

Learning GraphQL and Relay

Build data-driven React applications with ease using
GraphQL and Relay

Samer Buna

BIRMINGHAM - MUMBAI

Learning GraphQL and Relay

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2016

Production reference: 1250816

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78646-575-7

www.packtpub.com

Credits

Author

Samer Buna

Copy Editor

Safis Editing

Reviewers

Hafiz Ismail

Lee Byron

Project Coordinator

Sheejal Shah

Commissioning Editor

Wilson D'souza

Proofreader

Safis Editing

Acquisition Editor

Smeet Thakkar

Indexer

Rekha Nair

Content Development Editor

Divij Kotian

Production Coordinator

Melwyn Dsa

Technical Editor

Rupali R. Shrawane

About the Author
Samer Buna is a technical content author, software engineer, and mentor. He has a master's
degree in information security and over ten years of progressive experience and success
creating tailored solutions for businesses within many industries.

Samer is passionate about everything JavaScript, and he loves exploring new libraries. His
favorite technical stacks are Node.js for the backend and React.js for the frontend.

Samer has authored a few books and online courses about React and GraphQL. You can
follow him on Twitter at @samerbuna, and you can read more of what he writes at h t t p s : / /

e d g e c o d e r s . c o m /.

https://twitter.com/samerbuna
https://twitter.com/samerbuna
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/
https://edgecoders.com/

Acknowledgments
First and foremost, I would like to thank my wife, Chalena, for standing beside me
throughout my career and the writing of this book. Not only does she take care of the world
around me and allow me to focus 100% on what I do, but she also often helps me do what I
do and review what I write. I dedicate this book to her and our kids, Leo and Ally, who are
just about the best children a dad could hope for. Their happy, loving, and fun presence is
what keeps me going. I'd like to thank my friend and genius reviewer Julia Hunt for all of
her excellent contributions to this book. Julia's feedback was great, as always, and it made
this book a much better product. I'd like to also thank the Packt Publishing team I was
fortunate to work with for their patience and guidance throughout the process of drafting
and reviewing this book.

About the Reviewers
Hafiz Ismail is a software engineer, an open source buccaneer, and not an astrophysicist.
He writes articles on the latest in web technology at h t t p s : / / w e h a v e f a c e s . n e t

Lee Byron has been making things at Facebook since 2008: React, GraphQL, Immutable.js,
Mobile, JavaScript.

https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/
https://wehavefaces.net/

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s : / / w w w 2 . p a c k t p u b . c o m / b o o k s / s u b s c r i p t i o n / p a c k t l i b

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.packtpub.com
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib

Table of Contents
Preface 1

Chapter 1: An Introduction to GraphQL and Relay 6

What is GraphQL? 6
What is Relay? 8
Why GraphQL? 10

RESTful APIs versus GraphQL APIs 11
Why Relay? 19

Understanding Relay's core principles 19
Storage and caching 20
Object identification 20
The connection model 21

Setting up a simple GraphQL server 22
Installing Node.js 22
Defining the schema 24
Using the schema 28

Rolling the dice 29
Using field arguments 31

Setting up MongoDB 32
Setting up an HTTP interface 37
The GraphiQL editor 39

Summary 41

Chapter 2: The Query Language 42

Documents and operations 42
Fields 44
Variables 45
Directives 47
Aliases 49
Fragments 51
Mutations 53
Summary 54

Chapter 3: The GraphQL Schema 55

The schema object 55
Introspection 59
The type system 65

[ii]

Scalars and object types 66
Interfaces and unions 66
Type modifiers 70
Enums 72

The resolve function 73
First argument – source 74
Second argument – args 74
Third argument – context 78
Fourth argument – info 79
Resolving with promises 80

Validation 85
Versioning 86
Summary 88

Chapter 4: Configuring React Applications to Use Relay 89

The example GraphQL schema 89
The quotes library 92
Setting up Webpack 94
Using GraphQL without Relay in React applications 98
Relay containers 101
Summary 104

Chapter 5: Making GraphQL Queries Relay-Compliant 105

Transforming GraphQL queries for Relay 105
Root-level field for the quotes library 113
First query operation with Relay 117
Relay's connection model 122
Summary 131

Chapter 6: Relay Variables and Object Identification 132

Implementing search 132
Adding a search feature to the GraphQL API 133
Implementing the search feature in Relay 135

Adding a search form component 135
Using Relay variables 136

Implementing likes 140
Relay's global ID 146
The Node interface 148

Summary 152

Chapter 7: Relay Mutations 154

Relay-compliant GraphQL mutations 154

[iii]

Relay.Mutation 160
Optimistic updates 166
Summary 169

Chapter 8: Deploying to the Cloud 170

Preparing for deployment 170
Creating a GitHub repository 170
Deploying locally 173

Deploying on EC2 178
Installing MongoDB 184
Running the Node.js server 185

Deploying on Heroku 188
Cloud-hosted MongoDB 192

Summary 198

Index 199

Preface
There’s a new choice for implementing APIs—the open source and Facebook-created
GraphQL specification. Designed to solve many of the issues of working with REST,
GraphQL comes alongside RelayJS, a React library for querying a server that implements
the GraphQL specification. This book takes you quickly and simply through the skills you
need to be able to build production-ready applications with both GraphQL and RelayJS.

What this book covers
Chapter 1, An Introduction to GraphQL and Relay, introduces you to Relay and GraphQL
with the assumption that you have never heard of either. We will also discuss the problems
that GraphQL and Relay aim to solve. Lastly, you will learn how to configure your Node.js
application for GraphQL by setting up a Node.js GraphQL endpoint with a basic Hello
World example.

Chapter 2, The Query Language, teaches you the syntax of the GraphQL language and the
different features that are available there.

Chapter 3, The GraphQL Schema, gives you hands-on experience for working a GraphQL
schema and the core features of a GraphQL runtime.

Chapter 4, Configuring React Applications to Use Relay, walks you through the steps needed
to get your React application ready for use with Relay.

Chapter 5, Making GraphQL Queries Relay-Compliant, explains why just having a GraphQL
server is not enough. The server will need to be Relay-compliant. This chapter will walk
you through the necessary steps to make it so.

Chapter 6, Relay Variables and Object Identification, is about how a user can query the
GraphQL endpoint with Relay at the React application’s entry point, reducing round trips
to the GraphQL server.

Chapter 7, Relay Mutations, will teach you how to invoke changes by invoking mutations
with Relay on the GraphQL endpoints.

Chapter 8, Deploying to the Cloud, walks you through deploying your GraphQL/Relay app
on EC2 and Heroku.

Preface

[2]

What you need for this book
The following are the requirements:

Node 6.x
Git
A cup of coffee

Who this book is for
This book does not assume that you have any prior experience or familiarity with GraphQL
or Relay. You should, however, be comfortable writing Node.js applications on a MongoDB
database with REST APIs as well as applications on the client side using React and ES2015.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code is set as follows:

const queryType = new GraphQLObjectType({
 name: 'RootQuery',
 fields: {
 hello: {
 type: GraphQLString,
 resolve: () => 'world'
 }
 }
});

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

import socket
socket.setdefaulttimeout(3)
newSocket = socket.socket()
newSocket.connect(("localhost",22))

Preface

[3]

Any command-line input or output is written as follows:

~ $ curl -o-
https://raw.githubusercontent.com/creationix/nvm/v0.31.4/install.sh | bash

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Click on the OS X link."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w . p

a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u b . c

o m / s u p p o r t and register to have the files e-mailed directly to you.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[4]

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/Learning-GraphQL-and-Relay. We also have other
code bundles from our rich catalog of books and videos available at h t t p s : / / g i t h u b . c o m / P

a c k t P u b l i s h i n g /. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from
http://www.packtpub.com/sites/default/files/downloads/LearningGraphQLandRelay_C

olorImages.pdf.

https://github.com/PacktPublishing/Learning-GraphQL-and-Relay
https://github.com/PacktPublishing/Learning-GraphQL-and-Relay
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/LearningGraphQLandRelay_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearningGraphQLandRelay_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearningGraphQLandRelay_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearningGraphQLandRelay_ColorImages.pdf

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n t e n

t / s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
An Introduction to GraphQL and

Relay
GraphQL provides a common interface between client and server applications for fetching
and manipulating data. Relay is a JavaScript framework that uses GraphQL to enable React
applications to communicate their data requirements in a declarative way.

This chapter will be an introduction to GraphQL and Relay. Here are the topics that we will
cover in this chapter:

What is GraphQL, what is Relay, and what problems do they solve?
What is declarative data communication?
What does GraphQL look like and how does it work on the server?
What is a GraphQL schema?
How does GraphQL work with databases such as MongoDB?
How can GraphQL be used over HTTP?

What is GraphQL?
GraphQL is defined as a data query language and runtime. It's important to understand the
two different parts of this definition:

GraphQL is a language. If we teach it to a software client application, that
application will be able to declaratively communicate its data requirements to a
backend data service that also speaks GraphQL.

An Introduction to GraphQL and Relay

[7]

GraphQL is a runtime. It's an execution layer a server application can use to
understand and respond to any requests made with the GraphQL language.
Think of this layer as simply a translator of the GraphQL language, or a
GraphQL-speaking agent who represents the data service.

Anyone can invent a new language and start speaking it, but no one would understand
them without learning the new language first, or having someone translate it for them.
That's why we need to implement a runtime for GraphQL on the backend servers.

Backend servers speak their own languages, and they often speak multiple languages. A
typical modern API server speaks at least two languages: one for the database, such as SQL,
and another for processing the data, such as Java or Ruby.

GraphQL is designed to play well with other backend languages. We can implement
GraphQL as a layer on top of any existing server logic. This layer will enable the server to
understand GraphQL requests and pass them down to its existing logic to fetch data and
fulfill the original requests.

Regardless of whether we're writing GraphQL requests for client applications, or GraphQL
runtimes for server applications, we need to learn and understand the principles and
standards of the GraphQL language first.

Learning the GraphQL language itself will be simple. It's not a big language, and it's very
close to JavaScript Object Notation (JSON). If you're comfortable with JSON, you'll be able
to pick up the GraphQL language in no time. If you don't know JSON, I'd recommend that
you do some reading about it first. The Introducing JSON article at h t t p : / / j s o n . o r g / is an
excellent start.

Once we are fluent in the GraphQL language itself, we can use this new skill to translate for
web and mobile applications. These applications have a constant need to communicate their
data requirements to data services, and we can use the GraphQL language to do that for
them.

Just like a child can learn a new language fast, while an adult will have a
harder time picking it up, starting a new application from scratch using
GraphQL will be a lot easier than introducing GraphQL to a mature
application.

The GraphQL runtime layer, which can be written in any language, defines a generic graph-
based schema to publish the capabilities of the data service it represents. Client applications
can query the schema within its capabilities. This approach decouples clients from servers
and allows both of them to evolve and scale independently.

http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/

An Introduction to GraphQL and Relay

[8]

A GraphQL operation can be either a query (read operation), or a mutation (write operation).
For both cases, the operation is a simple string that a GraphQL service can parse and
respond to with data in a specific format. The popular response format that is usually used
for mobile and web applications is JSON.

Here's an example of a GraphQL query that a client can use to ask a server about the name
and e-mail of user #42:

{
 user(id: 42) {
 firstName
 lastName
 email
 }
}

Here's a possible JSON response for that query:

{
 "data": {
 "user": {
 "firstName": "John",
 "lastName": "Doe",
 "email": "john@example.com"
 }
 }
}

The request and response in a GraphQL communication are related. A request determines
the shape of its response, and a response can be used to easily construct a suitable request.

GraphQL on the server is just a specification that defines various design principles,
including a hierarchical structure that supports composition, support of arbitrary code, a
strong type system, introspective nature, and many more.

What is Relay?
Relay is defined as a framework for building data-driven React applications. It's important
to understand the two aspects of Relay in this definition:

Relay is a framework, and it's actually an opinionated one. Opinionated
frameworks make most of the design decisions for us, and they want us to do
things a certain way. Depending on our requirements and conditions, this could
be a great thing, but it could also be a great limitation. This applies to all

An Introduction to GraphQL and Relay

[9]

frameworks, not just Relay.
Relay is for data-driven applications. When writing applications that are not
driven by data, or applications that have minimal data interactions, Relay might
not be the best choice.

However, most frontend applications are data-driven, even if at first we think otherwise.
Simplify the problem domain, and it will most likely point to some data requirements.

Relay is a young and developing framework that is constantly changing. Its API syntax will
most likely change in the near future; however, its concepts and design principles will stand
the test of time.

Although Relay's concepts and principles can be applied to other view
libraries, what Facebook open-sourced in 2015 as Relay is an extension to
the React.js library, and it will only work with that library.

Here's an example React component with its Relay data requirements:

const UserCard = ({user}) =>
 <div className="user-card">
 Name : {user.firstName} {user.lastName}
 Email : {user.email}
 </div>;

UserCard = Relay.createContainer(UserCard, {
 fragments: {
 user: () => Relay.QL`
 fragment on User {
 firstName
 lastName
 email
 }
 `
 }
});

This UserCard React component displays a user's name and e-mail, it requires the existence
of a user object, and it requires that object to have the following properties: firstName,
lastName, and email. Using a GraphQL fragment, we expressed this exact data
requirement within a Relay container that wraps the UserCard React component. We'll
explore GraphQL fragments in Chapter 2, The Query Language, and Relay containers in
Chapter 4, Configuring React Applications to Use Relay.

An Introduction to GraphQL and Relay

[10]

Although this is a book about Relay and GraphQL together, it is very
important to understand that they are separate projects, and the
dependency between them is only unidirectional. Relay depends on
GraphQL but a GraphQL server does not need Relay at all. While we can't
run a Relay application without a GraphQL server, we can certainly run a
GraphQL server without Relay's extensions or clients.
GraphQL is not a part of any web or mobile frameworks; it operates
independently, and it can be used by all frameworks. The first clients that
used GraphQL at Facebook were the iOS and Android applications, a long
time before Relay was born.

Why GraphQL?
Data communication is probably the most important activity in a software application.
When was the last time you developed an application that did not communicate with a data
service?

Even what we used to call static sites are now starting to be based on generators that use
data. Games and other applications that load their data with their initial download also
require some form of data communication afterwards to save preferences, track usages, and
keep records about everything the user is doing. With the foreseen future of the Internet of
Things, where micro devices will be everywhere, the role of data communication will
become more important.

Relational databases successfully deliver on reliability, consistency, and integrity for the
task of storing data. Document databases give us flexibility to manage document-oriented
information, and scale it horizontally. However, the current solutions we use for
communicating data between multiple software applications have many problems. We
came up with all sorts of interfaces between applications and data services to fill the gaps.
The most popular interfaces we use today are RESTful APIs and adhoc HTTP APIs. These
interfaces are especially popular for web applications, but they've seen success with mobile
applications as well.

Here are some of the tasks an Application Programming Interface (API) can do:

Act as a controller between protected raw data services and software clients
Parse a client request for access rights and enforce them
Construct SQL join statements to satisfy a client request efficiently
Process raw data into structures demanded by clients
Respond with data in specific formats such as JSON or XML

An Introduction to GraphQL and Relay

[11]

RESTful APIs versus GraphQL APIs
RESTful APIs are widely popular and have excellent use cases, but they also have
limitations and disadvantages. They come with some dependencies on browser
implementations of HTTP, and different browsers have different support for HTTP
methods, and different interpretation for HTTP response codes. Using only HTTP methods
and response codes limits what we can do with RESTful APIs and developers usually resort
to customizing and interpreting the request payload instead.

In RESTful APIs, the language we use for the request is different than the language we use
for the response. There is a disconnect between the request and the response, just like there
is a disconnect between a question in English and an answer to that question in Japanese.
There are no standards or agreements about what request and response HTTP codes mean
and implementers use different specifications, which makes working with different APIs
unpredictable. This lack of standards negatively affects the learning and development
process around these APIs, and makes consuming them a challenge. Without standard
specifications, developers need to consult documentation to understand the approach taken
by every provider, and documentation is always at the risk of becoming outdated.

To consume RESTful APIs, we use a URL to read from or write to a single resource, such as
a product, a person, a post, or a comment. If we need to work with multiple resources such
as a list of posts with a list of comments, we need to use multiple endpoints. Alternatively,
we can develop a custom endpoint (given that we have access to do so). The clients do not
have any control over the response, unless we start customizing those endpoints to support
that control. For example, we can't ask a friend resource endpoint for just the name and
location of a friend, we can only ask for all the information about that friend, whether we
need it or not. The clients basically depend on the servers, and this fact limits their growth
because it will be tied to the growth of the servers.

Some of these issues are solved by other application programming interfaces such as JSON
APIs, JSend, JSON LD, and many more. GraphQL is one other alternative that is attempting
to solve most of these issues.

First, a draft GraphQL RFC specification has been created. It's managed by Facebook, but
it's open source on GitHub and anyone can contribute to it. All GraphQL implementers are
expected to honor that specification and work with the community to update the
specification when needed.

GraphQL is protocol-agnostic and does not depend on anything HTTP. We don't use HTTP
methods or HTTP response codes with GraphQL. However, HTTP is one channel where we
can do GraphQL communication, and it will naturally be the popular channel for web
development.

An Introduction to GraphQL and Relay

[12]

The language used for a GraphQL request is directly related to the language used for the
response. If we analyze a JSON response, we'll find it to be a dictionary that has keys and
values. The values can themselves be nested dictionaries with their own keys and values, or
with arrays of values. Since the values basically represent the data, if we strip out all the
values from the JSON dictionary, we get the GraphQL query that can be used for the
request. This is a simple question-to-answer relationship that's expressed naturally with the
same language. Since we use a similar language to communicate between clients and
servers, debugging problems become easier. Furthermore, the GraphQL specification
adopts a strong type system for all GraphQL elements; any misuse can be easily detected
and properly reported. Also, with GraphQL queries mirroring the shape of their response,
any deviations can be detected, and these deviations would point us to the exact query
fields that are not resolving correctly.

A GraphQL server can be a single endpoint that handles all the client requests, and it can
give the clients the power to customize those requests at any time. Clients can ask for
multiple resources in the same request and they can customize the fields needed from all of
them. This way, clients can be in control of the data they fetch and they can easily avoid the
problems of over-fetching and under-fetching. With GraphQL, clients and servers are
independent and they can be changed without affecting each other.

These are some of the reasons that make GraphQL efficient, effective, and easy to use.
However, the most important reason why GraphQL is considered a game changer is its
mental model around declarative data communication.

The idea of GraphQL was born out of practical needs, and these needs were mainly
centered around mobile clients. Here are some examples of these needs:

Mobile clients are smart and have evolving data requirements, and we can't have
them depend on a data service. We need to give them more power and have them
decide what data to consume.
We can't control the versions of mobile applications like we do on the Web. We
need a way to add new features without removing the old ones, and we need a
way to communicate what features are now deprecated.
Resources available for mobile clients are limited. We can't entertain the idea of
multiple round-trips to the server to collect the data required by a single view,
and we need to minimize any processing needed to piece together data returned
by servers.

An Introduction to GraphQL and Relay

[13]

However, I'd argue that the most important need that influenced the creation of GraphQL
was not mobile-specific, but rather one that applies to all platforms:

The developer experience is as important as, and maybe actually more important
than, the user experience. DI/DX is becoming the new UI/UX because the former
drives the latter. When it comes to data communication, this means we need to
abstract the imperative steps needed to communicate an application's data
requirements, and give developers a declarative language for that instead. This
language should enable developers to express their applications' data
requirements in a way close to how that data will actually be used in their
applications.

Putting the product developers' needs first means that instead of thinking about the proper
ways to expose data on the servers, we first think about the developers who build frontend
applications, and the proper ways for them to express their applications' data requirements.

That's why frontend application developers will love GraphQL. From their point of view,
it's a query language that allows them to ask for the data required by their applications in a
simple, natural, and declarative way that mirrors the way they use that data in their
applications.

The needs that influenced GraphQL are really best explained with an example. Let's
imagine that we are the developers responsible for building a shiny new user interface to
represent the Star Wars films and characters.

The first UI we've been tasked to build is simple: a view to show information about a single
Star Wars person, for example, Darth Vader. The view should display the person's name,
birth year, planet name, and the titles of all the films in which they appeared.

As simple as that sounds, we're actually dealing with three different resources here:
person, planet, and film. The relation between these resources is simple and anyone can
guess the shape of the data here. A person object belongs to one planet object, and it will
have one or more film objects.

The JSON data for this UI could be something like:

{
 "data": {
 "person": {
 "name": "Darth Vader",
 "birthYear": "41.9BBY",
 "planet": {
 "name": "Tatooine"
 },

An Introduction to GraphQL and Relay

[14]

 "films": [
 { "title": "A New Hope" },
 { "title": "The Empire Strikes Back" },
 { "title": "Return of the Jedi" },
 { "title": "Revenge of the Sith" }
]
 }
 }
}

Assuming a data service gave us this exact structure for the data, here's one possible way to
represent its view with React.js:

// The Container Component:
<PersonProfile person={data.person}></PersonProfile>

// The PersonProfile Component:
Name: {person.name}
Birth Year: {person.birthYear}
Planet: {person.planet.name}
Films: {person.films.map(film => film.title)}

This is a simple example, and while our experience with Star Wars might have helped us
here a bit, the relationship between the UI and the data is clear. The UI used all the keys
from the assumed JSON data object.

Let's now see how we can ask for this data using a RESTful API.

We need a single person's information, and assuming that we know the id of that person, a
RESTful API is expected to expose that information with an endpoint like:

/people/{id}

This request will give us the name, birth year, and other information about the person. A
good API will also give us the ID of this person's planet, and an array of IDs for all the films
in which this person appeared.

Instead of IDs, RESTful APIs will usually give us the ready URLs that we
need to follow to fetch more information about the resource. I am using
IDs in the following examples to simplify the concept.

An Introduction to GraphQL and Relay

[15]

The JSON response for this request could be something like:

{
 "name": "Darth Vader",
 "birthYear": "41.9BBY",
 "planetId": 1,
 "filmIds": [1, 2, 3, 6],
 *** other information we do not need for this view ***
}

Then to read the planet's name, we ask:

/planets/1

And to read the film titles, we ask:

/films/1
/films/2
/films/3
/films/6

Once we have all six responses from the server, we can combine them to satisfy the data
needed by our view.

Besides the fact that we had to do six round trips to satisfy a simple data need for a simple
UI, our approach here was imperative. We gave instructions for how to fetch the data and
how to process it to make it ready for the view.

A RESTful API for Star Wars data is currently hosted at h t t p : / / s w a p i . c

o/. Go ahead and try to construct our data person object there; the field
names might be a bit different, but the API endpoints should be the same.
You will need to do exactly six API calls. Furthermore, you will have to
over-fetch information that the view does not need.

Of course, this is just one implementation of a RESTful API for this data. There could be
better implementations that will make this view easier to implement. For example, if the
API server implemented nested resources and understood the relation between a person
and a film, we could read the films data with:

/people/{id}/films

However, API developers don't usually implement nested resource endpoints by default,
and we would need to ask them to create these custom endpoints for us when we need
them. That's the reality of scaling this type of API, we just add custom endpoints to
efficiently satisfy the growing clients' needs. Managing custom endpoints like these without
a structure around them would be a challenge.

http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co
http://swapi.co

An Introduction to GraphQL and Relay

[16]

Let's now look at the GraphQL approach. GraphQL on the server embraces the custom
endpoints idea and takes it to its extreme. The server will be a single endpoint that replies to
all data requests, and the interface channel does not matter. If we use an HTTP interface,
HTTP methods and response codes would not matter either.

Let's assume we have a single GraphQL endpoint exposed over HTTP at /graphql. Since
we want to ask for the data we need in a single round-trip, we'll need a way to express our
complete data requirements for the server. We do this with a GraphQL query:

/graphql?query={...}

A GraphQL query is just a string, but it will have to include all the pieces of the data that
we need, and this is where the declarative power comes in.

In English, here's how we declare our data requirement: we need a person's name, birth
year, their planet's name, and the titles of all their films.

In GraphQL, this translates to:

{
 person(ID: ...) {
 name
 birthYear
 planet {
 name
 }
 films {
 title
 }
 }
}

Read the English-expressed requirements one more time and compare it to the GraphQL
query. It's as close as it can get. Now compare this GraphQL query with the original JSON
data that we started with:

{
 "data": {
 "person": {
 "name": "Darth Vader",
 "birthYear": "41.9BBY",
 "planet": {
 "name": "Tatooine"
 },
 "films": [
 { "title": "A New Hope" },
 { "title": "The Empire Strikes Back" },

An Introduction to GraphQL and Relay

[17]

 { "title": "Return of the Jedi" },
 { "title": "Revenge of the Sith" }
]
 }
 }
}

The GraphQL query has the exact structure of the JSON data, except without all the values
parts. If we think of this in terms of a question-answer relation, the question is the answer
statement without the answer part.

If the answer statement is:

The closest planet to the Sun is Mercury.

A good representation of the question is the same statement without the answer part:

(What is) the closest planet to the Sun?

The same relation applies to a GraphQL query. Take a JSON response, remove all the
answer parts (which are the values), and you'll get a GraphQL query very suitable to
represent a question for that JSON response.

Now compare the GraphQL query with the React UI we defined for the data. Everything in
the GraphQL query is used in the UI, and every variable used in the UI appears in the
GraphQL query. This is the great mental model of GraphQL. The UI knows the exact data it
needs, and extracting that requirement is fairly easy. Coming up with a GraphQL query is
simply the task of extracting what's used as variables directly from the UI. Also, if we invert
this model, it would still hold the power. If we have a GraphQL query, we know exactly
how to use its response in the UI, because the query will be the same structure as the
response. We don't need to inspect the response to know how to use it, and we don't need
any documentation for the API; it's all built in.

A GraphQL API for Star Wars data is hosted at h t t p s : / / g i t h u b . c o m / g r a p h q l / s w a p i - g r a p

h q l. Go ahead and try to construct our data person object there. There are a few minor
differences that we'll explain later, but here's the official query you can use against this API
to read our data requirement for the view (with Darth Vader as an example):

{
 person(personID: 4) {
 name
 birthYear
 homeworld {
 name
 }
 filmConnection {

https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql
https://github.com/graphql/swapi-graphql

An Introduction to GraphQL and Relay

[18]

 films {
 title
 }
 }
 }
}

This request gives us a response structure very close to what our views used, and
remember, we are getting all of this data in a single server round-trip. We'll explore the
GraphiQL editor that you see in this API later in the chapter.

An Introduction to GraphQL and Relay

[19]

Why Relay?
React enabled us to create declarative UI views, and model the state for those views and not
the transactions to render them. With React, we simply define views as functions of data.

Working with data, however, was the missing piece in the puzzle. Relay is one option to
complete that puzzle and act as the data manager for React applications.

Just like React made declarative programming easier for building user interfaces, Relay can
make declarative programming easier for fetching and mutating the data required for these
user interfaces.

With Relay, we just declare what we need to happen to the data, and Relay will do the
actual steps needed to satisfy our needs.

Working with data is always a challenge. We need to be aware of the performance issues
around data communication. Are we making optimal requests, or are we making multiple
requests that can be batched and further optimized? What should we do when a request
fails? How do we handle errors? Should we retry a failed request? If we retry, when should
we give up?

Furthermore, when users interact with a user interface and make some changes, we want
them to see their changes reflected right away while we attempt to persist these changes to
the database. We want to be able to either confirm the changes or roll them back once we
have a response from the server.

There is also the task of paginating data in a smart way that can handle changed items.
Think about the case where we fetched 10 items from a list, and before we fetch the next 10
items, an item was added or removed from the 10 items we originally fetched. Both the
client and the server need to be aware of these edge cases.

There is also caching on both clients and servers. What can safely go to the cache and what
cannot? How do we handle merging of cached data with new data? When do we expire
things out of the cache? How do we cache related objects without duplicating them? Think
about caching a comment, do we cache it under a post object, or do we cache it under an
author object?

Working with data is the type of work that could be handled by a framework, and Relay is
an attempt to innovate in that domain.

