
Bonnie Eisenman

 Learning
React
Native
BUILDING NATIVE MOBILE APPS WITH JAVASCRIPT

 Learning
React
Native

2nd Edition

Bonnie Eisenman

Learning React Native
Building Native Mobile Apps with JavaScript

SECOND EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-98914-2

[LSI]

Learning React Native
by Bonnie Eisenman

Copyright © 2018 Bonnie Eisenman. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley
Production Editor: Nicholas Adams
Copyeditor: Rachel Monaghan
Proofreader: Gillian McGarvey

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

December 2015: First Edition
November 2017: Second Edition

Revision History for the Second Edition
2017-10-23: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491989142 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning React Native, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491989142

Table of Contents

Preface. ix

1. What Is React Native?. 1
Advantages of React Native 2

Developer Experience 2
Code Reuse and Knowledge Sharing 3

Risks and Drawbacks 4
Summary 4

2. Working with React Native. 5
How Does React Native Work? 5
Rendering Lifecycle 7
Creating Components in React Native 8

Working with Views 8
Using JSX 9
Styling Native Components 10

Host Platform APIs 11
Summary 12

3. Building Your First Application. 13
Setting Up Your Environment 13
Developer Setup: Create React Native App 14

Creating Your First Application with create-react-native-app 14
Previewing Your App on iOS or Android 15

Developer Setup: The Traditional Approach 16
Creating Your First Application with react-native 16
Running Your App on iOS 17
Running Your App on Android 18

iii

Exploring the Sample Code 19
Building a Weather App 22

Handling User Input 24
Displaying Data 26
Fetching Data from the Web 29
Adding a Background Image 32
Putting It All Together 34

Summary 36

4. Components for Mobile. 39
Analogies Between HTML Elements and Native Components 39

The <Text> Component 40
The <Image> Component 42

Working with Touch and Gestures 44
Creating Basic Interactions with <Button> 44
Using the <TouchableHighlight> Component 45
Using the PanResponder Class 48

Working with Lists 54
Using the Basic <FlatList> Component 56
Updating the <FlatList> Contents 59
Integrating Real Data 63
Working with <SectionList> 65

Navigation 69
Other Organizational Components 70
Summary 71

5. Styles. 73
Declaring and Manipulating Styles 73

Using Inline Styles 74
Styling with Objects 75
Using StyleSheet.create 75
Concatenating Styles 76

Organization and Inheritance 77
Exporting Style Objects 77
Passing Styles as Props 78
Reusing and Sharing Styles 79

Positioning and Designing Layouts 80
Using Layouts with Flexbox 80
Using Absolute Positioning 84
Putting It Together 85

Summary 88

iv | Table of Contents

6. Platform APIs. 91
Using Geolocation 91

Reading the User’s Location 92
Handling Permissions 93
Testing Geolocation in Emulated Devices 94
Watching the User’s Location 95
Working Around Limitations 95
Updating the Weather Application 96

Accessing the User’s Images and Camera 98
Interacting with the CameraRoll Module 99
Requesting Images with GetPhotoParams 100
Rendering an Image from the Camera Roll 101
Uploading an Image to a Server 102

Storing Persistent Data with AsyncStorage 103
The SmarterWeather Application 104

The <WeatherProject> Component 104
The <Forecast> Component 107
The <Button> Component 108
The <LocationButton> Component 109
The <PhotoBackdrop> Component 110

Summary 112

7. Modules and Native Code. 113
Installing JavaScript Libraries with npm 113
Installing Third-Party Components with Native Code 115

Using the Video Component 116
Objective-C Native Modules 116

Writing an Objective-C Native Module for iOS 116
Exploring react-native-video for iOS 121

Java Native Modules 124
Writing a Java Native Module for Android 124
Exploring react-native-video for Java 127

Cross-Platform Native Modules 130
Summary 130

8. Platform-Specific Code. 133
iOS- or Android-Only Components 133
Components with Platform-Specific Implementations 134

Using Platform-Specific File Extensions 134
Using the Platform Module 137

When to Use Platform-Specific Components 137

Table of Contents | v

9. Debugging and Developer Tools. 139
JavaScript Debugging Practices, Translated 139

Activating the Developer Options 139
Debugging with console.log 141
Using the JavaScript Debugger 143
Working with the React Developer Tools 144

React Native Debugging Tools 145
Using Inspect Element 145
Interpreting the Red Screen of Death 146

Debugging Beyond JavaScript 150
Common Development Environment Issues 151
Common Xcode Problems 151
Common Android Problems 152
The React Native Packager 153
Issues Deploying to an iOS Device 153
Simulator Behavior 155

Testing Your Code 155
Type Checking with Flow 156
Unit Testing with Jest 156
Snapshot Testing with Jest 157

When You’re Stuck 160
Summary 161

10. Navigation and Structure in Larger Applications. 163
The Flashcard Application 163
Project Structure 166

Application Screens 167
Reusable Components 173
Styles 177
Data Models 178

Using React-Navigation 181
Creating a StackNavigator 182
Using navigation.navigate to Transition Between Screens 182
Configuring the Header with navigationOptions 185
Implementing the Rest 186

Summary 187

11. State Management in Larger Applications. 189
Using Redux to Manage State 189
Actions 190
Reducers 192
Connecting Redux 195

vi | Table of Contents

Persisting Data with AsyncStorage 203
Summary and Homework 206

Conclusion. 207

A. Modern JavaScript Syntax. 209

B. Deploying Your Application. 215

C. Working with Expo Applications. 219

Index. 221

Table of Contents | vii

Preface

This book is an introduction to React Native, Facebook’s JavaScript framework for
building mobile applications. Using your existing knowledge of JavaScript and React,
you’ll be able to build and deploy fully featured mobile applications for both iOS and
Android that truly render natively. There are plenty of advantages to working with
React Native over traditional means of mobile development without needing to sacri‐
fice the native look and feel.

We’ll start with the basics and work our way up to creating a full-fledged application
with 100% code reuse between iOS and Android. In addition to the essentials of the
framework, we’ll discuss how to work beyond it, including how to make use of third-
party libraries and even how to write your own Java or Objective-C libraries to extend
React Native.

If you’re coming to mobile development from the perspective of a frontend software
engineer or web developer, this is the book for you. React Native is a pretty amazing
thing, and I hope you’re as excited to explore it as I am!

Prerequisites
This book is not an introduction to React, in general. We’ll assume that you have
some working knowledge of React. If you’re brand new to React, I suggest reading
through a tutorial or two before coming back to take the plunge into mobile develop‐
ment. Specifically, you should be familiar with the role of props and state, the com‐
ponent lifecycle, and how to create React components.

We’ll also be using some modern JavaScript syntax, as well as JSX. If you aren’t famil‐
iar with these, don’t worry; we’ll cover JSX in Chapter 2, and modern JavaScript syn‐
tax in Appendix A. These features are essentially 1:1 translations of the JavaScript
code you’re already accustomed to writing.

This book focuses on using React Native to write iOS and Android applications,
though React Native can also be used to write applications targeting Ubuntu,

ix

Windows, and macOS. Linux and Windows users can use React Native to develop
Android applications, but in order to write iOS applications, you will need to develop
on macOS.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

x | Preface

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/bonniee/learning-react-native.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning React Native, Second Edi‐
tion, by Bonnie Eisenman (O’Reilly). Copyright 2018 Bonnie Eisenman,
978-1-491-98914-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

Preface | xi

https://github.com/bonniee/learning-react-native
mailto:permissions@oreilly.com
http://oreilly.com/safari
http://oreilly.com/safari

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/learning-react-native-2e.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Resources
It’s dangerous to go alone! Well, not really, but that doesn’t mean you have to. Here
are some resources you may find useful as you work through the book:

• The GitHub repository for this book contains all of the code samples we’ll be dis‐
cussing. If you get stumped or want more context, try looking here first.

• Join the mailing list at LearningReactNative.com for follow-up articles, sugges‐
tions, and helpful resources.

• The official documentation has a lot of good reference material.

Additionally, the React Native community is a useful resource:

• The react-native tag on Stack Overflow
• The Reactiflux chat group includes many core contributors and other helpful

folks
• #reactnative (irc.lc/freenode/reactnative) on Freenode

xii | Preface

http://bit.ly/learning-react-native-2e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
https://github.com/bonniee/learning-react-native
http://learningreactnative.com
https://facebook.github.io/react-native/
http://bit.ly/react-native-so
https://www.reactiflux.com/
http://irc.lc/freenode/reactnative

Acknowledgments
As is traditional: this book would not have been possible without the help and sup‐
port of many others. Thank you to my editor, Meg Foley, and the rest of the O’Reilly
team for bringing this project into the world. Thank you also to my technical review‐
ers for your time and insightful feedback: Ryan Hurley, Dave Benjamin, David Bieber,
Jason Brown, Erica Portnoy, and Jonathan Stark. I would also like to thank the React
Native team, without whose stellar work this book would naturally be impossible.
Thanks also to Zachary Elliott for his help with the Flashcard application, Android
testing, and support throughout. Mi estas dankplena pro via subteno.

And many thanks are owed to my dear friends and family, who put up with me
throughout this process and provided moral support, guidance, and distraction as the
situation required. Thank you.

Preface | xiii

CHAPTER 1

What Is React Native?

React Native is a JavaScript framework for writing real, natively rendering mobile
applications for iOS and Android. It’s based on React, Facebook’s JavaScript library
for building user interfaces, but instead of targeting the browser, it targets mobile
platforms. In other words, it enables web developers to write mobile applications that
look and feel truly “native,” all from the comfort of a familiar JavaScript library. Plus,
because most of the code you write can be shared between platforms, React Native
makes it easy to simultaneously develop for both Android and iOS.

Similar to React for the web, React Native applications are written with a mixture of
JavaScript and XML-esque markup, known as JSX. Then, under the hood, the React
Native “bridge” invokes the native rendering APIs in Objective-C (for iOS) or Java
(for Android). Thus, your application will render using real mobile UI components,
not webviews, and will look and feel like any other mobile application. React Native
also exposes JavaScript interfaces for platform APIs, so your React Native apps can
access platform features like the phone camera or the user’s location.

The core React Native project supports writing mobile applications for both iOS and
Android. Community implementations also provide support for Windows, Ubuntu,
the web, and more.

In this book, we’ll build both Android and iOS apps with React Native. The vast
majority of the code we write will be cross-platform.

And, yes, you can really use React Native to build production-ready mobile applica‐
tions. Some anecdata: Facebook, Airbnb, Walmart, and Baidu are already using it in
production for user-facing applications.

1

https://github.com/Microsoft/react-native-windows
https://github.com/CanonicalLtd/react-native
https://github.com/necolas/react-native-web
http://bit.ly/1YipO7A
http://bit.ly/2udVlOL
http://bit.ly/2vuFIXk
http://bit.ly/2hzBtnr

Advantages of React Native
The fact that React Native renders using its host platform’s standard rendering APIs
distinguishes it from most existing methods of cross-platform application develop‐
ment, like Cordova or Ionic. Existing methods of writing mobile applications use
combinations of JavaScript, HTML, and CSS and typically render using webviews.
While this approach can work, it also comes with drawbacks, especially around per‐
formance. Additionally, these methods do not usually have access to the host plat‐
form’s set of native UI elements. When these frameworks do try to mimic native UI
elements, the results usually feel just a little off. In addition, reverse-engineering all
the fine details of things like animations takes an enormous amount of effort, and
they can quickly become outdated.

In contrast, React Native actually translates your markup to real, native UI elements,
leveraging existing means of rendering views on whatever platform you are working
with. Additionally, React works separately from the main UI thread, so your applica‐
tion can maintain high performance without sacrificing capability. The update cycle
in React Native is the same as in React: when props or state change, React Native re-
renders the views. The major difference between React Native and React in the
browser is that React Native does this by leveraging the UI libraries of its host plat‐
form, rather than using HTML and CSS markup.

For developers accustomed to working on the web with React, this means you can
write mobile apps with the performance and look and feel of a native application,
while using familiar tools. React Native also represents an improvement over normal
mobile development in two other areas: developer experience and cross-platform
development potential.

Developer Experience
If you’ve developed for mobile before, you might be surprised by how easy React
Native is to work with. The React Native team has baked strong developer tools and
meaningful error messages into the framework so that working with robust tools is a
natural part of your development experience.

For instance, because React Native is “just” JavaScript, you don’t need to rebuild your
application in order to see your changes reflected; instead, you can refresh your appli‐
cation just as you would any other web page. All of those minutes spent waiting for
your application to build can really add up, and in contrast React Native’s quick itera‐
tion cycle feels like a godsend.

Additionally, React Native lets you take advantage of intelligent debugging tools and
error reporting. If you are comfortable with Chrome or Safari’s developer tools
(Figure 1-1), you will be happy to know that you can use them for mobile develop‐
ment as well. Likewise, you can use whatever text editor you prefer for JavaScript

2 | Chapter 1: What Is React Native?

editing. React Native does not force you to work in Xcode to develop for iOS or in
Android Studio for Android development.

Figure 1-1. Using the Chrome Debugger with React Native

Besides the day-to-day improvements to your development experience, React Native
also has the potential to positively impact your product release cycle. For instance,
Apple and Google both permit you to load JavaScript-only changes to an app’s behav‐
ior without going through the standard review process. This is particularly nice on
iOS, where application updates typically require several days or weeks of review.

All of these small perks add up to saving you and your fellow developers time and
energy, allowing you to focus on the more interesting parts of your work and be more
productive overall.

Code Reuse and Knowledge Sharing
Working with React Native can dramatically shrink the resources required to build
mobile applications. Any developer who knows how to write React code can target
the web, iOS, and Android, all with the same skill set. By removing the need to “silo”
developers based on their target platform, React Native lets your team iterate more
quickly and share knowledge and resources more effectively.

Not only can you share knowledge, but much of your code can be shared, too. Not all
the code you write will be cross-platform, and depending on the functionality you

Advantages of React Native | 3

need on a specific platform, you may occasionally need to dip into Objective-C or
Java (we’ll cover how so-called native modules work in Chapter 7). But reusing code
across platforms is surprisingly easy with React Native. For example, the Facebook
Ads Manager application for Android shares 87% of its codebase with the iOS ver‐
sion. The final application we’ll look at in this book, a flashcard app, has total code
reuse between Android and iOS. It’s hard to beat that!

Risks and Drawbacks
As with anything, using React Native is not without its downsides, and whether or
not it is a good fit for your team really depends on your individual situation.

Because React Native introduces another layer to your project, it can make debugging
hairier, especially at the intersection of React and the host platform. We’ll cover
debugging for React Native in more depth in Chapter 9 and try to address some of
the most common issues.

Along the same lines, when updates are released for the host platform—say, a new
suite of APIs in a new version of Android—there will be a lag before they are fully
supported in React Native. The good news is that in the vast majority of cases, you
can implement support for missing APIs yourself, which we’ll cover in Chapter 7.
Also, if you do hit a roadblock, you won’t be locked in to using React Native—many
companies have successfully implemented hybrid approaches to app development.

Changing the platform you use to write your applications is a big choice. Still, I think
you’ll see that the benefits of React Native outweigh the risks.

Summary
React Native is an exciting framework that enables web developers to create robust
mobile applications using their existing JavaScript knowledge. It offers faster mobile
development and more efficient code sharing across iOS, Android, and the web
without sacrificing the end user’s experience or application quality. The tradeoff is
that it adds some complexity to your application setup. If your team can handle that
and wants to develop mobile applications for more than just one platform, you
should be looking at React Native.

In the next chapter, we go over some of the main ways in which React Native differs
from React for the web, and cover some key concepts. If you’d like to skip straight to
developing, feel free to jump to Chapter 3, in which we set up our development envi‐
ronment and write our very first React Native application.

4 | Chapter 1: What Is React Native?

https://youtu.be/PAA9O4E1IM4
https://youtu.be/PAA9O4E1IM4

CHAPTER 2

Working with React Native

In this chapter, we’ll cover the bridge, and review how React Native works under the
hood. Then, we’ll look at how React Native components differ from their web coun‐
terparts, and cover what you’ll need to know in order to create and style components
for mobile.

If you’d prefer to dig into the development process and see React
Native in action, feel free to jump ahead to Chapter 3.

How Does React Native Work?
The idea of writing mobile applications in JavaScript feels a little odd. How is it possi‐
ble to use React in a mobile environment? In order to understand the technical
underpinnings of React Native, we first need to recall one of React’s concepts: the Vir‐
tual DOM.

