutions to common and
not-so-common problems

https://www.packtpub.com/product/mastering-postgresql-12-third-edition/9781838988821


Other Books You May Enjoy

[ 606 ]

PostgreSQL 12 High Availability Cookbook - Third Edition
 Shaun Thomas

ISBN:  978-1-83898-485-4

Understand how to protect data with PostgreSQL replication tools
Focus on hardware planning to ensure that your database runs
efficiently
Reduce database resource contention with connection pooling
Monitor and visualize cluster activity with Nagios and the TIG
(Telegraf, InfluxDB, Grafana) stack
Construct a robust software stack that can detect and avert outages
Use multi-master to achieve an enduring PostgreSQL cluster

https://www.packtpub.com/product/postgresql-12-high-availability-cookbook-third-edition/9781838984854


Other Books You May Enjoy

[ 607 ]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!



Index

A
access control lists (ACLs)  289
   about  286, 290
   inspecting  307, 308
ACID  11
admin  61
advanced statement window functions
   frame clause  155
   using  154
aggregate functions  121, 122, 123, 124
ALTER ROLE statement  275
ANALYZE command  433, 434, 435, 436
asynchronous replication
   about  526, 542, 543
   cascading replication  545, 546
   replica monitoring  544, 545
auditing
   implementing  462, 463
auto-explain module  436, 437, 438

B
backup
   about  472
   logical backup  472
   physical backup  472
Balanced Tree (B-Tree)  412
basebackup  532, 533
basic statement window functions
   using  144, 145
basic table manipulation statements  89
binary packages
   PostgreSQL 12, installing from  20
Boolean data type  169, 170
btree_gin extension  579, 580, 581

C
character data type
   about  173
   with fixed-length data type  173, 174
   with variable length with limit data type  174, 175
   with variable length without limit data type  175,

176

checkpoints
   checkpoint_timeout  353, 354
   configuration parameters  353
   issuing, manually  355
   max_wal_size  353, 354
   throttling  354, 355
cluster configuration settings
   about  504
   archive  508
   memory-related settings  505, 506
   networking-related settings  507
   optimizer settings  509
   process information settings  507
   replication settings  508
   statistics collector  509
   vacuum and autovacuum-related settings  508
   WAL settings  504, 505
cluster configuration
   about  498, 499
   contexts  503
   errors, finding  501
   files  498
   files, nesting  502
   generators  510, 512, 513
   main settings  504
   modifying, from live system  509, 510
   parameters, inspecting  499, 500
cluster
   about  15, 18



[ 609 ]

   configuring, for SSL  314
   databases, inspecting  517
   information about running queries, obtaining 

514, 515
   locks, inspecting  515, 517
   monitoring  514
   statistics-related catalog  519
   tables and indexes, inspecting  518, 519
cold backup  472
column-based permissions  296, 297, 298, 299
Common Table Expression (CTE)
   about  409
   concept  135
   examples  137, 138, 139
   exploring  134
   in PostgreSQL 12  136
   query recursion  139
compressed format  474
conditional statements
   about  200
   CASE statements  202, 203, 204
   IF statements  201, 202
configuration files
   exploring  53, 54
connection string  46
containing role  60
context  503
control file  369
control structure  200
crash-recovery  351
cross join  112
CUME_DIST function  153
custom format  474

D
data definition language (DDL)  168, 211, 554
Data Definition Level (DDL)  240
data manipulation language (DML)  240, 554
data types
   exploring  168
   extensibility concept  168
   standard data types  168
data
   deleting  98, 99
   inserting, into tables  90, 91, 92

   selecting  90
   updating  97
database administrator (DBA)  13
database connections, issues
   about  46
   connection refused  47
   database foo does not exist  47
   no pg_hba.conf entry  48
database copy
   making  79
Database Management System (DBMS)  31
database size
   confirming  79
   confirming, with psql method  80
   confirming, with SQL method  80
databases
   about  15, 18
   creating  75, 81, 82
   dropping  78
   listing  76
   making, from modified template  76, 77
   managing  75
date data type  176, 178, 179
Date/Time Type
   reference link  181
DDL commands  567, 568
deadlocks  345, 346, 347
Debian GNU/Linux
   pgxnclient, installing on  377
declarative partitioning
   exploring  261
   list partitioning  261, 263
   range partitioning  264, 266, 267
default ACLs  291, 292, 293, 294
DELETE .... RETURNING  134
DELETE events, rules
   new_tags table, creating  218
   two tables, creating  219
DELETE events
   rules  217
   rules, managing on  220
   triggers on  234, 235, 236, 237, 238, 239, 240
DELETE rules  222, 223
DENSE_RANK function  150
developing environment



