

Learning React

Second Edition

The Pearson Addison-Wesley Learning Series is a collection of hands-
on programming guides that help you quickly learn a new technology or
language so you can apply what you’ve learned right away.

Each title comes with sample code for the application or applications built
in the text. This code is fully annotated and can be reused in your own
projects with no strings attached. Many chapters end with a series of
exercises to encourage you to reexamine what you have just learned, and
to tweak or adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away
and leave you with the ability to walk off and build your own application
and apply the language or technology to whatever you are working on.

Visit informit.com/learningseries for a complete list of available publications.

The Pearson Addison-Wesley
Learning Series

Make sure to connect with us!
informit.com/socialconnect

http://informit.com/learningseries
http://informit.com/socialconnect

Learning React

Second Edition

Kirupa Chinnathambi

Editor

Mark Taber

Managing Editor

Sandra Schroeder

Project Editor

Mandie Frank

Copy Editor

Krista Hansing

Indexer

Erika Millen

Proofreader

Jeanine Furino

Technical Editor

Trevor McCauley

Editorial Assistant

Vanessa Evans

Designer

Chuti Prasertsith

Compositor

codemantra

Learning React, Second Edition

Copyright © 2018 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has been taken
in the preparation of this book, the publisher and author assume no responsibility for
errors or omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

ISBN-13: 978-0-13-484355-1
ISBN-10: 0-13-484355-X

Library of Congress Control Number: 2017957370

1 18

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark
or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Accessing the Free Web Edition

Your purchase of this book in any format includes access to the corresponding
Web Edition, which provides several special online-only features:

■ The complete text of the book

■ Updates and corrections as they become available

The Web Edition can be viewed on all types of computers and mobile devices with
any modern web browser that supports HTML5.

To get access to the Learning React Web Edition, all you need to do is register
this book:

1. Go to www.informit.com/register.

2. Sign in or create a new account.

3. Enter the ISBN: 9780134843551.

4. Answer the questions as proof of purchase.

5. The Web Edition will appear under the Digital Purchases tab on your
Account page. Click the Launch link to access the product.

http://www.informit.com/register

❖

To my dad!

(Who always believed in me—even if what I was often doing
made no sense to him...or to me for that matter!)

❖

Contents at a Glance

 1 Introducing React 1

 2 Building Your First React App 13

 3 Components in React 23

 4 Styling in React 37

 5 Creating Complex Components 47

 6 Transferring Properties 65

 7 Meet JSX…Again! 79

 8 Dealing with State in React 87

 9 Going from Data to UI in React 99

 10 Events in React 107

 11 The Component Lifecycle 123

 12 Accessing DOM Elements in React 135

 13 Setting Up Your React Dev Environment Easily 149

 14 Working with External Data in React 163

 15 Building an Awesome Todo List App in React 177

 16 Creating a Sliding Menu in React 197

 17 Avoiding Unnecessary Renders in React 211

 18 Creating a Single-Page App in React Using React Router 223

 19 Introduction to Redux 237

 20 Using Redux with React 249

 Index 267

Table of Contents

 1 Introducing React 1

Old-School Multipage Design 2

New-School Single-Page Apps 3

Meet React 6

Automatic UI State Management 7

Lightning-Fast DOM Manipulation 7

APIs to Create Truly Composable UIs 8

Visuals Defined Entirely in JavaScript 10

Just the V in an MVC Architecture 12

Conclusion 12

 2 Building Your First React App 13

Dealing with JSX 14

Getting Your React On 16

Displaying Your Name 17

It’s All Still Familiar 19

Changing the Destination 19

Styling It Up! 20

Conclusion 22

 3 Components in React 23

Quick Review of Functions 24

Changing How We Deal with UI 26

Meet the React Component 28

Creating a Hello, World! Component 29

Specifying Properties 32

First Part: Updating the Component Definition 33

Second Part: Modifying the Component Call 33

Dealing with Children 34

Conclusion 35

 4 Styling in React 37

Displaying Some Vowels 37

Styling React Content Using CSS 40

Understand the Generated HTML 40

Just Style It Already! 41

ixContents

Styling Content the React Way 42

Creating a Style Object 42

Actually Styling Our Content 43

Making the Background Color Customizable 45

Conclusion 46

 5 Creating Complex Components 47

From Visuals to Components 47

Identifying the Major Visual Elements 49

Identifying the Components 51

Creating the Components 54

The Card Component 56

The Square Component 58

The Label Component 59

Passing Properties, Again! 61

Why Component Composability Rocks 63

Conclusion 64

 6 Transferring Properties 65

Problem Overview 65

Detailed Look at the Problem 69

Meet the Spread Operator 74

A Better Way to Transfer Properties 75

Conclusion 77

 7 Meet JSX…Again! 79

What Happens with JSX? 79

JSX Quirks to Remember 81

Evaluating Expressions 81

Returning Multiple Elements 82

You Can’t Specify CSS Inline 83

Comments 84

Capitalization, HTML Elements, and Components 85

Your JSX Can Be Anywhere 86

Conclusion 86

x Contents

 8 Dealing with State in React 87

Using State 87

Our Starting Point 88

Getting Our Counter On 90

Setting the Initial State Value 91

Starting Our Timer and Setting State 92

Rendering the State Change 95

Optional: The Full Code 95

Conclusion 97

 9 Going from Data to UI in React 99

The Example 99

Your JSX Can Be Anywhere, Part II 102

Dealing with Arrays 103

Conclusion 105

 10 Events in React 107

Listening and Reacting to Events 107

Starting Point 108

Making the Button Click Do Something 110

Event Properties 112

Meet Synthetic Events 113

Doing Stuff with Event Properties 114

More Eventing Shenanigans 115

You Can’t Directly Listen to Events on Components 116

Listening to Regular DOM Events 118

The Meaning of this Inside the Event Handler 119

React…Why? Why? 120

Browser Compatibility 120

Improved Performance 120

Conclusion 121

 11 The Component Lifecycle 123

Meet the Lifecycle Methods 123

See the Lifecycle Methods in Action 124

The Initial Rendering Phase 128

Getting the Default Props 128

xiContents

Getting the Default State 129

componentWillMount 129

render 129

componentDidMount 129

The Updating Phase 130

Dealing with State Changes 130

shouldComponentUpdate 131

componentWillUpdate 131

render 131

componentDidUpdate 131

Dealing with Prop Changes 132

The Unmounting Phase 132

Conclusion 133

 12 Accessing DOM Elements in React 135

The Colorizer Example 137

Meet Refs 140

Using Portals 143

Conclusion 148

 13 Setting Up Your React Dev Environment Easily 149

Meet Create React 152

Making Sense of What Happened 154

Creating Our HelloWorld App 158

Creating a Production Build 161

Conclusion 162

 14 Working with External Data in React 163

Web Request 101 166

It’s React Time! 167

Getting Started 168

Getting the IP Address 169

Kicking the Visuals Up a Notch 172

Conclusion 176

 15 Building an Awesome Todo List App in React 177

Getting Started 179

Creating the Initial UI 180

xii Contents

Building the Rest of the App 182

Adding Items 183

Displaying the Items 186

Styling our App 189

Removing Items 191

Animation! Animation! Animation! 194

Conclusion 195

 16 Creating a Sliding Menu in React 197

How the Sliding Menu Works 197

Setting Up the Sliding Menu 201

Getting Started 202

Showing and Hiding the Menu 205

Creating the Button 206

Creating the Menu 207

Conclusion 210

 17 Avoiding Unnecessary Renders in React 211

About the render Method 211

Optimizing render Calls 213

Getting an Example Going 213

Seeing the render Calls 216

Overriding a Component Update 218

Using PureComponent 220

Conclusion 222

 18 Creating a Single-Page App in React Using React Router 223

The Example 224

Getting Started 225

Building Our Single-Page App 227

Displaying the Initial Frame 227

Creating Our Content Pages 228

Using React Router 230

It’s the Little Things 233

Fixing Our Routing 233

Adding Some CSS 233

Highlighting the Active Link 235

Conclusion 236

xiiiContents

 19 Introduction to Redux 237

What Is Redux? 238

Building a Simple App Using Redux 243

It’s Redux Time 243

Lights! Camera! Action! 244

Our Reducer 245

Store Stuff 247

Conclusion 248

 20 Using Redux with React 249

Managing React State with Redux 256

How Redux and React Overlap 257

Getting Started 259

Building the App 260

Conclusion 266

 Index 267

About the Author

Kirupa Chinnathambi has spent most of his life trying to teach others to love web
development as much as he does.

In 1999, before blogging was even a word, he started posting tutorials on kirupa.com. In the
years since then, he has written hundreds of articles, penned a few books (none as good as
this one, of course!), and recorded a bunch of videos you can find on YouTube. When he isn’t
writing or talking about web development, he spends his waking hours helping make the web
more awesome as a Program Manager at Microsoft. In his nonwaking hours, he is probably
sleeping—or writing about himself in the third person.

You can find him on Twitter (twitter.com/kirupa), Facebook (facebook.com/kirupa), or email
(kirupa@kirupa.com). Feel free to contact him anytime.

Acknowledgments

First, none of this would be possible without the support and encouragement of my awesome
wife, Meena. If she hadn’t put her goals on hold to allow me to spend six months designing,
writing, and rewriting everything you see here, writing this book would have been a distant
dream.

Next, I’d like to thank my parents for always encouraging me to aimlessly wander and enjoy
free time doing what I like—such as teaching complete strangers via the Internet in the late
1990s how to do cool things with programming. I wouldn’t be half the rugged indoorsman/
scholar/warrior I am today without them both .

On the publishing side, writing the words you see here is the easy part. Getting the book into
your hands is an amazingly complex process. The more I learn about all the moving pieces
involved, the more impressed I am with all the individuals who work tirelessly behind the
scenes to keep this amazing machinery running. To everyone at Pearson who made this
possible, thank you! There are a few people I’d like to explicitly call out, though. First, I’d like
to thank Mark Taber for continuing to give me opportunities to work together, Chris Zahn
for patiently addressing my numerous questions and concerns, Krista Hansing for turning my
version of English into something humanly understandable, and Loretta Yates for helping
make the connections a long time ago that made all of this happen. The technical content of
this book has been reviewed in great detail by my long-time friends and online collaborators
Kyle Murray (a.k.a. Krilnon) and Trevor McCauley (a.k.a. senocular). I can’t thank them
enough for their thorough (and, frequently, humorous!) feedback.

http://kirupa.com
http://twitter.com/kirupa
http://facebook.com/kirupa
mailto:kirupa@kirupa.com

1
Introducing React

Ignoring for a moment that web apps today both look and feel nicer than they did back in the
day, something even more fundamental has changed. The way we architect and build web apps
is very different now. To highlight this, let’s take a look at the app in Figure 1.1.

Figure 1.1 An app.

This app is a simple catalog browser for something. As with any app of this sort, you have your
usual set of pages revolving around a home page, a search results page, a details page, and so
on. In the following sections, let’s look at the two approaches we have for building this app.
Yes, in some mysterious fashion, this leads to us getting an overview of React as well.

Onward!

2 Chapter 1 Introducing React

Old-School Multipage Design

If you had to build this app a few years ago, you might have taken an approach that involved
multiple, individual pages. The flow would have looked something like Figure 1.2.

Figure 1.2 Multipage design.

3New-School Single-Page Apps

For almost every action that changes what the browser displays, the web app navigates you to
a whole different page. This is a big deal, beyond just the less-than-stellar user experience users
will see as pages get torn down and redrawn. This has a big impact on how you maintain your
app state. Except for storing user data via cookies and some server-side mechanism, you simply
don’t need to care. Life is good.

New-School Single-Page Apps

These days, going with a web app model that requires navigating between individual pages
seems dated—really dated. Check out Figure 1.3.

Figure 1.3 The individual page model is a bit dated, like this steam engine.

Instead, modern apps tend to adhere to what is known as a single-page app (SPA) model. This
model gives you a world in which you never navigate to different pages or ever even reload a
page. In this world, the different views of your app are loaded and unloaded into the same page
itself.

For our app, this looks something like Figure 1.4.

4 Chapter 1 Introducing React

Figure 1.4 Single-page app.

As users interact with our app, we replace the contents of the dotted red region with the data
and HTML that matches what the user is trying to do. The end result is a much more fluid
experience. You can even use a lot of visual techniques to have your new content transition
nicely, just like you might see in cool apps on your mobile device or desktop. This sort of stuff
is simply not possible when navigating to different pages.

All of this might sound a bit crazy if you’ve never heard of single-page apps, but there’s a very
good chance you’ve run into some of them in the wild. If you’ve ever used popular web apps
like Gmail, Facebook, Instagram, or Twitter, you’ve used a single-page app. In all those apps,
the content gets dynamically displayed without requiring you to refresh or navigate to a
different page.

Now, I’m making these single-page apps seem really complicated. That’s not entirely the case.
Thanks to a lot of great improvements in both JavaScript and a variety of third-party frame-
works and libraries, building single-page apps has never been easier. That doesn’t mean there’s
no room for improvement, though.

5New-School Single-Page Apps

When building single-page apps, you’ll encounter three major issues at some point:

1. In a single-page application, you’ll spend the bulk of your time keeping your data in
sync with your UI. For example, if a user loads new content, do you explicitly clear out
the search field? Do you keep the active tab on a navigation element still visible? Which
elements do you keep on the page, and which do you destroy?

These are all problems that are unique to single-page apps. When navigating between
pages in the old model, we assumed everything in our UI would be destroyed and just
built back up again. This was never a problem.

2. Manipulating the DOM is really, really slow. Manually querying elements, adding
children (see Figure 1.5), removing subtrees, and performing other DOM operations is
one of the slowest things you can do in your browser. Unfortunately, in a single-page
app, you’ll be doing a lot of this. Manipulating the DOM is the primary way you are able
to react to user actions and display new content.

Figure 1.5 Adding children.

3. Working with HTML templates can be a pain. Navigation in a single-page app is
nothing more than you dealing with fragments of HTML to represent whatever you want
to display. These fragments of HTML are often known as templates, and using JavaScript
to manipulate them and fill them out with data gets really complicated really quickly.

6 Chapter 1 Introducing React

To make things worse, depending on the framework you’re using, the way your templates
look and interact with data can vary wildly. For example, this is what defining and using a
template in Mustache looks like:

var view = {
 title: "Joe",
 calc: function() {
 return 2 + 4;
 }
};

var output = Mustache.render("{{title}} spends {{calc}}", view);

Sometimes your templates look like clean HTML that you can proudly show off in front of
the class. Other times, your templates might be unintelligible, with a boatload of custom
tags designed to help map your HTML elements to some data.

Despite these shortcomings, single-page apps aren’t going anywhere. They are a part of the
present and will fully form the future of how web apps are built. That doesn’t mean you have
to tolerate these shortcomings, of course. Read on.

Meet React

Facebook (and Instagram) decided that enough is enough. Given their huge experience with
single-page apps, they released a library called React to not only address these shortcomings,
but also change how we think about building single-page apps.

In the following sections, we look at the big things React brings to the table.

7Meet React

Automatic UI State Management

With single-page apps, keeping track of your UI and maintaining state is hard … and also very
time consuming. With React, you need to worry about only one thing: the final state of your
UI. It doesn’t matter what state your UI started out in. It doesn’t matter what series of steps
your users took to change the UI. All that matters is where your UI ended up (see Figure 1.6).

Figure 1.6 The final or end state of your UI is what matters in React.

React takes care of everything else. It figures out what needs to happen to ensure that your UI
is represented properly so that all that state-management stuff is no longer your concern.

Lightning-Fast DOM Manipulation

Because DOM modifications are really slow, you never modify the DOM directly using React.
Instead, you modify an in-memory virtual DOM (resembling what you see in Figure 1.7).

8 Chapter 1 Introducing React

Figure 1.7 Imagine an in-memory virtual DOM that sort of looks like this.

Manipulating this virtual DOM is extremely fast, and React takes care of updating the real DOM
when the time is right. It does so by comparing the changes between your virtual DOM and the
real DOM, figuring out which changes actually matter, and making the fewest number of DOM
changes needed to keep everything up-to-date in a process called reconciliation.

APIs to Create Truly Composable UIs

Instead of treating the visual elements in your app as one monolithic chunk, React encourages
you to break your visual elements into smaller and smaller components (see Figure 1.8).

9Meet React

Figure 1.8 An example of how the visuals of your app can be broken into smaller pieces.

As with everything else in programming, it’s a good idea to make things modular, compact, and
self-contained. React extends that well-worn idea to how we think about user interfaces. Many
of React’s core APIs revolve around making it easier to create smaller visual components that
can later be composed with other visual components to make larger and more complex visual
components—kind of like the Russian matryoshka dolls in Figure 1.9. (see Figure 1.8):

10 Chapter 1 Introducing React

Figure 1.9 Russian matryoshka dolls.

This is one of the major ways React simplifies (and changes) how we think about building the
visuals for our web apps.

Visuals Defined Entirely in JavaScript

While this sounds ridiculously crazy and outrageous, hear me out. Besides having a really
weird syntax, HTML templates have traditionally suffered from another major problem:
You are limited in the variety of things you can do inside them, which goes beyond simply
displaying data. If you want to choose a piece of UI to display based on a particular condition,
for example, you have to write JavaScript somewhere else in your app or use some weird
framework-specific templating command to make it work.

For example, here’s what a conditional statement inside an EmberJS template looks like:

{{#if person}}
 Welcome back, {{person.firstName}} {{person.lastName}}!
{{else}}
 Please log in.
{{/if}}

11Meet React

React does something pretty neat. By having your UI defined entirely in JavaScript, you get
to use all the rich functionality JavaScript provides for doing all sorts of things inside your
templates. You are limited only by what JavaScript supports, not limitations imposed by
your templating framework.

Now, when you think of visuals defined entirely in JavaScript, you’re probably thinking
something horrible that involves quotation marks, escape characters, and a whole lot of
createElement calls. Don’t worry. React allows you to (optionally) specify your visuals
using an HTML-like syntax known as JSX that lives fully alongside your JavaScript. Instead
of writing code to define your UI, you are basically specifying markup:

ReactDOM.render(
 <div>
 <h1>Batman</h1>
 <h1>Iron Man</h1>
 <h1>Nicolas Cage</h1>
 <h1>Mega Man</h1>
 </div>,
 destination
);

This same code defined in JavaScript would look like this:

ReactDOM.render(React.createElement(
 "div",
 null,
 React.createElement(
 "h1",
 null,
 "Batman"
),
 React.createElement(
 "h1",
 null,
 "Iron Man"
),
 React.createElement(
 "h1",
 null,
 "Nicolas Cage"
),
 React.createElement(
 "h1",
 null,
 "Mega Man"
)
), destination);

12 Chapter 1 Introducing React

Yikes! Using JSX, you are able to easily define your visuals using a very familiar syntax, while
still getting all the power and flexibility that JavaScript provides.

Best of all, in React, your visuals and JavaScript often live in the same location. You no longer
have to jump among multiple files to define the look and behavior of one visual component.
This is templating done right.

Just the V in an MVC Architecture

We’re almost done here! React is not a full-fledged framework that has an opinion on how
everything in your app should behave. Instead, React works primarily in the View layer, where
all of its worries and concerns revolve around keeping your visual elements up-to-date. This
means you’re free to use whatever you want for the M and C parts of your MVC (a.k.a. Model-
View-Controller) architecture. This flexibility allows you to pick and choose technologies you
are familiar with, and it makes React useful not only for new web apps you create, but also for
existing apps you’d like to enhance without removing and refactoring a whole bunch of code.

Conclusion

As new web frameworks and libraries go, React is a runaway success. It not only deals with the
most common problems developers face when building single-page apps, but it also throws in a
few additional tricks that make building the visuals for your single-page apps much easier. Since
it came out in 2013, React has also steadily found its way into popular web sites and apps that
you probably use. Besides Facebook and Instagram, some notable ones include the BBC, Khan
Academy, PayPal, Reddit, The New York Times, and Yahoo!, among many others.

This article was an introduction to what React does and why it does it. In subsequent chapters,
we’ll dive deeper into everything you’ve seen here and cover the technical details that will help
you successfully use React in your own projects. Stick around.

2
Building Your

First React App

Thanks to the previous chapter, you probably now know all about the backstory of React and how
it helps even your most complex user interfaces sing. For all the awesomeness that React brings to
the table, getting started with it (kind of like this sentence) is not the most straightforward. It has
a steep learning curve filled with many small and big hurdles, as in Figure 2.1.

Figure 2.1 Hurdles come in a variety of sizes. Some are big. Some are small.

In this chapter, we start at the very beginning and get our hands dirty by building a simple
React app. You’ll encounter some of these hurdles head-on, and some of these hurdles you’ll
skip over—for now. By the end of this chapter, not only will you have built something you can
proudly show off to your friends and family, but you’ll have set yourself up nicely for diving
deeper into all that React offers in future chapters.

14 Chapter 2 Building Your First React App

Dealing with JSX

Before we start building our app, there’s an important point to cover first. React isn’t like many
JavaScript libraries you might have used. It doesn’t get too happy when you simply refer to
code you’ve written for it using a script tag. React is annoyingly special that way, and it has to
do with how React apps are built.

As you know, your web apps (and everything else your browser displays) are made up of HTML,
CSS, and JavaScript (see Figure 2.2).

Figure 2.2 Web apps are built in HTML, CSS, and JavaScript.

It doesn’t matter whether your web app was written using React or some other library, such as
Angular, Knockout, or jQuery. The end result has to be some combination of HTML, CSS, and
JavaScript; otherwise, your browser really won’t know what to do.

Now, here’s where the special nature of React comes in. Besides normal HTML, CSS, and
JavaScript, the bulk of your React code will be written in JSX. As I mentioned in Chapter 1,
“Introducing React,” JSX is a language that allows you to easily mix JavaScript and HTML-like
tags to define user interface (UI) elements and their functionality. That sounds cool and all
(and you’ll see JSX in action in just a few moments), but there’s a slight problem. Your browser
has no idea what to do with JSX.

To build a web app using React, we need a way to convert our JSX into plain old JavaScript that
your browser can understand (see Figure 2.3).

15Dealing with JSX

Figure 2.3 JSX needs to turn into something our browser understands.

If we don’t do this, our React app simply won’t work. That’s not cool. Fortunately, we have two
solutions to this:

1. Set up a development environment around Node and a handful of build-tools.
In this environment, every time you perform a build, all of your JSX is automatically
converted into JS and placed on disk for you to reference like any plain JavaScript file.

2. Let your browser automatically convert JSX to JavaScript at runtime. You specify
your JSX directly, just as you would any old piece of JavaScript, and your browser takes
care of the rest.

Both of these solutions have a place in our world, but let’s talk about the impact of each.

The first solution, while a bit complicated and time-consuming at first, is the way modern
web development is done these days. Besides compiling (transpiling, to be more accurate) your
JSX to JS, this approach enables you to take advantage of modules, better build tools, and a
bunch of other features that make building complex web apps somewhat manageable.

The second solution provides a quick and direct path in which you initially spend more time
writing code and less time fiddling with your development environment. To use this solution,
all you do is reference a script file. This script file takes care of turning the JSX into JS on page
load, and your React app comes to life without you having to do anything special to your
development environment.

For our introductory look at React, we are going to use the second solution. You might be wondering
why we don’t always use the second solution. The reason is that your browser takes a perfor-
mance hit each time it translates JSX into JS. That is totally acceptable when learning how to
use React, but it is totally not acceptable when deploying your app for real-life use. Because of
that lack of acceptability, we will revisit all of this later, to look at the first solution and how to
set up your development environment after you’ve gotten your feet comfortably wet in React.

16 Chapter 2 Building Your First React App

Getting Your React On

In the previous section, we looked at the two ways you have for ensuring that your React app
ends up as something your browser understands. In this section, we put all those words into
practice. First, you need a blank HTML page as your starting point.

Create a new HTML document with the following contents:

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8">
 <title>React! React! React!</title>
</head>

<body>
 <script>

 </script>
</body>

</html>

This page has nothing interesting or exciting going for it, but let’s fix that by adding a
reference to the React library. Just below the title, add these two lines:

<script src="https://unpkg.com/react@16/umd/react.development.js"></script>
<script src="https://unpkg.com/react-dom@16/umd/react-dom.development.js"></script>

These two lines bring in both the core React library and the various things React needs to work
with the DOM. Without them, you aren’t building a React app at all.

Now, you aren’t done yet. You need to reference one more library. Just below these two script
tags, add the following line:

<script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>

Here you’re adding a reference to the Babel JavaScript compiler (http://babeljs.io/). Babel does
many cool things, but the one we care about is its capability to turn JSX into JavaScript.

http://babeljs.io/

17Displaying Your Name

At this point, your HTML page should look as follows:

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8">
 <title>React! React! React!</title>
 <script src="https://unpkg.com/react@16/umd/react.development.js"></script>
 <script src="https://unpkg.com/react-dom@16/umd/react-dom.development.js"></script>
 <script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>
</head>

<body>
 <script>

 </script>
</body>

</html>

If you preview your page right now, you’ll notice that this page is still blank, with nothing
visible going on. That’s okay. We’re going to fix that next.

Displaying Your Name

Now you’re going to use React to display your name onscreen. You do that by using a method
called render. Inside your empty script tag in the body, add the following:

ReactDOM.render(
 <h1>Sherlock Holmes</h1>,
 document.body
);

Don’t worry if none of this makes sense at this point. Our goal is to get something to display
onscreen first, and we’ll make sense of what we did afterward. Now, before previewing this in
the page to see what happens, you need to designate this script block as something that Babel
can work its magic on. You do that is by setting the type attribute on the script tag to a value
of text/babel:

<script type="text/babel">
 ReactDOM.render(
 <h1>Sherlock Holmes</h1>,
 document.body
);
</script>

18 Chapter 2 Building Your First React App

After you’ve made that change, preview what you have in your browser. You’ll see the words
Sherlock Holmes printed in giant letters, as in Figure 2.4.

Figure 2.4 Your browser should display Sherlock Holmes.

Congratulations! You’ve just built an app using React.

As apps go, this isn’t all that exciting. Chances are, your name isn’t even Sherlock Holmes. This
app doesn’t have much going for it, but it does introduce you to one of the most frequently
used methods you’ll use in the React universe: the ReactDOM.render method.

The render method takes two arguments:

1. The HTML-like elements (a.k.a. JSX) you want to output

2. The location in the DOM where React will render the JSX into

Here’s what our render method looks like:

ReactDOM.render(
 <h1>Sherlock Holmes</h1>,
 document.body
);

Our first argument is the text Sherlock Holmes wrapped inside some h1 tags. This HTML-like
syntax inside your JavaScript is what JSX is all about. We’ll spend a lot more time drilling into
JSX a bit later, but I should mention this up front: It is every bit as crazy as it looks. Whenever
I see brackets and slashes in JavaScript, a part of me dies on the inside because of all the string

19It’s All Still Familiar

escaping and quotation mark gibberish I will need to do. With JSX, you do none of that. You
just place your HTML-like content as is, just like you’ve done here. Magically (like the super-
awesome kind involving dragons and laser beams), it all works.

The second argument is document.body. There’s nothing crazy or bizarre about this argument.
It simply specifies where the converted markup from the JSX will end up living in our DOM. In
our example, when the render method runs, the h1 tag (and everything inside it) is placed in
our document’s body element.

Now, the goal of this exercise wasn’t to display a name on the screen. It was to display your
name. Go ahead and modify your code to do that. In my case, the render method will look as
follows:

ReactDOM.render(
 <h1>Batman</h1>,
 document.body
);

Well, it would look like that if my name were Batman! Anyway, if you preview your page now,
you’ll see your name displayed instead of Sherlock Holmes.

It’s All Still Familiar

The JavaScript looks new and shiny thanks to JSX, but the end result your browser sees is nice
and clean HTML, CSS, and JavaScript. To see this for yourself, let’s make a few alterations to
how our app behaves and looks.

Changing the Destination

First we’ll change where the JSX gets output. Using JavaScript to place things directly in your
body element is never a good idea. A lot can go wrong, especially if you’re going to be mixing
React with other JS libraries and frameworks. The recommended path is to create a separate
element that you will treat as a new root element. This element will serve as the destination
your render method will use. To make this happen, go back to the HTML and add a div
element with an id value of container:

<body>
 <div id="container"></div>
 <script type="text/babel">
 ReactDOM.render(
 <h1>Batman</h1>,
 document.body
);
 </script>
</body>

20 Chapter 2 Building Your First React App

With the container div element safely defined, let’s modify the render method to use it
instead of document.body. Here’s one way of doing this:

ReactDOM.render(
 <h1>Batman</h1>,
 document.querySelector("#container")
);

Another option is to do some things outside the render method itself:

var destination = document.querySelector("#container");

ReactDOM.render(
 <h1>Batman</h1>,
 destination
);

Notice that the destination variable stores the reference to your container DOM element.
Inside the render method, you simply reference the same destination variable instead of
writing the full element-finding syntax as part of the argument itself. The reason for this is
simple: I want to show you that you’re still writing JavaScript and that render is just another
boring old method that happens to take two arguments.

Styling It Up!

Time for the last change before we call it a day. Right now, our names show up in whatever
default h1 styling the browser provides. That’s just terrible, so let’s fix that by adding some CSS.
Inside your head tag, let’s add a style block with the following CSS:

<style>
 #container {
 padding: 50px;
 background-color: #EEE;
 }
 #container h1 {
 font-size: 144px;
 font-family: sans-serif;
 color: #0080A8;
 }
</style>

After you’ve added everything, preview your page. Notice that the text appears to have a
little more purpose than it did earlier, when it relied entirely on the browser’s default styling
(see Figure 2.5).

21It’s All Still Familiar

Figure 2.5 The result of adding the CSS.

This works because, after running all the React code, the DOM’s body contains our container
element with an h1 tag inside it. It doesn’t matter that the h1 tag was defined entirely inside
JavaScript in this JSX syntax or that your CSS was defined well outside the render method. The
end result of your React app is still going to be made up of some 100% organic (and cage-free!)
HTML, CSS, and JavaScript. If we had to see what this transpiled JavaScript looks like, it would
look a bit like the following:

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8">
 <title>React! React! React!</title>
 <script src="https://unpkg.com/react@16/umd/react.development.js">
</script>
 <script src="https://unpkg.com/react-dom@16/umd/react-dom.development.js">
</script>
 <script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>

 <style>
 #container {
 padding: 50px;
 background-color: #EEE;
 }
 #container h1 {
 font-size: 144px;
 font-family: sans-serif;
 color: #0080A8;
 }

22 Chapter 2 Building Your First React App

 </style>
</head>

<body>
 <div id="container"></div>
 <script type="text/babel">
 var destination = document.querySelector("#container");

 ReactDOM.render(React.createElement(
 "h1",
 null,
 "Batman"
), destination);
 </script>
</body>

</html>

Notice that there’s nary a trace of React-like code in sight. (Also, we should use the word nary
more often in everyday conversation!)

Conclusion

If this is your first time building a React app, we covered a lot of ground here. One of the
biggest takeaways is that React is different than other libraries because it uses a whole new
language called JSX to define what the visuals will look like. You got a very small glimpse of
that here when we defined the h1 tag inside the render method.

JSX’s impact goes beyond how you define your UI elements. It also alters how you build
your app as a whole. Because your browser can’t understand JSX in its native representation,
you need to use an intermediate step to convert that JSX into JavaScript. One approach is to
build your app to generate the transpiled JavaScript output to correspond to the JSX source.
Another approach (the one we used here) is to use the Babel library to translate the JSX into
JavaScript on the browser itself. While the performance hit of doing this is not recommended
for live/production apps, when you’re familiarizing yourself with React, you can’t beat the
convenience.

In future chapters, we spend some time diving deeper into JSX and going beyond the render
method as we look at all the important things that make React tick.

Note: If you run into any issues, ask!

If you have any questions or your code isn’t running like you expect, don’t hesitate to ask!
Post on the forums at https://forum.kirupa.com and get help from some of the friendliest and
most knowledgeable people the Internet has ever brought together!

https://forum.kirupa.com

3
Components in React

Components are one of the pieces that make React, well, React! They’re one of the primary
ways you have for defining the visuals and interactions that make up what people see when
they use your app. Let’s say Figure 3.1 shows what your finished app looks like.

Figure 3.1 Your hypothetical finished app.

This is the finished sausage. During development, viewed through the lens of a React project,
things might look a little less appealing. Almost every part of this app’s visuals would be
wrapped inside a self-contained module known as a component. To highlight what “almost
every” means here, take a look at the diagram in Figure 3.2.

24 Chapter 3 Components in React

Figure 3.2 Diagrammatic representation of the app components.

Each dotted line represents an individual component that is responsible for both what you see
and any interactions that it is responsible for. Don’t let this scare you. While this looks really
complicated, you will soon see that it will start to make a whole lot of sense once you’ve had
a chance to play with components and some of the awesome things they do—or, at least, try
really hard to do.

Quick Review of Functions

In JavaScript, you have functions that enable you to make your code a bit cleaner and more
reusable. Now, there’s reason we’re taking some time to look at functions, and it isn’t to annoy
you! Conceptually, functions share a lot of surface area with React components, and the easiest
way to understand what components do is to take a quick look at functions first.

In a terrible world where functions don’t exist, you might have some code that looks as follows:

var speed = 10;
var time = 5;
alert(speed * time);

25Quick Review of Functions

var speed1 = 85;
var time1 = 1.5;
alert(speed1 * time1);

var speed2 = 12;
var time2 = 9;
alert(speed2 * time2);

var speed3 = 42;
var time3 = 21;
alert(speed3 * time3);

In a really chill world that involves functions, you can condense all that duplicated text into
something simple, like the following:

function getDistance(speed, time) {
 var result = speed * time;
 alert(result);
}

Our getDistance function removes all the duplicated code you saw earlier, and it takes speed
and time as arguments to allow you to customize the calculation that gets returned.

To call this function, all you have to do is this:

getDistance(10, 5);
getDistance(85, 1.5);
getDistance(12, 9);
getDistance(42, 21);

Doesn’t this look nicer? Functions provide another great value, too. Your functions (such as
the alert inside getDistance) can call other functions as part of their running. Take a look
at using a formatDistance function to change what getDistance returns:

function formatDistance(distance) {
 return distance + " km";
}

function getDistance(speed, time) {
 var result = speed * time;
 alert(formatDistance(result));
}

This capability to have functions call other functions enables us to cleanly separate what
 functions do. You don’t need to have one monolithic function that does everything under
the sun; you can distribute functionality across many functions that are specialized for
a particular type of task.

Best of all, after you make changes to how your functions work, you don’t have to do anything
extra to see the results of those changes. If the function signature didn’t change, any existing
calls to that function will just magically work and automatically pick up any new changes you
made to the function itself.

26 Chapter 3 Components in React

In a nutshell, functions are awesome. I know that. You know that. That’s why all of the code
we write has them all over the place.

Changing How We Deal with UI

I don’t think anybody will disagree with the good functions bring to the table. They really
make it possible to structure the code for your apps in a sane way. That same level of care we
use in writing our code isn’t always possible when it comes to writing our UIs. For various
 technical and nontechnical reasons, we’ve always tolerated a certain level of sloppiness with
how we typically work with our UI elements.

That’s a pretty controversial statement, so let me highlight what I mean by looking at some
examples. Let’s go back and look at the render method we used in the previous chapter:

var destination = document.querySelector("#container");

ReactDOM.render(
 <h1>Batman</h1>,
 destination
);

Onscreen, you see the word Batman printed in giant letters, thanks to the h1 element. Let’s
change things up a bit. Say that we want to print the names of several other superheroes. To do
this, we modify our render method to look as follows:

var destination = document.querySelector("#container");

ReactDOM.render(
 <div>
 <h1>Batman</h1>
 <h1>Iron Man</h1>
 <h1>Nicolas Cage</h1>
 <h1>Mega Man</h1>
 </div>,
 destination
);

Notice what you see here. We emit a div that contains the four h1 elements with our superhero
names.

Okay, so now we have four h1 elements that each contains the name of a superhero. What if
we want to change our h1 element to something like an h3 instead? We can manually update
all of these elements as follows:

var destination = document.querySelector("#container");

ReactDOM.render(
 <div>
 <h3>Batman</h3>
 <h3>Iron Man</h3>

27Changing How We Deal with UI

 <h3>Nicolas Cage</h3>
 <h3>Mega Man</h3>
 </div>,
 destination
);

If you preview what we have, you’ll see something that looks a bit unstyled and plain
(see Figure 3.3).

Figure 3.3 Plain vanilla superhero names.

We don’t want to go crazy with the styling here. All we want to do is italicize all these names
by using the i tag, so let’s manually update what we render by making this change:

var destination = document.querySelector("#container");

ReactDOM.render(
 <div>
 <h3><i>Batman</i></h3>
 <h3><i>Iron Man</i></h3>
 <h3><i>Nicolas Cage</i></h3>
 <h3><i>Mega Man</i></h3>
 </div>,
 destination
);

28 Chapter 3 Components in React

We went through each h3 element and wrapped the content inside some i tags. Can you start
to see the problem here? What we are doing with our UI is no different than having code
that looks as follows:

var speed = 10;
var time = 5;
alert(speed * time);

var speed1 = 85;
var time1 = 1.5;
alert(speed1 * time1);

var speed2 = 12;
var time2 = 9;
alert(speed2 * time2);

var speed3 = 42;
var time3 = 21;
alert(speed3 * time3);

Every change we want to make to our h1 or h3 elements needs to be duplicated for every
instance of them. What if we want to do something even more complex than just modifying
the appearance of our elements? What if we want to represent something more complex than
the simple examples we’re using so far? What we’re doing right now won’t scale; manually
updating every copy of what we want to modify is time-consuming. It is also boring.

Now, here’s a crazy thought: What if everything awesome that we looked at about functions could
somehow be applied to how we define our app’s visuals? Wouldn’t that solve all the inefficiencies
we’ve highlighted in this section? As it turns out, the answer to that “what if” forms the core of
what React is all about. It’s time for you to say hello to the component.

Meet the React Component

The solution to all of our problems (even the existential ones we grapple with) can be found in
React components. React components are reusable chunks of JavaScript that output (via JSX) HTML
elements. That sounds really pedestrian for something capable of solving great things, but as
you start to build components and gradually turn up the complexity, you’ll see that compo-
nents are really powerful and every bit as awesome as I’ve portrayed them.

Let’s start by building a couple of components together. To follow along, start with a blank
React document:

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8">
 <title>React Components</title>

29Meet the React Component

 <script src="https://unpkg.com/react@16/umd/react.development.js"></script>
 <script src="https://unpkg.com/react-dom@16/umd/react-dom.development.js"></script>
 <script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>
</head>

<body>
 <div id="container"></div>
 <script type="text/babel">

 </script>
</body>

</html>

Nothing exciting is going on in this page. As in the last chapter, this page is pretty barebones,
with just a reference to the React and Babel libraries and a div element that proudly sports
an id value of container.

Creating a Hello, World! Component

Let’s start really simple. We want to use a component to help us print the famous “Hello,
world!” text to the screen. As we already know, using just the render method of ReactDOM
would give us code that looks as follows:

ReactDOM.render(
 <div>
 <p>Hello, world!</p>
 </div>,
 document.querySelector("#container")
);

Let’s re-create all of this by using a component. React gives us several ways of creating
 components, but we are going to create them by using the class syntax. Go ahead and add
the following highlighted code just above the existing render method:

class HelloWorld extends React.Component {

}

ReactDOM.render(
 <div>
 <p>Hello, world!</p>
 </div>,
 document.querySelector("#container")
);

If the class syntax is foreign to you, first check out my online tutorial Using Classes in
JavaScript (https://www.kirupa.com/javascript/classy_way_to_create_objects.htm).

https://www.kirupa.com/javascript/classy_way_to_create_objects.htm

30 Chapter 3 Components in React

Getting back to our code, we have created a new component called HelloWorld. This is a
component because it extends React.Component. If it didn’t do that, it would just be an empty
class that doesn’t do much. Inside our class, you can put all sorts of methods to further define
what HelloWorld does. Some methods that you define are special, and React uses them to help
your components work their magic. One such mandatory property is render.