In React, the Virtual DOM acts as a layer between the developer’s description of how
things ought to look and the work done to actually render your application onto the
page. To render interactive user interfaces in a browser, developers must edit the
browser’s DOM, or Document Object Model. This is an expensive step, and excessive
writes to the DOM have a significant impact on performance. Rather than directly
render changes on the page, React computes the necessary changes in-memory and
rerenders the minimal amount necessary. Figure 2-1 shows how this works.

5

Figure 2-1. Performing calculations in the Virtual DOM limits rerendering in the brows‐
er’s DOM

In the context of React on the web, most developers think of the Virtual DOM as a
performance optimization. The Virtual DOM certainly has performance benefits, but
its real potential lies in the power of its abstraction. Placing a clean abstraction layer
between the developer’s code and the actual rendering opens up a lot of interesting
possibilities. What if React could render to a target other than the browser’s DOM?
After all, React already “understands” what your application is supposed to look like.

Indeed, this is how React Native works, as shown in Figure 2-2. Instead of rendering
to the browser’s DOM, React Native invokes Objective-C APIs to render to iOS com‐
ponents, or Java APIs to render to Android components. This sets React Native apart
from other cross-platform app development options, which often end up rendering
web-based views.

Figure 2-2. React can render to different targets

6 | Chapter 2: Working with React Native

This is all possible because of the bridge, which provides React with an interface into
the host platform’s native UI elements. React components return markup from their
render function, which describes how they should look. With React for the web, this
translates directly to the browser’s DOM. For React Native, this markup is translated
to suit the host platform, so a <View> might become an iOS-specific UIView.

The core React Native project supports iOS and Android. Because of the abstraction
layer provided by the Virtual DOM, React Native can target other platforms, too—
someone just needs to write the bridge. For example, there are community imple‐
mentations of React Native for Windows and Ubuntu, so you can also use React
Native to create desktop applications.

Rendering Lifecycle
If you are accustomed to working in React, the React lifecycle should be familiar to
you. When React runs in the browser, the render lifecycle begins by mounting your
React components (Figure 2-3).

Figure 2-3. Mounting components in React

After that, React handles the rendering and rerendering of your component as neces‐
sary (Figure 2-4).

Figure 2-4. Rerendering components in React

For the render stage, the developer returns HTML markup from a React component’s
render method, which React then renders directly into the page as necessary.

For React Native, the lifecycle is the same, but the rendering process is slightly differ‐
ent because React Native depends on the bridge. We looked at the bridge briefly in
Figure 2-2. The bridge translates JavaScript calls and invokes the host platform’s
underlying APIs and UI elements (i.e., in Objective-C or Java, as appropriate).
Because React Native doesn’t run on the main UI thread, it can perform these asyn‐
chronous calls without impacting the user’s experience.

Rendering Lifecycle | 7

https://github.com/Microsoft/react-native-windows
https://github.com/CanonicalLtd/react-native

Creating Components in React Native
All React code lives in React components. React Native components are largely the
same as ordinary React components, with some important differences around ren‐
dering and styling.

Working with Views
When writing in React for the web, you render normal HTML elements (<div>, <p>,
, <a>, etc.). With React Native, all of these elements are replaced by platform-
specific React components (see Table 2-1). The most basic is the cross-platform
<View>, a simple and flexible UI element that can be thought of as analogous to the
<div>. On iOS, for instance, the <View> component renders to a UIView, whereas on
Android it renders to a View.

Table 2-1. Basic React elements for the web compared with React Native

React React Native

<div> <View>

 <Text>

, <FlastList>, child items

 <Image>

Other components are platform-specific. For instance, the <DatePickerIOS> compo‐
nent (predictably) renders the iOS standard date picker (Figure 2-5). Here is an
excerpt from the RNTester sample app, demonstrating an iOS date picker. The usage
is straightforward, as you would expect:

<DatePickerIOS
 date={this.state.date}
 mode="time"
/>

Figure 2-5. The <DatePickerIOS> component is, as the name suggests, iOS-specific

8 | Chapter 2: Working with React Native

Because all of our UI elements are now React components rather than basic HTML
elements like the <div>, you will need to explicitly import each component you want
to use. For instance, we need to import the <DatePickerIOS> component like so:

import { DatePickerIOS } from "react-native";

The RNTester application, which is bundled into the React Native GitHub project,
allows you to view all of the supported UI elements. I encourage you to examine the
various elements included in the RNTester app. It also demonstrates many styling
options and interactions.

Platform-specific components and APIs have special tags in the
documentation, and typically use the platform name as a suffix
—for example, <TabBarIOS> and <ToolbarAndroid>.

Because these components vary from platform to platform, how you structure your
React components becomes even more important when you’re working in React
Native. In React for the web, we often have a mix of React components: some manage
logic and their child components, while others render raw markup. If you want to
reuse code when working in React Native, maintaining separation between these
types of components becomes critical. A React <DatePickerIOS> component obvi‐
ously cannot be reused for Android. However, a component that encapsulates the
associated logic can be reused. Then the visual component can be swapped out based
on your platform. You can also designate platform-specific versions of components if
you want, so you could have a picker.ios.js and a picker.android.js file, each with a sep‐
arate implementation of the same component. We’ll cover this in “Components with
Platform-Specific Implementations” on page 134.

Using JSX
In React Native, just as in React, we write our views using JSX, combining markup
and the JavaScript that controls it into a single file. JSX met with strong reactions
when React first debuted. For many web developers, the separation of files based on
technologies is a given: you keep your CSS, HTML, and JavaScript files separate. The
idea of combining markup, control logic, and even styling into one language can be
confusing.

JSX prioritizes the separation of concerns over the separation of technologies. In React
Native, this is even more strictly enforced. In a world without the browser, it makes
even more sense to unify our styles, markup, and behavior in a single file for each
component. Accordingly, your .js files in React Native are in fact JSX files. If you’ve
been using vanilla JavaScript when working with React for the web, you will want to
transition to JSX syntax for your work in React Native.

Creating Components in React Native | 9

https://github.com/facebook/react-native/tree/master/RNTester

If you’ve never seen JSX before, don’t worry: it’s pretty simple. As an example, a pure-
JavaScript React component for the web might look something like this:

class HelloMessage extends React.Component {
 render() {
 return React.createElement(
 "div",
 null,
 "Hello ",
 this.props.name
);
 }
}

ReactDOM.render(
 React.createElement(HelloMessage, { name: "Bonnie" }), mountNode);

We can render this more succinctly by using JSX. Instead of calling
React.createElement and passing in a list of HTML attributes, we use XML-like
markup:

class HelloMessage extends Component {
 render() {
 // Instead of calling createElement, we return markup
 return <div>Hello {this.props.name}</div>;
 }
}

// We no longer need a createElement call here
ReactDOM.render(<HelloMessage name="Bonnie" />, mountNode);

Both of these will render the following HTML onto the page:

<div>Hello Bonnie</div>

Styling Native Components
On the web, we style React components using CSS, just as we would any other HTML
element. Whether you love it or hate it, CSS is a necessary part of the web. React usu‐
ally does not affect the way we write CSS. It does make it easier to dynamically build
class names based on props and state, but otherwise React is mostly agnostic about
how we handle styles on the web.

Non-web platforms have a wide array of approaches to layout and styling. When we
work with React Native, thankfully, we utilize one standardized approach to styling.
Part of the bridge between React and the host platform includes the implementation
of a heavily pruned subset of CSS. This narrow implementation of CSS relies primar‐
ily on flexbox for layout, and focuses on simplicity rather than implementing the full
range of CSS rules. Unlike the web, where CSS support varies across browsers, React
Native is able to enforce consistent support of style rules. As with the various UI

10 | Chapter 2: Working with React Native

elements, you can see many examples of supported styles in the RNTester application,
which is one of the examples that ships with React Native.

React Native also insists on the use of inline styles, which exist as JavaScript objects.
The React team has advocated for this approach before in React for web applications.
If you have previously experimented with inline styles in React, the syntax will look
familiar to you:

// Define a style...
const style = {
 backgroundColor: 'white',
 fontSize: '16px'
};

// ...and then apply it.
const txt = (
 <Text style={style}>
 A styled Text
 </Text>);

React Native also provides some utilities for creating and extending style objects that
make dealing with inline styles a more manageable process. We will explore those
later in Chapter 5.

Does looking at inline styles make you twitch? If you’re coming from a web-based
background, this is a break from standard practices. Working with style objects, as
opposed to stylesheets, takes some mental adjustments and changes the way you need
to approach writing styles. However, in the context of React Native, it is a useful shift.
We will be discussing styling best practices and workflow in Chapter 5. Just try not to
be surprised when you see them in use!

Host Platform APIs
Perhaps the biggest difference between React for the web and React Native is the way
we think about host platform APIs. On the web, we often deal with fragmentation
and inconsistent adoption of standards; still, most browsers support a common core
of shared features. With React Native, however, platform-specific APIs play a much
larger role in creating an excellent, natural-feeling user experience. There are also
many more options to consider. Mobile APIs include everything from data storage to
location services to accessing hardware such as the camera. Unconventional plat‐
forms lead to even more interesting APIs—what should the interface look like
between React Native and a virtual reality headset, for instance?

By default, React Native for iOS and Android includes support for many commonly
used features, and React Native can support any asynchronous native API. We will
take a look at many of them throughout this book. React Native makes it straightfor‐
ward and simple to use host platform APIs, so you can experiment freely. Be sure to

Host Platform APIs | 11

https://github.com/facebook/react-native/tree/master/RNTester

think about what feels right for your target platform, and design with natural interac‐
tions in mind.

Inevitably, the React Native bridge will not expose all host platform functionality. If
you find yourself in need of an unsupported feature, you have the option of adding it
to React Native yourself. Alternatively, chances are good that someone else has done
so already, so be sure to check for community implementations. We’ll cover this in
Chapter 7.

It is also worth noting that utilizing host platform APIs has implications for code
reuse. React components that need platform-specific functionality will be platform-
specific as well. Isolating and encapsulating those components will bring added flexi‐
bility to your application. Of course, this applies for the web, too: if you plan on
sharing code between React Native and React, keep in mind that things like the DOM
do not actually exist in React Native.

Summary
Writing components for mobile is a bit different in React Native when compared with
React for the web. JSX is mandatory, and our basic building blocks are now compo‐
nents such as <View> in lieu of HTML elements such as <div>. Styling is also quite
different, based on a subset of CSS, and we assign styles with inline syntax. Still, these
adjustments are quite manageable. In the next chapter, we’ll put this into practice as
we build our first application!

12 | Chapter 2: Working with React Native

CHAPTER 3

Building Your First Application

In this chapter, we will cover how to set up your local development environment for
working with React Native. Then we will go through the basics of creating a simple
application that you can deploy to your own iOS or Android device.

Setting Up Your Environment
Setting up your development environment will enable you to follow along with the
examples in the book and write your own applications.

There are two general approaches to setting up a development environment for React
Native. The first, a tool called Create React Native App, gives you a quicker, easier
installation but supports only pure-JavaScript applications. The second, more tradi‐
tional approach involves fully installing React Native and all of its dependencies.
Think of Create React Native App as a shortcut for easier testing and prototyping.

Information on migrating from Create React Native App to a full React Native project
can be found in Appendix C.

Which approach should you take? I recommend that beginners use
Create React Native App for educational purposes and quick proto‐
typing.
Eventually, if you’re working on a React Native app professionally
or writing a hybrid app that uses both JavaScript and native Java,
Objective-C, or Swift code, you’ll want to install the full React
Native developer setup.

13

Both approaches are described next. The example code in subsequent chapters will
typically work with either approach; when something is incompatible with Create
React Native App and requires a full React Native project, it will be noted.

Developer Setup: Create React Native App
Create React Native App is a command-line tool that allows you to quickly create and
run React Native applications without needing to install Xcode or Android Studio.

If you want to get up and running quickly, then Create React Native App is the right
choice.

Create React Native App is a great tool, but as mentioned earlier it
supports only pure-JavaScript applications. Later in this book, we’ll
discuss ways of integrating React Native applications with native
code written in Java or Objective-C. Don’t worry: if you begin with
Create React Native App, you can still “eject” into a full React
Native project.

Let’s start by installing the create-react-native-app package from npm. React Native
uses npm, the Node.js package manager, to manage dependencies. The npm registry
includes packages for all sorts of JavaScript projects, not just Node.

npm install -g create-react-native-app

Creating Your First Application with create-react-native-app
To create a new project with Create React Native App, run the following command:

create-react-native-app first-project

This will install some JavaScript dependencies, as well as create the boilerplate for
your application. Your project directory will look something like this:

.
├── App.js
├── App.test.js
├── README.md
├── app.json
├── node_modules
├── package.json
└── yarn.lock

This structure looks like what you might expect from a simple JavaScript project.
There is a package.json file, which contains metadata about the project and its depen‐
dencies. The README.md file includes information for running the project.
App.test.js includes a simple test file. The code for your application is located in

14 | Chapter 3: Building Your First Application

https://github.com/react-community/create-react-native-app

App.js. To modify this project and build out your own application, you would begin
with App.js.

We will cover what this code is doing in more detail once we start building our
weather application in “Building a Weather App” on page 22.

Previewing Your App on iOS or Android
Great—now your application is ready for testing. To launch your application, run:

cd first-project
npm start

You should see the screen shown in Figure 3-1.

Figure 3-1. Previewing a Create React Native App by using a QR code

Developer Setup: Create React Native App | 15

In order to view your application, you’ll need the Expo app for iOS or Android. Once
you have it installed, point your phone’s camera at the QR code, and your React
Native app will load. Note that your phone and computer will need to be on the same
network, and able to communicate with each other.

Congrats! You’ve created your first React Native app, compiled it, and gotten it run‐
ning on a real device.

In the next section, we’ll cover how to do a full, traditional installation of React
Native. You can skip to “Exploring the Sample Code” on page 19 instead if you’d like
to get started programming.

Developer Setup: The Traditional Approach
Instructions for installing React Native and all of its dependencies can be found in the
official React Native documentation.

You can use Windows, macOS, or Linux to develop applications with React Native.
However, macOS is required to develop iOS applications. Linux and Windows users
can still use React Native to write Android applications.

Because the setup instructions vary by platform and React Native version, we won’t
go into them in detail here, but you’ll need to set up the following:

• node.js
• React Native
• iOS development environment (Xcode)
• Android development environment (JDK, Android SDK, Android Studio)

If you don’t want to install developer tools for both iOS and Android, that’s fine—just
make sure that you have at least one of them set up.

Creating Your First Application with react-native
You can use the React Native command-line tools to create a new application. Run
the following command to install the command-line tools:

npm install -g react-native-cli

Now we can generate a fresh project with all of the React Native, iOS, and Android
boilerplate we’ll need by running:

react-native init FirstProject

16 | Chapter 3: Building Your First Application

https://expo.io/
http://facebook.github.io/react-native/
http://facebook.github.io/react-native/

The resulting directory structure should look similar to the following:

.
├── __tests__
├── android
├── app.json
├── index.android.js
├── index.ios.js
├── ios
├── node_modules
├── package.json
└── yarn.lock

The ios/ and android/ directories contain boilerplate relevant to those platforms. Your
React code is located in the index.ios.js and android.ios.js files, which are the respec‐
tive entry points for your React application. Dependencies installed via npm can, as
usual, be found in the node_modules/ folder.

Running Your App on iOS
To run your app on iOS, start by navigating into your newly created project’s direc‐
tory. Then you can run your React Native application like so:

cd FirstProject
react-native run-ios

Alternatively, you can open your application in Xcode and launch the iOS simulator
from there:

open ios/FirstProject.xcodeproj

You can also use Xcode to upload your application to a real device for testing. In
order to do this, you will need a free Apple ID so that you can configure code signing.

To configure code signing, open your project in the Xcode Project Navigator and
select your main target, which should have the same name as your project. Next,
select the General tab. Under the Signing menu, select your Apple developer account
from the Team drop-down (see Figure 3-2). You will then need to repeat this step for
the Tests target.

Developer Setup: The Traditional Approach | 17

Figure 3-2. Setting the Team in Xcode will allow you to test your application on a physi‐
cal device

The first time you attempt to run your application on any particular device, Xcode
will prompt you to sign into your Apple account and register your device for develop‐
ment.

For more details on how to run your app on a real iOS device, check out Apple’s offi‐
cial documentation.

Note that your iOS device and your computer must be on the same network in order
for your application to run.

Running Your App on Android
In order to run your application on Android, you need a fully functioning Android
developer setup, including Android Studio and the Android SDK. See the Getting
Started documentation for a list of Android dependencies.