[ 610 ]

   setting up  74
distinct query
   using  104, 105, 106
DROP DATABASE command  78
DROP TABLE command  78

E
end of life (EOL)  15
environment setup
   preparing, for streaming replication  527, 529
event triggers
   about  226, 240, 241, 242
   example  242, 243
exception handling statements  208, 209
EXISTS option  85
EXPLAIN statement
   about  419, 420, 421
   ANALYZE mode  422, 423, 424
   options  424, 426
   output formats  421, 422
explicit transactions
   comparing, with implicit transactions  321, 322,

323, 324, 325, 326
extension ecosystem  367, 368
extension files
   creating  390, 391
extension upgrade
   creating  392, 393
   performing  394, 395
extension versions
   finding  373
extensions, components
   control file  368, 369
   script file  368, 370
extensions
   about  366
   altering  373, 374, 375
   creating  371, 372, 389
   example extension, defining  389
   installed extension, removing  387
   installed extension, using  386
   installed extensions, viewing  372
   installing  381, 382, 391, 392
   installing, manually  383, 384, 385
   installing, via pgxnclient  382

   managing  370, 371
   manually installed extension, removing  388
   removing  375, 376
   removing, via pgxnclient  388

F
Fedora Linux
   pgxnclient, installing on  378
files
   using, instead of single roles  70
FIRST_VALUE function  148
foreign data wrappers
   using  577, 578
frame clause
   RANGE BETWEEN start_point and end_point 

161, 163, 164, 165
   ROWS BETWEEN start_point and end_point 

155, 156, 158, 159, 160, 161
FreeBSD
   pgxnclient, installing on  378
   PostgreSQL 12, installing on  23, 24, 25
FULL OUTER JOIN
   using  118, 119
Full Page Images (FPIs)  426
function parameters
   declaring  195, 196
   function volatility categories  198, 199
   IN/OUT parameters  196, 197, 198

G
gather nodes  407
Generalized Inverted Index (GIN)  412, 579
geospatial references (GIS)  11
GRANT statement  294, 306
groups
   using, instead of single roles  69, 70

H
hash partitioning  248, 249
Heap Only Tuple (HOT)  519
Host-Based Access (HBA)  48, 65
hot backup  472
hstore data type  182, 183, 184



[ 611 ]

I
ilike operator
   using  103
implicit transactions
   comparing, with explicit transactions  321, 322,

323, 324, 325, 326
incoming connections
   managing, at role level  65
index nodes  403
indexes
   about  13, 411, 412
   creating  413, 414, 415
   dropping  417
   inspecting  415, 416, 417
   invalidating  417, 418
   rebuilding  418, 419
   types  412, 413
information schema  17
Ingres  12
inheritance
   used, for exploring partitioning  253
INNER JOIN
   using  113, 114
   versus EXISTS condition  114
   versus IN condition  114
INSERT events, rules
   ALSO option  214, 215
   INSTEAD OF option  215, 216, 217
INSERT events
   rules  214
   rules, managing on  220
   triggers on  228, 229, 230, 231, 232, 233
INSERT rules  220, 221, 222
INSERT statement
   RETURNING clause for  130, 131
integer type  171

J
JavaScript Object Notation (JSON)  184
join nodes  404, 405, 406
joins  111, 112
JSON data type  184, 185, 186, 187, 188

L
LAG function  151
LAST_VALUE function  149
LEAD function  152
LEFT JOINS
   using  114, 115, 116, 117
like clause
   using  102, 103
limit clause
   using  106, 107
Linux Fedora
   PostgreSQL 12, installing on  21, 23
list partitioning
   about  247, 248
   data, inserting  257, 258
   data, updating  259, 260, 261
   examples  253, 254
   tables, creating  254, 255, 256
   triggers and functions, creating  257, 258, 259,