Go ahead and modify our HelloWorld component by adding the render method, as shown:

class HelloWorld extends React.Component {
 render() {

 }
}

Just like the render method you saw a few moments earlier as part of ReactDOM.render, the
render function inside a component is also responsible for dealing with JSX. Let’s modify our
render function to return Hello, componentized world!. Add the following highlighted line:

class HelloWorld extends React.Component {
 render() {
 return <p>Hello, componentized world!</p>
 }
}

You’ve told the render function to return the JSX that represents the Hello, componentized
world! text. All that remains is to actually use this component. You use a component after
you’ve defined it by calling it. Here we call it from our old friend, the ReactDOM.render
method.

The way you call a component from it is a bit unique. Go ahead and replace the first argument
to ReactDOM.render with the following:

ReactDOM.render(
 <HelloWorld/>,
 document.querySelector("#container")
);

That isn’t a typo! The JSX we use for calling our HelloWorld component is the very HTML-like
<HelloWorld/>. If you preview your page in your browser, you’ll see the text Hello, compo-
nentized world! showing up on your screen. If you were holding your breath in suspense, you
can relax.

If you have difficulty relaxing after seeing the syntax we used for calling HelloWorld, stare at
the circle in Figure 3.4 a few moments.

31Meet the React Component

Figure 3.4 Just some lighthearted distraction!

Okay, back to reality. What we’ve done so far might seem crazy, but simply think of your
<HelloWorld/> component as a cool and new HTML tag whose functionality you fully have
control over. This means you can do all sorts of HTML-y things to it.

For example, go ahead and modify our ReactDOM.render method to look as follows:

ReactDOM.render(
 <div>
 <HelloWorld/>
 </div>,
 document.querySelector("#container")
);

We wrapped our call to the HelloWorld component inside a div element, and if you preview
this in your browser, everything still works. Let’s go one step further! Instead of having just

32 Chapter 3 Components in React

a single call to HelloWorld, let’s make a bunch of calls. Modify our ReactDOM.render method
to now look as follows:

ReactDOM.render(
 <div>
 <HelloWorld/>
 <HelloWorld/>
 <HelloWorld/>
 <HelloWorld/>
 <HelloWorld/>
 <HelloWorld/>
 </div>,
 document.querySelector("#container")
);

Now you’ll see is a bunch of Hello, componentized world! text instances appear. Let’s do one
more thing before we move on to something shinier. Go back to our HelloWorld component
declaration and change the text you return to the more traditional Hello, world! value:

class HelloWorld extends React.Component {
 render() {
 return <p>Hello, world!</p>
 }
}

Make this one change and then preview your example. This time around, all the various
HelloWorld calls we specified earlier return Hello, world! to the screen. No need to manually
modify every HelloWorld call—that’s a good thing!

Specifying Properties

Right now, our component does just one thing. It prints Hello, world! to the screen—and only
that! That’s the equivalent of having a JavaScript function that looks like this:

function getDistance() {
 alert("42km");
}

Except for one very specific case, that JavaScript function doesn’t seem very useful, does it? To
increase the usefulness of this function, we need to modify it to take arguments:

function getDistance(speed, time) {
 var result = speed * time;
 alert(result);
}

Now this function can be used more generally for a variety of situations, not just one whose
output will be 42km.

Something similar applies to your components as well. Just as with functions, you can pass in
arguments that alter what your component does. There’s a slight terminology update you need

33Meet the React Component

to be on top of. What we call arguments in the function world are known as properties in the
component world. Let’s see these properties in action!

You’re now going to modify the HelloWorld component to allow you to specify who or what
you greet besides the generic World. For example, imagine being able to specify Bono as part of
the HelloWorld call and seeing Hello, Bono! appear onscreen.

To add properties to a component, you need to follow two parts of instructions.

First Part: Updating the Component Definition

Right now, our HelloWorld component is hard-coded to always send out Hello, world! as part
of its return value. We first need to change that behavior by having the return statement print
out the value passed in by a property. We need a name to give our property; for this example,
we call our property greetTarget.

To specify the value of greetTarget as part of our component, we need to make this
modification:

class HelloWorld extends React.Component {
 render() {
 return <p>Hello, {this.props.greetTarget}!</p>
 }
}

You access a property by referencing it via the this.props property that every component has
access to. Notice how you specify this property: You place it inside curly brackets, { and }. In JSX,
if you want something to get evaluated as an expression, you need to wrap that something inside curly
brackets. If you don’t do that, you’ll see the raw text this.props.greetTarget printed out.

Second Part: Modifying the Component Call

After you’ve updated the component definition, all that remains is to pass in the property value
as part of the component call. This is done by adding an attribute with the same name as the
property, followed by the value you want to pass in. In our example, that involves modifying
the HelloWorld call with the greetTarget attribute and the value you want to give it.

Go ahead and modify the HelloWorld calls as follows:

ReactDOM.render(
 <div>
 <HelloWorld greetTarget="Batman"/>
 <HelloWorld greetTarget="Iron Man"/>
 <HelloWorld greetTarget="Nicolas Cage"/>
 <HelloWorld greetTarget="Mega Man"/>
 <HelloWorld greetTarget="Bono"/>
 <HelloWorld greetTarget="Catwoman"/>
 </div>,
 document.querySelector("#container")
);

34 Chapter 3 Components in React

Each HelloWorld call now has the greetTarget attribute, along with the name of a super-
hero (or equivalent mythical being) that we want to greet. If you preview this example in the
browser, you’ll see the greetings happily printed out onscreen.

One last point is important to call out before we move on. You are not limited to having just a
single property on a component. You can have as many properties as you want, and your props
property will easily accommodate any property requests you have without making any fuss.

Dealing with Children

A few sections ago, I mentioned that components (in JSX) are very similar to regular HTML
elements. You saw that when you wrapped a component inside a div element or specified an
attribute and value as part of specifying properties. Just as you can have many HTML elements,
your components can have children.

This means you can do something like this:

<CleverComponent foo="bar">
 <p>Something!</p>
</CleverComponent>

Here you have a component very cleverly called CleverComponent, and it has a p element as
a child. From within CleverComponent, you have the capability to access the p child element
(and any children it has) via the children property accessed by this.props.children.

To make sense of all this, let’s look at another really simple example. This time around, we have
a component called Buttonify that wraps its children inside a button. The component looks
like this:

class Buttonify extends React.Component {
 render() {
 return(
 <div>
 <button type={this.props.behavior}>{this.props.children}</button>
 </div>
);
 }
}

You can use this component by calling it via the ReactDOM.render method, as shown here:

ReactDOM.render(
 <div>
 <Buttonify behavior="submit">SEND DATA</Buttonify>
 </div>,
 document.querySelector("#container")
);

When this code runs, given what the JSX in the Buttonify component’s render method
looked like, you see the words SEND DATA wrapped inside a button element. With the
 appropriate styling, the result could look comically large, as in Figure 3.5.

35Conclusion

Figure 3.5 A large Send Data button.

Getting back to the JSX, notice that we specify a custom property called behavior. This property
allows us to specify the button element’s type attribute, and you can see us accessing it via
this.props.behavior in the component definition’s render method.

There’s more to accessing a component’s children than what you’ve seen here. For example,
if your child element is just some text, the this.props.children property returns a string.
If your child element is just a single element (as in our example), the this.props.children
property returns a single component that is not wrapped inside an array. We still need to call
out a few more things, but instead of enumerating all the cases and boring you, we’ll bring up
those points later as we look at more elaborate examples.

Conclusion

If you want to build an app using React, you can’t wander too far without having to use a
component. Trying to build a React app without using a component is kind of like building a
JavaScript-based app without using functions. I’m not saying that it can’t be done; it’s just one
of those things you don’t do—kind of like the Bad Idea part of the popular Animaniacs Good
Idea/Bad Idea sketches (https://www.youtube.com/watch?v=2dJOIf4mdus).

If this witty video doesn’t convince you that you should learn to embrace components, I don’t
know what will—except for maybe a future chapter on creating complex components!

Note: If you run into any issues, ask!

If you have any questions or your code isn’t running like you expect, don’t hesitate to ask!
Post on the forums at https://forum.kirupa.com and get help from some of the friendliest and
most knowledgeable people the Internet has ever brought together!

https://www.youtube.com/watch?v=2dJOIf4mdus
https://forum.kirupa.com

This page intentionally left blank

4
Styling in React

For generations, mankind (and probably really smart dolphins) has styled HTML content using
CSS. Things were good. CSS had good separation between content and presentation. The selec-
tor syntax offered a lot of flexibility in choosing which elements to style and which ones to
skip. We couldn’t even find many reasons to hate the whole cascading thing CSS is all about.

Well, don’t tell React that. React doesn’t actively hate CSS, but it has a different view when it
comes to styling content. As you’ve seen, one of React’s core ideas is to make an app’s visual
pieces self-contained and reusable. That’s why the HTML elements and the JavaScript that
impacts them are in the same bucket, called a component. You got a taste of that in the
 previous chapter.

What about how the HTML elements look (a.k.a. their styling)? Where should they go? You can
probably guess where we’re going with this. You can’t have a self-contained piece of UI when
the styling for it is defined somewhere else. That’s why React encourages you to specify how
your elements look right alongside the HTML and the JavaScript. In this tutorial, you’ll learn all
about this mysterious (and possibly scandalous) approach for styling your content. Of course,
we also look at how to use CSS. There’s room for both approaches, even if React might sort of,
kind of not think so.

Displaying Some Vowels

To learn how to style React content, let’s work together on a (totally sweet and exciting)
example that simply displays vowels on a page. First, you’ll need a blank HTML page that will
host your React content. Create a new HTML document and add the following content into it:

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8">
 <title>Styling in React</title>
 <script src="https://unpkg.com/react@16/umd/react.development.js"></script>

38 Chapter 4 Styling in React

 <script src="https://unpkg.com/react-dom@16/umd/react-dom.development.js"></script>
 <script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>

 <style>
 #container {
 padding: 50px;
 background-color: #FFF;
 }
 </style>
</head>

<body>
 <div id="container"></div>

</body>

</html>

To display the vowels, you need to add some React-specific code. Just below the container
div element, add the following:

<script type="text/babel">
 var destination = document.querySelector("#container");

 class Letter extends React.Component {
 render() {
 return(
 <div>
 {this.props.children}
 </div>
);
 }
 }

 ReactDOM.render(
 <div>
 <Letter>A</Letter>
 <Letter>E</Letter>
 <Letter>I</Letter>
 <Letter>O</Letter>
 <Letter>U</Letter>
 </div>,
 destination
);
</script>

39Displaying Some Vowels

From what you learned about components earlier, nothing here should be a mystery. You’re
creating a component called Letter that is responsible for wrapping your vowels inside
a div element.

If you preview your page, you’ll see something boring that looks like Figure 4.1.

Figure 4.1 A boring output of what you see.

Don’t worry, you’ll make it look a little less boring in a few moments. After you’ve had a run at
these letters, you’ll see something that looks more like Figure 4.2.

Figure 4.2 What our result looks like with some styling applied!

The vowels will be wrapped in a yellow background, aligned horizontally, with a fancy
monospace font. Let’s look at how to do all of this both in CSS and using React’s newfangled
approach.

40 Chapter 4 Styling in React

Styling React Content Using CSS

Using CSS to style React content is actually as straightforward as you can imagine it to be.
Because React ends up spitting out regular HTML tags, all of the various CSS tricks you’ve
learned over the years for styling HTML still apply. You just need to keep a few minor points
in mind.

Understand the Generated HTML

Before you can use CSS, you need to get a feel for how the HTML that React spits out is
going to look. You can easily figure that out by looking at the JSX defined inside the render
methods. The parent render method is our ReactDOM-based one, and it looks as follows:

<div>
 <Letter>A</Letter>
 <Letter>E</Letter>
 <Letter>I</Letter>
 <Letter>O</Letter>
 <Letter>U</Letter>
</div>

We have our various Letter components wrapped inside a div. Nothing too exciting here. The
render method inside our Letter component isn’t that much different, either:

<div>
 {this.props.children}
</div>

As you can see, each individual vowel is wrapped inside its own set of div tags. If you play this
all out (such as previewing our example in a browser), the final DOM structure for our vowels
would look like Figure 4.3.

Figure 4.3 The preview from inside the browser.

41Styling React Content Using CSS

We have simply an HTML-ized expansion of the various JSX fragments you saw in the render
method a few moments ago, with our vowels nested inside a bunch of div elements.

Just Style It Already!

When you understand the HTML arrangement of the things you want to style, the hard part is
done. Now comes the fun and familiar part of defining style selectors and specifying the prop-
erties you want to set. To affect the inner div elements, add the following inside the style tag:

div div div {
 padding: 10px;
 margin: 10px;
 background-color: #FFDE00;
 color: #333;
 display: inline-block;
 font-family: monospace;
 font-size: 32px;
 text-align: center;
}

The div div div selector ensures that we style the right things. The end result will be our
vowels styled to look exactly like we set out to. With that said, a style selector of div div div
looks a bit odd, doesn’t it? It’s too generic. In apps with more than three div elements (which
is common), you can end up styling the wrong things. At times like these, you will want to
change the HTML that React generates to make the content more easily styleable.

We address this by giving our inner div elements a class value of letter. Here is where JSX
differs from HTML. Make the following highlighted change:

class Letter extends React.Component {
 render() {
 return (
 <div className="letter">
 {this.props.children}
 </div>
);
 }
}

Notice that we designate the class value by using the className attribute instead of the class
attribute. This is because the word class is a special keyword in JavaScript. If that doesn’t make
any sense, don’t worry about it for now; we’ll cover it later.

After you’ve given your div a className attribute value of letter, there’s just one more thing
to do. Modify the CSS selector to target the div elements more cleanly:

.letter {
 padding: 10px;
 margin: 10px;

42 Chapter 4 Styling in React

 background-color: #FFDE00;
 color: #333;
 display: inline-block;
 font-family: monospace;
 font-size: 32px;
 text-align: center;
}

As you can see, using CSS is a perfectly viable way to style the content in your React-based
apps. In the next section, we look at how to style content using the approach React prefers.

Styling Content the React Way

React favors an inline approach for styling content that doesn’t use CSS. That might seem a bit
strange at first, but it’s designed to make your visuals more reusable. The goal is to make your
components little black boxes where everything related to how your UI looks and works is
stashed. Let’s see this in action.

Continuing our example from earlier, remove the .letter style rule. Your vowels will return
to their unstyled state when you preview your app in the browser. For completeness, you
should also remove the className declaration from the Letter component’s render function.
There’s no point having your markup contain pieces you won’t be using.

Now let’s revert the Letter component to its original state:

class Letter extends React.Component {
 render() {
 return (
 <div>
 {this.props.children}
 </div>
);
 }
}

You specify styles inside your component by defining an object whose content is the CSS prop-
erties and their values. When you have that object, you assign that object to the JSX elements
you want to style by using the style attribute. This will make more sense when you perform
these two steps yourself, so let’s apply all of this to style the output of the Letter component.

Creating a Style Object

Let’s get right to it by defining our object that contains the styles we want to apply:

class Letter extends React.Component {
 render() {
 var letterStyle = {
 padding: 10,
 margin: 10,

43Styling Content the React Way

 backgroundColor: "#FFDE00",
 color: "#333",
 display: "inline-block",
 fontFamily: "monospace",
 fontSize: 32,
 textAlign: "center"
 };

 return (
 <div>
 {this.props.children}
 </div>
);
 }
}

We have an object called letterStyle, and the properties inside it are just CSS property names
and their value. If you’ve never defined CSS properties in JavaScript (by setting object.style),
the formula for converting them into something JavaScript-friendly is pretty simple:

1. Single-word CSS properties (such as padding, margin, and color) remain unchanged.

2. Multiword CSS properties with a dash in them (such as background-color,
font-family, and border-radius) are turned into one camel-case word, with the
dash removed and the first letter of the second word capitalized. For example, using
our example properties, background-color becomes backgroundColor, font-family
becomes fontFamily, and border-radius becomes borderRadius.

Our letterStyle object and its properties are pretty much a direct JavaScript translation of
the .letter style rule we looked at a few moments ago. All that remains now is to assign this
object to the element we want to style.

Actually Styling Our Content

Now that we have our object containing the styles we want to apply, the rest is easy. Find the
element you want to apply the style on and set the style attribute to refer to that object. In our
case, that is the div element returned by our Letter component’s render function.

Take a look at the highlighted line to see how this is done for our example:

class Letter extends React.Component {
 render() {
 var letterStyle = {
 padding: 10,
 margin: 10,
 backgroundColor: "#FFDE00",

44 Chapter 4 Styling in React

 color: "#333",
 display: "inline-block",
 fontFamily: "monospace",
 fontSize: 32,
 textAlign: "center"
 };

 return (
 <div>
 {this.props.children}
 </div>
);
 }
}

Our object is called letterStyle, so that’s what we specify inside the curly brackets to let
React know to evaluate the expression. That’s all there is to it. Go ahead and run the example
in the browser to ensure that everything works properly and that all the vowels are properly
styled.

For extra validation, if you inspect the styling applied to one of the vowels using your browser
developer tool of choice, you’ll see that the styles are, in fact, applied inline (see Figure 4.4).

Figure 4.4 The styles are applied inline.

While this is no surprise, it might be difficult to adjust to if you’re used to styles being inside
style rules. As they say, the times are a-changin’.

45Styling Content the React Way

Making the Background Color Customizable

The last thing to do before we wrap up is take advantage of how React works with styles. By
having our styles defined in the same vicinity as the JSX, we can make the various style values
easily customizable by the parent (a.k.a. the consumer of the component). Let’s see this in
action.

Right now, all of our vowels have a yellow background. Wouldn’t it be cool if we could specify
the background color as part of each Letter declaration? To do this in our ReactDOM.render
method, first add a bgcolor attribute and specify some colors, as shown in the following
 highlighted lines:

ReactDOM.render(
 <div>
 <Letter bgcolor="#58B3FF">A</Letter>
 <Letter bgcolor="#FF605F">E</Letter>
 <Letter bgcolor="#FFD52E">I</Letter>
 <Letter bgcolor="#49DD8E">O</Letter>
 <Letter bgcolor="#AE99FF">U</Letter>
 </div>,
 destination
);

Next, we need to use this property. In the letterStyle object, set the value of
backgroundColor to this.props.bgColor:

var letterStyle = {
 padding: 10,
 margin: 10,
 backgroundColor: this.props.bgcolor,
 color: "#333",
 display: "inline-block",
 fontFamily: "monospace",
 fontSize: 32,
 textAlign: "center"
};

This ensures that the backgroundColor value is inferred from what you set via the bgColor
attribute as part of the Letter declaration. If you preview this in your browser, you will now
see the same vowels sporting some totally sweet background colors (see Figure 4.5).

46 Chapter 4 Styling in React

Figure 4.5 Our vowels with background colors!

What we’ve just done will be very hard to replicate using plain CSS. As we start to look at
components whose contents change based on state or user interaction, you’ll see more such
examples in which the React way of styling things has a lot of merit.

Conclusion

As you dive in deeper and learn more about React, you’ll see several more cases in which React
does things quite differently than what you’ve been told is correct on the web. In this tutorial,
you saw React promoting inline styles in JavaScript as a way to style content instead of using
CSS style rules. Earlier, we looked at JSX and showed how to declare the entirety of your UI in
JavaScript using an XML-like syntax that sort of, kind of looks like HTML.

In all of these cases, if you look deeper beneath the surface, the reasons React diverges from
conventional wisdom make a lot of sense. Building apps with their very complex UI requirements
necessitate a new way of solving the challenges. HTML, CSS, and JavaScript techniques that prob-
ably made a lot of sense when dealing with web pages and documents might not be applicable in
a web-app world where components are reused inside other components.

With that said, you need to pick and choose the techniques that make the most sense for your
situation. I’m biased toward React’s way of solving UI development problems, but I do my best
to highlight alternate or conventional methods as well. Tying that back to what you saw here,
using CSS style rules with your React content is totally okay, as long as you make the decision
knowing both what you gain and what you lose.

Note: If you run into any issues, ask!

If you have any questions or your code isn’t running like you expect, don’t hesitate to ask!
Post on the forums at https://forum.kirupa.com and get help from some of the friendliest and
most knowledgeable people the Internet has ever brought together!

https://forum.kirupa.com

5
Creating Complex

Components

In Chapter 3, “Components in React,” you learned about components and all the awesome
things that they do. You learned that components are the primary ways through which React
enables our visual elements to behave like little reusable bricks that contain all the HTML,
JavaScript, and styling needed to run themselves. Beyond reusability, components bring
another major advantage to the table. They make possible composability. You can combine
components to create more complex components.

In this chapter, we look at what all of this means. More specifically, we look at two points:

 ■ The boring technical stuff you need to know

 ■ The boring stuff you need to know to identify components when you look at a bunch of
visual elements

Okay, what you’re going to learn isn’t actually that boring. I’m just setting your expectations
really low.

From Visuals to Components

The examples we’ve looked at so far have been pretty basic. They were great for highlighting
technical concepts, but they weren’t great for preparing you for the real world.

48 Chapter 5 Creating Complex Components

In the real world, what you’ll be asked to implement in React will never be as simple as a list
of names or colorful blocks of vowels. Instead, you’ll be given a visual of some complex user
 interface, such as a scribble, diagram, screenshot, video, redline, or comp. Then it’ll be up to
you to bring all those static pixels to life. You’ll get some hands-on practice in this chapter
doing just that.

The task here is to build a simple color palette card (see Figure 5.1).

Figure 5.1 A simple color palette card.

49From Visuals to Components

Color palette cards are small rectangular cards that help you match a color with a particular
type of paint. You can see them in home improvement stores or anywhere paint is sold. Your
designer friend probably has a giant closet dedicated to them in his or her place. Anyway, our
mission is to re-create one of these cards using React.

We could go about this in several ways, but let’s take a systematic approach that simplifies and
make sense of even the most complex user interfaces. This approach involves two steps:

1. Identify the major visual elements.

2. Figure out what the components will be.

Both of these steps sound really complex, but as we walk through this, you’ll see that you have
nothing to worry about.

Identifying the Major Visual Elements

The first step is to identify all the visual elements we’re dealing with. No visual element is too
minor to omit—at least, not initially. The easiest way to identify the relevant pieces is to start
with the obvious visual elements and then dive into the less obvious ones.

The first thing you will see in our example is the card itself (see Figure 5.2).

Figure 5.2 The card.

50 Chapter 5 Creating Complex Components

Within the card are two distinct regions. The top region is a square area that displays
a particular color. The bottom region is a white area that displays a hex value.

Let’s call out these two visual elements and arrange them into a treelike structure, as shown
in Figure 5.3.

Figure 5.3 Treelike structure.

Arranging your visuals into this treelike structure (a.k.a. a visual hierarchy) is a good way
to get a better feel for how your visual elements are grouped. The goal of this exercise is to
 identify the important visual elements and break them into a parent/child arrangement until
you can divide them no further.

Try to Ignore Implementation Details

It might be hard, but don’t think about the implementation details yet. Don’t focus on dividing
your visual elements based on what combination of HTML and CSS is required. You’ll have
plenty of time for that later.

51From Visuals to Components

Continuing on, we can see that our colorful square isn’t something we can divide further. That
doesn’t mean we’re done, though. We can further divide the label from the white region that
surrounds it. Right now, our visual hierarchy looks as shown in Figure 5.4, with our label and
white region occupying a separate spot in our tree.

Figure 5.4 Dividing things further into the label and the white region that surrounds it.

At this point, we have nothing else to divide any further. We’re finished identifying and
 dividing up our visual elements, so the next step is to use what we’ve found to help us identify
the components.

Identifying the Components

This is where things get a little interesting. We need to figure out which of the visual elements
we’ve identified will be turned into components and which ones will not. Not every visual
element needs to be turned into a component, and we also don’t want to create only a few
extremely complex components. We need to strike a balance (see Figure 5.5).

52 Chapter 5 Creating Complex Components

Figure 5.5 Not too few and not too many components.

There’s an art to figuring out which visual elements become part of a component and which
don’t. The general rule is that components should do just one thing. If you find that your potential
component will end up doing too many things, you probably want to break it into multiple
components. On the flipside, if your potential component does too little, you probably want to
skip making that visual element a component altogether.

Let’s try to figure out which elements would make good components in our example. From
looking at our visual hierarchy, both the card and the colored square seem like they fit the bill
for making a great component. The card acts as the outer container, and the colored square
simply displays a color.

That just puts a question mark around our label and the white region it is surrounded by
(see Figure 5.6).

53From Visuals to Components

Figure 5.6 Question mark around the label and the white space around it.

The important part here is the label itself. Without it, we can’t see the hex value. That leaves
just the white region. It serves a negligible purpose; it is simply empty space, and that responsi-
bility can easily be handed off to our label itself. Brace yourself for what I’m about to say next:
Sadly, our white rectangular region will not be turned into a component.

At this point, we have identified our three components, and the component hierarchy looks
like Figure 5.7.

54 Chapter 5 Creating Complex Components

Figure 5.7 The three components.

An important point to note is that the component hierarchy has more to do with helping us
define our code than it does with how the finished product will look. You’ll notice that it looks
a bit different than the visual hierarchy we started with. For visual details, always refer to your
source material (a.k.a. your visual comps, redlines, screenshots, and other related items). To
figure out which components to create, you should use the component hierarchy.

Okay, now that we’ve identified our components and the relationships among all of them, it’s
time to start bringing our color palette card to life.

Creating the Components

This is the easy part…sort of! It’s time to start writing some code. First we need a mostly empty
HTML page that will serve as our starting point:

<!DOCTYPE html>
<html>

55Creating the Components

<head>
 <meta charset="utf-8">
 <title>More Components</title>
 <script src="https://unpkg.com/react@16/umd/react.development.js"></script>
 <script src="https://unpkg.com/react-dom@16/umd/react-dom.development.js"></script>
 <script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>

 <style>
 #container {
 padding: 50px;
 background-color: #FFF;
 }
 </style>
</head>

<body>
 <div id="container"></div>

 <script type="text/babel">
 ReactDOM.render(
 <div>

 </div>,
 document.querySelector("#container")
);
 </script>
</body>

</html>

Take a moment to see what this page has going on. There isn’t much: just the bare minimum
needed to have React render an empty div into our container element.

After you’ve done this, it’s time to define our three components. The names we’ll go with for
our components are Card, Label, and Square. Go ahead and add the following lines just above
the ReactDOM.render function:

class Square extends React.Component {
 render() {
 return(

);
 }
}

56 Chapter 5 Creating Complex Components

class Label extends React.Component {
 render() {
 return (

);
 }
}

class Card extends React.Component {
 render() {
 return (

);
 }
}

Besides declaring our three components, we threw in the render function that each compo-
nent absolutely needs to function. Each render function returns a simple br element for now;
leaving the return value for the render function empty throws an error. Other than that, our
components are empty. In the following sections, we’ll fix that by filling them in.

The Card Component

Let’s start at the top of our component hierarchy and first focus on our Card component. This
component will act as the container where our Square and Label components will live.

To implement it, go ahead and make the following highlighted modifications:

class Card extends React.Component {
 render() {
 var cardStyle = {
 height: 200,
 width: 150,
 padding: 0,
 backgroundColor: "#FFF",
 boxShadow: "0px 0px 5px #666"
 };

 return (
 <div style={cardStyle}>

 </div>
);
 }
}

57Creating the Components

This seems like a lot of changes, but most of the lines are going into styling the output of our
Card component via the cardStyle object. The rest of the changes are pretty unimpressive.
We return a div element, and that element’s style attribute is set to our cardStyle object.
Now, to see our Card component in action, we need to display it in our DOM as part of the
ReactDOM.render function. To make that happen, go ahead and make the following high-
lighted change:

ReactDOM.render(
 <div>
 <Card/>
 </div>,
 document.querySelector("#container")
);

All we’re doing is telling the ReactDOM.render function to render the output of our Card
component by invoking it. If everything worked out properly, you’ll see a result identical to
Figure 5.8 if you test your app.

Figure 5.8 The result of your test, the outline of the color palette card.

Yes, it’s just the outline of the color palette card, but that’s definitely more than what you
started with just a few moments ago!

58 Chapter 5 Creating Complex Components

The Square Component

It’s time to go one level down in our component hierarchy and look at our Square component.
This is a pretty straightforward one, so make the following highlighted changes:

class Square extends React.Component {
 render() {
 var squareStyle = {
 height: 150,
 backgroundColor: "#FF6663"
 };

 return (
 <div style={squareStyle}>

 </div>
);
 }
}

As with our Card component, we are returning a div element whose style attribute is set to
a style object that defines how this component looks. To see our Square component in action,
we need to get it onto our DOM just like we did with the Card component. The difference
this time around is that we won’t be calling the Square component via our ReactDOM.render
 function. Instead, we’ll call the Square component from inside the Card component. To see
what I mean, go back to our Card component’s render function and make the following
change:

class Card extends React.Component {
 render() {
 var cardStyle = {
 height: 200,
 width: 150,
 padding: 0,
 backgroundColor: "#FFF",
 boxShadow: "0px 0px 5px #666"
 };

 return (
 <div style={cardStyle}>
 <Square />
 </div>
);
 }
}

At this point, if you preview your app, you’ll see a colorful square making an appearance
(see Figure 5.9).

59The Label Component

Figure 5.9 The red portion appears.

The cool thing to call out is that we called our Square component from inside the Card compo-
nent! This is an example of component composability, in which one component relies on the
output of another component. The final thing you see is the result of these two components
colluding with each other. Isn’t collusion just beautiful…at least in this context?

The Label Component

The last component that remains is our Label. Go ahead and make the following highlighted
changes:

class Label extends React.Component {
 render() {
 var labelStyle = {
 fontFamily: "sans-serif",
 fontWeight: "bold",
 padding: 13,
 margin: 0
 };

 return (
 <p style={labelStyle}>#FF6663</p>
);
 }
}

60 Chapter 5 Creating Complex Components

The pattern of what we’re doing should be routine to you by now. We have a style object that
we assign to what we return. We return a p element whose content is the string #FF6663. To
have what we return ultimately make it to our DOM, we need to call our Label component via
our Card component. Go ahead and make the following highlighted change:

class Card extends React.Component {
 render() {
 var cardStyle = {
 height: 200,
 width: 150,
 padding: 0,
 backgroundColor: "#FFF",
 boxShadow: "0px 0px 5px #666"
 };

 return (
 <div style={cardStyle}>
 <Square />
 <Label />
 </div>
);
 }
}

Notice that our Label component lives just under the Square component we added to our Card
component’s return function earlier. If you preview your app in the browser now, you should
see something that looks like Figure 5.10.

Figure 5.10 The label appears.

61The Label Component

Yes, that’s right! Our color palette card is done and visible, thanks to the efforts of our Card,
Square, and Label components. That doesn’t mean we’re done yet, though. We have a few more
things to cover.

Passing Properties, Again!

In our current example, we hard-coded the color value used by our Square and Label compo-
nents. That’s an odd thing to do. It might or might not have been done deliberately for
dramatic effect, but fixing it is straightforward. The solution just involves specifying a property
name and accessing it via this.props. You’ve seen all this before; the only difference is the
number of times you have to do this.

There’s no way to properly specify a property on a parent component and have all descendants
automatically gain access to that property. There are many improper ways to deal with this, such
as defining global objects and directly setting the value on a component property. We won’t
concern ourselves with such improper solutions right now, though. We aren’t animals!

The proper way to pass a property value to a child component is to have each intermediate
parent component pass on the property as well. To see this in action, take a look at the high-
lighted changes to our current code. We move away from a hard-coded color and instead define
our card’s color using a color property:

class Square extends React.Component {
 render() {
 var squareStyle = {
 height: 150,
 backgroundColor: this.props.color
 };

 return (
 <div style={squareStyle}>

 </div>
);
 }
}

class Label extends React.Component {
 render() {
 var labelStyle = {
 fontFamily: "sans-serif",
 fontWeight: "bold",
 padding: 13,
 margin: 0
 };

62 Chapter 5 Creating Complex Components

 return (
 <p style={labelStyle}>{this.props.color}</p>
);
 }
}

class Card extends React.Component {
 render() {
 var cardStyle = {
 height: 200,
 width: 150,
 padding: 0,
 backgroundColor: "#FFF",
 boxShadow: "0px 0px 5px #666"
 };

 return (
 <div style={cardStyle}>
 <Square color={this.props.color} />
 <Label color={this.props.color} />
 </div>
);
 }
}

ReactDOM.render(
 <div>
 <Card color="#FF6663" />
 </div>,
 document.querySelector("#container")
);

After you’ve made this change, you can specify any hex color you want as part of calling the
Card component:

ReactDOM.render(
 <div>
 <Card color="#FFA737"/>
 </div>,
 document.querySelector("#container")
);

The resulting color palette card features the color you specified (see Figure 5.11).

63Why Component Composability Rocks

Figure 5.11 The color for hex value #FFA737.

Now let’s go back to the changes we made. Even though the color property is consumed by only
the Square and Label components, the parent Card component is responsible for passing the
property on to them. For even more deeply nested situations, you’ll have more intermediate
components that will be responsible for transferring properties. It gets worse. When you have
multiple properties that you want to pass around multiple levels of components, the amount of
typing (or copying/pasting) you do increases a lot as well. There are ways to mitigate this, and
we’ll look at those mitigations in much greater detail in a future chapter.

Why Component Composability Rocks

When we’re heads-down in React, we often tend to forget that what we are ultimately creating
is just plain and boring HTML, CSS, and JavaScript. The generated HTML for our color palette
card looks as follows:

<div id="container">
 <div>
 <div style="height: 200px;
 width: 150px;
 padding: 0px;
 background-color: rgb(255, 255, 255);
 box-shadow: rgb(102, 102, 102) 0px 0px 5px;">

64 Chapter 5 Creating Complex Components

 <div style="height: 150px;
 background-color: rgb(255, 102, 99);">
 </div>
 <p style="font-family: sans-serif;
 font-weight: bold;
 padding: 13px;
 margin: 0px;">
 #FF6663</p>
 </div>
 </div>
</div>

This markup has no idea how it got there. It doesn’t know about which components were respon-
sible for what. It doesn’t care about component composability or the frustrating way we had to
transfer the color property from parent to child. That brings up an important point to make.

If we had to generalize the end result of what components do, all they do is return blobs of
HTML to whatever called it. Each component’s render function returns some HTML to another
component’s render function. All of this HTML keeps accumulating until a giant blob of
HTML is pushed (very efficiently) to our DOM. That simplicity is why component reuse and
composability works so well. Each blob of HTML works independently from other blobs of
HTML, especially if you specify inline styles as React recommends. This allows you to easily
create visual elements from other visual elements without having to worry about anything.
Anything! Isn’t that pretty freaking awesome?

Conclusion

As you might have realized by now, we are slowly shifting focus toward the more advanced
scenarios that React thrives in. Actually, advanced isn’t the right word. The correct word is
realistic. In this chapter, you started by learning how to look at a piece of UI and identify the
components in a way that you can later implement. You’ll find yourself in that situation all
the time. While the approach we employed seemed really formal, as you get more experienced
with creating things in React, you can ratchet down the formality. If you can quickly identify
the components and their parent/child relationships without creating a visual and component
 hierarchy, that’s one more sign that you are getting really good at working with React.

Identifying the components is only one part of the equation. The other part is bringing those
components to life. Most of the technical stuff you saw here was just a minor extension of
what you’ve already seen. We looked at one level of components in an earlier chapter, and
here we looked at how to work with multiple levels of components. We looked at how to pass
properties between one parent and one child in an earlier chapter, and here we looked at how
to pass properties among multiple parents and multiple children. Maybe in a future chapter
we’ll do something groundbreaking, like drawing multiple color palette cards to the screen! Or
maybe we can specify two properties instead of just a single one. Who knows?

Note: If you run into any issues, ask!

If you have any questions or your code isn’t running like you expect, don’t hesitate to ask!
Post on the forums at https://forum.kirupa.com and get help from some of the friendliest and
most knowledgeable people the Internet has ever brought together!

https://forum.kirupa.com

6
Transferring Properties

Working with properties has a frustrating side. We saw a bit of this side in the previous chapter.
Passing properties from one component to another is nice and simple when you’re dealing
with only one layer of components. When you want to send a property across multiple layers
of components, things start to get complicated.

Complication is never a good thing, so in this chapter, let’s see what we can do to make
working with properties easy across multiple layers of components.

Problem Overview

Let’s say that you have a deeply nested component, and its hierarchy (modeled as awesomely
colored circles) looks like Figure 6.1.

66 Chapter 6 Transferring Properties

Figure 6.1 The component hierarchy.

You want to pass a property from your red circle all the way down to the purple circles, where it
will be used. What you can’t do is the very obvious and straightforward thing shown in Figure 6.2.

67Problem Overview

Figure 6.2 Can’t do this.

You can’t pass a property directly to the component or components that you want to target.
The reason has to do with how React works. React enforces a chain of command in which properties
have to flow down from a parent component to an immediate child component. This means you can’t
skip a layer of children when sending a property. This also means your children can’t send a
property back up to a parent. All communication is one-way from the parent to the child.

Under these guidelines, passing a property from our red circle to our purple circle looks a little
bit like Figure 6.3.

Every component that lies on the intended path has to receive the property from its parent
and then resend that property to its child. This process repeats until your property reaches its
intended destination. The problem is in this receiving and resending step.

If we had to send a property called color from the component representing our red circle to
the component representing our purple circle, its path to the destination would look something
like Figure 6.4.

68 Chapter 6 Transferring Properties

Figure 6.3 The property is passed from parent to child.

Figure 6.4 Sending the color property.

69Detailed Look at the Problem

Now, imagine that we have two properties we need to send, as in Figure 6.5.

Figure 6.5 Sending two properties.

What if we wanted to send three properties? Or four?

You can see that this approach is neither scalable nor maintainable. For every additional
property we need to communicate, we have to add an entry for it as part of declaring each
component. If we decide to rename our properties at some point, we have to ensure that every
instance of that property is renamed as well. If we remove a property, we need to remove the
property from being used across every component that relied on it. Overall, these are the kinds
of situations we try to avoid when writing code. What can we do about this?

Detailed Look at the Problem

In the previous section, we talked at a high level about what the problem is. Before we can
dive into figuring out a solution, we need to go beyond diagrams and look at a more detailed
example with real code. We need to take a look at something like the following:

class Display extends React.Component {
 render() {
 return (

70 Chapter 6 Transferring Properties

 <div>
 <p>{this.props.color}</p>
 <p>{this.props.num}</p>
 <p>{this.props.size}</p>
 </div>
);
 }
}

class Label extends React.Component {
 render() {
 return (
 <Display color={this.props.color}
 num={this.props.num}
 size={this.props.size}/>
);
 }
}

class Shirt extends React.Component {
 render() {
 return (
 <div>
 <Label color={this.props.color}
 num={this.props.num}
 size={this.props.size}/>
 </div>
);
 }
}

ReactDOM.render(
 <div>
 <Shirt color="steelblue" num="3.14" size="medium" />
 </div>,
 document.querySelector("#container")
);

Let’s take a few moments to understand what’s going on. Then we can walk through this
example together.

We have a Shirt component that relies on the output of the Label component, which relies
on the output of the Display component. (Try saying that sentence five times fast!) Figure 6.6
shows the component hierarchy.

71Detailed Look at the Problem

Figure 6.6 The component hierarchy.

72 Chapter 6 Transferring Properties

When you run this code, the output is nothing special. It’s just three lines of text, as shown in
Figure 6.7:

Figure 6.7 What our code outputs.

The interesting part is how the text gets there. Each of the three lines of text that you see maps
to a property we specified at the very beginning inside ReactDOM.render:

<Shirt color="steelblue" num="3.14" size="medium" />

The color, num, and size properties (and their values) make a journey all the way to the
Display component that would make even the most seasoned world traveler jealous. Let’s
follow these properties from their inception to when they get consumed. (I realize that a lot of
this will be a review of what you’ve already seen. If you find yourself getting bored, feel free to
skip on the next section.)

Life for our properties starts inside ReactDOM.render when our Shirt component gets called
with the color, num, and size properties specified:

ReactDOM.render(
 <div>
 <Shirt color="steelblue" num="3.14" size="medium" />
 </div>,
 document.querySelector("#container")
);

73Detailed Look at the Problem

We not only define the properties, but we also initialize them with the values they will carry.

Inside the Shirt component, these properties are stored inside the props object. To transfer
these properties on, we need to explicitly access these properties from the props object and list
them as part of the component call. The following is an example of what that looks like when
our Shirt component calls our Label component:

class Shirt extends React.Component {
 render() {
 return (
 <div>
 <Label color={this.props.color}
 num={this.props.num}
 size={this.props.size} />
 </div>
);
 }
}

Notice that the color, num, and size properties are listed again. The only difference from what
we saw with the ReactDOM.render call is that the values for each property are taken from their
respective entry in the props object instead of being manually entered.