An Introduction to GraphQL and Relay

[20]

Understanding Relay's core principles
Here are some of the core principles and design decisions behind Relay.

Storage and caching
Relay uses a single normalized client-side data store in memory called Relay Store. When
Relay loads up in the browser for the first time, it stores all data in this store, and it manages
a simple state for every record in there.

In front of the Relay Store, Relay has a Queue Store where it manages the inflight changes
to the data. The Queue Store allows us to do things, such as optimistic updates in the user
interface. It also allows for easier rollbacks in case a change action fails. Instead of manually
managing a state for the action, we can have Relay just remove the faulty object from the
Queue Store. Behind the Relay Store, Relay has a Cache layer, which can be any storage
engine, such as localStorage for example.

The hierarchy of these three layers is important in Relay because the first layer that can
resolve a record will resolve that record.

Object identification
All objects in Relay have unique IDs over the entire system. This allows Relay to re-fetch
any record when it needs to, and it prevents any ambiguity between objects inside of the
Relay Store. Without proper unique IDs, duplicate records will find their way into the data
store.

For example, imagine we have a client application where we show a list of users whose
name begin with J, and for every user, we show their list of friends. User Jane who happens
to also be a friend of John will be loaded twice in that view.

Relay also has a diffing algorithm to make data fetching as efficient as possible. If we already
have part of an object's data, but need more, we don't need to ask for the whole object, we
can ask for only the difference between what we need and what we have.

For example, in the same client application where we show a list of users, the initial list
page shows the name and location of users, and when we click on a user record, we want to
show their name, location, e-mail, and phone number. When we click on a user who is
globally identified with a unique ID, we know that we already have their name and location
in memory, so we can ask the data service for just their e-mail and phone number.

An Introduction to GraphQL and Relay

[21]

If we have another interface where we show a profile picture of the user along with their
name and phone number, we would then need to ask the data service only about their
profile picture.

The connection model
When we need to paginate a list, we have a few models we can use:

The offset/limit model: Let's say we have a list of comments for a blog post,
sorted by creation date, most recent first. We have A through Z, and A is the most
recent comment. To fetch the first three comments from that list, we do offset 0,
limit 3, and we get A, B, and C. Before we ask for the next page, someone added
a new comment, which now becomes the most recent comment on top of the list,
before A. Our next page will be offset 3, limit 3 and we'd get C, D, and E. We have
a duplicate C. There is also the case where after we received A, B, and C, someone
deleted their embarrassing comment A, so now the next offset 3, limit 3
operation will get us E, F, and G, and we would miss D completely. This is not
ideal.
The after/first model: For the same list of comments example, the first page, we
do after null, first 3. We get A, B, and C. If someone deletes A, or adds a new
comment before A, our next page would not be affected, because our next page
would be after C, first 3, so we'll get back D, E, and F. This solves the problem
mentioned in the offset/limit model. We need unique IDs for every record to
make this model work, because we need to reference the records we see in the
after value. It's no longer just numbers for pagination. One problem with this
model is that there is no way to figure out whether there is more information to
fetch or we just fetched the last available slice of comments. This means we need
to do an extra request that returns an empty slice to conclude that we were on the
last page.
The connection model: Relay extends the after/first model with a structure of
edges and nodes, so that we can store extra information and metadata about the
paginated data. The actual data is represented as nodes within edges. For
example, we can use the top-level field to ask for the total number of records, or
whether we have a next page or not. Every node gets a built-in cursor to identify
it, and we can use that cursor in our after/first calls. We don't need to manually
manage a unique ID for every record.

An Introduction to GraphQL and Relay

[22]

Setting up a simple GraphQL server
Since GraphQL is a specification for a server runtime, we can use any language to create a
GraphQL schema and build an interface around it.

There are many GraphQL implementations that we can use today to create a GraphQL
schema. There are GraphQL implementations for JavaScript, Java, Ruby, Scala, Python, and
many more. Some GraphQL implementations will even allow us to ask for data directly
from SQL databases.

We will be using the GraphQL JavaScript implementation (graphql-js) to create our schema.
It's a complete reference implementation that is well-documented and easy to work with.
It's also open source and easy to read. It's currently hosted at h t t p s : / / g i t h u b . c o m / g r a p h q

l / g r a p h q l - j s.

In order to use JavaScript on the server side, we will need to install Node.js first. Node.js
allows us to execute JavaScript code on the server using the same engine that powers the
Chrome browser, V8.

Installing Node.js
To install Node.js, we can download and use the binary installers from h t t p s : / / n o d e j s . o r

g / e n / On Mac and Linux, we can also set up Node.js using Node Version Manager (NVM).
NVM targets the task of managing multiple Node.js versions, but it also uses a user-install
by default, which keeps everything related to Node.js in one directory. With NVM, it's also
easier to update current Node.js installations with newer versions of Node.js when they
become available.

NVM does not work on Microsoft Windows, but there are alternatives such as the nvm-
windows project, and the nodist project. The Windows installer available on the Node.js
website is also another good option for Microsoft Windows users.

I will be assuming a Linux-based shell environment in the commands and
outputs presented in this book. In Microsoft Windows environments,
commands and outputs might be slightly different. In all the command
lines, the part before the $ sign will be the working directory where the
command was issued, and the part after the $ sign is the command itself.
For example, with the line:
~ $ ls

This means run the command ls in the home directory ~.

https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/

An Introduction to GraphQL and Relay

[23]

To install NVM (on Mac or Linux), we can execute the following command:

~ $ curl -o-
https://raw.githubusercontent.com/creationix/nvm/v0.31.4/install.sh | bash

The command downloads the install.sh script from GitHub (using curl), then it
executes the script with the bash command. The script clones the NVM repository to
~/.nvm and adds a line to the profile file (~/.bash_profile, ~/.zshrc or ~/.profile)
to prepare the NVM environment.

This command uses version 0.31.4 of NVM, which was the latest version at
the time of writing. Check the NVM repository on GitHub to see the latest:
h t t p s : / / g i t h u b . c o m / c r e a t i o n i x / n v m.

If we open a new terminal window now, we should have the nvm command line available
in the environment. To verify:

~ $ nvm --version
0.31.4

Once we have the nvm command available, we can use it to install the latest Node.js:

~ $ nvm install node
Downloading https://nodejs.org/dist/v6.3.1/node-v6.3.1-darwin-x64.tar.gz...
Creating default alias: default -> node (-> v6.3.1)

This command installs the latest Node available. At the time of writing, it was 6.3.1; you can
also instruct nvm to install Node v-6.3.1 instead using:

~ $ nvm install 6.3.1

NVM will make a few Node.js commands available for us. The most important ones are:

node: we use this command to execute a JavaScript file on the server, for
example: node script.js. If we invoke the node command by itself without a
target to execute, it runs in REPL mode (Read, Eval, Print, Loop). We can use this
mode to test simple JavaScript one-liners while we are in the terminal.
npm: we use this command to install, uninstall, or update a Node.js package.

The GraphQL JavaScript reference implementation is published as an npm package under
the name graphql. We can use npm to install it locally for our projects.

https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm
https://github.com/creationix/nvm

An Introduction to GraphQL and Relay

[24]

Defining the schema
Let's create a new directory for our project:

~ $ mkdir ~/graphql-project
~ $ cd ~/graphql-project

We're going to make our project depend on the GraphQL JavaScript library. To document
this dependency, we need to create a package.json file in our project. A package.json
file is used by npm to store information about the project, including any dependencies on
other packages. We can use the npm init command to create the package.json file:

~/graphql-project $ npm init

The npm init command will ask a few questions about the project, and it will use our
answers to create a package.json file. The default answers are usually a good start.

With a package.json file created, we can now bring in the graphql library using this
command:

~/graphql-project $ npm install --save graphql
└─┬ graphql@0.6.2

This command will do two things:

Download the graphql library from h t t p s : / / w w w . n p m j s . c o m / and make it
available locally under a node_modules directory in our project
Update the package.json file to document this new dependency. This is
because we used the --save option

When committing the changes made so far to source control, remember to
ignore this newly created node_modules directory. I use Git, and with
Git, we can just add a node_modules line to a .gitignore file. Chapter
8, Deploying to the Cloud, has instructions about Git.

With the graphql npm package available locally, we can now write our schema. Create a
schema directory at the root level of our project and create a main.js file there. We will
define our GraphQL schema object in this main.js file:

~/graphql-project $ mkdir schema && touch schema/main.js

https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/
https://www.npmjs.com/

An Introduction to GraphQL and Relay

[25]

The first thing we need to do in main.js is to import a few classes from the graphql
package:

const {
 GraphQLSchema,
 GraphQLObjectType,
 GraphQLString
} = require('graphql');

We will be using the Node.js require syntax to import dependencies. The
official JavaScript syntax for this task is different, it uses an import
statement instead, but this official syntax is not supported by Node.js yet
(as of 6.3.1). You'll find a lot of examples on the Web that use the import
syntax, and use Babel to compile it into the require syntax which Node.js
can work with. In future versions of Node.js, the import syntax will be
supported natively:
// Instead of:
const graphql = require('graphql');
// We can do:
import graphql from 'graphql';

We imported only the three helpers that we will be using in the first example, but there are
many other helpers we can import form the graphql library. We will import the other
helpers later when we need them.

The examples demonstrated in this introduction chapter are only to give
you a taste of the powerful features in GraphQL. We're only exploring a
few features though, and more features will be introduced in later
chapters. You will also most likely see syntax that is new to you; the
GraphQL language syntax will be covered in detail in Chapter 2, The
Query Language, and the GraphQL schema syntax will be covered in detail
in Chapter 3, The GraphQL Schema.

GraphQLSchema is the class we can use to instantiate our example schema. Let's name this
example schema object mySchema:

const mySchema = new GraphQLSchema({
 // root query & root mutation definitions
});

An Introduction to GraphQL and Relay

[26]

A GraphQL schema can expose multiple capabilities. If we want clients to be able to ask for
data, we need to define a query property on the schema. If we want to support any kind of
insert, update, or delete operations on our data, we need to define a mutation property on
the schema.

The query and mutation properties are instances of the GraphQLObjectType class. Let's
start with a simple example query. Under the helpers we defined in schema/main.js,
define a queryType object:

const queryType = new GraphQLObjectType({
 name: 'RootQuery',
 fields: {
 hello: {
 type: GraphQLString,
 resolve: () => 'world'
 }
 }
});

Under the queryType definition, update the mySchema object to use queryType for its
query configuration property:

const mySchema = new GraphQLSchema({
 query: queryType
});

We start by assigning the queryType object as the query property of the GraphQLSchema
instance (mySchema). queryType is an instance of GraphQLObjectType and we give it the
name RootQuery. The name can be anything of course.

The fields property on a GraphQL object is where we define the fields that can be used in
a GraphQL query to ask about that object. We define an example hello field, which is a
GraphQLString.

Every field in a GraphQL object can define a resolve() function. The resolve() function
is what the graphql library executes when it tries to answer queries asking about that field.
For our simple example, we resolve that hello field with the string world.

Finally, to be able to use this simple schema from other parts of our application, we need to
export it:

module.exports = mySchema;

An Introduction to GraphQL and Relay

[27]

Here's the complete schema/main.js file so far which defines and exports the mySchema
object:

const {
 GraphQLSchema,
 GraphQLObjectType,
 GraphQLString
} = require('graphql');

const queryType = new GraphQLObjectType({
 name: 'RootQuery',
 fields: {
 hello: {
 type: GraphQLString,
 resolve: () => 'world'
 }
 }
});

const mySchema = new GraphQLSchema({
 query: queryType
});

module.exports = mySchema;

I am going to maintain a GitHub repository for this book. This repo will
have incremental commits, branches, and tags associated with chapters
and sections of the book. You can clone the repo from h t t p s : / / g i t h u b . c o

m / e d g e c o d e r s / l e a r n i n g - g r a p h q l - a n d - r e l a y and check your progress
against the git tag for the chapter's section.
For example, after the Defining the schema section here in this chapter, you
can git checkout chapter1-defining-the-schema to see the code as
it is exactly at this point in the chapter.
Every point in the book that has a matching git tag in the repo will have
a #GitTag line referencing that tag. Compare your code to the code in the
repo to debug any problems you run into. The repo will also have
branches for each chapter; if you want to check out the code as it was at
the end of Chapter 4, Configuring React Applications to Use Relay, for
example, you can git checkout chapter4.
If you have comments or questions, feel free to submit a GitHub issue on
the repo.

*** #GitTag: chapter1-defining-the-schema ***

https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay

An Introduction to GraphQL and Relay

[28]

Using the schema
Our schema wouldn't be any good unless we could execute queries against it. To do so, we
need to create an interface between the user and the schema. This interface will be used to
take input from the user (a GraphQL query), and give the user an output (a GraphQL JSON
response).

The simplest interface we can use here is a regular Linux command. We can use its standard
input (stdin) to supply a GraphQL request, and its standard output (stdout) to respond
with the GraphQL server answer for the requested query.

In the root level of our project, create an index.js file with this content:

const { graphql } = require('graphql');
const readline = require('readline');

const mySchema = require('./schema/main');

const rli = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});

rli.question('Client Request: ', inputQuery => {
 graphql(mySchema, inputQuery).then(result => {
 console.log('Server Answer :', result.data);
 });

 rli.close();
});

readline is one option of many we can use to interface our GraphQL
schema, and it's not a required package to use with GraphQL. We used it
here to make for a simple example.

We start by importing the graphqllibrary and the readline library. We also need to use
our GraphQL schema that we defined earlier (mySchema), so we import that as well.

We need to create an interface that understands stdin and stdout, and then just use that
interface (rli) with a .question() function, which takes a string argument and a callback
argument.

An Introduction to GraphQL and Relay

[29]

The Client Request: string is what the interface will display as an input prompt when
we execute the script. In the second argument, which is a callback, readline will expose
what the user types as the inputQuery variable.

The graphql() function we imported on the first line can then be used to execute the user's
GraphQL query against our defined schema. If our server receives a valid query that it can
understand, it will respond with a promise that resolves to a JSON response for that query.
To use the standard out (stdout) for our interface, we can use console.log to log the
promise-resolved JSON result.

To test this index.js script, we can execute it with the node command:

~/graphql-project $ node index.js
Client Request: { hello }
Server Answer : { hello: 'world' }

Our script starts by prompting the user to enter input for Client Request. We typed the
string { hello }. This string represents a client asking about the hello root field that we
defined in our schema.

The server's answer is a JSON string that matches our request query. It uses the resolve()
function's returned value (world) as the value for the hello field:

*** #GitTag: chapter1-using-the-schema ***

Rolling the dice
Let's add another capability to our GraphQL Server. We will make it simulate a simple two-
dice roll.

We'll design our server to be able to respond to the following query:

Client Request: { diceRoll }

We expect the server to reply with two random values between 1 and 6:

Server Answer : { diceRoll: [2, 5] }

The data type of our planned response is an array. In the graphql library, we use a
GraphQLList to represent an array type, and we will use a GraphQLInt type to represent
the elements of our random integers array. GraphQLList and GraphQLInt are both helpers
available from the graphql library.

An Introduction to GraphQL and Relay

[30]

Update the require line in schema/main.js and add the two new helpers:

const {
 // ...
 GraphQLInt,
 GraphQLList
} = require('graphql');

We need a function that can respond with a random number between 1 and 6. To
accomplish that, we can use a combination of Math.random and Math.floor. Add the
following function right after the require line in schema/main.js:

const roll = () => Math.floor(6 * Math.random()) + 1;

In the mySchema object, we need to add a new root field, diceRoll, to our list of fields and
make its type a GraphQLList of GraphQLInt:

fields: {
 // The hello field definition...
 diceRoll: {
 type: new GraphQLList(GraphQLInt),
 resolve: () => [roll(), roll()]
 }
}

Our diceRoll field resolves with an array that has two integers, which are both computed
from a roll() function call. The type for our resolved value here is a GraphQLList, and
each item in that list is a GraphQLInt.

To test this new capability, we will execute the same babel-node as previously command.

Here are three different dice rolls to make sure we are getting random values:

~/graphql-project $ node index.js
Client Request: { diceRoll }
Server Answer : { diceRoll: [3, 6] }

~/graphql-project $ node index.js
Client Request: { diceRoll }
Server Answer : { diceRoll: [6, 6] }

 ~/graphql-project $ node index.js
Client Request: { diceRoll }
Server Answer : { diceRoll: [3, 2] }

*** #GitTag: chapter1-rolling-the-dice ***

An Introduction to GraphQL and Relay

[31]

Using field arguments
We want to make our server capable of rolling more than two dice. In fact, we want the
clients to be able to customize their question and tell us how many dice to roll.

We can utilize a GraphQL field argument for that purpose. The client can ask a query, such
as:

{ diceRoll(count: 5) }

For the above query, the client expects the server to roll five dice. Here's how we can change
the diceRoll field definition to allow for that operation on the server:

 diceRoll: {
 type: new GraphQLList(GraphQLInt),
 args: {
 count: { type: GraphQLInt }
 },
 resolve: (_, args) => {
 let rolls = [];
 for (let i = 0; i < args.count; i++) {
 rolls.push(roll());
 }
 return rolls;
 }
 }

To make our GraphQL server aware of the arguments passed to a field, we define an args
property on that field with the name and type of the allowed argument. For our example,
count is a GraphQLInt.

We can use the same roll() function to generate one random value, but since we're now
receiving a count from the user, we need to dynamically construct an array using that
count value. Inside the resolve() function, all the arguments that get passed to that field
in a client request can be accessed using the second argument for the resolve() function
itself. We can read the value the user enters for the count argument, using args.count.

In a simple for loop, we construct an array of args.count length, and fill it with a
different roll() call for each element.

We named the first argument for resolve() with an underscore because we're not using it
for this example. This argument represents the parent object and it's undefined on the first
root-level queries. We'll learn about arguments for the resolver functions in Chapter 3, The
GraphQL Schema.

An Introduction to GraphQL and Relay

[32]

To test this new feature:

~/graphql-project $ node index.js

Client Request: { diceRoll(count: 5) }
Server Answer : { diceRoll: [6, 5, 3, 5, 1] }

Note that this change makes the code depend on the count argument. If
we want the code to work with or without a count argument, we should
add a default value for that argument. In GraphQL, we can define a
default value for any argument using the optional defaultValue
property:

args: {
 count: {
 type: GraphQLInt,
 defaultValue: 2
 }
}

 *** #GitTag: chapter1-using-field-arguments ***

Setting up MongoDB
An API is nothing without access to a database. Let's set up a local MongoDB instance, add
some data in there, and make sure we can access that data through our GraphQL schema.

MongoDB can be locally installed on multiple platforms. Check the documentation site for
instructions for your platform (h t t p s : / / d o c s . m o n g o d b . c o m / m a n u a l / i n s t a l l a t i o n /).

For Mac, the easiest way is probably Homebrew:

~ $ brew install mongodb

Create a db folder inside a data folder. The default location is /data/db:

~ $ sudo mkdir -p /data/db

Change the owner of the /data folder to be the current logged-in user:

~ $ sudo chown -R $USER /data

Start the MongoDB server:

~ $ mongod

https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/
https://docs.mongodb.com/manual/installation/

An Introduction to GraphQL and Relay

[33]

In Chapter 8, Deploying to the Cloud, we go over instructions to install
MongoDB on an Ubuntu machine.

If everything worked correctly, we should be able to open a new terminal and test the
mongo CLI:

~/graphql-project $ mongo

MongoDB shell version: 3.2.8
connecting to: test
> db.getName()
test
>

We're using MongoDB version 3.2.8 here. Make sure that you have this
version or newer versions of MongoDB.

Let's go ahead and create a new collection to hold some test data. Let's name that collection
users:

> db.createCollection("users")"
{ "ok" : 1 }

Now we can use the users collection to add documents that represent users. We can use
the MongoDB insertOne() function for that:

> db.users.insertOne({
 firstName: "John",
 lastName: "Doe",
 })

We should see an output like this:

{
 "acknowledged" : true,
 "insertedId" : ObjectId("56e729d36d87ae04333aa4e1")
}

An Introduction to GraphQL and Relay

[34]

Let's go ahead and add another user:

> db.users.insertOne({
 firstName: "Jane",
 lastName: "Doe",
 })

We can now verify that we have two user documents in the users collection:

> db.users.count()
2

MongoDB has a built-in unique object ID which you can see in the output
for insertOne(). We will be using this object ID later in the book.

Now that we have a running MongoDB, and we have some test data in there, it's time to see
how we can read this data using a GraphQL API.

To communicate with a MongoDB from a Node.js application, we need to install a driver.
There are many options that we can choose from, but GraphQL requires a driver that
supports promises. We will use the official MongoDB Node.js driver, which supports
promises. Instructions on how to install and run the driver can be found at h t t p s : / / d o c s . m

o n g o d b . c o m / e c o s y s t e m / d r i v e r s / n o d e - j s /.

To install the MongoDB official Node.js driver under our graphql-project app, we do
this:

~/graphql-project $ npm install --save mongodb
└─┬ mongodb@2.2.5

We can now use this mongodb npm package to connect to our local MongoDB server from
within our Node application. In index.js, add the following:

const { MongoClient } = require('mongodb');
const assert = require('assert');

const MONGO_URL = 'mongodb://localhost:27017/test';

MongoClient.connect(MONGO_URL, (err, db) => {
 assert.equal(null, err);
 console.log('Connected to MongoDB server');

 // The readline interface code
});

https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/
https://docs.mongodb.com/ecosystem/drivers/node-js/

An Introduction to GraphQL and Relay

[35]

The MONGO_URL variable value should not be hardcoded in code like this.
Instead, we can use a Node process environment variable to set it to a
certain value before executing the code. On a production machine, we
would be able to use the same code and set the process environment
variable to a different value.
Use the export command to set the environment variable value:
export MONGO_URL=mongodb://localhost:27017/testThen in the
Node code, we can read the exported value by using this:
process.env.MONGO_URL

If we now execute the node index.js command, we should see the Connected to
MongoDB server line right before we ask for the Client Request.

At this point, the Node.js process will not exit after our interaction with it.
We'll need to force exit the process with Ctrl + C to restart it.

Let's start our database API with a simple field that can answer this question: how many
total users do we have in the database?

The query could be something like this:

{ usersCount }

To be able to use a MongoDB driver call inside our schema main.js file, we need access to
the db object that the MongoClient.connect() function exposed for us in its callback. We
can use the db object to count the user documents by simply running the promise:

db.collection('users').count()
 .then(usersCount => console.log(usersCount));

Since we only have access to the db object in index.js within the connect() function's
callback, we need to pass a reference to that db object to our graphql() function. We can
do that using the fourth argument for the graphql() function, which accepts a
contextValue object of globals, and the GraphQL engine will pass this context object to all
the resolver functions as their third argument. Modify the graphql function call within the
readline interface in index.js to be:

graphql(mySchema, inputQuery, {}, { db }).then(result => {
 console.log('Server Answer :', result.data);
 db.close(() => rli.close());
});

An Introduction to GraphQL and Relay

[36]

The third argument to the graphql() function is called the rootValue,
which gets passed as the first argument to the resolver function on the top
level type. We are not using that feature here.

We passed the connected database object db as part of the global context object. This will
enable us to use db within any resolver function.

Note also how we're now closing the rli interface within the callback for the operation that
closes the db. We should not leave any open db connections behind.

Here's how we can now use the resolver third argument to resolve our usersCount top-
level field with the dbcount() operation:

fields: {
 // "hello" and "diceRoll"...
 usersCount: {
 type: GraphQLInt,
 resolve: (_, args, { db }) =>
 db.collection('users').count()
 }
}

A couple of things to notice about this code:

We destructured the db object from the third argument for the resolve()
function so that we can use it directly (instead of context.db).
We returned the promise itself from the resolve() function. The GraphQL
executor has native support for promises. Any resolve() function that returns a
promise will be handled by the executor itself. The executor will either
successfully resolve the promise and then resolve the query field with the
promise-resolved value, or it will reject the promise and return an error to the
user.

We can test our query now:

~/graphql-project $ node index.js
Connected to MongoDB server
Client Request: { usersCount }
Server Answer : { usersCount: 2 }

*** #GitTag: chapter1-setting-up-mongodb ***

An Introduction to GraphQL and Relay

[37]

Setting up an HTTP interface
Let's now see how we can use the graphql() function under another interface, an HTTP
one.

We want our users to be able to send us a GraphQL request via HTTP. For example, to ask
for the same usersCount field, we want the users to do something like this:

/graphql?query={usersCount}

We can use the Express.js node framework to handle and parse HTTP requests, and
within an Express.js route, we can use the graphql() function, for example:

const app = express();

app.use('/graphql', (req, res) => {
 // use graphql() to respond with JSON objects
});

However, instead of manually handling the req/res objects, there is a GraphQL
Express.js middleware that we can use, express-graphql. This middleware wraps the
graphql() function and prepares it to be used by Express.js directly. Let's go ahead and
bring in both the Express.js library and this middleware:

~/graphql-project $ npm install --save express express-graphql
├─┬ express@4.14.0
└─┬ express-graphql@0.5.3

In index.js, we can now import both express and the express-graphql middleware:

const graphqlHTTP = require('express-graphql');
const express = require('express');

const app = express();

With these imports, the middleware main function will now be available as
graphqlHTTP(). We can now use it in an Express route handler. Inside the
MongoClient.connect() callback, we can do this:

 app.use('/graphql', graphqlHTTP({
 schema: mySchema,
 context: { db }
 }));

 app.listen(3000, () =>
 console.log('Running Express.js on port 3000')

An Introduction to GraphQL and Relay

[38]

);

Note that at this point, we can remove the readline interface code as we
are no longer using it. Our GraphQL interface from now on will be an
HTTP endpoint.

The app.use line defines a route at /graphql and delegates the handling of that route to
the express-graphql middleware that we imported. We pass two objects to the
middleware, the mySchema object and the context object. We're not passing any input
query here because this code just prepares the HTTP endpoint, and we will be able to read
the input query directly from a URL field.

The app.listen() function is the call we need to start our Express.js
app. Its first argument is the port to use, and its second argument is a
callback we can use after Express.js has started.

We can now test our HTTP-mounted GraphQL executor with:

~/graphql-project $ node index.js

Connected to MongoDB server
Running Express.js on port 3000

In a browser window, go to:

http://localhost:3000/graphql?query={usersCount}

*** GitTag: chapter1-setting-up-an-http-interface ***

An Introduction to GraphQL and Relay

[39]

The GraphiQL editor
The graphqlHTTP() middleware function accepts another property on its parameter object
graphiql; let's set it to true:

app.use('/graphql', graphqlHTTP({
 schema: mySchema,
 context: { db },
 graphiql: true
}));

When we restart the server now and navigate to http://localhost:3000/graphql, we'll
get an instance of the GraphiQL editor running locally on our GraphQL schema:

GraphiQL is an interactive playground where we can explore our GraphQL queries and
mutations before we officially use them. GraphiQL is written in React and GraphQL, and it
runs completely within the browser.

An Introduction to GraphQL and Relay

[40]

GraphiQL has many powerful editor features such as syntax highlighting, code folding, and
error highlighting and reporting. Thanks to GraphQL introspective nature, GraphiQL also
has intelligent type-ahead for fields, arguments, and types.

Put the cursor in the left editor area, and type a selection set:

{
}

Place the cursor inside that selection set and press Ctrl + space. You should see a list of all
fields that our GraphQL schema supports, which are the three fields that we have defined
so far (hello, diceRoll, and usersCount):

If Ctrl + space does not work, try Cmd + space, Alt + space, or Shift + space.

The __schema and __type fields can be used to introspectively query the GraphQL schema
about what fields and types it supports. We will talk about GraphQL introspection in
Chapter 3, The GraphQL Schema.

When we start typing, this list starts to get filtered accordingly. The list respects the context
of the cursor; for example, if we place the cursor inside the arguments of diceRoll(), we'll
get the only argument we defined for diceRoll, the count argument.