260, 261
logged tables  83
logging
   about  442, 443
   configuration, example  450, 451, 453
   deciding, what to  448, 449
   deciding, when to report  446, 447, 448
   deciding, where to store  443, 444, 445
logical backups
   about  472, 529
   advantage  472
   backup automation  489, 490
   data amount, limiting  480, 481
   drawbacks  472
   dump formats  481, 482, 483, 484
   exploring  473, 474
   parallel backups  487, 488, 489
   pg_restore  481, 482, 483, 484
   selective restore, performing  485, 486
   single database, dumping  474, 475, 476, 477
   single database, restoring  477, 478, 479, 480
   versus physical backup  472
   whole cluster, dumping  487
logical replication, environment settings
   about  555



[ 612 ]

   pg_hba.conf file  557
   postgresql.conf, modifying on master server  556
   postgresql.conf, modifying on replica server  557
   replica role  555
logical replication
   about  551, 552
   disabling  569, 570
   monitoring  559, 560
   setup  554, 558
loop statement
   about  205, 206
   record type  206

M
Multi-Version Concurrency Control (MVCC)  318,

340, 341, 342
multiple rules
   merging, into single one  68

N
normal users  16
NoSQL data type  182
NTILE function  153, 154
NULL values
   about  93, 94
   sorting with  95, 96
numeric data type
   about  170
   integer type  171
   with arbitrary precision data type  171, 172
   with fixed precision data type  171

O
object owner
   assigning  306
offset clause
   using  106, 107
ORDER BY clause  147

P
parameters
   exploring  53, 54
PARTITION BY function
   using  145

partition-wise joins  13
partitioning
   about  13
   basic concepts  245, 246
   exploring, with inheritance  253
   hash partitioning  248, 249
   list partitioning  247, 248
   maintenance  267, 268, 269
   range partitioning  246, 247
   table inheritance  249, 251, 252
permissions
   column-based permissions  296, 297, 298, 299
   granting  294
   related, to databases  305, 306
   related, to languages  303, 304
   related, to routines  304, 305
   related, to schemas  301, 302, 303
   related, to sequences  299, 300
   related, to tables  295
   revoking  294
pg_basebackup command
   about  541
   reference link  541
pg_ctl  32, 33, 34, 35, 36, 37
pg_hba.conf file
   order of rules  67, 68
   syntax  66, 67
pg_stat_statements extension
   data collected, resetting  521
   installing  520
   tuning  522
   used, for performing advanced statistics  520
   using  521
pg_trgm extension  574, 576, 577
PgAudit
   configuring  465, 466
   exploiting, by PostgreSQL configuration  465
   installing  464
   role, auditing  468, 469
   session, auditing  466, 467, 468
pgbackrest tool
   basebackups, managing  592, 594
   configuring  587
   continuous backups, creating  591
   continuous backups, managing  591



[ 613 ]

   environment setting  583
   exchange of public keys  583, 584
   features  582
   installing  586
   managing  582
   PITR, managing  595, 596
   PostgreSQL server configuration  589
   repository configuration  587, 589
   stanza  583
   stanza, checking  592
   stanza, creating  591
PgBadger
   information, extracting from logs  453
   installing  454, 455
   PostgreSQL logging, configuring for usage  455,

456

   scheduling  459, 460, 461, 462
   using  456, 457, 458, 459
PGConfig  511
PGDATA directory
   objects  50, 51
   tablespaces  52, 53
PGDATA
   about  18
   disk layout, exploring  48, 49, 50
pgenv
   PostgreSQL, installing via  27, 29
PGXN client
   exploring  376, 377
pgxnclient command-line interface  380, 381
pgxnclient
   extensions, installing via  382
   extensions, removing via  388
   installing, from sources  379
   installing, on Debian GNU/Linux  377
   installing, on Fedora Linux  378
   installing, on FreeBSD  378
physical backups
   about  473
   advantage  473
   cloned cluster  494
   disadvantage  473
   exploring  491, 492
   performing, manually  492, 493
   pg_verifybackup  493

   physical backups  494
   restoring  495
physical replication, versus logical replication
   about  554, 561
   read-only, versus write allowed  562, 564, 565,