When our Label component goes live, it has its props object properly filled out with the
color, num, and size properties stored. You can probably see a pattern forming here. If you
need to let out a big yawn, feel free.

The Label component continues the tradition by repeating the same steps and calling the
Display component:

class Label extends React.Component {
 render() {
 return (
 <Display color={this.props.color}
 num={this.props.num}
 size={this.props.size} />
);
 }
}

Notice that the Display component call contains the same listing of properties and their values
taken from our Label component’s props object. The only good news from all this is that we’re
almost done here. The Display component just displays the properties as they were populated
inside its props object:

class Display extends React.Component {
 render() {
 return (
 <div>
 <p>{this.props.color}</p>
 <p>{this.props.num}</p>

74 Chapter 6 Transferring Properties

 <p>{this.props.size}</p>
 </div>
);
 }
}

Phew! All we wanted to do was have our Display component display some values for color,
num, and size. The only complication was that the values we wanted to display were originally
defined as part of ReactDOM.render. The annoying solution is the one you see here, with
every component along the path to the destination needing to access and redefine each prop-
erty as part of passing it along. That’s just terrible. We can do better than this, and you’ll will
see how in a few moments.

Meet the Spread Operator

The solution to all our problems lies in something new to JavaScript, known as the spread
operator. What the spread operator does is a bit bizarre to explain without some context, so
let’s first give you an example and then bore you with a definition.

Take a look at the following snippet:

var items = ["1", "2", "3"];

function printStuff(a, b, c) {
 console.log("Printing: " + a + " " + b + " " + c);
}

We have an array called items that contains three values. We also have a function called
printStuff that takes three arguments. We want to specify the three values from our items
array as arguments to the printStuff function. Sounds simple enough, right?

Here’s one really common way of doing that:

printStuff(items[0], items[1], items[2]);

We access each array item individually and pass it in to our printStuff function. With the
spread operator, we now have an easier way. You don’t have to specify each item in the array
individually; you can just do something like this:

printStuff(...items);

The spread operator is the ... characters before our items array. Using ...items is identical
to calling items[0], items[1], and items[2] individually, as we did earlier. The printStuff
function will run and print the numbers 1, 2, and 3 to our console. Pretty cool, right?

Now that you’ve seen the spread operator in action, it’s time to define it. The spread operator
allows you to unwrap an array into its individual elements. The spread operator does a few more
things as well, but that’s not important for now. We’re going to use only this particular side of
the spread operator to solve our property transfer problem.

75A Better Way to Transfer Properties

A Better Way to Transfer Properties

You just saw an example of using the spread operator to avoid having to enumerate every
single item in our array as part of passing it to a function:

var items = ["1", "2", "3"];

function printStuff(a, b, c) {
 console.log("Printing: " + a + " " + b + " " + c);
}

// using the spread operator
printStuff(...items);

// without using the spread operator
printStuff(items[0], items[1], items[2]);

The situation we face in transferring properties across components is very similar to our
problem of accessing each array item individually. Allow me to elaborate.

Inside a component, our props object looks as follows:

var props = {
 color: "steelblue",
 num: "3.14",
 size: "medium"
};

As part of passing these property values to a child component, we manually access each item
from our props object:

<Display color={this.props.color}
 num={this.props.num}
 size={this.props.size}/>

Wouldn’t it be great if there was a way to unwrap an object and pass on the property/value
pairs just like we were able to unwrap an array using the spread operator?

As it turns out, there is a way. It actually involves the spread operator as well. We explain how
later, but this means that we can call our Display component by using ...this.props:

<Display {...this.props} />

The runtime behavior when using ...this.props is the same as when specifying the color,
num, and size properties manually. This means our earlier example can be simplified as follows
(pay attention to the highlighted lines):

class Display extends React.Component {
 render() {
 return (

76 Chapter 6 Transferring Properties

 <div>
 <p>{this.props.color}</p>
 <p>{this.props.num}</p>
 <p>{this.props.size}</p>
 </div>
);
 }
}

class Label extends React.Component {
 render() {
 return (
 <Display {...this.props} />
);
 }
}

class Shirt extends React.Component {
 render() {
 return (
 <div>
 <Label {...this.props} />
 </div>
);
 }
}

If you run this code, the end result is unchanged from what we had earlier. The biggest differ-
ence is that we are no longer passing in expanded forms of each property as part of calling each
component. This solves all the problems we originally set out to solve.

By using the spread operator, if you ever decide to add properties, rename properties, remove
properties, or do any other sort of property-related shenanigans, you don’t have to make a
billion different changes. You make one change at the spot you define your property. You make
another change at the spot you consume the property. That’s it. All the intermediate compo-
nents that merely transfer the properties remain untouched because the {...this.props}
expression contains no details of what goes on inside it.

Is this the best way to transfer properties?

Using the spread operator to transfer properties is convenient, and it’s a marked improvement
over explicitly defining each property at each component as we were originally doing. The thing
is, even the spread operator approach isn’t a perfect solution. If all you want to do is transfer a
property to a particular component, having each intermediate component play a role in passing
it on is unnecessary. Worse, it has the potential to be a performance bottleneck. Any change
to a property that you are passing along will trigger a component update on each component
along the property’s path. That’s not a good thing! Later, we look at ways to solve this transfer-
ring properties problem in a much better, without any side effects.

77Conclusion

Conclusion

As created by the ES6/ES2015 committee, the spread operator is designed to work only on arrays
and arraylike creatures (a.k.a. something that has a Symbol.iterator property). The fact that it
works on object literals such as our props object is a result of React extending the standard. No
browser currently supports using the spread object on object literals. Our example works because
of Babel. Besides turning all our JSX into something our browser understands, Babel turns cutting-
edge and experimental features into something that’s friendly across browsers. That’s why we’re
able to get away with using the spread operator on an object literal, and that’s why we’re able to
elegantly solve the problem of transferring properties across multiple layers of components.

Now, does any of this matter? Is it really critical that you know about the nuances of the spread
operator and how it works in certain situations and doesn’t work in others? For the most part,
no. The important part to realize is that you can use the spread operator to transfer props from
one component to another. The other important part to realize is that we will look at some
other ways in the future to make transferring properties equally simple, without running into
any performance issues.

Note: If you run into any issues, ask!

If you have any questions or your code isn’t running like you expect, don’t hesitate to ask!
Post on the forums at https://forum.kirupa.com and get help from some of the friendliest and
most knowledgeable people the Internet has ever brought together!

https://forum.kirupa.com

This page intentionally left blank

7
Meet JSX…Again!

As you’ve probably noticed by now, we’ve been using a lot of JSX. But we really haven’t taken
a good look at what JSX actually is. How does it work? Why don’t we just call it HTML? What
quirks does it have up its sleeve? In this chapter, we answer all those questions and more! We
do some serious backtracking (and some forwardtracking) to see what we need to know about
JSX in order to be dangerous.

What Happens with JSX?

One of the biggest things we’ve glossed over is trying to figure out what happens with our JSX
after we’ve written it. How does it end up as the HTML that you see in the browser? Take a look
at the following example, where we define a component called Card:

class Card extends React.Component {
 render() {
 var cardStyle = {
 height: 200,
 width: 150,
 padding: 0,
 backgroundColor: "#FFF",
 boxShadow: "0px 0px 5px #666"
 };

 return (
 <div style={cardStyle}>
 <Square color={this.props.color} />
 <Label color={this.props.color} />
 </div>
);
 }
}

80 Chapter 7 Meet JSX…Again!

We can quickly spot the JSX here. It’s the following four lines:

<div style={cardStyle}>
 <Square color={this.props.color} />
 <Label color={this.props.color} />
</div>

Keep in mind that browsers have no idea what to do with JSX. They probably think you’re
crazy if you even try to describe JSX to them. That’s why we’ve been relying on things like
Babel to turn that JSX into something the browsers understand: JavaScript.

This means that the JSX we write is for human (and well-trained cat) eyes only. When this JSX
reaches our browser, it ends up getting turned into pure JavaScript:

return React.createElement(
 "div",
 { style: cardStyle },
 React.createElement(Square, { color: this.props.color }),
 React.createElement(Label, { color: this.props.color })
);

All of those neatly nested HTML-like elements, their attributes, and their children get turned
into a series of createElement calls with default initialization values. Here’s what our entire
Card component looks like when it gets turned into JavaScript:

class Card extends React.Component {
 render() {
 var cardStyle = {
 height: 200,
 width: 150,
 padding: 0,
 backgroundColor: "#FFF",
 boxShadow: "0px 0px 5px #666"
 };

 return React.createElement(
 "div",
 { style: cardStyle },
 React.createElement(Square, { color: this.props.color }),
 React.createElement(Label, { color: this.props.color })
);
 }
}

Notice that there’s no trace of JSX anywhere! All these changes between what we wrote
and what our browser sees are part of the transpiling step we talked about in Chapter 1,
“Introducing React.” That transpilation happens entirely behind the scenes, thanks to Babel,

81JSX Quirks to Remember

which we’ve been using to perform this JSX-to-JS transformation entirely in the browser. We’ll
eventually look at using Babel as part of a more involved build environment in which we
generate a transformed JS file, but you’ll see more on that when we get there in the future.

So there you have it, an answer to what exactly happens to all our JSX: It gets turned into sweet
JavaScript.

JSX Quirks to Remember

As we’ve been working with JSX, you’ve probably noticed that we’ve run into some arbitrary
rules and exceptions on what we can and can’t do. In this section, let’s look at those quirks…and
some brand new ones!

Evaluating Expressions

JSX is treated like JavaScript. As you’ve seen a few times already, this means that you aren’t
limited to dealing with static content like the following:

class Stuff extends React.Component {
 render() {
 return (
 <h1>Boring static content!</h1>
);
 }
};

The values you return can be dynamically generated. All you have to do is wrap your
expression in curly braces:

class Stuff extends React.Component {
 render() {
 return (
 <h1>Boring {Math.random() * 100} content!</h1>
);
 }
}

Notice that we’re throwing in a Math.random() call to generate a random number. It gets eval-
uated along with the static text alongside it, but because of the curly braces, what you see looks
something like the following: Boring 28.6388820148227 content!

These curly braces allow your app to first evaluate the expression and then return the result
of the evaluation. Without them, you would see your expression returned as text: Boring
Math.random() * 100 content!

That isn’t what you would probably want.

82 Chapter 7 Meet JSX…Again!

Returning Multiple Elements

In a lot of our examples, we’ve returned one top-level element (often a div) that then had
many other elements under it. You aren’t technically limited to following that pattern: You can
actually return multiple elements. And you can do that in two ways.

One way is to use an arraylike syntax:

class Stuff extends React.Component {
 render() {
 return (
 [
 <p>I am</p>,
 <p>returning a list</p>,
 <p>of things!</p>
]
);
 }
}

Here we are returning three p tags. They don’t have a single common parent. Now, when you
return multiple items, you might or might not have to deal with one detail, depending on the
version of React you are targeting. You need to specify a key attribute and a unique value for
each item:

class Stuff extends React.Component {
 render() {
 return (
 [
 <p key="1">I am</p>,
 <p key="2">returning a list</p>,
 <p key="3">of things!</p>
]
);
 }
}

This helps React better understand which element it is dealing with and whether to make any
changes to it. How do you know whether you need to add the key attribute? React tells you.
You’ll see a message similar to the following printed to your Dev Tools Console: Warning: Each
child in an array or iterator should have a unique “key” prop.

You also have another (and, arguably, better) way to return multiple elements. This involves
something known as fragments. The way you use it looks as follows:

class Stuff extends React.Component {
 render() {
 return (
 <React.Fragment>
 <p>I am</p>

83JSX Quirks to Remember

 <p>returning a list</p>
 <p>of things!</p>
 </React.Fragment>
);
 }
}

You wrap the list of items you want to return into a magical React.Fragment component.
Note a few cool things here:

1. This component doesn’t actually generate a DOM element. It is just something you
specify in JSX that has no tangible existence when transpiled into the HTML your
browser sees.

2. You aren’t treating what you are returning as items in an array, so you don’t need
commas or anything separating each item.

3. There’s no need to specify a unique key attribute and value; this is all taken care of under
the covers for you.

Before we leave this section, know that you can use a more condensed syntax instead of fully
specifying React.Fragment... like an animal. You can use just empty <> and </> tags:

class Stuff extends React.Component {
 render() {
 return (
 <>
 <p>I am</p>
 <p>returning a list</p>
 <p>of things!</p>
 </>
);
 }
}

This looks like something from the future, so if you’re inclined to use fragments to return
multiple values, feel free to use this smaller syntax.

You Can’t Specify CSS Inline

As you saw in Chapter 4, “Styling in React,” the style attribute in your JSX behaves differently
from the style attribute in HTML. In HTML, you can specify CSS properties directly as values
on your style attribute:

<div style="font-family:Arial;font-size:24px">
 <p>Blah!</p>
</div>

84 Chapter 7 Meet JSX…Again!

In JSX, the style attribute can’t contain CSS inside it. Instead, it needs to refer to an object
that contains styling information:

class Letter extends React.Component {
 render() {
 var letterStyle = {
 padding: 10,
 margin: 10,
 backgroundColor: this.props.bgcolor,
 color: "#333",
 display: "inline-block",
 fontFamily: "monospace",
 fontSize: "32",
 textAlign: "center"
 };

 return (
 <div style={letterStyle}>
 {this.props.children}
 </div>
);
 }
}

Notice that we have an object called letterStyle that that contains all the CSS properties
(in camel-case JavaScript form) and their values. That object is what we then specify to the
style attribute.

Comments

Just as it’s a good idea to comment your HTML, CSS, and JavaScript, it’s a good idea to provide
comments inside your JSX. Specifying comments in JSX is similar to how you comment in
JavaScript, with one exception. If you’re specifying a comment as a child of a tag, you need
to enclose your comment within the { and } angle brackets to ensure that it is parsed as
an expression:

ReactDOM.render(
 <div className="slideIn">
 <p className="emphasis">Gabagool!</p>
 {/* I am a child comment */}
 <Label/>
 </div>,
 document.querySelector("#container")
);

85Capitalization, HTML Elements, and Components

Our comment in this case is a child of our div element. If you specify a comment wholly
inside a tag, you can just specify your single-line or multiline comment without having to use
the { and } angle brackets:

ReactDOM.render(
 <div className="slideIn">
 <p className="emphasis">Gabagool!</p>
 <Label
 /* This comment
 goes across
 multiple lines */
 className="colorCard" // end of line
 />
 </div>,
 document.querySelector("#container")
);

In this snippet, you can see an example of both a multiline comment and a comment at
the end of a line. Now that you know all of this, you have one less excuse to not comment
your JSX.

Capitalization, HTML Elements, and Components

Capitalization is important. To represent HTML elements, ensure that the HTML tag
is lowercase:

ReactDOM.render(
 <div>
 <section>
 <p>Something goes here!</p>
 </section>
 </div>,
 document.querySelector("#container")
);

When you want to represent components, the component name must be capitalized:

ReactDOM.render(
 <div>
 <MyCustomComponent/>
 </div>,
 document.querySelector("#container")
);

If you get the capitalization wrong, React will not render your content properly. Trying to
identify capitalization issues is probably the last point you’ll think about when things aren’t
working, so keep this little tip in mind.

86 Chapter 7 Meet JSX…Again!

Your JSX Can Be Anywhere

In many situations, your JSX won’t be neatly arranged inside a render or return function
as in the examples you’ve seen so far. Take a look at the following example:

var swatchComponent = <Swatch color="#2F004F"></Swatch>;

ReactDOM.render(
 <div>
 {swatchComponent}
 </div>,
 document.querySelector("#container")
);

We have a variable called swatchComponent that is initialized to a line of JSX. When our
swatchComponent variable is placed inside the render function, our Swatch component gets
initialized. All of this is totally valid. You will do more such things in the future when you
learn how to generate and manipulate JSX using JavaScript.

Conclusion

With this chapter, we’ve finally pieced together in one location the various bits of JSX
information that the previous chapters introduced. The most important point to remember is
that JSX is not HTML. It looks like HTML and behaves like it in many common scenarios, but
it is ultimately designed to be translated into JavaScript. This means you can do things that
you could never imagine doing using just plain HTML. Being able to evaluate expressions or
programmatically manipulate entire chunks of JSX is just the beginning. In upcoming chapters,
we’ll explore this intersection of JavaScript and JSX further.

Note: If you run into any issues, ask!

If you have any questions or your code isn’t running like you expect, don’t hesitate to ask!
Post on the forums at https://forum.kirupa.com and get help from some of the friendliest and
most knowledgeable people the Internet has ever brought together!

https://forum.kirupa.com

8
Dealing with

State in React

Up to this point, the components we’ve created have been stateless. They have properties
(a.k.a. props) that are passed in from their parent, but nothing (usually) changes about them
once the components come alive. Your properties are considered immutable once they’ve been
set. For many interactive scenarios, you don’t want that. You want to be able to change aspects
of your components as a result of some user interaction (or some data getting returned from
a server or a billion other things).

We need another way to store data on a component that goes beyond properties. We need a
way to store data that can be changed. What we need is something known as state. In this
chapter, you learn all about state and how you can use it to create stateful components.

Using State

If you know how to work with properties, you totally know how to work with states…sort of.
There are some differences, but they’re too subtle to bore you with right now. Instead, let’s just
jump right in and see states in action by using them in a small example.

We’re going to create a simple lightning counter example, as shown in Figure 8.1.

88 Chapter 8 Dealing with State in React

Figure 8.1 The app you will be building.

This example does nothing crazy. Lightning strikes Earth’s surface about 100 times a second,
according to National Geographic. We have a counter that simply increments a number you see
by that same amount. Let’s create it.

Our Starting Point

The primary focus of this example is to see how we can work with state. There’s no point
spending a lot of time creating the example from scratch and retracing paths that we’ve walked
many times already. That’s not the best use of anybody’s time.

Instead of starting from scratch, modify an existing HTML document or create a new one with
the following contents:

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8">
 <title>Dealing with State</title>
 <script src="https://unpkg.com/react@16/umd/react.development.js"></script>

89Using State

 <script src="https://unpkg.com/react-dom@16/umd/react-dom.development.js"></script>
 <script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>
</head>

<body>
 <div id="container"></div>

 <script type="text/babel">
 class LightningCounter extends React.Component {
 render() {
 return (
 <h1>Hello!</h1>
);
 }
 }

 class LightningCounterDisplay extends React.Component {
 render() {
 var divStyle = {
 width: 250,
 textAlign: "center",
 backgroundColor: "black",
 padding: 40,
 fontFamily: "sans-serif",
 color: "#999",
 borderRadius: 10
 };

 return (
 <div style={divStyle}>
 <LightningCounter/>
 </div>
);
 }
 }

 ReactDOM.render(
 <LightningCounterDisplay/>,
 document.querySelector("#container")
);
 </script>
</body>

</html>

90 Chapter 8 Dealing with State in React

Now let’s take a few minutes to look at what our existing code does. First, we have a compo-
nent called LightningCounterDisplay. The bulk of this component is the divStyle object,
which contains the styling information responsible for the cool rounded background. The
return function returns a div element that wraps the LightningCounter component.

The LightningCounter component is where all the action will take place:

class LightningCounter extends React.Component {
 render() {
 return (
 <h1>Hello!</h1>
);
 }
}

As it is right now, this component has nothing interesting going for it. It just returns the word
Hello! That’s okay—we’ll fix up this component later.

The last thing to look at is our ReactDOM.render method:

ReactDOM.render(
 <LightningCounterDisplay/>,
 document.querySelector("#container")
);

It just pushes the LightningCounterDisplay component to our container element
in our DOM. That’s pretty much it. The end result is the combination of markup from our
ReactDOM.render method and the LightningCounterDisplay and LightningCounter
components.

Getting Our Counter On

Now that you have an idea of what we’re starting with, it’s time to make plans for our next
steps. The way our counter works is pretty simple. We’re going to be using a setInterval
function that calls some code every 1000 milliseconds (a.k.a. 1 second). That “some code” is
going to increment a value by 100 each time it’s called. Seems pretty straightforward, right?

To make this all work, we’re relying on three APIs that our React component exposes:

1. componentDidMount

This method gets called just after our component gets rendered (or mounted, as React
calls it).

2. setState

This method allows you to update the value of the state object.

You’ll see these APIs in use shortly, but here you get a preview so that you can spot them easily
in a lineup.

91Getting Our Counter On

Setting the Initial State Value

We need a variable to act as our counter. Let’s call this variable strikes. We have a bunch of
ways to create this variable, but the most obvious one is the following:

var strikes = 0; // :P

We don’t want to do that, though. For our example, the strikes variable is part of our compo-
nent’s state. We want to create a state object, make our strikes variable a property of it, and
ensure that we set all of this up when our component is getting created. The component we
want to do all this to is LightningCounter. Go ahead and add the following highlighted lines:

class LightningCounter extends React.Component {
 constructor(props) {
 super(props);

 this.state = {
 strikes: 0
 };
 }

 render() {
 return (
 <h1>Hello!</h1>
);
 }
}

We specify our state object inside our LightningCounter component’s constructor. This runs
way before your component gets rendered. We’re telling React to set an object containing our
strikes property (initialized to 0).

If we inspect the value of our state object after this code has run, it looks something like the
following:

var state = {
 strikes: 0
};

Before we wrap up this section up, let’s visualize our strikes property. In our render method,
make the following highlighted change:

class LightningCounter extends React.Component {
 constructor(props) {
 super(props);

 this.state = {
 strikes: 0
 };
 }

92 Chapter 8 Dealing with State in React

 render() {
 return (
 <h1>{this.state.strikes}</h1>
);
 }
}

We’ve replaced our default Hello! text with an expression that displays the value stored by the
this.state.strikes property. If you preview your example in the browser, you will see a
value of 0 displayed. That’s a start!

Starting Our Timer and Setting State

Next up, is getting our timer going and incrementing our strikes property. As we mentioned
earlier, we will be using the setInterval function to increase the strikes property by 100 every
second. We’re going to do all of this immediately after our component has been rendered using
the built-in componentDidMount method.

The code for kicking off our timer looks as follows:

class LightningCounter extends React.Component {
 constructor(props) {
 super(props);

 this.state = {
 strikes: 0
 };
 }

 timerTick() {
 this.setState({
 strikes: this.state.strikes + 100
 });
 }

 componentDidMount() {
 setInterval(this.timerTick, 1000);
 }

 render() {
 return (
 <h1>{this.state.strikes}</h1>
);
 }
}

93Getting Our Counter On

Go ahead and add these highlighted lines to our example. Inside our componentDidMount
method that gets called after our component gets rendered, we have our setInterval method
that calls a timerTick function every second (or 1000 milliseconds).

We haven’t defined our timerTick function, so let’s fix that by adding the following high-
lighted lines to our code:

class LightningCounter extends React.Component {
 constructor(props) {
 super(props);

 this.state = {
 strikes: 0
 };
 }

 timerTick() {
 this.setState({
 strikes: this.state.strikes + 100
 });
 }

 componentDidMount() {
 setInterval(this.timerTick, 1000);
 }

 render() {
 return (
 <h1>{this.state.strikes}</h1>
);
 }
}

What our timerTick function does is pretty simple: It just calls setState. The setState
method comes in various flavors, but for what we’re doing here, it just takes an object as its
argument. This object contains all the properties you want to merge into the state object. In our
case, we are specifying the strikes property and setting its value to be 100 more than what it
is currently.

94 Chapter 8 Dealing with State in React

Note: Incrementing the Existing State Value

As you’ve seen here, you will often end up modifying an existing state value with an updated
value. We’re getting the existing state value by calling this.state.strikes. For performance-
related reasons, React might decide to batch state updates in rapid succession. This could lead
to the original value stored by this.state to be out-of-sync with reality. To help with this, the
setState method gives you access to the previous state object via the prevState argument.

Using that argument, our code could be made to look as follows:

this.setState((prevState) => {

 return {

 strikes: prevState.strikes + 100

 };

});

The end result is similar to what we had originally. Our strikes property is incremented
by 100. The only potential change is that the value of the strikes property is guaranteed
to be whatever the earlier value stored by our state object would be.

So should you use this approach to update your state? There are good arguments on both
sides. One side argues for correctness, despite this.state working out fine for most real-
world cases. The other side argues for keeping the code simple and not introducing additional
 complexity. There’s no right or wrong answer here, so use whatever approach you prefer.
I’m calling this out only for completeness because you could run into the prevState approach
in any React code you encounter in the wild.

You need to do one more thing. The timerTick function has been added to our component,
but its contents don’t have their context set to our component. In other words, the this
keyword where we are accessing setState will return a TypeError in the current situation.
You can employ several solutions here, each a little frustrating in its own way. We’ll look at
this problem in detail later. For now, we’re going to explicitly bind our timerTick function to
our component so that all the this references resolve properly. Add the following line to our
constructor:

constructor(props) {
 super(props);

 this.state = {
 strikes: 0
 };

 this.timerTick = this.timerTick.bind(this);
}

When you’ve done this, the timerTick function is ready to be a useful part of our component.

95Optional: The Full Code

Rendering the State Change

If you preview your app now, you’ll see our strikes value start to increment by 100 every
second (see Figure 8.2).

Figure 8.2 The strikes value increments by 100 every second.

Let’s ignore for a moment what happens with our code. That’s pretty straightforward. The
interesting thing is that everything we’ve done ends up updating what you see onscreen. That
updating has to do with this React behavior: Whenever you call setState and update something in
the state object, your component’s render method gets automatically called. This kicks off a cascade of
render calls for any component whose output is also affected. The end result of all this is that
what you see on your screen in the latest representation of your app’s UI state. Keeping your
data and UI in sync is one of the hardest problems with UI development, so it’s nice that React
takes care of this for us. It makes all this pain of learning to use React totally worth it…almost!

Optional: The Full Code

What we have right now is just a counter that increments by 100 every second. Nothing about
it screams lightning counter, but it does cover everything about states that I wanted you to
learn right now. If you want to optionally flesh out your example to look like our version that
you saw at the beginning, this is the full code for what goes inside our script tag:

class LightningCounter extends React.Component {
 constructor(props) {
 super(props);

 this.state = {
 strikes: 0
 };

 this.timerTick = this.timerTick.bind(this);
 }

96 Chapter 8 Dealing with State in React

 timerTick() {
 this.setState({
 strikes: this.state.strikes + 100
 });
 }

 componentDidMount() {
 setInterval(this.timerTick, 1000);
 }

 render() {
 var counterStyle = {
 color: "#66FFFF",
 fontSize: 50
 };

 var count = this.state.strikes.toLocaleString();

 return (
 <h1 style={counterStyle}>{count}</h1>
);
 }
}

class LightningCounterDisplay extends React.Component {
 render() {
 var commonStyle = {
 margin: 0,
 padding: 0
 };

 var divStyle = {
 width: 250,
 textAlign: "center",
 backgroundColor: "#020202",
 padding: 40,
 fontFamily: "sans-serif",
 color: "#999999",
 borderRadius: 10
 };

 var textStyles = {
 emphasis: {
 fontSize: 38,
 ...commonStyle
 },

97Conclusion

 smallEmphasis: {
 ...commonStyle
 },
 small: {
 fontSize: 17,
 opacity: 0.5,
 ...commonStyle
 }
 };

 return (
 <div style={divStyle}>
 <LightningCounter />
 <h2 style={textStyles.smallEmphasis}>LIGHTNING STRIKES</h2>
 <h2 style={textStyles.emphasis}>WORLDWIDE</h2>
 <p style={textStyles.small}>(since you loaded this example)</p>
 </div>
);
 }
}

ReactDOM.render(
 <LightningCounterDisplay />,
 document.querySelector("#container")
);

If you make your code look like everything you see here and run the example again, you
will see our lightning counter example in all its cyan-colored glory. While you’re at it, take a
moment to look through the code to ensure that you don’t see too many surprises.

Conclusion

We just scratched the surface on what we can do to create stateful components. While using
a timer to update something in our state object is cool, the real action happens when we start
combining user interaction with state. So far, we’ve shied away from the large amount of
mouse, touch, keyboard, and other related things that your components will come into contact
with. In an upcoming chapter, we fix that. Along the way, you’ll see us taking what we’ve seen
about states to a whole new level. If that doesn’t excite you, then I don’t know what will.

Note: If you run into any issues, ask!

If you have any questions or your code isn’t running like you expect, don’t hesitate to ask!
Post on the forums at https://forum.kirupa.com and get help from some of the friendliest and
most knowledgeable people the Internet has ever brought together!

https://forum.kirupa.com

This page intentionally left blank

9
Going from Data

to UI in React

When you’re building your apps, thinking in terms of props, state, components, JSX tags,
render methods, and other React-isms might be the last thing on your mind. Most of the time,
you’re dealing with data in the form of JSON objects, arrays, and other data structures that have
no knowledge (or interest) in React or anything visual. Bridging the gulf between your data and
what you eventually see can be frustrating! Not to worry, though. This chapter helps reduce some
of those frustrating moments by running through some common scenarios you’ll encounter.

The Example

To help make sense of everything you’re about to see, we need an example. It’s nothing too
complicated, so go ahead and create a new HTML document and throw the following stuff
into it:

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8">
 <title>From Data to UI</title>
 <script src="https://unpkg.com/react@16/umd/react.development.js"></script>
 <script src="https://unpkg.com/react-dom@16/umd/react-dom.development.js"></script>
 <script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>

 <style>
 #container {
 padding: 50px;
 background-color: #FFF;
 }
 </style>
</head>

100 Chapter 9 Going from Data to UI in React

<body>
 <div id="container"></div>

 <script type="text/babel">
 class Circle extends React.Component {
 render() {
 var circleStyle = {
 padding: 10,
 margin: 20,
 display: "inline-block",
 backgroundColor: this.props.bgColor,
 borderRadius: "50%",
 width: 100,
 height: 100,
 };

 return (
 <div style={circleStyle}>
 </div>
);
 }
 }

 ReactDOM.render(
 <div>
 <Circle bgColor="#F9C240" />
 </div>,
 document.querySelector("#container");
);
 </script>
</body>

</html>

When you have your document set up, go ahead and preview what you have in your browser.
If everything went well, you’ll be greeted by a happy yellow circle (see Figure 9.1).

101The Example

Figure 9.1 If everything went well, you’ll get this yellow circle.

If you see what I see, great! Now, let’s take a moment to understand what this example is doing.
The bulk of what you see comes from the Circle component:

class Circle extends React.Component {
 render() {
 var circleStyle = {
 padding: 10,
 margin: 20,
 display: "inline-block",
 backgroundColor: this.props.bgColor,
 borderRadius: "50%",
 width: 100,
 height: 100,
 };

 return (
 <div style={circleStyle}>
 </div>
);
 }
}

102 Chapter 9 Going from Data to UI in React

It’s mostly made up of our circleStyle object that contains the inline style properties that
turn our boring div into an awesome circle. All the style values are hard-coded except for the
backgroundColor property, which takes its value from the bgColor prop that gets passed in.

Going beyond our component, we ultimately display our circle via our usual ReactDOM.render
method:

ReactDOM.render(
 <div>
 <Circle bgColor="#F9C240"/>
 </div>,
 destination
);

We have a single instance of our Circle component declared, and we declare it with the
bgColor prop set to the color we want our circle to appear. Now, having our Circle compo-
nent be defined as is inside our render method is a bit limiting, especially if we’re going to
be dealing with data that could affect what our Circle component does. In the next couple
sections, we’ll look at the ways we have for solving that.

Your JSX Can Be Anywhere, Part II

In Chapter 7, “Meet JSX…Again” , you learned that JSX can actually live outside a render
function and can be used as a value assigned to a variable or property. For example, we can
fearlessly do something like this:

var theCircle = <Circle bgColor="#F9C240" />;

ReactDOM.render(
 <div>
 {theCircle}
 </div>,
 destination
);

The theCircle variable stores the JSX for instantiating our Circle component. Evaluating this
variable inside our ReactDOM.render function results in a circle getting displayed. The end
result is no different than what we had earlier, but freeing our Circle component instantiation
from the shackles of the render method gives us more options to do crazy and cool things.

For example, you can go further and create a function that returns a Circle component:

function showCircle() {
 var colors = ["#393E41", "#E94F37", "#1C89BF", "#A1D363"];
 var ran = Math.floor(Math.random() * colors.length);

 // return a Circle with a randomly chosen color
 return <Circle bgColor={colors[ran]} />;
}

103Dealing with Arrays

In this case, the showCircle function returns a Circle component (boring!) with the value for
the bgColor prop set to a random color value (awesome sauce!). To have our example use the
showCircle function, all you have to do is evaluate it inside ReactDOM.render:

ReactDOM.render(
 <div>
 {showCircle()}
 </div>,
 destination
);

As long as the expression you’re evaluating returns JSX, you can put pretty much anything you
want inside the { and } brackets. That flexibility is really nice because you can do a lot when
your JavaScript lives outside the render function.

Dealing with Arrays

Now we get to some fun stuff! When you’re displaying multiple components, you can’t always
manually specify them:

ReactDOM.render(
 <div>
 {showCircle()}
 {showCircle()}
 {showCircle()}
 </div>,
 destination
);

In many real-world scenarios, the number of components you display is related to the number
of items in an array or arraylike (a.k.a. iterator) object you’re working with. That brings up a
few simple complications. For example, let’s say that we have an array called colors that looks
as follows:

var colors = ["#393E41", "#E94F37", "#1C89BF", "#A1D363",
 "#85FFC7", "#297373", "#FF8552", "#A40E4C"];

We want to create a Circle component for each item in this array (and set the bgColor prop to
the value of each array item). We can do this by creating an array of Circle components:

var colors = ["#393E41", "#E94F37", "#1C89BF", "#A1D363",
 "#85FFC7", "#297373", "#FF8552", "#A40E4C"];

var renderData = [];

for (var i = 0; i < colors.length; i++) {
 renderData.push(<Circle bgColor={colors[i]} />);
}

104 Chapter 9 Going from Data to UI in React

In this snippet, we populate our renderData array with Circle components just as we originally
set out to do. So far, so good. React makes displaying all of these components very simple. Take
a look at the highlighted line for all you have to do:

ReactDOM.render(
 <div>
 {renderData}
 </div>,
 destination
);

In our render method, all we do is specify our renderData array as an expression that we
need to evaluate. We don’t need to take any other step to go from an array of components to
something that looks like Figure 9.2 when you preview in your browser.

Figure 9.2 What you should see in your browser.

105Conclusion

Okay, I lied. There’s actually one more thing we need to do, and it’s a subtle one. React makes
UI updates really fast by having a good idea of what exactly is going on in your DOM. It does
this in several ways, but one really noticeable way is by internally marking each element with
some sort of an identifier.

When you create elements dynamically (such as what we’re doing with our array of Circle
components), these identifiers are not automatically set. We need to do some extra work.
That extra work takes the form of a key prop whose value React uses to uniquely identify each
particular component.

For our example, we can do something like this:

for (var i = 0; i < colors.length; i++) {
 var color = colors[i];
 renderData.push(<Circle key={i + color} bgColor={color} />);
}

On each component, we specify our key prop and set its value to a combination of color and
index position inside the colors array. This ensures that each component we dynamically create
ends up getting a unique identifier that React can then use to optimize any future UI updates.

Check Your Console, Yo!

React is really good at telling you when you might be doing something wrong. For example, if
you dynamically create elements or components and don’t specify a key prop on them, you’ll be
greeted with the following warning in your console:

Warning: Each child in an array or iterator should have a unique "key" prop.
Check the top-level render call using <div>.

When you’re working with React, it’s a good idea to periodically check your console for any
messages. Even if things seem to be working just fine, you never know what you might find.

Conclusion

All the tips and tricks you’ve seen in this article are made possible because of one thing: JSX is
JavaScript. This is what allows you to have your JSX live wherever JavaScript thrives. To us, it
looks like we’re doing something absolutely bizarre when we specify something like this:

for (var i = 0; i < colors.length; i++) {
 var color = colors[i];
 renderData.push(<Circle key={i + color} bgColor={color} />);
}

106 Chapter 9 Going from Data to UI in React

Even though we’re pushing pieces of JSX to an array, just like magic, everything works in the
end when renderData is evaluated inside our render method. I hate to sound like a broken
record, but this is because what our browser ultimately sees looks like this:

for (var i = 0; i < colors.length; i++) {
 var color = colors[i];

 renderData.push(React.createElement(Circle,
 {
 key: i + color,
 bgColor: color
 }));
}

When our JSX gets converted into pure JS, everything makes sense again. This is what allows us
to get away with putting our JSX in all sorts of uncomfortable (yet photogenic!) situations and
still get the end result we want. In the end, it’s all just JavaScript.

Note: If you run into any issues, ask!

If you have any questions or your code isn’t running like you expect, don’t hesitate to ask!
Post on the forums at https://forum.kirupa.com and get help from some of the friendliest and
most knowledgeable people the Internet has ever brought together!

https://forum.kirupa.com

10
Events in React

So far, most of our examples did their work only upon page load. As you probably guessed, that
isn’t normal. In most apps, especially the kind of UI-heavy ones you’ll be building, the app will
do a ton of things only as a reaction to something. Those somethings could be triggered by a
mouse click, a key press, a window resize, or a whole bunch of other gestures and interactions.
Events are the glue that makes all of this possible.

Now, you probably know all about events from your experience using them in the DOM world.
(If you don’t, then I suggest getting a quick refresher first: https://www.kirupa.com/html5/
javascript_events.htm.) The way React deals with events is a bit different, and these differences
can surprise you if you aren’t paying close attention. Don’t worry, that’s why you have this
book! We start off with a few simple examples and then gradually look at increasingly more
bizarre, complex, and (yes!) boring things.

Listening and Reacting to Events

The easiest way to learn about events in React is to actually use them, and that’s exactly what
you’re going to do here. To help with this, we have a simple example made up of a counter
that increments each time you click a button. Initially, our example will look like Figure 10.1.

Figure 10.1 Our example.

https://www.kirupa.com/html5/javascript_events.htm
https://www.kirupa.com/html5/javascript_events.htm

108 Chapter 10 Events in React

Each time you click the plus button, the counter value will increase by 1. After you click the
plus button a bunch of times, it will look sort of like Figure 10.2.

Figure 10.2 After clicking the plus button a bunch of times (23).

Under the covers, this example is pretty simple. Each time you click on the button, an event
gets fired. We listen for this event and do all sorts of React-ey things to get the counter to
update when this event gets overheard.

Starting Point

To save all of us some time, we aren’t going to be creating everything in our example from
scratch. By now, you probably have a good idea of how to work with components, styles, state,
and so on. Instead, we’re going to start off with a partially implemented example that contains
everything except the event-related functionality that you’re here to learn.

First, create a new HTML document and ensure that your starting point looks as follows:

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8">
 <title>Events</title>
 <script src="https://unpkg.com/react@16/umd/react.development.js"></script>
 <script src="https://unpkg.com/react-dom@16/umd/react-dom.development.js"></script>
 <script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>
 <style>
 #container {
 padding: 50px;
 background-color: #FFF;
 }
 </style>
</head>

109Listening and Reacting to Events

<body>
 <div id="container"></div>
 <script type="text/babel">

 </script>
</body>

</html>

When your new HTML document looks like what you see, it’s time to add our partially imple-
mented counter example. Inside our script tag below the container div, add the following:

class Counter extends React.Component {
 render() {
 var textStyle = {
 fontSize: 72,
 fontFamily: "sans-serif",
 color: "#333",
 fontWeight: "bold"
 };

 return (
 <div style={textStyle}>
 {this.props.display}
 </div>
);
 }
}

class CounterParent extends React.Component {
 constructor(props) {
 super(props);

 this.state = {
 count: 0
 };
 }

 render() {
 var backgroundStyle = {
 padding: 50,
 backgroundColor: "#FFC53A",
 width: 250,
 height: 100,
 borderRadius: 10,
 textAlign: "center"
 };

110 Chapter 10 Events in React

 var buttonStyle = {
 fontSize: "1em",
 width: 30,
 height: 30,
 fontFamily: "sans-serif",
 color: "#333",
 fontWeight: "bold",
 lineHeight: "3px"
 };

 return (
 <div style={backgroundStyle}>
 <Counter display={this.state.count} />
 <button style={buttonStyle}>+</button>
 </div>
);
 }
}

ReactDOM.render(
 <div>
 <CounterParent />
 </div>,
 document.querySelector("#container")
);

Now preview everything in your browser to make sure it works. You should see the begin-
ning of our counter. Take a few moments to look at what all of this code does. You shouldn’t
see anything that looks strange. The only odd thing is that clicking the plus button won’t do
anything. We’ll fix that in the next section.