To launch your React Native platform on Android, run:

react-native run-android

You can also open your application in Android Studio and compile and run it from
there.

You can either run your application in the Android emulator or on a physical device
connected via USB. In order to run on a physical device, you will need to enable USB
debugging in your device’s Developer Options. More detailed instructions are avail‐
able in the Android Studio documentation.

18 | Chapter 3: Building Your First Application

http://apple.co/2gcjVhy
http://apple.co/2gcjVhy
https://facebook.github.io/react-native/docs/getting-started.html
https://facebook.github.io/react-native/docs/getting-started.html
https://developer.android.com/studio/debug/dev-options.html

Exploring the Sample Code
Now that you have launched and deployed the default application, let’s figure out how
it works. In this section, we will dig into the source code of the default application
and explore the structure of a React Native project.

If you are using Create React Native App, open the file App.js (see Example 3-1). If
you are using a full React Native project, open up index.ios.js or index.android.js (see
Example 3-2).

Example 3-1. The starter code in App.js, for Create React Native App projects

import React from "react";
import { StyleSheet, Text, View } from "react-native";

export default class App extends React.Component {
 render() {
 return (
 <View style={styles.container}>
 <Text>Hello, world!</Text>
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: "#fff",
 alignItems: "center",
 justifyContent: "center"
 }
});

Example 3-2. The starter code in index.ios.js and index.android.js, for full React Native
projects

import React, { Component } from 'react';
import {
 AppRegistry,
 StyleSheet,
 Text,
 View
} from 'react-native';

export default class FirstProject extends Component {
 render() {
 return (
 <View style={styles.container}>

Exploring the Sample Code | 19

 <Text style={styles.welcome}>
 Welcome to React Native!
 </Text>
 <Text style={styles.instructions}>
 To get started, edit index.ios.js
 </Text>
 <Text style={styles.instructions}>
 Press Cmd+R to reload,{'\n'}
 Cmd+D or shake for dev menu
 </Text>
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },
 welcome: {
 fontSize: 20,
 textAlign: 'center',
 margin: 10,
 },
 instructions: {
 textAlign: 'center',
 color: '#333333',
 marginBottom: 5,
 },
});

AppRegistry.registerComponent('FirstProject', () => FirstProject);

Either way, let’s talk about what’s going on here.

As you can see in Example 3-3, the import statements used are a bit different than
what you might expect from a web-based React project.

Example 3-3. Importing UI elements in React Native

import React, { Component } from "react";
import {
 StyleSheet,
 Text,
 View
} from "react-native";

20 | Chapter 3: Building Your First Application

There’s some interesting syntax going on here. React is imported as usual, but what is
happening on the next line?

One quirk of working with React Native is that you need to explicitly import every
Native-provided module you work with. Elements like <div> don’t simply exist;
instead, you need to explicitly import components such as <View> and <Text>.
Library functions such as Stylesheet and AppRegistry also must be explicitly
imported with this syntax. Once we start building our own applications, we will
explore the other React Native functions that you may need to import.

If the syntax is unfamiliar to you, check out Example A-4 in Appendix A for an
explanation of destructuring in ES6.

Next, let’s look at the component class in Example 3-4. This should all look comforta‐
bly familiar because it’s an ordinary React component. The main difference is its use
of <Text> and <View> components instead of <div> and , and the use of style
objects.

Example 3-4. FirstProject component, with styles

export default class FirstProject extends Component {
 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.welcome}>
 Welcome to React Native!
 </Text>
 <Text style={styles.instructions}>
 To get started, edit index.ios.js
 </Text>
 <Text style={styles.instructions}>
 Press Cmd+R to reload,{'\n'}
 Cmd+D or shake for dev menu
 </Text>
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },
 welcome: {
 fontSize: 20,
 textAlign: 'center',

Exploring the Sample Code | 21

 margin: 10,
 },
 instructions: {
 textAlign: 'center',
 color: '#333333',
 marginBottom: 5,
 },
});

As I mentioned earlier, all styling in React Native is done with style objects rather
than stylesheets. The standard method of handling styling is by utilizing the Style
Sheet library. You can see how the style objects are defined toward the bottom of the
file. Note that only <Text> components can take text-specific styles like fontSize,
and that all layout logic is handled by flexbox. We will discuss how to build layouts
with flexbox at greater length in Chapter 5.

The sample application is a good demonstration of the basic functions you will need
to create React Native applications. It mounts a React component for rendering and
demonstrates the basics of styling and rendering in React Native. It also gives us a
simple way to test our development setup and try deploying to a real device. How‐
ever, it’s still a very basic application with no user interaction. So now let’s try building
a more full-featured application.

Building a Weather App
In this section, we will be building off of the sample application to create a weather
app. This will give us a chance to explore how to utilize and combine stylesheets, flex‐
box, network communication, user input, and images into a useful app we can then
deploy to an Android or iOS device.

This section may feel like a bit of a blur, as it will be giving you an overview of these
features rather than deep explanations of them. The weather app will serve as a useful
reference in future sections as we discuss these features in more detail, however, so
don’t worry if it feels like we’re moving quickly!

As shown in Figure 3-3, the final application includes a text field where users can
input a zip code. It will then fetch data from the OpenWeatherMap API and display
the current weather.

22 | Chapter 3: Building Your First Application

Figure 3-3. The finished weather app

The first thing we’ll do is replace the default code from our sample app. Move the ini‐
tial component out into its own file, WeatherProject.js.

If you created a full React Native project, you will need to replace the contents of
index.ios.js and index.android.js, as shown in Example 3-5.

Example 3-5. Simplified contents of index.ios.js and index.android.js (they should be
identical)

import { AppRegistry } from "react-native";
import WeatherProject from "./WeatherProject";
AppRegistry.registerComponent("WeatherProject", () => WeatherProject);

Similarly, if you created a React Native project with Create React Native App, you will
need to replace the contents of App.js, as shown in Example 3-6.

Example 3-6. Simplified contents of App.js for Create React Native App projects

import WeatherProject from "./WeatherProject";
export default WeatherProject;

Building a Weather App | 23

Handling User Input
We want the user to be able to enter a zip code and get the forecast for that area, so we
need to add a text field for user input. We can start by adding zip code information to
our component’s initial state (see Example 3-7).

Example 3-7. Adding zip code information to your component, before the render
function

constructor(props) {
 super(props);
 this.state = { zip: "" };
}

If you’re accustomed to using React.createClass() to create components instead of
JavaScript classes, this may seem odd. When creating component classes, we set the
initial state values for React components by mutating the this.state variable in the
constructor method. If you need a review of the React component lifecycle, see the
React docs.

Next, we should also change one of the <Text> components to display
this.state.zip, as shown in Example 3-8.

Example 3-8. Adding a <Text> component that displays the current zip code

<Text style={styles.welcome}>
 You input {this.state.zip}.
</Text>

With that out of the way, let’s add a <TextInput> component (see Example 3-9). This
is a basic component that allows the user to enter text.

Example 3-9. The <TextInput> component is used for entering text

<TextInput
 style={styles.input}
 onSubmitEditing={this._handleTextChange}/>

The <TextInput> component is documented in the React Native docs, along with its
properties. You can also pass the <TextInput> additional callbacks in order to listen
to other events, such as onChange or onFocus, but we do not need them at the
moment.

Note that we’ve added a simple style to the <TextInput>. Add the input style to your
stylesheet like so:

24 | Chapter 3: Building Your First Application

https://facebook.github.io/react/docs/react-component.html
http://facebook.github.io/react-native/docs/textinput.html#content

const styles = StyleSheet.create({
 ...
 input: {
 fontSize: 20,
 borderWidth: 2,
 height: 40
 }
 ...
});

The callback we passed as the onSubmitEditing prop should be added as a function
on the component, as shown in Example 3-10.

Example 3-10. The handleText callback for our <TextInput>

_handleTextChange = event => {
 this.setState({zip: event.nativeEvent.text})
}

By using fat-arrow syntax, we ensure that our callback is properly bound to the com‐
ponent instance. React autobinds lifecycle methods such as render, but for other
methods we need to pay attention to binding. Fat-arrow functions are covered in
Example A-8.

You will also need to update your import statements, as shown in Example 3-11.

Example 3-11. Importing UI elements in React Native

import {
 ...
 TextInput
 ...
} from "react-native;

Now try running your application using either the iOS simulator or the Android
emulator. It won’t be pretty, but you should be able to successfully submit a zip code
and see it reflected in the <Text> component.

If we wanted, we could add some simple input validation here to ensure that the user
typed in a five-digit number, but we will skip that for now.

Example 3-12 shows the full code for the WeatherProject.js component thus far.

Example 3-12. This version of WeatherProject.js simply accepts and records user input

import React, { Component } from "react";

import { StyleSheet, Text, View, TextInput } from "react-native";

Building a Weather App | 25

class WeatherProject extends Component {
 constructor(props) {
 super(props);
 this.state = { zip: "" };
 }

 _handleTextChange = event => {
 this.setState({ zip: event.nativeEvent.text });
 };

 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.welcome}>
 You input {this.state.zip}.
 </Text>
 <TextInput
 style={styles.input}
 onSubmitEditing={this._handleTextChange}
 />
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: "center",
 alignItems: "center",
 backgroundColor: "#F5FCFF"
 },
 welcome: { fontSize: 20, textAlign: "center", margin: 10 },
 input: {
 fontSize: 20,
 borderWidth: 2,
 padding: 2,
 height: 40,
 width: 100,
 textAlign: "center"
 }
});

export default WeatherProject;

Displaying Data
Now let’s work on displaying the forecast for that zip code. We will start by adding
some mock data to our initial state value in WeatherProject.js:

constructor(props) {
 super(props);

26 | Chapter 3: Building Your First Application

 this.state = { zip: "", forecast: null };
}

For sanity’s sake, let’s also pull the forecast rendering into its own component. Make a
new file called Forecast.js (see Example 3-13).

Example 3-13. <Forecast> component in Forecast.js

import React, { Component } from "react";

import { StyleSheet, Text, View } from "react-native";

class Forecast extends Component {
 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.bigText}>
 {this.props.main}
 </Text>
 <Text style={styles.mainText}>
 Current conditions: {this.props.description}
 </Text>
 <Text style={styles.bigText}>
 {this.props.temp}°F
 </Text>
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: { height: 130 },
 bigText: {
 flex: 2,
 fontSize: 20,
 textAlign: "center",
 margin: 10,
 color: "#FFFFFF"
 },
 mainText: { flex: 1, fontSize: 16, textAlign: "center", color: "#FFFFFF" }
});

export default Forecast;

The <Forecast> component just renders some <Text> based on its props. We’ve also
included some simple styles at the bottom of the file to control things like text color.

Import the <Forecast> component and then add it to your app’s render method,
passing it props based on this.state.forecast (see Example 3-14). We’ll address

Building a Weather App | 27

issues with layout and styling later. You can see how the <Forecast> component
appears in the resulting application in Figure 3-4.

Example 3-14. WeatherProject.js, updated to include the <Forecast> component

import React, { Component } from "react";

import { StyleSheet, Text, View, TextInput } from "react-native";
import Forecast from "./Forecast";

class WeatherProject extends Component {
 constructor(props) {
 super(props);
 this.state = { zip: "", forecast: null };
 }

 _handleTextChange = event => {
 this.setState({ zip: event.nativeEvent.text });
 };

 render() {
 let content = null;
 if (this.state.forecast !== null) {
 content = (
 <Forecast
 main={this.state.forecast.main}
 description={this.state.forecast.description}
 temp={this.state.forecast.temp}
 />
);
 }

 return (
 <View style={styles.container}>
 <Text style={styles.welcome}>
 You input {this.state.zip}.
 </Text>
 {content}
 <TextInput
 style={styles.input}
 onSubmitEditing={this._handleTextChange}
 />
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: "center",

28 | Chapter 3: Building Your First Application

 alignItems: "center",
 backgroundColor: "#F5FCFF"
 },
 welcome: { fontSize: 20, textAlign: "center", margin: 10 },
 input: {
 fontSize: 20,
 borderWidth: 2,
 padding: 2,
 height: 40,
 width: 100,
 textAlign: "center"
 }
});

export default WeatherProject;

Because we still don’t have a forecast to render, nothing should change visually yet.

Fetching Data from the Web
Next, let’s explore using the networking APIs available in React Native. You won’t be
using jQuery to send AJAX requests from mobile devices. Instead, React Native
implements the Fetch API. The Promise-based syntax, shown in Example 3-15, is
fairly simple.

Example 3-15. Using the React Native Fetch API

fetch('http://www.somesite.com')
 .then((response) => response.text())
 .then((responseText) => {
 console.log(responseText);
 });

If you’re not accustomed to working with Promises, see “Working with Promises” on
page 212.

We will be using the OpenWeatherMap API, which provides us with a simple end‐
point that returns the current weather for a given zip code. A small library for this
API is provided in open_weather_map.js, shown in Example 3-16.

Example 3-16. The OpenWeatherMap library, from src/weather/open_weather_map.js

const WEATHER_API_KEY = "bbeb34ebf60ad50f7893e7440a1e2b0b";
const API_STEM = "http://api.openweathermap.org/data/2.5/weather?";

function zipUrl(zip) {
 return `${API_STEM}q=${zip}&units=imperial&APPID=${WEATHER_API_KEY}`;
}

Building a Weather App | 29

function fetchForecast(zip) {
 return fetch(zipUrl(zip))
 .then(response => response.json())
 .then(responseJSON => {
 return {
 main: responseJSON.weather[0].main,
 description: responseJSON.weather[0].description,
 temp: responseJSON.main.temp
 };
 })
 .catch(error => {
 console.error(error);
 });
}

export default { fetchForecast: fetchForecast };

Let’s import it now:

import OpenWeatherMap from "./open_weather_map";

To integrate it into our application, we can change the callback on the <TextInput>
component to query the OpenWeatherMap API, as shown in Example 3-17.

Example 3-17. Fetching data from the OpenWeatherMap API

_handleTextChange = event => {
 let zip = event.nativeEvent.text;
 OpenWeatherMap.fetchForecast(zip).then(forecast => {
 console.log(forecast);
 this.setState({ forecast: forecast });
 });
};

Logging the forecast here is a nice sanity check for us; for more detailed information
on how to view the console output, see “Debugging with console.log” on page 141.

Finally, we also need to update the styling for our container so that we can see the
forecast text render:

container: {
 flex: 1,
 justifyContent: "center",
 alignItems: "center",
 backgroundColor: "#666666"
}

Now, when you enter a zip code, you should actually see a forecast render
(Figure 3-4).

30 | Chapter 3: Building Your First Application

Figure 3-4. The weather app so far

The updated code for WeatherProject.js is shown in Example 3-18.

Example 3-18. WeatherProject.js: now with real data!

import React, { Component } from "react";

import { StyleSheet, Text, View, TextInput } from "react-native";
import OpenWeatherMap from "./open_weather_map";
import Forecast from "./Forecast";

class WeatherProject extends Component {
 constructor(props) {
 super(props);
 this.state = { zip: "", forecast: null };
 }

 _handleTextChange = event => {
 let zip = event.nativeEvent.text;
 OpenWeatherMap.fetchForecast(zip).then(forecast => {
 this.setState({ forecast: forecast });
 });
 };

Building a Weather App | 31

 render() {
 let content = null;
 if (this.state.forecast !== null) {
 content = (
 <Forecast
 main={this.state.forecast.main}
 description={this.state.forecast.description}
 temp={this.state.forecast.temp}
 />
);
 }

 return (
 <View style={styles.container}>
 <Text style={styles.welcome}>
 You input {this.state.zip}.
 </Text>
 {content}
 <TextInput
 style={styles.input}
 onSubmitEditing={this._handleTextChange}
 />
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: "center",
 alignItems: "center",
 backgroundColor: "#666666"
 },
 welcome: { fontSize: 20, textAlign: "center", margin: 10 },
 input: {
 fontSize: 20,
 borderWidth: 2,
 padding: 2,
 height: 40,
 width: 100,
 textAlign: "center"
 }
});

export default WeatherProject;

Adding a Background Image
Plain background colors are boring. Let’s display a background image to go along
with our forecast.

32 | Chapter 3: Building Your First Application

Image assets are managed much like any other code asset: you can include them with
a require call. We are going to use a file called flowers.png as our background image.
It can be required like so:

<Image source={require('./flowers.png')}/>

The image file is available in the GitHub repository.