566

   simulating on test, versus bloating elimination 
561

PL/pgSQL functions
   about  193
   conditional statements  200
   control structure  200
   exception handling statements  208, 209
   function parameters, declaring  195, 196
   loop statement  205, 206
   overview  194, 195
plain text format  474
point-in-time recovery (PITR)  473, 530
POSTGRES (POST-Ingres)  12
postgres_fdw extension
   using  577, 578
PostgreSQL 12
   CTEs in  136
   installing  18, 19
   installing, from binary packages  20
   installing, on FreeBSD  23, 24, 25
   installing, on GNU/Linux Debian  20, 21
   installing, on Linux Fedora  21, 23
   installing, on Ubuntu  20, 21
   new features  12
PostgreSQL 13, features
   about  599
   administration commands  600
   backup tools  602
   performance  602
   psql  601
   replication  599
PostgreSQL 13
   features  599
   new features  13
   upgrading to  603
PostgreSQL client  19
PostgreSQL cluster
   connecting to  39, 40
   managing  32



[ 614 ]

   pg_ctl  32, 33, 34, 35, 36, 37
   processes  37, 38, 39
PostgreSQL docs  19
PostgreSQL executes, parallel nodes
   gather nodes  407
   parallel aggregations  408
   parallel joins  408
   parallel scans  407
PostgreSQL executes, sequential nodes
   index nodes  403
   join nodes  404, 405, 406
   Sequential Scan (Seq Scan)  402
PostgreSQL executes
   node costs  410, 411
   of statement  398
   optimizer  401, 402
   optimizer, selecting parallel plan  408, 409
   optimizer, using nodes  402
   parallel nodes  407
   sequential nodes  402
   stages  399, 400
   utility nodes  409
PostgreSQL exploits
   statistical approach, updating  433, 434, 435,

436

PostgreSQL eXtension Network (PGXN)  366, 367
PostgreSQL eXtension System (PGXS)  368
PostgreSQL functions
   about  188
   exploring  188
   PL/pgSQL functions  193
   SQL functions  189
PostgreSQL Global Developers Group (PGDG)  20
PostgreSQL languages
   exploring  188
PostgreSQL logging
   configuring, for PgBadger usage  455, 456
PostgreSQL server  19
PostgreSQL server configuration, pgbackrest
   pgbackrest.conf file  590, 591
   postgresql.conf file  590
PostgreSQL settings, asynchronous replication
   master server  548
   standby server  549, 550
PostgreSQL, errors list

   reference link  209
PostgreSQL, rules
   NEW variables  212, 213
   OLD variables  212, 213
   rules, on DELETE / UPDATE  217
   rules, on INSERT  214
PostgreSQL
   about  10, 366
   configuring, to exploit PgAudit  465
   history  12
   installing, from sources  25, 26
   installing, via pgenv  27, 29
   life cycle  14
   release policy  14
   rules, exploring in  212
   triggers, managing in  226
   URL  11
   version numbers  14
postmaster  18
privileges
   resolving  283, 284, 285
Process Identifier (PID)  33, 449
psql command-line client  41, 42, 43
psql commands  45, 46
psql method
   database size, confirming  80
psql
   SQL statements, entering via  43

Q
query tuning
   examples  427, 428, 430, 431, 432, 433

R
RANK function  149, 150
Read Committed  338
Read uncommitted isolation level  337
record type  206
recovery  534, 536
recursive CTEs  140, 141
Repeatable Read isolation level  338
replication  13
replication environment  538, 539
restores  472
REVOKE statement  294, 306



[ 615 ]

RIGHT JOIN
   using  117
role inheritance
   overview  286
role password encryption  313
roles
   about  57, 273
   availability  60
   connections  60
   creating  58, 59
   inheriting, from other roles  281, 282, 283
   inspecting  63, 64, 65, 279, 280
   managing  58
   passwords  59
   per-role configuration parameters  277, 278
   properties, modifying of  275
   properties, related to objects  273
   properties, related to replication  274
   properties, related to row-level security  274
   properties, related to superusers  274
   removing  62, 63
   renaming  276
   SESSION_USER, versus CURRENT_USER 

276, 277
   using, as group  60, 61, 62
row-level security  274, 308, 309, 311, 312
ROW_NUMBER function  147

S
savepoints  343, 344, 345
schema  15, 301
   ALL objects  303
script file  370
Secure Socket Layer (SSL)
   about  313
   cluster, configuring for  314
   used, for connecting to cluster  314, 315, 316
SELECT statement, aggregate functions
   EXCEPT operator  126, 127
   INTERSECT operator  126, 127
   UNION  124, 125
   UNION ALL  124, 125
SELECT statement, subqueries
   EXISTS condition, using  110, 111
   IN condition, using  108, 109, 110