Making the Button Click Do Something

Each time we click the plus button, we want the value of our counter to increase by 1. What we
need to do roughly looks like this:

1. Listen for the click event on the button.

2. Implement the event handler so that we react to the click and increase the value of our
this.state.count property that our counter relies on.

We’ll just go straight down the list, starting with listening for the click event. In React, you
listen to an event by specifying everything inline in your JSX itself. More specifically, you specify
inside your markup both the event you’re listening for and the event handler that will get called. To do

111Making the Button Click Do Something

this, find the return function inside our CounterParent component and make the following
highlighted change:

 .
 .
 .
return (
 <div style={backgroundStyle}>
 <Counter display={this.state.count}/>
 <button onClick={this.increase} style={buttonStyle}>+</button>
 </div>
);

We’ve told React to call the increase function when the onClick event is overheard. Next,
let’s go ahead and implement the increase function (a.k.a. our event handler). Inside our
CounterParent component, add the following highlighted lines:

class CounterParent extends React.Component {
 constructor(props) {
 super(props);

 this.state = {
 count: 0
 };

 this.increase = this.increase.bind(this);
 }

 increase(e) {
 this.setState({
 count: this.state.count + 1
 });
 }

 render() {
 var backgroundStyle = {
 padding: 50,
 backgroundColor: "#FFC53A",
 width: 250,
 height: 100,
 borderRadius: 10,
 textAlign: "center"
 };

 var buttonStyle = {
 fontSize: "1em",
 width: 30,

112 Chapter 10 Events in React

 height: 30,
 fontFamily: "sans-serif",
 color: "#333",
 fontWeight: "bold",
 lineHeight: "3px"
 };

 return (
 <div style={backgroundStyle}>
 <Counter display={this.state.count} />
 <button onClick={this.increase} style={buttonStyle}>+</button>
 </div>
);
 }
}

All we’re doing with these lines is making sure that each call to the increase function incre-
ments the value of our this.state.count property by 1. Because we’re dealing with events,
our increase function (as the designated event handler) will get access to any event argu-
ments. We’ve set these arguments to be accessed by e, and you can see that by looking at our
increase function’s signature (that is, what its declaration looks like). We’ll talk about the
various events and their properties in a little bit when we take a detailed look at Events. Lastly,
in the constructor, we bind the value of this to the increase function.

Now, go ahead and preview what you have in your browser. Once everything has loaded, click
the plus button to see our newly added code in action. The counter value should increase with
each click. Isn’t that pretty awesome?

Event Properties

As you know, events pass what are known as event arguments to our event handlers. These
event arguments contain a bunch of properties that are specific to the type of event you’re
dealing with. In the regular DOM world, each event has its own type. For example, if you’re
dealing with a mouse event, your event and its event arguments object are of type MouseEvent.
This MouseEvent object allows you to access mouse-specific information, such as which button
was pressed or the screen position of the mouse click. Event arguments for a keyboard-related
event are of type KeyboardEvent. Your KeyboardEvent object contains properties that (among
many other things) allow you to figure out which key was actually pressed. I could go on
forever for every other event type, but you get the point. Each event type contains its own set
of properties that you can access via the event handler for that event.

Why am I boring you with things you already know? Well….

113Event Properties

Meet Synthetic Events

In React, when you specify an event in JSX as we did with onClick, you’re not directly dealing
with regular DOM events. Instead, you’re dealing with a React-specific event type known as a
SyntheticEvent. Your event handlers don’t get native event arguments of type MouseEvent,
KeyboardEvent, and so on. They always get event arguments of type SyntheticEvent that
wrap your browser’s native event instead. What’s the fallout of this in our code? Surprisingly
not a whole lot.

Each SyntheticEvent contains the following properties:

boolean bubbles
boolean cancelable
DOMEventTarget currentTarget
boolean defaultPrevented
number eventPhase
boolean isTrusted
DOMEvent nativeEvent
void preventDefault()
boolean isDefaultPrevented()
void stopPropagation()
boolean isPropagationStopped()
DOMEventTarget target
number timeStamp
string type

These properties should seem pretty straightforward…and generic! The nongeneric stuff
depends on what type of native event our SyntheticEvent is wrapping. This means that a
SyntheticEvent that wraps a MouseEvent will have access to mouse-specific properties such
as the following:

boolean altKey
number button
number buttons
number clientX
number clientY
boolean ctrlKey
boolean getModifierState(key)
boolean metaKey
number pageX
number pageY
DOMEventTarget relatedTarget
number screenX
number screenY
boolean shiftKey

114 Chapter 10 Events in React

Similarly, a SyntheticEvent that wraps a KeyboardEvent will have access to these additional
keyboard-related properties:

boolean altKey
number charCode
boolean ctrlKey
boolean getModifierState(key)
string key
number keyCode
string locale
number location
boolean metaKey
boolean repeat
boolean shiftKey
number which

In the end, all of this means that you still get the same functionality in the SyntheticEvent
world that you had in the vanilla DOM world.

Now, here’s something I learned the hard way: Don’t refer to traditional DOM event documentation
when using SyntheticEvents and their properties. Because the SyntheticEvent wraps
your native DOM event, events and their properties might not map one-to-one. Some DOM
events don’t even exist in React. To avoid running into any issues, if you want to know the
name of a SyntheticEvent or any of its properties, refer to the React Event System document
(https://facebook.github.io/react/docs/events.html) instead.

Doing Stuff with Event Properties

By now, you’ve seen more about the DOM and SyntheticEvents than you’d probably like. To
wash away the taste of all that text, let’s write some code and put your newfound knowledge to
good use. Right now, our counter example increments by 1 each time you click the plus button.
We want to increment our counter by 10 when the Shift key on the keyboard is pressed while clicking
the plus button with our mouse.

We can do that by using the shiftKey property that exists on the SyntheticEvent when
using the mouse:

boolean altKey
number button
number buttons
number clientX
number clientY
boolean ctrlKey
boolean getModifierState(key)
boolean metaKey
number pageX
number pageY

https://facebook.github.io/react/docs/events.html

115More Eventing Shenanigans

DOMEventTarget relatedTarget
number screenX
number screenY
boolean shiftKey

The way this property works is simple. If the Shift key is pressed when this mouse event fires,
then the shiftKey property value is true. Otherwise, the shiftKey property value is false.
To increment our counter by 10 when the Shift key is pressed, go back to our increase
function and make the following highlighted changes:

increase(e) {
 var currentCount = this.state.count;

 if (e.shiftKey) {
 currentCount += 10;
 } else {
 currentCount += 1;
 }

 this.setState({
 count: currentCount
 });
}

When you’ve made the changes, preview the example in the browser. Each time you click
the plus button, your counter will increment by 1 just like always. If you click on the plus
button with your Shift key pressed, notice that the counter increments by 10 instead.

All of this works because we change our incrementing behavior depending on whether the
Shift key is pressed. That’s primarily handled by the following lines:

if (e.shiftKey) {
 currentCount += 10;
} else {
 currentCount += 1;
}

If the shiftKey property on our SyntheticEvent event argument is true, we increment our
counter by 10. If the shiftKey value is false, we just increment by 1.

More Eventing Shenanigans

We’re not done yet! Up to this point, we’ve looked at how to work with events in React in a
very simplistic way. In the real world, things rarely will be as direct as what you’ve seen. Your
real apps will be more complex, and because React insists on doing things differently, you’ll
need to learn (or relearn) some new event-related tricks and techniques to make your apps
work. That’s where this section comes in. We’re going to look at some common situations
you’ll run into and how to deal with them.

116 Chapter 10 Events in React

You Can’t Directly Listen to Events on Components

Let’s say your component is nothing more than a button or another type of UI element that
users will be interacting with. You can’t get away with doing something like what we see in the
following highlighted line:

class CounterParent extends React.Component {
 constructor(props) {
 super(props);

 this.state = {
 count: 0
 };

 this.increase = this.increase.bind(this);
 }

 increase(e) {
 this.setState({
 count: this.state.count + 1
 });
 }

 render() {
 return (
 <div>
 <Counter display={this.state.count} />
 <PlusButton onClick={this.increase} />
 </div>
);
 }
}

On the surface, this line of JSX looks totally valid. When somebody clicks our PlusButton
component, the increase function gets called. In case you’re curious, this is what our
PlusButton component looks like:

class PlusButton extends React.Component {
 render() {
 return (
 <button>
 +
 </button>
);
 }
}

Our PlusButton component doesn’t do anything crazy; it only returns a single HTML element.

117More Eventing Shenanigans

No matter how you slice and dice this, none of it matters. It doesn’t matter how simple or
obvious the HTML we’re returning via a component looks. You simply can’t listen for events on
them directly. This is because components are wrappers for DOM elements. What does it even
mean to listen for an event on a component? When your component gets unwrapped into
DOM elements, does the outer HTML element act as the thing you’re listening for the event
on? Is it some other element? How do you distinguish between listening for an event and
declaring a prop you’re listening for?

There’s no clear answer to any of those questions. It’s too harsh to say that the solution is to
simply not listen to events on components, either. Fortunately, there’s a workaround: We can
treat the event handler as a prop and pass it on to the component. Inside the component, we
can then assign the event to a DOM element and set the event handler to the value of the prop
we just passed in. I realize that probably makes no sense, so let’s walk through an example.

Take a look at the following highlighted line:

class CounterParent extends React.Component {
 .
 .
 .
 render() {
 return (
 <div>
 <Counter display={this.state.count} />
 <PlusButton clickHandler={this.increase} />
 </div>
);
 }
}

In this example, we create a property called clickHandler whose value is the increase event
handler. Inside our PlusButton component, we can then do something like this:

class PlusButton extends React.Component {
 render() {
 return (
 <button onClick={this.props.clickHandler}>
 +
 </button>
);
 }
}

On our button element, we specify the onClick event and set its value to the clickHandler
prop. At runtime, this prop gets evaluated as our increase function, and clicking the plus
button ensures that the increase function gets called. This solves our problem while still
allowing our component to participate in all this eventing goodness.

118 Chapter 10 Events in React

Listening to Regular DOM Events

If you thought the previous section was a doozy, wait until you see what we have here. Not all
DOM events have SyntheticEvent equivalents. It might seem like you can just add the on
prefix and capitalize the event you’re listening for when specifying it inline in your JSX:

class Something extends React.Component {
 .
 .
 .
 handleMyEvent(e) {
 // do something
 }

 render() {
 return (
 <div onSomeEvent={this.handleMyEvent}>Hello!</div>
);
 }
}

It doesn’t work that way! For events that React doesn’t officially recognize, you have to follow
the traditional approach that uses addEventListener with a few extra hoops to jump through.

Take a look at the following section of code:

class Something extends React.Component {
 .
 .
 .
 handleMyEvent(e) {
 // do something
 }

 componentDidMount() {
 window.addEventListener("someEvent", this.handleMyEvent);
 }

 componentWillUnmount() {
 window.removeEventListener("someEvent", this.handleMyEvent);
 }

 render() {
 return (
 <div>Hello!</div>
);
 }
}

119More Eventing Shenanigans

We have our Something component that listens for an event called someEvent. We start listen-
ing for this event under the componentDidMount method, which is automatically called when
our component gets rendered. We listen for our event by using addEventListener and speci-
fying both the event and the event handler to call.

That should be pretty straightforward. The only other point you need to keep in mind is that
you need to remove the event listener when the component is about to be destroyed. To do
that, you can use the opposite of the componentDidMount method, the componentWillUnmount
method. Put your removeEventListener call inside that method to ensure that no trace of our
event listening exists after our component goes away.

The Meaning of this Inside the Event Handler

When dealing with events in React, the value of this inside your event handler is different
than what you normally see in the non-React DOM world. In the non-React world, the value of
this inside an event handler refers to the element that fired the event:

function doSomething(e) {
 console.log(this); // button element
}

var foo = document.querySelector("button");
foo.addEventListener("click", doSomething, false);

In the React world, the value of this does not refer to the element that fired the event. The
value is the very unhelpful (yet correct) undefined. That’s why we need to explicitly specify
what this binds to using the bind method, as you’ve seen a few times:

class CounterParent extends React.Component {
 constructor(props) {
 super(props);

 this.state = {
 count: 0
 };

 this.increase = this.increase.bind(this);
 }

 increase(e) {
 console.log(this);

 this.setState({
 count: this.state.count + 1
 });
 }

120 Chapter 10 Events in React

 render() {
 return (
 <div>
 <Counter display={this.state.count} />
 <button onClick={this.increase}>+</button>
 </div>
);
 }
}

In this example, the value of this inside the increase event handler refers to the
CounterParent component. It doesn’t refer to the element that triggered the event. You can
attribute this behavior to us binding the value of this to our component from inside our
constructor.

React…Why? Why?

Before we call it a day, let’s use this time to talk about why React decided to deviate from how
we’ve worked with events in the past. There are two reasons:

1. Browser compatibility

2. Improved performance

Let’s elaborate on these reasons a bit.

Browser Compatibility

Event handling is one of those things that works consistently in modern browsers, but once
you go back to older browser versions, things get really bad really quickly. By wrapping all the
native events as an object of type SyntheticEvent, React frees you from dealing with event-
handling quirks.

Improved Performance

In complex UIs, the more event handlers you have, the more memory your app takes up.
Manually dealing with that isn’t difficult, but it is a bit tedious as you try to group events under
a common parent. Sometimes that just isn’t possible. Sometimes the hassle doesn’t outweigh
the benefits. What React does is pretty clever.

React never directly attaches event handlers to the DOM elements. It uses one event handler at
the root of your document that is responsible for listening to all events and calling the appropriate
event handler as necessary (see Figure 10.3).

121Conclusion

Figure 10.3 React uses one event handler at the root of your document.

This frees you from having to deal with optimizing your event handler–related code yourself.
If you’ve manually had to do that in the past, you can relax, knowing that React takes care of
that tedious task for you. If you’ve never had to optimize event handler–related code yourself,
consider yourself lucky.

Conclusion

You’ll spend a good amount of time dealing with events, and this chapter threw a lot of things
at you. We started by exploring the basics of how to listen to events and specify the event
handler. Toward the end, we got fully invested and looked at eventing corner cases that you’ll
bump into if you aren’t careful enough. You don’t want to bump into corners. That’s never fun.

Note: If you run into any issues, ask!

If you have any questions or your code isn’t running like you expect, don’t hesitate to ask!
Post on the forums at https://forum.kirupa.com and get help from some of the friendliest and
most knowledgeable people the Internet has ever brought together!

https://forum.kirupa.com

This page intentionally left blank

11
The Component Lifecycle

In the beginning, we took a very simple view of components and what they do. As you learned
more about React and did cooler and more involved things, you came to see that components
aren’t all that simple. They help us deal with properties, state, and events, and often are respon-
sible for the well-being of other components as well. Keeping track of everything components
do sometimes can be tough.

To help with this, React provides us with lifecycle methods. Unsurprisingly, lifecycle methods
are special methods that automatically get called as our component goes about its business.
They notify us of important milestones in a component’s life, and we can use these notifica-
tions to simply pay attention or change what our component is about to do.

In this chapter, we look at these lifecycle methods and talk about what we can do with them.

Note: Changes Are a Foot Here!

There are proposed changes in this area that will change how lifecycle methods behave. What
you see printed here is based on the latest guidance, but note that this information may
change. Visit this link to be kept up-to-date: http://bit.ly/lifecycleChanges.

Meet the Lifecycle Methods

Lifecycle methods aren’t very complicated. You can think of them as glorified event handlers
that get called at various points in a component’s life. As with event handlers, you can write
some code to do things at those various points. Before we go further, it’s time for you to
quickly meet our lifecycle methods:

 ■ componentWillMount

 ■ componentDidMount

 ■ componentWillUnmount

 ■ componentWillUpdate

 ■ componentDidUpdate

 ■ shouldComponentUpdate

 ■ componentWillReceiveProps

 ■ componentDidCatch

http://bit.ly/lifecycleChanges

124 Chapter 11 The Component Lifecycle

We aren’t quite done yet. We’re going to throw one other method into the mix even though it
isn’t strictly a lifecycle method: the infamous render method.

Some of these names probably sound familiar to you, and some you’re probably seeing for the
first time. Don’t worry. By the end of all this, you’ll be on a first-name basis with all of them!
We’re going to look at these lifecycle methods from various angles, starting with some code.

See the Lifecycle Methods in Action

Learning about these lifecycle methods is about as exciting as memorizing names for foreign
places you have no plans to visit. To make all of this more bearable, let’s play with them in a
simple example before we get all academic and read about them.

To play with this example, go to the following URL: https://www.kirupa.com/react/
lifecycle_example.htm. When this page loads, you’ll see a variation of the counter example
you saw earlier (see Figure 11.1).

Figure 11.1 A variation on the counter example.

Don’t click the button or anything just yet. (If you’ve already clicked the button, just refresh the
page to start the example from the beginning.) I’m saying this for a reason, and it isn’t because
my OCD is acting up. You want to see this page as it is before you interact with it.

Now bring up your browser’s developer tools and take a look at the Console tab. In Chrome,
you’ll see something that looks like Figure 11.2.

https://www.kirupa.com/react/lifecycle_example.htm
https://www.kirupa.com/react/lifecycle_example.htm

125Meet the Lifecycle Methods

Figure 11.2 The Console view in Chrome.

Notice what you see printed. You see some messages, and these messages start with the name of
what looks like a lifecycle method. If you click the plus button now, notice that your Console
shows more lifecycle methods getting called (see Figure 11.3).

Figure 11.3 More lifecycle methods getting called.

Play with this example for a bit. You can see that it allows you to place all of these lifecycle
methods in the context of a component that you’ve already seen. As you keep clicking the plus
button, more lifecycle method entries show up. Eventually, when your counter approaches
a value of 5, your example disappears and the following entry shows up in your console:
 componentWillUnmount: Component is about to be removed from the DOM! At this
point, you’ve reached the end of this example. Of course, to start over, you can just refresh
the page.

126 Chapter 11 The Component Lifecycle

Now that you’ve seen the example, let’s take a quick look at the component that’s responsible
for all of this (full source: https://github.com/kirupa/kirupa/blob/master/reactjs/lifecycle.htm):

class CounterParent extends React.Component {
 constructor(props) {
 super(props);

 console.log("constructor: Default state time!");

 this.state = {
 count: 0
 };

 this.increase = this.increase.bind(this);
 }

 increase() {
 this.setState({
 count: this.state.count + 1
 });
 }

 componentWillUpdate(newProps, newState) {
 console.log("componentWillUpdate: Component is about to update!");
 }

 componentDidUpdate(currentProps, currentState) {
 console.log("componentDidUpdate: Component just updated!");
 }

 componentWillMount() {
 console.log("componentWillMount: Component is about to mount!");
 }

 componentDidMount() {
 console.log("componentDidMount: Component just mounted!");
 }

 componentWillUnmount() {
 console.log("componentWillUnmount: Component is about to be removed from the DOM!");
 }

 shouldComponentUpdate(newProps, newState) {
 console.log("shouldComponentUpdate: Should component update?");

https://github.com/kirupa/kirupa/blob/master/reactjs/lifecycle.htm

127Meet the Lifecycle Methods

 if (newState.count < 5) {
 console.log("shouldComponentUpdate: Component should update!");
 return true;
 } else {
 ReactDOM.unmountComponentAtNode(destination);
 console.log("shouldComponentUpdate: Component should not update!");
 return false;
 }
 }

 componentWillReceiveProps(newProps) {
 console.log("componentWillReceiveProps: Component will get new props!");
 }

 render() {
 var backgroundStyle = {
 padding: 50,
 border: "#333 2px dotted",
 width: 250,
 height: 100,
 borderRadius: 10,
 textAlign: "center"
 };

 return (
 <div style={backgroundStyle}>
 <Counter display={this.state.count} />
 <button onClick={this.increase}>
 +
 </button>
 </div>
);
 }
}

console.log("defaultProps: Default prop time!");
CounterParent.defaultProps = {

};

Take a few moments to understand what all this code does. It seems lengthy, but the bulk of it
is just each lifecycle method listed with a console.log statement defined. After you’ve gone
through this code, play with the example one more time. Trust me. The more time you spend in
the example to figure out what’s going on, the more fun you’ll have. The following sections will be
dreadfully boring when we look at each lifecycle method across the rendering, updating, and
unmounting phases. Don’t say I didn’t warn you.

128 Chapter 11 The Component Lifecycle

The Initial Rendering Phase

When your component is about to start its life and make its way to the DOM, the following
lifecycle methods get called (see Figure 11.4).

Figure 11.4 The lifecycle methods called initially.

What you saw in your console when the example was loaded was a less colorful version of what
you saw here. Now let’s go a bit further and see more about what each lifecycle methods does.

Getting the Default Props

This property on the component allows you to specify the default value of this.props. If we
wanted to set a name property on our CounterParent component, it could look as follows:

CounterParent.defaultProps = {
 name: "Iron Man"
};

This gets run before your component is even created or any props from parent components are
passed in.

129Meet the Lifecycle Methods

Getting the Default State

This step happens inside your component’s constructor. You get the chance to specify the
default value of this.state as part of your component’s creation:

constructor(props) {
 super(props);

 console.log("constructor: Default state time!");

 this.state = {
 count: 0
 };

 this.increase = this.increase.bind(this);
}

Notice that we’re defining our state object and initializing it with a count property whose
value is 0.

componentWillMount
This is the last method that gets called before your component gets rendered to the DOM.
There’s an important point to note here: If you call setState inside this method, your
 component will not re-render.

render
This one should be very familiar to you by now. Every component must have this method
defined, and it is responsible for returning some JSX. If you don’t want to render anything,
simply return null or false.

componentDidMount
This method gets called immediately after your component renders and gets placed on
the DOM. At this point, you can safely perform any DOM querying operations without
worrying about whether your component has made it. If you have any code that depends
on your component being ready, you can specify all of that code here as well.

With the exception of the render method, all of these lifecycle methods can fire only once.
That’s quite different from the methods you see next.

130 Chapter 11 The Component Lifecycle

The Updating Phase

After your components get added to the DOM, they can potentially update and re-render when
a prop or state change occurs. During this time, a different collection of lifecycle methods gets
called. Yawn. Sorry…

Dealing with State Changes

First, let’s look at a state change. As we mentioned earlier, when a state change occurs, your
component calls its render method again. Any components that rely on the output of this
component also get their render methods called. This is done to ensure that the component is
always displaying the latest version of itself. All of that is true, but it’s only a partial representa-
tion of what happens.

When a state change happens, all the lifecycle methods in Figure 11.5 get called.

Figure 11.5 Lifecycle methods called when a state change happens.

Check out what these lifecycle methods do:

131Meet the Lifecycle Methods

shouldComponentUpdate
Sometimes you don’t want your component to update when a state change occurs. This
method allows you to control this updating behavior. If you use this method and return a true
value, the component will update. If this method returns a false value, this component will
skip updating.

That probably sounds a bit confusing, so take a look at a simple snippet:

shouldComponentUpdate(newProps, newState) {
 console.log("shouldComponentUpdate: Should component update?");

 if (newState.count < 5) {
 console.log("shouldComponentUpdate: Component should update!");
 return true;
 } else {
 ReactDOM.unmountComponentAtNode(destination);
 console.log("shouldComponentUpdate: Component should not update!");
 return false;
 }
}

This method gets called with two arguments, which we named newProps and newState. In
this snippet of code, we check whether the new value of our id state property is less than or
equal to 2. If the value is less than or equal to 2, we return true to indicate that this compo-
nent should update. If the value is not less than or equal to 2, we return false to indicate that
this component should not update.

componentWillUpdate
This method gets called just before your component is about to update. Nothing too exciting
happens here. One point to note is that you can’t change your state by calling this.setState
from this method.

render
If you didn’t override the update via shouldComponentUpdate, the code inside render gets
called again to ensure that your component displays itself properly.

componentDidUpdate
This method gets called after your component updates and the render method has been called.
If you need to execute any code after the update takes place, this is the place to stash it.

132 Chapter 11 The Component Lifecycle

Dealing with Prop Changes

The other time your component updates is when its prop value changes after it has been
rendered into the DOM. In this scenario, the lifecycle methods in Figure 11.6 get called.

Figure 11.6 Lifecycle methods when the component’s prop value changes.

The only new method here is componentWillReceiveProps. This method receives one argu-
ment, and this argument contains the new prop value that is about to be assigned to it.

You saw the rest of the lifecycle methods when looking at state changes, so let’s not revisit
them. Their behavior is identical when dealing with a prop change.

The Unmounting Phase

The last phase to look at is when your component is about to be destroyed and removed from
the DOM (see Figure 11.7).

Only one lifecycle method is active here, and that is componentWillUnmount. You perform
cleanup-related tasks here, such as removing event listeners and stopping timers. After this
method gets called, your component is removed from the DOM and you can say goodbye to it.

133Conclusion

Figure 11.7 Only one lifecycle method is active when your component is about to be destroyed
and removed from the DOM.

Conclusion

Components are fascinating little things. On the surface, they seem like they don’t have much
going on. As in a good documentary about the oceans, when we look a little deeper and closer,
it’s almost like seeing a whole other world. As it turns out, React is constantly watching and
notifying your component every time something interesting happens. All of this is done via
the (extremely boring) lifecycle methods that we spent this entire tutorial looking at. Now,
I want to reassure you that knowing what each lifecycle method does and when it gets called
will come in handy one day. All that you’ve learned isn’t just trivial knowledge, although your
friends will be impressed if you can describe every lifecycle method from memory. Go ahead
and try it the next time you see them.

Note: If you run into any issues, ask!

If you have any questions or your code isn’t running like you expect, don’t hesitate to ask!
Post on the forums at https://forum.kirupa.com and get help from some of the friendliest and
most knowledgeable people the Internet has ever brought together!

https://forum.kirupa.com

This page intentionally left blank

12
Accessing DOM Elements

in React

Sometimes you want to access properties and methods on an HTML element directly. In our
React-colored world, where JSX represents everything that is good and pure about markup, why
would you ever want to deal directly with the horribleness that is HTML? As you will find out
(if you haven’t already), in many cases, dealing with HTML elements through the JavaScript
DOM API directly is easier than fiddling with “the React way” of doing things. To highlight one
such situation, take a look at the Colorizer example in Figure 12.1.

Figure 12.1 Colorizer example.

136 Chapter 12 Accessing DOM Elements in React

If you have access to a browser, you can view it live at the following location:
https://www.kirupa.com/react/examples/colorizer.htm.

The Colorizer colorizes the (currently) white square with whatever color you provide it. To see
it in action, enter a color value inside the text field and click/tap the Go button. (If you don’t
have any idea of what color to enter, yellow is a good one.) After you provide a color and
submit it, the white square turns whatever color value you provided (see Figure 12.2).

Figure 12.2 The white square turns yellow.

The fact that the square changes color for any valid color value you submit is pretty awesome,
but that isn’t what you should focus on. Instead, pay attention to the text field and the button
after you submit a value. Notice that the button gets focus, and the color value you just
submitted is still displayed inside the form. If you want to enter another color value, you need
to explicitly return focus to the text field and clear out whatever current value is present. Eww!
That seems unnecessary, and we can do better than that from a usability point of view.

Wouldn’t it be great if we could both clear the existing color value and return focus to the text
field immediately after submitting a color? That would mean that if we submitted a color value
of purple, afterward we would see something that looks like Figure 12.3.

https://www.kirupa.com/react/examples/colorizer.htm

137The Colorizer Example

Figure 12.3 We get purple and the text field is ready for the next color.

The entered value of purple is cleared and the focus is returned to the text field. This allows us
to enter additional color values and submit them easily without having to keep jumping back
and forth between the text field and the button. Isn’t that much nicer?

Getting this behavior right using JSX and traditional React techniques is hard. We aren’t even
going to bother explaining how to go about it. On the other hand, getting this behavior right
by dealing with the JavaScript DOM API on various HTML elements directly is pretty easy.
Guess what we’re going to do? In the following sections, we’re going to use something known
as refs, which React provides to help us access the DOM API on HTML elements. We’ll also look
at portals, which allow us to render content to any HTML element on the page.

The Colorizer Example

To explain refs and portals, we’ll be modifying the Colorizer example you saw earlier. The code
for it looks as follows:

<!DOCTYPE html>
<html>

138 Chapter 12 Accessing DOM Elements in React

<head>
 <meta charset="utf-8">
 <title>The Colorizer!</title>
 <script src="https://unpkg.com/react@16/umd/react.development.js"></script>
 <script src="https://unpkg.com/react-dom@16/umd/react-dom.development.js"></script>
 <script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>

 <style>
 #container {
 padding: 50px;
 background-color: #FFF;
 }

 .colorSquare {
 box-shadow: 0px 0px 25px 0px #333;
 width: 242px;
 height: 242px;
 margin-bottom: 15px;
 }

 .colorArea input {
 padding: 10px;
 font-size: 16px;
 border: 2px solid #CCC;
 }

 .colorArea button {
 padding: 10px;
 font-size: 16px;
 margin: 10px;
 background-color: #666;
 color: #FFF;
 border: 2px solid #666;
 }

 .colorArea button:hover {
 background-color: #111;
 border-color: #111;
 cursor: pointer;
 }
 </style>
</head>

<body>
 <div id="container"></div>
 <script type="text/babel">

139The Colorizer Example

 class Colorizer extends React.Component {
 constructor(props) {
 super(props);

 this.state = {
 color: "",
 bgColor: "white"
 };

 this.colorValue = this.colorValue.bind(this);
 this.setNewColor = this.setNewColor.bind(this);
 }

 colorValue(e) {
 this.setState({
 color: e.target.value
 });
 }

 setNewColor(e) {
 this.setState({
 bgColor: this.state.color
 });

 e.preventDefault();
 }

 render() {
 var squareStyle = {
 backgroundColor: this.state.bgColor
 };

 return (
 <div className="colorArea">
 <div style={squareStyle} className="colorSquare"></div>

 <form onSubmit={this.setNewColor}>
 <input onChange={this.colorValue}
 placeholder="Enter a color value"></input>
 <button type="submit">go</button>
 </form>
 </div>
);
 }
 }

140 Chapter 12 Accessing DOM Elements in React

 ReactDOM.render(
 <div>
 <Colorizer />
 </div>,
 document.querySelector("#container")
);
 </script>
</body>

</html>

Take a few moments to look through the code and see how it maps to our example. You
shouldn’t find anything surprising here. Once you’ve gotten a good understanding of this code,
it’s time to learn about refs.

Meet Refs

As you know very well by now, inside our various render methods we’ve been writing
HTML-like things known as JSX. Our JSX is simply a description of what the DOM should
look like. It doesn’t represent actual HTML, despite looking a whole lot like it. To provide a
bridge between JSX and the final HTML elements in the DOM, React provides us with
something funnily named as refs (short for references).

The way refs works is a little odd. The easiest way to make sense of it is to just use it. Take
a look at just the render method from our Colorizer example:

render() {
 var squareStyle = {
 backgroundColor: this.state.bgColor
 };

 return (
 <div className="colorArea">
 <div style={squareStyle} className="colorSquare"></div>

 <form onSubmit={this.setNewColor}>
 <input onChange={this.colorValue}
 placeholder="Enter a color value"></input>
 <button type="submit">go</button>
 </form>
 </div>
);
}

141Meet Refs

Inside this render method, we are returning a big chunk of JSX representing (among other
things) the input element where we enter our color value. We want to access the input
element’s DOM representation so that we can call some APIs on it using JavaScript.

The way we do that using refs is by setting the ref attribute on the element whose HTML we
want to reference:

render() {
 var squareStyle = {
 backgroundColor: this.state.bgColor
 };

 return (
 <div className="colorArea">
 <div style={squareStyle} className="colorSquare"></div>

 <form onSubmit={this.setNewColor}>
 <input onChange={this.colorValue}
 ref={}
 placeholder="Enter a color value"></input>
 <button type="submit">go</button>
 </form>
 </div>
);
}

Because we’re interested in the input element, our ref attribute is attached to it. Right now,
our ref attribute is empty. What you typically set as the ref attribute’s value is a JavaScript
callback function. This function gets called automatically when the component housing this
render method gets mounted. If we set our ref attribute’s value to a simple JavaScript func-
tion that stores a reference to the referenced DOM element, it would look something like the
following highlighted lines:

render() {
 var squareStyle = {
 backgroundColor: this.state.bgColor
 };

 var self = this;

 return (
 <div className="colorArea">
 <div style={squareStyle} className="colorSquare"></div>

 <form onSubmit={this.setNewColor}>
 <input onChange={this.colorValue}
 ref={
 function(el) {

142 Chapter 12 Accessing DOM Elements in React

 self._input = el;
 }
 }
 placeholder="Enter a color value"></input>
 <button type="submit">go</button>
 </form>
 </div>
);
}

The end result of this code running once our component mounts is simple: We can access
the HTML representing our input element from anywhere inside our component by using
self._input. Take a few moments to see how the highlighted lines of code help do
that. When you’re done, we’ll walk through this code together.

First, our callback function looks as follows:

function(el) {
 self._input = el;
}

This anonymous function gets called when our component mounts, and a reference to the
final HTML DOM element is passed in as an argument. We capture this argument using the el
 identifier, but you can use any name for this argument that you want. The body of this callback
function simply sets a custom property called _input to the value of our DOM element. To
ensure that we create this property on our component, we use the self variable to create a
closure—the this in question refers to our component instead of the callback function itself.
Phew!

Let’s focus on what we can do now that we have access to our input element. Our goal is to
clear the contents of our input element and give focus to it once the form gets submitted. The
code for doing that will live in our setNewColor method, so add the following highlighted
lines:

setNewColor(e) {
 this.setState({
 bgColor: this.state.color
 });

 this._input.focus();
 this._input.value = "";

 e.preventDefault();
}

Calling this._input.value = "" clears the color we entered. We set focus back to our input
element by calling this._input.focus(). All our ref-related work was to simply enable these
two lines; we needed some way to have this._input point to the HTML element representing
our input element that we defined in JSX. Then we can just call the value property and focus
method that the DOM API exposes on this element.

143Using Portals

Simplifying Further with ES6 Arrow Functions

Learning React is hard enough, so I’ve tried to avoid forcing you to use ES6 techniques by
default. When it comes to working with the ref attribute, using arrow functions to deal with the
callback function simplifies matters a bit. This is one of those cases for which I recommend
you use an ES6 technique.

As you saw a few moments ago, to assign a property on our component to the referenced
HTML element, we did something like this:

<input

 ref={

 function(el) {

 self._input = el;

 }

 }>

</input>

To deal with context shenanigans, we created a self variable initialized to this, to ensure
that we created the _input property on our component. That seems unnecessarily messy.

Using arrow functions, we can simplify all of this down to just the following:

<input

 ref={

 (el) => this._input = el

 }>

</input>

The end result is identical to what we spent all this time looking at. Because of how arrow func-
tions deal with context, you can use this inside the function body and reference the component
without doing any extra work. No need for an outer self variable equivalent!

Using Portals

You need to be aware of one more DOM-related trick. So far, we’ve been dealing with HTML
only in the context of what our JSX generates, either from a single component or combined
through many components. This means we’re limited by the DOM hierarchy our parent
components impose on us. Having arbitrary access to any DOM element anywhere on the page
doesn’t seem possible. Or is it? As it turns out, you can choose to render your JSX to any DOM
element anywhere on the page; you aren’t limited to just sending your JSX to a parent compo-
nent. The magic behind this wizardry is a feature known as portals.

The way we use a portal is very similar to what we do with our ReactDOM.render method.
We specify the JSX we want to render, and we specify the DOM element we want to render to.

144 Chapter 12 Accessing DOM Elements in React

To see all of this in action, go back to our example and add the following h1 element
as a sibling just above where we have our container div element defined:

<body>

 <h1 id="colorHeading">Colorizer</h1>

 <div id="container"></div>
 .
 .
 .

Next, add the following style rule inside the style tag to make our h1 element look nicer:

#colorHeading {
 padding: 0;
 margin: 50px;
 margin-bottom: -20px;
 font-family: sans-serif;
}

With this style rule added, let’s first preview our app to make sure that the HTML and CSS we
added look as expected (Figure 12.4):

Figure 12.4 What our example looks like currently!

145Using Portals

Here’s what we want to do. We want to change the value of our h1 element to display the
name of the color we are currently previewing. The point to emphasize is that our h1 element
is a sibling of the container div element where our app is set to render into.

To accomplish what we’re trying to do, go back to our Colorizer component’s render
method and add the following highlighted line to the return statement:

return (
 <div className="colorArea">
 <div style={squareStyle} className="colorSquare"></div>

 <form onSubmit={this.setNewColor}>
 <input onChange={this.colorValue}
 ref={
 function(el) {
 self._input = el;
 }
 }
 placeholder="Enter a color value"></input>
 <button type="submit">go</button>
 </form>
 <ColorLabel color={this.state.bgColor}/>
 </div>
);

Here we’re instantiating a component called ColorLabel and declaring a prop called color
with its value set to our bgColor state property. We haven’t created this component yet, so to
fix that, add the following lines just above where we have our ReactDOM.render call:

var heading = document.querySelector("#colorHeading");

class ColorLabel extends React.Component {
 render() {
 return ReactDOM.createPortal(
 ": " + this.props.color,
 heading
);
 }
}

We are referencing our h1 element with the heading variable. That’s old stuff. For the new stuff,
take a look at our ColorLabel component’s render method. More specifically, notice what our
return statement looks like. We are returning the result of calling ReactDOM.createPortal():

class ColorLabel extends React.Component {
 render() {
 return ReactDOM.createPortal(

146 Chapter 12 Accessing DOM Elements in React

 ": " + this.props.color,
 heading
);
 }
}

The ReactDOM.createPortal() method takes two arguments: the JSX to print and the DOM
element to print that JSX to. The JSX we are printing is just some formatting characters and the
color value we passed in as a prop:

class ColorLabel extends React.Component {
 render() {
 return ReactDOM.createPortal(
 ": " + this.props.color,
 heading
);
 }
}

The DOM element we are printing all of this to is our h1 element referenced by the heading
variable:

class ColorLabel extends React.Component {
 render() {
 return ReactDOM.createPortal(
 ": " + this.props.color,
 heading
);
 }
}

When you preview your app and change the color, notice what happens. The color we specified
in our input element shows up in the heading (Figure 12.5):

147Using Portals

Figure 12.5 Our header now contains our color element.

The important part to re-emphasize is that our h1 element is outside the scope of our main
React app, which prints to our container div element. By relying on portals, we have
direct access to any element in our page’s DOM and can render content into it, bypassing the
 traditional parent/child hierarchy we’ve been living under so far.

148 Chapter 12 Accessing DOM Elements in React

Conclusion

Most of the time, everything you want to do will be within arm’s reach of the JSX you’re
writing. Sometimes, though, you need to break free from the box React puts you in. Even
though everything we’re creating is rendering to a HTML document, our React app is like a
self-sufficient tropical island within the document; you never quite see the actual HTML that
lies just beneath the sands. To help you both see the HTML inside the island and make contact
with things that live outside the island, we looked at two features, refs and portals. Refs allow
you to cut through and access the underlying HTML element behind the JSX. Portals allow you
to render your content to any element in the DOM that you have access to. Between these two
solutions, you should be able to easily address any need that you have to deal with regards to
the DOM directly.

Note: If you run into any issues, ask!

If you have any questions or your code isn’t running like you expect, don’t hesitate to ask!
Post on the forums at https://forum.kirupa.com and get help from some of the friendliest and
most knowledgeable people the Internet has ever brought together!

https://forum.kirupa.com

13
Setting Up Your React Dev

Environment Easily

The last major new topic we’re going to look at is less about React and more about setting up
your development environment to build a React app. Until now, we’ve been building our React
apps by including a few script files:

<script src="https://unpkg.com/react@16/umd/react.development.js"></script>
<script src="https://unpkg.com/react-dom@16/umd/react-dom.development.js"></script>
<script src="https://unpkg.com/babel-standalone@6.15.0/babel.min.js"></script>

These script files not only loaded the React libraries, but they also loaded Babel to help our
browser do what needs to be done when encountering bizarre things like JSX (Figure 13.1):

150 Chapter 13 Setting Up Your React Dev Environment Easily

Figure 13.1 What our in-browser JSX transformer does.