An Introduction to GraphQL and Relay

[41]

Go ahead and read all the root fields that our schema support, and see how the data gets
reported on the right side with a formatted JSON object:

*** GitTag: chapter1-the-graphiql-editor ***

Summary
In this chapter, we introduced GraphQL and Relay and talked about what they are, what
problems they solve, and why they are needed. We saw examples of GraphQL queries and
how they get used in Relay. We talked about RESTful APIs, and how they compare to
GraphQL APIs. Using an example user interface, we learned how a simple GraphQL API
makes a big difference in how we communicate with a data service.

We talked about Relay, its core principles, how it handles storage and caching, and how it
uniquely identifies every object in an application. We also talked about Relay's connection
model for pagination.

We learned how to create a simple GraphQL schema, and how to use it with different
interfaces, including an HTTP interface. We also learned how to use GraphQL to read data
from MongoDB. We explored the GraphiQL editor and used it to inspect our GraphQL
schema and read the data it exposes.

2
The Query Language

The GraphQL query language is designed around flexible syntax that's easy to read and
understand. In this chapter, we'll explore the language syntax, and learn the different
features it supports. We will cover the following topics:

Documents and operations
Fields
Variables
Directives
Aliases
Fragments
Mutations

Documents and operations
To communicate with a GraphQL service, we send it a text document written in the
GraphQL query language. A GraphQL document contains one or more operations, and these
operations can be either read or write operations. We use queries for read operations, and
mutations for write operations.

GraphQL will be supporting more operations in the future. For example,
there will soon be a subscription operation for real-time data
processing. The support for the subscription operation is already in the
JavaScript implementation but it's still in an early experimental phase.

The Query Language

[43]

Here's a query to read the list of comments on a blog article:

Find one article and its list of comments:
query ArticleComments {
 article(articleId: 42) {
 comments {
 commentId
 formattedBody
 timestamp
 }
 }
}

Notice how we used the keyword query before the main selection set and we gave this
query an identifying name ArticleComments. We've been using the query shorthand in
Chapter 1, An Introduction to GraphQL and Relay, and it didn't include a type for the
operation or a name for it. By default, the type of operation is a query. If there is only one
simple operation in the document, the name can be omitted. The query name can be
anything and it's optional for a single query. However, it's a good habit to always give
GraphQL operations descriptive names.

A GraphQL document may contain multiple operations, in which case the name of the
desired operation to be executed must be provided. In addition to queries and mutations, a
GraphQL document can also contain fragments. We can think of fragments as partial
operations that are generic and reusable.

Most of the query language elements are expressed using ASCII characters, but Unicode
characters are acceptable inside string values and comments. The first line in the previous
example is a comment, any text that appears between a # marker and a line terminator is a
comment and it will be ignored by the parser. The GraphQL parser will also ignore the
following tokens unless they appear within a string value: line terminators, commas, and
most whitespace characters. These optional tokens are used to make the source text of a
GraphQL document more readable and should be used where possible. The
ArticleComments query would be hard to read if it was just one big single line:

{article(articleId:42){comments{commentId formattedBody timestamp}}}

We can execute the previous line normally, but this style of query should be avoided.

The Query Language

[44]

Fields
In the ArticleComments query, we're asking the server about the article with
articleId #42. For that article, we're asking the server for its list of comments, and for
every comment, we're asking the server about the commentId, its formattedBody, and its
timestamp.

Here is a possible response to the ArticleComments query:

{
 "article": {
 "comments": [
 {
 "commentId": 1,
 "formattedBody": "GraphQL is cool",
 "timestamp": "12/12/2015 - 15:15"
 },
 {
 "commentId": 2,
 "formattedBody": "What's wrong with REST!",
 "timestamp": "12/12/2015 - 15:25"
 }
]
 }
}

This response has sections that represent the different fields in our GraphQL query. In our
query, article is called a field, and so are comments, commentId, formattedBody, and
timestamp. A field can be mapped to either a primitive value in the response, such as the
text representing the formattedBody, or to an object or array of objects in the response.

Here are the different mappings we have in the ArticleComments query:

The article field in the query maps to a single object in the response
The comments field in the query maps to an array of objects in the response
The commentId field in the query maps to a scalar integer value
The formattedBody and timestamp fields in the query both map to a scalar
string value

The Query Language

[45]

You can think of fields as functions; they return something in the response. They also take
arguments, for example the article field takes an integer argument articleId. On the
server side, we can use field arguments to customize the response to be resolved by the
field. In this case, the server customized the response to return the data associated with
article #42.

Fields in a GraphQL query map to properties on objects. The comments field, for example,
is a property on an article object, and commentId, formattedBody, and timestamps are all
properties on a comment object. The article field is also a property on what is called the
root query object. A root query object is an entry point; one of the possible many points on the
graph that we can start with in our queries.

The curly braces in the GraphQL query are called selection sets, and those are nestable; one
selection set can contain other selection sets. When we ask for a field that maps to an object
or an array of objects, we need a new selection set to tell the GraphQL server which scalar
properties we'd like to read from those objects. The innermost selection set of a GraphQL
query should always contain fields that resolve to scalar values. In GraphQL, we call fields
that map to objects or an array of objects complex fields. If we try to query for a complex field
such as article without a selection set, the GraphQL error will be clear: Field
"article" of type "Article" must have a sub selection.

Variables
The ArticleComments query works for a single article, and that's why we needed to pass
an articleId for it. However, we hardcoded the value of articleId in the query string
itself. That makes the query not usable for other articles. To make the query reusable, we
need to make it generic by using a GraphQL variable as the input for article:

query ArticleComments($articleId: Int!) {
 article(articleId: $articleId) {
 comments {
 commentId
 formattedBody
 timestamp
 }
 }
}

The Query Language

[46]

Notice how we first define the variable at the top of our query operation ($articleId:
Int!). This sets the scope of the variable $articleId so that we can use it anywhere inside
our query operation. The type of the $articleId variable is Int; the trailing exclamation
mark after the type indicates that this variable is required and can't be null.

To execute the generic query, we supply a JSON object for the variables input which we
pass to our GraphQL query executor along with the query input. For example, to execute
the query with the value 42 for the variable $articleId, we can send this value for
variables:

{
 "articleId": 42
}

For an HTTP interface, our operation request can now be sent using:

/graphql?query={...}&variables={...}

Using variables allow the clients to avoid any string building operation at runtime. The 42
value will most likely come from a different source, such as the location in the URL. Instead
of building a query string using string concatenation for that variable, we can just pass the
variable to the executor along with the generic reusable query.

Variables have to be unique in a single operation, but we can use the same variable name in
different operations. If we define a variable for an operation, that variable has to be used at
least once in that operation. GraphQL will reply with an error if a variable was defined but
never used.

The Query Language

[47]

In GraphiQL, we can use the lower-left corner (labeled QUERY VARIABLES) to define the
values object for all variables in the document:

Directives
Sometimes, using field arguments to customize the behavior of the GraphQL server
execution engine is not enough. For example, what if we had a variable in our application,
and we wanted the GraphQL server to customize the structure of the response based on this
variable? When the variable is true, we want certain fields to be omitted from the response.

We can provide options to alter the GraphQL runtime execution using directives. Directives
have three characteristics:

A unique name to identify them.
A list of arguments, just like fields. Arguments may accept values of any input
type.
A list of locations where the use of the directive is accepted. Directives can be
used in multiple locations in a GraphQL document, including an operation, a
fragment, or a field. Each directive defines its list of acceptable locations.

The Query Language

[48]

There are two main built-in directives that should be supported by a GraphQL server:

@include, which accepts a Boolean if argument, and directs the GraphQL
executor to include a field or a fragment only when the if argument is true:

field @include(if: $BooleanValue)

@skip, which accepts a Boolean if argument, and directs the GraphQL executor
to skip a field or fragment when the if argument is true:

field @skip(if: $BooleanValue)

GraphQL is likely to have a lot more built-in directives in the future. For
example, there might soon be a @deprecated directive for marking
elements no longer supported, an @export directive to export a field in
one query as a dependency for another query during a batch operation, a
@defer directive for delaying the response of a certain field, and a
@stream directive to convert a field response into a real-time stream. Most
of these new directives are still experimental as of this writing.

Directives are commonly used with variables to customize the response based on variables'
values. For example, in our ArticleComments query, we can have a variable $showEmails
that can be either true or false. We want the GraphQL server to only respond with e-mail
information when $showEmails is set to true. When $showEmails is false, we want the
server to respond with the author's website address instead:

query ArticleComments($articleId: Int!, $showEmails: Boolean!) {
 article(articleId: $articleId) {
 comments {
 commentId
 formattedBody
 timestamp
 author {
 name
 email @include(if: $showEmails)
 website @skip(if: $showEmails)
 }
 }
 }
}

When we execute this query with $showEmails set to true (in the variables section), the
GraphQL server will include the author's e-mail and it will not include the author's website.
When we execute the query with $showEmails set to false, the server will include the
author's website but not the author's e-mail.

The Query Language

[49]

We can use directives with complex fields as well. For example, to control the author
section itself on every comment, we can do this:

query ArticleComments($articleId: Int!, $showAuthor: Boolean!) {
 article(articleId: $articleId) {
 comments {
 commentId
 formattedBody
 timestamp
 author @include(if: $showAuthor) {
 name
 }
 }
 }
}

Aliases
Sometimes, the data exposed by the server might have different property names than what
the UI is using. For example, let's assume our UI represents every article as post and
represents the list of comments on an article as responses, and for every response, the UI
uses a responseId instead of a commentId.

Here's the ideal JSON object that this UI can consume:

{
 "post": {
 "responses": [
 {
 "responseId": 1,
 "formattedBody": "GraphQL is cool",
 "timestamp": "12/12/2015 - 15:15"
 },
 {
 "responseId": 2,
 "formattedBody": "What's wrong with REST!",
 "timestamp": "12/12/2015 - 15:25"
 }
]
 }
}

The Query Language

[50]

We have the same data here but with slightly different property names. Instead of
processing the original response on the client side and copying it to a new structure suitable
for our UI, we can use GraphQL field aliases to instruct the GraphQL server to respond
with its data using different property names. We can use aliases on any field to customize
its appearance in the response:

query ArticleResponses {
 post: article(articleId: 42) {
 responses: comments {
 responseId: commentId
 formattedBody
 timestamp
 }
 }
}

The ArticleResponses query is asking for the same data but it uses aliases to rename
some fields in the response. The server will respond with the exact JSON that the UI wants
to use.

We can also use aliases to ask for the same field multiple times:

query TwoArticles {
 firstArticle: article(articleId: 42) {
 comments {
 commentId
 formattedBody
 timestamp
 }
 }
 secondArticle: article(articleId: 43) {
 comments {
 commentId
 formattedBody
 timestamp
 }
 }
}

The aliases a client specifies in a GraphQL query get used in the server response. Using this
feature, clients have an extra level of control over the response, and they don't need to do
any extra processing on received data before they can use it.

The Query Language

[51]

Fragments
In the last example, we repeated the comments section in the TwoArticles query twice,
once for every article. If we later decide to ask for an extra field on every comment object,
we will have to change two places in our query, which is not ideal.

We can use GraphQL fragments to refactor this repetition and compose our main query
using a smaller query fragment that represents the comments section and its fields:

query TwoArticles {
 firstArticle: article(articleId: 42) {
 ...CommentList
 }
 secondArticle: article(articleId: 43) {
 ...CommentList
 }
}
fragment CommentList on Article {
 comments {
 commentId
 formattedBody
 timestamp
 }
}

We were able to extract the repeated information and represent it with the CommentList
fragment. A fragment is just a partial operation; we can't use it on its own, but we can use it
and reuse it inside a full operation. To use a fragment in an operation, we prefix it with three
dots.
The three dots operator is known as the spread operator. When a GraphQL server sees three
dots followed by a name anywhere in a GraphQL query, it will look for a fragment defined
using that same name, and it will spread the content of the fragment in place of its three-
dotted name in the query. The content of the fragment has to fit in the place where it is
used. That's why our fragment, which was defined on an article object, can only be used
within the selection set that expands an article object.

The Query Language

[52]

Query fragments usually map to the components of a UI. A possible UI to represent this
example's data might have an Article component, and that component might contain
another component that represents a CommentList on that article. Our CommentList
fragment can be used to represent the data requirement for the CommentList UI
component. This allows for the isolation of the data every sub-component in our UI is
asking for, and it also allows for multiple views to use the same fragment without any
duplication of logic.

We can use variables in fragments. When a fragment gets used by an operation, it gets
access to the variables defined by that operation.

Here's our $showAuthor variable used in the fragment we defined for CommentList:

query TwoArticles($showAuthor: Boolean!) {
 firstArticle: article(articleId: 42) {
 ...CommentList
 }
 secondArticle: article(articleId: 43) {
 ...CommentList
 }
}
fragment CommentList on Article {
 comments {
 commentId
 formattedBody
 timestamp
 author @include(if: $showAuthor) {
 name
 }
 }
}

If the fragment uses a variable, that variable has to be defined by any operation that uses
the fragment. Using that fragment in an operation that does not define a matching variable
name will result in an error.

We can also use fragments directly inline without giving them a name:

query ArticleOrComment {
 node(nodeId: 42) {
 formattedBody
 timestamp
 ... on Article {
 nodeId: articleId
 }
 ... on Comment {

The Query Language

[53]

 nodeId: commentId
 }
 },
}

Inline fragments are useful inside a type that implements multiple objects, such as the node
field in the ArticleOrComment query. The node field is part of Relay's features and it can
represent any object in the GraphQL schema. In this query, we're assuming that a node can
either be an article or a comment. When the node is an article, we want to read the
articleId and use it as the nodeId, and when it's a comment, we want commentId to be
the nodeId.

Inline fragments can also be used to apply a directive to a group of fields. In this format, we
can omit the on Type section and assume it matches the enclosing context.

For example, given that an article object has views and likes properties, we can
conditionally include them using the $showStats variable like this:

query Article($showStats: Boolean!) {
 article(articleId: 42) {
 title
 formattedBody
 ... @include(if: $showStats) {
 views
 likes
 }
 }
}

Mutations
Reading is just one of the four CRUD operations that a client can communicate to a server.
Most clients will also communicate their need to update the data. With GraphQL, this can
be done with mutations.

A GraphQL mutation is very similar to a GraphQL query, but with runtime awareness that
resolving the mutation will have side effects on some elements of the data. A good
GraphQL runtime implementation executes multiple GraphQL mutations in a single
request in sequence one by one, while it executes multiple GraphQL queries in the same
request in parallel.

The Query Language

[54]

GraphQL fields, which we use in both queries and mutations, accept arguments. For
mutations, we can use field arguments as data input. Here's an example of a GraphQL
mutation that can be used to add a comment to an article using markdown:

mutation AddNewComment {
 addComment(
 articleId: 42,
 authorEmail: "mark@fb.com",
 markdown: "GraphQL is clearly a **game changer***"
) {
 id,
 formattedBody
 timestamp
 }
}

The markdown feature demonstrates how a GraphQL mutation can handle both writing
and reading at the same time. It's just another function that gets resolved on the server, but
it will do multiple things. The addComment function on the server will first persist the
comment data that we receive through field arguments, and it will then read the database-
generated timestamp, process the markdown of the comment, and return a JSON object
ready to be used by the UI to display that newly created comment. We will see an example
of how to define a GraphQL mutation on the server in the next chapter.

Summary
In this chapter, we learned the flexible syntax of the GraphQL query language. We've talked
about a GraphQL document and the operations it supports, we've seen examples of how to
query for fields, and how to use field arguments to customize the behavior of the GraphQL
executor. To further customize the behavior of the executor, we've seen how to use
directives and aliases. We learned about using fragments to remove duplication in queries,
and we've seen how a GraphQL mutation can be used for a write operation.

In the next chapter, we'll define a GraphQL schema and see how all the operations and
features we explored here can be implemented on the server side.

3
The GraphQL Schema

A GraphQL schema is what we write to represent the capabilities of a GraphQL server. In a
GraphQL schema, we define the types and directives that we want the server to support.

In this chapter, we will explore working with a GraphQL schema and the core features of a
GraphQL runtime. We'll cover the following topics:

The schema object and the operations it supports
The GraphQL introspective API
The GraphQL type system
Scalar and object types
Interfaces and unions
Enums
Type modifiers
The resolve function and how to use it with promises in queries and mutations
Validation rules for the GraphQL executor
API versioning in GraphQL

The schema object
Let's take a look at the exampleschema from Chapter 1, An Introduction to GraphQL and
Relay:

const queryType = new GraphQLObjectType({
 name: 'RootQuery',
 fields: {
 hello: {
 // ...

The GraphQL Schema

[56]

 },
 diceRoll: {
 // ...
 },
 usersCount: {
 // ...
 }
 }
});

const mySchema = new GraphQLSchema({
 query: queryType
});

A GraphQL schema can be defined as an instance of the GraphQLSchema class. The schema
is a representation of the capabilities of a GraphQL server starting from the root fields. In
our example, those root fields were hello, diceRoll, and usersCount.

The mySchema constant is what we used in Chapter 1, An Introduction to GraphQL and Relay,
to build an interface for the user. We can define multiple schemas and build multiple
interfaces for them. Every schema is an instance of the GraphQLSchema class.

To explain the syntax of the GraphQL JavaScript implementation type
system, we'll use the same notations used in the official GraphQL
documentation site: h t t p : / / g r a p h q l . o r g /.
This documentation site is for the JavaScript implementation of GraphQL
and it uses FlowType notations to document the API reference. FlowType
is a static type checker for JavaScript that's also used on Facebook.
To read more details about any classes or objects that are introduced here,
you can look them up in the h t t p : / / g r a p h q l . o r g / site. The
documentation for FlowType is available at h t t p s : / / f l o w t y p e . o r g /.
Please note that FlowType is not required to use GraphQL at all, it's just
used in the documentation site to make types and requirements clearer to
the reader. The actual JavaScript examples in this book are not using
FlowType.

The constructor of the GraphQLSchema class expects a configuration object:

class GraphQLSchema {
 constructor(config: GraphQLSchemaConfig)
}

http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
http://graphql.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/
https://flowtype.org/

The GraphQL Schema

[57]

In a JavaScript class (and in many other languages as well), the constructor function is
what will be executed when we create a new instance of that class (in JavaScript, we create a
new instance using the new keyword). According to the previous definition of the
GraphQLShcema class, the argument we pass to an instance of a GraphQLSchema is a
config object. This config object can have one or two properties:

type GraphQLSchemaConfig = {
 query: GraphQLObjectType;
 mutation?: ?GraphQLObjectType;
};

Here's how we can read the previous notation: a GraphQLSchema configuration can be
constructed as an object that has one or two properties, a query property, and an optional
mutation property. The values for both the query and mutation properties have the type
GraphQLObjectType.

The extra characters you'll see in the official GraphQL API reference
documentation (such as the ? after mutation and the ? before
GraphQLObjectType) are from the FlowType notations. A ? after an
object property marks that property as optional, and a ? before a type
marks the type with the possibility of a null value.

The query and mutation properties in a GraphQLSchema configuration object represent
the root type of their operations. A query operation represents a read-only fetch of
information, while a mutation operation represents a write followed by a read fetch of
information.

We define these two operations using the GraphQLObjectType class. When we query our
GraphQL server, we can start with the fields that are defined on the root query
GraphQLObjectType. The constructor of the GraphQLObjectType expects another
configuration object:

class GraphQLObjectType {
 constructor(config: GraphQLObjectTypeConfig)
}

type GraphQLObjectTypeConfig = {
 name: string;
 description?: ?string;
 fields: GraphQLFieldConfigMapThunk | GraphQLFieldConfigMap;
 interfaces?: ...;
};

The GraphQL Schema

[58]

We will talk about interfaces in a later section. A GraphQLObjectType configuration
object requires a name, which is just a string, that we can use to identify the object instance.
We will see the name property on many other objects in a GraphQL document, such
as operations, fields, arguments, directives, fragments, and variables. Names in GraphQL
are case-sensitive, and they are limited to the ASCII alphanumeric characters plus
underscores.

We can also supply an optional description property for any object. A description is
another string that can be used to add documentation about any GraphQL object. While
other languages have separate techniques to write documentation, in GraphQL the
documentation is part of the definition of objects and is written using the same
implementation language.

The reference notation for the GraphQLObjectType configuration object defines the
fields property to have a type of either GraphQLFieldConfigMapThunk or
GraphQLFieldConfigMap. An AbcThunk is just a function that returns Abc, so we can
define the fields property with either an object that directly represents a
GraphQLFieldConfigMap or with a function that returns a GraphQLFieldConfigMap.

type GraphQLFieldConfigMapThunk = () => GraphQLFieldConfigMap;

We can use the thunk function expression syntax when two types need to refer to each
other, or when a type needs to refer to itself in a field.

This latter case happens when there is a self-referential relation. For example, the boss of an
employee is also an employee:

const EmployeeType = new GraphQLObjectType({
 name: 'Employee',
 fields: () => ({
 name: { type: GraphQLString },
 boss: { type: EmployeeType },
 })
});

We have to use a function expression in this case, otherwise EmployeeType would not be
defined when we use it for the boss field.

A GraphQL field configuration map is an object that holds a list of fields, and every field is
a configuration object:

type GraphQLFieldConfigMap = {
 [fieldName: string]: GraphQLFieldConfig;
};

The GraphQL Schema

[59]

A field configuration object is a simple one; we have already seen most of its properties:

type GraphQLFieldConfig = {
 type: GraphQLOutputType;
 description?: ?string;
 args?: GraphQLFieldConfigArgumentMap;
 resolve?: GraphQLFieldResolveFn;
 deprecationReason?: string;
};

Each property on this configuration object will lead our discussion about a major GraphQL
core runtime concept. Let's start by talking about the description property and its role in
the GraphQL introspective nature.

Introspection
The description property, which can be defined on many GraphQL schema elements, is
used to give clients some details about an object. When clients read the schema information,
the description of each object will be available to them.

For example, GraphQL shows the description value for a field object in the type-ahead
dropdown that lists fields available inside a selection set. To see that in action, let's give our
example schema fields some description. In schema/main.js, modify the queryType object
as follows:

const queryType = new GraphQLObjectType({
 name: 'RootQuery',
 fields: {
 hello: {
 type: GraphQLString,
 resolve: () => 'world'
 },
 diceRoll: {
 description: '**Simulate** a dice roll determined by count',
 type: new GraphQLList(GraphQLInt),
 args: {
 count: {
 type: GraphQLInt,
 defaultValue: 2
 }
 },
 resolve: (_, args) => {
 let rolls = [];
 for (let i = 0; i < args.count; i++) {
 rolls.push(roll());

The GraphQL Schema

[60]

 }
 return rolls;
 }
 },
 usersCount: {
 description: 'Total number of users in the database',
 type: GraphQLInt,
 resolve: (_, args, { db }) =>
 db.collection('users').count()
 }
 }
});

When we try to use the two fields that are now documented with a description property in
GraphQL, that description appears in the dropdown:

Descriptions also show up in the Docs section in GraphiQL (upper right corner). This
section is auto-generated from the GraphQL schema, and it shows a list of all fields defined
on the RootQuery so far. For every field, we can see its type and description:

The GraphQL Schema

[61]

This reading of meta information about our schema is possible because of the introspective
nature of GraphQL servers. We can use a GraphQL query to ask about the GraphQL
schema and what capabilities that schema supports. For example, here's a query to ask
about all fields of our example RootQuery object:

query TypeFields {
 __type(name: "RootQuery") {
 fields {
 name
 description
 args {
 name
 }
 }
 }
}

Here's the response we get for that:

{
 "data": {
 "__type": {
 "fields": [
 {
 "name": "hello",
 "description": null,
 "args": []
 },
 {
 "name": "diceRoll",
 "description": "**Simulate** a dice roll
 determined by count",
 "args": [
 {
 "name": "count"
 }
]
 },
 {
 "name": "usersCount",
 "description": "Total number of users in the database",
 "args": []
 }
]
 }
 }
}

The GraphQL Schema

[62]

The __type is a built-in introspective field that should be available in any GraphQL
implementation. The double underscores naming convention is reserved for the
introspective system to avoid naming collisions with user-defined GraphQL types.
Anything that starts with double underscores is part of the introspective API.

Notice how, in the server response for the __type query, the hello field has a null
description because we did not define one there, and how only the diceRoll field accepts
an argument. This is an example of the information a client tool, such as GraphiQL, can use
to provide rich editing features to the user.

We can write Markdown in the description fields and GraphQL will use a
Markdown renderer to display those descriptions. The GraphQL
specification document encourages GraphQL tool writers to support
Markdown rendering for the description field in their tools.

Another built-in field we can use to read more introspective information about the schema
capabilities is the __schema field, which is available on the root type of a query. For
example, if we didn't know the name of the RootQuery type, we can use the __schema
field to find it:

query QueryTypeName {
 __schema {
 queryType {
 name
 }
 }
}

Here is the response for our example schema:

{
 "data": {
 "__schema": {
 "queryType": {
 "name": "RootQuery"
 }
 }
 }
}

The GraphQL Schema

[63]

We can also use the introspective API to read other capabilities of a GraphQL schema. For
example, here's an introspective query to read the list of directives a GraphQL server
supports:

query SchemaDirectives {
 __schema {
 directives {
 name
 description
 args {
 name
 description
 }
 }
 }
}

Since we have not implemented any custom directives for our example GraphQL schema,
the server will respond with the built-in ones:

{
 "data": {
 "__schema": {
 "directives": [
 {
 "name": "include",
 "description": "Directs the executor to include
 this field or fragment only
 when the `if` argument is true.",
 "args": [
 {
 "name": "if",
 "description": "Included when true."
 }
]
 },
 {
 "name": "skip",
 "description": "Directs the executor to skip
 this field or fragment
 when the `if` argument is true.",
 "args": [
 {
 "name": "if",
 "description": "Skipped when true."
 }
]
 },

The GraphQL Schema

[64]

 {
 "name": "deprecated",
 "description": "Marks an element of a GraphQL schema
 as no longer supported.",
 "args": [
 {
 "name": "reason",
 "description": "Explains why this element
 was deprecated, usually also
 including a suggestion for how
 to access supported similar data."
 }
]
 }
]
 }
 }
 }

Using the GraphQL introspection API, clients can read all the meta information about a
GraphQL schema and use it to provide their users with rich features such as auto-complete
and type warnings. The GraphQL JavaScript reference implementation library has a built-in
introspectionQuery that we can use to ask for a complete representation of the server's
type system. You can find this query if you search the library's GitHub repo (h t t p s : / / g i t h

u b . c o m / g r a p h q l / g r a p h q l - j s) for introspectionQuery. To test the query, copy it into
the GraphiQL instance for our example schema and you should see this big response:

https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js
https://github.com/graphql/graphql-js

The GraphQL Schema

[65]

*** #GitTag: chapter3-introspection ***

The type system
GraphQL is a strongly-typed language, and a GraphQL schema should have types for all
objects that it uses. This includes properties on objects, arguments, and variables. The type
system allows a GraphQL server to determine whether a query is valid at runtime.

The GraphQL Schema

[66]

Scalars and object types
The GraphQLFieldConfig object defines a field's type property to be
GraphQLOutputType. An output type in GraphQL can be one of the following three things:

A custom type, like the EmployeeType which we defined in a previous example.
A GraphQLScalarType, which represents a scalar value that cannot have fields
of its own. This could be one of the following:

GraphQLInt to represent an integer value
GraphQLFloat to represent a float value
GraphQLSting to represent a string value
GraphQLBoolean to represent a Boolean value
GraphQLID to represent an identity value

An instance of an object type class, like GraphQLObjectType. This is how we
define nested relations in a GraphQL schema.

Interfaces and unions
Interfaces and unions are abstract types that can be used to group other types. We can use
an Interface when there are common fields declared on the types of a group, and we can use
a union when there are no common fields declared on the types of a group.

An Interface type in GraphQL defines the fields an implementation will contain, while a
union type defines a list of different implementations. When we define a
GraphQLObjectType, we can optionally list the interfaces that it implements using its
interfaces property.