Just like JavaScript assets, if you have a flowers.ios.png and a flowers.android.png file,
the React Native packager will load the appropriate image based on the platform.
Likewise, you can use the @2x and @3x suffixes to provide different image files for dif‐
ferent screen densities. So, hypothetically, we could structure our project directory
like so:

.
├── flowers.png
├── flowers@2x.png
├── flowers@3x.png
...

To add a background image to a <View>, we don’t set a background property on a
<div> like we do on the web. Instead, we use an <Image> component as a container:

<Image source={require('./flowers.png')}
 resizeMode='cover'
 style={styles.backdrop}>
 // Your content here
</Image>

The <Image> component expects a source prop, which we get by using require.

Don’t forget to style it with flexDirection so that its children render as we’d like
them to:

backdrop: {
 flex: 1,
 flexDirection: 'column'
}

Now let’s give the <Image> some children. Update the render method of the <Weather
Project> component to return the following:

<View style={styles.container}>
 <Image
 source={require("./flowers.png")}
 resizeMode="cover"
 style={styles.backdrop}>
 <View style={styles.overlay}>
 <View style={styles.row}>
 <Text style={styles.mainText}>
 Current weather for
 </Text>
 <View style={styles.zipContainer}>

Building a Weather App | 33

https://github.com/bonniee/learning-react-native/blob/2.0.0/src/weather/flowers.png

 <TextInput
 style={[styles.zipCode, styles.mainText]}
 onSubmitEditing={event => this._handleTextChange(event)}
 />
 </View>
 </View>
 {content}
 </View>
 </Image>
</View>

You’ll notice that I’m using some additional styles that we haven’t discussed yet, such
as row, overlay, zipContainer, and zipCode. You can skip ahead to Example 3-19 to
see the full stylesheet.

Putting It All Together
For the final version of the application, I’ve reorganized the <WeatherProject> com‐
ponent’s render function and tweaked the styles. The main change is to the layout
logic, which is diagrammed in Figure 3-5.

Figure 3-5. Layout of the finished weather application

Okay, ready to see it all in one place? Example 3-19 shows the finished code for the
<WeatherProject> component in full, including the stylesheets. The <Forecast>
component will be the same as shown previously in Example 3-13.

34 | Chapter 3: Building Your First Application

Example 3-19. Finished code for WeatherProject.js

import React, { Component } from "react";

import { StyleSheet, Text, View, TextInput, Image } from "react-native";

import Forecast from "./Forecast";
import OpenWeatherMap from "./open_weather_map";

class WeatherProject extends Component {
 constructor(props) {
 super(props);
 this.state = { zip: "", forecast: null };
 }

 _handleTextChange = event => {
 let zip = event.nativeEvent.text;
 OpenWeatherMap.fetchForecast(zip).then(forecast => {
 this.setState({ forecast: forecast });
 });
 };

 render() {
 let content = null;
 if (this.state.forecast !== null) {
 content = (
 <Forecast
 main={this.state.forecast.main}
 description={this.state.forecast.description}
 temp={this.state.forecast.temp}
 />
);
 }
 return (
 <View style={styles.container}>
 <Image
 source={require("./flowers.png")}
 resizeMode="cover"
 style={styles.backdrop}
 >
 <View style={styles.overlay}>
 <View style={styles.row}>
 <Text style={styles.mainText}>
 Current weather for
 </Text>
 <View style={styles.zipContainer}>
 <TextInput
 style={[styles.zipCode, styles.mainText]}
 onSubmitEditing={this._handleTextChange}
 underlineColorAndroid="transparent"
 />
 </View>

Building a Weather App | 35

 </View>
 {content}
 </View>
 </Image>
 </View>
);
 }
}

const baseFontSize = 16;

const styles = StyleSheet.create({
 container: { flex: 1, alignItems: "center", paddingTop: 30 },
 backdrop: { flex: 1, flexDirection: "column" },
 overlay: {
 paddingTop: 5,
 backgroundColor: "#000000",
 opacity: 0.5,
 flexDirection: "column",
 alignItems: "center"
 },
 row: {
 flexDirection: "row",
 flexWrap: "nowrap",
 alignItems: "flex-start",
 padding: 30
 },
 zipContainer: {
 height: baseFontSize + 10,
 borderBottomColor: "#DDDDDD",
 borderBottomWidth: 1,
 marginLeft: 5,
 marginTop: 3
 },
 zipCode: { flex: 1, flexBasis: 1, width: 50, height: baseFontSize },
 mainText: { fontSize: baseFontSize, color: "#FFFFFF" }
});

export default WeatherProject;

Now that we’re done, try launching the application. It should work on both Android
and iOS, in an emulator or on your physical device. What would you like to change
or improve?

You can view the completed application in the GitHub repository.

Summary
For our first real application, we’ve already covered a lot of ground. We introduced a
new UI component, <TextInput>, and learned how to use it to get information from

36 | Chapter 3: Building Your First Application

https://github.com/bonniee/learning-react-native/tree/2.0.0/src/weather

the user. We demonstrated how to implement basic styling in React Native, as well as
how to use images and include assets in our application. Finally, we learned how to
use the React Native networking API to request data from external web sources. Not
bad for a first application!

Hopefully, this chapter has demonstrated how quickly you can build React Native
applications with useful features that feel at home on a mobile device.

If you want to extend your application further, here are some things to try:

• Add more images and change them based on the forecast
• Add validation to the zip code field
• Switch to using a more appropriate keypad for the zip code input
• Display the five-day weather forecast

Once we cover more topics, such as geolocation, you will be able to extend the
weather application even further.

Of course, this has been a pretty quick survey. In the next few chapters, we will focus
on gaining a deeper understanding of React Native best practices, and look at how to
use a lot more features, too!

Summary | 37

CHAPTER 4

Components for Mobile

In Chapter 3, we built a simple weather app. In doing so, we touched upon the basics
of building interfaces with React Native. In this chapter, we will take a closer look at
the mobile-based components used for React Native, and how they compare to basic
HTML elements. Mobile interfaces are based on different primitive UI elements than
web pages, and thus we need to use different components.

This chapter starts with a more detailed overview of the most basic components:
<View>, <Image>, and <Text>. Then, we will discuss how touch and gestures factor
into React Native components, and how to handle touch events. Next, we will cover
higher-level components, such as the tab bars, navigators, and lists, which allow you
to combine other views into standard mobile interface patterns.

Analogies Between HTML Elements and Native
Components
When developing for the web, we make use of a variety of basic HTML elements.
These include <div>, , and , as well as organizational elements such as
, , and <table>. (We could include a consideration of elements such as
<audio>, <svg>, <canvas>, and so on, but we’ll ignore them for now.)

When dealing with React Native, we don’t use these HTML elements, but we use a
variety of components that are nearly analogous to them (Table 4-1).

39

Table 4-1. Analogous HTML and Native components

HTML React Native

div <View>

img <Image>

span, p <Text>

ul/ol, li <FlatList>, child items

Although these elements serve roughly the same purposes, they are not interchangea‐
ble. Let’s take a look at how these components work on mobile with React Native and
how they differ from their browser-based counterparts.

Can I Share Code Between React Native and My Web App?
Out of the box, React Native supports rendering to Android and iOS. If you want to
render web-compatible views with React Native, check out react-native-web.

Regardless of your approach, any JavaScript code—including React components—
that doesn’t render basic elements can be shared. So, if your business logic is isolated
from your rendering code, you’ll be able to reuse it.

The <Text> Component
Rendering text is a deceptively basic function; nearly any application will need to ren‐
der text somewhere. However, text within the context of React Native and mobile
development works differently from text rendering for the web.

When working with text in HTML, you can include raw text strings in a variety of
elements. Furthermore, you can style them with child tags such as and
. So, you might end up with an HTML snippet that looks like this:

<p>The quick brown fox jumped over the lazy dog.</p>

In React Native, only <Text> components may have plain-text nodes as children. In
other words, this is not valid:

<View>
 Text doesn't go here!
</View>

Instead, wrap your text in a <Text> component:

<View>
 <Text>This is OK!</Text>
</View>

40 | Chapter 4: Components for Mobile

https://github.com/necolas/react-native-web

When dealing with <Text> components in React Native, you no longer have access to
subtags such as and , though you can apply styles to achieve similar
effects by using attributes such as fontWeight and fontStyle. Here’s how you might
achieve a similar effect by making use of inline styles:

<Text>
 The quick <Text style={{fontStyle: "italic"}}>brown</Text> fox
 jumped over the lazy <Text style={{fontWeight: "bold"}}>dog</Text>.
</Text>

This approach could quickly become verbose. You’ll likely want to create styled com‐
ponents as a sort of shorthand when dealing with text, as shown in Example 4-1.

Example 4-1. Creating reusable components for styling text

const styles = StyleSheet.create({
 bold: {
 fontWeight: "bold"
 },
 italic: {
 fontStyle: "italic"
 }
});

class Strong extends Component {
 render() {
 return (
 <Text style={styles.bold}>
 {this.props.children}
 </Text>);
 }
}

class Em extends Component {
 render() {
 return (
 <Text style={styles.italic}>
 {this.props.children}
 </Text>);
 }
}

Once you have declared these styled components, you can freely make use of styled
nesting. Now the React Native version looks quite similar to the HTML version (see
Example 4-2).

Example 4-2. Using styled components for rendering text

<Text>
 The quick brown fox jumped

Analogies Between HTML Elements and Native Components | 41

 over the lazy dog.
</Text>

Similarly, React Native does not inherently have any concept of header elements (h1,
h2, etc.), but it’s easy to declare your own styled <Text> elements and use them as
needed.

In general, when dealing with styled text, React Native forces you to change your
approach. Style inheritance is limited, so you lose the ability to have default font set‐
tings for all text nodes in the tree. Once again, the React Native documentation rec‐
ommends solving this by using styled components:

You also lose the ability to set up a default font for an entire subtree. The recom‐
mended way to use consistent fonts and sizes across your application is to create a
component MyAppText that includes them and use this component across your app.
You can also use this component to make more specific components like MyAppHeader
Text for other kinds of text.

The <Text> component documentation has more details on this.

You’ve probably noticed a pattern here: React Native is very opinionated in its prefer‐
ence for reusing styled components over inheriting or reusing styles. While it can be
time-consuming initially, this approach leads to better isolation so that you can ren‐
der a component anywhere in your application and get the same result. This in turn
makes it easier to maintain the styling code in your application. We’ll discuss this
approach further in the next chapter.

The <Image> Component
If text is the most basic element in an application, images are a close contender for
both mobile and the web. When writing HTML and CSS for the web, we include
images in a variety of ways: sometimes we use the tag whereas at other times
we apply images via CSS, such as when we use the background-image property. In
React Native, we have a similar <Image> component, but it behaves a little differently.

The basic usage of the <Image> component is straightforward; just set the source
prop:

<Image source={require("./puppies.png")} />

The image path is resolved exactly as JavaScript modules are resolved. So, in the pre‐
ceding example, puppies.png should be provided in the same folder as the component
that requires it.

There’s some filename magic going on here, too. If you provide puppies.ios.png and
puppies.android.png, the appropriate file will be rendered on each platform. Similarly,
if you provide images with suffixes @2x and @3x, the React Native packager will
select the appropriate image for the device’s screen density.

42 | Chapter 4: Components for Mobile

http://bit.ly/1SVQxU3

It is also possible to include web-based image sources instead of bundling your assets
with your application. For example:

<Image source={{uri: "https://facebook.github.io/react/img/logo_og.png"}}
 style={{width: 400, height: 400}} />

When utilizing network resources, you will need to specify dimensions manually.

Downloading images via the network rather than including them as assets has some
advantages. During development, for instance, it may be easier to use this approach
while prototyping rather than carefully importing all of your assets ahead of time. It
also reduces the size of your bundled mobile application so that users do not need to
download all of your assets. However, it means that instead you’ll be relying on their
data plan whenever they access your application in the future. For most cases, you’ll
want to avoid using the URI-based method.

If you’re wondering about working with the user’s own images, we’ll cover the camera
roll in Chapter 6.

Because React Native emphasizes a component-based approach, images must be
included as <Image> components instead of being referenced via styles. For instance,
in Chapter 3, we wanted to use an image as a background for our weather application.
Whereas in plain HTML and CSS you would likely use the background-image prop‐
erty to apply a background image, in React Native you instead use the <Image> as a
container component, like so:

<Image source={require("./puppies.png")}>
 {/* Your content here... */}
</Image>

Styling the images themselves is fairly straightforward. In addition to applying styles,
you’ll use certain props to control how the image will be rendered. You’ll often make
use of the resizeMode prop, for instance, which can be set to contain, cover, or
stretch. The UIExplorer app demonstrates this well (Figure 4-1).

Analogies Between HTML Elements and Native Components | 43

Figure 4-1. The difference between resize, cover, and contain

The <Image> component is very flexible. You will likely make extensive use of it in
your own applications.

Working with Touch and Gestures
Web-based interfaces are usually designed for mouse-based controllers. We use things
like hover state to indicate interactivity and respond to user interaction. For mobile,
it’s touch that matters. Mobile platforms have their own norms around interactions
that you’ll want to design for. This varies somewhat from platform to platform: iOS
behaves differently from Android, which behaves differently yet again from Windows
Phone.

React Native provides a number of APIs for you to leverage as you build touch-ready
interfaces. In this section, we’ll look at the humble <Button> component and the
<TouchableHighlight> container component, as well as lower-level APIs that give
you direct access to touch events.

Creating Basic Interactions with <Button>
If you’re just getting started and need a basic, interactive button, the default <Button>
component has you covered. It provides a simple API, which allows you to set the
color, label text, and callback function.

<Button
 onPress={this._onPress}
 title="Press me"
 color="#841584"
 accessibilityLabel="Press this button"
/>

44 | Chapter 4: Components for Mobile

This <Button> component is a decent starting point, but you’ll probably want to cre‐
ate your own interactive components. For that, we’ll need to use <TouchableHigh
light>.

Using the <TouchableHighlight> Component
Any interface elements that respond to user touch (buttons, control elements, etc.)
should usually have a <TouchableHighlight> wrapper. <TouchableHighlight>

causes an overlay to appear when the view is touched, giving the user visual feedback.
This is one of the key interactions that causes a mobile application to feel native, as
opposed to a mobile-optimized website, where touch feedback is limited. As a general
rule of thumb, you should use <TouchableHighlight> anywhere there would be a
button or a link on the web.

At its most basic usage, you just need to wrap your component in a <TouchableHigh
light>, which will add a simple overlay when pressed. The <TouchableHighlight>
component also gives you hooks for events such as onPressIn, onPressOut, onLong
Press, and the like, so you can use these events in your React applications.

Example 4-3 shows how you can wrap a component in a <TouchableHighlight> in
order to give the user feedback.

Example 4-3. Using the <TouchableHighlight> component

<TouchableHighlight
 onPressIn={this._onPressIn}
 onPressOut={this._onPressOut}
 accessibilityLabel={'PUSH ME'}
 style={styles.touchable}>
 <View style={styles.button}>
 <Text style={styles.welcome}>
 {this.state.pressing ? "EEK!" : "PUSH ME"}
 </Text>
 </View>
</TouchableHighlight>

When the user taps the button, an overlay appears, and the text changes (Figure 4-2).

Working with Touch and Gestures | 45

Figure 4-2. Using <TouchableHighlight> to give the user visual feedback—the unpressed
state (left) and the pressed state, with highlight (right)

This is a contrived example, but it illustrates the basic interactions that make a button
“feel” touchable on mobile. The overlay is a key piece of feedback that informs the
user that an element can be pressed. Note that in order to apply the overlay, we don’t
need to apply any logic to our styles; the <TouchableHighlight> handles the logic of
that for us.

Example 4-4 shows the full code for this button component.

Example 4-4. PressDemo.js illustrates the use of <TouchableHighlight>

import React, { Component } from "react";
import { StyleSheet, Text, View, TouchableHighlight } from "react-native";

class Button extends Component {
 constructor(props) {
 super(props);

46 | Chapter 4: Components for Mobile

 this.state = { pressing: false };
 }

 _onPressIn = () => {
 this.setState({ pressing: true });
 };

 _onPressOut = () => {
 this.setState({ pressing: false });
 };

 render() {
 return (
 <View style={styles.container}>
 <TouchableHighlight
 onPressIn={this._onPressIn}
 onPressOut={this._onPressOut}
 style={styles.touchable}
 >

 <View style={styles.button}>
 <Text style={styles.welcome}>
 {this.state.pressing ? "EEK!" : "PUSH ME"}
 </Text>
 </View>

 </TouchableHighlight>
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: "center",
 alignItems: "center",
 backgroundColor: "#F5FCFF"
 },
 welcome: { fontSize: 20, textAlign: "center", margin: 10, color: "#FFFFFF" },
 touchable: { borderRadius: 100 },
 button: {
 backgroundColor: "#FF0000",
 borderRadius: 100,
 height: 200,
 width: 200,
 justifyContent: "center"
 }
});

export default Button;

Working with Touch and Gestures | 47

Try editing this button to respond to other events, by using hooks like onPress and
onLongPress. The best way to get a sense for how these events map onto user interac‐
tions is to experiment using a real device.