To review what we mentioned earlier when talking about this approach, the downside is
performance. As your browser handles all of the page loading things it normally does, it is also
responsible for turning your JSX into actual JavaScript. That conversion is a time-consuming
process that is fine during development but not fine if every user of your app has to pay that
performance penalty.

151 Setting Up Your React Dev Environment Easily

The solution is to set up your development environment so that your JSX-to-JS conversion is
handled as part of getting your app built (Figure 13.2):

Figure 13.2 What the proper dev setup does with our JSX!

With this solution, your browser is loading your app and dealing with an already converted
(and potentially optimized) JavaScript file. Good stuff, right? The only reason we delayed
talking about all of this until now is for simplicity. Learning React is difficult enough. Adding
the complexity of build tools and setting up your environment as part of learning React is just
not cool. Now that you have a solid grasp of everything React does, it’s time to change that
with this chapter.

152 Chapter 13 Setting Up Your React Dev Environment Easily

In the following sections, we’re going to look at one way to set up your development environ-
ment using a combination of Node, Babel, and webpack. If all of this sounds bizarre to you,
don’t worry. We’ll use a really nifty solution created by Facebook that makes all of this a breeze.

Onward!

Meet Create React

A few years ago, getting your build environment set up would have been a huge pain because
it involved manually configuring all the tools we’ve talked about. You would have had to ask
your really smart friend for some advice. You might even have questioned your decision to
learn programming and React in the first place. Fortunately, the Create React project
(https://github.com/facebookincubator/create-react-app) came about and greatly simplified the
process of setting up your React environment. You just run a few commands on your command
line, and your React project is automatically created with all the proper behind-the-scenes
configurations.

To get started, first make sure you have the latest version of Node installed (https://nodejs.org/).
Then bring up your favorite command line. If you aren’t too familiar with command lines,
don’t worry. On Windows, launch either the command prompt or the BASH shell. On Mac,
launch the Terminal. You’ll see something that looks like this:

It’s basically some bizarre window with a blinking cursor that allows you to type things into
it. The first thing you need to do is install the Create React project. Type the following in your
command line and press Enter/Return:

npm install -g create-react-app

https://github.com/facebookincubator/create-react-app
https://nodejs.org/

153Meet Create React

It can take anywhere from a few seconds to a few minutes, but once your installation has
completed, it’s time to create our new React project. Navigate to the folder where you want to
create your new project—this can be your desktop, a location under Documents, and so on.
When you’ve navigated to a folder in your command line, enter the following to create a new
project at this location:

create-react-app helloworld

You’ll see something that looks as follows:

After the command has fully executed, you’ll have a project called helloworld created for you.
Don’t worry too much about everything that’s going on; we’ll look at the project contents
later. For now, the first thing to do is test this project. Navigate into the newly created project’s
helloworld folder by typing the following:

cd helloworld

From inside this folder, enter the following to test the app:

npm start

If you have yarn installed, Create will prefer it over npm for the install and you’ll see onscreen
instructions saying to use yarn start instead of npm start.

154 Chapter 13 Setting Up Your React Dev Environment Easily

Your project will get built, a local web server will get started, and you’ll see your project
running, similar to the following image:

If everything worked out properly, you should see the same thing. If this is your first time
creating a new React project using the command line, congratulations! This is a really big step.
You aren’t done, though. Now, we need to take a few steps back and revisit what exactly just
happened.

Making Sense of What Happened

Right now, we just see whatever default content the create-react-app command generated
for us. That isn’t very helpful. First, let’s take a look at what exactly gets generated. Your file
and folder structure after running create-react-app helloworld will look as in Figure 13.3:

155Meet Create React

Figure 13.3 What our file and folder structure looks like.

The index.html in your public folder gets loaded in your browser. If you take a look at this file,
you’ll realize that it’s very basic. Here are the contents of this file with all the comments removed:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1,
shrink-to-fit=no">
 <meta name="theme-color" content="#000000">

 <link rel="manifest" href="%PUBLIC_URL%/manifest.json">
 <link rel="shortcut icon" href="%PUBLIC_URL%/favicon.ico">

 <title>React App</title>
 </head>
 <body>
 <noscript>
 You need to enable JavaScript to run this app.
 </noscript>

 <div id="root"></div>

 </body>
</html>

http://index.html

156 Chapter 13 Setting Up Your React Dev Environment Easily

The important part to look at is the div element with an id value of root. This is where the
contents of our React app ultimately get printed to. Speaking of that, the contents of our React
app with all the JSX are contained inside the src folder. The starting point for our React app is
contained in index.js:

import React from 'react';
import ReactDOM from 'react-dom';
import './index.css';
import App from './App';
import registerServiceWorker from './registerServiceWorker';

ReactDOM.render(<App />, document.getElementById('root'));
registerServiceWorker();

Notice the ReactDOM.render call that looks for the root element we called out inside
index.html. You’ll also see a bunch of import statements at the top of the page. These import
statements are part of something in JavaScript known as modules. The goal of modules is to
divide the functionality of your app into increasingly smaller pieces. When it comes time to
use a piece, you import only what you need instead of everything and the entire kitchen sink.
Some of the modules you import are a part of code in your project. Other modules, like React
and ReactDOM, are external to your project but still capable of being imported. I can say a lot
about module loading, but for your sanity (and mine!), let’s just leave that topic alone for now.

In our code right now, we’re importing both the React and React-DOM libraries. That should be
familiar from when we included the script tags for them earlier. We’re also importing a CSS file,
a service worker script that we’ll reference as registerServiceWorker, and a React compo-
nent that we’ll reference as App.

Our App component seems like our next stop, so to see what’s inside it, open App.js:

import React, { Component } from 'react';
import logo from './logo.svg';
import './App.css';

class App extends Component {
 render() {
 return (
 <div className="App">
 <header className="App-header">

 <h1 className="App-title">Welcome to React</h1>
 </header>
 <p className="App-intro">
 To get started, edit <code>src/App.js</code> and save to reload.
 </p>
 </div>
);
 }
}

export default App;

http://index.html

157Meet Create React

Notice that our App.js file has import statements of its own. Some, such as the one for React
and Component, seem necessary, given what our code is doing. The last line here is interesting:
export default app. It contains the export command and the name that our project will
use to identify the exported module. You’ll use this exported name when importing the App
module in other parts of the project, such as index.js. Closing out what this file is doing, it
also imports an image and CSS file that are needed to make this page work.

You’ve now seen a different way of structuring code using some potentially new keywords.
What’s the purpose of all of this? These modules, import statements, and export statements
are just niceties to make our app’s code more manageable. Instead of having everything defined
in one giant file, you can break your code and related assets across multiple files. Depending on
which files you reference and what files get loaded ahead of other files, our mysterious build
process (currently kicked off with an npm start) can optimize the final output in a variety of
ways that we don’t need to worry about.

The important point to note is that none of these things you are doing to your code affect the function-
ality of your final app in any major way. Behind the scenes, when we’re ready to test our app, a
build step takes place. This build step makes sense of all of the various files and components
you are importing, to present them as an easily digestible set of combined files for the browser
to take care of. We’ll get one JS file with all the relevant pieces represented:

We’ll also get one combined CSS file. Depending on what else you might have configured, you
could get other combined files for your HTML and more. All of these will be in a form that
your browser will immediately know what to do with. Your browser will have no additional
work to do, as in our in-browser solution we were using initially. Everything gets generated
as vanilla HTML, CSS, and JavaScript.

158 Chapter 13 Setting Up Your React Dev Environment Easily

Creating Our HelloWorld App

Now that you’ve gotten a better idea of what this project is doing, let’s modify the example.
We want to display the words Hello, world! to our screen. We’ll go about this by creating
a component, appropriately called HelloWorld, to handle it for us. The new part in this isn’t
that you get some text to display onscreen; you’re a pro at that by this point. The part to focus
on is how to structure the files in your project to ensure that you’re creating your app the
right way.

To get started, go to your src directory and delete all the files you see there. Then create a new
file called index.js. Inside that file, add the following contents:

import React from "react";
import ReactDOM from "react-dom";
import HelloWorld from "./HelloWorld";

ReactDOM.render(
 <HelloWorld/>,
 document.getElementById("root")
);

We’re importing our React and ReactDOM modules here. We’re also importing a component
called HelloWorld that we are specifying in our ReactDOM.render call. That component
doesn’t exist, so we are going to fix that next.

In the same src directory that we’re in right now, create a file called HelloWorld.js. Then go
ahead and modify it by adding in the following:

import React, { Component } from "react";

class HelloWorld extends Component {
 render() {
 return (
 <div className="helloContainer">
 <h1>Hello, world!</h1>
 </div>
);
 }
}

export default HelloWorld;

Take a moment to look through what you’ve added. You shouldn’t see anything really exciting
going on here—just a boring import statement, our HelloWorld component that prints some
text to the screen, and (in the last line) code that tags our HelloWorld component for export-
ing so that it can be imported by another module, such as our index.js.

With these changes made, we can test the application. Make sure you’ve saved all your changes.
Go back to the command line and type in npm start. If your app was already running behind

159Creating Our HelloWorld App

the scenes, you would automatically see it update with the latest changes. If that didn’t happen
or your app stopped, press Ctrl+C to stop the session and enter npm start again.

You should see something similar to this on your screen:

If this is what you see, great! Our example is working now, but it looks a little too plain. Let’s
fix that by adding some CSS. Create a stylesheet called index.css, and add the following style
rule into it:

body {
 display: flex;
 align-items: center;
 justify-content: center;
 min-height: 100vh;
 margin: 0;
}

In this approach for building apps, creating the stylesheet is only one part of what you have to
do. The other part requires you to reference the newly created index.css in the index.js file.
Open index.js and add the highlighted import statement for it:

import React from "react";
import ReactDOM from "react-dom";
import HelloWorld from "./HelloWorld";
import "./index.css";

ReactDOM.render(
 <HelloWorld/>,
 document.getElementById("root")
);

160 Chapter 13 Setting Up Your React Dev Environment Easily

If you go back to your browser, you’ll notice that the current setup automatically refreshes your
page with all the latest changes. You’ll see the words Hello, world! centered vertically and
horizontally for you. Not bad, but we can do better.

The last thing we want to do is make our text appear in a more stylish fashion. We could add
the appropriate style rules to index.css itself, but the more appropriate solution is to create
a new CSS file that we reference only in our HelloWorld component. The end result of both
approaches is identical, but you want to get into the practice of grouping related files (and their
dependencies) together, as part of being a better developer.

Create a new file called HelloWorld.css inside the src folder. Add the following style rule
into it:

h1 {
 font-family: sans-serif;
 font-size: 56px;
 padding: 5px;
 padding-left: 15px;
 padding-right: 15px;
 margin: 0;
 background: linear-gradient(to bottom,
 white 0%,
 white 62%,
 gold 62%,
 gold 100%);
}

All that’s left is to reference this stylesheet in the HelloWorld.js file, so open that file and add
the highlighted import statement:

import React, { Component } from "react";
import "./HelloWorld.css";

class HelloWorld extends Component {
 render() {
 return (
 <div className="helloContainer">
 <h1>Hello, world!</h1>
 </div>
);
 }
}

export default HelloWorld;

If you go back to your browser, you know that everything worked out fine if you see something
like the following:

161Creating a Production Build

You’ll see the words Hello, world! displayed, but with a little more style and pizazz
(as the cool kids say these days) than they did a few moments ago.

Creating a Production Build

We’re almost done. We’ve got just one more thing left to do. So far, we’ve been building this
app in development mode. In this mode, our code isn’t minified and some of the things run
in a slow/verbose setting so that we can debug issues more easily. When it’s time to send the
app live to our real users, we want the fastest and most compact solution possible. For that, we
can go back to the command line and enter the following (after stopping the build by pressing
Ctrl+C):

npm run build

The script takes a few minutes to create an optimized set of files for you. Once it has run to
completion, you’ll see some confirmation text that looks as follows:

162 Chapter 13 Setting Up Your React Dev Environment Easily

When this has completed, you can follow the onscreen prompts to deploy it to your server or
just test it locally using the popular serve node package.

Also take a moment to browse through all the files that were generated. The end result is just
plain HTML, CSS, and JS files. No JSX. No multiple JS files. We have just a single JS file that
contains all the logic our app needs to work.

Conclusion

So that just happened! In the preceding sections, we used the awesome Create React solution
to create our React app in a modern way. If this is your first time building apps like this, you’ll
want to get more familiar with this approach. We use the create-react-app command for
future React examples; our earlier in-browser approach was just to help you learn the basics
without fiddling with all of what you saw here. Under the covers, Create React hides a lot of
the complexity that goes with tweaking Node, Babel, webpack, and other components. That is
its greatest strength, as well as its greatest weakness.

If you want to go beyond the happy path that Create React provides, you’ll need to learn a lot
of the complexity hidden underneath. Covering all of that goes beyond this book. As a starting
point, take a look at what’s specified in the various JS files under the node_modules/react_
scripts/scripts path.

Note: If you run into any issues, ask!

If you have any questions or your code isn’t running like you expect, don’t hesitate to ask!
Post on the forums at https://forum.kirupa.com and get help from some of the friendliest and
most knowledgeable people the Internet has ever brought together!

https://forum.kirupa.com

14
Working with External

Data in React

Dealing with external data is pretty much standard in web apps today. This “dealing” typically
looks as follows:

1. Your app makes a request for some data to a remote service.

2. The remote service receives the request and sends back some data.

3. Your app receives the data.

4. Your app formats and displays the data to the user.

Whether or not you realize it, almost all your favorite websites follow these four steps…Facebook,
Amazon, Twitter, Instagram, Gmail, KIRUPA, and so on. When you starting loading a page on
any of these sites, they all display some data initially.

164 Chapter 14 Working with External Data in React

To keep your initial page size low, not everything is downloaded at once. After your page has
fully loaded or you interact with your page, the page downloads additional data from the server
and displays it.

165Working with External Data in React

This is all done without requiring you to refresh the page or lose any state your page is in. The
magic behind it all is a little bit of JavaScript that handles the four steps we looked at earlier. In
this chapter, you’ll learn all about the JavaScript needed to do that and how to make it all work
inside a React app.

By the end, you’ll have created a simple React app that looks as follows (view in your browser
here: https://www.kirupa.com/react/examples/ipaddress.htm):

https://www.kirupa.com/react/examples/ipaddress.htm

166 Chapter 14 Working with External Data in React

Here you’re seeing your device’s IP address displayed. That’s it. I realize that this isn’t very
complicated, as examples go (especially if you were all excited seeing Twitter highlighted in the
screenshots), but it contains just the right amount of complexity and relevant details to ensure
that you know how to deal with external data from inside a React app.

Onward!

Web Request 101

As you probably know very well by now, the Internet is made up of a bunch of interconnected
computers, called servers. When you’re surfing the web and navigating between web pages,
you’re really telling your browser to request information from any of these servers. It kind of
looks as follows: Your browser sends a request, waits awkwardly for the server to respond to
the request, and (once the server responds) processes the request. All of this communication is
made possible because of something known as the HTTP protocol.

The HTTP protocol provides a common language that allows your browser and a bunch of
other things to communicate with all the servers that make up the Internet. The requests your
browser makes on your behalf using the HTTP protocol are known as HTTP requests, and these
requests go well beyond simply loading a new page as you are navigating. A common (and
whole lot more exciting!) set of use cases revolves around updating your existing page with data
resulting from a HTTP request.

For example, you might have a page where you’d like to display some information about
the currently logged-in user. This is information your page might not have initially, but it is
information your browser will request when you’re interacting with the page. The server will
respond with the data and update your page with that information. All of this probably sounds
a bit abstract, so I’m going to go a bit weird for a few moments and describe a possible HTTP
request and response for this example.

167It’s React Time!

To get information about the user, here’s our HTTP request:

GET /user
Accept: application/json

For that request, here’s what the server might return:

200 OK
Content-Type: application/json

{
 "name": "Kirupa",
 "url": "http:https://www.kirupa.com"
}

This back-and-forth happens a bunch of times, and it’s all fully supported in JavaScript. This
ability to asynchronously request and process data from a server without requiring a page
navigation/reload has a term: Ajax (or AJAX, if you want to shout). This acronym stands for
Asynchronous JavaScript and XML. If you were around web developers a few years ago, Ajax
was the buzzword everybody threw around to describe the kind of web apps we take for granted
today (Twitter, Facebook, Google Maps, Gmail, and more) that constantly fetch data as you
interact with the page, without requiring a full page reload.

In JavaScript, the object that is responsible for allowing you to send and receive HTTP requests
is the weirdly named XMLHttpRequest. This object allows you to do several things that are
important to making web requests:

1. Send a request to a server

2. Check on the status of a request

3. Retrieve and parse the response from the request

4. Listen for the readystatechange event that helps you react to the status of your request

XMLHttpRequest does a few more things, but those aren’t important to deal with right now.

Why Not Use Third-Party Libraries?

A bunch of third-party libraries wrap and simplify how you can work with the XMLHttpRequest
object. Feel free to use them if you want, but using the XMLHttpRequest object directly isn’t
very complicated, either. It’s only a few lines of code, and (compared to everything you’ve been
learning in React) they’re some of the easiest lines of code you’ll encounter.

It’s React Time!

Now that you have a good enough understanding of how HTTP requests and the XMLHttpRequest
object work, it’s time to shift our focus to the React side. I should warn you, though, that React
brings very little to the table when it comes to working with external data. React is primarily

168 Chapter 14 Working with External Data in React

focused on the presentation layer (a.k.a. the V in MVC). We’ll be writing regular, boring JavaScript
inside a React component whose primary purpose is to deal with the web requests we’ll be making. We’ll
talk more about that design choice in a little bit, but let’s get the example up and running first.

Getting Started

The first step is to create a new React app. From your command line, navigate to the folder
where you want to create your new project and enter the following:

create-react-app ipaddress

Press Enter/Return to run that command. A few moments later, a brand new React project will
be created. You want to start from a blank slate, so you’re going to delete a lot of things. First,
delete everything under your public folder. Next, delete everything inside your src folder.
Don’t worry: You’ll fill them back with content you care about in a few moments, starting with
your HTML file.

Inside the public folder, create a new file called index.html. Add the following content
into it:

<!DOCTYPE html>
<html>

<head>
 <title>IP Address</title>
</head>

<body>
 <div id="container">

 </div>
</body>

</html>

All we have going here is a div element named container. Next, go to your src folder and
create a new file called index.js. Inside this file, add the following:

import React from "react";
import ReactDOM from "react-dom";
import "./index.css";
import IPAddressContainer from "./IPAddressContainer";

var destination = document.querySelector("#container");

ReactDOM.render(
 <div>
 <IPAddressContainer/>
 </div>,
 destination
);

http://index.html

169Getting the IP Address

This is the script entry point for our app, and it contains the boilerplate references to React,
ReactDOM, a nonexistent CSS file, and a nonexistent IPAddressContainer component.
We also have the ReactDOM.render call that is responsible for writing our content to the
container div element we defined in our HTML a few moments ago.

There’s just one more thing to do before we get to the really interesting stuff. Inside the src
folder, create the index.css file and add the following style rule into it:

body {
 background-color: #FFCC00;
}

Save all these changes if you haven’t done so already. We sort of have the beginnings of our app
started. In the next section, we’re going to make our app really useful—or at least get really close!

Getting the IP Address

Next on our plate is to create a component whose job it is to fetch the IP address from
a web service, store it as state, and then share that state as a prop to any component
that requires it. Let’s create a component to help. Inside your src folder, add a file called
IPAddressContainer.js and then add the following lines inside it:

import React, { Component } from "react";

class IPAddressContainer extends Component {
 render() {
 return (
 <p>Nothing yet!</p>
);
 }
}

export default IPAddressContainer;

The lines you just added don’t do a whole lot. They just print the words Nothing yet! to
the screen. That’s not bad for now, but let’s go ahead and modify the code to make the HTTP
request by adding the following changes:

var xhr;

class IPAddressContainer extends Component {
 constructor(props) {
 super(props);

 this.state = {
 ip_address: "..."
 };

 this.processRequest = this.processRequest.bind(this);
 }

170 Chapter 14 Working with External Data in React

 componentDidMount() {
 xhr = new XMLHttpRequest();
 xhr.open("GET", "https://ipinfo.io/json", true);
 xhr.send();

 xhr.addEventListener("readystatechange", this.processRequest, false);
 }

 processRequest() {
 if (xhr.readyState === 4 && xhr.status === 200) {
 var response = JSON.parse(xhr.responseText);

 this.setState({
 ip_address: response.ip
 });
 }
 }

 render() {
 return (
 <div>Nothing yet!</div>
);
 }
};

Now we’re getting somewhere! When our component becomes active and the component-
DidMount lifecycle method gets called, we make our HTTP request and send it off to the
ipinfo.io web service:

 .
 .
 .
 componentDidMount() {
 xhr = new XMLHttpRequest();
 xhr.open('GET', "https://ipinfo.io/json", true);
 xhr.send();

 xhr.addEventListener("readystatechange", this.processRequest, false);
 }
 .
 .
 .

171Getting the IP Address

When we hear a response back from the ipinfo service, we call the processRequest function
to help us deal with the result:

 .
 .
 .
 processRequest() {
 if (xhr.readyState === 4 && xhr.status === 200) {
 var response = JSON.parse(xhr.responseText);

 this.setState({
 ip_address: response.ip
 });
 }
 .
 .
 .

Next, modify the render call to reference the IP address value stored by our state:

var xhr;

class IPAddressContainer extends Component {
 constructor(props) {
 super(props);

 this.state = {
 ip_address: "..."
 };

 this.processRequest = this.processRequest.bind(this);
 }

 componentDidMount() {
 xhr = new XMLHttpRequest();
 xhr.open("GET", "https://ipinfo.io/json", true);
 xhr.send();

 xhr.addEventListener("readystatechange", this.processRequest, false);
 }

 processRequest() {
 if (xhr.readyState === 4 && xhr.status === 200) {
 var response = JSON.parse(xhr.responseText);

172 Chapter 14 Working with External Data in React

 this.setState({
 ip_address: response.ip
 });
 }
 }

 render() {
 return (
 <div>{this.state.ip_address}</div>
);
 }
}

If you preview your app in your browser, you should see an IP address displayed. If you need
a reminder, you can preview your app by navigating into your ipaddress folder via your
command line and entering npm start. When your app launches, it will look something like
the following:

Our app currently doesn’t look like much, but we’ll fix that in the next section.

Kicking the Visuals Up a Notch

The hard part is done! We created a component that handles all the HTTP requesting shenani-
gans, and we know that it returns the IP address when called. Now we’re going to format the
output a bit so that it doesn’t look as plain as it does now.

173Getting the IP Address

To do that, we won’t add HTML elements and styling-related details to our
IPAddressContainer component’s render method. Instead, we’ll create a new component
whose only purpose will be to deal with all of that.

Add a new file called IPAddress.js in your src folder. Then edit it by adding the following
content into it:

import React, { Component } from "react";

class IPAddress extends Component {
 render() {
 return (
 <div>
 Blah!
 </div>
);
 }
}

export default IPAddress;

Here we’re defining a new component called IPAddress that will be responsible for displaying
the additional text and ensuring that our IP address is visually formatted exactly the way we
want. It doesn’t do much right now, but that will change really quickly.

We first want to modify this component’s render method to look as follows:

class IPAddress extends Component {
 render() {
 return (
 <div>
 <h1>{this.props.ip}</h1>
 <p>(This is your IP address...probably :P)</p>
 </div>
);
 }
}

export default IPAddress;

The highlighted changes should be self-explanatory. We’re putting the results of a prop value
called ip inside an h1 tag, and we’re displaying some additional text using a p tag. Besides making
the rendered HTML a bit more semantic, these changes ensure that we can style them better.

To get these elements styled, add a new CSS file to the src folder called IPAddress.css. Inside
this file, add the following style rules:

h1 {
 font-family: sans-serif;
 text-align: center;

174 Chapter 14 Working with External Data in React

 padding-top: 140px;
 font-size: 60px;
 margin: -15px;
}
p {
 font-family: sans-serif;
 color: #907400;
 text-align: center;
}

With the styles defined, we need to reference this CSS file in our IPAddress.js file. To do that,
add the following highlighted line:

import React, { Component } from "react";
import "./IPAddress.css";

class IPAddress extends Component {
 render() {
 return (
 <div>
 <h1>{this.props.ip}</h1>
 <p>(This is your IP address...probably :P)</p>
 </div>
);
 }
}

export default IPAddress;

All that remains is to use our IPAddress component and pass in the IP address. The first step is
to ensure that the IPAddressContainer component is aware of the IPAddress component by
referencing it. At the top of IPAddressContainer.js, add the following highlighted line:

import React, { Component } from "react";
import IPAddress from "./IPAddress";
 .
 .
 .

The second (and last!) step is to modify the render method as follows:

class IPAddressContainer extends Component {
 .
 .
 .
 render() {
 return (
 <IPAddress ip={this.state.ip_address}/>
);
 }
}

175Getting the IP Address

In our highlighted line, we call our IPAddress component, define a prop called ip, and set its
value to the ip_address state variable. This is done to ensure that our IP address value travels
all the way back to the IPAddress component’s render method, where it gets formatted and
displayed.

If you preview the app in your browser now, you should see something identical to the
example we set out to create in the beginning.

At this point, you’re done with the app…and almost done with this tutorial. You just need to
know one more thing about these awesome components that you’ve added.

Presentational vs. Container Components

Given what we’ve seen here so far, it seems like a good time to talk about a design choice
that we’ve been indirectly following not just in this tutorial, but in other tutorials as well. In our
React apps, we have been primarily dealing with two types of components:

 1. Components that deal with how things look. These are better known as
 presentational components.

 2. Components that perform some under-the-covers processing. Examples of this
processing include routing, increasing a counter, fetching data via a HTTP request, and so
on. You will see these components referred to as container components.

Thinking about your components in terms of whether they display something (presentational) or
whether they feed data to other components (container) helps you better organize your React
app. For the full low-down on how to deal with these two types of components, check out this
article by React’s Dan Abramov: https://medium.com/@dan_abramov/smart-and-dumb-
components-7ca2f9a7c7d0.

https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0
https://medium.com/@dan_abramov/smart-and-dumb-components-7ca2f9a7c7d0

176 Chapter 14 Working with External Data in React

Conclusion

At this point, you’re probably wondering what was made special because of React. All we really
did here was use a boring old JavaScript API inside a component, hook up some events, and
do the same state- and prop-related tasks you’ve done several times already. Here’s the thing:
You’ve already learned almost everything there is to learn about the basics of React. Going
forward, nothing should surprise you. The only new things we’ll be looking at fall into the
category of repurposing and repackaging the basic concepts you already know into newer and
cooler situations. After all, isn’t that what programming is all about?

Note: If you run into any issues, ask!

If you have any questions or your code isn’t running like you expect, don’t hesitate to ask!
Post on the forums at https://forum.kirupa.com and get help from some of the friendliest and
most knowledgeable people the Internet has ever brought together!

https://forum.kirupa.com

15
Building an Awesome Todo

List App in React

If creating the Hello, World! example was a celebration of getting your feet wet with React,
creating the quintessential Todo List app is a celebration of approaching React mastery. In this
chapter, we tie together a lot of the concepts and techniques you’ve learned to create some-
thing that works as follows: https://www.kirupa.com/react/examples/todo.htm.

You start with a blank app that allows you to enter tasks for later (see Figure 15.1).

Figure 15.1 A blank app with task entry.

https://www.kirupa.com/react/examples/todo.htm

178 Chapter 15 Building an Awesome Todo List App in React

The way this Todo List app works is pretty simple. You type in a task or item or whatever you
want into the input field and then press Add (or click Enter/Return). After you’ve submitted
your item, you’ll see it appear as an entry. You can keep adding items and have them all show
up (see Figure 15.2).

Figure 15.2 You can add tasks and have them show up.

To remove an item, just click on an existing entry. Pretty simple, right? In the following
sections, we build this app together from scratch using a lot of the adrenaline-inducing
 techniques you’ve learned so far.

179Getting Started

This is going to be a fun exercise of building each part of the app and learning (in awesomely
painstaking detail) how the various little things work along the way.

Onward!

Getting Started

The first step is to create a new React app, as you learned in Chapter 13, “Setting Up Your React
Dev Environment Easily.” From your command line, navigate to the folder where you want to
create your new project and enter the following:

create-react-app todolist

Press Enter/Return to run that command. A few moments later, a brand new React project is
created. We want to start from a blank slate, so we’re going to delete everything contained in
our public folder and our src folder.

By now, you know the drill. You need a starting point, so go ahead and create a new HTML
document inside your public folder called index.html. Inside it, add the following content:

<!DOCTYPE html>
<html>

<head>
 <title>Todo List</title>
</head>

http://index.html

180 Chapter 15 Building an Awesome Todo List App in React

<body>
 <div id="container">

 </div>
</body>

</html>

This page is pretty basic, as you can tell. The real magic is going to be happening in the src
directory, where your JavaScript and CSS files will live. In the src directory, create a new file
called index.css and add the following style rules into it:

body {
 padding: 50px;
 background-color: #66CCFF;
 font-family: sans-serif;
}
#container {
 display: flex;
 justify-content: center;
}

Now let’s add the JavaScript that rounds out the starting page. Within the same src directory,
add a new file called index.js. Inside this file, add the following content:

import React from "react";
import ReactDOM from "react-dom";
import "./index.css";

var destination = document.querySelector("#container");

ReactDOM.render(
 <div>
 <p>Hello!</p>
 </div>,
 destination
);

Take a moment to look at what you’ve just added. By now, you should be fully familiar with
what’s going on with the HTML, CSS, and JavaScript here. What we really have is the founda-
tion. In the following sections, we’ll build on top of this all the pieces that make up the rest of
our Todo List app.

Creating the Initial UI

Right now, our app doesn’t do a whole lot. It doesn’t look like much, either. We’ll deal with the
functionality in a little bit, but first let’s get the various UI elements up and running. That isn’t
very complicated for our app. First we’ll get our input field and button to appear. This is all
done by using the div, form, input, and button elements.

181Creating the Initial UI

All of that will live inside a component we’ll call TodoList. In your src folder, add a file called
TodoList.js. Inside this file, add the following:

import React, { Component } from "react";

class TodoList extends Component {
 render() {
 return (
 <div className="todoListMain">
 <div className="header">
 <form>
 <input placeholder="enter task">
 </input>
 <button type="submit">add</button>
 </form>
 </div>
 </div>
);
 }
}

export default TodoList;

Take a moment to glance at what you’ve added. You can see a bunch of JSX that gets the form
elements up and running. To use the newly created TodoList component, let’s go back to
index.js and reference it to see how our app looks now. Go ahead and make the following
two changes:

import React from "react";
import ReactDOM from "react-dom";
import "./index.css";
import TodoList from "./TodoList";

var destination = document.querySelector("#container");

ReactDOM.render(
 <div>
 <TodoList/>
 </div>,
 destination
);

Save all your changes and preview in your browser. If everything worked, you’ll see something
that looks like Figure 15.3.

182 Chapter 15 Building an Awesome Todo List App in React

Figure 15.3 What our app looks like right now.

Right now, we have our input field and submit button showing up. These two UI elements
neither work nor look too visually appealing. We’ll fix that in a little bit, but first let’s talk
about how we’re going to add the rest of the app’s functionality.

Building the Rest of the App

As you can imagine, getting the initial UI elements to show up is the easy part. Tying up all the
visuals with the underlying data is where the real work lies. This work can roughly be divided
into five parts:

1. Adding items

2. Displaying items

3. Styling

4. Removing items

5. Animating items as they are added or removed

Individually, all of these little implementation details are easy to wrap your brain around.
When you put them together, you need to watch out for a few things. We’ll look at all that and
more in the following sections.

183Building the Rest of the App

Adding Items

The first major task to tackle is setting up the event handlers and default form-handling behav-
ior to allow us to add an item. Go back to the form element and make the following high-
lighted change:

class TodoList extends Component {
 render() {
 return (
 <div className="todoListMain">
 <div className="header">
 <form onSubmit={this.addItem}>
 <input placeholder="enter task">
 </input>
 <button type="submit">add</button>
 </form>
 </div>
 </div>
);
 }
}

We listen for the submit event on the form itself, and we call the addItem method when that
event is overheard. Notice that we aren’t listening for any event on the button itself. This is
because our button has a type attribute set to submit. This is one of those HTML trickeries
in which clicking on the button whose type is submit is the equivalent of firing the submit
event on the form.

Now it’s time to create our addItem event handler that will get called when our form gets
submitted. Add the following highlighted lines just above where we have our render function
defined:

class TodoList extends Component {
 constructor(props) {
 super(props);

 this.addItem = this.addItem.bind(this);
 }

 addItem(e) {

 }
 .
 .
 .
}

184 Chapter 15 Building an Awesome Todo List App in React

All we did was define our addItem event handler and ensure that the keyword resolves prop-
erly. We still haven’t done anything remotely close to actually adding a task, so let’s start by
first defining our state object in the constructor:

constructor(props) {
 super(props);

 this.state = {
 items: []
 };

 this.addItem = this.addItem.bind(this);
}

Our state object isn’t very complicated. We’re just defining an items array/property that
will be responsible for storing the various items that you can enter. All that’s left to do now is
read the entered value from our input element and store it in our items array when the user
submits it. The only complication here is actually reading the value from a DOM element. As
you know, React puts up a gate between us and the DOM. It doesn’t like to have us accessing
DOM elements and fiddling with properties on them, but it does give us a loophole via refs
that we can use.

In our render function, make the following highlighted change:

render() {
 return (
 <div className="todoListMain">
 <div className="header">
 <form onSubmit={this.addItem}>
 <input ref={(a) => this._inputElement = a}
 placeholder="enter task">
 </input>
 <button type="submit">add</button>
 </form>
 </div>
 </div>
);
}

Here we’re storing a reference to our input element in the appropriately named _inputElement
property. To state this differently, anywhere inside this component where we want to access
our input element, we can do so by accessing _inputElement. Now it’s time to fill out our
addItem function with the following content:

addItem(e) {
 var itemArray = this.state.items;

 if (this._inputElement.value !== "") {
 itemArray.unshift({

185Building the Rest of the App

 text: this._inputElement.value,
 key: Date.now()
 });

 this.setState({
 items: itemArray
 });

 this._inputElement.value = "";
 }

 console.log(itemArray);

 e.preventDefault();
}

Take a moment to look through what we’re doing. We create a variable called itemArray to
store the current value of our items state object. Next, we check to see if our input element
has any content inside it. If it’s empty, we don’t do anything. If our input element has some
text entered, we add that text to our itemArray:

itemArray.unshift({
 text: this._inputElement.value,
 key: Date.now()
});

We aren’t just adding the entered text. We’re actually adding an object that contains both the
entered text and a unique key value that’s set by the current time (Date.now()). If you aren’t
clear on why we’re specifying the key, that’s okay. You’ll totally see why in a few moments.

The rest of our code is pretty boring. We’re setting our state’s items property to the value of
itemArray. We’re clearing the value of our input element to make room for the next todo
item. This line here might be less boring:

e.preventDefault();

We’re overriding this event’s default behavior. The reason has to do with how form submission
works. By default, when you submit a form, the page reloads and clears everything out. We
definitely don’t want that. By calling preventDefault, we block the default behavior. That’s a
good thing!

It’s time to take stock of where we are right now. If you preview your app and check the
browser console, you’ll see our state object correctly populating with each new todo item we
added (see Figure 15.4).

186 Chapter 15 Building an Awesome Todo List App in React

Figure 15.4 We can now see the entries being stored. I realize that this might not seem like
much, but we’re making great progress—seriously!

Note

For an alternate approach for setting new state inside the add. This method without modifying
the existing state, check out this version: http://bit.ly/setStateConcat.

Displaying the Items

Having our todo items show up only in the console might be exciting for some of your users,
but I’m pretty certain that most probably want to see these items displayed directly on the
page. To do this, we’re going to rely on another component. To get started, let’s call this
component TodoItems, specify it in our TodoList component’s render method, and pass in
our items array as a prop.

All of that translated into markup and code looks as follows:

render() {
 return (
 <div className="todoListMain">
 <div className="header">
 <form onSubmit={this.addItem}>

http://bit.ly/setStateConcat

187Displaying the Items

 <input ref={(a) => this._inputElement = a}
 placeholder="enter task">
 </input>
 <button type="submit">add</button>
 </form>
 </div>
 <TodoItems entries={this.state.items}/>
 </div>
);
}

After you’ve done this, add the import statement to the top of the document as well:

import React, { Component } from "react";
import TodoItems from "./TodoItems";

class TodoList extends Component {
 .
 .
 .

These two changes wrap up the work we want to do in TodoList.js for now. Next, let’s go
ahead and actually create our TodoItems component. In the src directory, create a new file
called TodoItems.js and add the following content into it:

import React, { Component } from "react";

class TodoItems extends Component {
 constructor(props) {
 super(props);

 this.createTasks = this.createTasks.bind(this);
 }

 createTasks(item) {
 return <li key={item.key}>{item.text}
 }

 render() {
 var todoEntries = this.props.entries;
 var listItems = todoEntries.map(this.createTasks);

 return (
 <ul className="theList">
 {listItems}

);
 }
};

export default TodoItems;

This might look like a lot of code to add in one giant swoop, but take a moment to look
at what exactly you’re adding. In our render function, we’re taking the list of todo items

188 Chapter 15 Building an Awesome Todo List App in React

(passed in as entries) and turning them into JSX/HTML-ish elements. We do that by calling map
on our items and relying on the createTasks function:

createTasks(item) {
 return <li key={item.key}>{item.text}
}

The value stored by our listItems variable is an array of li elements that contain the appropri-
ate content to print. Notice that we’re setting the key attribute—whose value, as you recall, we set
earlier using Date.now()—on each element, to make it easier for React to keep track of the elements.

We turn this list of elements into something we can show onscreen with the following:

return (
 <ul className="theList">
 {listItems}

);

After you’ve made this change, save all the changes and preview the app in its current state
(npm start if it isn’t already running). If everything worked properly, not only will you be able
to add items, but you also will be able to see them (see Figure 15.5).

Figure 15.5 Our entries are now showing up!

189Displaying the Items

If what you see looks similar to the figure, that’s awesome! To celebrate, let’s take a little break
from looking at JS and JSX.

Styling our App

Right now, our app’s awesome functionality isn’t reflected in how the app currently looks.
We’re going to fix this easily by adding one stylesheet and putting all the relevant style rules
into it. In the src folder, create a new stylesheet called TodoList.css and add the following
style rules into it:

.todoListMain .header input {
 padding: 10px;
 font-size: 16px;
 border: 2px solid #FFF;
 width: 165px;
}
.todoListMain .header button {
 padding: 10px;
 font-size: 16px;
 margin: 10px;
 margin-right: 0px;
 background-color: #0066FF;
 color: #FFF;
 border: 2px solid #0066FF;
}
.todoListMain .header button:hover {
 background-color: #003399;
 border: 2px solid #003399;
 cursor: pointer;
}
.todoListMain .theList {
 list-style: none;
 padding-left: 0;
 width: 250px;
}
.todoListMain .theList li {
 color: #333;
 background-color: rgba(255,255,255,.5);
 padding: 15px;
 margin-bottom: 15px;
 border-radius: 5px;
}

After you’ve created this stylesheet, you need to reference it. In TodoList.js, add a reference
to this stylesheet at the top:

import React, { Component } from "react";

190 Chapter 15 Building an Awesome Todo List App in React

import TodoItems from "./TodoItems";
import "./TodoList.css";

class TodoList extends Component {
 .
 .
 .

If you preview your app after this change, it will look as shown in Figure 15.6.

Figure 15.6 Our app is starting to look much nicer.

As you can see, our app looks much nicer. All we did is add some CSS, so from a functionality
point of view, nothing has changed. We’ll make more progress on functionality next.

191Displaying the Items

Removing Items

At this point, we can add items and see them appear. What we can’t do is remove items after
they’ve been added. We’re going to allow users to remove items by clicking on them directly.
This seems straightforward to implement, right? The only thing to watch out for involves
where to put all our code. The items we click on are defined in TodoItems.js. The actual logic
for populating the items lives in our state object in TodoList.js. To give you a preview of
what to expect, we will be partaking in some shenanigans as we pass things between both of
those components.