Let's say our schema defines an EmployeeType to represent the company's employees, and
a VendorType to represent the company's vendors:

const EmployeeType = new GraphQLObjectType({
 name: 'Employee',
 fields: {
 name: { type: GraphQLString },
 departmentName: { type: GraphQLString },
 }
});

const VendorType = new GraphQLObjectType({
 name: 'Vendor',
 fields: {

The GraphQL Schema

[67]

 name: { type: GraphQLString },
 companyName: { type: GraphQLString }
 }
});

Notice how both EmployeeType and VendorType define the field name. This is where a
GraphQL interface can be useful. Let's name this interface PersonType. If PersonType
defines the name field, we can say that both EmployeeType and VendorType implement
this PersonType interface. Here's how we can define the PersonType interface:

const PersonType = new GraphQLInterfaceType({
 name: 'Person',
 fields: {
 name: { type: GraphQLString }
 }
});

With a PersonType interface defined, we can use the interfaces property on a
GraphQLObjectType configuration object to provide a list of interfaces that an object
implements:

const EmployeeType = new GraphQLObjectType({
 name: 'Employee',
 fields: {
 name: { type: GraphQLString },
 departmentName: { type: GraphQLString }
 },
 interfaces: [PersonType]
});

const VendorType = new GraphQLObjectType({
 name: 'Vendor',
 fields: {
 name: { type: GraphQLString },
 companyName: { type: GraphQLString }
 },
 interfaces: [PersonType]
});

The fact that an object implements an interface is our guarantee that the object will support
all fields that are defined on that interface. When we ask this GraphQL schema about
employees or vendors, we know that we can always ask about their name.

The GraphQL Schema

[68]

Let's add a new type that uses our PersonType directly:

const ContactType = new GraphQLObjectType({
 name: 'Contact',
 fields: {
 person: PersonType,
 phoneNumber: { type: GraphQLString },
 emailAddress: { type: GraphQLString }
 }
});

In a GraphQL query that asks about a contact object, we can ask about the person associated
with that contact. Since we know that the interface defines a name, we can always ask about
that:

query ContactQuery($contactId: Int!) {
 contact(contactId: $contactId) {
 person {
 name
 },
 phoneNumber,
 emailAddress
 }
}

Inside the person field, we can't directly ask for departmentName or companyName
because a person could have one of those properties but not the other. However, we can
use inline fragments to conditionally ask about them:

query ContactQuery($contactId: Int!) {
 contact(contactId: $contactId) {
 person {
 name
 ... on Employee {
 departmentName
 }
 ... on Vendor {
 companyName
 }
 },
 phoneNumber,
 emailAddress
 }
}

The GraphQL Schema

[69]

This query's response will include a departmentName but not a companyName when this
contact is an employee, and it will include companyName but not departmentName when
the contact is a vendor.

When we want to group two objects that don't have any fields in common with a certain
logic, a GraphQL union is what we can use. For example, when we're modeling a resume
object for employees, the resume will have different sections, and each section will have
different fields, but the sections can be grouped under the category Resume Section.

Assume that we have the following two types in our schema:

const EducationType = new GraphQLObjectType({
 name: 'Education',
 fields: () => ({
 schoolName: { type: GraphQLString },
 fieldOfStudy: { type: GraphQLString },
 graduationYear: { type: GraphQLInt }
 })
});

const ExperienceType = new GraphQLObjectType({
 name: 'Experience',
 fields: () => ({
 companyName: { type: GraphQLString },
 title: { type: GraphQLString },
 description: { type: GraphQLString }
 })
});

We can use a union to represent a resume section that can be either an education type or an
experience type:

const ResumeSectionType = new GraphQLUnionType({
 name: 'ResumeSection',
 types: [ExperienceType, EducationType],
 resolveType(value) {
 if (value instanceof Experience) {
 return ExperienceType;
 }
 if (value instanceof Education) {
 return EducationType;
 }
 }
});

The GraphQL Schema

[70]

When we have a union type in a GraphQL schema, we can use inline fragments to ask
about the fields of the types that the union represents:

query ResumeInformation {
 ResumeSection {
 ... on Education {
 schoolName,
 fieldOfStudy
 }
 ... on Experience {
 companyName,
 title
 }
 }
}

Type modifiers
Any GraphQL type can be wrapped in one of these two type modifiers:

GraphQLList: When we wrap other types with a GraphQLList instance, we are
representing a list of those types. For example, to represent a list of integers, we
defined our diceRoll field's type to be:

 new GraphQLList(GraphQLInt)

If we want to represent a list of employees using the EmployeeType we
defined in a previous example, we can do the following:

 fields: {
 employees: {
 type: new GraphQLList(EmployeeType),
 }
 }

GraphQLNonNull: When we wrap other types with a GraphQLNonNull instance,
we are representing the non-null version of those types. This wrapper enforces
that the value it wraps is never null, and the type will raise an error if the value
happens to be null. For example, an employee name should never be null, but the
boss property can be null because at least one employee at a company does not
have a boss:

 const EmployeeType = new GraphQLObjectType({
 name: 'Employee',
 fields: () => ({

The GraphQL Schema

[71]

 name: { type: new GraphQLNonNull(GraphQLString) },
 boss: { type: EmployeeType },
 })
 });

When we resolve the name field on an employee object, if a null value was
found, GraphQL will raise an error.

These two type modifiers are also known as type makers because they make a new type,
which wraps the original type. To read the original type in the introspective API, we can
use the ofType property. For example, here's an introspection query to read all the types
for a GraphQL schema:

qury TypeFields {
 __schema {
 queryType {
 fields {
 name
 type {
 kind
 name,
 ofType {
 kind,
 name
 }
 }
 }
 }
 }
}

The response from our example GraphQL schema is as follows:

{
 "data": {
 "__schema": {
 "queryType": {
 "fields": [
 {
 "name": "hello",
 "type": {
 "kind": "SCALAR",
 "name": "String",
 "ofType": null
 }
 },
 {
 "name": "diceRoll",

The GraphQL Schema

[72]

 "type": {
 "kind": "LIST",
 "name": null,
 "ofType": {
 "kind": "SCALAR",
 "name": "Int"
 }
 }
 },
 {
 "name": "usersCount",
 "type": {
 "kind": "SCALAR",
 "name": "Int",
 "ofType": null
 }
 }
]
 }
 }
 }
}

Notice how both hello and usersCount have direct scalar types, while object of
diceRoll type does not have a name. The object of diceRoll type is a list modifier. To see
what type the object of diceRoll type modifies, we can read the ofType property, which
only exists for the diceRoll field in this schema. This response tells us, using the type
names, that diceRoll is a list of scalar integers.

Type modifiers can be combined. For example, we can use them to define a list of non-null
items, a non-null list, or a list of lists.

Enums
When the scalar value that we want to represent for a field has a list of possible values in a
set, and it can only be one of those values, we can represent the field in a GraphQL schema
as an ENUM type.

For example, an employee's contract can be full-time, part-time, or shift-work. Let's assume
we represented these values in our database with numbers; the database field
contract_type has a check in (1, 2, 3). Here's how we represent the contract type values in
the GraphQL JavaScript implementation:

The GraphQL Schema

[73]

const ContractType = new GraphQLEnumType({
 name: 'Contract',
 values: {
 FULLTIME: { value: 1 },
 PARTTIME: { value: 2 },
 SHIFTWORK: { value: 3 }
 }
});

ContractType is a new custom type that we can now use on the EmployeeType, for
example like this:

const EmployeeType = new GraphQLObjectType({
 name: 'Employee',
 fields: {
 name: { type: GraphQLString },
 contractType: ContractType
 }
});

Let's introduce another type—a department type. For this type, we'll use the
ContractType to represent the list of allowed contract types in a department:

const DepartmentType = new GraphQLObjectType({
 name: 'Department',
 fields: {
 name: { type: GraphQLString },
 contractTypes: new GraphQLList(ContractType),
 }
});

Every department will have a list of contract types that it can accept.

The resolve function
It's time to talk about the optional resolve function in a field configuration object:

type GraphQLFieldConfig = {
 type: GraphQLOutputType;
 args?: GraphQLFieldConfigArgumentMap;
 resolve?: GraphQLFieldResolveFn;
 deprecationReason?: string;
 description?: ?string;
}

The GraphQL Schema

[74]

We've already seen the resolve function in our example schema, where we used it to return
data for each field. This function can accept four optional arguments:

type GraphQLFieldResolveFn = (
 source?: any,
 args?: {[argName: string]: any},
 context?: any,
 info?: GraphQLResolveInfo
) => any;

First argument – source
This argument represents the field we're configuring. For example, on the EmployeeType,
we can define a name field to use the source argument value to read firstName and
lastName from each employee object:

const EmployeeType = new GraphQLObjectType({
 name: 'Employee',
 fields: () => ({
 name: {
 type: GraphQLString,
 resolve: (obj) => `${obj.firstName} ${obj.lastName}`
 },
 boss: { type: EmployeeType },
 })
});

The source argument, which we named obj for this example, represents the employee
object that we will be responding with. This resolve function does not need to use the other
arguments. The name field here is an example of a computed field that does not need to be
mapped to an object property.

Second argument – args
The value of this argument is an object that is associated with the args property that is
defined on the field level (the same level where resolve is defined):

type GraphQLFieldConfig = {
 type: GraphQLOutputType;
 args?: GraphQLFieldConfigArgumentMap;
 resolve?: GraphQLFieldResolveFn;
 deprecationReason?: string;
 description?: ?string;

The GraphQL Schema

[75]

}

The GraphQLFieldConfigArgumentMap type is a simple object that holds a list of
arguments:

type GraphQLFieldConfigArgumentMap = {
 [argName: string]: {
 type: GraphQLInputType;
 defaultValue?: any;
 description?: ?string;
 };
};

A field argument only requires a type, but we can also give it a defaultValue and a
description.

We saw the arguments feature when we defined a count argument on the diceRoll field.
Let's define some arguments for the name field on EmployeeType.

To test examples about EmployeeType, let's define an example employee object that we will
use to resolve a top-level exampleEmployee field:

const exampleEmployee = {
 firstName: 'jane',
 lastName: 'doe'
};

In our RootQuery fields object in schema/main.js, we add a field for exampleEmployee:

exampleEmployee: {
 type: EmployeeType,
 resolve: () => exampleEmployee
},

We can now read our exampleEmployee data with a query like the following:

query EmployeeData {
 exampleEmployee {
 # Fields on EmployeeType
 }
}

The GraphQL Schema

[76]

Let's support an upperCase Boolean argument that would make the server resolve with the
name in uppercase. Above the queryType object in schema/main.js:

const EmployeeType = new GraphQLObjectType({
 name: 'Employee',
 fields: () => ({
 name: {
 type: GraphQLString,
 args: {
 upperCase: { type: GraphQLBoolean }
 },
 resolve: (obj, args) => {
 let fullName = `${obj.firstName} ${obj.lastName}`;
 return args.upperCase ?
 fullName.toUpperCase() : fullName;
 }
 },
 boss: { type: EmployeeType }
 })
});

We first define the argument type on the name field—in our case it's a GraphQLBoolean
(which we need to add to the require('graphql') constants). To use the user-supplied
argument value, we read it from the second argument of the resolve() function itself. We
can name this argument anything, but it's usually defined as args too.

Inside the resolve() function, args.upperCase will have the user-supplied value of the
upperCase field argument. For example, here's a GraphQL query that uses aliases to read
the name twice, once with normal format, and once with uppercase format:

query EmployeeNameCase {
 exampleEmployee {
 upperCaseName: name(upperCase: true)
 regularName: name(upperCase: false)
 }
}

The server response would be as follows:

{
 "data": {
 "exampleEmployee": {
 "upperCaseName": "JANE DOE",
 "regularName": "jane doe"
 }
 }
}

The GraphQL Schema

[77]

However, this makes the name field dependent on this upperCase argument; we can't
query for name without supplying a value for upperCase. It would be nice if there was a
default value. Also, what if we want to also support a lowercase version of the name, and
keep the support for the regular title case? To solve both issues, let's introduce a new type
for the name field. Instead of upperCase Boolean, we'll do a letterCase enum. In
schema/main.js, define this new enum type:

const LetterCaseType = new GraphQLEnumType({
 name: 'LetterCase',
 values: {
 TITLE: { value: 'title' },
 UPPER: { value: 'upper' },
 LOWER: { value: 'lower' }
 }
});

We'll need to add the GraphQLEnumType to the require('graphql') constants.

JavaScript does not have a .toTitleCase() function, so let's define a simple one. In
schema/main.js:

const toTitleCase = str => {
 return str.replace(/\w\S*/g, txt =>
 txt.charAt(0).toUpperCase() + txt.substr(1).toLowerCase());
};

To use the LetterCaseType enum, instead of replacing the current name field, let's add a
new nameForCase field. Think of nameForCase as a new version for name. We can do
something like the following:

const EmployeeType = new GraphQLObjectType({
 name: 'Employee',
 fields: () => ({
 name: {
 // ...
 },
 nameForCase: {
 type: GraphQLString,
 args: {
 letterCase: { type: LetterCaseType }
 },
 resolve: (obj, args) => {
 let fullName = `${obj.firstName} ${obj.lastName}`;
 switch (args.letterCase) {
 case 'lower':
 return fullName.toLowerCase();

The GraphQL Schema

[78]

 case 'upper':
 return fullName.toUpperCase();
 case 'title':
 return toTitleCase(fullName);
 default:
 return fullName;
 }
 }
 },
 boss: { type: EmployeeType }
 })
});

The nameForCase field can now be queried for in one of four ways:

query EmployeeNameCase {
 exampleEmployee {
 defaultCaseName: nameForCase
 titleCaseName: nameForCase(letterCase: TITLE)
 lowerCaseName: nameForCase(letterCase: LOWER)
 upperCaseName: nameForCase(letterCase: UPPER)
 }
}

Here's what the server will respond with:

{
 "data": {
 "exampleEmployee": {
 "defaultCaseName": "jane doe",
 "titleCaseName": "Jane Doe",
 "lowerCaseName": "jane doe",
 "upperCaseName": "JANE DOE"
 }
 }
}

Third argument – context
This argument represents a global context object that the GraphQL executor can pass to all
resolver functions. It can be used, for example, to represent a database connection, an
authenticated user session, or a reference to a request-specific cache object.

The GraphQL Schema

[79]

We've used the context object in Chapter 1, An Introduction to GraphQL and Relay, to pass a
reference to the MongoDB connected db object to all resolver functions. Here's how we
instructed the GraphQL executor to pass a context object to all resolver functions:

mongodb.MongoClient.connect(MONGO_URL, (err, db) => {
 ...
 app.use('/graphql', graphqlHTTP({
 schema: mySchema,
 context: { db },
 graphiql: true
 }));
 ...
});

In this example, the context object contains one property, the db object. We can add any
other global context values as properties on this same context object.

We then used the context third argument in the userCount field resolve function:

 usersCount: {
 description: 'Total number of users in the database',
 type: GraphQLInt,
 resolve: (_, args, { db }) => db.collection('users').count()
 }

In this example, we destructured the db property out of the context object that the resolver
function has access to.

Fourth argument – info
This argument represents a collection of information about the current execution state; we
can use it, for example, to access the field name that we're currently resolving for, or the
return type of the field we're currently resolving for, among a few other things.

The field name is helpful if we need to dynamically modify the resolved value of a field. For
example, let's assume that we have an object in our schema with first_name and
last_name properties, and we want to model our fields to be camelCase instead of
snake_case; we can come up with a generic code that we can use for both firstName and
lastName fields:

fields: {
 firstName: fromSnakeCase(GraphQLString),
 lastName: fromSnakeCase(GraphQLString),
}

The GraphQL Schema

[80]

// Assuming that we have a toSnakeCase() function
// Converts a camelCase string into snake_case
const fromSnakeCase = GraphQLType => {
 return {
 type: GraphQLType,
 resolve(obj, args, ctx, { fieldName }) {
 return obj[toSnakeCase(fieldName)];
 }
 };
};

In the fromSnakeCase() function, we use the resolver function's fourth argument, from
which we destructured the fieldName value. Then, instead of returning the default
resolver value, which is obj[fieldName], we modify the resolver value to read the snake
case property that matches the fieldName we're executing for:

*** #GitTag: chapter3-the-resolve-function ***

Resolving with promises
When we create APIs, we usually create them to work with some form of data, and when
we work with data in Node.js, we do so asynchronously. We initiate a command to read or
write data, and then we handle the response with a callback or a promise.

For example, to read the content of a file (the simplest form of a database) in Node.js, we do
the following:

fs.readFile('/path/to/file', (err, data) => {
 if (err) throw err;
 console.log(data);
});

The callback function in the second argument will get executed asynchronously when the
content of the file is ready. We can't use the return value of fs.readFile directly.

To work through a GraphQL example for working with promises, let's assume that we have
a very simple database of inspirational quotes in a file in our project:

In data/quotes, we have the following:

The best preparation for tomorrow is doing your best today.
Life is 10 percent what happens to you and 90 percent how you react to it.
If opportunity doesn't knock, build a door.

The GraphQL Schema

[81]

We want to define a GraphQL field to return the most recent quote in our file (assuming
that to be the last one).

The client would ask this query:

{ lastQuote }

The server should respond with the following:

{
 "data": {
 "lastQuote": "If opportunity doesn't knock, build a door."
 }
}

We can't simply resolve the GraphQL field with the result of fs.readFile. However, we
can resolve it with a promise object that will resolve with the line of data that we want.

Let's first create a JavaScript promise that resolves with the last line of a given file, in
schema/main.js:

const fs = require('fs');

const readLastLinePromise = path => {
 return new Promise((resolve, reject) => {
 fs.readFile(path, (err, data) => {
 if (err) throw reject(err);
 resolve(data.toString().trim().split('\n').slice(-1)[0]);
 });
 });
};

Here's how we would use this promise:

readLastLinePromise('data/quotes')
 .then(line => console.log(line))
 .catch(error => console.error(error));

To make a GraphQL lastQuote root field that will read the last quote from the file, we
define a lastQuote field on the RootQuery object and resolve it with the promise itself. In
schema/main.js:

const queryType = new GraphQLObjectType({
 name: 'RootQuery',
 fields: {
 lastQuote: {
 type: GraphQLString,
 resolve: () => readLastLinePromise('data/quotes')

The GraphQL Schema

[82]

 },
 // Other fields on RootQuery
 }
};

The GraphQL executor is smart enough to see a promise returned and use its resolved value
in the response for the query.

If we test the { lastQuote } query, the server response will be as follows:

{
 "data": {
 "lastQuote": "If opportunity doesn't knock, build a door."
 }
}

We can also use promises to resolve a mutation operation. Let's make our GraphQL schema
support an insert operation on our simple inspirational quotes file-based database.

We can construct a mutation request to insert a quote with a GraphQL string like this:

mutation {
 addQuote(body: "...")
}

GraphQL will execute the mutation, and it will return a JSON response. Usually, this JSON
response will be related to the data that the mutation is mutating.

The GraphQL Schema

[83]

Let's create the mutation on the server. Similar to the query property, the mutation is just
another GraphQLObjectType, and similar to the lastQuote query field, we need to
respond with a promise that will resolve with an answer for the mutation. We can use
fs.appendFile to append the new quote to our quotes file. In schema/main.js, add the
following:

const appendLinePromise = (path, line) => {
 return new Promise((resolve, reject) => {
 fs.appendFile(path, line, err => {
 if (err) throw reject(err);
 resolve(line);
 });
 });
};

const mutationType = new GraphQLObjectType({
 name: 'RootMutation',
 fields: {
 addQuote: {
 type: GraphQLString,
 args: {
 body: { type: GraphQLString }
 },
 resolve: (_, args) =>
 appendLinePromise('data/quotes', args.body)
 }
 }
});

Then, modify the mySchema object to include this new mutationType:

const mySchema = new GraphQLSchema({
 query: queryType,
 mutation: mutationType
});

We gave the mutation property an identifying name RootMutation, and so far, we're only
defining a single mutation, addQuote.

The addQuote mutation accepts a body field argument, which is a string. Then it passes the
value of that argument to appendLinePromise.

appendLinePromise will return a promise that resolves with the same input after it
successfully appends it to the quotes file.

The GraphQL Schema

[84]

Let's use this addQuote mutation capability now:

mutation {
 addQuote(body: "Try to be a rainbow in someone's cloud.")
}

The server response will be as follows:

{
 "data": {
 "addQuote": "Try to be a rainbow in someone's cloud."
 }
}

To verify that data was in fact persisted, we can follow the mutation operation with a read
operation:

query {
 lastQuote
}

The server response will be as follows:

{
 "data": {
 "addQuote": "Try to be a rainbow in someone's cloud."
 }
}

The GraphQL Schema

[85]

*** #GitTag: chapter3-resolving-with-promises ***

Validation
The GraphQL executor will only execute requests that pass all validation rules. If there are
any errors during the validation phase, a list of errors is returned instead of any response
from executing the operations.

Validating a request is not just about the syntax; there are also rules that a GraphQL server
should enforce even if the syntax of the request is correct. For example, we can't send a
GraphQL server a document that has two queries with the same name, or a document that
has one anonymous query and another named query.

There are also rules related to fields: we can't ask the server about properties that do not
exist on objects, we can't use an alias name that matches another property on the field that
we're asking for, and we can't have selection sets within scalar fields.

One of the most noticeable validation actions that you'll probably run into is when invalid
types are used in the request document, for example, if a field excepts a numeric argument
and we send it a string instead.

The GraphQL executor will return clear errors when any violation of syntax or logic is sent
in a request. The clarity of error messages is one of the great features of GraphQL.

The GraphQL Schema

[86]

Here's an example request for our example schema that would cause the GraphQL executor
to respond with an error:

query validationExampleQuery {
 diceRoll(count: "7")
}

Since our diceRoll field expects a numeric count, supplying a string will cause the
executor to halt the operation and return an error message instead:

{
 "errors": [
 {
 "message": "Argument "count" has invalid value
 "7".\nExpected type "Int", found "7".",
 "locations": [
 {
 "line": 2,
 "column": 19
 }
]
 }
]
}

The locations part of the error tells us exactly where in the query string this problem was
encountered.

There are a lot of other validation rules in GraphQL. In fact, every feature in the language
has some associated rules for validity. Besides the examples mentioned here, there are rules
on using fragments, input values, directives, and variables.

Versioning
GraphQL has a unique perspective on versioning: it can be avoided.

Versioning complicates API usage and leaves the API designers with lots of decisions that
need to be made. For example, should the new API be hosted on the same level of
endpoints? What do we do about the old API endpoints? What if a client needs to partially
use the new API while maintaining the old usage? How do we warn clients about
deprecated parts of the API?

The GraphQL Schema

[87]

GraphQL's perspective is simple. Avoid versioning altogether. When you have new
features that you need to push to new clients, just use new fields for them and keep the old
fields as they are; everyone will be happy.

We've already followed this concept when we introduced the nameFor field in the
examples about the resolver function arguments. We had a name field that expected a
Boolean argument (upperCase), and we decided to support an enum argument instead
(letterCase). Instead of replacing the field that we had already, we introduced a new
field, nameFor.

If we want to stop supporting old fields in a schema, GraphQL has a feature to allow for
deprecating those fields first. This gives the API users some time to learn about the
deprecation and update their queries. We can deprecate a GraphQL field by adding a
deprecationReason property on it. Let's deprecate the name field that we want to
eventually stop supporting:

const EmployeeType = new GraphQLObjectType({
 name: 'Employee',
 fields: () => ({
 name: {
 type: GraphQLString,
 deprecationReason: 'Use nameFor instead',
 args: {
 upperCase: { type: GraphQLBoolean }
 },
 resolve: (obj, args) => {
 let fullName = `${obj.firstName} ${obj.lastName}`;
 return args.upperCase ?
 fullName.toUpperCase() : fullName;
 }
 },
 nameForCase: {
 // ..
 }
 })
});

Deprecated fields will continue to work as normal, but the tools that work with
introspective queries will know about these deprecated fields and will possibly provide
warnings about using them.

*** #GitTag: chapter3-versioning ***

The GraphQL Schema

[88]

Summary
To work with GraphQL on the server side, we need to write a valid schema that exposes the
capabilities of our GraphQL server. We explored the schema object in this chapter and saw
examples of how to define its elements.

We talked about the introspective nature of a GraphQL server and how we can use the
GraphQL query language to read meta information about our schema.

We explored the GraphQL type system and the various types available for us to use to
represent our data. We talked about the resolve function that we can use to map any user
input to any logic we want, and we saw how the GraphQL executor accepts the use of
promise objects in the resolve functions.

We talked about the various rules of validation that a GraphQL executer uses on all request
documents, and we covered a bit of versioning strategies with GraphQL.

4
Configuring React Applications

to Use Relay
In this chapter, we'll start building a React application that communicates with a GraphQL
service using Relay. The first thing we need to do is to configure a Relay development
environment for our React application. We'll use Webpack and Babel, set up a simple
MongoDB-based GraphQL schema, read it directly with React, and then prepare our React
application to work with Relay. The topics we'll cover in this chapter are:

Working with MongoDB collections in GraphQL
Setting up a Webpack environment with a Babel.js loader
How to use a GraphQL endpoint directly with React applications
Relay component containers
Relay routes and root container

The example GraphQL schema
We'll start this example with the GraphQL schema we have been testing so far. Since we
will only be talking to our MongoDB from this point forward, we can clean up all the
example fields. I'll keep the usersCount field for a reference example to read from the
database.

Here's our example GraphQL schema with only the usersCount root field:

const {
 GraphQLSchema,
 GraphQLObjectType,
 GraphQLString,

Configuring React Applications to Use Relay

[90]

 GraphQLInt,
 GraphQLList,
 GraphQLBoolean,
 GraphQLEnumType
} = require('graphql');

const queryType = new GraphQLObjectType({
 name: 'RootQuery',
 fields: {
 usersCount: {
 description: 'Total number of users in the database',
 type: GraphQLInt,
 resolve: (_, args, { db }) => db.collection('users').count()
 }
 }
});

const mySchema = new GraphQLSchema({
 query: queryType
});

module.exports = mySchema;

Here's the index.js file that starts a simple Express.js server and exposes our schema in an
HTTP interface:

const { MongoClient } = require('mongodb');
const assert = require('assert');
const graphqlHTTP = require('express-graphql');
const express = require('express');

const app = express();
const mySchema = require('./schema/main');
const MONGO_URL = 'mongodb://localhost:27017/test';

MongoClient.connect(MONGO_URL, (err, db) => {
 assert.equal(null, err);
 console.log('Connected to MongoDB server');

 app.use('/graphql', graphqlHTTP({
 schema: mySchema,
 context: { db },
 graphiql: true
 }));

 app.listen(3000, () =>
 console.log('Running Express.js on port 3000')
);

Configuring React Applications to Use Relay

[91]

});

This schema assumes the existence of a MongoDB collection named users, which is
defined under a local database named test.

You can also check out branch graphql-mongodb-start from the book's GitHub
repository
(h t t p s : / / g i t h u b . c o m / e d g e c o d e r s / l e a r n i n g - g r a p h q l - a n d - r e l a y) and you should get
the simplified schema we have, without all the examples:

~/graphql-project $ git checkout graphql-mongodb-start

Run the npm install command, then make sure mongod is running and start the server
with the node index.js command.

If everything works correctly, when you start the server, you should see the following:

~/graphql-project $ node index.js

Connected to MongoDB server
Running Express.js on port 3000

When you navigate to http://localhost:3000/graphql and read the usersCount
field, you should see this answer:

*** #GitTag: chapter4-the-example-graphql-schema ***

https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay
https://github.com/edgecoders/learning-graphql-and-relay

Configuring React Applications to Use Relay

[92]

The quotes library
Let's build a simple quotes library application that displays a list of short inspirational
quotes and allows users to add more quotes to that list. This time, however, instead of
managing the list of quotes in a file, we'll use a MongoDB collection.