   NOT EXISTS condition, using  110, 111
   NOT IN condition, using  108, 109, 110
SELECT statement
   aggregate functions  121, 122, 123, 124
   distinct query, using  104, 105, 106
   exploring  101
   ilike operator, using  103
   joins  111, 112
   like clause, using  102, 103
   limit clause, using  106, 107
   offset clause, using  106, 107
   subqueries, using  108
SELF JOIN
   using  120, 121
semi-join queries  111
sequence  299
Sequential Scan (Seq Scan)  402
Serializable isolation level  338, 339, 340
slot technique  540
SQL functions
   about  189
   basic functions  189, 190
   polymorphic SQL functions  192, 193
   set of elements, returning  190, 191
   table, returning  191, 192
SQL method
   database size, confirming  80
SQL statements
   entering, via psql  43
SSL connections  314
standard data types
   about  168
   Boolean data type  169, 170
   character data type  173
   date data type  176
   hstore data type  182, 183, 184
   JSON data type  184, 185, 186, 187, 188
   NoSQL data type  182
   numeric data type  170
   timestamp data types  176
statistic collector  514
statistics  13
streaming replication
   basic concept  537, 538
   environment setup, preparing for  527, 529



[ 616 ]

   managing  536
subqueries
   using  108
superusers  16
synchronous replication  526, 548

T
table inheritance
   about  249, 251, 252
   tables, dropping  253
Table of Contents (TOC)  485
tables
   creating  88, 89
   creating, with data from another table  96
   dropping  78
   managing  83, 84
template databases  40, 41
temporary tables
   about  83
   managing  86, 87
TG_OP variable  233
timestamp data type  176, 179, 180, 181
transaction identifiers
   about  327, 328
   real  328, 330
   virtual  328, 330
transaction isolation levels
   about  335, 336, 337
   Read Committed  338
   Read uncommitted isolation level  337
   Repeatable Read isolation level  338
   Serializable isolation level  338, 339
transactions
   about  319, 320, 321
   multi-version concurrency control  330, 331, 332,

333, 334, 335
   time within  326, 327
trigger syntax  227, 228

U
unlogged tables  83
   managing  88
UPDATE .... RETURNING
   exploring  133
UPDATE events, rules

   new_tags table, creating  218
   two tables, creating  219
UPDATE events
   rules  217
   rules, managing on  220
   triggers on  234, 235, 236, 237, 238, 239, 240
UPDATE rules  224, 225
UPDATE
   relating, to multiple tables  131, 132, 133
UPSERT statement
   multiple tables, UPDATE  131, 132, 133
   PostgreSQL way  128, 130
   RETURNING clause, for INSERT  130, 131
   tuples out, returning of queries  131
   using  127
user groups  57

V
VACUUM
   about  355
   automatic  361, 362, 363
   manual  356, 357, 358, 359, 360, 361

W
WAL archive  530, 531
WAL archiving  529
WAL-replay  351
wal_keep_segments option  539, 540
wal_level directive  527
WINDOW clause
   using  145, 146
windows functions
   about  146
   CUME_DIST  153
   DENSE_RANK  150
   FIRST_VALUE  148
   LAG  151
   LAST_VALUE  149
   LEAD  152
   NTILE  153, 154
   ORDER BY clause  147
   RANK  149, 150
   reference link  151
   ROW_NUMBER  147
Write-Ahead Logs (WALs)



   about  16, 18, 38, 318, 348, 349, 350, 351,
491, 526

   as rescue method, in event of crash  351
   checkpoints  352, 353

X
XID wraparound problem  327, 328


	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Getting Started
	Chapter 01: Introduction to PostgreSQL
	Technical requirements
	PostgreSQL at a glance
	A brief history of PostgreSQL
	What's new in PostgreSQL 12?
	What's new in PostgreSQL 13?
	PostgreSQL release policy, version numbers, and life cycle

	Exploring PostgreSQL terminology
	Installing PostgreSQL 12 or higher
	What to install
	Installing PostgreSQL 12 from binary packages
	Installing PostgreSQL 12 on GNU/Linux Debian, Ubuntu, and derivatives
	Installing PostgreSQL 12 on Linux Fedora
	Installing PostgreSQL 12 on FreeBSD