First we need to set up the event handler for dealing with the click event. Change the return
statement under createTasks to look as follows:

createTasks(item) {
 return <li onClick={() => this.delete(item.key)}
 key={item.key}>{item.text}
}

We’re simply listening to the click event and associating it with an event handler called
delete. What might be new is our approach for passing arguments to the event handler.
Because of how event arguments and event handlers deal with scope, we work around all those
issues using an arrow function that allows us both to maintain the default event argument
and pass in our own arguments. If this seems bizarre, you can feel better knowing that this is a
JavaScript quirk and has nothing to do with React.

After you’ve made this change, you need to define the delete event handler. Make the follow-
ing highlighted changes:

class TodoItems extends Component {
 constructor(props) {
 super(props);

 this.createTasks = this.createTasks.bind(this);
 }

 delete(key) {
 this.props.delete(key);
 }
 .
 .
 .

Here we define a function called delete that takes our argument for the item key. To ensure
that this resolves properly, we explicitly bind this in the constructor. Notice that our delete
function doesn’t actually do any deleting. It just calls another delete function passed into this
component via props. We’ll work backward from here and deal with that next.

192 Chapter 15 Building an Awesome Todo List App in React

In TodoList.js, take a look at our render function. When calling TodoItems, let’s specify a
prop called delete and set it to the value of a function called deleteItem:

render() {
 return (
 <div className="todoListMain">
 <div className="header">
 <form onSubmit={this.addItem}>
 <input ref={(a) => this._inputElement = a}
 placeholder="enter task">
 </input>
 <button type="submit">add</button>
 </form>
 </div>
 <TodoItems entries={this.state.items}
 delete={this.deleteItem}/>
 </div>
);
}

This change ensures that our TodoItems component now has knowledge of a prop called delete.
This also means that our delete function we added in TodoList actually connects. All that
remains is actually defining our deleteItem function so that it can deal with deleting an item.

First, go ahead and add the deleteItem function to your TodoList component:

deleteItem(key) {
 var filteredItems = this.state.items.filter(function(item) {
 return (item.key !== key);
 });

 this.setState({
 items: filteredItems
 });
}

You can add it anywhere, but my preference is to put it just below where our addItem function
lives. Take a look at what this code does. We are passing the key from our clicked item all the
way here, and we check this key against all the items we’re storing currently via the filter
method:

var filteredItems = this.state.items.filter(function(item) {
 return (item.key !== key);
});

193Displaying the Items

The result of running this code is simple. We create a new array called filteredItems that
contains everything except the item we are removing. This filtered array is then set as our new
items property on our state object:

this.setState({
 items: filteredItems
});

Our UI then updates and the removed item disappears forever. The last thing we need to
do is deal with the usual shenanigans surrounding this. Make the following change in the
constructor:

constructor(props) {
 super(props);

 this.state = {
 items: []
 };

 this.addItem = this.addItem.bind(this);
 this.deleteItem = this.deleteItem.bind(this);
}

This ensures that all references to this inside deleteItem will reference the correct thing.
Now we have just one more thing to do before we can declare victory in deleting items. Open
TodoList.css and make the following highlighted change and style rule addition:

.todoListMain .theList li {
 color: #333;
 background-color: rgba(255,255,255,.5);
 padding: 15px;
 margin-bottom: 15px;
 border-radius: 5px;

 transition: background-color .2s ease-out;
}

.todoListMain .theList li:hover {
 background-color: pink;
 cursor: pointer;
}

This provides the hover effect when you move the mouse cursor over the item that you want
to remove. With this change done, our functionality to remove an item should be complete.
Preview your app now and try adding some items and removing them. It should work well.
And now on to just one more thing….

194 Chapter 15 Building an Awesome Todo List App in React

Animation! Animation! Animation!

Our very last task is to add some animations, to make adding and removing items look more
natural. React offers many ways to animate something. You can use traditional approaches such
as CSS animations, CSS transitions, requestAnimationFrame, the Web Animations API, or
even a popular animation library. All of these approaches will take you far…very far.

When it comes to animating the existence of an element, though, the traditional approaches
we outlined run into some limitations. This is because React entirely handles the lifecycle of an
element as it is about to be deleted from the DOM. We can definitely override some of the life-
cycle methods to intercept an element deletion and interject our own animation logic, but that
gets us a bit too far into the weeds. We don’t want to deal with that right now.

Fortunately, the React community has come up with a handful of lightweight animation librar-
ies that make animating adding and deleting elements really easy. One such library is Flip
Move. Among many things, this library makes animating the addition and removal of list
elements simple.

To use this library, we need to first add it to our project. From the command line, make sure
you are still in the same location as our todolist project and run the following command:

npm i -S react-flip-move

Click Enter/Return to copy all the necessary things locally into our project’s node_modules
folder. That’s all the setup required. After you’ve done this, in TodoItems.js, add the follow-
ing import statement at the top:

import FlipMove from 'react-flip-move';

Now all that’s left is to tell our FlipMove component to animate our list of items. In our
render function, make the following highlighted change:

render() {
 var todoEntries = this.props.entries;
 var listItems = todoEntries.map(this.createTasks);

 return (
 <ul className="theList">
 <FlipMove duration={250} easing="ease-out">
 {listItems}
 </FlipMove>

);
}

We’re simply wrapping our listItems (just before getting them printed) inside a FlipMove
component and specifying the animation duration and the type of easing function to use.
That’s it. If you preview your app now, you’ll see that adding and removing items doesn’t just
suddenly happen; these items are smoothly animated instead.

195Conclusion

Uncontrolled Components vs. Controlled Components

Form elements are interesting. These are elements that contain some state on their own. For
example, your text element might have some content in it, or you might have some items
already selected in a drop-down list. React is all about centralizing state into its own little
world, so it doesn’t like that form elements have their own internal mechanism for storing
state. The guidance is to synchronize all the form data inside a React component by using
events such as onChange. These components that let React deal with form elements are
known as controlled components.

Still, it’s a hassle to have every form element deal with keeping state in sync. The React devel-
opers get that as well. The workaround is to do nothing. We simply let form elements deal
with their own state and use refs to access the values when needed. That’s what we did in
this example. When we have components that defer all state management to the form DOM
 element, these components are known as uncontrolled components.

Conclusion

Our Todo app is pretty simple in what it does, but by building it from scratch, we covered
almost every little interesting detail React brings to the table. More important, we created an
example that shows how the various concepts we learned individually play together. That’s
truly actually the important detail.

Now here’s a quick question for you: Does everything we’ve done in this chapter make sense? If
so, you’re in good shape to tell your friends and family that you’re close to mastering React. If
you still find some areas confusing, I recommend that you go back and reread the chapters that
address your shortcomings.

Note: If you run into any issues, ask!

If you have any questions or your code isn’t running like you expect, don’t hesitate to ask!
Post on the forums at https://forum.kirupa.com and get help from some of the friendliest and
most knowledgeable people the Internet has ever brought together!

https://forum.kirupa.com

This page intentionally left blank

16
Creating a Sliding

Menu in React

Sliding menus are all the rage in UIs today. All the cool kids are building them, and your
friends probably just can’t get enough of them. These menus are basically off-screen elements
that slide into view when you click or tap on something. That something could be an arrow, a
hamburger icon, or something else that indicates a menu will appear.

To see a sliding menu in action, go here: https://www.kirupa.com/react/examples/
slidingmenu_css/index.html.

You’ll see a yellow menu with some navigation links smoothly slide in. If you click a naviga-
tion link or anywhere in the yellow region inside that menu, the menu slides back (really
smoothly again, of course) and the content behind it reappears. Let’s look at how to create all
of this using React.

Note: For a Non-React Solution

If you’re looking to create this menu using plain JavaScript without any React wizardry, the
tutorial Creating a Smooth Sliding Menu (http://bit.ly/plainSidingMenu) has you covered.

How the Sliding Menu Works

Before we jump into the code, let’s take a few moments to better understand how exactly our
sliding menu works. Starting at the very top, we have our page that displays some content:

https://www.kirupa.com/react/examples/slidingmenu_css/index.html
https://www.kirupa.com/react/examples/slidingmenu_css/index.html
http://bit.ly/plainSidingMenu

198 Chapter 16 Creating a Sliding Menu in React

When you decide to bring up the menu (by clicking/tapping the blue circle in our example),
the menu magically slides into view:

199How the Sliding Menu Works

The way this sliding menu works isn’t as crazy as it seems. The menu is never truly nonexistent;
it is simply hidden outside the view. To see what that looks like, check out the following diagram:

Just to the left of the content what we see is our menu, patiently hiding until it is called upon.
We do that by shifting the menu as far left as we can until it’s fully out of view. Figuring out
how far to shift is easy. Our menu’s size is the same as our browser’s window (a.k.a. the view-
port) size because we want the menu to fully cover up whatever is shown. Given that detail, we
just shift the menu left by the browser’s width. One way of doing that might be by using some
CSS that looks as follows:

#theMenu {
 position: fixed;
 left: 0;
 top: 0;
 transform: translate3d(-100vw, 0, 0);

 width: 100vw;
 height: 100vh;
}

200 Chapter 16 Creating a Sliding Menu in React

We set our menu’s position to fixed. This single change gives our menu a whole lot of magical
capabilities. For starters, it ensures that normal layout rules no longer apply to it. We can posi-
tion our menu anywhere we want using normal x and y values, and the menu won’t shift away
from where we have it positioned. If that isn’t awesome enough, our menu won’t even display
a scrollbar if we happen to hide it somewhere offscreen.

All this is a good thing because we hide our menu offscreen by setting our menu’s left and
top properties to 0 and setting our menu’s transform property to a translate3d method with
a horizontal value of -100vw. The negative value ensures that we shift the menu left by the
amount equivalent to our browser window’s width. While not directly related to position, the
size of our menu plays an important role as well. That’s why, in this CSS snippet, we have the
width and height properties set with values of 100vw and 100vh, respectively, to ensure that
our menu’s size is the same as our browser window’s size.

What Are These vw and vh Units?

If you’ve never seen the vw and vh units, they stand for viewport width (vw) and viewport

height (vh). They’re a bit similar to percentage values. Each unit is 1/100th the width or height
of your viewport (what we’ve been simply calling the browser window). For example, a value of
100vw means that its value is the full width of our browser window. Similarly, 100vh refers to a
value that is the full height of our browser window.

When the menu is called upon to slide into view, we slide the menu right until its horizontal
position is the same as our browser window origin. If we had to look at what the CSS for it
might look like, this would be an easy change from what we already have. We simply set our
transform property’s translate3d method and set the horizontal position to a value of 0vw.

That might look something like this:

transform: translate3d(0vw, 0, 0);

This change ensures that our menu is shifted right from being hidden offscreen (with a hori-
zontal translate value of -100vw) and is now visible. When our menu needs to disappear,
we can translate it back:

transform: translate3d(-100vw, 0, 0);

The biggest thing we haven’t spoken about is the animation that makes the sliding look cool.
This is done using a simple CSS transition that animates the transform property:

transition: transform .3s cubic-bezier(0, .52, 0, 1);

If you’re not familiar with CSS transitions, it’s a very simple concept to wrap your brain
around. I don’t explain it here, so take a few moments and read through the short Introduction
to CSS Transitions article (https://www.kirupa.com/html5/introduction_css_transitions.htm) for
an overview.

https://www.kirupa.com/html5/introduction_css_transitions.htm

201Setting Up the Sliding Menu

So far, we’ve taken a bird’s-eye view of how our sliding menu works. A few details need to be
looked at, but we’ll do that in the next couple sections when we actually build this menu.

Setting Up the Sliding Menu

Now that you have a basic idea about how a sliding menu works, let’s turn all that theoreti-
cal knowledge into some sweet JSX and code. The first thing we’re going to do is look at our
example in terms of the individual components that will make it up.

At the very top, we have our MenuContainer component:

This component is responsible for doing nonvisual things like managing state, hosting our
Menu and MenuButton components, and displaying some of the initial text. The bird’s-eye view
looks a bit like this:

202 Chapter 16 Creating a Sliding Menu in React

In the next few sections, we’ll start creating these components and getting the example up and
running.

Getting Started

Use create-react-app to create a new project called slidingmenu. If you aren’t familiar with
how to do that, check out Chapter 13, “Setting Up Your React Dev Environment Easily,” to
walk through the details of creating and working with React projects. After you’ve created your
project, you want to start from a blank slate. Delete everything in your public and src folders.
You’ll re-create the necessary pieces shortly.

Let’s start by creating our HTML document. In your public folder, create a file called index.
html. Inside it, add the following contents:

<!DOCTYPE html>
<html>

<head>
 <title>Sliding Menu in React</title>
</head>

http://index.html
http://index.html

203Getting Started

<body>
 <div id="container"></div>
</body>

</html>

This HTML page is simply the destination where all of our React components will eventually
render their output.

Next, you want to create a file called index.js in the src folder that will be responsible for
teeing things up in the code. Add the following content into this file:

import React from "react";
import ReactDOM from "react-dom";
import "./index.css";
import MenuContainer from "./MenuContainer";

ReactDOM.render(
 <MenuContainer/>,
 document.querySelector("#container")
);

The render call here is responsible for displaying the output of our MenuContainer compo-
nent into the container div element we specified in HTML a few moments ago. In our
import statements, besides pulling in the react and react-dom libraries, we are referencing
index.css and our MenuContainer component. That’s all there is to our index.js file.

Next we’re going to create the index.css file in our src folder and get the page’s basic styling
defined. In this file, add the following two style rules:

body {
 background-color: #EEE;
 font-family: sans-serif;
 font-size: 20px;
 padding: 25px;
 margin: 0;
 overflow: auto;
}

#container li {
 margin-bottom: 10px;
}

There isn’t much to say about these style rules, so the last thing we do to get our initial app set
up is create our MenuContainer component. Create a file called MenuContainer.js in the src
folder and add the following JS and JSX into it:

import React, { Component } from "react";

class MenuContainer extends Component {
 render() {
 return (

204 Chapter 16 Creating a Sliding Menu in React

 <div>
 <div>
 <p>Can you spot the item that doesn't belong?</p>

 Lorem
 Ipsum
 Dolor
 Sit
 Bumblebees
 Aenean
 Consectetur

 </div>
 </div>
);
 }
}

export default MenuContainer;

Be sure to save the changes you made to all of your files, and test your app (using npm start)
to ensure that your initial setup of the app works fine. If everything worked out properly, your
default browser will launch and you’ll see something that looks as follows:

There’s no menu to slide or button to press; we’ll add both of those in the next couple sections.

205Showing and Hiding the Menu

Showing and Hiding the Menu

With the initial setup out of the way, it’s time for the fun part: actually building the menu. Our
menu is shown or hidden as follows:

1. When you click a button, the menu slides into view.

2. When you click anywhere on the menu, the menu slides out of view.

This means that we need to account for a few things going on. We need to maintain some state
to keep track of whether the menu is hidden or shown. This state needs to be something we
update from both the button and the menu because clicking on either will toggle whether the
menu is visible. We need our state to live in a common location that both the menu and the
button can access. That common location will be inside our MenuContainer component, so
let’s add the code relating to our state logic.

In the MenuContainer.js file, add the constructor and toggleMenu methods just above our
render method:

constructor(props) {
 super(props);

 this.state = {
 visible: false
 };

 this.toggleMenu = this.toggleMenu.bind(this);
}

toggleMenu() {
 this.setState({
 visible: !this.state.visible
 });
}

The code you’ve just added should look like a walk in the park by now. You’re storing a variable
called visible in your state object, and you’re creating a method called toggleMenu that will
be responsible for toggling whether visible is true or false.

Next up is dealing with the click events on the button and menu. If the goal is to update our
state from inside our MenuContainer component, we need to place our event handler inside
MenuContainer as well. Go ahead and add the following highlighted lines:

import React, { Component } from "react";

class MenuContainer extends Component {
 constructor(props) {
 super(props);

 this.state = {
 visible: false
 };

206 Chapter 16 Creating a Sliding Menu in React

 this.handleMouseDown = this.handleMouseDown.bind(this);
 this.toggleMenu = this.toggleMenu.bind(this);
 }

 handleMouseDown(e) {
 this.toggleMenu();

 console.log("clicked");
 e.stopPropagation();
 }

 toggleMenu() {
 this.setState({
 visible: !this.state.visible
 });
 }
 .
 .
 .
}

When the handleMouseDown method is called, we call toggleMenu, which toggles whether the
menu appears. At this point, you’re probably wondering where the actual code for dealing with
a click event is. What exactly will trigger a call to handleMouseDown? The answer is, nothing
so far! We’ve done things in a bit of a reverse order and defined our event handler first. We
handle the association between our event handler and our click event in a few moments
when dealing with our button and menu components.

Creating the Button

In your src folder, create two files called MenuButton.js and MenuButton.css. Then open
MenuButton.js in your code editor. Inside it, add the following lines of code:

import React, { Component } from "react";
import './MenuButton.css';

class MenuButton extends Component {
 render() {
 return (
 <button id="roundButton"
 onMouseDown={this.props.handleMouseDown}></button>
);
 }
}

export default MenuButton;

Take a moment to see what this code is doing. There isn’t a whole lot going on. We define a
button element called roundButton, and we associate the onMouseDown event with a prop we

207Showing and Hiding the Menu

are referencing as handleMouseDown. Before moving on, open MenuButton.css and add the
following style rules:

#roundButton {
 background-color: #96D9FF;
 margin-bottom: 20px;
 width: 50px;
 height: 50px;
 border-radius: 50%;
 border: 10px solid #0065A6;
 outline: none;
 transition: all .2s cubic-bezier(0, 1.26, .8, 1.28);
}

#roundButton:hover {
 background-color: #96D9FF;
 cursor: pointer;
 border-color: #003557;
 transform: scale(1.2, 1.2);
}

#roundButton:active {
 border-color: #003557;
 background-color: #FFF;
}

Now it’s is time to actually instantiate our newly created MenuButton component. Go back to the
MenuContainer component and add the following highlighted line inside the render method:

render() {
 return (
 <MenuButton handleMouseDown={this.handleMouseDown}/>
 .
 .
 .
);
}

For this line to actually do something, be sure to add the appropriate import statement at the
top for our MenuButton.js file. That’s an easy one to overlook!

Notice that we are passing in a prop called handleMouseDown, and its value is the handle-
MouseDown event handler that we defined earlier. This ensures that when you click the
button inside the MenuButton component, the handleMouseDown method that lives in the
MenuContainer component gets called. All of this is great, but our button isn’t very useful
without a menu to help slide into view. We’ll fix that next.

Creating the Menu

It’s time to create our Menu component that will be responsible for all things dealing with the
menu. Before we actually create this component, let’s pretend that it already exists and call it

208 Chapter 16 Creating a Sliding Menu in React

from our render method inside our MenuContainer. Add the following highlighted call to our
(currently imaginary) Menu component just below where you added the call to MenuButton a
few short moments earlier:

render() {
 return (
 <MenuButton handleMouseDown={this.handleMouseDown} />
 <Menu handleMouseDown={this.handleMouseDown}
 menuVisibility={this.state.visible} />
 .
 .
 .
);
}

Add the import statement for Menu.js as well. Getting back to the Menu component, look at
the props you’re passing in. The first prop should look familiar to you. It is handleMouseDown
and its value is our handleMouseDown event-handling method. The second prop is called
menuVisibility. Its value is the current value of our visible state property. Now let’s go ahead
and actually create our Menu component and see, among other things, how these props get used.

In the same src folder we have been partying in for the past few sections, add one file called
Menu.js and another file called Menu.css. Inside Menu.js, add the following contents:

import React, { Component } from "react";
import "./Menu.css";

class Menu extends Component {
 render() {
 var visibility = "hide";

 if (this.props.menuVisibility) {
 visibility = "show";
 }

 return (
 <div id="flyoutMenu"
 onMouseDown={this.props.handleMouseDown}
 className={visibility}>
 <h2>Home</h2>
 <h2>About</h2>
 <h2>Contact</h2>
 <h2>Search</h2>
 </div>
);
 }
}

export default Menu;

209Showing and Hiding the Menu

Pay attention to the JSX in the return statement. We have a div element called flyoutMenu
with some sample content. In our div element, we call our handleMouseDown event-handling
method (passed in via a prop) when the onMouseDown event is overheard. Next, we set a class
value on this element; the value is the result of evaluating a variable called visibility. As you
might recall, class is a reserved name in JavaScript and you can’t use it directly in our JSX; it
has to be specified as className.

Getting back to our code, the value of visibility is set a few lines earlier:

var visibility = "hide";

if (this.props.menuVisibility) {
 visibility = "show";
}

The value is either hide or show, depending on whether the menuVisibility prop (whose
value is specified by our visible state property) is true or false. While it might not look like
it, the code revolving around className plays a really important role in determining whether
your menu is actually visible. When we look at our CSS, you’ll see why. Now open Menu.css
and add the following style rules into it:

#flyoutMenu {
 width: 100vw;
 height: 100vh;
 background-color: #FFE600;
 position: fixed;
 top: 0;
 left: 0;
 transition: transform .3s
 cubic-bezier(0, .52, 0, 1);
 overflow: scroll;
 z-index: 1000;
}

#flyoutMenu.hide {
 transform: translate3d(-100vw, 0, 0);
}

#flyoutMenu.show {
 transform: translate3d(0vw, 0, 0);
 overflow: hidden;
}

#flyoutMenu h2 a {
 color: #333;
 margin-left: 15px;
 text-decoration: none;
}

210 Chapter 16 Creating a Sliding Menu in React

#flyoutMenu h2 a:hover {
 text-decoration: underline;
}

The CSS you see here mostly deals with how our menu itself looks, but the actual showing and
hiding of the menu is handled by the #flyoutMenu.hide and #flyoutMenu.show style rules.
Which of these style rules becomes active depends entirely on the code we looked at earlier. In
our flyoutMenu div element, remember that the class value on the generated HTML (which
our CSS maps to) will be either hide or show, depending on what value we set for className.
Pretty cool, right?

At this point, we’re fully done with all our coding. Be sure to save all your changes and ensure
that the app works just like the example we started with. Don’t nuke this project, though. We’ll
be revisiting this and addressing some major shortcomings in a little bit.

Conclusion

This is one of the first examples we’ve looked at in which we’re using React to create a
common UI occurrence, a sliding menu. As part of this, you learned more about the interplay
between components, such as dealing with events/event handlers, sharing state, and so on. As
we look at more examples together, you’ll see that there isn’t a whole lot more to React than
what you’ve seen here. All that remains is a clever arrangement and rearrangement of the same
concepts in more complex scenarios. This doesn’t mean we’re done, though. There’s more React
to be had and more examples to create and fully understand!

Note: If you run into any issues, ask!

If you have any questions or your code isn’t running like you expect, don’t hesitate to ask!
Post on the forums at https://forum.kirupa.com and get help from some of the friendliest and
most knowledgeable people the Internet has ever brought together!

https://forum.kirupa.com

17
Avoiding Unnecessary

Renders in React

You’re probably really tired of me saying this, but fast DOM performance is one of the biggest
feathers in React’s cap. That doesn’t mean you get all that great performance for free, though.
While React handles a lot of the heavy lifting, you should consciously take certain steps to
ensure that your app isn’t doing unnecessary work and slowing things down. One of the
biggest steps involves making sure each component’s render method is called only when it
absolutely has to be. In the next few sections, we’ll look at why that’s a problem and what you
can do about it.

About the render Method

The render method’s official job description is pretty simple. It just needs to show up on each
component and help generate the JSX to return to whatever parent component called it. If we
had to loosely describe the full workflow from components on one end and a fully finished app
on the other end, it would look as follows:

212 Chapter 17 Avoiding Unnecessary Renders in React

You have your finished app on one side. You have the components that make up the app on
the other. Inside all these components, you see render methods returning bits and chunks of
JSX getting combined with more bits and chunks of JSX from other components. This process
repeats until you get the final JSX at the root of the component hierarchy where we have our
ReactDOM.render call. From there, the React Magic happens that turns all this JSX into the
appropriate HTML/CSS/JS to display in the browser.

Now that you have a very basic idea of how React works, let’s get back into the weeds where
our components and their render methods live. In all the React code you’ve written so far,
you might also have noticed that you never had to explicitly call the render method on any

213Optimizing render Calls

component. That just sort of happened automatically. Let’s get more precise here. Three things
cause a render method to automatically get called:

1. A prop that lives on your component gets updated.

2. A state property that lives on your component gets updated.

3. A parent component’s render method gets called.

All three of these cases seem like good examples of when we want our component’s render
method to be automatically called. After all, all three of these cases could cause your visual state
to change, right?

The answer is, well, it depends! Very often, components find themselves being forced to
re-render even though the prop or state that is changing has absolutely nothing to do with
them. In some situations, a parent component is correctly rendering or re-rendering, but that is
localized to just that component. There’s no need to ask the child components to re-render for
something that doesn’t affect them.

Now, I might be painting an alarming picture of unnecessary work that has been going on right
under our noses. One point to keep in mind is that a render method being called is not the
same thing as the DOM ultimately getting updated. React takes a few additional steps in which
the DOM is diffed (that is, the previous version is compared with the new/current version) to
truly see if any changes need to be represented. All of these “few additional steps” means work,
and more complex apps with a lot of components will face many instances that will start to
add up. Some of this is additional work done by React’s internals. Some of it are just important
things we do in our render methods; we often have a lot of code there to help generate the
appropriate JSX. Rarely does our render method return a static piece of JSX with no evaluation
or calculation happening, so minimizing unnecessary render calls is a good thing.

Optimizing render Calls

Now that we’ve looked at the problem, let’s examine some approaches we can use to ensure
that we’re calling a component’s render method only when absolutely necessary. The follow-
ing sections walk you through this.

Getting an Example Going

To help make sense of this, we’re going to look at an example. It’s not just any example, either.
We’ll revisit our sliding menu that we created earlier. If you have it handy, go ahead and open
it in your code editor.

If you don’t have the project handy, that’s okay. Use create-react-app to create a new React
project and overwrite everything in your src and public folders with the contents from the
Sliding Menu Github repo:

214 Chapter 17 Avoiding Unnecessary Renders in React

When you have the sliding menu project ready, run it in your browser to make sure that every-
thing works—or still works.

If you haven’t completed the sliding menu from the previous chapter, I highly encourage you
to do so. Having the working project handy is all fine and good, but knowing how the code
works and understanding some of the choices we made during implementation is important.
You can certainly follow along without understanding that chapter, but don’t say I didn’t warn
you if some of the code you’re about to see seems a bit out of place.

Looking at our example, to reuse a graphic you’ve already seen, the component hierarchy for
our sliding menu app looks as follows:

215Optimizing render Calls

At the root is MenuContainer, and it has two children: MenuButton and Menu. Although it’s
not shown in the diagram, there’s a ReactDOM.render call in index.js that exposes our
MenuContainer to the DOM:

ReactDOM.render(
 <MenuContainer/>,
 document.getElementById("container")
);

When the button rendered by MenuButton is clicked, we set a Boolean state property (called
visible) in MenuContainer to true. This state property change triggers our Menu compo-
nent to update a class value that activates the appropriate CSS to slide our menu in. Clicking
anywhere in the menu dismisses the menu by undoing what was done via setting the state
property in MenuContainer to false.

216 Chapter 17 Avoiding Unnecessary Renders in React

Seeing the render Calls

The first thing we want to do is see the render calls being made. You can do this in many ways.
You can set a break point in your code and inspect the results using your browser’s developer
tools. You can install the React Developer Tools add-on (for Chrome or Firefox) from https://
github.com/facebook/react-devtools and inspect each component. You can also take a very simple
approach and insert console.log statements inside the render methods you’re interested in.

Because we have only three components in our sliding menu example, the console.log
approach is an easy one that we’ll use for now. In your code editor, open MenuContainer.js,
MenuButton.js, and Menu.js and scroll down to each component’s respective render method.
At the very top of this method, we’re going to add a console.log call.

In MenuContainer.js, add the following highlighted line:

render() {
 console.log("Rendering: MenuContainer");
 return (
 <div>
 <MenuButton handleMouseDown={this.handleMouseDown}/>
 <Menu handleMouseDown={this.handleMouseDown}
 menuVisibility={this.state.visible}/>
 <div>
 <p>Can you spot the item that doesn't belong?</p>

 Lorem
 Ipsum
 Dolor
 Sit
 Bumblebees
 Aenean
 Consectetur

 </div>
 </div>
);
}

Let’s do something similar in MenuButton.js:

render() {
 console.log("Rendering: MenuButton");

 return (
 <button id="roundButton"
 onMouseDown={this.props.handleMouseDown}></button>
);
}

Lastly, add the following highlighted line in Menu.js:

render() {
 console.log("Rendering: Menu");

https://github.com/facebook/react-devtools
https://github.com/facebook/react-devtools

217Seeing the render Calls

 var visibility = "hide";

 if (this.props.menuVisibility) {
 visibility = "show";
 }

 return (
 <div id="flyoutMenu"
 onMouseDown={this.props.handleMouseDown}
 className={visibility}>
 <h2>Home</h2>
 <h2>About</h2>
 <h2>Contact</h2>
 <h2>Search</h2>
 </div>
);
}

Once you have added these three lines, run your app in your browser. Once the app is up and
running, bring up your browser’s developer tools and take a look at what is printed in the console:

218 Chapter 17 Avoiding Unnecessary Renders in React

You might see warnings and other stuff displayed, but look for the output of the console.log
statements you added. When you first run your app, you’ll see that all three of our components
have their respective render method getting called. This is expected because it’s the first time
your app is being loaded.

With your console still open, go ahead and click the blue button to bring up the menu. Then
take a look at your console. You’ll see the following new items (highlighted in green):

Rendering: MenuContainer

Rendering: MenuButton

Rendering: Menu

clicked

Rendering: MenuContainer

Rendering: MenuButton

Rendering: Menu

When the handleMouseDown event handler gets called, we print the text clicked to the
console. This isn’t important for what we’re doing right now, but it does provide a nice separa-
tion between our series of render calls. With that said, notice that displaying our menu results
in all three of our components’ render methods getting called. Click the menu to dismiss it.
You’ll see that all three render methods get called again. That doesn’t seem right, does it?

Because we’re toggling a prop on Menu and our state is stored on MenuContainer, it makes
sense for those two components’ render methods to be called…for now. But, why is our
MenuButton component’s render method getting called every single time?

Looking at MenuContainer’s render call, we are calling our Menu component and passing in a
prop whose value will never change:

<MenuButton handleMouseDown={this.handleMouseDown}/>

The value of our handleMouseDown method doesn’t change each time our menu is opened
or closed. This is because our MenuContainer (a.k.a. the MenuButton’s parent) has its render
method called. If a parent’s render method gets called, all the child components’ render
methods get called as well. If you’re keeping score, this is reason #3 we listed a few sections ago
when talking about what causes a render method to be called automatically.

So what options do we have for stopping our MenuButton component’s render method from
being unnecessarily called? As it turns out, we have two.

Overriding a Component Update

A while ago, we looked at the various lifecycle methods React provides. One of them is
shouldComponentUpdate. This method is called just before a render call is made, and you can
block the render method from being called by having the shouldComponentUpdate method
return false. Here we’re going to use the shouldComponentUpdate method to do just that.

219Seeing the render Calls

Inside the MenuButton component, add the following highlighted lines:

import React, { Component } from "react";
import "./MenuButton.css";

class MenuButton extends Component {
 shouldComponentUpdate(nextProps, nextState) {
 return false;
 }

 render() {
 console.log("Rendering: MenuButton");

 return (
 <button id="roundButton"
 onMouseDown={this.props.handleMouseDown}></button>
);
 }
}

export default MenuButton;

Refresh your app to test your code. Pay attention to the console and see what gets printed
when you’re showing and hiding a menu. Your output when your page loads and the menu is
displayed for the first time now appears as follows:

Rendering: MenuContainer

Rendering: MenuButton

Rendering: Menu

clicked

Rendering: MenuContainer

Rendering: Menu

Notice that our MenuButton component’s render method isn’t called. That’s great. Before we
celebrate too much, though, we’ve really taken a hammer to our problem by always returning
false when shouldComponentUpdate gets called. While that works for what we are doing,
let’s be a bit more careful to ensure that we aren’t accidentally preventing valid updates in the
future if we eventually modify MenuButton and how it gets used.

When you look at the shouldComponentUpdate method’s signature, you can see that two argu-
ments are passed in. One is for the next prop value, and the other is for the next state value.
We can use these arguments to compare the present with the future and act a bit more intel-
ligently about whether we allow our render call to be made. In the case of MenuButton, the

220 Chapter 17 Avoiding Unnecessary Renders in React

only prop we’re passing in is for the value of handleMouseDown. We can check to ensure that
this value doesn’t change by modifying the shouldComponentUpdate method, as follows:

shouldComponentUpdate(nextProps, nextState) {
 if (nextProps.handleMouseDown === this.props.handleMouseDown) {
 return false;
 } else {
 return true;
 }
}

This code ensures that we don’t unnecessarily call render if the value of handleMouseDown
stays the same. If the value of handleMouseDown changed, we could properly return a value
of true to allow the render call to be made. You can use other criteria to specify whether
the component’s render method should get called, and what you do depends entirely on the
component in question. Feel free to get creative, if you need to.

Using PureComponent
It’s a common occurrence to have components forced to re-render despite not having relevant
prop or state changes. Our MenuButton example is just one such occurrence. The solution is to
call shouldComponentUpdate and check whether any prop or state changes have taken place.
To avoid having to make this check all the time, a special kind of component can handle this
checking automatically for you. That component is PureComponent.

Until now, all of our components have been based on Component:

class Blah extends Component {
 render() {
 return (
 <h1>Hello!</h1>
);
 }
}

To base our components off PureComponent, all you have to do is this:

class Blah extends PureComponent {
 render() {
 return (
 <h1>Hello!</h1>
);
 }
}

That’s pretty much it. Your component will now be extra careful about calling render only
when it determines that a change to either the prop or state has actually been made. To see this
for yourself, you can change MenuButton to be a PureComponent instead of just a Component.

221Seeing the render Calls

In MenuButton.js, first delete the shouldComponentUpdate method; you don’t need it
anymore. Then make the following two highlighted changes:

import React, { PureComponent } from "react";
import "./MenuButton.css";

class MenuButton extends PureComponent {
 render() {
 console.log("Rendering: MenuButton");

 return (
 <button id="roundButton"
 onMouseDown={this.props.handleMouseDown}></button>
);
 }
}

export default MenuButton;

We first import the necessary code from the React library to make PureComponent work. Next,
we extend our MenuButton from PureComponent. That’s it. If you test your app now and
inspect the console after displaying the menu, you’ll see that our MenuButton component’s
render method doesn’t get called when your menu decides to show up (or disappear).

Why Not Always Use PureComponent?
The PureComponent seems pretty awesome, right? Why don’t we just use it always and ditch
Component altogether? We probably should! With that said, there are a few reasons you might
want to stick with Component.

First, PureComponent performs what’s known as a shallow comparison. It isn’t a comprehensive
check of everything that might have changed in your props or state between calls to re-render.
For many cases, that’s okay. For other cases, that might not be. Keep that in mind when using
PureComponent. You might find that you need to write your own shouldComponentUpdate
and handle the updating logic manually. You can’t use PureComponent and specify should-
ComponentUpdate at the same time, although that makes a nice try!

Beyond the comparison logic, the bigger problem with using PureComponent is performance.
Having each of your components check to see if props or state have changed, even if it’s a
shallow check, takes up computation time. Remember, these checks happen every time your
component decides to re-render or is asked to re-render by a parent. For complex UIs, that
could happen frequently without you even realizing it.

TL;DR: This should probably have been mentioned at the top of this note, but what are you
going to do? Basically, it’s fine to use PureComponent instead of Component. Just be aware
of the two (minor) side effects.

222 Chapter 17 Avoiding Unnecessary Renders in React

Conclusion

Ensuring that your app is performant requires constant vigilance. Profile your app’s perfor-
mance frequently, and definitely do so each time you make a code change with the goal of
optimizing performance. Each performance optimization you make brings complexity that just
adds to your (or your team’s) overhead of maintaining the code and making fixes in it for the
lifetime of your app. Be conscious and don’t overoptimize. If your app works really well on the
devices and browsers you’re targeting (especially the low-end ones), consider your job done.
Take a break and don’t do any extra work!

Note: If you run into any issues, ask!

If you have any questions or your code isn’t running like you expect, don’t hesitate to ask!
Post on the forums at https://forum.kirupa.com and get help from some of the friendliest and
most knowledgeable people the Internet has ever brought together!

https://forum.kirupa.com

18
Creating a Single-Page App

in React Using React Router

Now that you’ve familiarized yourself with the basics of how to work with React, let’s kick
things up a few notches. Here we’re going to use React to build a simple single-page app (also
referred to as SPA by the cool kids and people living in Scandinavia). As we talked about in
our React introduction forever ago, single-page apps are different from the more traditional
multipage apps that you see everywhere. The biggest difference is that navigating a single-page
app doesn’t involve going to an entirely new page. Instead, your pages (commonly known
as views in this context) typically load inline within the same page itself:

224 Chapter 18 Creating a Single-Page App in React Using React Router

When you’re loading content inline, things get a little challenging. The hard part isn’t loading
the content itself. That’s relatively easy. The hard part is making sure that single-page apps
behave in a way that is consistent with what your users are accustomed to. More specifically,
when users navigate your app, they have some expectations:

1. The URL displayed in the address bar should always reflect the thing users are viewing.

2. Users expect to be able to use the browser’s back and forward buttons successfully.

3. Users should be able to navigate to a particular view (a.k.a. deep link) directly using the
appropriate URL.

With multipage apps, these three things come for free. You don’t have to do anything extra for
any of it. With single-page apps, because you aren’t navigating to an entirely new page, you
have to do real work to deal with these three things that your users expect to just work. You need
to ensure that navigating within your app adjusts the URL appropriately. You need to ensure
that your browser’s history is properly synchronized with each navigation to allow users to use
the back and forward buttons. If users bookmark a particular view or copy/paste a URL to access
later, you need to ensure that your single-page app takes them to the correct place.

To deal with all of this, you have a bucket full of techniques commonly known as routing.
With routing, you try to map URLs to destinations that aren’t physical pages, such as the
individual views in your single-page app. That sounds complicated, but fortunately, a bunch
of JavaScript libraries can help with this. One such JavaScript library is the star of this
tutorial, React Router(https://github.com/reactjs/react-router). React Router provides routing
capabilities to single-page apps built in React. What makes it nice is that it extends what you
already know about React in familiar ways to give you all of this routing awesomeness. In this
tutorial, you’ll learn all about how it does that…and hopefully more.

Onward!

The Example

Before we go further, take a look at the following example in your browser: https://www.kirupa
.com/react/examples/react_router/index.html.

Here, you have a simple React app that uses React Router to provide all the navigation and
view-loading goodness:

https://github.com/reactjs/react-router
https://www.kirupa.com/react/examples/react_router/index.html
https://www.kirupa.com/react/examples/react_router/index.html

225Getting Started

Click the various links to load the relevant content, and feel free to open this page in its own
browser window (https://www.kirupa.com/react/examples/react_router/index.html) to use the
back and forward buttons and see them working.

In the following sections, we’re going to be building this app in pieces. By the end, not only
will you have re-created this app, but hopefully you’ll have learned enough about React Router
to build cooler and even more awesome things.

Getting Started

First we need to get our project set up. We’ll use our trusty create-react-app command to
do this. From your favorite terminal, navigate to the folder where you want to create your app
and type the following:

create-react-app react_spa

https://www.kirupa.com/react/examples/react_router/index.html

226 Chapter 18 Creating a Single-Page App in React Using React Router

This creates our new project inside a folder called react_spa. Go ahead and navigate into this
folder:

cd react_spa

Normally, this is where we start messing around with deleting the existing content to start from
a blank slate. We’ll do that, but first, we’re going to install React Router. To do that, run the
following command:

npm i react-router-dom --save

This copies the appropriate React Router files and registers it in our package.json so that our
app is aware of its existence. That’s good stuff, right?