Using the PanResponder Class
Unlike <TouchableHighlight>, PanResponder is not a component but rather a class
provided by React Native. A PanResponder gestureState object gives you access to
raw position data as well as information such as velocity and accumulated distance of
the current gesture.

To make use of PanResponder in a React component, we need to create a PanRes
ponder object and then attach it to a component’s render method.

Creating a PanResponder requires us to specify the proper handlers for PanResponder
events (Example 4-5).

Example 4-5. Creating a PanResponder requires us to register several callbacks

this._panResponder = PanResponder.create({
 onStartShouldSetPanResponder: this._handleStartShouldSetPanResponder,
 onMoveShouldSetPanResponder: this._handleMoveShouldSetPanResponder,
 onPanResponderGrant: this._handlePanResponderGrant,
 onPanResponderMove: this._handlePanResponderMove,
 onPanResponderRelease: this._handlePanResponderEnd,
 onPanResponderTerminate: this._handlePanResponderEnd,
});

These six functions give us access to the full lifecycle of a touch event. onStartShould
SetPanResponder and onMoveShouldSetPanResponder determine whether or not we
should respond to a given touch event. onPanResponderGrant will be invoked when a
touch event begins, and onPanResponderRelease and onPanResponderTerminate will
be invoked when a touch event ends. We’ll be able to access data about the ongoing
touch event during onPanResponderMove.

We use spread syntax to attach the PanResponder to the view in our component’s
render method (Example 4-6).

Example 4-6. Attaching the PanResponder using spread sytax

render: function() {
 return (
 <View
 {...this._panResponder.panHandlers}>
 { /* View contents here */ }
 </View>

48 | Chapter 4: Components for Mobile

);
}

After this, the handlers that you passed to the PanResponder.create call will be
invoked during the appropriate move events if the touch originates within this view.

Figure 4-3 renders a circle that you can drag around the screen. Its coordinates will be
updated as you move it.

Figure 4-3. PanResponder demo

In order to implement this, let’s flesh out our PanResponder callbacks now. The first
two are straightforward: by implementing _handleStartShouldSetPanResponder
and _handleMoveShouldSetPanResponder, we can declare that we want this res‐
ponder to receive touch events (Example 4-7).

Working with Touch and Gestures | 49

Example 4-7. For the first two callbacks, we simply return true

_handleStartShouldSetPanResponder = (event, gestureState) => {
 // Should we become active when the user presses down on the circle?
 return true;
};

_handleMoveShouldSetPanResponder = (event, gestureState) => {
 // Should we become active when the user moves a touch over the circle?
 return true;
};

Then we’ll want to use the location data in _handlePanResponderMove to update the
coordinates of our circle view (Example 4-8).

Example 4-8. Updating the circle’s position in _handlePanResponderMove

_handlePanResponderMove = (event, gestureState) => {
 // Calculate current position using deltas
 this._circleStyles.style.left = this._previousLeft + gestureState.dx;
 this._circleStyles.style.top = this._previousTop + gestureState.dy;
 this._updatePosition();
};

_updatePosition = () => {
 this.circle && this.circle.setNativeProps(this._circleStyles);
};

Note that we’re calling setNativeProps here in order to update the position of the
circle view.

When working with animations, you can use setNativeProps to
directly modify a component instead of the typical approach of set‐
ting state and props. This lets you bypass the overhead of re-
rendering the component hierarchy, but it should be used
sparingly.

Next, let’s implement _handlePanResponderGrant and _handlePanResponderEnd so
that the circle changes color when a touch is active (Example 4-9).

Example 4-9. Implementing highlight behavior

_highlight = () => {
 this.circle &&
 this.circle.setNativeProps({
 style: { backgroundColor: "blue" }
 });
};

50 | Chapter 4: Components for Mobile

_unHighlight = () => {
 this.circle &&
 this.circle.setNativeProps({ style: { backgroundColor: "green" } });
};

_handlePanResponderGrant = (event, gestureState) => {
 this._highlight();
};

_handlePanResponderEnd = (event, gestureState) => {
 this._unHighlight();
};

Let’s put it all together to build an interactive view using PanResponder, as shown in
Example 4-10.

Example 4-10. PanDemo.js illustrates the use of PanResponder

// Adapted from https://github.com/facebook/react-native/blob/master/
// Examples/UIExplorer/PanResponderExample.js

"use strict";

import React, { Component } from "react";
import { StyleSheet, PanResponder, View, Text } from "react-native";

const CIRCLE_SIZE = 40;
const CIRCLE_COLOR = "blue";
const CIRCLE_HIGHLIGHT_COLOR = "green";

class PanResponderExample extends Component {
 // Set some initial values.
 _panResponder = {};
 _previousLeft = 0;
 _previousTop = 0;
 _circleStyles = {};
 circle = null;

 constructor(props) {
 super(props);
 this.state = {
 numberActiveTouches: 0,
 moveX: 0,
 moveY: 0,
 x0: 0,
 y0: 0,
 dx: 0,
 dy: 0,
 vx: 0,
 vy: 0

Working with Touch and Gestures | 51

 };
 }

 componentWillMount() {
 this._panResponder = PanResponder.create({
 onStartShouldSetPanResponder: this._handleStartShouldSetPanResponder,
 onMoveShouldSetPanResponder: this._handleMoveShouldSetPanResponder,
 onPanResponderGrant: this._handlePanResponderGrant,
 onPanResponderMove: this._handlePanResponderMove,
 onPanResponderRelease: this._handlePanResponderEnd,
 onPanResponderTerminate: this._handlePanResponderEnd
 });
 this._previousLeft = 20;
 this._previousTop = 84;
 this._circleStyles = {
 style: { left: this._previousLeft, top: this._previousTop }
 };
 }

 componentDidMount() {
 this._updatePosition();
 }

 render() {
 return (
 <View style={styles.container}>
 <View
 ref={circle => {
 this.circle = circle;
 }}
 style={styles.circle}
 {...this._panResponder.panHandlers}
 />
 <Text>
 {this.state.numberActiveTouches} touches,
 dx: {this.state.dx},
 dy: {this.state.dy},
 vx: {this.state.vx},
 vy: {this.state.vy}
 </Text>
 </View>
);
 }

 // _highlight and _unHighlight get called by PanResponder methods,
 // providing visual feedback to the user.
 _highlight = () => {
 this.circle &&
 this.circle.setNativeProps({
 style: { backgroundColor: CIRCLE_HIGHLIGHT_COLOR }
 });
 };

52 | Chapter 4: Components for Mobile

 _unHighlight = () => {
 this.circle &&
 this.circle.setNativeProps({ style: { backgroundColor: CIRCLE_COLOR } });
 };

 // We're controlling the circle's position directly with setNativeProps.
 _updatePosition = () => {
 this.circle && this.circle.setNativeProps(this._circleStyles);
 };

 _handleStartShouldSetPanResponder = (event, gestureState) => {
 // Should we become active when the user presses down on the circle?
 return true;
 };

 _handleMoveShouldSetPanResponder = (event, gestureState) => {
 // Should we become active when the user moves a touch over the circle?
 return true;
 };

 _handlePanResponderGrant = (event, gestureState) => {
 this._highlight();
 };

 _handlePanResponderMove = (event, gestureState) => {
 this.setState({
 stateID: gestureState.stateID,
 moveX: gestureState.moveX,
 moveY: gestureState.moveY,
 x0: gestureState.x0,
 y0: gestureState.y0,
 dx: gestureState.dx,
 dy: gestureState.dy,
 vx: gestureState.vx,
 vy: gestureState.vy,
 numberActiveTouches: gestureState.numberActiveTouches
 });

 // Calculate current position using deltas
 this._circleStyles.style.left = this._previousLeft + gestureState.dx;
 this._circleStyles.style.top = this._previousTop + gestureState.dy;
 this._updatePosition();
 };

 _handlePanResponderEnd = (event, gestureState) => {
 this._unHighlight();
 this._previousLeft += gestureState.dx;
 this._previousTop += gestureState.dy;
 };
}

Working with Touch and Gestures | 53

const styles = StyleSheet.create({
 circle: {
 width: CIRCLE_SIZE,
 height: CIRCLE_SIZE,
 borderRadius: CIRCLE_SIZE / 2,
 backgroundColor: CIRCLE_COLOR,
 position: "absolute",
 left: 0,
 top: 0
 },
 container: { flex: 1, paddingTop: 64 }
});

export default PanResponderExample;

If you plan on implementing your own gesture recognizers, I suggest experimenting
with this application on a real device so that you can get a feel for how these values
respond. Figure 4-3 shows a screenshot, but you’ll want to experience it on a device
with a real touchscreen.

Choosing how to handle touch
How should you decide when to use the touch and gesture APIs discussed in this sec‐
tion? It depends on what you want to build.

In order to provide the user with basic feedback and indicate that a button or another
element is “tappable,” use the <TouchableHighlight> component.

In order to implement your own custom touch interfaces, you can use PanResponder.
If you are designing a game, or an application with an unusual interface, you’ll need
to spend some time building out the custom touch interactions you want.

For many applications, you won’t need to implement any custom touch handling. In
the next section, we’ll look at some of the higher-level components that implement
common UI patterns for you.

Working with Lists
Many mobile user interfaces feature lists as a central element. You can see this inter‐
action pattern in the Dropbox, Twitter, and iOS Settings apps (Figure 4-4). At its
heart, a list is just a scrolling container with some child views. This deceptively simple
design pattern is integral to many mobile interfaces.

54 | Chapter 4: Components for Mobile

Figure 4-4. Lists as used by Dropbox, Twitter, and the iOS Settings app

React Native provides two list components with convenient APIs. The <FlatList>
component is designed to work with long scrolling lists of changing but similarly
structured data. It has several performance optimizations baked in. The <Section
List> component is designed for data that is broken into logical sections, usually
with section headings, similar to the iOS UITableView. Together, <FlatList> and
<SectionList> cover most common use cases but if you need to peek under the hood
and add some custom list handling, take a look at <VirtualizedList>.

Optimizing list-rendering performance is a notoriously tricky
problem because different use cases call for different approaches. Is
your user swiping hastily through a contacts list to find a particular
person or are they slowly perusing a feed of images? Do you have a
homogeneous list or is every child view different? If you hit perfor‐
mance issues, pay attention to your lists.

In this section, we are going to build an app that displays the New York Times Best
Sellers list and lets us view data about each book, as shown in Figure 4-5. We’ll build
two versions, one with <FlatList> and the other with <SectionList>.

If you’d like, you can grab your own API token from the New York Times. Otherwise,
use the API token included in the sample code.

Working with Lists | 55

http://developer.nytimes.com/apps/mykeys

Figure 4-5. The BookList application we’ll be building

Using the Basic <FlatList> Component
We’re going to start with the basic <FlatList> component, which requires two props:
data and renderItem.

<FlatList
 data={this.state.data}
 renderItem={this._renderItem} />

data is, as the name implies, the data that your <FlatList> will render. It should be
an array where each element has a unique key property, plus whatever other proper‐
ties you find useful.

renderItem should be a function that returns a component based on the data from
one element of the data array.

56 | Chapter 4: Components for Mobile

The basic usage of a <FlatList> is demonstrated in Example 4-11.

Example 4-11. src/bestsellers/SimpleList.js

import React, { Component } from "react";

import { StyleSheet, Text, View, FlatList } from "react-native";

class SimpleList extends Component {
 constructor(props) {
 super(props);
 this.state = {
 data: [
 { key: "a" },
 { key: "b" },
 { key: "c" },
 { key: "d" },
 { key: "a longer example" },
 { key: "e" },
 { key: "f" },
 { key: "g" },
 { key: "h" },
 { key: "i" },
 { key: "j" },
 { key: "k" },
 { key: "l" },
 { key: "m" },
 { key: "n" },
 { key: "o" },
 { key: "p" }
]
 };
 }

 _renderItem = data => {
 return <Text style={styles.row}>{data.item.key}</Text>;
 };

 render() {
 return (
 <View style={styles.container}>
 <FlatList data={this.state.data} renderItem={this._renderItem} />
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: "center",

Working with Lists | 57

 alignItems: "center",
 backgroundColor: "#F5FCFF"
 },
 row: { fontSize: 24, padding: 42, borderWidth: 1, borderColor: "#DDDDDD" }
});

export default SimpleList;

One of the common “gotchas” of working with <FlatList> is that renderItem gets
passed an object with the actual data accessible via the item property.

_renderItem = data => {
 return <Text style={styles.row}>{data.item.key}</Text>;
};

We could simplify this with destructuring shorthand:

_renderItem = ({item}) => {
 return <Text style={styles.row}>{item.key}</Text>;
};

The app should look like Figure 4-6.

Figure 4-6. The SimpleList component renders a bare-bones <FlatList>

58 | Chapter 4: Components for Mobile

Updating the <FlatList> Contents
What if we want to do something a little more interesting? Let’s create a <FlatList>
with more complex data. We will be using the New York Times API to create a simple
Best Sellers application, which renders the New York Times Best Sellers list.

To begin with, we’ll use fake data to represent an example response from the New
York Times API, as shown in Example 4-12.

Example 4-12. Mock data based on the expected API response

const mockBooks = [
 {
 rank: 1,
 title: "GATHERING PREY",
 author: "John Sandford",
 book_image:
 "http://du.ec2.nytimes.com.s3.amazonaws.com/prd/books/9780399168796.jpg"
 },
 {
 rank: 2,
 title: "MEMORY MAN",
 author: "David Baldacci",
 book_image:
 "http://du.ec2.nytimes.com.s3.amazonaws.com/prd/books/9781455586387.jpg"
 }
];

Then we’ll add a component that can render this data. The <BookItem> component,
shown in Example 4-13, uses a combination of <View>, <Text>, and <Image> to dis‐
play basic information about each book.

Example 4-13. src/bestsellers/BookItem.js

import React, { Component } from "react";

import { StyleSheet, Text, View, Image, ListView } from "react-native";

const styles = StyleSheet.create({
 bookItem: {
 flexDirection: "row",
 backgroundColor: "#FFFFFF",
 borderBottomColor: "#AAAAAA",
 borderBottomWidth: 2,
 padding: 5,
 height: 175
 },
 cover: { flex: 1, height: 150, resizeMode: "contain" },
 info: {

Working with Lists | 59

 flex: 3,
 alignItems: "flex-end",
 flexDirection: "column",
 alignSelf: "center",
 padding: 20
 },
 author: { fontSize: 18 },
 title: { fontSize: 18, fontWeight: "bold" }
});

class BookItem extends Component {
 render() {
 return (
 <View style={styles.bookItem}>
 <Image style={styles.cover} source= />
 <View style={styles.info}>
 <Text style={styles.author}>{this.props.author}</Text>
 <Text style={styles.title}>{this.props.title}</Text>
 </View>
 </View>
);
 }
}

export default BookItem;

In order to use the <BookItem> component, we need to update our _renderItem
function. A <BookItem> expects three props: coverURL, title, and author.

_renderItem = ({ item }) => {
 return (
 <BookItem
 coverURL={item.book_image}
 title={item.key}
 author={item.author}
 />
);
};

Remember that in a <FlatList>, each element in the data array must have a unique
key property defined. So, we’ll add a helper method that takes an array of objects and
adds a key property to them, as shown in Example 4-14.

Example 4-14. The _addKeysToBooks method adds a key to each object in the books
array

_addKeysToBooks = books => {
 return books.map(book => {
 return Object.assign(book, { key: book.title });
 });
};

60 | Chapter 4: Components for Mobile

Now that we have this helper method, we can update our initial state using the mock
data from Example 4-12:

constructor(props) {
 super(props);
 this.state = { data: this._addKeysToBooks(mockBooks) };
}

Once we put it all together, our mocked-out Best Sellers application code should look
like Example 4-15, with the resulting app displayed in Figure 4-7.