In a mongo shell:

> db.createCollection("quotes")
{ "ok" : 1 }

We can use the insertMany collection function to insert our seed quotes:

> db.quotes.insertMany([
... {
... text: "The best preparation for tomorrow
 is doing your best today",
... author: "H. Jackson Brown"
... },
... {
... text: "If opportunity doesn't knock, build a door",
... author: "Milton Berle"
... },
... {
... text: "Try to be a rainbow in someone's cloud",
... author: "Maya Angelou"
... },
...])

The output of the previous command should be something like the following:

{
 "acknowledged" : true,
 "insertedIds" : [
 ObjectId("57281cc43a88dba20500f9c2"),
 ObjectId("57281cc43a88dba20500f9c3"),
 ObjectId("57281cc43a88dba20500f9c4")
]
}

Let's now create a simple GraphQL API for this collection. We can start with an allQuotes
root field that returns all the quotes, but we first need to define a QuoteType. In the
schema/main.js file, add the following:

const QuoteType = new GraphQLObjectType({
 name: 'Quote',
 fields: {

Configuring React Applications to Use Relay

[93]

 id: {
 type: GraphQLString,
 resolve: obj => obj._id
 },
 text: { type: GraphQLString },
 author: { type: GraphQLString }
 }
});

Our QuoteType is a simple GraphQLObjectType that defines three GraphQLString fields.
All fields on QuoteType are directly mapped to fields in the database, except for id, which
we manually resolved with its object _id property. The _id property gets auto-generated
by MongoDB when a new record is inserted. The other fields will be automatically resolved
with their matching database object properties.

We can use this new QuoteType to define our planned allQuotes root field. Modify the
queryType object in schema/main.js; we can get rid of the example usersCount field at
this point:

const queryType = new GraphQLObjectType({
 name: 'RootQuery',
 fields: {
 allQuotes: {
 type: new GraphQLList(QuoteType),
 description: 'A list of the quotes in the database',
 resolve: (_, args, { db }) =>
 db.collection('quotes').find().toArray()
 }
 }
});

Since allQuotes will return a list of quotes, we need to modify the QuoteType and make a
new type that is a GraphQLList with QuoteType items. For the resolve function, we use
the MongoDB find() method on the quotes collection, which finds all the records in that
collection. We then chain a .toArray() call to return a promise that will resolve to an
array of quotes. GraphQL will work correctly with a promise-based answer, thanks to the
smart execution engine behind it.

Configuring React Applications to Use Relay

[94]

After a server restart, we can now use a GraphQL query to read our quotes from the
database:

*** #GitTag: chapter4-the-quotes-library ***

Setting up Webpack
We will be using Webpack with Babel.js plugins to work with our relay-based React
applications. Webpack is a popular module bundler that supports a lot of extensions. We
can use Webpack, for example, to work with Sass and CoffeeScript, and to prepare our
JavaScript assets for production use. For the purpose of our example here, we'll only
configure Webpack to enable us to write modern JavaScript (ES2015 and beyond), and to
write in the JSX JavaScript extension.

Webpack is available as an npm package that we can install with the following:

~/graphql-project $ npm install -g webpack
└─┬ webpack@1.13.1

Once we have the webpack command globally available, we can use it to read a starting-
point JavaScript file and bundle everything that file depends on using any extensions we
want. Webpack will give us a single output file that we can write to any destination we
choose.

Configuring React Applications to Use Relay

[95]

Let's make our entry point js/app.js and have our index.html inside a public
directory. We'll have Webpack bundle a single bundle.js file inside this public directory
as well.

Here's a Webpack configuration file that will allow us to work with this structure. On the
root level of the application, create a webpack.config.js file with this content:

const path = require('path');

module.exports = {
 entry: './js/app.js',
 output: {
 path: path.join(__dirname, 'public'),
 filename: 'bundle.js'
 },
 module: {
 loaders: [
 {
 test: /\.js$/,
 exclude: /node_modules/,
 loader: 'babel-loader'
 }
]
 }
};

We start with the entry point js/app.js and make Webpack generate a single file named
bundle.js inside the public directory. While bundling, we're instructing Webpack to also
use Babel on any file whose name ends with .js, excluding all files in the node_modules
directory.

To make Babel work with ES2015, React, and all the proposed features for modern
JavaScript, we can configure the following presets in a .babelrc file. On the root level of
the application, create a .babelrc file with this content:

{
 "presets": [
 "react",
 "es2015",
 "stage-0"
]
}

Configuring React Applications to Use Relay

[96]

To make all of this work, we need a few npm packages installed and saved locally:

~/graphql-project $ npm install --save webpack babel-loader \
 babel-preset-es2015 babel-preset-react babel-preset-stage-0

Let's create a simple React application to test our setup. We need an index.html file in the
public directory:

<!DOCTYPE html>
<html>
<head>
 <title>Quotes</title>
 <link rel="stylesheet"
 href="https://maxcdn.bootstrapcdn.com/
 bootstrap/3.3.7/css/bootstrap.min.css" />
</head>
<body>
 <div id="react" class="container">
 Loading...
 </div>
 <script src="bundle.js"></script>
</body>
</html>

The only script we load here is bundle.js, which will be created by Webpack. We've also
loaded the Bootstrap CSS framework in here. Bootstrap is optional, but it would make the
quotes list look much better.

To make Express.js serve this index.html static file, we need to add the static middleware.
Add this line to index.js right after we initialize the app constant:

app.use(express.static('public'));

Here's a simple example React application that uses a modern JavaScript feature (Class
static properties). Create a new app.js file under a js directory with this content:

import React from 'react';
import ReactDOM from 'react-dom';

class App extends React.Component {
 static defaultProps = {
 greeting: 'Hello'
 };
 render() {
 return (
 <div>
 {this.props.greeting} World

Configuring React Applications to Use Relay

[97]

 </div>
);
 }
}

ReactDOM.render(
 <App />,
 document.getElementById('react')
);

Note how this code uses the new JavaScript module syntax import/export. The webpack
process will be able to understand and work with this syntax through the Babel presets.

Since we're depending on react and react-dom packages here, we need to install them:

~/graphql-project $ npm install --save react react-dom
├─┬ react@15.3.0
└── react-dom@15.3.0

Finally, to generate the bundle.js file, we need to invoke the webpack command:

~/graphql-project $ webpack
Hash: e911bf615a0446db8668
Version: webpack 1.13.1
Time: 992ms
 Asset Size Chunks Chunk Names
bundle.js 727 kB 0 [emitted] main
 + 172 hidden modules

After restarting the server, if everything works, when we navigate to
http://localhost:3000/ we should now see a Hello World message:

*** #GitTag: chapter4-setting-up-webpack ***

Configuring React Applications to Use Relay

[98]

Using GraphQL without Relay in React
applications
If we don't need any of the features that Relay provides for us, we can still use GraphQL
directly in a React application using a simple Ajax library. For this example, we'll use the
modern fetch library that browsers have started to support natively.

We first need to build our React components. Let's start with a QuotesLibrary component
that lists an array of Quote components.

The QuotesLibrary component is a simple one; it will load the list of quotes when it
mounts, and map them into an array of Quote components.

To keep things simple, we'll make the QuotesLibrary component our top-level one and
define it in js/app.js:

import React from 'react';
import ReactDOM from 'react-dom';

import Quote from './quote';

class QuotesLibrary extends React.Component {
 state = { allQuotes: [] };

 componentDidMount() {
 // Load the quotes list into this.state.allQuotes
 }

 render() {
 return (
 <div className="quotes-list">
 {this.state.allQuotes.map(quote =>
 <Quote key={quote.id} quote={quote} />
)}
 </div>
)
 }
}

ReactDOM.render(
 <QuotesLibrary />,
 document.getElementById('react')
);

Configuring React Applications to Use Relay

[99]

Assuming we can successfully load the list of quote objects into the QuotesLibrary
component's state from within a componentDidMount() method, displaying them is a
matter of mapping that array as an array of Quote elements.

Here's a simple implementation of the Quote component, which is also on the same level
under js. In js/quote.js, add the following:

import React from 'react';

class Quote extends React.Component {
 render() {
 return (
 <blockquote>
 <p>{this.props.quote.text}</p>
 <footer>{this.props.quote.author}</footer>
 </blockquote>
);
 }
}

export default Quote;

Now all we need to do is figure out how to use a GraphQL query to make the list of quotes
available to the QuotesLibrary component. Since fetch is available natively in modern
browsers, let's just use that in the componentDidMount() method of the QuotesLibrary
component.

For browsers that don't support fetch natively, we can use this polyfill by
GitHub: h t t p s : / / g i t h u b . c o m / g i t h u b / f e t c h. This repository also has
excellent instructions on how to use the fetch method. If you're using the
latest Chrome, Firefox, Edge, or Opera, fetch should be available.

We can fetch our data with this simple GraphQL query:

 // In the QuotesLibrary component in js/app.js
 componentDidMount() {
 // Load the quotes list into this.state.allQuotes
 fetch(`/graphql?query={
 allQuotes {
 id,
 text,
 author
 }
 }`)
 .then(response => response.json())
 .then(json => this.setState(json.data))

https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/github/fetch

Configuring React Applications to Use Relay

[100]

 .catch(ex => console.error(ex))
 }

Our GraphQL endpoint is responding on HTTP under /graphql, and we can use the
query parameter to send it our GraphQL queries. The query we used here is a simple one
that reads all the quotes' information, including their MongoDB-generated id. The
QuotesLibrary component uses an id field on every quote for the React key property.

Once we have the JSON object returned from the server, we can use its data property to set
the state of the QuotesLibrary component and update the allQuotes array.

Don't forget to webpack when you change any JavaScript files; I always
run webpack with the -w (--watch) flag in development, which will take
care of that.
You should also use the -d flag, which will generate and include source
maps with the bundled file.

That's everything we need. Here's what you should see now when you go to
http://localhost:3000/:

*** #GitTag: chapter4-using-graphql-without-relay ***

Configuring React Applications to Use Relay

[101]

Relay containers
The first thing we need to do in order for our React application to use Relay is to wrap our
components with the higher-order Relay container component that makes the React
component understand Relay features. To be able to do that, we need to import the Relay
library. In both js/app.js and js/quote.js, add the following:

import Relay from 'react-relay';

This import line will be needed in every file that defines a React component because we will
convert every React component into a Relay-contained component. Add the same line to
js/quote.js.

We'll need to install this new dependency for webpack to find it:

~/graphql-project $ npm install --save react-relay \
 babel-relay-plugin
└─┬ react-relay@0.9.2
└── babel-relay-plugin@0.9.2

We will be using the babel-relay-plugin in the next chapter, the
package react-relay depends on it.

Starting with our top-level QuotesLibrary component in js/app.js, here's how to wrap
it with the Relay container higher-order component:

QuotesLibrary = Relay.createContainer(QuotesLibrary, {
 fragments: {}
});

This is a barebones Relay container; it generates a new React component that also
understands Relay features. We'll learn how to work with the fragments property in the
next chapter, but first, let's see how to render a Relay-contained React component into the
DOM. We first need a Relay.Route object to define the entry points into the Relay
application.

After defining the Relay container for QuotesLibrary in js/app.js, add this:

class AppRoute extends Relay.Route {
 static routeName = 'App';
}

Configuring React Applications to Use Relay

[102]

The term route here might be a bit confusing. Relay routes have nothing
to do with URL routing.

We can use this AppRoute along with the top-level QuotesLibrary component to render a
Relay.RootContainer component.

Replace the previous ReactDOM.render call in js/app.js with the following:

ReactDOM.render(
 <Relay.RootContainer
 Component={QuotesLibrary}
 route={new AppRoute()}
 />,
 document.getElementById('react')
);

Relay.RootContainer also generates a React component, and it has some similarities to
ReactDOM.render itself. It needs something to render (the component property), and
where to start in the process (the route property). The component to render is our Relay-
contained QuotesLibrary component, and the route object is where we can put
instructions for Relay about where in the GraphQL graph it should start its querying. We
will write these instructions in the next chapter, but now we can go ahead and test that our
Relay-contained QuotesLibrary component will still render correctly with this setup.

We can do the same Relay container wrapping call for the Quote component:

// in js/quote.js
Quote = Relay.createContainer(Quote, {
 fragments: {}
});

This will not affect the rendering of our app so far. Relay-contained React components work
just like normal React components, so we can use them the same way. Webpack and restart
the server to test.

Configuring React Applications to Use Relay

[103]

Although the rendered content at this point looks exactly the same, we're actually rendering
a lot more components than we did before. Take a look at the React tab in your developer
tools (assuming you have the React devtools extension; if you don't, you should: h t t p s : / / g

i t h u b . c o m / f a c e b o o k / r e a c t - d e v t o o l s):

Notice how we have a top-level RelayRootContainer now, which renders a
RelayRenderer, which renders a RelayReadyStateRenderer, which renders a
StaticContainer component, which in turns renders our React application. All of our
React components are wrapped in a Relay(Component) React component. Our application
is now ready to express its data requirements with Relay.

*** #GitTag: chapter4-relay-containers ***

https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools

Configuring React Applications to Use Relay

[104]

Summary
In this chapter, we started building a React application. It's a simple application that so far
renders a list of inspirational quotes using a direct GraphQL query with an AJAX request.
We've also prepared our React application to use Relay by converting all React components
into Relay-contained components. We've seen how to use Relay's root container to render a
Relay-contained component in the DOM. We're about ready to make our GraphQL query
through Relay itself, which is exactly what we will be doing in the next chapter.

5
Making GraphQL Queries

Relay-Compliant
In this chapter, we'll continue building our inspirational quotes Relay application, which we
started in the previous chapter. Before we can use our GraphQL schema with Relay directly,
there are a few things we need to do first to make it Relay-compliant. For example, we
should match our GraphQL hierarchy to our React components hierarchy, and to do any
paginations on the data, we should implement Relay's connection model.

The topics we'll cover in this chapter are:

Transforming GraphQL queries for Relay
Matching React's component hierarchy in GraphQL
First query operation with Relay
Edges and nodes in Relay's connection model

Transforming GraphQL queries for Relay
Relay is a JavaScript framework that's inspired by React itself. With React, instead of
working with HTML strings, we work with JavaScript objects. This gives React much more
power and flexibility, and makes the code more readable. Relay has a similar approach to
working with GraphQL queries: we need to first convert them into JavaScript objects.

When we have an object that represents a GraphQL query, we can add more information
about the query to that object. For example, we can use the introspective API to analyze the
query, validate the field types, and add those types to the object for Relay.

Making GraphQL Queries Relay-Compliant

[106]

For our simple AllQuotes query:

query AllQuotes {
 allQuotes {
 id
 text
 author
 }
}

Here's how Relay wants to represent it as an object (this is a simplified version):

{
 "name": "AllQuotes",
 "fieldName": "allQuotes",
 "type": "Quote",
 "children": [
 {
 "fieldName": "id",
 "type": "String"
 },
 {
 "fieldName": "text",
 "type": "String"
 },
 {
 "fieldName": "author",
 "type": "String"
 }
]
}

This object represents the same information as the query string, but with more details. For
example, using the object, we know that the three scalar fields on a single quote are all
strings.

Luckily, we don't have to do this object conversion manually for GraphQL operations;
Relay has a helper for that. It's called Relay.QL, and it's a tag that we can use to make our
query string a Tagged Template Literal.

In JavaScript, a template tag is a function, whose name (the tag) can be used to prefix any
template string, and it acts just like a normal function with a little bit more awareness about
the structure of its single input (which is the string template). When we define the tag
function, the arguments for that function contain an array of strings and an array of values.

Making GraphQL Queries Relay-Compliant

[107]

In a node REPL (entering the node command by itself), try the following code snippet:

const INT = (strings, ...variables) => {
 console.log(`Ignoring ${variables}`);
 return strings.join('interesting');
}
const adj = 'new';
console.log(INT `JavaScript has ${adj} features`);

When Node executes this code, instead of logging JavaScript has new features, here's what we
will see:

 Ignoring new
 JavaScript has interesting features

This happened because the INT template tag intercepted the template literal and modified
the output by dropping the actual variables values and using custom logic on the template
string instead.

Relay uses this feature in JavaScript to intercept a template that represents a GraphQL
string and return an object instead of a string:

Relay.QL `query { ... }` => {}

Since this helper adds type information to the object representing the query, it needs access
to the GraphQL schema. Instead of caching the whole schema on the client (which might be
a bad idea for a big schema), Relay uses a Babel plugin on the server to prepare these
Relay.QL objects during the compile time of all JavaScript resources.

For our AllQuotes query, here's what we need to do:

First, we use the Relay.QL `` template syntax to write all GraphQL queries for1.
clients.
Then, we process all the JavaScript resources (with webpack).2.
When we have a Relay.QL call for our AllQuotes query, we ask the GraphQL3.
schema about the types for the allQuotes, id, text, and author fields.
Then, we use these types to generate the desired query object and return it.4.

While this sounds simple, it does require a little bit of configuration to make it efficient.

Making GraphQL Queries Relay-Compliant

[108]

A Relay application will have multiple Relay.QL calls. Instead of asking the GraphQL
server about field types every time we want to convert a query, we can optimize this server
process by caching the full schema structure into a big JSON object on the server and using
the cache for the Relay.QL calls.

This will speed up the webpack bundle process, but it comes with the disadvantage that we
need to update the cache when the server schema changes.

Since we read the schema in our index.js file (to make it available through an HTTP
interface), let's make the server generate this cached JSON schema for us in the same file.
This way, when we change the schema, we'll just need to restart the server to update the
cache.

The schema JSON cache generation task can be a separate one from the
task to start the server. If we do that, we can refresh the cache
independently from the server. We're putting these two tasks in the same
place for simplicity. In Chapter 8, Deploying to the Cloud, we will be
splitting them into different files.

We'll write a function that prepares the cache by reading a full introspective query about
our schema. The GraphQL JavaScript implementation has an introspectiveQuery utility
variable that we can use for that. Once we have the output of this full introspective query
(which is the JSON cache we are after), we'll just write it to a file on the system.

We can use the fs node library along with the path library to write the cache file to the
filesystem. Let's first import them. In index.js add the following:

const fs = require('fs');
const path = require('path');

We also need to import the introspectiveQuery from the graphql npm package. It's
available under utilities:

const { introspectionQuery } = require('graphql/utilities');

If you're curious, add a console.log(introspectionQuery) line after the require line to
see introspectiveQuery full value; you can actually copy that output and run it in
GraphiQL to see the JSON cache we are about to generate:

Making GraphQL Queries Relay-Compliant

[109]

We can use the same graphql() function – which we have previously used to create the
readline interface for the GraphQL schema – to ask our schema for its response for the
introspectiveQuery.

Import this graphql() function again (we removed it when we changed the interface to
use graphQLHTTP). In index.js add the following:

const { graphql } = require('graphql');

Then, place this snippet of code right before we make the express app listen on port 3000:

 graphql(mySchema, introspectionQuery)
 .then(result => {
 fs.writeFileSync(
 path.join(__dirname, 'cache/schema.json'),
 JSON.stringify(result, null, 2)
);
 console.log('Generated cached schema.json file');
 })
 .catch(console.error);

Making GraphQL Queries Relay-Compliant

[110]

The graphql() call returns a promise. If resolved correctly, the promise will give us access
to a result JSON object. To write the result object to a file, we can use the
writeFilySync function from the fs library, convert the content of the result object into
a more readable string using JSON.stringify with two-space indentation for readability,
and use the stringified version as the content of our cache file.

We also need to create this new cache directory before we proceed:

~/graphql-project $ mkdir cache

When we start the node server now, we should see the new console.log message:

~/graphql-project $ node index.js
Connected to MongoDB server
Running Express.js on port 3000
Generated cached schema.json file

Under the cache directory, we should see the newly generated schema.json file.

Here are the first 20 lines of this new big file:

~/graphql-project $ head -20 cache/schema.json

{
 "data": {
 "__schema": {
 "queryType": {
 "name": "RootQuery"
 },
 "mutationType": null,
 "subscriptionType": null,
 "types": [
 {
 "kind": "OBJECT",
 "name": "RootQuery",
 "description": null,
 "fields": [
 {
 "name": "allQuotes",
 "description": "A list of the quotes
 in the database",
 "args": [],
 "type": {
 "kind": "LIST",

Making GraphQL Queries Relay-Compliant

[111]

Don't forget to add cache/schema.json to the source control ignore list.
This is a generated big file that will just add noise to your source control.

With our schema cached as a JSON file, when we call the webpack command now, we can
read the cached content once and re-use it from memory to speed up the calls to Relay.QL.
We can do this with a Babel plugin.

Babel plugins provide an easy way for us to invoke custom behavior in the webpack/babel-
loader process that bundles all our JavaScript files into a single bundle.js file.

The plugin we need is published as the babel-relay-plugin npm package; we've already
installed this package when we installed Relay.

Here's how we can prepare this plugin for Babel using our own schema. Create a
babelRelayPlugin.js file on the root level and put the following code in it:

const babelRelayPlugin = require('babel-relay-plugin');
const schema = require('./cache/schema.json');

module.exports = babelRelayPlugin(schema.data);

These lines will simply import the babel relay plugin and use it against our schema JSON
cached data. It then exports a function that is ready to be plugged into the Babel process. To
make use of this new plugin, we can add it to the .babelrc file. Replace the content of the
current .babelrc file with the following:

{
 "passPerPreset": true,
 "presets": [
 {"plugins": ["./babelRelayPlugin"]},
 "react",
 "es2015",
 "stage-0"
]
}

The passPerPreset option tells Babel to execute the presets one after the
other; this way, we make sure that the Relay plugin is executed first, then
the other presets get executed in order after that. However, this is an
experimental feature in Babel and its syntax and purpose might change.

Making GraphQL Queries Relay-Compliant

[112]

With this configuration, when we run the webpack command now, it will convert all
Relay.QL tagged queries into objects. To test that this operation actually works now, we
can put this console.log line anywhere in js/app.js:

console.log(
 Relay.QL `query AllQuotes {
 allQuotes {
 id
 text
 author
 }
 }`
);

Run webpack after adding that line, restart the Node server, then refresh the browser.
Here's the output we should see:

*** #GitTag: chapter5-transforming-graphql-queries-for-relay ***

Making GraphQL Queries Relay-Compliant

[113]

Root-level field for the quotes library
Our React application component hierarchy is QuotesLibrary -> Quote. Both
QuotesLibrary and Quote represent a component that has data requirements. In the
previous chapter, when we fetched our GraphQL query with an AJAX fetch operation, we
specified all the requirements we needed in the same place; however, different components
in a React application can tell us different parts of the requirements they care about. We can
come up with these partial requirements by simply looking at the variables every
component uses in its render() function:

 // Quote's render function
 render() {
 return (
 <blockquote>
 <p>{this.props.quote.text}</p>
 <footer>{this.props.quote.author}</footer>
 </blockquote>
);
 }

The Quote component requires a quote data object (because it uses this.props.quote).
It also requires that this object defines both the text field and the author field (because it
uses these two properties on its quote object):

 // QuoteLibrary's render function
 render() {
 return (
 <div className="quotes-list">
 {this.state.allQuotes.map(quote =>
 <Quote key={quote.id} quote={quote} />)}
 </div>
);
 }

The QuotesLibrary component requires a collection of quote objects (because it uses the
this.state.allQuotes array). It also requires that every object in this collection defines
an id field (because it uses quote.id inside the map() call).

The QuotesLibrary component does not really care about all the other properties of a
quote object. These properties are simply not the QuotesLibrary component's
responsibility. Similarly, a Quote component does not care whether we're fetching a list of
quotes or a just a single random quote. It also does not care about the id property for a
quote (because id is not used in Quote). All the Quote component cares about is that we
have a single quote object and that the object has both the text and the author properties.

Making GraphQL Queries Relay-Compliant

[114]

This separation of data requirement ownership is helpful. It allows the components to grow
independently, allows us to debug the code more easily, and makes testing in general
easier.

We can use GraphQL fragments to express the data requirements for every component. For
example, the fragment that the Quote component can use to express its data requirement
would be:

fragment OneQuote on Quote {
 text
 author
}

A fragment is defined on a GraphQL type, such as Quote. However, we have not defined a
type for our quotes library itself. So far, we've been reading the allQuotes fields from the
root level directly:

The Relay-recommended structure is to associate every React component with its own
object, which is represented with a fragment on a custom type in the GraphQL API.

To represent our QuotesLibrary component, let's create a QuotesLibrary GraphQL type
in our schema/main.js:

const QuotesLibraryType = new GraphQLObjectType({
 name: 'QuotesLibrary',
 fields: {

Making GraphQL Queries Relay-Compliant

[115]

 allQuotes: {
 type: new GraphQLList(QuoteType),
 description: 'A list of the quotes in the database',
 resolve: (_, args, { db }) =>
 db.collection('quotes').find().toArray()
 }
 }
});

It's a good idea to match the type names to the React components that are
using them, but it is not required.

You can imagine, later in the lifetime of this project, we might introduce other fields on this
QuotesLibrary type. For example, we might have a randomQuote field, or a
top10Quotes field.

With the QuotesLibraryType defined, we can now change our root-level GraphQL field
to respond with an object of type QuotesLibrary. Let's name it quotesLibrary. We need
to resolve this root-level field with something, and since we are resolving the allQuotes
property directly from the QuotesLibraryType itself, we can simply resolve the root-level
field quotesLibrary with an empty object. Create an empty object and replace the content
of queryType:

const quotesLibrary = {};

const queryType = new GraphQLObjectType({
 name: 'RootQuery',
 fields: {
 quotesLibrary: {
 type: QuotesLibraryType,
 description: 'The Quotes Library',
 resolve: () => quotesLibrary
 }
 }
});

There are many other options for structuring our root-level and children
resolving objects. We can, for example, define a class with methods that
return the objects to be resolved. An empty object on the root level is
picked here for simplicity.

Making GraphQL Queries Relay-Compliant

[116]

Now, to read the allQuotes field, we'll have to start on the root level with a
quotesLibrary field. Restart the server and test the new GraphQL structure with the
following:

We now have a GraphQL type on every level to represent the two component levels in our
app. The QuotesLibraryType to represent the QuotesLibrary component and the
QuoteType to represent the Quote component.

The GraphQL fragment we can now use to represent our QuotesLibrary component's
data requirements would be:

fragment AllQuotes on QuotesLibrary {
 allQuotes {
 id
 ...OneQuote
 }
}

Notice how this AllQuotes fragment now exactly mirrors the data requirements for the
QuotesLibrary React component, including the fact that there are sub-requirements (for
every Quote component) to be decided by the Quote component (using the OneQuote
fragment).

Making GraphQL Queries Relay-Compliant

[117]

That's the basic idea of the colocation concept in Relay; every component will give Relay a
fragment for its data requirements. Those fragments can include each other, like how the
AllQuotes fragment included the OneQuote component. Relay will put these fragments
together and form a single GraphQL operation for the application starting point.

*** #GitTag: chapter5-root-level-field-for-the-quotes-library ***

First query operation with Relay
Our GraphQL fragments are ready to be hooked into Relay! All we need to do now is define
them in the new Relay containers with which we wrapped our React components in the
previous chapter.

Starting with the Quote component, we can tell Relay about its data requirements using the
fragments property in the createContainer second argument.

Modify the Relay.createContainer call in js/quote.js to the following:

Quote = Relay.createContainer(Quote, {
 fragments: {
 quote: () => Relay.QL `
 fragment OneQuote on Quote {
 text
 author
 }
 `
 }
});

This fragments property expects an object with one or more fragments; every fragment is
represented with a name, which is a key on that object, and a value that is a function which
returns a Relay.QL tagged fragment. Our OneQuote fragment is what we tag and return
for the quote property on the fragments property.

A component can specify multiple named fragments; when the data represented by a
named fragment become available, Relay will make it available to that component using the
component props object. The data represented by the quote named fragment will be
available to the Quote component using this.props.quote.

Making GraphQL Queries Relay-Compliant

[118]

Similarly, we can tell Relay about the data requirements for the QuotesLibrary
component using the fragments property on the container we used to wrap the
QuotesLibrary component.