It’s time to clean up the project to start from a clean slate. From inside your react_spa folder,
delete everything inside your public and src folders. Now, let’s create the index.html file
that will serve as our app’s starting point. In your public folder, create a file called index.html
and add the following contents into it:

<!DOCTYPE html>
<html>

<head>
 <meta charset="utf-8">
 <meta name="viewport"
 content="width=device-width, initial-scale=1, shrink-to-fit=no">
 <title>React Router Example</title>
</head>

<body>
 <div id="root"></div>
</body>

</html>

Take a quick glance at the HTML. You shouldn’t see anything surprising here. Next, we’ll create
our JavaScript entry point. Inside the src folder, create a file called index.js and add the
following contents into it:

import React from "react";
import ReactDOM from "react-dom";
import Main from "./Main";

ReactDOM.render(
 <Main/>,
 document.getElementById("root")
);

Our ReactDOM.render call lives here, and we’re rendering our Main component…which
doesn’t exist yet. The Main component will be the starting point for our SPA expedition using
React Router, and you’ll see how beginning with the next section.

http://index.html
http://index.html

227Building Our Single-Page App

Building Our Single-Page App

The way we build our app is no different than the way we’ve been building all the apps so far.
We’ll have a main parent component. Each individual “page” of our app will be a separate
component that feeds into the main component. The magic React Router brings to the table
is basically choosing which components to show and which to hide. To make this feel natural
and seamless, all of this navigating is tied in with our browser’s address bar and back/forward
buttons.

Displaying the Initial Frame

When building an SPA, a part of your page will always remain static. This static part, also
referred to as an app frame, could be one invisible HTML element that acts as the container for
all of your content, or it could include some additional visual things such as a header, a footer,
or navigation. In our case, our app frame will be a component that contains UI elements for
our navigation header and an empty area for content to load in.

Inside our src folder, create a new file called Main.js and add the following content into it:

import React, { Component } from "react";

class Main extends Component {
 render() {
 return (
 <div>
 <h1>Simple SPA</h1>
 <ul className="header">
 Home
 Stuff
 Contact

 <div className="content">

 </div>
 </div>
);
 }
}

export default Main;

Take a look at what we have here. We have a component called Main that returns some
HTML. That’s it. To see what we have so far in action, type npm start and see what’s going
on in your browser.

228 Chapter 18 Creating a Single-Page App in React Using React Router

You should see an unstyled version of an app title and some list items:

This doesn’t look all fancy and styled, but that’s okay for now; we’ll deal with that later. The
important thing to call out is that there’s nothing React Router specific here—absolutely nothing!

Creating Our Content Pages

Our app will have three pages of content. This content will be just a simple component that
prints out some JSX. Let’s get that created and out of the way. First, create a file called Home.js
in the src directory and add the following content:

import React, { Component } from "react";

class Home extends Component {
 render() {
 return (
 <div>
 <h2>HELLO</h2>
 <p>Cras facilisis urna ornare ex volutpat, et
 convallis erat elementum. Ut aliquam, ipsum vitae
 gravida suscipit, metus dui bibendum est, eget rhoncus nibh
 metus nec massa. Maecenas hendrerit laoreet augue
 nec molestie. Cum sociis natoque penatibus et magnis
 dis parturient montes, nascetur ridiculus mus.</p>

 <p>Duis a turpis sed lacus dapibus elementum sed eu lectus.</p>
 </div>
);
 }
}

export default Home;

229Building Our Single-Page App

Next, create a file called Stuff.js in the same location and add in the following:

import React, { Component } from "react";

class Stuff extends Component {
 render() {
 return (
 <div>
 <h2>STUFF</h2>
 <p>Mauris sem velit, vehicula eget sodales vitae,
 rhoncus eget sapien:</p>

 Nulla pulvinar diam
 Facilisis bibendum
 Vestibulum vulputate
 Eget erat
 Id porttitor

 </div>
);
 }
}

export default Stuff;

We have just one more page left. Create a file called Contact.js in the src folder and make
sure its contents are the following:

import React, { Component } from "react";

class Contact extends Component {
 render() {
 return (
 <div>
 <h2>GOT QUESTIONS?</h2>
 <p>The easiest thing to do is post on
 our forums.
 </p>
 </div>
);
 }
}

export default Contact;

230 Chapter 18 Creating a Single-Page App in React Using React Router

That’s the last of the content we’re going to add. If you take a look at what you’re adding,
you’ll see that these components can’t get any simpler. They just return some boilerplate JSX
content. Be sure to save all your changes to these three files. We’ll look at how to make them
useful shortly.

Using React Router

We have our app frame in the form of our Main component. We have our content pages repre-
sented by the Home, Stuff, and Contact components. Now we need to tie all of these together
to create our app. This is where React Router comes in. To start using it, go back to Main.js
and ensure that your import statements look as follows:

import React, { Component } from "react";
import {
 Route,
 NavLink,
 HashRouter
} from "react-router-dom";
import Home from "./Home";
import Stuff from "./Stuff";
import Contact from "./Contact";

We are importing Route, NavLink, and HashRouter from the react-router-dom NPM
package installed earlier. In addition, we’re importing our Home, Stuff, and Contact compo-
nents because we’ll be referencing them as part of loading our content.

React Router works by defining what I call a routing region. Inside this region are two things:

1. Your navigation links

2. The container to load your content into

There’s a close correlation between the URL your navigation links specify and the content that
ultimately gets loaded. There’s no way to easily explain this without first getting our hands
dirty and implementing what you just read about.

The first thing to do is define the routing region. Inside our Main component’s render
method, add the following highlighted lines:

class Main extends Component {
 render() {
 return (
 <HashRouter>
 <div>
 <h1>Simple SPA</h1>
 <ul className="header">
 Home
 Stuff
 Contact

231Building Our Single-Page App

 <div className="content">

 </div>
 </div>
 </HashRouter>
);
 }
}

The HashRouter component provides the foundation for the navigation and browser history
handling that routing is made up of. Next we need to define our navigation links. We already
have list elements with the a element defined. We need to replace them with the more specialized
NavLink component, so go ahead and make the following highlighted changes:

class Main extends Component {
 render() {
 return (
 <HashRouter>
 <div>
 <h1>Simple SPA</h1>
 <ul className="header">
 <NavLink to="/">Home</NavLink>
 <NavLink to="/stuff">Stuff</NavLink>
 <NavLink to="/contact">Contact</NavLink>

 <div className="content">

 </div>
 </div>
 </HashRouter>
);
 }
}

For each link, pay attention to the URL we’re telling our router to navigate to. This URL value
(defined by the to prop) acts as an identifier to ensure that the right content gets loaded.
We match the URL with the content by using a Route component. Go ahead and add the
following highlighted lines:

class Main extends Component {
 render() {
 return (
 <HashRouter>
 <div>
 <h1>Simple SPA</h1>
 <ul className="header">
 <NavLink to="/">Home</NavLink>
 <NavLink to="/stuff">Stuff</NavLink>
 <NavLink to="/contact">Contact</NavLink>

232 Chapter 18 Creating a Single-Page App in React Using React Router

 <div className="content">
 <Route path="/" component={Home}/>
 <Route path="/stuff" component={Stuff}/>
 <Route path="/contact" component={Contact}/>
 </div>
 </div>
 </HashRouter>
);
 }
}

As you can see, the Route component contains a path prop. The value you specify for the
path determines when this route is going to be active. When a route is active, the component
specified by the component prop gets rendered. For example, when we click on the Stuff link
(whose path is /stuff as set by the NavLink component’s to prop), the route whose path value
is also /stuff becomes active. This means the contents of our Stuff component get rendered.

You can see all of this for yourself. Jump back to your browser to see the live updates or run npm
start again. Click around on the links to see the content loading in and out. Something seems
off, though, right? The content for our home page seems to always display even if we’re click-
ing on the Stuff or Contact links:

233It’s the Little Things

That seems problematic. We’ll look at how to fix that and do many more little housekeeping
tasks in the next section when we go one level deeper into using React Router.

It’s the Little Things

In the previous section, we got our SPA mostly up and running. We just wrapped our entire
routing region inside a HashRouter component, and we separated our links and the place our
links load by using the NavLink and Route components, respectively. Getting our example
mostly up and running and fully up and running are two different things. In the following
sections, we’ll close those differences.

Fixing Our Routing

We ended the previous section by determining that our routing has a bug in it. The contents of
our Home component are always displaying because the path for loading our Home component
is /. Our Stuff and Contact components have the / character as part of their paths as well.
This means our Home component always matches whatever path we are trying to navigate to.
The fix for that is simple. In the Route component representing our Home content, add the
exact prop as shown here:

<div className="content">
 <Route exact path="/" component={Home}/>
 <Route path="/stuff" component={Stuff}/>
 <Route path="/contact" component={Contact}/>
</div>

This prop ensures that the Route is active only if the path is an exact match for what is
being loaded. If you preview your app now, you’ll see that the content loads correctly, with
the Home content displaying only when our app is in the Home view.

Adding Some CSS

Right now, our app is completely unstyled. The fix for that is easy. In your src folder, create a
file called index.css and add the following style rules into it:

body {
 background-color: #FFCC00;
 padding: 20px;
 margin: 0;
}
h1, h2, p, ul, li {
 font-family: sans-serif;
}

234 Chapter 18 Creating a Single-Page App in React Using React Router

ul.header li {
 display: inline;
 list-style-type: none;
 margin: 0;
}
ul.header {
 background-color: #111;
 padding: 0;
}
ul.header li a {
 color: #FFF;
 font-weight: bold;
 text-decoration: none;
 padding: 20px;
 display: inline-block;
}
.content {
 background-color: #FFF;
 padding: 20px;
}
.content h2 {
 padding: 0;
 margin: 0;
}
.content li {
 margin-bottom: 10px;
}

Now, we need to reference this stylesheet in our app. At the top of index.js, add the import
statement to do just that:

import React from "react";
import ReactDOM from "react-dom";
import Main from "./Main";
import "./index.css";

ReactDOM.render(
 <Main/>,
 document.getElementById("root")
);

Save all your changes if you haven’t done so yet. If you preview the app now, you’ll notice that
it’s starting to look a bit more like the example we started with:

235It’s the Little Things

We’re almost done here! We just need to do a few more things.

Highlighting the Active Link

Right now, it’s hard to tell which link corresponds to content that is currently loaded. Having
some sort of a visual cue would be useful. The creators of React Router have already thought of
that. When you click a link, a class value of active is automatically assigned to it.

For example, this is what the HTML for clicking on the Stuff link looks like:

<a aria-current="true" href="#/stuff" class="active">Stuff

All we really have to do, then, is add the appropriate CSS that lights up when an element has
a class value of active set on it. To make this happen, go back to index.css and add the
following style rule toward the bottom of your document:

.active {
 background-color: #0099FF;
}

After you have added this rule and saved your document, go back to your browser and click
around on the links in our example. You’ll see that the active link whose content is displayed is
highlighted with blue. Notice also that our Home link is always highlighted. That isn’t correct.
The fix is simple: Just add the exact prop to the NavLink component representing our Home
content:

<NavLink exact to="/">Home</NavLink>
<NavLink to="/stuff">Stuff</NavLink>
<NavLink to="/contact">Contact</NavLink>

236 Chapter 18 Creating a Single-Page App in React Using React Router

Now go back to the browser. You’ll see that our Home link gets the active color treatment only
when the Home content is displayed:

At this point, we’re done with the code changes to build our SPA using React Router. Yay!

Conclusion

By now, we’ve covered a good chunk of the cool functionality React Router has in helping
you build your SPA. This doesn’t mean there aren’t more interesting things for you to take
advantage of. Our app was pretty simple, with very modest demands on the routing functionality
we needed to implement. React Router provides a whole lot more (including variations of APIs for
what you’ve seen here), so if you’re building a more complex single-page app than what we’ve
looked at so far, you should totally spend an afternoon taking a look the full React Router
documentation(https://github.com/reactjs/react-router/) and examples.

Note: If you run into any issues, ask!

If you have any questions or your code isn’t running like you expect, don’t hesitate to ask!
Post on the forums at https://forum.kirupa.com and get help from some of the friendliest and
most knowledgeable people the Internet has ever brought together!

https://github.com/reactjs/react-router/
https://forum.kirupa.com

19
Introduction to Redux

The greatest love story of all time isn’t between Romeo and Juliet. In fact, it’s not even between
any characters we’ve seen in books or movies. It’s actually between React and a mysterious
unknown straggler from a far-away land, known as Redux.

238 Chapter 19 Introduction to Redux

By now, you know enough about React to understand how it works and why it does some of
the things it does. We haven’t talked about Redux at all, though. We need to fix that before we
can try to figure out why React and Redux get along so well. In the following sections, we take
a deep dive into what Redux is.

What Is Redux?

If we’ve learned one thing in all this time, it is this: Maintaining application state and keeping it
consistent with our UI is a major challenge. Solving this is partly why libraries such as React really
took off. If you cast a wider net and look beyond just the UI layer, you’ll see that maintaining
application state in general is complicated. The typical app has many layers, and each layer has
its own dependency on some piece of data that it relies on to do its thing.

Visualizing the relationship between your app’s functionality and its application state often is
pretty confusing:

239What Is Redux?

To solve this more general problem of maintaining application state, you have Redux. The
easiest way to understand how Redux works is just to walk through the various pieces that go
into it. The first thing we need is an app:

This app doesn’t have to be anything special. It can be built in React, Angular, Vue, vanilla
JS, or whatever happens to be the hot new library or framework this week. Redux doesn’t care
how your app is built. It only cares that your app has a magical way for dealing with applica-
tion state and storing it. In the Redux world, we store all our application state in a single
location that we’ll just call the Store:

240 Chapter 19 Introduction to Redux

The thing about the Store is that reading data from it is easy. Getting information into it is a
whole another story. You add a new state to (or modify existing state in) the Store by using
a combination of actions, which describe what to change, and a reducer, which determines
what the final state will be as a result for a given action. When you throw both of these into
the picture, this is what you see:

241What Is Redux?

This diagram omits a few more moving pieces, but it’s a good approximation of what happens
when our app needs to update the state stored in the Store. Now, looking at this diagram,
you’re probably wondering why there’s all this roundaboutness and indirection. Why can’t
our app just update the Store directly?

242 Chapter 19 Introduction to Redux

The reason is scalability. Even for simple apps, keeping our application state in-sync with what
our app is doing is a chore. For complex apps in which different parts want to access and
modify the application state, forget about it! This roundabout way is Redux’s answer for making
sure storing application state is easy for both simple apps and complex ones. Beyond just ease,
Redux helps make maintaining your application state predictable. Dan Abramov and Andrew
Clark, the creators of Redux, interpreted predictable as follows:

1. Your entire application’s state is stored in a single location. You don’t have to search
across a variety of data stores to find the part of your state you want to update. Keeping
everything stored in a single location also ensures that you don’t have to worry about
keeping all of this data in sync.

243Building a Simple App Using Redux

2. Your state should be read-only and can be modified only through actions. As you
saw in the diagram earlier, in a Redux world, you need to ensure that random parts of
your app can’t access the Store and modify the state stored inside it. The only way our
app can modify what is in the Store is by relying on actions.

3. You specify what the final state should be. To keep things simple, your state is never
modified or mutated. You use a reducer to specify what the final result of your state
should be.

These three principles might seem a bit abstract, but as you start to write some Redux code,
you’ll see them put into practice.

Building a Simple App Using Redux

We’re now going to take all the diagrams and text you saw in the previous section and turn
them into code. The app we’re building to highlight how Redux works will be a really simple
console-driven app without any UI. This app will store and display a list of favorite colors.
From our app, you’ll be able to add colors and remove colors. That’s pretty much it.

This might seem like a step backward from the UI-rich apps we’ve been building, but this app
will tie together all this theoretical Redux knowledge to produce some tangible lines of code.
The goal is to simply make sense of Redux. We’ll complicate our world by combining Redux
with some UI later.

It’s Redux Time

First we need to create a new HTML document and reference the Redux library as part of it.
We won’t be using create-react-app or any fancy build system here. This will be just a loose
HTML file somewhere that you can view in your browser. Using your favorite code editor, go
ahead and create a new file called favoriteColors.html and add the following markup:

<!DOCTYPE html>
<html>

<head>
 <title>Favorite Colors!</title>
 <script src="https://unpkg.com/redux@latest/dist/redux.js"></script>
</head>

<body>
 <script>

 </script>
</body>

</html>

http://favoriteColors.html

244 Chapter 19 Introduction to Redux

As you can see, we have an empty HTML document with only the basic structure defined.
We’re referencing a hosted version of the Redux library, which is fine for kicking the tires
like we’re doing. For production apps, like the ones you saw with React, you have better
approaches to use. We’ll look at those better approaches later, but referencing the library
directly is okay for now.

Lights! Camera! Action!

With our Redux library referenced, we need to define our actions. Remember, the action is the
only mechanism we have to communicate with our Store. For our app, because we want to add
and remove colors, our actions will represent that want in a way the Store will understand.

Inside your script tag, add the following lines:

function addColor(value) {
 return {
 type: "ADD",
 color: value
 };
}

function removeColor(value) {
 return {
 type: "REMOVE",
 color: value
 };
}

We have two functions, addColor and removeColor. They each take one argument and return
an action object as a result. For addColor, the action object is the highlighted two lines:

function addColor(value) {
 return {
 type: "ADD",
 color: value
 };
}

When defining an action, you have a lot of freedom. Every action object has a type property.
This is a keyword that signals what you’re intending to do. Beyond that, any other information
you send along with your action is entirely up to you. Because we’re interested in adding or
removing a color value from our Store, our action object also has a color property that stores
the color we’re interested in.

Let’s get back to our addColor and removeColor functions. Both really serve just one purpose:
to return an action. There’s a more formal name for these functions in the Redux world.
They’re known as action creators because they, um, create an action.

245Building a Simple App Using Redux

Our Reducer

Our actions define what we want to do, but the reducer handles the specifics of what happens
and how our new state is defined. You can think of the reducer as the intermediary between
the Store and the outside world, where it does the following three things:

1. Provides access to the Store’s original state

2. Allows you to inspect the action that was currently fired

3. Allows you to set the Store’s new state

You can see all this when you add a reducer to deal with adding and removing colors from the
Store. Add the following code after the point where you’ve defined your action creators:

function favoriteColors(state, action) {
 if (state === undefined) {
 state = [];
 }

 if (action.type === "ADD") {
 return state.concat(action.color);
 } else if (action.type === "REMOVE") {
 return state.filter(function(item) {
 return item !== action.color;
 });
 } else {
 return state;
 }
}

Take a moment to walk through what this code is doing. First we ensure that we actually have
some state to fiddle with:

function favoriteColors(state, action) {
 if (state === undefined) {
 state = [];
 }

 if (action.type === "ADD") {
 return state.concat(action.color);
 } else if (action.type === "REMOVE") {
 return state.filter(function(item) {
 return item !== action.color;
 });
 } else {
 return state;
 }
}

246 Chapter 19 Introduction to Redux

If our state object doesn’t exist, as with the first time we launch our app, we just initialize it as
an empty array. You can use any data structure you want, but an array is the right one for what
we’re trying to do here.

From there, the rest of our code is responsible for dealing with our actions. Note that the
reducer gets the full action object via its action argument. This means you have access to not
only the action’s type property, but also anything else you specified earlier as part of defining
your actions.

For this example, if our action’s type is ADD, we add the color (specified by the action’s color
property) to our state array. If our action’s type is REMOVE, we return a new array with the color
in question omitted. Lastly, if our action’s type is something we don’t know, we just return our
current state, unmodified:

function favoriteColors(state, action) {
 if (state === undefined) {
 state = [];
 }

 if (action.type === "ADD") {
 return state.concat(action.color);
 } else if (action.type === "REMOVE") {
 return state.filter(function(item) {
 return item !== action.color;
 });
 } else {
 return state;
 }
}

Pretty simple, right? Be sure to keep one important Redux design choice in mind. The Redux
documentation (https://redux.js.org/docs/basics/Reducers.html) describes it best:

Things you should never do inside a reducer:

 ■ Mutate its arguments

 ■ Perform side effects like API calls and routing transitions

 ■ Call non-pure functions, e.g. Date.now() or Math.random()

Given the same arguments, it should calculate the next state and return it. No surprises. No side effects.
No API calls. No mutations. Just a calculation.

You can see this in our code. To add new color values to our state array, we used the concat
method, which returns an entirely new array made up of both the old values and the new
value we’re adding. Using push would give us the same end result, but it violates our goal of
not modifying the existing state. To remove color values, we continue to maintain our goal of
not modifying our current state. We use the filter method, which returns a brand new array
with the value we want to remove omitted.

https://redux.js.org/docs/basics/Reducers.html

247Building a Simple App Using Redux

Also keep the following in mind, as Mark Erikson (@acemarke) reminded me: Redux doesn’t contain
any mechanics to prevent us from modifying state and making other poor choices. The creators of Redux
have provided some guidelines. It’s up to us to follow them and put those guidelines into practice.

Store Stuff

All that remains now is to tie our actions and the reducer with our Store. First we have to actu-
ally create the Store. Below your favoriteColors reducer function, add the following:

var store = Redux.createStore(favoriteColors);

Here we’re creating a new Store using the createStore method. The argument we provide is
the favoriteColors reducer we created a few moments ago. We’ve now come full circle in
using Redux to store application state. We have our store, we have our reducer, and we have
actions that tell our reducer what to do.

To see everything fully working, we’re going to add (and remove) some colors to the Store.
To do this, we use the dispatch method on our store object that takes an action as its
 argument. Go ahead and add the following lines:

store.dispatch(addColor("blue"));
store.dispatch(addColor("yellow"));
store.dispatch(addColor("green"));
store.dispatch(addColor("red"));
store.dispatch(addColor("gray"));
store.dispatch(addColor("orange"));
store.dispatch(removeColor("gray"));

Each dispatch call sends an action to our reducer. The reducer takes the action and performs
the appropriate work to define our new state. To see the Store’s current state, you can just add
the following after all the dispatch calls:

console.log(store.getState());

As its name implies, the getState method returns the state’s value. If you preview your app in
the browser and bring up your browser’s developer tools, you’ll see that the colors we added get
displayed in the console:

248 Chapter 19 Introduction to Redux

We’re almost done here; We have just one more really important thing to cover. In real-world
scenarios, you want to be notified each time your application’s state is modified. This push
model will make your life much easier if you want to update UI or perform other tasks as a
result of some change to the Store. To accomplish this, you have the subscribe method for
specifying a function (a.k.a. a listener) that gets called each time the contents of the Store are
modified. To see the subscribe method in action, just after you defined the store object,
add the following highlighted lines:

var store = Redux.createStore(favoriteColors);
store.subscribe(render);

function render() {
 console.log(store.getState());
}

After you’ve done this, preview your app again. This time, whenever you call dispatch to fire
another action, the render function gets called when the Store is modified. Phew!

Conclusion

We’ve taken a whirlwind tour of Redux and the major pieces of functionality it brings to the
table. We looked at not only the concepts that make Redux really useful for dealing with appli-
cation state, but also the code to make everything real. The only thing we didn’t get to do was
create a more realistic example. Redux is flexible enough to work with any UI framework, and
each UI framework has its own magic in working with Redux. Our UI framework of choice is,
of course, React! We’ll look at how to tie them together in the next chapter.

Note: If you run into any issues, ask!

If you have any questions or your code isn’t running like you expect, don’t hesitate to ask!
Post on the forums at https://forum.kirupa.com and get help from some of the friendliest and
most knowledgeable people the Internet has ever brought together!

https://forum.kirupa.com

20
Using Redux with React

Now that you have a better idea of how Redux works, let’s look at the topic we set out to better
understand in the first place. Why is Redux so popular in React projects? To help answer this, take
a look at the following component hierarchy for some arbitrary app:

250 Chapter 20 Using Redux with React

What this app does isn’t very important. The only detail we’ll throw in here is that some
of these components are responsible for managing state and transferring some of that state
around in the form of props:

251 Using Redux with React

In an ideal setup, the data that each component needs flows neatly down from parent to child:

Unfortunately, outside of simple scenarios, what we want to do isn’t very realistic. Your
typical app does a lot of state generating, processing, and transferring. One component
might initiate a state change. Another component somewhere else will want to react to it.

252 Chapter 20 Using Redux with React

The props related to this state change might travel both down the tree (yay!) as well as up the
tree (no!) to reach whatever component is relying on the data being transferred:

We’ve been guilty of this quite a few times ourselves as part of communicating something
 (variable value, function/event handler reference, and so on) from child to parent and beyond.

At this point, we need to acknowledge a few problems that can arise from data traveling willy
nilly through our components:

1. Dependencies make our code difficult to maintain. React’s stated goal was to avoid
spaghetti-like dependencies. When we have data flowing around our app, we end up
with exactly what we were supposed to be free from.

253 Using Redux with React

2. Each time your state changes or a prop is transmitted, all affected components are
asked to re-render. To ensure that your UI is in sync with the current state, this behavior
is a good thing. As we mentioned previously, many components are unnecessarily
asked to re-render when they’re simply passing a value from parent to child, with
no additional input. We looked at ways of minimizing this re-rendering by setting
shouldComponentUpdate or relying on PureComponent, but both approaches are a
hassle to keep in sync as your app’s data needs evolve.

3. Our component hierarchy mimics the UI, not our data needs. The way we arrange
and nest our components helps separate our UI into smaller and manageable pieces.
This is the correct approach. Despite the correctness, the components that initiate a
state change and the ones that need to react to it are often not in the same parent/child/
descendant arrangement (a.k.a. subtree). Similar to what we talked about in #ii, this
requires our props to travel great distances, often multiple times per change.

The solution to our problems is Redux. Now, Redux doesn’t fully solve all of these problems,
but it gets us really close. Redux allows you to have all of your application’s state live inside its
data store instead of being distributed across a bunch of components:

254 Chapter 20 Using Redux with React

This approach solves several problems. If you want to share data from one part of your app
with another, you can do that without having to navigate up and down your component
hierarchy:

You can initiate a state change and involve only the components that are impacted directly.
This directness reduces a lot of overhead you would otherwise have to maintain to ensure that
your data (and any changes to it) gets to its intended destination without causing unnecessary
renders. Pretty cool, right?

255 Using Redux with React

Now let’s go one level higher. From an architectural point of view, the overview of Redux you
got in the Introduction still holds:

Besides the Store, we still have to work with actions, reducers, and all the other related pieces
that make up the Redux party. The only difference is that our app is built using React, and this
difference (and how it plays with Redux) is where we focus our attention here.

Onward!

256 Chapter 20 Using Redux with React

Managing React State with Redux

The way Redux plugs into your React app is as straightforward as calling a few Redux APIs from
your React code. Just two steps are involved:

1. Give your app a reference to the Redux store.

2. Map the action creators, dispatch functions, and state as props to whatever component
needs data from the Store.

To see what’s involved in bringing these two steps to life, we’re going to build a simple
Counter app that looks as in Figure 20.1:

Figure 20.1 An example of the counter app we will create.

Our app will have a plus button and a minus button to increase or decrease a counter value.
That’s it. Nothing else is going on here; this is just the right level of functionality and
 complexity to help you get your feet wet with combining React and Redux.

257Managing React State with Redux

How Redux and React Overlap

This is generally where we’d start copying and pasting HTML, CSS, and JavaScript to get our
example up and running. We’ll totally get there in a few moments, but first we need to walk
through how this app is structured. Ignoring the data and state management side, we’re going
to have just two components (Figure 20.2):

Figure 20.2 How our app is currently set up.

We’ll have an App component and a Counter component. Now, a counter isn’t the most
complicated of examples to think about. If we had to implement it using plain old state, we
would simply create a state object inside Counter and have a variable whose value increases or
decreases, depending on what button we press.

258 Chapter 20 Using Redux with React

When we throw Redux into the mix, our component arrangement gets a little bizarre. It will
look as in Figure 20.3:

Figure 20.3 What our app’s arrangement will be once we add Redux into the mix.

259Managing React State with Redux

The items in blue are what we originally had. The items in green are new as part of incorpo-
rating Redux into our app. Earlier, we mentioned that adding Redux to our app involved two
steps. The green additions mimic those steps closely:

1. The first step of providing access to our Redux store is handled by the Provider
component.

2. The second step of granting any interested components access to our dispatch and
actions is handled by the Connect component.

Going into a little more detail, the Provider component is the gateway to getting Redux func-
tionality in our React app. It is responsible for storing a reference to the Store and ensuring that
all components in our app have a way of accessing it. It is able to do that by being the top-
most component in your component hierarchy. That vaulted position allows it to easily pass
Redux-related wisdom throughout the entire app.

The Connect component is a bit more interesting. It isn’t a full-blown component in the
traditional sense. It’s known as a Higher Order Component (https://reactjs.org/docs/higher-
order-components.html), or HOC, as the cool kids say it. HOCs provide a consistent way to
extend the functionality of a preexisting component by simply wrapping it and injecting their
own additional functionality into it. Think of this as the React-friendly way to mimic what the
extends keyword does when working with ES6 classes. Looking at our diagram, the end result
is that, thanks to the Connect HOC, our Counter component has access to any actions and
dispatch calls needed to work with the Redux Store, without you having to write any special
code to access it. The Connect HOC takes care of that.

Both the Provider and Connect HOCs create a symbiotic relationship that gives any old
React app the ability to easily work with Redux’s peculiar (yet totally efficient and awesome)
way of managing the application state. As we start to build our app, you’ll see how this
relationship plays out.

Getting Started

Now that you have an idea of how our app will be structured and some of the Redux-specific
constructs we’ll be using, let’s shift gears and start to build our app. To get started, first use
create-react-app to create an app we’ll call reduxcounter:

create-react-app reduxcounter

Now let’s install the Redux and React Redux dependencies. From inside your terminal/
command-line environment, navigate to the reduxcounter folder and run the
following command:

npm install redux

This installs the Redux library so that our app can use the basic building blocks Redux provides
for fiddling with application state. After the Redux library has fully installed, we need to

https://reactjs.org/docs/higher-order-components.html
https://reactjs.org/docs/higher-order-components.html

260 Chapter 20 Using Redux with React

deal with one more dependency. Run the following command to bring over all the React
Redux content:

npm install react-redux

When this command has run to completion, we’ll have everything needed to both build our
React app and use some Redux magic in it as well. It’s time to start building our app!

Building the App

We first need to clear our package of all unnecessary and extraneous files. Go to your src and
public folders, and delete all the contents you see in both locations. Then, create a new file
called index.html in your public folder and add the following HTML into it:

<!DOCTYPE html>
<html>

<head>
 <title>Redux Counter</title>
</head>

<body>
 <div id="container">

 </div>
</body>

</html>

The only point to note is that we have a div element with an id value of container.

Next, let’s create the JavaScript that will be the entry point to our app. In the src folder, create
a file called index.js and add the following contents into it:

import React, { Component } from "react";
import ReactDOM from "react-dom";
import { createStore } from "redux";
import { Provider } from "react-redux";
import counter from "./reducer";
import App from "./App";
import "./index.css";

var destination = document.querySelector("#container");

// Store
var store = createStore(counter);

http://index.html

261Managing React State with Redux

ReactDOM.render(
 <Provider store={store}>
 <App />
 </Provider>,
 destination
);

Take a moment to look at what we’re doing here. We’re first initializing our Redux store and
using our trustworthy createStore method that takes a reducer at its argument. Our reducer is
referenced by the counter variable, and if you look at our import statements, it is defined in a
file called reducer.js. We’ll deal with that in a few moments.

After creating our Store, we provide it as a prop to our Provider component. The Provider
component is intended to be used as the outermost component in our app, to help ensure that
every component has access to the Redux Store and related functionality:

ReactDOM.render(
 <Provider store={store}>
 <App />
 </Provider>,
 destination
);

Next, let’s create our reducer. You already saw that our reducer is referenced by the counter
variable and lives inside a file called reducer.js—which doesn’t exist. Let’s fix that by first
creating a file called reducer.js in the src folder. After you have created this file, add the
following JavaScript into it:

// Reducer
function counter(state, action) {
 if (state === undefined) {
 return { count: 0 };
 }

 var count = state.count;

 switch (action.type) {
 case "increase":
 return { count: count + 1 };
 case "decrease":
 return { count: count - 1 };
 default:
 return state;
 }
}

export default counter;

262 Chapter 20 Using Redux with React

Our reducer is pretty simple. We have a count variable that we initialize to 0 if our state is
empty. This reducer will deal with two action types: increase and decrease. If the action
type is increase, we up our count value by 1. If our action type is decrease, we decrease our
count value by 1 instead.

At this point, we’re about halfway done building our example (Figure 20.4):

Figure 20.4 We are almost there with getting our app working!

263Managing React State with Redux

We’re ready to go one level deeper in our app and deal with our App component. Inside the
src folder, create a new file called App.js. Inside, add the following:

import { connect } from "react-redux";
import Counter from "./Counter";

// Map Redux state to component props
function mapStateToProps(state) {
 return {
 countValue: state.count;
 };
}

// Action
var increaseAction = { type: "increase" };
var decreaseAction = { type: "decrease" };

// Map Redux actions to component props
function mapDispatchToProps(dispatch) {
 return {
 increaseCount: function() {
 return dispatch(increaseAction);
 },
 decreaseCount: function() {
 return dispatch(decreaseAction);
 }
 };
}

// The HOC
var connectedComponent = connect(
 mapStateToProps,
 mapDispatchToProps
)(Counter);

export default connectedComponent;

Take a few moments to see what’s going on here. The main purpose of the code here is to turn
all the Redux-specific hooks into something we can use in React. More specifically, we provide
all those hooks as props that our component can easily consume through two functions, called
mapStateToProps and mapDispatchToProps.

First up is our mapStateToProps function:

// Map Redux state to component props
function mapStateToProps(state) {
 return {
 countValue: state.count;
 };
}

264 Chapter 20 Using Redux with React

This function subscribes to all Store updates and gets called when anything in our Store
changes. It returns an object that contains the Store data you want to transmit as props to
a component. In our case, what we’re transmitting is pretty simple: an object that contains
a property called countValue whose value is represented by our old count property
from the Store.

Providing the Store value as props is only one part of what we need to do. The next part is to
give our component access to the action creators and actions, also in the form of props. The
following code handles this:

// Action
var increaseAction = { type: "increase" };
var decreaseAction = { type: "decrease" };

// Map Redux actions to component props
function mapDispatchToProps(dispatch) {
 return {
 increaseCount: function() {
 return dispatch(increaseAction);
 },
 decreaseCount: function() {
 return dispatch(decreaseAction);
 }
 };
}

The really interesting stuff happens with mapDispatchToProps. We return an object contain-
ing the name of the two functions our component can call to dispatch a change to our Store.
The increaseCount function fires off a dispatch with an action type of increase. The
decreaseCount function fires off a dispatch with an action type of decrease. If you look at
the reducer we added a few moments ago, you can see how either of these function calls will
affect the value of count we’re storing in our Store.

All that remains now is to ensure that whatever component we want to provide all these
props to has some way of actually receiving them. That is where the magical connect
 function comes in:

var connectedComponent = connect(
 mapStateToProps,
 mapDispatchToProps
)(Counter);

This function creates the magical Connect HOC we talked about earlier. It takes our
 mapStateToProps and mapDispatchToProps functions as arguments, and it passes all of that
into the Counter component, which you also specify. The end result of all this code running is
the equivalent of rendering the following:

<Connect>
 <Counter increaseCount={increaseCount}
 decreaseCount={decreaseCount}
 countValue={countValue}/>
</Connect>

265Managing React State with Redux

Our Counter component gets access to increaseCount, decreaseCount, and countValue.
The only strange thing is that there’s no render function or equivalent in sight. All of that is
handled automatically by React and its treatment of HOC.

We’re almost done! It’s time to get our Counter component up and running. In your src direc-
tory, add a file called Counter.js. Put the following into it:

import React, { Component } from "react";

class Counter extends Component {
 render() {
 return (
 <div className="container">
 <button className="buttons"
 onClick={this.props.decreaseCount}>-</button>
 {this.props.countValue}
 <button className="buttons"
 onClick={this.props.increaseCount}>+</button>
 </div>
);
 }
}

export default Counter;

This will probably be the most boring component you’ve seen in quite some time. We’ve
already talked about how our Connect HOC sends down props and other related shenanigans
to our Counter component. You can see those props in use here to display the counter value
or call the appropriate function when our plus or minus buttons are clicked.

The last thing we need to do is define our CSS file to style our counter. In the same src folder
we’ve been working in all this time, create a file called index.css. Inside this file, add the
following style rules:

body {
 margin: 0;
 padding: 0;
 font-family: sans-serif;
 display: flex;
 justify-content: center;
 background-color: #8E7C93;
}

.container {
 background-color: #FFF;
 margin: 100px;
 padding: 10px;
 border-radius: 3px;
 width: 200px;

266 Chapter 20 Using Redux with React

 display: flex;
 align-items: center;
 justify-content: space-between;
}

.buttons {
 background-color: transparent;
 border: none;
 font-size: 16px;
 font-weight: bold;
 border-radius: 3px;
 transition: all .15s ease-in;
}

.buttons:hover:nth-child(1) {
 background-color: #F45B69;
}

.buttons:hover:nth-child(3) {
 background-color: #C0DFA1;
}

At this point, we’re done with our example. If you haven’t done so yet, save your changes
across all the files you’ve been working on. If you preview your app in the browser (using npm
start), you will see your counter working as expected.

Conclusion

In many ways, Redux is designed to fix some of the shortcomings that React often claims as
advantages. We looked at some of these advantages when we examined how data in React is
supposed to flow. You could even go further and say that the ideas behind Redux should be
formalized as part of React itself so that you get even better integration. But Redux isn’t perfect,
either. As with many things in programming, Redux is simply one of many tools you have for
accomplishing a task. Not every situation involving data requires Redux; in fact, adding Redux
sometimes can create unnecessary complexity in what you’re trying to do. Dan Abramov, one
of the creators of Redux, wrote a great article (https://medium.com/@dan_abramov/you-might-
not-need-redux-be46360cf367) describing some situations when you probably shouldn’t use
Redux to solve your problem. I highly encourage you to read that to get the full picture.

Note: If you run into any issues, ask!