Example 4-15. src/bestsellers/MockBookList.js

import React, { Component } from "react";

import { StyleSheet, Text, View, Image, FlatList } from "react-native";

import BookItem from "./BookItem";

const mockBooks = [
 {
 rank: 1,
 title: "GATHERING PREY",
 author: "John Sandford",
 book_image:
 "http://du.ec2.nytimes.com.s3.amazonaws.com/prd/books/9780399168796.jpg"
 },
 {
 rank: 2,
 title: "MEMORY MAN",
 author: "David Baldacci",
 book_image:
 "http://du.ec2.nytimes.com.s3.amazonaws.com/prd/books/9781455586387.jpg"
 }
];

class BookList extends Component {
 constructor(props) {
 super(props);
 this.state = { data: this._addKeysToBooks(mockBooks) };
 }

 _renderItem = ({ item }) => {
 return (
 <BookItem
 coverURL={item.book_image}
 title={item.key}
 author={item.author}
 />
);
 };

Working with Lists | 61

 _addKeysToBooks = books => {
 // Takes the API response from the NYTimes
 // and adds a key property to the object
 // for rendering purposes
 return books.map(book => {
 return Object.assign(book, { key: book.title });
 });
 };

 render() {
 return <FlatList data={this.state.data} renderItem={this._renderItem} />;
 }
}

const styles = StyleSheet.create({ container: { flex: 1, paddingTop: 22 } });

export default BookList;

Figure 4-7. Mock data displayed using <FlatList>

62 | Chapter 4: Components for Mobile

Integrating Real Data
Hardcoded data is well and good, but let’s test the real thing. The actual code to access
the New York Times API is provided in Example 4-16.

Example 4-16. src/bestsellers/NYT.js

const API_KEY = "73b19491b83909c7e07016f4bb4644f9:2:60667290";
const LIST_NAME = "hardcover-fiction";
const API_STEM = "https://api.nytimes.com/svc/books/v3/lists";

function fetchBooks(list_name = LIST_NAME) {
 let url = `${API_STEM}/${LIST_NAME}?response-format=json&api-key=${API_KEY}`;
 return fetch(url)
 .then(response => response.json())
 .then(responseJson => {
 return responseJson.results.books;
 })
 .catch(error => {
 console.error(error);
 });
}

export default { fetchBooks: fetchBooks };

Let’s import that library into our component now.

import NYT from "./NYT";

Now let’s add a _refreshData method that invokes the New York Times API:

_refreshData = () => {
 NYT.fetchBooks().then(books => {
 this.setState({ data: this._addKeysToBooks(books) });
 });
};

Finally, we need to set our initial state to an empty array and call _refreshData in
componentDidMount. Once we do that, our application will render live data from the
New York Times Best Sellers list! The full code is shown in Example 4-17, and you can
see the updated app in Figure 4-8.

Example 4-17. src/bestsellers/BookList.js

import React, { Component } from "react";

import { StyleSheet, Text, View, Image, FlatList } from "react-native";

import BookItem from "./BookItem";
import NYT from "./NYT";

Working with Lists | 63

class BookList extends Component {
 constructor(props) {
 super(props);
 this.state = { data: [] };
 }

 componentDidMount() {
 this._refreshData();
 }

 _renderItem = ({ item }) => {
 return (
 <BookItem
 coverURL={item.book_image}
 title={item.key}
 author={item.author}
 />
);
 };

 _addKeysToBooks = books => {
 // Takes the API response from the NYTimes
 // and adds a key property to the object
 // for rendering purposes
 return books.map(book => {
 return Object.assign(book, { key: book.title });
 });
 };

 _refreshData = () => {
 NYT.fetchBooks().then(books => {
 this.setState({ data: this._addKeysToBooks(books) });
 });
 };

 render() {
 return (
 <View style={styles.container}>
 <FlatList data={this.state.data} renderItem={this._renderItem} />
 </View>
);
 }
}

const styles = StyleSheet.create({ container: { flex: 1, paddingTop: 22 } });

export default BookList;

64 | Chapter 4: Components for Mobile

Figure 4-8. Viewing current best sellers, with <FlatList>

As you can see, working with the <FlatList> component is straightforward as long
as you remember to structure your data properly. In addition to handling scrolling
and touch interactions, <FlatList> also includes many performance optimizations to
speed up rendering and reduce memory usage.

Working with <SectionList>
The <SectionList> component is designed for data sets where you have mostly
homogeneous items plus optional section headings. For example, if we wanted to
render several different kinds of best sellers lists with headings between them, a
<SectionList> would be a good choice.

A <SectionList> expects the props sections, renderItem, and renderSection
Header. We’ll start with sections, which should be an array where each object

Working with Lists | 65

contains section data. Each section object must have the title and data keys. The
data must look similar to data in a <FlatList>: it should be an array where each ele‐
ment has a unique key property.

Let’s update our _renderData method to fetch both the fiction and nonfiction best
sellers lists, and update our component’s state accordingly.

_refreshData = () => {
 Promise
 .all([
 NYT.fetchBooks("hardcover-fiction"),
 NYT.fetchBooks("hardcover-nonfiction")
])
 .then(results => {
 if (results.length !== 2) {
 console.error("Unexpected results");
 }

 this.setState({
 sections: [
 {
 title: "Hardcover Fiction",
 data: this._addKeysToBooks(results[0])
 },
 {
 title: "Hardcover NonFiction",
 data: this._addKeysToBooks(results[1])
 }
]
 });
 });
};

We don’t need to update our _renderItem method, but we do need to add a new
_renderHeader method. Let’s do that next.

_renderHeader = ({ section }) => {
 return (
 <Text style={styles.headingText}>
 {section.title}
 </Text>
);
};

Finally, we need to update our render method to return a <SectionList> instead of a
<FlatList>.

<SectionList
 sections={this.state.sections}
 renderItem={this._renderItem}
 renderSectionHeader={this._renderHeader}
/>

66 | Chapter 4: Components for Mobile

When we put everything together, our usage of <SectionList> should look like
Example 4-18, resulting in the updated app shown in Figure 4-9.

Example 4-18. src/bestsellers/BookSectionList.js

import React, { Component } from "react";

import { StyleSheet, Text, View, Image, SectionList } from "react-native";

import BookItem from "./BookItem";
import NYT from "./NYT";

class BookList extends Component {
 constructor(props) {
 super(props);
 this.state = { sections: [] };
 }

 componentDidMount() {
 this._refreshData();
 }

 _addKeysToBooks = books => {
 // Takes the API response from the NYTimes
 // and adds a key property to the object
 // for rendering purposes
 return books.map(book => {
 return Object.assign(book, { key: book.title });
 });
 };

 _refreshData = () => {
 Promise
 .all([
 NYT.fetchBooks("hardcover-fiction"),
 NYT.fetchBooks("hardcover-nonfiction")
])
 .then(results => {
 if (results.length !== 2) {
 console.error("Unexpected results");
 }

 this.setState({
 sections: [
 {
 title: "Hardcover Fiction",
 data: this._addKeysToBooks(results[0])
 },
 {
 title: "Hardcover NonFiction",
 data: this._addKeysToBooks(results[1])

Working with Lists | 67

 }
]
 });
 });
 };

 _renderItem = ({ item }) => {
 return (
 <BookItem
 coverURL={item.book_image}
 title={item.key}
 author={item.author}
 />
);
 };

 _renderHeader = ({ section }) => {
 return (
 <Text style={styles.headingText}>
 {section.title}
 </Text>
);
 };

 render() {
 return (
 <View style={styles.container}>
 <SectionList
 sections={this.state.sections}
 renderItem={this._renderItem}
 renderSectionHeader={this._renderHeader}
 />
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: { flex: 1, paddingTop: 22 },
 headingText: {
 fontSize: 24,
 alignSelf: "center",
 backgroundColor: "#FFF",
 fontWeight: "bold",
 paddingLeft: 20,
 paddingRight: 20,
 paddingTop: 2,
 paddingBottom: 2
 }
});

export default BookList;

68 | Chapter 4: Components for Mobile

Figure 4-9. Viewing current best sellers, with <SectionList>

Navigation
Navigation in the context of mobile apps refers, roughly, to the code that allows users
to transition from one screen to another. On the web, this is part of the window.his
tory API, which provides concepts such as “backward” and “forward.”

Commonly used components for navigation in React Native include the built-in
<Navigator> and <NavigatorIOS> components, as well as community solutions like
<StackNavigator> (provided by the react-navigation library).

Navigation logic is necessary in order to move between screens in your mobile appli‐
cation. It also enables “deep linking,” so that users can jump from a URL into a partic‐
ular screen within your app.

We’ll cover navigation in depth in Chapter 10.

Navigation | 69

Other Organizational Components
There are plenty of other organizational components, too. A few useful ones include
<TabBarIOS> and <SegmentedControlIOS> (illustrated in Figure 4-10) and <Drawer
LayoutAndroid> and <ToolbarAndroid> (illustrated in Figure 4-11).

You’ll notice that these are all named with platform-specific suffixes. That’s because
they wrap native APIs for platform-specific UI elements.

Figure 4-10. An iOS segmented control (top) and an iOS tab bar (bottom)

Figure 4-11. An Android toolbar (left) and an Android drawer (right)

70 | Chapter 4: Components for Mobile

These components are very useful for organizing multiple screens within your appli‐
cation. <TabBarIOS> and <DrawerLayoutAndroid>, for example, give you an easy way
to switch between multiple modes or functions. <SegmentedControlIOS> and <Tool
barAndroid> are better suited for more fine-grained controls.

You’ll want to refer to the platform-specific design guidelines for how best to use
these components:

• Android Design Guide
• iOS Human Interface Guidelines

We’ll cover how to use platform-specific components in more depth in Chapter 7.

Summary
In this chapter, we dug into the specifics of a variety of the most important compo‐
nents in React Native. We discussed how to use basic low-level components, like
<Text> and <Image>, as well as more abstract components like <FlatList>,
<SectionList>, and <TabBarIOS>. We also looked at how to use various touch-
focused APIs and components in case you want to build your own custom touch han‐
dlers.

At this point, you should be equipped to build basic functional applications using
React Native! Now that you’ve acquainted yourself with the components discussed in
this chapter, building upon them and combining them to create your own applica‐
tions should feel remarkably similar to working with React on the web.

Of course, building up basic functioning applications is only part of the battle. In the
next chapter, we’ll focus on styling and how to use React Native’s implementation of
styles to get the look and feel you want on mobile.

Summary | 71

http://bit.ly/android_design_guide
http://bit.ly/designing_for_ios

1 The “CSS in JS” slidedeck from Christopher Chedeau, aka Vjeux, provides a good overview.

CHAPTER 5

Styles

It’s great to be able to build functional applications, but if you can’t style them effec‐
tively, you won’t get very far! In Chapter 3, we built a simple weather application with
some basic styles. While this gave us an overview of how to style React Native compo‐
nents, we glossed over many of the details. In this chapter, we will take a closer look at
how styles work in React Native. We’ll cover how to create and manage your style‐
sheets, as well as the details of React Native’s implementation of CSS rules. By the end
of this chapter, you should feel comfortable creating and styling your own React
Native components and applications.

If you want to share styles between your React Native and web applications, the React
Style project on GitHub provides a version of React Native’s style system for the web.

Declaring and Manipulating Styles
When working with React for the web, we typically use separate stylesheet files, which
may be written in CSS, SASS, or LESS. React Native takes a radically different
approach, bringing styles entirely into the world of JavaScript and forcing you to link
style objects explicitly to components. This approach tends to provoke strong reac‐
tions, as it represents a significant departure from CSS-based styling norms.

To understand the design of React Native’s styles, first we need to consider some of
the headaches associated with traditional CSS stylesheets.1 CSS has a number of prob‐
lems. All CSS rules and class names are global in scope, meaning that styling one
component can easily break another if you’re not careful. For instance, if you include
the popular Twitter Bootstrap library, you will introduce over 600 new global

73

https://speakerdeck.com/vjeux/react-css-in-js
https://github.com/js-next/react-style

variables. Because CSS is not explicitly connected to the HTML elements it styles,
dead code elimination is difficult, and it can be nontrivial to determine which styles
will apply to a given element.

Languages like SASS and LESS attempt to work around some of CSS’s uglier parts,
but many of the same fundamental problems remain. With React, we have the oppor‐
tunity to keep the desirable parts of CSS, but also the freedom for significant diver‐
gence. React Native implements a subset of the available CSS styles, focusing on
keeping the styling API narrow yet still highly expressive. Positioning is dramatically
different, as we’ll see later in this chapter. Additionally, React Native does not support
pseudoclasses, animations, or selectors. A full list of supported properties can be
found in the docs.

Instead of stylesheets, in React Native we work with JavaScript-based style objects.
One of React’s greatest strengths is that it forces you to keep your JavaScript code—
your components—modular. By bringing styles into the realm of JavaScript, React
Native pushes us to write modular styles, too.

In this section, we’ll cover the mechanics of how these style objects are created and
manipulated in React Native.

Using Inline Styles
Inline styles are the simplest way, syntactically, to style a component in React Native,
though they are not usually the best way. As you can see in Example 5-1, the syntax
for inline styles in React Native is the same as for React for the browser.

Example 5-1. Using inline styles

<Text>
 The quick <Text style={{fontStyle: "italic"}}>brown</Text> fox
 jumped over the lazy <Text style={{fontWeight: "bold"}}>dog</Text>.
</Text>

Inline styles have some advantages. They’re quick and dirty, allowing you to rapidly
experiment.

However, you should avoid them in general because they’re less efficient. Inline style
objects must be recreated during each render pass. Even when you want to modify
styles in response to props or state, you don’t need to use inline styles, as we’ll see in a
moment.

74 | Chapter 5: Styles

https://facebook.github.io/react-native/docs/view.html#style

Styling with Objects
If you take a look at the inline style syntax, you will see that it’s simply passing an
object to the style attribute. There’s no need to create the style object in the render
method, though. Instead, you can separate it out, as shown in Example 5-2.

Example 5-2. The style attribute will accept a JavaScript object

const italic = {
 fontStyle: "italic"
};
const bold = {
 fontWeight: "bold"
};

...

render() {
 return (
 <Text>
 The quick <Text style={italic}>brown</Text> fox
 jumped over the lazy <Text style={bold}>dog</Text>.
 </Text>
);
}

Using StyleSheet.create
You will notice that almost all of the React Native example code makes use of Style
Sheet.create. This function is a small piece of syntactic sugar with some added
perks.

Creating StyleSheets rather than passing around raw JavaScript objects can reduce the
number of allocations (thus benefiting performance); it also encourages you to orga‐
nize your code more cleanly. These StyleSheets are immutable, which is usually help‐
ful.

Using StyleSheet.create is strictly optional, but in general you’ll want to use it.

PanDemo.js, from Example 4-10, gives us a good counterexample in which the
immutability provided by StyleSheet.create is a hindrance rather than a help.
Recall that we wanted to update the location of a circle based on movement—in other
words, each time we received an update from the PanResponder, we needed to update
state as well as change the styles on the circle. In this circumstance, we don’t want
immutability at all, at least not for the style controlling the circle’s location. Therefore,
we can use a plain object to store the style for the circle.

Declaring and Manipulating Styles | 75

Concatenating Styles
What happens if you want to combine two or more styles?

Recall that earlier we said that we should prefer reusing styled components over
styles. That’s true, but sometimes style reuse is also useful. For instance, if you have a
button style and an accentText style, you may want to combine them to create an
AccentButton component.

If the styles look like this:

const styles = StyleSheet.create({
 button: {
 borderRadius: "8px",
 backgroundColor: "#99CCFF"
 },
 accentText: {
 fontSize: 18,
 fontWeight: "bold"
 }
});

Then you can create a component that has both of those styles applied through simple
concatenation (Example 5-3).

Example 5-3. The style attribute also accepts an array of objects

class AccentButton extends Component {
 render() {
 return (
 <Text style={[styles.button, styles.accentText]}>
 {this.props.children}
 </Text>
);
 }
}

As you can see, the style attribute can take an array of style objects. You can also add
inline styles here if you want (Example 5-4).

Example 5-4. You can mix style objects and inline styles

class AccentButton extends Component {
 render() {
 return (
 <Text style={[styles.button, styles.accentText, {color: "#FFFFFF"}]}>
 {this.props.children}
 </Text>
);

76 | Chapter 5: Styles

 }
}

In the case of a conflict, such as when two objects specify the same property, React
Native will resolve the conflict for you. The rightmost elements in the style array take
precedence, and false values (false, null, undefined) are ignored.

You can leverage this pattern to apply conditional styles. For example, if we had a
<Button> component and wanted to apply extra style rules if it’s being touched, we
could use the code shown in Example 5-5.