Modify the Relay.createContainer call in js/app.js to the following:

QuotesLibrary = Relay.createContainer(QuotesLibrary, {
 fragments: {
 library: () => Relay.QL `
 fragment AllQuotes on QuotesLibrary {
 allQuotes {
 id
 ${Quote.getFragment('quote')}
 }
 }
 `
 }
});

Notice the new syntax to fetch a sub-fragment:

${Quote.getFragment('quote')}

This means, in that exact place inside the AllQuotes fragment, we're going to ask the
Quote React component about its requirements for a quote object. The Quote component is
the one that determines the fields for every quote object we're interested in here (text and
author in this example). The QuotesLibrary component does not even need to know this
information. In fact, Relay will not even make this information available to the
QuotesLibrary component at all; the text and author properties on every quote will
only be available to the Quote component itself because it was the one that asked for them.

When the data requested by the QuotesLibrary component becomes available globally in
the app, Relay will make it accessible to QuotesLibrary using its props. The library
fragment will be available as this.props.library, and we know that this library object
will have an allQuotes property that holds our array of quotes.

We'll need to modify the way we read the array of quotes inside the render() function for
QuotesLibrary to match this new hierarchy of properties.

Making GraphQL Queries Relay-Compliant

[119]

Modify the class definition for QuotesLibrary in js/app.js to the following:

class QuotesLibrary extends React.Component {
 render() {
 return (
 <div className="quotes-list">
 {this.props.library.allQuotes.map(quote =>
 <Quote key={quote.id} quote={quote} />
)}
 </div>
)
 }
}

The state object that we previously had on this component is not needed anymore. Relay
will manage the application state for us.

The AJAX fetch code that we previously wrote in componentDidMount() is also not
needed anymore. Relay will do all the AJAX fetching for us.

Finally, we need to make our AppRoute class construct the global GraphQL query that
Relay can send to the server. We can't send those fragments by themselves to the GraphQL
server; we need a complete query operation.

We can use the queries static property on the AppRoute class that we defined in the
previous chapter. This property is an object that represents one or more full GraphQL
queries.

Add a static queries property to the AppRoute class definition in js/app.js:

class AppRoute extends Relay.Route {
 static routeName = 'App';
 static queries = {
 library: (Component) => Relay.QL `
 query QuotesLibrary {
 quotesLibrary {
 ${Component.getFragment('library')}
 }
 }
 }
}

Making GraphQL Queries Relay-Compliant

[120]

Every query is represented with a name, library for our single query in this example, and
a function that receives one argument (Component in this example) and returns a full
GraphQL query tagged with Relay.QL. The Component argument is what we passed to
RootContainer when we defined it:

<Relay.RootContainer
 Component={QuotesLibrary}
 route={new AppRoute()}
 />

For our example, Component will be QuotesLibrary here, and we're constructing a
GraphQL query that starts with the root field quotesLibrary and inside of that, uses the
library named fragment defined by the QuotesLibrary component. When Relay
constructs this full query, it will be the same full query that we've tested before:

{
 quotesLibrary {
 allQuotes {
 id
 text
 author
 }
 }
}

After a server restart and a webpack run, when we refresh the browser now, the application
will work exactly as it did before, but we are now fetching the data through Relay (and not
manually with a single query like we did before). To see how Relay constructs the query
from the fragments that we defined, open the network tab in Chrome's dev tools and
inspect the POST request for /graphql:

Making GraphQL Queries Relay-Compliant

[121]

We can copy the text of the query value in the request payload, prettify, and execute it with
GraphiQL; we'll see the following:

query QuotesLibrary {
 quotesLibrary {
 ...F1
 }
}

fragment F0 on Quote {
 text
 author
 id
}

fragment F1 on QuotesLibrary {
 allQuotes {
 id
 ...F0

Making GraphQL Queries Relay-Compliant

[122]

 }
}

Notice how Relay constructed the full query using the fragments from the various
components, but it renamed the fragments (F0, F1).

*** #GitTag: chapter5-first-query-operation-with-relay ***

Relay's connection model
Relay's power becomes obvious when we have to work with a big dataset. When, for
example, we have hundreds of inspirational quotes, a common practice to do on listing
pages is to paginate them, for example, by showing 20 quotes per page. Relay's connection
model will help us implement this pagination feature quickly and efficiently.

Making GraphQL Queries Relay-Compliant

[123]

We'll first need to convert the allQuotes field into a Relay connection field; we'll rename it
quotesConnection to make that clear to clients who want to use it.

Just like any other custom type, we need to define a type for this new quotesConnection
field. However, we can use a Relay helper in this case to create the new type. In
schema/main.js, right after we define the QuoteType, add this:

const { connectionType: QuotesConnectionType } =
 connectionDefinitions({
 name: 'Quote',
 nodeType: QuoteType
 });

QuotesConnectionType will be the type that we can use to define the new
quotesConnection field.

connectionDefinitions is a helper function available from the graphql-relay
package, which we need to install first:

~/graphql-project $ npm install --save graphql-relay
 └── graphql-relay@0.4.2

Then, we can import the Relay utility helpers from this package; let's import all the
connection-related helpers in schema/main.js:

const {
 connectionDefinitions,
 connectionArgs,
 connectionFromArray,
 connectionFromPromisedArray
} = require('graphql-relay');

The purpose of these helpers, in summary, is as follows:

connectionDefinitions is a function that takes a configuration object
describing a custom type in a GraphQL schema and returns another object with
helpful helpers related to the Relay connection model around the custom type.
connectionArgs is an object that defines all the arguments that can be used
with the connection model. Those arguments are: first, last, after, and before.
We'll see how to use them shortly.

Making GraphQL Queries Relay-Compliant

[124]

connectionFromArray is a function that takes a normal array object and
converts it into a connection object for Relay.

connectionFromPromisedArray is a function that takes a promise, which
returns an array object, and converts that promise into a connection object for
Relay. This is the function we'd want to use with our quotesConnection
because when we query MongoDB, we only have a promise and not an actual
array.

The connectionDefinitions object we defined for the QuoteType has a
connectionType property; this is the property we can use to define our
quotesConnection field. We destructured that property as QuotesConnectionType.

We're now ready to define the new quotesConnection field on the QuotesLibraryType
in schema/main.js (replacing the old allQuotes):

const QuotesLibraryType = new GraphQLObjectType({
 name: 'QuotesLibrary',
 fields: {
 quotesConnection: {
 type: QuotesConnectionType,
 description: 'A list of the quotes in the database',
 args: connectionArgs,
 resolve: (_, args, { db }) => connectionFromPromisedArray(
 db.collection('quotes').find().toArray(),
 args
)
 }
 }
});

A few things to notice here:

The quotesConnection field type is the QuotesConnectionType object that we
generated from Relay's connectionDefinitions for the QuoteType. This is
Relay's way of expressing that quotesConnection is a connection that represent
nodes of type Quote.
The quotesConnection args object is defined as connectionArgs, which we
imported from Relay as well. This means we can use these connectionArgs on a
quotesConnection field.

Making GraphQL Queries Relay-Compliant

[125]

Instead of returning the MongoDB promise in the resolve() function, we
returned a connectionFromPromisedArray invocation on that promise, and
passed in as the second argument the args object, which is now defined as
connectionArgs.

That's all we need to change in the schema; our list of quotes is now a Relay connection with
pagination features we can use out of the box. For example, to fetch the first two quote
objects, we can use this query (after a server restart):

{
 quotesLibrary {
 quotesConnection(first: 2) {
 edges {
 node {
 id
 text
 author
 }
 }
 }
 }
}

Here's how our GraphQL server would now respond to this query:

{
 "data": {
 "quotesLibrary": {
 "quotesConnection": {
 "edges": [
 {
 "node": {
 "id": "574d12b94ec08043094840a2",
 "text": "The best preparation for tomorrow
 is doing your best today",
 "author": "H. Jackson Brown"
 }
 },
 {
 "node": {
 "id": "574d12b94ec08043094840a3",
 "text": "If opportunity doesn't knock,
 build a door",
 "author": "Milton Berle"
 }
 }
]

Making GraphQL Queries Relay-Compliant

[126]

 }
 }
 }
}

Notice the new hierarchy for the query fields. Relay added an edges field and a node field.
This new hierarchy allows us to ask for meta information related to the pagination set. For
example, Relay automatically adds a unique cursor for every node and allows us to figure
out whether the current page is the last one or not; here's a query to read both of these new
meta pieces of information about the current page:

{
 quotesLibrary {
 quotesConnection(first: 1) {
 pageInfo {
 hasNextPage
 }
 edges {
 cursor
 node {
 id

Making GraphQL Queries Relay-Compliant

[127]

 text
 author
 }
 }
 }
 }
}

The server's response for that is as follows:

{
 "data": {
 "quotesLibrary": {
 "quotesConnection": {
 "pageInfo": {
 "hasNextPage": true
 },
 "edges": [
 {
 "cursor": "YXJyYXljb25uZWN0aW9uOjA=",
 "node": {
 "id": "574d12b94ec08043094840a2",
 "text": "The best preparation for tomorrow
 is doing your best today",
 "author": "H. Jackson Brown"
 }
 }
]
 }
 }
 }
}

Making GraphQL Queries Relay-Compliant

[128]

The connection arguments defined by Relay are:

first: We can supply an integer X here to tell Relay to return only the first X
nodes from the connection list
last: We can supply an integer X here to tell Relay to return only the last X
nodes from the connection list
after: We can supply a cursor value C here to tell Relay to start the current page
after the node represented by the cursor C
before: We can supply a cursor value C here to tell Relay to end the current page
right before the node represented by the cursor C

For example, if our page size is 20 and the last cursor we've seen is
"YXJyYXljb25uZWN0aW9uOjI=", here's how to tell Relay to fetch the nodes for the next
page:

{
 quotesLibrary {
 quotesConnection(
 first: 20,
 after: "YXJyYXljb25uZWN0aW9uOjI="

Making GraphQL Queries Relay-Compliant

[129]

) {
 edges {
 node {
 id
 text
 author
 }
 }
 }
 }
}

The connection argument logic is executed on the server for the whole
array of quotes returned from MongoDB; this is not efficient on a large
scale. Instead, we should pass these connection arguments to MongoDB
itself and convert the pagination logic into MongoDB operations. For
example, to honor the first argument, in MongoDB we can do something
like this:
db.collection('quotes').find()
.limit(args.first).toArray()

This, however, breaks parts of the Relay connection model. For example,
the pageInfo field will behave differently, unless we customize it to also
read its result directly from MongoDB.

To make our React components work with this new connection model, we need to do a few
modifications. First, the library fragment on the QuotesLibrary component (in
js/app.js) will now have the new connection-based hierarchy:

QuotesLibrary = Relay.createContainer(QuotesLibrary, {
 fragments: {
 library: () => Relay.QL `
 fragment on QuotesLibrary {
 quotesConnection(first: 2) {
 edges {
 node {
 id
 ${Quote.getFragment('quote')}
 }
 }
 }
 }
 `
 }
});

Making GraphQL Queries Relay-Compliant

[130]

The QuotesLibrary component itself (in js/app.js) should also match this new
hierarchy when it reads the data from its props:

class QuotesLibrary extends React.Component {
 render() {
 return (
 <div className="quotes-list">
 {this.props.library.quotesConnection.edges.map(edge =>
 <Quote key={edge.node.id} quote={edge.node} />
)}
 </div>
)
 }
}

When we refresh the browser now (after a webpack run and a server restart), we should see
the first two inspirational quotes fetched via Relay through the new connection model we
have for quotes:

Making GraphQL Queries Relay-Compliant

[131]

Change the value of the connection first argument to 100. Doing the UI pagination actions
is a matter of controlling this variable, along with another variable to control the after
argument. We will see how to work with Relay variables in the next chapter.

*** #GitTag: chapter5-relay-connection-model ***

Summary
In this chapter, we started using GraphQL operations with Relay directly. Relay provides a
plugin that allowed us to pre-process the queries against our GraphQL schema before using
them in our client app. This allows Relay to have meta information about the different
GraphQL operations, and that in turn gives Relay more power to control these operations.

We then matched React's component hierarchy in our GraphQL schema to make every
React component able to represent its data requirement with a fragment on a GraphQL type
that matches it. This allows for the co-location of the data requirements inside the
components themselves in a way that separates each component's requirements from the
requirements of the other components in the app. This allows us to maintain and test
React's components independently.

We then implemented Relay's connection model for our list of quotes, which gave us
pagination features out of the box. The connection model added edge and node logic to our
GraphQL fields hierarchy, which allowed us to ask for extra information about the list of
objects within different levels of the query.

6
Relay Variables and Object

Identification
In this chapter, we'll explore how to work with Relay variables, then explore the object
identification model in Relay using its Node interface. To work with Relay variables, we'll
implement a search feature for our inspirational quotes application. To see the Node
interface in action, we'll start implementing a likes counter on every quote.

The topics we'll cover in this chapter are as follows:

Relay variables
Relay global identifiers
Relay's Node interface

Implementing search
Since we've limited the number of quotes we are displaying on the main page using Relay's
connection model, let's give our users a way to search all quotes in our system. This will be
a simple feature in the UI; we'll place a text box above all quotes, and when the user starts
typing in that box, we'll refresh the displayed quotes based on a server search using the
inputted search term.

Relay Variables and Object Identification

[133]

This would not be an easy task without Relay. We need to construct a query using the input
value from the user, fetch the records from GraphQL with AJAX, then change the state of
our React app components based on the new data. We need to do this operation many times
as the user types into the box. This is just the beginning of the story; to perform this
efficiently, we need to manage the data. For example, basic caching is needed to not fetch
duplicate responses. Imagine what would happen if the user types the word do, then types
or, then erases the or; without caching, we will fetch the response for a query based on the
word “do” twice.

Luckily, we have Relay to do the bulk of what is needed for this feature, but we still have a
few things that we need to do first.

Adding a search feature to the GraphQL API
Before we can have Relay control a search feature, we need our GraphQL API to support a
search mechanism in our list of quotes. We can use a field argument on the
quotesConnection to pass a search term. For example:

{
 quotesLibrary {
 quotesConnection(searchTerm: "findme") {
 edges {
 node {
 text
 }
 }
 }
 }
}

The implementation of this on the server would require two changes:

The quotesConnection field arguments should support a new GraphQLString
argument searchTerm. Since the quotesConnection field already defines an
argument object provided by Relay (connectionArgs), we'll need to extend that.
When we resolve the quotesConnection field with a db promise, we'll need to
modify the promise to only return the quotes filtered by the new searchTerm
input. The syntax for that would depend on the database in use, but in MongoDB
we'll need to use a regular expression.

Relay Variables and Object Identification

[134]

Here's the new quotesConnection definition to support the searchTerm argument. This
would replace the current QuotesLibraryType definition that we have in
schema/main.js:

let connectionArgsWithSearch = connectionArgs;
connectionArgsWithSearch.searchTerm = { type: GraphQLString };

const QuotesLibraryType = new GraphQLObjectType({
 name: 'QuotesLibrary',
 fields: {
 quotesConnection: {
 type: QuotesConnectionType,
 description: 'A list of the quotes in the database',
 args: connectionArgsWithSearch,
 resolve: (_, args, { db }) => {
 let findParams = {};
 if (args.searchTerm) {
 findParams.text = new RegExp(args.searchTerm, 'i');
 }
 return connectionFromPromisedArray(
 db.collection('quotes').find(findParams).toArray(),
 args
);
 }
 }
 }
});

We can test this right away with a valid search term (after a server restart):

{
 quotesLibrary {
 quotesConnection(searchTerm: "best") {
 edges {
 node {
 text
 }
 }
 }
 }
}

Relay Variables and Object Identification

[135]

Note how the server responded with just one quote whose text matches the searchTerm
value.

*** #GitTag: chapter6-adding-a-search-feature-to-the-graphql-api ***

Implementing the search feature in Relay
We'll need to read the search term needed from the UI somewhere. This part is not
controlled by Relay—it's just a regular React component.

Adding a search form component
Let's create a search-form.js file under js and make it into a search form component:

import React from 'react';

class SearchForm extends React.Component {
 static propTypes = {
 searchAction: React.PropTypes.func.isRequired
 };

 handleChange = event => {
 this.props.searchAction(event.target.value);
 };

Relay Variables and Object Identification

[136]

 render() {
 return (
 <form className="navbar-form" role="search">
 <input type="text" className="form-control"
 placeholder="Search..."
 onChange={this.handleChange} />
 </form>
)
 }
}

export default SearchForm;

This is a simple React component that has a single text input box. The component expects a
 searchAction prop that should be a function, and it will invoke this searchAction prop
with whatever the user types in the box. The parent component will take it from there.

Note the use of propTypes to make sure the component receives the valid
input it expects. React.PropTypes.func is one of many options we can
use with React to validate component props. Chaining isRequired on
func makes sure the component's searchAction property is not empty.
React will give clear warnings when the validation rules are violated.

Using Relay variables
The parent component for our new SearchForm component will be QuotesLibrary. In
there, we need to import SearchForm and include it somewhere within the rendered
output. Let's first import it into js/app.js:

import { debounce } from 'lodash';

import SearchForm from './search-form';

I also imported the debounce function from the excellent lodash library (h t t p s : / / l o d a s h .

c o m /) so that we can properly debounce this search event and not send a query for every
character while the user is typing.

https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/
https://lodash.com/

Relay Variables and Object Identification

[137]

A debounced function wraps an original function and gives it an acceptable
delay. This allows us to group multiple sequential calls to the original
function into a single one, and only invoke the original function once after
the delay period. When we have an input box with an onChange event
associated with a function X, a debounced version of that function would
allow us to delay the execution of function X while the user is typing into
the box, and only execute X once when the user stops typing.

We need to install the lodash dependency:

~/graphql-project $ npm install --save lodash
 |__ lodash@4.14.2

We need to change the GraphQL fragment associated with QuotesLibrary to accept a
searchTerm variable and pass it along to the GraphQL server. In js/app.js, modify the
Relay.createContainer call for QuotesLibrary to the following:

QuotesLibrary = Relay.createContainer(QuotesLibrary, {
 initialVariables: {
 searchTerm: ''
 },
 fragments: {
 library: () => Relay.QL `
 fragment on QuotesLibrary {
 quotesConnection(first: 100, searchTerm: $searchTerm) {
 edges {
 node {
 id
 ${Quote.getFragment('quote')}
 }
 }
 }
 }
 `
 }
});

Note how we initialized the new searchTerm variable with an empty string. The MongoDB
find() call that we customized to filter the quotes will ignore the empty searchTerm and
the connection will resolve with the first 100 quotes.

Relay Variables and Object Identification

[138]

Now all we need to do is instruct Relay to set this new searchTerm variable to the input
we receive via SearchForm. Here's the new QuotesLibrary definition to implement the
search feature (in js/app.js):

class QuotesLibrary extends React.Component {
 constructor(props) {
 super(props);
 this.search = debounce(this.search.bind(this), 300);
 }
 search(searchTerm) {
 this.props.relay.setVariables({searchTerm});
 }
 render() {
 return (
 <div className="quotes-library">
 <SearchForm searchAction={this.search} />
 <div className="quotes-list">
 {this.props.library.quotesConnection.edges.map(edge =>
 <Quote key={edge.node.id} quote={edge.node} />
)}
 </div>
 </div>
)
 }
}

In the constructor call, we debounce the search function at 300 milliseconds. The search
function receives the searchTerm from the SearchForm component and it just uses Relay's
setVariables function to pass this input to the query. Relay will do the fetch call needed
and update the data available for this.props.library.quotesConnection.

Relay Variables and Object Identification

[139]

We can test the feature now, after a server restart and a webpack run:

Here's how you can see Relay's caching in action:

Refresh the application to load all quotes.1.
Open the Network tab in Chrome's developer tools and clear it.2.
Type "do" in the search box. You should see a single network request to3.
/graphql. Two quotes are displayed in the filtered list.
Continue typing "or" in the search box. You should see another network request4.
to /graphql. One quote is now displayed in the filtered list.
Erase "or" to get back to just "do" in the search box. The list will reflect the5.
search for "do" (two quotes) without sending any more network requests to
/graphql:

Relay Variables and Object Identification

[140]

*** #GitTag: chapter6-implementing-the-search-feature-in-relay ***

Implementing likes
To demonstrate Relay's object identification design principles, let's introduce the famous
Facebook like action. In the next chapter, we will implement the actual like action with a
GraphQL mutation, but here we can start this feature out by displaying the number of likes
for every quote. We'll use mock data for the likes count.

We'll first need to make the GraphQL API aware of this new field. We need to add it to the
QuoteType object configuration, and we'll resolve it with a fake random number for now.
Here's the new QuoteType definition that goes into schema/main.js:

const QuoteType = new GraphQLObjectType({
 name: 'Quote',
 fields: {
 id: {
 type: GraphQLString,
 resolve: obj => obj._id
 },
 text: { type: GraphQLString },
 author: { type: GraphQLString },
 likesCount: {
 type: GraphQLInt,

Relay Variables and Object Identification

[141]

 resolve: () => Math.floor(10 * Math.random())
 }
 }
});

We can see this new field in action by including the likesCount in any query (after a
server restart):

{
 quotesLibrary {
 quotesConnection {
 edges {
 node {
 text
 likesCount
 }
 }
 }
 }
}

Relay Variables and Object Identification

[142]

We can now show this new likesCount field in our Relay application. However, we don't
want to show the number of likes for every quote to keep the UI to a minimum; instead, we
want to make that number show up when the user clicks or taps on a quote element.

We can use a GraphQL @include directive to control whether the likesCount should be
fetched or not for each quote.

Here's the Quote component definition with this feature implemented (this is in
js/quote.js):

class Quote extends React.Component {
 displayLikes() {
 if (!this.props.relay.variables.showLikes) {
 return null;
 }
 return (
 <div>
 {this.props.quote.likesCount}

 </div>
);
 }

 render() {
 return (
 <blockquote>
 <p>{this.props.quote.text}</p>
 <footer>{this.props.quote.author}</footer>
 {this.displayLikes()}
 </blockquote>
);
 }
}

Here, we defined a displayLink() method to conditionally render the likes if showLikes
is true. showLikes is the Relay variable we want to use to control the @include directive.

We can read Relay variables using this.props.relay.variables. When the showLikes
variable is true, we're assuming that we have a likesCount field in our GraphQL query
response.

Relay Variables and Object Identification

[143]

Here's the Relay container definition for Quote (also in js/quote.js):

Quote = Relay.createContainer(Quote, {
 initialVariables: {
 showLikes: false
 },
 fragments: {
 quote: () => Relay.QL `
 fragment OneQuote on Quote {
 text
 author
 likesCount @include(if: $showLikes)
 }
 `
 }
});

$showLikes starts as false, and we always use it in an @include directive to control
whether likesCount is to be included in the query response or not. This means on the
page initial load, none of the likesCount values will be included in the data response.

Now, let's add an onClick event on every quote to set showLikes to true. We can accept
this event on the container blockquote element for every quote using
onClick={this.showLikes}:

 // Adding the event handler on every quote
 // This is the new Quote's render method in js/quote.js
 render() {
 return (
 <blockquote onClick={this.showLikes}>
 <p>{this.props.quote.text}</p>
 <footer>{this.props.quote.author}</footer>
 {this.displayLikes()}
 </blockquote>
);
 }

This new showLikes method will just set the Relay variable to true. In js/quote.js, add
this new method to the Quote component definition:

 showLikes = () => {
 this.props.relay.setVariables({showLikes: true});
 };

Relay Variables and Object Identification

[144]

After a webpack run and a server restart, we can go ahead and test this now by clicking on
a quote element. We will get a Relay error. Open the Network tab in Chrome to see that
error:

Before we inspect this error, notice how we have three network calls to /graphql that all
have status 400, which is a Bad Request. Although we only clicked on a single quote once,
this is because Relay has an automatic retry feature, which is available by default. If a
network request fails during a Relay fetch process for any reason, Relay will retry it and
give up after a number of retries (three by default, as we can see in this example).

To see the bad request query, inspect any of the three failed requests and look at its request
payload's query value. Copy the content of the query, paste it in GraphiQL, and prettify it:

query OneQuote($id_0: ID!) {
 node(id: $id_0) {
 ...F0
 }
}

fragment F0 on Quote {
 likesCount @include(if: true)

Relay Variables and Object Identification

[145]

 id
}

Notice two things about this query:

When we clicked on a quote, Relay constructed a new GraphQL query (named
OneQuote), but it did not include the full fragment associated with each quote;
there is no text or author in the query. Relay has a diffing algorithm behind the
scene that diffs queries and fragments to figure out what incremental query to
send to the server. In this example, within a quote fragment, Relay already asked
for the text and author fields on the initial page load. Now, it needs the
likesCount field which it does not have yet, so it constructs a query that only
asks for the likesCount field.
Since we want this likesCount field on a single quote, we need to send the ID of
that quote to the GraphQL server so that the server can identify the quote object.
We don't have an API to do that yet. However, Relay has a global syntax to fetch
any object in the system using its unique ID. This is why we see a node field in
this example with an id field argument. Relay uses this syntax to refetch more
information about any node that it partially fetched before.

Relay Variables and Object Identification

[146]

To get this node-based querying to work, we need to do two things:

Give every object in our schema a unique global ID
Implement Relay's Node Interface feature, make our custom types implement it,
and use it to support a node field on the root query type

Relay's global ID
To implement the Node Interface on our server, we can use some of the graphql-relay
package helpers. Namely, we need the globalIdField() function, the fromGlobalId()
function, and the nodeDefinitions() function. Let's import all three from the package
and add them to the require('graphql-relay') line that we have in schema/main.js:

const {
 globalIdField,
 fromGlobalId,
 nodeDefinitions,
 connectionDefinitions,
 connectionArgs,
 connectionFromArray,
 connectionFromPromisedArray
} = require('graphql-relay');

The globalIdField() function can be used to create a GraphQLID field that automatically
resolves with a value that is globally unique across the whole schema. For example, we
should give our QuotesLibraryType a global ID in case Relay wants to use that (this is in
schema/main.js):

const QuotesLibraryType = new GraphQLObjectType({
 name: 'QuotesLibrary',
 fields: {
 id: globalIdField('QuotesLibrary'),
 quotesConnection: ...
 }
});

After a server restart, we can test this feature right away by asking about an id for the
quotesLibrary root-level field:

{
 quotesLibrary {
 id
 }
}

Relay Variables and Object Identification

[147]

The server will respond with the Relay-generated base64-encoded unique ID string:

{
 "data": {
 "quotesLibrary": {
 "id": "UXVvdGVzTGlicmFyeTo="
 }
 }
}

We can also convert the IDs we have for every quote to a Relay global ID using the same
function. However, since this is not an ID for a single object in the whole schema, and we
don't have a native id property on every quote object (it's _id in MongoDB), we can
manually tell Relay how to read the id value using a fetcher function for the second
argument of globalIdField. Replace the id field definition that we have currently in the
QuoteType definition in schema/main.js:

const QuoteType = new GraphQLObjectType({
 name: 'Quote',
 fields: {
 id: globalIdField('Quote', obj => obj._id),
 text: { type: GraphQLString },
 author: { type: GraphQLString },
 likesCount: {
 type: GraphQLInt,
 resolve: () => Math.floor(10 * Math.random())
 }
 }
});

Relay Variables and Object Identification

[148]

Every quote id will now be unique in the whole schema, and not just in the quotes
collection.

You can test that with the following query, after a server restart:

The Node interface
Now that every object in our schema has a globally unique ID, we are ready to implement
the node field, which accepts a unique id as its argument and responds with the object that
id identifies.

Every Relay global ID can be translated back to the two values we used to create it, its type
name and its local ID within its collection. We can use Relay's fromGlobalId() function to
do this translation.

For example, the following line shows a call to fromGlobalId() with one of our quotes
node IDs:

fromGlobalId('UXVvdGU6NTcyODFjYzQzYTg4ZGJhMjA1MDBmOWMy')

Relay Variables and Object Identification

[149]

This would return something like this:

{ type: 'Quote', id: '57281cc43a88dba20500f9c2' }

We can use these two values to locate the underlying object identified by this global ID.