	Installing PostgreSQL from sources
	Installing PostgreSQL via pgenv

	Summary
	References

	Chapter 02: Getting to Know Your Cluster
	Technical requirements
	Managing your cluster
	pg_ctl
	PostgreSQL processes

	Connecting to the cluster
	The template databases
	The psql command-line client
	Entering SQL statements via psql
	A glance at the psql commands

	Introducing the connection string
	Solving common connection problems
	Database "foo" does not exist
	Connection refused
	No pg_hba.conf entry


	Exploring the disk layout of PGDATA
	Objects in the PGDATA directory
	Tablespaces


	Exploring configuration files and parameters
	Summary
	References

	Chapter 03: Managing Users and Connections
	Introduction to users and groups
	Managing roles
	Creating new roles
	Role passwords, connections, and availability

	Using a role as a group
	Removing an existing role
	Inspecting existing roles

	Managing incoming connections at the role level
	The syntax of pg_hba.conf
	Order of rules in pg_hba.conf
	Merging multiple rules into a single one
	Using groups instead of single roles
	Using files instead of single roles

	Summary
	References

	Section 2: Interacting with the Database
	Chapter 04: Basic Statements
	Technical requirements
	Setting up our developing environment
	Creating and managing databases
	Creating a database
	Managing databases
	Listing all databases
	Making a new database from a modified template

	Dropping tables and databases
	Dropping tables
	Dropping databases

	Making a database copy
	Confirming the database size
	The psql method
	The SQL method

	Creating a database

	Managing tables
	The EXISTS option
	Managing temporary tables
	Managing unlogged tables
	Creating a table

	Understanding basic table manipulation statements
	Inserting and selecting  data
	NULL values
	Sorting with NULL values

	Creating a table starting from another table

	Updating data
	Deleting data

	Summary
	References

	Chapter 05: Advanced Statements
	Exploring the SELECT statement
	Using the like clause
	Using ilike
	Using distinct
	Using limit and offset
	Using subqueries
	Using the IN/NOT IN condition
	Using the EXISTS/NOT EXISTS condition

	Learning joins
	Using INNER JOIN
	INNER JOIN versus EXISTS/IN

	Using  LEFT JOINS
	Using RIGHT JOIN
	Using  FULL OUTER JOIN
	Using SELF JOIN

	Aggregate functions
	UNION/UNION ALL
	EXCEPT/INTERSECT​


	Using UPSERT
	UPSERT – the PostgreSQL way
	Learning the RETURNING clause for INSERT
	Returning tuples out of queries
	UPDATE related to multiple tables
	Exploring UPDATE .... RETURNING
	DELETE .... RETURNING


	Exploring CTEs
	CTE concept
	CTE in PostgreSQL 12
	CTE – some examples
	Query recursion
	Recursive CTEs


	Summary
	References

	Chapter 06: Window Functions
	Using basic statement window functions
	Using the PARTITION BY function and WINDOW clause
	Introducing some useful functions
	The ROW_NUMBER function
	The ORDER BY clause
	FIRST_VALUE
	LAST_VALUE
	RANK
	DENSE_RANK 
	The LAG and LEAD functions
	The CUME_DIST function
	The NTILE function


	Using advanced statement window functions
	The frame clause
	ROWS BETWEEN start_point and end_point
	RANGE BETWEEN start_point and end_point


	Summary
	References

	Chapter 07: Server-Side Programming
	Exploring data types
	The concept of extensibility
	Standard data types
	Boolean data type
	Numeric data type
	Integer types
	Numbers with a fixed precision data type
	Numbers with an arbitrary precision data type

	Character data type
	Chars with fixed-length data types
	Chars with variable length with a limit data types
	Chars with a variable length without a limit data types

	Date/timestamp data types
	Date data types
	Timestamp data types

	The NoSQL data type
	The hstore data type
	The JSON data type


	Exploring functions and languages
	Functions
	SQL functions
	Basic functions
	SQL functions returning a set of elements
	SQL functions returning a table
	Polymorphic SQL functions

	PL/pgSQL functions
	First overview
	Declaring function parameters
	IN/OUT parameters
	Function volatility categories