Example 5-5. Using conditional styles

<View style={[styles.button, this.state.touching && styles.highlight]} />

This shortcut can help you keep your rendering logic concise.

In general, style concatenation is a useful tool for combining styles. It’s interesting to
contrast concatenation with web-based stylesheet approaches: @extend in SASS, or
nesting and overriding classes in vanilla CSS. Style concatenation is a more limited
tool, which is arguably a good thing: it keeps the logic simple and makes it easier to
reason about which styles are being applied and how.

Organization and Inheritance
In most of the examples so far, we append our style code to the end of the main Java‐
Script file with a single call to StyleSheet.create. For example code, this works well
enough, but it’s not something you’ll likely want to do in an actual application. How
should we actually organize styles? In this section, we will take a look at ways of
organizing your styles, and how to share and inherit styles.

Exporting Style Objects
As your styles grow more complex, you will want to keep them separate from your
components’ JavaScript files. One common approach is to have a separate folder for
each component. If you have a component named <ComponentName>, you would cre‐
ate a folder named ComponentName/ and structure it like so:

- ComponentName
 |- index.js
 |- styles.js

Within styles.js, you create a stylesheet and export it (Example 5-6).

Organization and Inheritance | 77

Example 5-6. Exporting styles from a JavaScript file

import { StyleSheet } from "react-native";

const styles = StyleSheet.create({
 text: {
 color: "#FF00FF",
 fontSize: 16
 },
 bold: {
 fontWeight: "bold"
 }
});

export default styles;

Within index.js, we can import our styles like so:

import styles from "./styles";

Then we can use them in our component (Example 5-7).

Example 5-7. Importing styles from an external JavaScript file

import React, { Component } from "react";
import { StyleSheet, View, Text } from "react-native";
import styles from "./styles";

class ComponentName extends Component {
 render() {
 return (
 <Text style={[styles.text, styles.bold]}>
 Hello, world
 </Text>
);
 }
}

Passing Styles as Props
Styles may also be passed as properties on a component.

You can use this pattern to create extensible components, which can be more effec‐
tively controlled and styled by their parents. For example, a component might take in
an optional style prop (Example 5-8). This is a good way to mimic the “cascading”
behavior of CSS.

78 | Chapter 5: Styles

Example 5-8. Components can receive style objects via props

import React, { Component } from "react";
import { View, Text } from "react-native";

class CustomizableText extends Component {
 render() {
 return (
 <Text style={[{fontSize: 18}, this.props.style]}>
 Hello, world
 </Text>
);
 }
}

By adding this.props.style to the end of the styles array, we ensure that you can
override the default props.

Reusing and Sharing Styles
We typically prefer to reuse styled components rather than reusing styles, but there
are clearly some instances in which you will want to share styles between compo‐
nents. In this case, a common pattern is to organize your project roughly like so:

- js
 |- components
 |- Button
 |- index.js
 |- styles.js
 |- styles
 |- styles.js
 |- colors.js
 |- fonts.js

By having separate directories for components and for styles, you can keep the
intended use of each file clear based on context. A component’s folder should contain
its React class, as well as any component-specific files. Shared styles should be kept
out of component folders. Shared styles may include things such as your palette,
fonts, standardized margins and padding, and so on.

styles/styles.js imports the other shared styles files and exposes them; then your com‐
ponents can import styles.js and use shared files as needed. Or you may prefer to have
components import specific stylesheets from the styles/ directory instead.

Because we’ve now moved our styles into JavaScript, organizing them is really a ques‐
tion of general code organization—there’s no single correct approach here.

Organization and Inheritance | 79

Positioning and Designing Layouts
One of the biggest changes when working with styling in React Native is positioning.
CSS supports a proliferation of positioning techniques. Between float, absolute posi‐
tioning, tables, block layout, and more, it’s easy to get lost! React Native’s approach to
positioning is more focused, relying primarily on flexbox as well as absolute position‐
ing, along with the familiar properties of margin and padding. In this section, we’ll
look at how layouts are constructed in React Native, and finish off by building a lay‐
out in the style of a Mondrian painting.

Using Layouts with Flexbox
Flexbox is a CSS3 layout mode. Unlike existing layout modes such as block and
inline, flexbox gives us a direction-agnostic way of constructing layouts. (That’s right:
finally, vertically centering is easy!) React Native leans heavily on flexbox. If you want
to read more about the general specification, the MDN documentation is a good
place to start.

With React Native, the following flexbox props are available:

• flex

• flexDirection

• flexWrap

• alignSelf

• alignItems

Additionally, these related values impact layout:

• height

• width

• margin

• border

• padding

If you have worked with flexbox on the web before, there won’t be many surprises
here. Because flexbox is so important to constructing layouts in React Native, though,
we’ll spend some time now exploring how it works.

The basic idea behind flexbox is that you should be able to create predictably struc‐
tured layouts, even with dynamically sized elements. Because we’re designing for

80 | Chapter 5: Styles

http://mzl.la/1Ta8Zcj

mobile and need to accommodate multiple screen sizes and orientations, this is a use‐
ful (dare I say necessary?) feature.

We’ll start with a parent <View> and some children:

<View style={styles.parent}>
 <Text style={styles.child}> Child One </Text>
 <Text style={styles.child}> Child Two </Text>
 <Text style={styles.child}> Child Three </Text>
</View>

We’ve applied some basic styles to the views, but haven’t touched the positioning yet:

const styles = StyleSheet.create({
 parent: {
 backgroundColor: '#F5FCFF',
 borderColor: '#0099AA',
 borderWidth: 5,
 marginTop: 30
 },
 child: {
 borderColor: '#AA0099',
 borderWidth: 2,
 textAlign: 'center',
 fontSize: 24,
 }
});

The resulting layout is shown in Figure 5-1.

Figure 5-1. The layout before we add flex properties

Positioning and Designing Layouts | 81

Next, we will set flex on both the parent and the child. By setting the flex property,
we are explicitly opting in to flexbox behavior. flex takes a number, which deter‐
mines the relative weight each child gets; by setting it to 1, we weight each child
equally.

We also set flexDirection: 'column' so that the children are laid out vertically. If we
switch this to flexDirection: 'row', the children will be laid out horizontally
instead. These changes to the styles can be seen in Example 5-9. Figure 5-2 illustrates
the difference in how these values impact the layout.

Figure 5-2. Setting basic flex properties and flexDirection; setting flexDirection to col‐
umn (left) and setting flexDirection to row (right)

Example 5-9. Changing the flex and flexDirection properties

const styles = StyleSheet.create({
 parent: {
 flex: 1,

82 | Chapter 5: Styles

 flexDirection: 'column',
 backgroundColor: '#F5FCFF',
 borderColor: '#0099AA',
 borderWidth: 5,
 marginTop: 30
 },
 child: {
 flex: 1,
 borderColor: '#AA0099',
 borderWidth: 2,
 textAlign: 'center',
 fontSize: 24,
 }
});

If we set alignItems, the children will no longer expand to fill all available space in
both directions. Because we have set flexDirection: 'row', they will expand to fill
the row. However, now they will take only up as much vertical space as they need.

Then, the alignItems value determines where they are positioned along the cross-
axis. The cross-axis is the axis orthogonal to the flexDirection. In this case, the
cross-axis is vertical. flex-start places the children at the top, center centers them,
and flex-end places them at the bottom.

Let’s see what happens when we set alignItems (the result is shown in Figure 5-3):

const styles = StyleSheet.create({
 parent: {
 flex: 1,
 flexDirection: "row",
 alignItems: "flex-start",
 backgroundColor: "#F5FCFF",
 borderColor: "#0099AA",
 borderWidth: 5,
 marginTop: 30
 },
 child: {
 flex: 1,
 borderColor: "#AA0099",
 borderWidth: 2,
 textAlign: "center",
 fontSize: 24,
 }
});

Positioning and Designing Layouts | 83

Figure 5-3. Setting alignItems positions children on the cross-axis, which is the axis
orthogonal to the flexDirection; here, we see flex-start, center, and flex-end

Using Absolute Positioning
In addition to flexbox, React Native supports absolute positioning. It works much as
it does on the web. You can enable it by setting the position property:

position: absolute

Then you can control the component’s positioning with the familiar properties left,
right, top, and bottom.

An absolutely positioned child will apply these coordinates relative to its parent’s
position, so you can lay out a parent element using flexbox and then use absolute
position for a child within it.

There are some limitations to this. We don’t have z-index, for instance, so layering
views on top of each other is a bit complicated. The last view in a stack typically takes
precedence.

Absolute positioning can be very useful. For instance, if you want to create a con‐
tainer view that sits below the phone’s status bar, absolute positioning makes this
easy:

container: {
 position: "absolute",
 top: 30,
 left: 0,

84 | Chapter 5: Styles

 right: 0,
 bottom: 0
}

Putting It Together
Let’s try using these positioning techniques to create a more complicated layout. Say
we want to mimic a Mondrian painting. Figure 5-4 shows the end result.

Figure 5-4. We’ll use flexbox to construct this layout

How should we go about constructing this kind of layout?

To start with, we create a parent style to act as the container. We will use absolute
positioning on the parent because it’s most appropriate: we want it to fill all available
space except for a 30-pixel offset at the top to accommodate the status bar at the top
of the screen. We’ll also set its flexDirection to column:

Positioning and Designing Layouts | 85

parent: {
 flexDirection: "column",
 position: "absolute",
 top: 30,
 left: 0,
 right: 0,
 bottom: 0
}

Looking back at the image, we can divide the layout into larger blocks. These divi‐
sions are in many ways arbitrary, so we’ll pick an option and roll with it. Figure 5-5
shows one way we can segment the layout.

Figure 5-5. The order in which we’ll style the sections

We start by cutting the layout into a top and bottom block:

<View style={styles.parent}>
 <View style={styles.topBlock}>

86 | Chapter 5: Styles

 </View>
 <View style={styles.bottomBlock}>
 </View>
</View>

Then we add in the next layer. This includes both a “left column” and “bottom right”
sector, as well as the actual <View> components for cells three, four, and five:

<View style={styles.parent}>
 <View style={styles.topBlock}>
 <View style={styles.leftCol}>
 </View>
 <View style={[styles.cellThree, styles.base]} />
 </View>
 <View style={styles.bottomBlock}>
 <View style={[styles.cellFour, styles.base]}/>
 <View style={[styles.cellFive, styles.base]}/>
 <View style={styles.bottomRight}>
 </View>
 </View>
</View>

The final markup contains all seven cells. Example 5-10 shows the full component.

Example 5-10. styles/Mondrian/index.js

import React, { Component } from "react";
import { StyleSheet, Text, View } from "react-native";

import styles from "./style";

class Mondrian extends Component {
 render() {
 return (
 <View style={styles.parent}>
 <View style={styles.topBlock}>
 <View style={styles.leftCol}>
 <View style={[styles.cellOne, styles.base]} />
 <View style={[styles.base, styles.cellTwo]} />
 </View>
 <View style={[styles.cellThree, styles.base]} />
 </View>
 <View style={styles.bottomBlock}>
 <View style={[styles.cellFour, styles.base]} />
 <View style={[styles.cellFive, styles.base]} />
 <View style={styles.bottomRight}>
 <View style={[styles.cellSix, styles.base]} />
 <View style={[styles.cellSeven, styles.base]} />
 </View>
 </View>
 </View>
);

Positioning and Designing Layouts | 87

 }
}

export default Mondrian;

Now let’s add the styles that make it work (Example 5-11).

Example 5-11. styles/Mondrian/style.js

import React from "react";
import { StyleSheet } from "react-native";

const styles = StyleSheet.create({
 parent: {
 flexDirection: "column",
 position: "absolute",
 top: 30,
 left: 0,
 right: 0,
 bottom: 0
 },
 base: { borderColor: "#000000", borderWidth: 5 },
 topBlock: { flexDirection: "row", flex: 5 },
 leftCol: { flex: 2 },
 bottomBlock: { flex: 2, flexDirection: "row" },
 bottomRight: { flexDirection: "column", flex: 2 },
 cellOne: { flex: 1, borderBottomWidth: 15 },
 cellTwo: { flex: 3 },
 cellThree: { backgroundColor: "#FF0000", flex: 5 },
 cellFour: { flex: 3, backgroundColor: "#0000FF" },
 cellFive: { flex: 6 },
 cellSix: { flex: 1 },
 cellSeven: { flex: 1, backgroundColor: "#FFFF00" }
});

export default styles;

Summary
In this chapter, we looked at how styles work in React Native. While in many ways
styling is similar to how CSS works on the web, React Native introduces a different
structure and approach to styling. There’s plenty of new material to digest here! At
this point, you should be able to use styles effectively to create the mobile UIs you
need with React Native. And best of all, experimenting with styles is easy: being able
to hit “reload” in the simulator grants us a tight feedback loop. (It’s worth noting that
with traditional mobile development, editing a style would typically require rebuild‐
ing your application. Yikes.)

88 | Chapter 5: Styles

If you want more practice with styles, try going back to the New York Times Best Sell‐
ers list or weather applications and adjusting their styling and layouts. As we build
more sample applications in future chapters, you’ll have plenty of material to practice
with, too!

Summary | 89

CHAPTER 6

Platform APIs

When building mobile applications, you will naturally want to take advantage of the
host platform’s specific APIs. React Native makes it easy to access things like the
phone’s camera roll, location, and persistent storage. These platform APIs are made
available to React Native through included modules, which provide us with easy-to-
use asynchronous JavaScript interfaces to these capabilities.

React Native does not wrap all of its host platform’s functionality by default; some
platform APIs will require you to either write your own modules, or use modules
written by others in the React Native community. We will cover that process in Chap‐
ter 7. The docs are the best place to check if an API is supported.

This chapter covers some of the available platform APIs. For our example, we’ll make
some modifications to the weather application from earlier. We’ll add geolocation to
the app so that it detects the user’s location automatically. We will also add “memory”
to the app so it will remember your previously searched locations. Finally, we’ll use
the camera roll to change the background image to one of the user’s photos.

While relevant code snippets will be presented in each section, the full code for the
application is included in “The SmarterWeather Application” on page 104.

Using Geolocation
For mobile applications, knowing the user’s location is often critical. It allows you to
serve the user contextually relevant information. Many mobile applications make
extensive use of this data.

React Native has built-in support for geolocation. This is provided as a platform-
agnostic “polyfill.” It returns data based on the MDN Geolocation API web specifica‐
tion. Because we’re using the Geolocation specification, you won’t need to deal with

91

https://facebook.github.io/react-native
http://mzl.la/1lELM6N
http://mzl.la/1lELM6N

platform-specific APIs like Location Services, and any location-aware code you write
should be fully portable.

Reading the User’s Location
Using the Geolocation API to get a user’s location is a breeze. As shown in
Example 6-1, we need to make a call to navigator.geolocation.

Example 6-1. Getting the user’s location with a navigator.geolocation call

navigator.geolocation.getCurrentPosition(
 (position) => {
 console.log(position);
 },
 (error) => {alert(error.message)},
 {enableHighAccuracy: true, timeout: 20000, maximumAge: 1000}
);

The position will be printed to the JavaScript console; see “Debugging with con‐
sole.log” on page 141 for more information on how to work with the console.

In conformance to the Geolocation specification, we don’t import the location API as
a separate module; it’s simply available for our use.

The getCurrentPosition call takes three arguments: a success callback, an error call‐
back, and a set of geoOptions. Only the success callback is required.

The position object passed to the success callback will contain coordinates, as well as
a timestamp. Example 6-2 shows the format and possible values.

Example 6-2. Shape of the response returned from a getCurrentPosition call

{
 coords: {
 speed:-1,
 longitude:-122.03031802,
 latitude:37.33259551999998,
 accuracy:500,
 heading:-1,
 altitude:0,
 altitudeAccuracy:-1
 },
 timestamp:459780747046.605
}

geoOptions should be an object, which optionally includes the keys timeout, enable
HighAccuracy, and maximumAge. timeout is probably the most relevant of the bunch
when it comes to affecting your application logic.

92 | Chapter 6: Platform APIs

Note that this won’t actually work until you add the proper permissions to either your
Info.plist file (for iOS) or your AndroidManifest.xml file (for Android), as we’ll discuss
next.

Handling Permissions
Location data is sensitive information, and therefore will not be accessible to your
application by default. Your application should be able to handle permissions being
accepted or rejected.

Most mobile platforms have some notion of location permissions. A user may opt to
block Location Services entirely on iOS, for instance, or they may manage permis‐
sions on a per-app basis. It’s important to note that location permissions can be
revoked at essentially any point in time. Your application should always be prepared
for a geolocation call to fail.