There is also a toGlobalId() function that works exactly the opposite
way to fromGlobalId(). This toGlobalId() is what the
globalIdField() function uses as the resolver of the ID field it creates.

Relay provides a function called nodeDefinitions to help us with this task. We can use
nodeDefinitions to create an interface that any object in our schema can implement.

The nodeDefinitions() function takes two arguments:

The first argument is an ID fetcher function that we can use to resolve the global
ID into its underlying object in our schema. This ID fetcher function can return a
promise like any other resolve() function.
The second argument is a type resolver function that we can use to map from the
resolved underlying object to its GraphQL type.

Here's the nodeDefinitions() code that we need for our schema (this goes into
schema/main.js):

const globalIdFetcher = (globalId, { db }) => {
 const { type, id } = fromGlobalId(globalId);
 switch (type) {
 case 'QuotesLibrary':
 // We only have one quote library
 return quotesLibrary;
 case 'Quote':
 return db.collection('quotes').findOne(ObjectID(id));
 default:
 return null;
 }
};

const globalTypeResolver = obj => obj.type || QuoteType;

const { nodeInterface, nodeField } = nodeDefinitions(
 globalIdFetcher,
 globalTypeResolver
);

Relay Variables and Object Identification

[150]

The globalIdFetcher function receives the globalId value and the global context
object from the executor. It uses fromGlobalId to read the type and local ID from the
global ID, and then, using a simple switch statement, it returns the object identified by that
ID. For a QuotesLibrary type, we only have a single quotesLibrary object in the
schema, so we return that regardless of the ID. For a Quote type, we ask MongoDB about
the quote object with the supplied ID and return the promise object itself.

ObjectID is a MongoDB client utility that we need to import with the following (in
schema/main.js):

const { ObjectID } = require('mongodb');

The globalTypeResolver is simple: if the underlying object has a type, return it;
otherwise, default to the QuoteType. This default type will work when globalIdFetcher
returns a promise for the single quote object.

We can now call nodeDefinitions with both functions as arguments. It will return two
objects for us, one is the nodeInterface object that we can use to make any type
implement this new interface, and the other is a nodeField object that we can use to define
the node field on the root-level of our GraphQL API. The nodeField will allow clients to
query our GraphQL API using the node field with an id argument, and it will resolve with
the globalIdFetcher returned value.

Let's first make our types implement the nodeInterface to allow Relay to refetch them
through the node field. Add the interfaces property to both QuoteType and
QuotesLibraryType in schema/main.js:

const QuoteType = new GraphQLObjectType({
 name: 'Quote',
 interfaces: [nodeInterface],
 // fields ...
});

const QuotesLibraryType = new GraphQLObjectType({
 name: 'QuotesLibrary',
 interfaces: [nodeInterface],
 // fields ...
});

Relay Variables and Object Identification

[151]

Now add the nodeField type to the root-level query object as node:

const queryType = new GraphQLObjectType({
 name: 'RootQuery',
 fields: {
 node: nodeField,
 quotesLibrary: {
 type: QuotesLibraryType,
 description: 'The Quotes Library',
 resolve: () => quotesLibrary
 }
 }
});

We also need to make sure the quotesLibrary object has a type property so that it works
for the globalTypeResolver function. Replace the quotesLibrary constant in
schema/main.js with the following:

const quotesLibrary = { type: QuotesLibraryType };

Now, after a server restart, any client can ask for our schema objects using the Node
interface. Here's a test query to demonstrate that (the ID value you need here will be
different, take one from the previous query we tested):

{
 node(id: "UXVvdGU6NTcyODFjYzQzYTg4ZGJhMjA1MDBmOWMy") {
 ... on Quote {
 text
 author
 }
 }
}

Note how we use an inline fragment to ask about the sub-fields of a node. A node can be
either a Quote or a QuotesLibrary in our example here. In this test query, we're asking the
server to reply with text and author when the node is a Quote object.

Relay Variables and Object Identification

[152]

The server's response here would be as follows:

Relay's generated fragment to read the likesCount when we click on a quote should work
now. After a webpack run and a server restart, clicking on a quote element in the UI should
show its fake likesCount:

*** #GitTag: chapter6-implementing-likes ***

Relay Variables and Object Identification

[153]

Summary
In this chapter, we implemented two new features for our inspirational quotes library. The
first feature is a search box with type-ahead support, where we update the list of displayed
quotes when the user types anything in the search box. We implemented this feature using
a Relay variable that we passed to GraphQL. The second feature was a likes count that we
now show for each quote when the user clicks on it. For this feature, we used another Relay
variable to control a GraphQL directive and saw how Relay uses a node field to ask for any
new information it needs. To enable reading through this node field, we implemented an
interface on the GraphQL server, made our custom types implement it, and added the node
filed to the root query type. The interface maps between global object identifiers and their
underlying objects. In the next chapter, we'll use Relay mutations to allow users to like a
quote.

7
Relay Mutations

In this chapter, we will define a Relay-compliant GraphQL mutation and see how to invoke
it in Relay. The mutation will allow users to like a quote. Once liked, the likes count in the
UI will increase.

The topics we'll cover in this chapter are:

Defining a Relay-compliant mutation
Invoking mutations with Relay
Relay's optimistic updates

Relay-compliant GraphQL mutations
In the previous chapter, we implemented the likes count feature and used mock random
data to test it out. Let's now allow the users to click on the thumbs-up icon to like a quote
and replace the mock random data we used before with actual data in the database.

First, we need to define a GraphQL mutation to record the like action. This mutation will
take one input argument, the ID of the quote to be liked, and it will return the new number
of likes for that quote.

Let's name this new mutation thumbsUp, and we'll need to add it to the root-level mutation
type in schema/main.js:

const mutationType = new GraphQLObjectType({
 name: 'RootMutation',
 fields: {
 thumbsUp: thumbsUpMutation
 }
});

Relay Mutations

[155]

const mySchema = new GraphQLSchema({
 query: queryType,
 mutation: mutationType
});

The mutation property on a GraphQL schema defines one or more mutations within the
fields property of its configuration. Our thumbsUp mutation will be defined in a
thumbsUpMutation function, which we'll need to define in schema/main.js right above
the mutationType object:

const thumbsUpMutation = mutationWithClientMutationId({
 name: 'ThumbsUpMutation',
 inputFields: {
 quoteId: { type: GraphQLString }
 },
 outputFields: {
 quote: {
 type: QuoteType,
 resolve: obj => obj
 }
 },
 mutateAndGetPayload: (params, { db }) => {
 const { id } = fromGlobalId(params.quoteId);
 return Promise.resolve(
 db.collection('quotes').updateOne(
 { _id: ObjectID(id) },
 { $inc: { likesCount: 1 } }
)
).then(result =>
 db.collection('quotes').findOne(ObjectID(id)));
 }
});

mutationWithClientMutationId is another helper function that we can import from
graphql-relay. Add it to the require('graphql-relay') line in schema/main.js:

const {
 mutationWithClientMutationId,
 // other helpers
} = require('graphql-relay');

Relay Mutations

[156]

We can use mutationWithClientMutationId to:

Define a single input structure for the mutation. All Relay-compliant mutations
expect a single input field argument that wraps all the actual input values we
want to pass to the mutation. In our case, the only input value we're passing to
this mutation is quoteId, which is a string. The user will click the thumbs-up
button on a single quote, and the server needs to identify that quote to increment
its likesCount property.
Define the output fields of the mutation. Those are all the fields we can read after
the mutation is done. For our example, we are going to expose a single quote
object to represent the quote that got liked in this mutation.
Define the mutateAndGetPayload function which, as the name implies, will do
two operations: it will invoke the actual mutation logic, and then it will return the
payload to be exposed to the output fields of the mutation.

mutateAndGetPayload maps from the input fields to the output fields using the mutation
operation. The first argument it receives is the list of the input parameters, which we can
read to perform the mutation action. It also receives the global context object in case we
want to access any of its properties (we do need the db property for this example).

mutationWithClientMutationId returns a field configuration object, which is what we
used on the root-level mutation field, thumbsUp.

The ThumbsUpMutation takes a quote ID, increments the likesCount of that quote in the
database, and then reads the quote object and outputs it back in the payload.

The code for the actual mutation logic is MongoDB-specific, but the main idea is that we use
the updateOne function along with an $inc operation to increment likesCount, and once
that is done successfully, we return the quote object in a promise.

The object we return from mutateAndGetPayload can be accessed within the output fields
resolve() functions as the first argument. For our example, it'll be a promise that resolves
with the quote.

Relay Mutations

[157]

We can now remove the mock random likesCount logic from the QuoteType and read the
database property instead. Modify the QuoteType definition in schema/main.js to be:

const QuoteType = new GraphQLObjectType({
 name: 'Quote',
 interfaces: [nodeInterface],
 fields: {
 id: globalIdField('Quote', obj => obj._id),
 text: { type: GraphQLString },
 author: { type: GraphQLString },
 likesCount: {
 type: GraphQLInt,
 resolve: obj => obj.likesCount || 0
 }
 }
});

The resolve function here will return likesCount if it exists and default to 0 otherwise.

After a server restart, we can test our mutation now. In GraphiQL, test the following
operation:

mutation ThumbsUp($input: ThumbsUpMutationInput!) {
 thumbsUp(input: $input) {
 clientMutationId
 quote {
 likesCount
 }
 }
}

Test it with the following query variables:

{
 "input": {
 "clientMutationId": "1",
 "quoteId": "UXVvdGU6NTcyODFjYzQzYTg4ZGJhMjA1MDBmOWMy"
 }
}

Relay Mutations

[158]

For the quoteId value, pick one of the values we've seen in the previous
queries when we queried for all the quote IDs. The quote IDs depend on
the data in your local database. If you use an invalid quoteId value, you
should get a GraphQL error.
Here's a query to read the quote ID for the last quote in the connection:
{
 quotesLibrary {
 quotesConnection(last: 1) {
 edges {
 node {
 id
 }
 }
 }
 }
}

Here's what we should see when you invoke the mutation operation with a valid quoteId
value:

Relay Mutations

[159]

You can execute this query a few times to see how the likesCount value is increasing with
every run.

A couple of things to notice about this query:

We defined the single argument input variable to be a required value of type
ThumbsUpMutationInput. You can't invoke a mutation without an input object.
The ThumbsUpMutationInput is the mutation input type that Relay
automatically creates for every mutation using its name. This type gets created in
the mutationWithClientMutationId() call.
We included a clientMutationId value of 1 in the input and the server
included the same field in the response of the mutation. This is a unique identifier
in every Relay application which Relay uses to identify every mutation. Every
time Relay needs to invoke a new mutation operation, it increments the
application's clientMutationId value and uses that in the new mutation
request. The mutationWithClientMutationId() call created this field for us
for both the input and output of the mutation.

Read the likesCount field on the same quote object to make sure the increment was
persisted to the database (note how we can use the node interface here):

We are now ready to invoke the thumbsUp mutation field from within our Relay
application:

*** GitTag: chapter7-relay-compliant-graphql-mutations ***

Relay Mutations

[160]

Relay.Mutation
We'll first need an event handler to invoke the mutation. We'll use a click handler on the
thumbs-up icon.

In the displayLikes() method on the Quote component (in js/Quote.js), modify the
span for the icon to include an onClick event:

 displayLikes() {
 if (!this.props.relay.variables.showLikes) {
 return null;
 }
 return (
 <div>
 {this.props.quote.likesCount}
 <span className="glyphicon glyphicon-thumbs-up"
 onClick={this.thumbsUpClick}>
 </div>
);
 }

thumbsUpClick will simply instantiate a mutation class and pass it to
Relay.Store.commitUpdate:

 // In js/quote.js Quote component definition
 thumbsUpClick = () => {
 Relay.Store.commitUpdate(
 new ThumbsUpMutation({
 quote: this.props.quote
 })
)
 };

The instantiated object from the ThumbsUpMutation class receives a single configuration
object that represents the input that we want the mutation to have access to. Since we need
to include the quote ID in the input of the mutation call, we can pass the whole quote
object available on every Quote component prop.

We then pass this ThumbsUpMutation instance object to Relay.Store.commitUpdate to
actually send the mutation request to the GraphQL server.

We need to import the ThumbsUpMutation class in js/quote.js where we used it:

import ThumbsUpMutation from './thumbs-up-mutation';

Relay Mutations

[161]

Now inside a thumbs-up-mutation.js file (under js/), we can define the class using:

import Relay from 'react-relay';

class ThumbsUpMutation extends Relay.Mutation {

 getMutation() {
 return Relay.QL `
 mutation {
 thumbsUp
 }
 `;
 }

 getVariables() {
 return {
 quoteId: this.props.quote.id
 };
 }

 getFatQuery() {
 return Relay.QL `
 fragment on ThumbsUpMutationPayload {
 quote {
 likesCount
 }
 }
 `;
 }

 getConfigs() {
 return [
 {
 type: 'FIELDS_CHANGE',
 fieldIDs: {
 quote: this.props.quote.id
 }
 }
];
 }

}

export default ThumbsUpMutation;

Relay Mutations

[162]

I did not use any folder structure for organizing the code in this book to
keep things simple. This is fine for small projects, but once the list of files
grows beyond a certain point, maintaining a project without a folder
structure will be a challenge. Pick a folder structure and be consistent
about using it. You can, for example, place all Relay mutations under a
mutations folder in the js directory, or you can opt to create a folder per
feature in your application. This advice also applies to the server side and
the GraphQL schema which we wrote in a single file (schema/main.js)
to keep things simple. In reality, you might want to have every custom
GraphQL type in its own module, and group modules either by their
operation type (query versus mutation versus subscription) or relation to a
feature (the quotes collection versus the users collection), or a mixed
approach for bigger schemas.

ThumbsUpMutation is a class that extends the Relay.Mutation class, and it requires four
main getter functions:

getMutation() is where we specify the name of the GraphQL mutation field
that we want this mutation class to invoke. For our example, it's thumbsUp. As
usual, we tag this GraphQL request with Relay.QL.
getVariables() is where we define the structure of the single input object we
want this mutation to use. For our example, we only need a quoteId variable,
and we can read it using the quote property. This property holds what was
passed to the ThumbsUpMutation instantiated object.
getFatQuery() is where we represent, using a GraphQL fragment, everything
in our data model that could change as a result of this mutation. For our simple
example, we're only including the likesCounts field on a quote. Practically,
multiple things could change as a result of a mutation. For example, if we're to
later store the currently logged-in user (after we implement a login feature) along
with the action of liking a quote, then this mutation would have two things in its
fat query: the list of likers, and the total number of likes. Relay will not ask the
server about the fat query as it is but instead it will intersect this query with a
tracked query that represents the data our application currently uses. Relay will
use the intersected query to ask the server for a response.
getConfigs() is where we instruct Relay what to do with the response of the
mutation request once it receives it. This could be an array of different operations;
sometimes we want to add the response to a list, other times we want to merge
the response with what we already have, and many other options. For our
example, we want to change the quote object identified by the ID that we have.
The FIELDS_CHANGE config type will do that for us.

Relay Mutations

[163]

The last thing we need to do to get this mutation working is to satisfy its data requirements.
This mutation requires the presence of a quote id property, as we can see in
getVariables() and getConfigs(). The Quote component did not require that id
property so far. We can simply add the id field to the Quote component fragment Relay
container, but that would not be the proper way to separate the requirements.

The proper way is to ask the mutation about its requirements and include them anywhere
we use the mutation. For that, we can just use a simple fragment within the mutation (in
js/thumbs-up-mutation.js):

class ThumbsUpMutation extends Relay.Mutation {

 static fragments = {
 quote: () => Relay.QL `
 fragment on Quote {
 id
 }
 `
 };

 // the getters
}

We only have one requirement, the quote requirement, where we specify that we need an
id property on any Quote object on which this mutation will operate.

Within the fragment for the Quote component itself, we can include the mutation
requirement using the same getFragments call we've used before.

In js/quote.js, add the following:

Quote = Relay.createContainer(Quote, {
 initialVariables: {
 showLikes: false
 },
 fragments: {
 quote: () => Relay.QL `
 fragment OneQuote on Quote {
 ${ThumbsUpMutation.getFragment('quote')}
 text
 author
 likesCount @include(if: $showLikes)
 }
 `
 }
});

Relay Mutations

[164]

After a webpack run and a server restart, we can now test our mutation in the UI. Click on a
quote object, then click on the thumbs-up icon. The likes count should immediately
increment when the server responds with the new count:

Note how the payload for the last network request is a mutation request. You can click the
icon many times to like the quote many times. As a fun exercise, try to prevent the user
from liking the quote multiple times, and display a filled icon when the user likes the quote
displayed.

The likes counter does not simply get a +1 increment when we like a story, it actually uses
the current likes count as it is in the database after we like the quote. For example, if, since
the time we loaded up the likesCount the first time, someone else liked the quote, when
we like it, we should see an increment of 2 in the count.

Relay Mutations

[165]

We can simulate a test of that by using two browser windows:

On initial load, the first quote in both windows for this example had a like counter of 5
likes. When we like the story in the first window, we should see the likes count going up to
6 there. When we like the story one more time in the second window, the likes count will
get updated to 7 (from the original 5):

Relay Mutations

[166]

This is because every mutation is a write followed by a read, and we're reading the number
of likes from the database in this mutation's read operation.

Relay mutations have many other features that you should explore. There are a lot of really
good online documentation and examples about them. Take a look at all the mutation
configuration options you can use in getConfigs, for example. There is a NODE_DELETE
option to remove a node from a connection, and a RANGE_ADD option to append or prepend
a node to a connection, and many others.

*** GitTag: chapter7-relay-mutation ***

Optimistic updates
One big built-in feature of Relay is its support for optimistic updates in the UI while we're
waiting on a response from the server. Studies have shown that if the server took more than
a few hundred milliseconds to respond, the UI will start to feel slow. Even if we have a
super powered server that we know will never be slow, this UI lag will still be an issue for
clients with limited internet connectivity.

Relay Mutations

[167]

Relay's mutations have a getOptimisticResponse() function that we can use to change
the UI immediately after a mutation gets invoked. Here's the optimistic response we can use
for our example. In js/thumbs-up-mutation.js ThumbsUpMutation class definition,
add this:

 getOptimisticResponse() {
 return {
 quote: {
 id: this.props.quote.id,
 likesCount: this.props.quote.likesCount + 1
 }
 };
 }

The object that we return from this getOptimisticResponse() function will be used as
the temporary response while the actual mutation is in flight. We're returning the current
likesCount incremented by one. Just by using this.props.quote.likesCount in this
function, we made this mutation depend on the existence of a likesCount property on
quote. We can't assume its existence and should instead add it to the official requirements
of the mutation.

Here's the complete definition of this mutation after we add this new requirement; this is in
js/thumbs-up-mutation.js:

import Relay from 'react-relay';

class ThumbsUpMutation extends Relay.Mutation {

 static fragments = {
 quote: () => Relay.QL `
 fragment on Quote {
 id
 likesCount
 }
 `
 };

 getMutation() {
 return Relay.QL `
 mutation {
 thumbsUp
 }
 `;
 }

 getVariables() {

Relay Mutations

[168]

 return {
 quoteId: this.props.quote.id
 };
 }

 getFatQuery() {
 return Relay.QL `
 fragment on ThumbsUpMutationPayload {
 quote {
 likesCount
 }
 }
 `;
 }

 getConfigs() {
 return [
 {
 type: 'FIELDS_CHANGE',
 fieldIDs: {
 quote: this.props.quote.id
 }
 }
];
 }

 getOptimisticResponse() {
 return {
 quote: {
 id: this.props.quote.id,
 likesCount: this.props.quote.likesCount + 1
 }
 };
 }

}

export default ThumbsUpMutation;

Relay Mutations

[169]

After a webpack run and a server restart, when we go back to the two windows test where
both of them should have a likes count of 7 on the initial load, after we get 8 likes in the first
window, the second window will also get an immediate 8 likes count right away using the
optimistic response we defined. The 8 counter will get updated to 9 once we have the
response from the server. On a locally hosted app, this test is hard to see, but you can
simulate a slow client by throttling the network in Chrome. Pick the slowest connection
available there:

*** GitTag: chapter7-optimistic-updates ***

Summary
In this chapter, we explored Relay-compliant GraphQL mutations. We learned how to
define them using the mutationWithClientId helper function, and learned how that
maps input fields to output fields using a mutation logic. We then learned how to invoke a
mutation field in the UI by extending the Relay.Mutation class and calling
Relay.Store.commitUpdate with a mutation object. We learned some features about
Relay mutations such as the fat query, the mutator configurations, and the powerful built-
in optimistic updates.

8
Deploying to the Cloud

In this chapter, we'll learn how to deploy the Relay Node application to the cloud. We will
learn how to deploy to a cloud-based application platform (Heroku), and how to deploy to
a virtual machine in the cloud (with Amazon Web Services). Most of the instructions in this
chapter will apply to any Node application.

The topics we will cover in this chapter are:

Deploying on EC2
Deploying on Heroku

Preparing for deployment
Right now, we have a project that is working for us locally in development mode, and we
want to take it to another server and run it there. The first thing that we need is a
mechanism for us to copy the project files between our local machine and the remote server.

There are a few options we can go with here, but the most popular one is using Git source
control. I am going to assume that you're familiar with Git and GitHub in this chapter, but if
you're not, you can find great tutorials about Git at h t t p s : / / g i t - s c m . c o m / d o c s / g i t t u t o r

i a l, and GitHub has no shortage of resources about both Git and the GitHub platform. See
h t t p s : / / g u i d e s . g i t h u b . c o m /.

If you don't have Git installed on your system, it's time to install it. This
link has good instructions on how to install Git on various platforms:
h t t p s : / / g i t - s c m . c o m / b o o k / e n / v 2 / G e t t i n g - S t a r t e d - I n s t a l l i n g - G i t.

https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://git-scm.com/docs/gittutorial
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://guides.github.com/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Deploying to the Cloud

[171]

Creating a GitHub repository
I have been using Git from the beginning for this project, which is what you should have
been doing too. You get a lot of great benefits besides sharing the code base between
multiple machines.

However, assuming that you have not made your ~/graphql-project into a Git
repository yet, here's what you need to do to make it into one:

~/graphql-project $ git init
Initialized empty Git repository in ~/graphql-project/.git/

~/graphql-project $ git status
On branch master

Initial commit

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 .babelrc
 babelRelayPlugin.js
 cache/
 index.js
 js/
 node_modules/
 package.json
 public/
 schema/
 webpack.config.js

nothing added to commit but untracked files present (use "git add" to
track)

We then need to add the files to the Git index. Before we do, we should ignore everything
that gets generated when we run the application locally. To do this, in a .gitignore file,
put the following lines:

node_modules/
public/bundle.js
public/bundle.js.map
cache/schema.json

Deploying to the Cloud

[172]

node_modules/ is where Node places all the dependencies when we run npm install,
bundle.js and bundle.js.map both get generated by Webpack, and the
cache/schema.json file is what we generate for the Relay Babel plugin. We should
always add generated content to the ignored list and keep only the code we write in source
control.

With those lines ignored, we can now git add all the files and git commit them as the
first commit in our brand new repo:

~/graphql-project $ git add .

~/graphql-project $ git commit -m "Learn GraphQL/Relay Project"
 [master (root-commit) f9b361f] Learn GraphQL/Relay Project
 13 files changed, 479 insertions(+)
 create mode 100644 .babelrc
 create mode 100644 .gitignore
 create mode 100644 babelRelayPlugin.js
 create mode 100644 data/quotes
 create mode 100644 index.js
 create mode 100644 js/app.js
 create mode 100644 js/quote.js
 create mode 100644 js/search-form.js
 create mode 100644 js/thumbs-up-mutation.js
 create mode 100644 package.json
 create mode 100644 public/index.html
 create mode 100644 schema/main.js
 create mode 100644 webpack.config.js

Note how the list of committed files did not include any of the generated files, thanks to the
.gitignore file.

We can now share this Git repo with the world. The easiest way to do so is through GitHub.
When you create a new repository on GitHub, it'll give you instructions on how to push
your local repo there. The GitHub repo will have a location address
like https://github.com/username/repo-name.git.

I pushed my copy to h t t p s : / / g i t h u b . c o m / e d g e c o d e r s / g r a p h q l - p r o j e c t . g i t, which is
the address I'll be using in the following examples. You'll need to replace this address with
your own, or you can use the copy I made. It's a public repository.

https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git
https://github.com/edgecoders/graphql-project.git

Deploying to the Cloud

[173]

Deploying locally
Before we attempt any remote deploying steps, we should make sure our project works
with a fresh copy of the local working directory. We can get a fresh copy by cloning the
GitHub repo into a new test directory:

~ $ git clone https://github.com/edgecoders/graphql-project.git \
 ~/graphql-project-test

~ $ cd ~/graphql-project-test

~/graphql-project-test $ npm install

~/graphql-project-test $ node index.js

Connected to MongoDB server
{ Error: ENOENT: no such file or directory, open '~/graphql-project-
test/cache/schema.json'
 at Error (native)
 at Object.fs.openSync (fs.js:634:18)
 at Object.fs.writeFileSync (fs.js:1327:33)
 ...
 errno: -2,
 code: 'ENOENT',
 syscall: 'open',
 path: '~/graphql-project-test/cache/schema.json' }
Running Express.js on port 3000

While the Express.js server ran fine, the code we have to generate cache/schema.json
failed because the cache directory does not exist.

We don't want to commit the schema.json file to Git but we should have an empty cache
directory after a fresh checkout. Git ignores empty directories, but we can push an empty
file in there:

Let's do the deployment changes in a new Git branch, prod:

~/graphql-project-test $ git checkout -b prod

~/graphql-project-test $ mkdir cache

Deploying to the Cloud

[174]

Add an empty .gitkeep file under cache:

~/graphql-project-test $ touch cache/.gitkeep

Add the new .gitkeep file to Git:

~/graphql-project-test $ git add cache/.gitkeep

~/graphql-project-test $ git commit -m "Add the cache directory"
[prod 5d5d7e8] Add the cache directory
 1 file changed, 0 insertions(+), 0 deletions(-)
 create mode 100644 cache/.gitkeep

Let's see if this fixes the problem:

~/graphql-project-test $ node index.js
Connected to MongoDB server
Running Express.js on port 3000
Generated cached schema.json file

index.js has two responsibilities: starting the Express.js server, and generating the schema
cache. We put these two tasks together to keep things simple, but it's time to split them up.

In a generateSchemaCache.js file on the root level, we can put only the code related to
generating the JSON schema:

const fs = require('fs');
const path = require('path');
const { graphql } = require('graphql');
const { introspectionQuery } = require('graphql/utilities');
const mySchema = require('./schema/main');

graphql(mySchema, introspectionQuery)
 .then(result => {
 fs.writeFileSync(
 path.join(__dirname, 'cache/schema.json'),
 JSON.stringify(result, null, 2)
);
 console.log('Generated cached schema.json file');
 })
 .catch(console.error);

In a server.js file on the root level, we'll keep the code related to starting the server:

const { MongoClient } = require('mongodb');
const assert = require('assert');
const graphqlHTTP = require('express-graphql');
const express = require('express');

Deploying to the Cloud

[175]

const app = express();
app.use(express.static('public'));

const mySchema = require('./schema/main');
const MONGO_URL = 'mongodb://localhost:27017/test';

MongoClient.connect(MONGO_URL, (err, db) => {
 assert.equal(null, err);
 console.log('Connected to MongoDB server');

 app.use('/graphql', graphqlHTTP({
 schema: mySchema,
 context: { db },
 graphiql: true
 }));

 app.listen(3000, () =>
 console.log('Running Express.js on port 3000')
);
});

Finally, we can now delete the index.js file.