	Control structure
	Conditional statements
	IF statements
	CASE statements

	Loop statements
	The record type

	Exception handling statements


	Summary
	References

	Chapter 08: Triggers and Rules
	Exploring rules in PostgreSQL
	Understanding the OLD and NEW variables
	Rules on INSERT
	The ALSO option
	The INSTEAD OF option

	Rules on DELETE / UPDATE
	Creating the new_tags table
	Creating two tables
	Managing  rules on INSERT, DELETE, and UPDATE events 
	INSERT rules
	DELETE rules
	UPDATE rules



	Managing triggers in PostgreSQL
	Trigger syntax
	Triggers on INSERT
	The TG_OP variable

	Triggers on UPDATE / DELETE

	Event triggers
	An example of an event trigger

	Summary
	References

	Chapter 09: Partitioning
	Basic concepts
	Range partitioning
	List partitioning
	Hash partitioning
	Table inheritance
	Dropping tables


	Exploring partitioning using inheritance
	An example of list partitioning
	Creating tables
	Creating triggers and functions, and inserting data
	Creating triggers and functions and updating data


	Exploring declarative partitioning
	List partitioning
	Range partitioning
	Partition maintenance


	Summary
	References

	Section 3: Administering the Cluster
	Chapter 10: Users, Roles, and Database Security
	Understanding roles
	Properties related to new objects
	Properties related to superusers
	Properties related to replication
	Properties related to row-level security
	Changing properties of existing roles: the ALTER ROLE statement
	Renaming an existing role
	SESSION_USER versus CURRENT_USER
	Per-role configuration parameters

	Inspecting roles
	Roles that inherit from other roles
	Understanding how privileges are resolved
	Role inheritance overview


	Access control lists
	Default ACLs
	Knowing default ACLs


	Granting and revoking permissions
	Permissions related to tables
	Column-based permissions
	Permissions related to sequences
	Permissions related to schemas
	ALL objects in the schema

	Permissions related to languages
	Permissions related to routines
	Permissions related to databases
	Other GRANT and REVOKE statements
	Assigning the object owner
	Inspecting ACLs

	Row-level security
	Role password encryption
	SSL connections
	Configuring the cluster for SSL
	Connecting to the cluster via SSL

	Summary
	References

	Chapter 11: Transactions, MVCC, WALs, and Checkpoints
	Technical requirements
	Introducing transactions
	Comparing implicit and explicit transactions
	Time within transactions

	More about transaction identifiers – the XID wraparound problem
	Virtual and real transaction identifiers

	Multi-version concurrency control

	Transaction isolation levels
	Read uncommitted
	Read Committed
	Repeatable Read
	Serializable

	Explaining MVCC
	Savepoints
	Deadlocks
	How PostgreSQL handles persistency and consistency: WALs
	Write-Ahead Logs (WALs)
	WALs as a rescue method in the event of a crash
	Checkpoints

	Checkpoint configuration parameters
	checkpoint_timeout and max_wal_size
	Checkpoint throttling
	Manually issuing a checkpoint


	VACUUM
	Manual VACUUM
	Automatic VACUUM

	Summary
	References

	Chapter 12: Extending the Database - the Extension Ecosystem
	Introducing extensions
	The extension ecosystem
	Extension components
	The control file

	The script file

	Managing extensions
	Creating an extension
	Viewing installed extensions
	Finding out available extension versions
	Altering an existing extension
	Removing an existing extension

	Exploring the PGXN client
	Installing pgxnclient on Debian GNU/Linux and derivates
	Installing pgxnclient on Fedora Linux
	Installing pgxnclient on FreeBSD
	Installing pgxnclient from sources
	The pgxnclient command-line interface

	Installing extensions
	Installing the extension via pgxnclient
	Installing the extension manually
	Using the installed extension
	Removing an installed extension
	Removing an extension via pgxncliet
	Removing a manually installed extension 


	Creating your own extension
	Defining an example extension
	Creating extension files
	Installing the extension
	Creating an extension upgrade
	Performing an extension upgrade

	Summary
	References

	Chapter 13: Indexes and Performance Optimization
	Technical requirements
	Execution of a statement
	Execution stages
	The optimizer
	Nodes that the optimizer uses
	Sequential nodes
	Sequential Scan
	Index nodes
	Join nodes

	Parallel nodes
	Gather nodes
	Parallel scans
	Parallel joins
	Parallel aggregations