If you have any questions or your code isn’t running like you expect, don’t hesitate to ask!
Post on the forums at https://forum.kirupa.com and get help from some of the friendliest and
most knowledgeable people the Internet has ever brought together!

https://medium.com/@dan_abramov/you-might-not-need-redux-be46360cf367
https://medium.com/@dan_abramov/you-might-not-need-redux-be46360cf367
https://forum.kirupa.com

Index

Symbols
{ } (curly brackets), 33, 81, 84–85

… (spread) operator

explained, 74

limitations of, 76

transferring properties with, 75–76

<> (two arrows) tag, 83

A
Abramov, Dan, 175, 242, 266

accessing

DOM elements

advantages of, 135–137

ES6 arrow functions, 143

portals, 143–147

references, 140–143

properties, 33

action creators, 244

actions

action creators, 244

defined, 240

FavoriteColors app, 244

Redux console-driven app, 244

active links, highlighting, 235–236

addColor function, 244

addEventListener function, 118–119

addItem function, 183–185

addresses (IP)

fetching from web services, 169–172

formatting output of, 172–175

268 Ajax

Ajax, 167

Animaniacs Good Idea/Bad Idea

sketches, 35

animations, 194

APIs (application programming interfaces),

8–10

app frames, 227–228

App.js file

HelloWorld app, 156–157

ReduxCounter app, 263

application programming interfaces (APIs),

8–10

application state

predictability of, 242–243

storing, 239

apps. See also components

catalog browser

multi-page design, 1, 2–3

SPA (single-page app) model, 3–6

creating with React Router

active links, highlighting, 235–236

app frame, 227–228

Contact component, 229–230

CSS (Cascading Style Sheets),
233–236

example, 224–225

HashRouter component, 230–233

Home component, 228

Main component, 227

NavLink component, 231

overview, 223–224

project setup, 225–226

render method, 228

Route component, 231–233

routing regions, 230–231

Stuff component, 229

FavoriteColors Redux, 243

actions, 244

favoriteColors.html file, 243–244

reducer, 245–247

Store, 247–248

first React

blank HTML page, creating, 16–17

destination, changing, 19–20

name, displaying, 17–19

styles, 20–22

HelloWorld

HelloWorld.css file, 160

HelloWorld.js file, 158–159

index.css file, 159–160

index.js file, 158–161

production build, 161–162

IP Address

creating, 168

index.css file, 169

index.html file, 168

index.js file, 168–169

IPAddress component, 172–175

IPAddressContainer component,
169–172

ReduxCounter, 256

App.js file, 263

connect function, 264

Counter.js file, 265

creating, 259

decreaseCount function, 264

increaseCount function, 264

index.css file, 265–266

index.html file, 260

index.js file, 260–261

mapDispatchToProps function, 264

mapStateToProps function, 263–264

overlay of Redux and React, 257–259

Provider component, 261

reducer.js file, 261–262

Redux library installation, 259–260

sliding menu

button, creating, 206–207

CSS (Cascading Style Sheets),
199–201

example of, 197

http://favoriteColors.html
http://index.html
http://index.html

269buttons

how it works, 197–201

index.css file, 203

index.html file, 201–202

index.js file, 203

initial setup, 201–202

Menu component, 207–210

MenuContainer.js file, 203

online tutorial, 197

showing/hiding, 205–206

state

predictability of, 242–243

storing, 239

Todo List

adding items to, 183–186

animations, 194

CSS (Cascading Style Sheets),
189–190

displaying items in, 186–189

index.css file, 180

index.html file, 179–180

overview, 177–179

removing items from, 191–193

render method, 183–184,
186–187, 194

UI (user interface), 180–182

architecture (MVC), 12

arrays

of components, 103–105

filteredItems, 193

arrow functions, 143, 191

arrows (<>) tag, 83

Asynchronous JavaScript and XML (Ajax), 167

automatic UI state management, 7

B
Babel, 152, 162. See also Create React

project

referencing, 16

transpilation from JSX to JavaScript,
80–81

babel.min.js script, 149

background color, customizing,

45–46

backgroundColor property (letterStyle

object), 45

behavior property (Buttonify component),

35

bgcolor attribute (letterStyle object), 45

bind method, 119

blank HTML pages, creating, 16–17

browser compatibility, 120

button counter

event handler, 110–112

event listening

indirect nature of, 116–117

regular DOM events, 118–119

event properties, 114–115

initial code listing, 108–110

lifecycle methods

componentDidMount, 129

componentDidUpdate, 131

componentWillMount, 129

componentWillReceiveProps, 132

componentWillUnmount, 132

componentWillUpdate, 131

default state, 129

getDefaultProps, 128

initial code listing, 124–127

initial rendering phase, 128

render, 129, 131

shouldComponentUpdate, 131

unmounting phase, 132

updating phase, 130

overview, 107–108

SyntheticEvent type, 113–114

this keyword, 119–120

Buttonify component, 34–35

buttons. See also button counter

Buttonify component, 34–35

sliding menu, 206–207

http://index.html
http://index.html

270 calling functions

Colorizer component

behavior of, 135–137

code listing, 137–140

portals, 143–147

references, 140–143

website, 136

ColorLabel component, 145–146

commands

cd helloworld, 153

create-react-app, 153, 154, 202, 213,
225, 259

createStore, 261

export command, 157

npm install, 152, 259–260

npm start, 153, 204, 227

comments, 84–85

component hierarchy, 50, 53–54, 65–66,

249–255

component updates, overriding, 218–220

componentDidMount method

button counter, 118–119, 129

IP Address app, 170

LightningCounterDisplay, 90, 92–93, 96

componentDidUpdate method, 131

components. See also methods

arrays of, 103–105

Buttonify, 34–35

capitalization of, 85

child components, 34–35

Circle

array of, 103–105

circleStyle object, 101–102

initial code listing, 99–102

render method, 102

showCircle function, 102–103

theCircle variable, 102–103

class syntax for, 29

CleverComponent, 34

color palette card

Card component, 56–57

C
calling functions, 25

capitalization (JSX), 85

Card component, 56–57

catalog browser app

multi-page design, 1–3

SPA (single-page app) model, 3–6

cd helloworld command, 153

changing destination, 19–20

child components

overview, 34–35

passing properties to, 61–63

transferring properties to

component hierarchy and, 65–69

problems with, 65–74

spread operator (…), 74–76

Circle component

array of, 103–105

circleStyle object, 101–102

initial code listing, 99–102

render method, 102

showCircle function, 102–103

theCircle variable, 102–103

circleStyle object, 101–102

Clark, Andrew, 242

class syntax, 29. See also components

CleverComponent, 34

color of background, customizing, 45–46

color palette card

Card component, 56–57

component definitions, 54–56

component identification, 51–54

generated HTML, 63–64

Label component, 59–61

overview, 47–49

properties, passing to child
 components, 61–63

Square component, 58–59

visual element identification, 49–51

271components

Square component, 58–59

visual element identification, 49–51

defined, 23–24, 28–29

Fragment, 82–83

HashRouter, 230–233

HelloWorld

creating, 29–32

properties, 32–34

hierarchy of, 50, 53–54, 65–66, 249–255

HOCs (Higher Order Components), 259

Home, 228

IPAddress, 172–175

IPAddressContainer, 169–172

Label, 73

Letter, 37–39

generated HTML, 40–41

overview, 37–39

styling with CSS, 41–42

styling with React, 42–46

LightningCounterDisplay

componentDidMount method, 90,
92–93, 96

full code listing, 95–97

getInitialState method, 91–92

initial code, 88–90

initial state value, setting, 91–92

overview, 87–88

setInterval function, 90

setState method, 90, 93–94

state change, rendering, 95

strikes variable, 91–92

timerTick function, 92–94, 95

Main, 227

Menu, 207–210

MenuContainer, 201–202, 215

MenuContainer.js file, 203

render method, 207–208,
216–218

shouldComponentUpdate method,
218–220

component definitions, 54–56

component identification, 51–54

generated HTML, 63–64

Label component, 59–61

overview, 47–49

properties, passing to child
 components, 61–63

Square component, 58–59

visual element identification,
49–51

Colorizer

behavior of, 135–137

code listing, 137–140

portals, 143–147

references, 140–143

website, 136

ColorLabel, 145–146

composability of. See also color palette
card

advantages of, 63–64

defined, 47

overview, 47–49

Contact, 229–230

container, 175

controlled, 195

CounterParent

event handler, 110–112

event listening, 116–117

event properties, 114–115

initial code listing, 108–110

overview, 107–108

this keyword, 119–120

creating

Card component, 56–57

component definitions, 54–56

component identification, 51–54

generated HTML, 63–64

Label component, 59–61

overview, 47–49

properties, 61–63

272 components

render method, 183–184, 186–187,
194

UI (user interface), 180–182

uncontrolled, 195

updates, overriding, 218–220

componentWillMount method, 129

componentWillReceiveProps method, 132

componentWillUnmount method, 119, 132

componentWillUpdate method, 131

composability of components

advantages of, 63–64

color palette card example

Card component, 56–57

component definitions, 54–56

component identification, 51–54

generated HTML, 63–64

Label component, 59–61

overview, 47–49

properties, passing to child
 components, 61–63

Square component, 58–59

visual element identification, 49–51

defined, 47

overview, 47–49

configuring development environment

advantages of, 149–152

Create React project

advantages of, 152

creating projects with, 152–154

project file and folder structure,
154–157

development mode, 161

HelloWorld app

HelloWorld.css file, 160

HelloWorld.js file, 158–159

index.css file, 159–160

index.js file, 158–161

production build, 161–162

Node, installing, 152

multiple components, displaying,
103–105

NavLink, 231

PlusButton, 116–117

presentational, 175

properties, 32–34

Provider, 261

PureComponent, 220–221

Route, 231–233

Shirt, 69–73

sliding menu

button, creating, 206–207

CSS (Cascading Style Sheets),
199–201

how it works, 197–201

index.css file, 203

index.html file, 201–202

index.js file, 203

initial setup, 201–202

Menu component, 207–210

MenuContainer.js file, 203

showing/hiding, 205–206

Stuff, 229

styling with CSS, 41–42

styling with React

customizable background color,
45–46

overview, 42

style object, creating, 42–43

styles, applying, 43–44

TodoList

adding items to, 183–186

animations, 194

CSS (Cascading Style Sheets),
189–190

displaying items in, 186–189

index.css file, 180

index.html file, 179–180

overview, 177–179

removing items from, 191–193

http://index.html
http://index.html

273createStore method

full code listing, 95–97

initial code, 88–90

initial state value, setting, 91–92

overview, 87–88

setInterval function, 90

setState method, 90, 93–94

state change, rendering, 95

strikes variable, 91–92

timerTick function, 92–94, 95

Redux Counter, 256

App.js file, 263

connect function, 264

Counter.js file, 265

creating, 259

decreaseCount function, 264

increaseCount function, 264

index.css file, 265–266

index.html file, 260

index.js file, 260–261

mapDispatchToProps function, 264

mapStateToProps function, 263–264

overlay of Redux and React,
257–259

Provider component, 261

reducer.js file, 261–262

Redux library installation, 259–260

Create React project

advantages of, 152

creating projects with, 152–154

HelloWorld app

HelloWorld.css file, 160

HelloWorld.js file, 158–159

index.css file, 159–160

index.js file, 158–161

production build, 161–162

project file and folder structure, 154–157

createElement function, 80–81

createPortal method, 146

create-react-app command, 153, 154, 202,

213, 225, 259

createStore method, 247, 261

connect function, 264

console warnings, 105

console-driven app (Redux), 243

actions, 244

favoriteColors.html file, 243–244

reducer, 245–247

Store, 247–248

console.log statements, 216–218

Contact component (SPA), 229–230

container components, 175

container elements, 19–20, 143–144

content pages (single-page app), 228–230

controlled components, 195

Counter app (Redux), 256

App.js file, 263

connect function, 264

Counter.js file, 265

creating, 259

decreaseCount function, 264

increaseCount function, 264

index.css file, 265–266

index.html file, 260

index.js file, 260–261

mapDispatchToProps function, 264

mapStateToProps function, 263–264

overlay of Redux and React, 257–259

Provider component, 261

reducer.js file, 261–262

Redux library installation, 259–260

Counter.js file, 265

CounterParent component

event handler, 110–112

event listening, 116–117

event properties, 114–115

initial code listing, 108–110

overview, 107–108

this keyword, 119–120

counters. See also button counter

LightningCounterDisplay

componentDidMount method, 90,
92–93, 96

http://index.html
http://favoriteColors.html
http://index.html

274 createTasks function

HelloWorld app

HelloWorld.css file, 160

HelloWorld.js file, 158–159

index.css file, 159–160

index.js file, 158–161

production build, 161–162

Node, installing, 152

development mode, 161

dispatch method, 247

div element

first React app, 19–20

HelloWorld component, 31–32

styling with CSS, 41–42

document.body argument (render

method), 19

DOM elements, accessing

advantages of, 135–137

ES6 arrow functions, 143

portals, 143–147

references, 140–143

DOM manipulation, 7–8

E
elements

capitalization in JSX, 85

div

container div, 143–144

first React app, 19–20

HelloWorld component, 31–32

styling with CSS, 41–42

DOM elements, accessing

advantages of, 135–137

ES6 arrow functions, 143

portals, 143–147

references, 140–143

input, 141–142

multiple elements, returning, 82–83

script, 244

createTasks function, 187–188

Creating a Smooth Sliding Menu tutorial, 197

CSS (Cascading Style Sheets)

first React app, 20–22

HelloWorld app

HelloWorld.css file, 160

index.css file, 159–160

HTML versus JSX, 83–84

IP Address app, 169

ReduxCounter app, 265–266

sliding menu, 199–201

index.css file, 203

MenuButton.css file, 206–207

Menu.css file, 209–210

SPA (single-page app), 233–236

styling React content with, 40–42

TodoList component, 180, 189–190

curly brackets ({ }), 33, 81, 84–85

custom background color, 45–46

D
decreaseCount function, 264

deep links, 224

delete function, 191

deleteItem function, 192–193

design

multi-page design, 2–3

SPA (single-page app) model, 3–6

destination, changing, 19–20

destination variable, 20

development environment

advantages of, 149–152

Create React project

advantages of, 152

creating projects with, 152–154

project file and folder structure,
154–157

development mode, 161

275files

external data, 163–166

IP Address app

creating, 168

index.css file, 169

index.html file, 168

index.js file, 168–169

IPAddress component, 172–175

IPAddressContainer component,
169–172

web request processing, 166–167

F
FavoriteColors app, 243

actions, 244

favoriteColors.html file, 243–244

reducer, 245–247

Store, 247–248

favoriteColors function, 245–246

favoriteColors.html file, 243–244

files. See also components

HelloWorld app

App.js, 156–157

HelloWorld.css file, 160

HelloWorld.js, 158–159

index.css file, 159–160

index.js, 158–161

IP Address app

index.css file, 169

index.html, 168

index.js, 168–169

IPAddressContainer.js, 169–172

IPAddress.css, 173–174

IPAddress.js, 172–175

Redux console-driven app

actions, 244

favoriteColors.html, 243–244

reducer, 245–247

Store, 247–248

transferring properties with, 141–142

UI elements, inefficiencies with, 26–28

ellipses (…) operator

explained, 74

limitations of, 76

transferring properties with, 75–76

EmberJS templates, 10

Erikson, Mark, 247

errors in ranges, 105

ES6 arrow functions, 143, 191

evaluating expressions, 81

event handlers

overview, 110–112

this keyword, 119–120

events

browser compatibility, 120

button counter

event handler, 110–112

event listening, 116–119

event properties, 114–115

initial code listing, 108–110

overview, 107–108

this keyword, 119–120

defined, 107

event handlers

overview, 110–112

this keyword, 119–120

KeyboardEvent type, 112

listening to

indirect nature of, 116–117

regular DOM events, 118–119

MouseEvent type, 112

performance, 120–121

properties, 112

readystatechange, 167

SyntheticEvent type, 113–114

export command, 157

expressions, evaluating, 81

extending PureComponent, 220–221

http://index.html
http://favoriteColors.html
http://favoriteColors.html
http://index.html
http://favoriteColors.html

276 files

folders

node_modules, 194

react_spa, 226

formatDistance function, 25

Fragment component, 82–83

fragments, 82–83

frames (app), 227–228

functions. See also methods

addColor, 244

addEventListener, 118–119

arrow functions, 143, 191

calling, 25

connect, 264

createElement, 80–81

createTasks, 187–188

decreaseCount, 264

delete, 191

deleteItem, 192–193

explained, 24–26

favoriteColors, 245–246

filter, 192

formatDistance, 25

getDistance, 25

increase, 111–112, 116

increaseCount, 264

mapDispatchToProps, 264

mapStateToProps, 263–264

preventDefault, 185–186

printStuff, 74

removeColor, 244

removeEventListener, 119

timerTick, 92–94

G
generated HTML

color palette card, 63–64

Letter component, 40–41

getDefaultProps method, 128

getDistance function, 25, 32

ReduxCounter app

App.js, 263

Counter.js, 265

index.css file, 265–266

index.html, 260

index.js, 260–261

reducer.js, 261–262

sliding menu

index.css, 203

index.html, 201–202

index.js, 203

MenuButton.css, 206–207

MenuButton.js, 206, 221

MenuContainer.js, 203

Menu.css file, 209–210

Menu.js, 208

SPA (single-page app)

Contact.js, 229–230

Home.js, 228

index.css, 233–234

index.html file, 226

index.js file, 226, 234

Main.js, 227

Stuff.js, 229

Todo List app

index.css, 180

index.html, 179–180

index.js, 180, 181–182

TodoItems.js, 187

TodoList.css, 189–190

TodoList.js, 181

filter method, 192

filteredItems array, 193

first React app

blank HTML page, creating,
16–17

destination, changing, 19–20

name, displaying, 17–19

styles, 20–22

Flip Move library, 194

http://index.html
http://index.html
http://index.html
http://index.html

277Introduction to CSS Transitions

importing libraries, 156

increase function, 111–112, 116

increaseCount function, 264

incrementing state value, 94

index.css file

HelloWorld app, 159–160

IP Address app, 169

ReduxCounter app, 265–266

sliding menu, 203

SPA (single-page app), 233–234

Todo List app, 180

index.html file

IP Address app, 168

ReduxCounter app, 260

sliding menu, 201–202

SPA (single-page app), 226

Todo List app, 179–180

index.js file

HelloWorld app, 158–161

IP Address app, 168–169

ReduxCounter app, 260–261

sliding menu, 203

SPA (single-page app), 226, 234

Todo List app, 180, 181–182

initial rendering phase (lifecycle methods),

128

initial state value, 91–92

inline styles

applying, 43–44

Circle component, 102

customizable background color, 45–46

overview, 42

style object, creating, 42–43

input element, 141–142

_input property, 142

installing

Node, 152

React Router, 226

Redux library, 259–260

Introduction to CSS Transitions, 200

getState method, 247

greetTarget attribute (HelloWorld

component), 33–34

H
handleMouseDown property, 209, 219–220

HashRouter component, 230–233

heading variable, 146

HelloWorld app

HelloWorld.css file, 160

HelloWorld.js file, 158–159

index.css file, 159–160

index.js file, 158–161

production build, 161–162

HelloWorld component

creating, 29–32

properties, 32–34

component call, 33–34

component definition, 33

HelloWorld.css file, 160

HelloWorld.js file, 158–159

hiding sliding menu, 205–206

hierarchy, component, 50, 53–54, 65–66,

249–255

highlighting active links, 235–236

HOCs (Higher Order Components), 259

Home component (SPA), 228

HTML elements, capitalization in JSX, 85

HTML templates, 5–6

HTTP protocol, 166

HTTP requests, 166–167

I
identifying

components, 51–54

visual elements, 49–51

import statement

SPA (single-page app), 230, 234

Todo List app, 187, 194

http://index.html

278 IP addresses

L
Label component, 59–61, 73

Letter component

generated HTML, 40–41

overview, 37–39

styling with CSS, 41–42

styling with React

customizable background color,
45–46

letterStyle object, creating, 42–43

overview, 42

styles, applying, 43–44

letterStyle object

creating, 42–43

customizable background color, 45–46

overview, 84

style attribute, 43–44

libraries. See also React Router

Flip Move, 194

importing, 156

Redux library installation, 259–260

lifecycle methods

button counter example, 124–127

componentDidMount, 129

button counter, 118–119, 129

IP Address app, 170

LightningCounterDisplay, 90,
92–93, 96

componentDidUpdate, 131

componentWillMount, 129

componentWillReceiveProps, 132

componentWillUnmount, 119, 132

componentWillUpdate, 131

default state, 129

defined, 123

getDefaultProps, 128

initial rendering phase, 128

overview, 123–124

render

button counter, 129, 131

Buttonify component, 34

IP addresses

fetching from web services, 169–172

formatting output of, 172–175

ip_address state variable, 175

IPAddress component, 172–175

IPAddressContainer component, 169–172

IPAddress.css file, 173–174

IPAddress.js file, 174

items (Todo list)

adding, 183–186

displaying, 186–189

removing, 191–193

J
JavaScript. See also components; functions;

React Router

JSX-to-JavaScript transformation, 79–81

visuals defined in, 10–12

XMLHttpRequest object, 167

JSX

arrays, 103–105

capitalization, 85

comments, 84–85

CSS (Cascading Style Sheets) and, 83–84

explained, 11–12, 14–15

expressions, evaluating, 81

first React app

blank HTML page, creating, 16–17

destination, changing, 19–20

name, displaying, 17–19

styles, 20–22

JSX-to-JavaScript transformation, 79–81

location in code, 86

multiple elements, returning, 82–83

style attribute, 83–84

K
key attribute, 82

KeyboardEvent type, 112

keywords. See commands; methods;

statements

279methods

links

active links, highlighting, 235–236

deep links, 224

listening to events

indirect nature of, 116–117

regular DOM events, 118–119

listItems variable, 188

lists. See TodoList component

log method, 247

M
Main component (SPA), 227

mapDispatchToProps function, 264

mapStateToProps function, 263–264

Matryoshka dolls analogy, 9–10

Menu component, 207–210

MenuButton.css file, 206–207

MenuButton.js file, 206, 221

MenuContainer component, 201–202, 215

MenuContainer.js file, 203

render method, 207–208, 216–218

shouldComponentUpdate method,
218–220

MenuContainer.js file, 203

Menu.css file, 209–210

Menu.js file, 208

menus, sliding. See sliding menu

messages, console warnings, 105

methods

addItem, 183–185

bind, 119

button counter example, 124–127

componentDidMount

button counter, 118–119, 129

IP Address app, 170

LightningCounterDisplay, 90,
92–93, 96

componentDidUpdate, 131

componentWillMount, 129

Card component, 57

Circle component, 102, 104

Colorizer component, 140–142

ColorLabel component, 145–146

first React app, 17–19

HashRouter component, 230–231

HelloWorld app, 156

HelloWorld component, 29–32

initial rendering phase, 129

IPAddress component, 173, 174

IPAddressContainer component,
171–172

Label component, 59–60

LightningCounterDisplay
 component, 90

optimizing, 213–221

overview, 26–27

renderData evaluated in, 105–106

seeing, 216–218

SPA (single-page app) example, 228

Square component, 58

Todo List app, 183–184, 194

updating phase, 131

when to call, 211–213

shouldComponentUpdate, 131

unmounting phase, 132

updating phase

prop changes, 132

state changes, 130–131

LightningCounterDisplay component

componentDidMount method, 90

full code listing, 95–97

initial code, 88–90

initial state value, setting, 91–92

overview, 87–88

setInterval function, 90

setState method, 90

state change, rendering, 95

strikes variable, 91–92

timerTick function, 92–94, 95

280 methods

setInterval, 90

setNewColor, 142

setState, 90, 93–94

shouldComponentUpdate, 131,
218–220

showCircle, 102–103

subscribe, 248

timerTick, 95

toggleMenu, 205

translate3d, 200

unmountComponentAtNode, 131

unmounting phase, 132

updating phase, 130

MouseEvent type, 112

multi-page design, 2–3

multiple components, displaying,

103–105

multiple elements, returning, 82–83

MVC architecture, 12

N
names, displaying, 17–19

NavLink component, 231

Node, installing, 152. See also Create React

project

node_modules folder, 194

npm install command, 152, 259, 260

npm start command, 153, 204, 227

O
objects. See also components

circleStyle, 101–102

letterStyle

creating, 42–43

customizable background color,
45–46

overview, 84

style attribute, 43–44

props, 73–74, 75

XMLHttpRequest, 167

componentWillReceiveProps, 132

componentWillUnmount, 119, 132

componentWillUpdate, 131

createPortal, 146

createStore, 247

defined, 123

dispatch, 247

getDefaultProps, 128

getDistance, 32

getState, 247

initial rendering phase, 128

log, 247

overview, 123–124

processRequest, 171

render

button counter, 129

Buttonify component, 34

Card component, 57

Circle component, 102, 104

Colorizer component, 140–142

ColorLabel component, 145–146

first React app, 17–19

HashRouter component, 230–231

HelloWorld app, 156

HelloWorld component, 29–32

initial rendering phase, 129

IPAddress component, 173, 174

IPAddressContainer component,
171–172

Label component, 59–60

LightningCounterDisplay
 component, 90

optimizing, 213–221

overview, 26–27

renderData evaluated in, 105–106

seeing, 216–218

SPA (single-page app) example, 228

Square component, 58

Todo List app, 183–184, 194

updating phase, 131

when to call, 211–213

281React Router

letterStyle object

backgroundColor, 45

bgcolor, 45

style, 43–44

prop changes, 132

ref, 141–142

specifying

component call, 33–34

component definition, 33

style, 83–84

SyntheticEvent type, 113–114

transferring

color palette card example, 61–63

component hierarchy and, 65–69

problems with, 69–73

spread operator (…), 74–76

props object, 73–74, 75

protocols, HTTP, 166

Provider component, 261

PureComponent, 220–221

Q-R
React Developer Tools add-on, 216

React Event System document, 114

React library, importing, 156

React Router

creating SPAs (single-page apps) with

active links, highlighting, 235–236

app frame, 227–228

Contact component, 229–230

CSS (Cascading Style Sheets),
233–236

example, 224–225

HashRouter component, 230–233

Home component, 228

Main component, 227

NavLink component, 231

overview, 223–224

project setup, 225–226

onClick event handler, 110–112

online resources, Using Classes in
JavaScript tutorial, 29

operators, spread (…)

explained, 74

limitations of, 76

transferring properties with, 75–76

optimizing render method

component updates, overriding,
218–220

console.log statements, 216–218

PureComponent, 220–221

sample program, 213–215

overriding component updates, 218–220

P
passing properties

color palette card example, 61–63

component hierarchy and, 65–69

problems with, 69–74

spread operator (…)

example, 75–76

explained, 74

limitations of, 76

performance, events and, 120–121

PlusButton component, 116–117

portals, 143–147

predictability of application state, 242–243

presentational components, 175

preventDefault function, 185–186

printStuff function, 74

processRequest method, 171

production builds, creating, 161–162

properties

accessing, 33

event properties, 112, 114–115

handleMouseDown, 209, 219–220

HelloWorld component, 32–34

component call, 33–34

component definition, 33

282 React Router

reducer.js file, 261–262

Redux library installation, 259–260

FavoriteColors app, 243

actions, 244

favoriteColors.html file, 243–244

reducer, 245–247

Store, 247–248

library, installing, 259–260

overlay of Redux and React,
257–259

predictability of application state in,
242–243

state management with, 256

ReduxCounter app, 256

App.js file, 263

connect function, 264

Counter.js file, 265

creating, 259

decreaseCount function, 264

increaseCount function, 264

index.css file, 265–266

index.html file, 260

index.js file, 260–261

mapDispatchToProps function, 264

mapStateToProps function, 263–264

overlay of Redux and React, 257–259

Provider component, 261

reducer.js file, 261–262

Redux library installation, 259–260

ref attribute, 141–142

references, 137–141

referencing

Babel JavaScript compiler, 16

React library, 16

registerServiceWorker script, 156

regular DOM events, listening to, 118–119

remote services, data from, 163–166

React app

creating, 168

index.css file, 169

render method, 228

Route component, 231–233

routing regions, 230–231

Stuff component, 229

installing, 226

react_spa folder, 226

react.development.js script, 149

React-DOM library, importing, 156

react-dom.development.js script, 149

readystatechange event, 167

reconciliation, 8

reducers

cautions, 246

defined, 240

FavoriteColors app, 245–247

Redux console-driven app, 245–247

ReduxCounter app, 261–262

Redux, 237–238

advantages of, 249–255

building apps with, 243

actions, 244

HTML files, 243–244

reducer, 245–247

Store, 247–248

components of, 238–243

Counter app, 256

App.js file, 263

connect function, 264

Counter.js file, 265

creating, 259

decreaseCount function, 264

increaseCount function, 264

index.css file, 265–266

index.html file, 260

index.js file, 260–261

mapDispatchToProps function, 264

mapStateToProps function, 263–264

overlay of Redux and React,
257–259

Provider component, 261

http://favoriteColors.html
http://index.html
http://index.html

283sliding menu

renderData array, 104

rendering state change, 95

requestAnimationFrame, 194

requests (HTTP), 166–167

resources, Using Classes in JavaScript
tutorial, 29

return statement, 33

ColorLabel component, 145

sliding menu, 208

Todo List app, 191

returning multiple elements, 82–83

Route component, 231–233

routing, 224

routing regions, defining, 230–231

Russian Matryoshka dolls analogy, 9–10

S
script element, 244

seeing render method calls, 216–218

setInterval function, 90

setNewColor method, 142

setState method, 90, 93–94

shiftKey property (SyntheticEvent), 114–115

Shirt component, 69–73

shouldComponentUpdate method, 131,

218–220

showCircle function, 102–103

showing sliding menu, 205–206

simple catalog browser app

multi-page design, 1, 2–3

SPA (single-page app) model, 3–6

sliding menu

button, creating, 206–207

CSS (Cascading Style Sheets), 199–201

example of, 197

how it works, 197–201

index.css file, 203

index.html file, 201–202

index.js file, 203

index.html file, 168

index.js file, 168–169

IPAddress component, 172–175

IPAddressContainer component,
169–172

web request processing, 166–167

removeColor function, 244

removeEventListener function, 119

removing items from Todo list, 191–193

render method

Buttonify component, 34

Card component, 57

Circle component, 102, 104

Colorizer component, 140–142

ColorLabel component, 145–146

first React app, 17–19

HashRouter component, 230–231

HelloWorld app, 156

HelloWorld component, 29–32

initial rendering phase, 129

IPAddress component, 173, 174

IPAddressContainer component,
171–172

Label component, 59–60

LightningCounterDisplay component, 90

MenuContainer component, 207–208

optimizing, 213–215

component updates, overriding,
218–220

console.log statements, 216–218

PureComponent, 220–221

sample program, 213–215

overview, 26–27

renderData evaluated in, 105–106

seeing, 216–218

SPA (single-page app) example, 228

Square component, 58

Todo List app, 183–184, 194

updating phase, 131

when to call, 211–213

http://index.html
http://index.html

284 sliding menu

LightningCounterDisplay

componentDidMount method, 90,
92–93, 96

initial code, 88–90

initial state value, setting, 91–92

overview, 87–88

setInterval function, 90

setState method, 90, 93–94

strikes variable, 91–92

LightningCounterDisplay component

full code listing, 95–97

initial code, 88–90

overview, 87–88

setInterval function, 90

state change, rendering, 95

timerTick function, 92–94, 95

Redux, 237–238

advantages of, 249–255

components of, 238–243

Counter app, 259–266

FavoriteColors app, 243–248

managing React state with, 256

overlay of Redux and React,
257–259

predictability of application state
in, 242–243

state value, incrementing, 94

UI (user interface), 7

state object (Todo List app), 184

state value, incrementing, 94

statements

console.log, 216–218

import

SPA (single-page app), 230, 234

Todo List app, 187, 194

return, 33

ColorLabel component, 145

sliding menu, 208

Todo List app, 191

this, 119–120

initial setup, 201–202

Menu component, 207–210

MenuButton.js, 221

MenuContainer.js file, 203

online tutorial, 197

showing/hiding, 205–206

SPA (single-page app)

creating with React Router

active links, highlighting, 235–236

app frame, 227–228

Contact component, 229–230

CSS (Cascading Style Sheets),
233–236

example, 224–225

HashRouter component,
230–233

Home component, 228

Main component, 227

NavLink component, 231

overview, 223–224

project setup, 225–226

render method, 228

Route component, 231–233

routing regions, 230–231

Stuff component, 229

model, 3–6

specifying properties

component call, 33–34

component definition, 33

spread operator (…)

explained, 74

limitations of, 76

transferring properties with, 75–76

Square component, 58–59

state change, rendering, 95

state management

application state

predictability of, 242–243

storing, 239

lifecycle methods, 130–131

285UI (user interface)

this keyword, 119–120

this.props property, 33

timerTick function, 92–94, 95

TodoItems.js file, 187

TodoList component

adding items to, 183–186

animations, 194

CSS (Cascading Style Sheets), 189–190

displaying items in, 186–189

index.css file, 180

index.html file, 179–180

overview, 177–179

removing items from, 191–193

render method, 183–184, 186–187, 194

TodoItems.js file, 187

TodoList.css file, 189–190

TodoList.js file, 181

UI (user interface), 180–182

TodoList.css file, 189–190

TodoList.js file, 181

toggleMenu method, 205

transferring properties

color palette card example, 61–63

component hierarchy and, 65–69

problems with, 69–74

spread operator (…)

example, 75–76

explained, 74

limitations of, 76

transitions (CSS), 199–201

translate3d method, 200

transpilation from JSX to JavaScript, 79–81

U
UI (user interface)

Circle component example

array of, 103–105

initial code listing, 99–102

Store (Redux)

creating, 247

defined, 239

FavoriteColors app, 247–248

Redux console-driven app, 247–248

storing application state, 239

strikes variable, 91–92

Stuff component (SPA), 229

style attribute, 43–44, 83–84

styles

CSS (Cascading Style Sheets)

first React app, 20–22

HelloWorld app, 159–160

HTML versus JSX, 83–84

IP Address app, 169

ReduxCounter app, 265–266

sliding menu, 199–210

SPA (single-page app), 233–236

styling React content with, 40–42

TodoList component, 180, 189–190

first React app, 20–22

inline approach

Circle component, 102

customizable background color,
45–46

overview, 42

style object, creating, 42–43

styles, applying, 43–44

overview, 37

subscribe method, 248

swatchComponent variable, 86

SyntheticEvent type, 113–114

T
templates

EmberJS templates, 10

HTML templates, 5–6

theCircle variable, 102–103

http://index.html

286 UI (user interface)

V
variables

destination, 20

heading, 146

ip_address, 175

listItems, 188

strikes, 91–92

swatchComponent, 86

theCircle, 102–103

visibility, 209

viewport height (vh), 200

viewport width (vw), 200

views, 223

virtual DOM, 7–8

visibility variable, 209

visuals

defining in JavaScript, 10–12

identifying, 49–51

visual hierarchy, 50

vw (viewport width), 200

W-X-Y-Z
warnings in console, 105

web requests

IP Address app

creating, 168

index.css file, 169

index.html file, 168

index.js file, 168–169

IPAddress component, 172–175

IPAddressContainer component,
169–172

processing, 166–167

webpack, 152, 162. See also Create React

project

XMLHttpRequest object, 167

render method, 102

showCircle function, 102–103

theCircle variable, 102–103

inefficiencies with, 26–28

sliding menu

button, creating, 206–207

CSS (Cascading Style Sheets),
199–201

example of, 197

how it works, 197–201

index.css file, 203

index.html file, 201–202

index.js file, 203

initial setup, 201–202

Menu component, 207–210

MenuContainer.js file, 203

online tutorial, 197

showing/hiding, 205–206

state management, 7

Todo List app, 180–182

uncontrolled components, 195

unmountComponentAtNode method,

131

unmounting phase (lifecycle methods),

132

unnecessary renders, avoiding

component updates, overriding,
218–220

console.log statements, 216–218

PureComponent, 220–221

sample program, 213–215

seeing renders, 216–218

when to render, 211–213

updates, overriding, 218–220

updating phase (lifecycle methods)

prop changes, 132

state changes, 130–131

Using Classes in JavaScript tutorial, 29

http://index.html
http://index.html

This page intentionally left blank

Addison-Wesley • Cisco Press • IBM Press • Microsoft Press • Pearson IT Certif ication • Prentice Hall • Que • Sams • VMware Press

REGISTER YOUR PRODUCT at informit.com/register

• Download available product updates.

• Access bonus material when applicable.

• Receive exclusive offers on new editions and related products.
(Just check the box to hear from us when setting up your account.)

• Get a coupon for 35% for your next purchase, valid for 30 days. Your code will
be available in your InformIT cart. (You will also find it in the Manage Codes
section of your account page.)

Registration benefits vary by product. Benefits will be listed on your account page
under Registered Products.

InformIT is the online home of information technology brands at Pearson, the world’s foremost
education company. At InformIT.com you can

• Shop our books, eBooks, software, and video training.
• Take advantage of our special offers and promotions (informit.com/promotions).
• Sign up for special offers and content newsletters (informit.com/newsletters).
• Read free articles and blogs by information technology experts.
• Access thousands of free chapters and video lessons.

Learn about InformIT community events and programs.

http://informit.com/register
http://InformIT.com
http://informit.com/promotions
http://informit.com/newsletters
http://InformIT.com

Accessing the Free Web Edition

Your purchase of this book in any format includes access to the corresponding
Web Edition, which provides several special online-only features:

■ The complete text of the book

■ Updates and corrections as they become available

The Web Edition can be viewed on all types of computers and mobile devices with
any modern web browser that supports HTML5.

To get access to the Learning React Web Edition, all you need to do is register
this book:

1. Go to www.informit.com/register.

2. Sign in or create a new account.

3. Enter the ISBN: 9780134843551.

4. Answer the questions as proof of purchase.

5. The Web Edition will appear under the Digital Purchases tab on your
Account page. Click the Launch link to access the product.

http://www.informit.com/register

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents
	1 Introducing React
	Old-School Multipage Design
	New-School Single-Page Apps
	Meet React
	Automatic UI State Management
	Lightning-Fast DOM Manipulation
	APIs to Create Truly Composable UIs
	Visuals Defined Entirely in JavaScript
	Just the V in an MVC Architecture

	Conclusion

	2 Building Your First React App
	Dealing with JSX
	Getting Your React On
	Displaying Your Name
	It’s All Still Familiar
	Changing the Destination
	Styling It Up!

	Conclusion

	3 Components in React
	Quick Review of Functions
	Changing How We Deal with UI
	Meet the React Component
	Creating a Hello, World! Component
	Specifying Properties
	First Part: Updating the Component Definition
	Second Part: Modifying the Component Call

	Dealing with Children
	Conclusion

	4 Styling in React
	Displaying Some Vowels
	Styling React Content Using CSS
	Understand the Generated HTML
	Just Style It Already!

	Styling Content the React Way
	Creating a Style Object
	Actually Styling Our Content
	Making the Background Color Customizable

	Conclusion

	5 Creating Complex Components
	From Visuals to Components
	Identifying the Major Visual Elements
	Identifying the Components

	Creating the Components
	The Card Component

	The Square Component
	The Label Component
	Passing Properties, Again!

	Why Component Composability Rocks
	Conclusion

	6 Transferring Properties
	Problem Overview
	Detailed Look at the Problem
	Meet the Spread Operator
	A Better Way to Transfer Properties
	Conclusion

	7 Meet JSX…Again!
	What Happens with JSX?
	JSX Quirks to Remember
	Evaluating Expressions
	Returning Multiple Elements
	You Can’t Specify CSS Inline
	Comments

	Capitalization, HTML Elements, and Components
	Your JSX Can Be Anywhere
	Conclusion

	8 Dealing with State in React
	Using State
	Our Starting Point

	Getting Our Counter On
	Setting the Initial State Value
	Starting Our Timer and Setting State
	Rendering the State Change

	Optional: The Full Code
	Conclusion

	9 Going from Data to UI in React
	The Example
	Your JSX Can Be Anywhere, Part II
	Dealing with Arrays
	Conclusion

	10 Events in React
	Listening and Reacting to Events
	Starting Point

	Making the Button Click Do Something
	Event Properties
	Meet Synthetic Events
	Doing Stuff with Event Properties

	More Eventing Shenanigans
	You Can’t Directly Listen to Events on Components
	Listening to Regular DOM Events
	The Meaning of this Inside the Event Handler

	React…Why? Why?
	Browser Compatibility
	Improved Performance

	Conclusion

	11 The Component Lifecycle
	Meet the Lifecycle Methods
	See the Lifecycle Methods in Action
	The Initial Rendering Phase
	Getting the Default Props
	Getting the Default State
	componentWillMount
	render
	componentDidMount
	The Updating Phase
	Dealing with State Changes
	shouldComponentUpdate
	componentWillUpdate
	render
	componentDidUpdate
	Dealing with Prop Changes
	The Unmounting Phase

	Conclusion

	12 Accessing DOM Elements in React
	The Colorizer Example
	Meet Refs
	Using Portals
	Conclusion

	13 Setting Up Your React Dev Environment Easily
	Meet Create React
	Making Sense of What Happened

	Creating Our HelloWorld App
	Creating a Production Build
	Conclusion

	14 Working with External Data in React
	Web Request 101
	It’s React Time!
	Getting Started

	Getting the IP Address
	Kicking the Visuals Up a Notch

	Conclusion

	15 Building an Awesome Todo List App in React
	Getting Started
	Creating the Initial UI
	Building the Rest of the App
	Adding Items

	Displaying the Items
	Styling our App
	Removing Items

	Animation! Animation! Animation!
	Conclusion

	16 Creating a Sliding Menu in React
	How the Sliding Menu Works
	Setting Up the Sliding Menu
	Getting Started
	Showing and Hiding the Menu
	Creating the Button
	Creating the Menu

	Conclusion

	17 Avoiding Unnecessary Renders in React
	About the render Method
	Optimizing render Calls
	Getting an Example Going

	Seeing the render Calls
	Overriding a Component Update
	Using PureComponent

	Conclusion

	18 Creating a Single-Page App in React Using React Router
	The Example
	Getting Started
	Building Our Single-Page App
	Displaying the Initial Frame
	Creating Our Content Pages
	Using React Router

	It’s the Little Things
	Fixing Our Routing
	Adding Some CSS
	Highlighting the Active Link

	Conclusion

	19 Introduction to Redux
	What Is Redux?
	Building a Simple App Using Redux
	It’s Redux Time
	Lights! Camera! Action!
	Our Reducer
	Store Stuff

	Conclusion

	20 Using Redux with React
	Managing React State with Redux
	How Redux and React Overlap
	Getting Started
	Building the App

	Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W-X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