Let's now write a few npm script tasks to work with these files. In package.json, under
the scripts property, add the following:

To generate the schema cache with npm run generate-schema, add this:

 "generate-schema": "node generateSchemaCache.js"

To build a production version of bundle.js with webpack using npm run
bundle, add this:

 "bundle": "NODE_ENV=production webpack -p --config
webpack.config.prod.js"

The -p is the production shortcut for the webpack command. It'll generate a
minified bundle.js. Some libraries (React included) depend on NODE_ENV to
generate a production-optimized build.
For NODE_ENV to work with webpack, we need to add a plugin to the
configuration file. We can make a separate webpack.config.prod.js root-level
file for production-specific webpack configurations:

 const path = require('path');
 const webpack = require('webpack');

Deploying to the Cloud

[176]

 module.exports = {
 entry: './js/app.js',
 output: {
 path: path.join(__dirname, 'public'),
 filename: 'bundle.js'
 },
 module: {
 loaders: [
 {
 test: /\.js$/,
 exclude: /node_modules/,
 loader: 'babel-loader'
 }
]
 },
 plugins: [
 new webpack.DefinePlugin({
 'process.env': {
 'NODE_ENV': '"production"'
 }
 })
]
 };

To start the server with npm start, we'll need to add this line to the scripts
section in package.json:

 "start": "NODE_ENV=production node server.js"

We can test our scripts now. To prepare the schema and the JavaScript bundle file add the
following:

~/graphql-project-test $ npm run generate-schema && npm run bundle

> node generateSchemaCache.js

Generated cached schema.json file

> NODE_ENV=production webpack -p --config webpack.config.prod.js

Hash: 3f76cb819c1c224d3588
Version: webpack 1.13.1
Time: 6803ms
 Asset Size Chunks Chunk Names
bundle.js 484 kB 0 [emitted] main
 + 464 hidden modules

Deploying to the Cloud

[177]

You'll get a lot of logging information with the -p argument for Webpack;
you can safely ignore those.

To start the server:

~/graphql-project-test $ npm start

> NODE_ENV=production node server.js

Connected to MongoDB server
Running Express.js on port 3000

We now have our project running locally, in production mode, without any issues. If you
inspect the size of the bundle.js file, you'll notice that it's now a much smaller file than
what we had in development mode.

I'll go ahead and commit the new changes we made to the same prod branch:

~/graphql-project-test $ git add .

~/graphql-project-test $ git commit -m "Production Cleanup"
[prod caaa8e0] Production Cleanup
 4 files changed, 44 insertions(+), 16 deletions(-)
 create mode 100644 generateSchemaCache.js
 rename index.js => server.js (59%)
 create mode 100644 webpack.config.prod.js

We're ready to go remote now. We'll first use Amazon Web Services (AWS) to create a
Virtual Private Server (VPS) on their EC2 service and host our application there. After that,
we'll see the simpler option of using the cloud-based application deployment platform,
Heroku.

Deploying to the Cloud

[178]

Deploying on EC2
First of all, you need to create an account on Amazon Web Services (AWS), which is hosted
at: h t t p s : / / a w s . a m a z o n . c o m /.

Once you're all set with an active account, navigate to the AWS management console. It
currently looks like this:

https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/

Deploying to the Cloud

[179]

Pick the EC2 service, and then on that page, click the Launch Instance button:

The screen will now prompt you to pick an Amazon Machine Image and an instance type. I
usually go with an Ubuntu Server t2.micro. Click the Review and Launch button after that.

Deploying to the Cloud

[180]

On the Review Instance Launch screen, you should see a Security Groups section with an
SSH port 22 open by default. Since this machine will be a web server, we'll need to add port
80 too:

Deploying to the Cloud

[181]

Click on Edit security groups, then click on the Add Rule button, and pick HTTP in the
selector under the Type column:

Deploying to the Cloud

[182]

We can go ahead and launch the instance now. The next screen should ask you to select an
existing key pair or create a new one. If you have created a key pair before and have access
to the .pem file, you can select that; otherwise, create a new key pair, give it a name like
graphql-project-server, and download the new .pem file:

You'll need this graphql-project-server.pem file to access the EC2 instance. Don't lose
it.

Deploying to the Cloud

[183]

You can launch the instance now; this process will take some time. When the instance is
ready, you'll see it running under the Instances screen. Take note of the Public IP that EC2
assigned to your instance; we'll need this IP to access the machine:

We can now connect to this machine using an SSH terminal. You can see the exact
instructions when you click the Connect button (with the machine selected).

Change the permission on the key we downloaded to make the file only readable by its
owner:

~/Downloads $ chmod 400 graphql-project-server.pem

If you picked the Ubuntu Server machine, the SSH command you need is usually as
follows:

~/Downloads $ ssh -i "graphql-project-server.pem" \
 ubuntu@the.machine.ip.address

If you logged in successfully, your machine is ready.

To make sure the security group setting is correct, we can install apache2 using the
following:

~ $ sudo apt install apache2

Make sure the apache2 process is running with this:

~ $ ps -ef | grep apache2

root 2286 1 0 03:53 ? 00:00:00 /usr/sbin/apache2 -k start
www-data 2289 2286 0 03:53 ? 00:00:00 /usr/sbin/apache2 -k start
www-data 2290 2286 0 03:53 ? 00:00:00 /usr/sbin/apache2 -k start
ubuntu 2412 1330 0 03:53 pts/0 00:00:00 grep -color=auto apache2

Deploying to the Cloud

[184]

Then, go to http://the.machine.ip.address/ in the browser and you should see the
Apache default page there:

Installing MongoDB
We have two options to work with a remote MongoDB: a self-hosted install, or a database
as a service platform. We'll explore the second option later in the chapter, but for an EC2
deployment, we'll install MongoDB and self-host it on the same server.

On an Ubuntu Server, we can simply apt install a package for MongoDB, but we first
need to update the list of apt resources.

The full instructions can be found at h t t p s : / / d o c s . m o n g o d b . c o m / m a n u a l / t u t o r i a l / i n s t a

l l - m o n g o d b - o n - u b u n t u /.

Here are the steps and commands that I needed:

Import the public key used by the package management system:1.

 ~ $ sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80
 --recv EA312927

Create an apt resource file for MongoDB:2.

 ~ $ echo "deb http://repo.mongodb.org/apt/ubuntu trusty/
 mongodb-org/3.2 multiverse" | sudo tee /etc/apt/sources.list.d
 /mongodb-org-3.2.list

Reload the local package database:3.

 ~ $ sudo apt-get update

https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/

Deploying to the Cloud

[185]

Install the MongoDB packages:4.

 ~ $ sudo apt-get install -y mongodb-org

To test that we have a successful MongoDB installation, we can use the mongo CLI:

~ $ mongo
MongoDB shell version: 3.2.8
connecting to: test
Welcome to the MongoDB shell.
>

While we're in the mongo interface, we can seed the database with some quotes:

> db.createCollection("quotes")
{ "ok" : 1 }

> db.quotes.insertMany([
... {
... text: "The best preparation for tomorrow
 is doing your best today",
... author: "H. Jackson Brown"
... },
... {
... text: "If opportunity doesn't knock, build a door",
... author: "Milton Berle"
... },
... {
... text: "Try to be a rainbow in someone's cloud",
... author: "Maya Angelou"
... },
...])

Running the Node.js server
Just like we used NVM in Chapter 1, An Introduction to GraphQL and Relay, to install
Node.js locally, we can use it here too:

~ $ curl -o-
https://raw.githubusercontent.com/creationix/nvm/v0.31.4/install.sh | bash

Then, to install the latest Node.js, exit and reconnect to the server (this should load the nvm
environment), then run the following:

~ $ nvm install node

Deploying to the Cloud

[186]

We also need to install git on this server to be able to clone our project:

~ $ sudo apt install git

Then, to clone the project from GitHub, use the following:

~ $ git clone https://github.com/edgecoders/graphql-project.git
~ $ cd ~/graphql-project/

We've made some changes to the prod branch in the original repo. We'll need to checkout
that branch:

~/graphql-project $ git checkout prod
Branch prod set up to track remote branch prod from origin.
Switched to a new branch 'prod'

Now we can npm install all the dependencies:

~/graphql-project $ npm install

If everything worked correctly, we should be able to generate the schema and bundle, and
run the server, now using our npm scripts:

~/graphql-project $ npm run generate-schema
~/graphql-project $ npm run bundle
~/graphql-project $ npm start

However, while a direct run of the node command in the foreground works fine for
development, in production, we need to manage the running node process in the
background. Furthermore, if something stops this process for any reason, we need to
attempt an auto-start. For that, we need to use a node process manager.

I've had a lot of success with the pm2 manager. It's very simple to use:

~/graphql-project $ npm install -g pm2

Then, to start a pm2 process based on the npm start script, we need to do the following:

~/graphql-project $ pm2 start npm -- start
[PM2] Starting npm in fork_mode (1 instance)
[PM2] Done.

The server is now running in the background on port 3000, and we have apache running on
port 80. We can configure apache on port 80 as a proxy to our node server on port 3000
using the proxy_http apache module:

~/graphql-project $ sudo a2enmod proxy proxy_http

Deploying to the Cloud

[187]

Change the content of /etc/apache2/sites-enabled/000-default.conf to the
following:

<VirtualHost *:80>
 ServerName site.com
 ServerAlias www.site.com
 ProxyRequests off

 <Proxy *>
 Order deny,allow
 Allow from all
 </Proxy>

 <Location />
 ProxyPass http://localhost:3000/
 ProxyPassReverse http://localhost:3000/
 </Location>
</VirtualHost>

Restart the apache2 service (using the command sudo service apache2 restart) and
go to http://the.machine.ip.address/, and you should see the application up and
running in the cloud now.

This is just the beginning of the story on AWS. What we did here is a minimal deployment
that suits a small application, but it will not scale easily for big ones. Here are a few things
that we need to improve to set this application on a path for growth:

Separate the application into three different sections. One section will be for the
database cluster, the second section will be for the GraphQL/Express server
process, and the third one will be for the frontend application. Every section can
have many nodes that run independently and should be controlled by a load
balancer and cache layer.
Come up with an easier way to deploy new changes to all running nodes.
Without a deployment strategy, we'll need to access each node for each
deployment. There are a lot of tools to automate deployment and those should be
utilized on an EC2 infrastructure.
Come up with a plan to maintain the servers for things like security updates and
resource usage. Servers that start misbehaving should be taken out of rotations
right away, and if all nodes are busy, a new node should be automatically created
and put in rotation.
Enable a log aggregation service and monitor and analyze the central logs.

Deploying to the Cloud

[188]

These are just a few points to get you thinking. AWS has other great services that can help
with these concerns. For example, take a look at AWS Elastic Beanstalk, which supports
Node.js.

EC2 and Beanstalk are very different services. EC2 offers Infrastructure as a Service (IaaS),
while Beanstalk offers a Platform as a Service (PaaS). Heroku is another PaaS option, and it
is specialized in that domain. An IaaS gives us a base that we can use to build things on top
of. A PaaS, on the other hand, gives us an environment where we can just push our code
and magically watch it come to life. IaaS has more power and flexibility, while PaaS offers
an easier way to maintain, secure, and scale applications.

Deploying on Heroku
We'll need to create an account on h t t p s : / / w w w . h e r o k u . c o m / first, and make sure you can
log in to your dashboard, which currently looks like this:

https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/

Deploying to the Cloud

[189]

You can use Heroku's dashboard to create and manage your applications, but there is also a
Heroku command-line interface (CLI) utility that allows you to do the same operations
right from the command line. The CLI should be easier to follow here.

To set up your local workstation with the Heroku CLI, you need to install the Heroku
Toolbelt from h t t p s : / / t o o l b e l t . h e r o k u . c o m /.

The Heroku Toolbelt is available on all major platforms; just download it and run it. When
the installer is done, open a terminal window and run the heroku command:

~/graphql-project-test $ heroku
heroku-cli: Installing CLI... 21.02MB/21.02MB
Enter your Heroku credentials.
Email: samer@agilelabs.com
Password (typing will be hidden):
Logged in as samer@agilelabs.com

 Add apps to this dashboard by favoriting them with heroku
apps:favorites:add
See all add-ons with heroku addons
See all apps with heroku apps --all

See other CLI commands with heroku help

The command will first install the latest Heroku CLI, and then ask you to enter your
Heroku credentials.

Once logged in to the CLI, we can create a Heroku application. Run this command in the
graphql-project-test local directory:

~/graphql-project-test $ heroku create
Creating app... done, pacific-reaches-64379
https://pacific-reaches-64379.herokuapp.com/ |
https://git.heroku.com/pacific-reaches-64379.git

The CLI creates an application and generates a name for it. Mine was pacific-
reaches-64379. After creating the application, the CLI associates a remote Git repository
with your local one:

~/graphql-project-test $ git remote -v
heroku https://git.heroku.com/pacific-reaches-64379.git(fetch)
heroku https://git.heroku.com/pacific-reaches-64379.git(push)
origin https://github.com/edgecoders/graphql-project.git(fetch)
origin http`s://github.com/edgecoders/graphql-project.git(push)

https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/
https://toolbelt.heroku.com/

Deploying to the Cloud

[190]

The local repository has two remotes now, one at Heroku and the other at GitHub.

Heroku has many deployment methods; using a Heroku-managed Git repository is one of
them, and it's the most popular.

At this point, if you reload your h t t p s : / / w w w . h e r o k u . c o m / dashboard, you should see this
newly created application in there. If you go to the application's page, you can see all the
options that you can manage in the UI:

We'll continue working on the prod branch to add the changes required for Heroku:

~/graphql-project-test $ git status
On branch prod
Your branch is up-to-date with 'origin/prod'.
nothing to commit, working directory clean

https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/
https://www.heroku.com/

Deploying to the Cloud

[191]

The easiest way to test a Heroku application is to do so locally, using the heroku local
command. We'll use this command to troubleshoot what we need to fix locally, before
pushing the code.

To simulate a Heroku environment, I stopped the local MongoDB, and removed all
generated files from the local repo:

~/graphql-project $ git clean -fxd
Removing cache/schema.json
Removing node_modules/
Removing public/bundle.js
Removing public/bundle.js.map

When the code is pushed to Heroku, the platform will perform the npm install step.
Knowing that, we can perform this step locally, too. However, we also need the
schema.json and bundle.js files. The npm install command will not generate those.

We can use the special npm postinstall script for that. This script gets automatically run
when Heroku is done with the npm install command.

Here's the scripts section of package.json with the necessary postinstall task:

 "scripts": {
 "generate-schema": "node generateSchemaCache.js",
 "bundle": "NODE_ENV=production webpack -p --config
 webpack.config.prod.js",
 "postinstall": "npm run generate-schema && npm run bundle",
 "start": "NODE_ENV=production node server.js"
 },

When we run npm install now, npm will first install all the dependencies in
node_modules/, and it will then execute the postinstall script and generate both the
schema.json file and the production bundle.js file:

~/graphql-project-test $ npm install

...

> npm run generate-schema && npm run bundle

> node generateSchemaCache.js

Generated cached schema.json file

> NODE_ENV=production webpack -p --config webpack.config.prod.js

Hash: fe12498764cd49f048de

Deploying to the Cloud

[192]

Version: webpack 1.13.1
Time: 9100ms
 Asset Size Chunks Chunk Names
bundle.js 484 kB 0 [emitted] main
 + 461 hidden modules

Let's now see the first problem heroku local will run into:

~/graphql-project-test $ heroku local
[WARN] ENOENT: no such file or directory, open 'Procfile'
[OKAY] package.json file found - trying 'npm start'
[WARN] No ENV file found
8:58:12 AM web.1 | > graphql-project@1.0.0 start /Users/samer/graphql-
project-test
8:58:12 AM web.1 | > NODE_ENV=production node server.js
8:58:12 AM web.1 | /Users/samer/graphql-project-
test/node_modules/mongodb/lib/mongo_client.js:201
8:58:12 AM web.1 | throw err
8:58:12 AM web.1 | ^
8:58:12 AM web.1 | AssertionError: null == { MongoError: failed to connect
to server [localhost:27017] on first connect
8:58:12 AM web.1 | at .<anonymous> (/Users/samer/graphql-project-t
8:58:12 AM web.1 | at mongodb.MongoClient.connect
(/Users/samer/graphql-project-test/server.js:13:10)
8:58:12 AM web.1 | at /Users/samer/graphql-project-
test/node_modules/mongodb/lib/mongo_client.js:198:11
8:58:12 AM web.1 | at _combinedTickCallback
(internal/process/next_tick.js:67:7)
8:58:12 AM web.1 | at process._tickCallback
(internal/process/next_tick.js:98:9)
8:58:12 AM web.1 | npm

It looks like heroku local is correctly executing the npm start script. However, when
the server.js file tries to connect to a local MongoDB, it errors out because we stopped it.

We need a MongoDB for this application, and we can't use the local one on Heroku.

Cloud-hosted MongoDB
We've seen how to use a self-hosted MongoDB instance on EC2. Let's now explore the
alternative option of using a cloud-hosted MongoDB service such as h t t p s : / / w w w . c o m p o s e

. c o m / or h t t p s : / / m l a b . c o m /. This option is actually much easier to do and it's also a lot
easier to maintain than the self-hosted option. Some of these cloud-hosted services even
offer a free option (up to a certain usage size).

https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://www.compose.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/

Deploying to the Cloud

[193]

Once you create an account and create a database instance, you'll get the MongoDB URL
that you can use in the Express.js app to replace the local URL that we've been using.

The MongoDB URL has this form:

mongodb://<dbuser>:<dbpassword>@<host>:<port>/<db-name>

On Heroku, we can obtain a database instance from h t t p s : / / m l a b . c o m / using the third-
party add-on system that Heroku offers. We can use the following command to add the free
sandbox option:

~/graphql-project-test $ heroku addons:create mongolab:sandbox

Creating mongolab-rugged-10755... done, (free)
Adding mongolab-rugged-10755 to pacific-reaches-64379... done
Setting MONGODB_URI and restarting pacific-reaches-64379... done, v3
Welcome to mLab. Your new subscription is being created and will be
available shortly. Please consult the mLab Add-on Admin UI to check on its
progress.
Use `heroku addons:docs mongolab` to view documentation.

You might need to verify your Heroku account to be able to create add-ons.

This command creates a MongoDB cloud-based instance and sets a Heroku remote
configuration variable to point to it. We can see all the Heroku remote configuration
variables with the following:

~/graphql-project-test $ heroku config

=== pacific-reaches-64379 Config Vars
MONGODB_URI: mongodb://CREDS@HOST.mlab.com:PORT/DBNAME

This new MONGODB_URI variable can be accessed in the code using process.env.
MONGODB_URI. We'll need to replace the hardcoded one we used before for the local
database. In server.js, delete the line that sets the old MONGO_URL constant, and use
process.env.MONGODB_URI in the connect call.

We should also remove the hardcoded port 3000. Heroku needs control over this. The port
will be assigned during the deploy process and can be accessed in the code using
process.env.PORT. In server.js add the following:

MongoClient.connect(process.env.MONGODB_URI, (err, db) => {
 // ...
 app.listen(process.env.PORT, () =>
 console.log(`Running Express.js on port ${process.env.PORT}`)
);
});

https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/
https://mlab.com/

Deploying to the Cloud

[194]

The heroku local command does not read the remotely-set configuration variables, but it
does read any variables we set in a .env file. Using the following command, we can store a
copy of the remote variables in a local .env file:

~/graphql-project-test $ heroku config -s >> .env

To access the MongoDB instance associated with this application, we can use the following
command:

~/graphql-project-test $ heroku addons:open mongolab

This will open a window in your browser to a GUI for the MongoDB instance; we can use
this UI to control the data we want in our quotes collection. First, create the quotes
collection:

Then, use the quotes collection to insert a few quotes objects using the Add Document
button. In the Create Document screen, every document is a JSON string:

Deploying to the Cloud

[195]

Once you are done adding a document per quote, you should see the list back in the
collection page:

Deploying to the Cloud

[196]

Let's now test the heroku local command:

~/graphql-project-test $ heroku local

[OKAY] Loaded ENV .env File as KEY=VALUE Format
[WARN] ENOENT: no such file or directory, open 'Procfile'
[OKAY] package.json file found - trying 'npm start'
11:59:08 AM web.1 | > NODE_ENV=production node server.js
11:59:09 AM web.1 | Connected to MongoDB server
11:59:09 AM web.1 | Running Express.js on port 5000

It looks like the CLI used port 5000 for this local run; we can test our application by
navigating to http://localhost:5000/. We should see the quotes documents we added
in our mlab MongoDB UI.

The heroku local command used the Node.js local installation that we had on the local
machine. Heroku will not install the exact Node.js version we used locally unless we tell it
to. We can do that using the engines section in package.json:

 "engines": {
 "node": "6.3.1"
 }

This will instruct Heroku to use Node.js version 6.3.1 and not its default one.

We're now ready to deploy to the cloud. All we need to do is commit the changes we made
so far (ignoring the local .env file), and push them to the Heroku remote:

~/graphql-project-test $ echo .env >> .gitignore

~/graphql-project-test $ git add .gitignore package.json server.js

~/graphql-project-test $ git commit -m "Prepare for Heroku"
[prod 0f2242e] Prepare for Heroku
 3 files changed, 8 insertions(+), 4 deletions(-)

To deploy, we use git push. We do, however, need to push the local prod branch to the
remote master branch. We can use this command:

~/graphql-project-test $ git push heroku prod:master

Counting objects: 18, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (17/17), done.
Writing objects: 100% (18/18), 5.10 KiB | 0 bytes/s, done.
Total 18 (delta 0), reused 0 (delta 0)
remote: Compressing source files... done.

Deploying to the Cloud

[197]

remote: Building source:
remote:
remote: -----> Node.js app detected
remote:
remote: -----> Creating runtime environment
...
remote: Done: 17.8M
remote: -----> Launching...
remote: Released v4
remote: https://pacific-reaches-64379.herokuapp.com/ deployed to
Heroku
remote:
remote: Verifying deploy... done.
To https://git.heroku.com/pacific-reaches-64379.git
 * [new branch] master -> master

We just handed our code to the Heroku platform and the platform will take it from there. It
will install all the dependencies, generate our deployment files, run a Node server for our
application, and make it available under a web server hosted at a domain matching our
Heroku application name.

To launch a browser on that domain, we can use the following command:

~/graphql-project-test $ heroku open

This will launch the application in your browser, and you should see the quotes we added
to the mlab MongoDB UI:

Deploying to the Cloud

[198]

If you want to compare your code with what I deployed to my Heroku
project, I pushed all the changes we made in the local prod branch to a
deployed branch under my GitHub remote at h t t p s : / / g i t h u b . c o m / e d g e

c o d e r s / g r a p h q l - p r o j e c t.

Summary
In this chapter, we looked at two different ways to deploy our GraphQL server and Relay
application to the cloud. We first looked at an Infrastructure as a Service option, EC2 from
AWS, and then looked at a Platform as a Service option, Heroku. For both options, we had
to modify our project a little bit to meet certain requirements on these services. We used
GitHub to share the code base with the services, and we changed our build process to
bundle a production-optimized version of our application and its dependencies.

https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project
https://github.com/edgecoders/graphql-project

Index

A
Amazon Web Services (AWS)
 reference link 178
Application Programming Interface (API)
 tasks 10

C
Cache layer 20
connection model, Relay
 about 21, 122, 123, 124, 126, 131
 after/first model 21
 offset/limit model 21
core principles, Relay
 connection model 21
 object identification 20
 storage and caching 20

D
description property 59

E
EC2 deployment
 MongoDB, installing 184
 Node.js server, running 185, 188
EC2
 deploying on 178, 179, 181, 183

G
GitHub repository
 reference link 64, 91
GraphiQL 18
GraphQL API
 reference link 17
GraphQL JavaScript
 reference link 22

graphql library
 download link 24
GraphQL query language syntax
 aliases 49
 directives 47
 documents and operations 42
 fields 44
 fragments 51
 mutations 54
 variables 45
GraphQL schema
 about 55
 example 89
 introspection 59
 resolve function 73
 schema object 55
 type schema 65
 validation rules 85
 versioning 86
GraphQL server, setting up
 about 22
 field arguments, using 31
 GraphiQL editor 39
 HTTP interface, setting up 37
 MongoDB, setting up 32
 Node.js, installing 22
 schema, defining 24
 schema, using 28
 two-dice roll, simulating 29
GraphQL
 about 6
 defining, as language 6
 defining, as runtime 7
 features 10
 used, for practical needs 12

[200]

J
JavaScript Object Notation (JSON)
 reference link 7

L
like action implementation
 about 140, 142, 143, 145
 global ID, using 146, 148
 Node interface 148, 149, 150, 151, 152
lodash library
 reference link 136

M
MongoDB Node.js driver
 installation link 34
MongoDB
 installation link 32
mutation
 invoking, Relay used 160, 162, 164, 165

N
Node Version Manager (NVM) 22
Node.js
 installation link 22

O
optimistic updates 166, 167, 169

Q
Queue Store 20
quotes library 92
 root-level field 113, 114, 116, 117

R
React applications
 GraphQL, using without Relay 98
react-devtools
 reference link 103
Read, Eval, Print, Loop (REPL) 23
Relay containers 101
Relay Node application deployment
 GitHub repository, creating 171, 172
 local deployment 173, 174, 177

 preparing 170
Relay Store 20
Relay-compliantGraphQL mutation
 defining 154, 156, 157, 158, 159
Relay
 about 6, 8, 105
 connection model 122
 core principles 20
 defining, as framework 8
 features 19
 first query operation, performing 117, 118, 119,

120, 122
 GraphQL queries, transforming 105, 106, 108,

111, 112
 optimistic updates 166
 used, for building data-driven applications 9
request
 validating 85
resolve function
 about 73
 args argument 74
 context argument 78
 info argument 79
 resolving, with promises 80
 source argument 74
RESTful APIs
 reference link 15
 versus GrapQL APIs 11

S
schema object 55
search feature, adding in Relay
 about 135
 Relay variables, using 136, 137, 138, 139
 search form component, adding 135
search feature
 adding, to GraphQL API 133, 134
 implementing 132, 133
 implementing, in Relay 135

T
t2.micro 179
type system
 about 65
 ENUM type 72

 interface and unions 66
 scalars and object types 66
 type modifiers 70

V

versioning 86

W
Webpack
 setting up 94

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: An Introduction to GraphQL and Relay
	What is GraphQL?
	What is Relay?
	Why GraphQL?
	RESTful APIs versus GraphQL APIs

	Why Relay?
	Understanding Relay's core principles
	Storage and caching
	Object identification
	The connection model

	Setting up a simple GraphQL server
	Installing Node.js
	Defining the schema
	Using the schema
	Rolling the dice
	Using field arguments

	Setting up MongoDB
	Setting up an HTTP interface
	The GraphiQL editor

	Summary

	Chapter 2: The Query Language
	Documents and operations
	Fields
	Variables
	Directives
	Aliases
	Fragments
	Mutations
	Summary

	Chapter 3: The GraphQL Schema
	The schema object
	Introspection
	The type system
	Scalars and object types
	Interfaces and unions
	Type modifiers
	Enums

	The resolve function
	First argument – source
	Second argument – args
	Third argument – context
	Fourth argument – info
	Resolving with promises

	Validation
	Versioning
	Summary

	Chapter 4: Configuring React Applications to Use Relay
	The example GraphQL schema
	The quotes library
	Setting up Webpack
	Using GraphQL without Relay in React applications
	Relay containers
	Summary

	Chapter 5: Making GraphQL Queries Relay-Compliant
	Transforming GraphQL queries for Relay
	Root-level field for the quotes library
	First query operation with Relay
	Relay's connection model
	Summary

	Chapter 6: Relay Variables and Object Identification
	Implementing search
	Adding a search feature to the GraphQL API
	Implementing the search feature in Relay
	Adding a search form component
	Using Relay variables

	Implementing likes
	Relay's global ID
	The Node interface

	Summary

	Chapter 7: Relay Mutations
	Relay-compliant GraphQL mutations
	Relay.Mutation
	Optimistic updates
	Summary

	Chapter 8: Deploying to the Cloud
	Preparing for deployment
	Creating a GitHub repository
	Deploying locally

	Deploying on EC2
	Installing MongoDB
	Running the Node.js server

	Deploying on Heroku
	Cloud-hosted MongoDB

	Summary

	Index