	When does the optimizer choose a parallel plan?
	Utility nodes

	Node costs

	Indexes
	Index types
	Creating an index
	Inspecting indexes
	Dropping an index
	Invalidating an index
	Rebuilding an index

	The EXPLAIN statement
	EXPLAIN output formats
	EXPLAIN ANALYZE
	EXPLAIN options

	An example of query tuning
	ANALYZE and how to update statistics
	Auto-explain
	Summary
	References

	Chapter 14: Logging and Auditing
	Technical requirements
	Introduction to logging
	Where to log
	When to log
	What to log
	A complete example of logging configuration

	Extracting information from logs – PgBadger
	Installing PgBadger
	Configuring PostgreSQL logging for PgBadger usage
	Using PgBadger
	Scheduling PgBadger

	Implementing auditing
	Installing PgAudit
	Configuring PostgreSQL to exploit PgAudit
	Configuring PgAudit
	Auditing by session
	Auditing by role

	Summary
	References

	Chapter 15: Backup and Restore
	Technical requirements
	Introducing various types of backups and restores
	Exploring logical backups
	Dumping a single database
	Restoring a single database
	Limiting the amount of data to back up
	Dump formats and pg_restore
	Performing a selective restore
	Dumping a whole cluster
	Parallel backups
	Backup automation

	Exploring physical backups
	Performing a manual physical backup
	pg_verifybackup

	Starting the cloned cluster
	Restoring from a physical backup

	Summary
	Further reading

	Chapter 16: Configuration and Monitoring
	Technical requirements
	Cluster configuration
	Inspecting all the configuration parameters
	Finding configuration errors
	Nesting configuration files
	Configuration contexts
	Main configuration settings
	WAL settings
	Memory-related settings
	Process information settings
	Networking-related settings
	Archive and replication settings
	Vacuum andautovacuum-related settings
	Optimizer settings
	Statistics collector

	Modifying the configuration from a live system
	Configuration generators

	Monitoring the cluster
	Information about running queries
	Inspecting locks
	Inspecting databases
	Inspecting tables and indexes
	More statistics

	Advanced statistics with pg_stat_statements
	Installing the pg_stat_statements extension
	Using pg_stat_statements
	Resetting data collected from pg_stat_statements
	Tuning pg_stat_statements

	Summary
	Further Reading

	Section 4: Replication
	Chapter 17: Physical Replication
	Exploring basic concepts
	WAL
	The wal_level directive

	Preparing the environment setup for streaming replication

	Learning WAL archiving and PITR
	PITR – the manual way
	The WAL archive
	Basebackup
	Recovery


	Managing streaming replication
	Basic concept
	Replication environment
	The wal_keep_segments option
	The slot way
	The pg_basebackup command
	Asynchronous replication
	Replica monitoring
	Cascading replication

	Synchronous replication
	PostgreSQL settings
	Master server
	Standby server



	Summary
	References

	Chapter 18: Logical Replication
	Understanding basic concepts
	Comparing logical replication and physical replication 

	Exploring logical replication setup
	Logical replication environment settings
	The replica role
	Master server – postgresql.conf
	Replica server – postgresql.conf
	The pg_hba.conf file

	Logical replication setup
	Monitoring logical replication
	Comparing physical replication and logical replication
	Simulating on test versus bloating elimination
	Read-only versus write allowed

	DDL commands
	Disabling logical replication

	Summary
	References

	Section 5: The PostegreSQL Ecosystem
	Chapter 19: Useful Tools and Extensions
	Exploring the pg_trgm extension
	Using foreign data wrappers and the postgres_fdw extension
	Exploring the btree_gin extension
	Managing the pgbackrest tool
	Basic concepts
	Environment setting
	The exchange of public keys

	Installing pgbackrest
	Configuring pgbackrest
	The repository configuration 
	The PostgreSQL server configuration
	The postgresql.conf file
	The pgbackrest.conf file


	Creating and managing continuous backups
	Creating the stanza
	Checking the stanza
	Managing basebackups
	Managing PITR


	Summary
	References

	Chapter 20: Toward PostgreSQL 13
	Introducing PostgreSQL 13's new features
	Replication
	Administration
	psql
	Performance
	Backup tools

	Upgrading to PostgreSQL 13
	Summary
	References

	Other Books You May Enjoy
	Index