In order to access location data, first you need to declare that your application intends
to use location data.

On iOS, you’ll need to include the key NSLocationWhenInUseUsageDescription in
your Info.plist file. This should be included by default when you create a new React
Native application.

On Android, you’ll need to add the following to your AndroidManifest.xml file:

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

The first time your application attempts to access the user’s location, the user will be
presented with a permissions dialog like the one shown in Figure 6-1.

Figure 6-1. Location request

While this dialog is active, neither callback will fire; once the user selects an option,
the appropriate callback will be invoked. This setting will persist for your application,
so the next time such a check won’t be necessary.

Using Geolocation | 93

If the user denies permissions, you can fail silently if you want, but most apps use an
alert dialog to request permissions again.

Testing Geolocation in Emulated Devices
Chances are, you’ll be doing most of your testing and development from within a
simulator, or at the very least, at your desk. How can you test how your app will
behave at different locations?

The iOS simulator allows you to easily spoof a different location. By default, you’ll be
placed near Apple HQ in California, but you can specify any other coordinates as well
by navigating to Debug → Location → Custom Location…, as shown in Figure 6-2.

Figure 6-2. Picking a location from the iOS simulator

Similarly, on Android, you can select which GPS coordinates to send (Figure 6-3).
You can even import data and control the playback speed to simulate changing
locations.

94 | Chapter 6: Platform APIs

Figure 6-3. Picking a location from the Android emulator

It’s good practice to try out different locations as part of your testing process. For rig‐
orous testing, of course, you will want to load your application onto an actual device.

Watching the User’s Location
You can also set a watch on the user’s location, and receive updates whenever it
changes. This can be used to track a user’s location over time, or just to ensure that
your app receives the most up-to-date position:

this.watchID = navigator.geolocation.watchPosition((position) => {
 this.setState({position: position});
});

Note that you’ll want to clear the watch when your component unmounts as well:

componentWillUnmount() {
 navigator.geolocation.clearWatch(this.watchID);
}

Working Around Limitations
Because geolocation is based on the MDN specification, it leaves out more advanced
location-based features. For example, iOS provides a Geofencing API, which allows
your application to receive notifications when the user enters or leaves a designated
geographical region (the geofence). React Native does not expose this API.

This means that if you want to use location-based features that aren’t included in the
Geolocation MDN specification, you’ll need to port them yourself.

Using Geolocation | 95

Updating the Weather Application
The SmarterWeather application is an updated version of the weather application,
which now makes use of the Geolocation API. You can see these changes in
Figure 6-4.

Most notable is a new component, <LocationButton>, which fetches the user’s
current location and invokes a callback when pressed. The code for the <Location
Button> is shown in Example 6-3.

Figure 6-4. Displaying forecast based on the user’s current location

Example 6-3. smarter-weather/LocationButton/index.js: when pressed, the button gets
the user’s location

import React, { Component } from "react";

import Button from "./../Button";

96 | Chapter 6: Platform APIs

import styles from "./style.js";

const style = { backgroundColor: "#DDDDDD" };

class LocationButton extends Component {
 _onPress() {
 navigator.geolocation.getCurrentPosition(
 initialPosition => {
 this.props.onGetCoords(
 initialPosition.coords.latitude,
 initialPosition.coords.longitude
);
 },
 error => {
 alert(error.message);
 },
 { enableHighAccuracy: true, timeout: 20000, maximumAge: 1000 }
);
 }

 render() {
 return (
 <Button
 label="Use Current Location"
 style={style}
 onPress={this._onPress.bind(this)}
 />
);
 }
}

export default LocationButton;

The <Button> component used by <LocationButton> is included at the end of this
chapter; it simply wraps a <Text> component in an appropriate <TouchableHigh
light> with some basic styling.

We’ve also had to update the main weather_project.js file to accommodate two kinds
of queries (Example 6-4). Happily, the OpenWeatherMap API allows us to query by
latitude and longitude as well as zip code.

Example 6-4. Adding _getForecastForCoords and _getForecastForZip functions

const WEATHER_API_KEY = 'bbeb34ebf60ad50f7893e7440a1e2b0b';
const API_STEM = 'http://api.openweathermap.org/data/2.5/weather?';

...

_getForecastForZip: function(zip) {
 this._getForecast(
 `${API_STEM}q=${zip}&units=imperial&APPID=${WEATHER_API_KEY}`);

Using Geolocation | 97

},

_getForecastForCoords: function(lat, lon) {
 this._getForecast(
 `${API_STEM}lat=${lat}&lon=${lon}&units=imperial&APPID=${WEATHER_API_KEY}`);
},

_getForecast: function(url, cb) {
 fetch(url)
 .then((response) => response.json())
 .then((responseJSON) => {
 console.log(responseJSON);
 this.setState({
 forecast: {
 main: responseJSON.weather[0].main,
 description: responseJSON.weather[0].description,
 temp: responseJSON.main.temp
 }
 });
 })
 .catch((error) => {
 console.warn(error);
 });
}

Then we include the <LocationButton> in the main view with _getForecastFor
Coords as the callback:

<LocationButton onGetCoords={this._getForecastForCoords}/>

Relevant style updates are not shown here, as the fully updated application code will
be included at the end of this chapter.

There’s plenty of work left to be done if you wanted to actually ship this to users—for
example, a more complete app would include better error messages and additional UI
feedback. But basic location fetching is surprisingly straightforward!

Accessing the User’s Images and Camera
Project with Native Code Required

The examples in this section apply only to projects created with
react-native-init, or ejected projects created with create-react-
native-app. For more information, see Appendix C.

Having access to a phone’s local images and camera is another critical part of many
mobile applications. In this section, we’ll explore your options for interacting with
users’ image data as well as the camera.

98 | Chapter 6: Platform APIs

We’ll still be using the SmarterWeather project. Let’s change the background to use an
image from the user’s photos.

Interacting with the CameraRoll Module
React Native provides an interface into the camera roll, which contains the images
stored on the user’s phone that were taken with the camera.

Interacting with the camera roll in its most basic form is not too complicated. First
we import the CameraRoll module, as per usual:

import { CameraRoll } from "react-native";

Then, we make use of the module to fetch information about the user’s photos, as
shown in Example 6-5.

Example 6-5. Basic usage of CameraRoll.getPhotos

CameraRoll.getPhotos(
 {first: 1},
 (data) => {
 console.log(data);
 },
 (error) => {
 console.warn(error);
 });

We make a call to getPhotos with the appropriate query, and it returns some data
related to the camera roll images.

In SmarterWeather, let’s replace the top-level <Image> component with a new compo‐
nent, <PhotoBackdrop> (Example 6-6). For now, <PhotoBackdrop> simply displays a
photo from the user’s camera roll.

Example 6-6. smarter-weather/PhotoBackdrop/index.js

import React, { Component } from "react";

import { Image, CameraRoll } from "react-native";

import styles from "./style";

class PhotoBackdrop extends Component {
 constructor(props) {
 super(props);
 this.state = { photoSource: null };
 }

 componentDidMount() {

Accessing the User’s Images and Camera | 99

 CameraRoll.getPhotos({ first: 1 }).then(data => {
 this.setState({ photoSource: { uri: data.edges[3].node.image.uri } });
 }, error => {
 console.warn(error);
 });
 }

 render() {
 return (
 <Image
 style={styles.backdrop}
 source={this.state.photoSource}
 resizeMode="cover"
 >
 {this.props.children}
 </Image>
);
 }
}

export default PhotoBackdrop;

CameraRoll.getPhotos takes three arguments: an object with params, a success call‐
back, and an error callback.

Requesting Images with GetPhotoParams
The getPhotoParams object can take a variety of options. We can take a look at the
React Native source code to see which options are available to us:

first

Number; the number of photos wanted in reverse order of the photo application
(i.e., most recent first for SavedPhotos).

after

String; a cursor that matches page_info {end_cursor} returned from a previous
call to getPhotos.

groupTypes

String; specifies which group to use to filter results. May be Album, All, Event,
and so on; the full list of GroupTypes is specified in the source.

groupName

String; specifies a filter on group names, such as Recent Photos or an album
title.

assetType

One of All, Photos, or Videos; specifies a filter on asset type.

100 | Chapter 6: Platform APIs

http://bit.ly/1kPZnrQ
http://bit.ly/1kPZnrQ

mimeTypes

Array of strings; filters based on mimetype (such as image/jpeg).

In our basic invocation of getPhotos in Example 6-5, our getPhotoParams object was
quite simple:

{first: 1}

This means, simply, that we are looking for the most recent photo.

Rendering an Image from the Camera Roll
How do we render an image we’ve received from the camera roll? Let’s take a look at
that success callback:

(data) => {
 this.setState({
 photoSource: {uri: data.edges[0].node.image.uri}
 })},

The structure of the data object is not immediately apparent, so you’ll likely want to
use the debugger to inspect the object. Each of the objects in data.edges has a node
that represents a photo; from there, you can get the URI of the actual asset.

You may recall that an <Image> component can take a URI as its source property. So,
we can render an image obtained from the camera roll by setting the source property
appropriately:

<Image source={this.state.photoSource} />

That’s it! You can see the resulting application, including the image, in Figure 6-5.

Accessing the User’s Images and Camera | 101

Figure 6-5. Rendering an image from the camera roll

Uploading an Image to a Server
What if you want to upload a photo somewhere? React Native ships with built-in
image uploading functionality in the XHR module. The basic approach looks like
this:

let formdata = new FormData();
...
formdata.append('image', {...this.state.randomPhoto, name: 'image.jpg'});
...
xhr.send(formdata);

XHR is short for XMLHttpRequest. React Native implements the XHR API on top of
the iOS networking APIs. Similar to geolocation, React Native’s XHR implementation
is based on the MDN specification.

102 | Chapter 6: Platform APIs

http://bit.ly/xmlhttpreq

Using XHR for network requests is somewhat more complex than the Fetch API, but
the basic approach should look something like Example 6-7.

Example 6-7. Basic structure for POSTing a photo using XHR

let xhr = new XMLHttpRequest();
xhr.open('POST', 'http://posttestserver.com/post.php');
let formdata = new FormData();
formdata.append('image', {...this.state.photo, name: 'image.jpg'});
xhr.send(formdata);

Omitted here are the various callbacks you will want to register with the XHR
request.

Storing Persistent Data with AsyncStorage
Most applications will need to keep track of some variety of data persistently. How do
you accomplish this with React Native?

React Native provides us with AsyncStorage, a key-value store that is global to your
application. If you have used LocalStorage on the web, AsyncStorage ought to feel
quite similar. Its implementation varies by platform, but the JavaScript API is the
same regardless of whether you are using Android or iOS.

Let’s take a look at how to use the React Native AsyncStorage module.

The storage key used by AsyncStorage can be any string; it’s customary to use the for‐
mat @AppName:key, like so:

const STORAGE_KEY = '@SmarterWeather:zip';

The AsyncStorage module returns a promise in response to both getItem and
setItem. For the SmarterWeather app, let’s load the stored zip code in componentDid
Mount:

AsyncStorage.getItem(STORAGE_KEY)
 .then((value) => {
 if (value !== null) {
 this._getForecastForZip(value);
 }
 })
 .catch((error) => console.log('AsyncStorage error: ' + error.message))
 .done();

Then, in _getForecaseForZip, we can store the zip code value:

AsyncStorage.setItem(STORAGE_KEY, zip)
 .then(() => console.log('Saved selection to disk: ' + zip))
 .catch((error) => console.log('AsyncStorage error: ' + error.message))
 .done();

Storing Persistent Data with AsyncStorage | 103

AsyncStorage also provides methods for deleting keys, merging keys, and fetching all
available keys.

The SmarterWeather Application
All of the example code in this chapter can be found in the SmarterWeather/ direc‐
tory. The original weather application from Chapter 3 has changed quite a bit, so let’s
take a look at the structure of the entire application again (Example 6-8).

Example 6-8. Contents of the SmarterWeather project

smarter-weather
├── Button
│ ├── index.js
│ └── style.js
├── Forecast
│ └── index.js
├── LocationButton
│ ├── index.js
│ └── style.js
├── PhotoBackdrop
│ ├── flowers.png
│ ├── index.js
│ ├── local_image.js
│ └── style.js
├── index.js
├── open_weather_map.js
├── styles
│ └── typography.js
└── weather_project.js

The top-level component is located in weather_project.js. Shared font styles are loca‐
ted in styles/typography.js. The folders Forecast/, PhotoBackdrop/, Button/, and Loca‐
tionButton/ all contain React components used in the new SmarterWeather
application.

The <WeatherProject> Component
The top-level <WeatherProject> component is located in weather_project.js
(Example 6-9). This includes the use of AsyncStorage to store the most recent loca‐
tion.

Example 6-9. smarter-weather/weather_project.js

import React, { Component } from "react";
import {
 StyleSheet,

104 | Chapter 6: Platform APIs

 Text,
 View,
 TextInput,
 AsyncStorage,
 Image
} from "react-native";

import Forecast from "./Forecast";
import LocationButton from "./LocationButton";
import textStyles from "./styles/typography.js";

const STORAGE_KEY = "@SmarterWeather:zip";

import OpenWeatherMap from "./open_weather_map";

// This version uses flowers.png from local assets
import PhotoBackdrop from "./PhotoBackdrop/local_image";

// This version pulls a specified photo from the camera roll
// import PhotoBackdrop from './PhotoBackdrop';

class WeatherProject extends Component {
 constructor(props) {
 super(props);
 this.state = { forecast: null };
 }

 componentDidMount() {
 AsyncStorage
 .getItem(STORAGE_KEY)
 .then(value => {
 if (value !== null) {
 this._getForecastForZip(value);
 }
 })
 .catch(error => console.error("AsyncStorage error: " + error.message))
 .done();
 }

 _getForecastForZip = zip => {
 // Store zip code
 AsyncStorage
 .setItem(STORAGE_KEY, zip)
 .then(() => console.log("Saved selection to disk: " + zip))
 .catch(error => console.error("AsyncStorage error: " + error.message))
 .done();

 OpenWeatherMap.fetchZipForecast(zip).then(forecast => {
 this.setState({ forecast: forecast });
 });
 };

The SmarterWeather Application | 105

 _getForecastForCoords = (lat, lon) => {
 OpenWeatherMap.fetchLatLonForecast(lat, lon).then(forecast => {
 this.setState({ forecast: forecast });
 });
 };

 _handleTextChange = event => {
 let zip = event.nativeEvent.text;
 this._getForecastForZip(zip);
 };

 render() {
 let content = null;
 if (this.state.forecast !== null) {
 content = (
 <View style={styles.row}>
 <Forecast
 main={this.state.forecast.main}
 temp={this.state.forecast.temp}
 />
 </View>
);
 }

 return (
 <PhotoBackdrop>
 <View style={styles.overlay}>
 <View style={styles.row}>
 <Text style={textStyles.mainText}>
 Forecast for
 </Text>

 <View style={styles.zipContainer}>
 <TextInput
 style={[textStyles.mainText, styles.zipCode]}
 onSubmitEditing={this._handleTextChange}
 underlineColorAndroid="transparent"
 />
 </View>
 </View>

 <View style={styles.row}>
 <LocationButton onGetCoords={this._getForecastForCoords} />
 </View>

 {content}

 </View>
 </PhotoBackdrop>
);
 }
}

106 | Chapter 6: Platform APIs

const styles = StyleSheet.create({
 overlay: { backgroundColor: "rgba(0,0,0,0.1)" },
 row: {
 flexDirection: "row",
 flexWrap: "nowrap",
 alignItems: "center",
 justifyContent: "center",
 padding: 24
 },
 zipContainer: {
 borderBottomColor: "#DDDDDD",
 borderBottomWidth: 1,
 marginLeft: 5,
 marginTop: 3,
 width: 80,
 height: textStyles.baseFontSize * 2,
 justifyContent: "flex-end"
 },
 zipCode: { flex: 1 }
});

export default WeatherProject;

It makes use of shared styles located in styles/typography.js (Example 6-10).

Example 6-10. Shared font styles are located in smarter-weather/styles/typography.js

import { StyleSheet } from "react-native";

const baseFontSize = 24;

const styles = StyleSheet.create({
 bigText: { fontSize: baseFontSize + 8, color: "#FFFFFF" },
 mainText: { fontSize: baseFontSize, color: "#FFFFFF" }
});

// For use elsewhere...
styles["baseFontSize"] = baseFontSize;

export default styles;

The <Forecast> Component
The <Forecast> component displays the forecast information, including the temper‐
ature. It’s used by the <WeatherProject> component just shown. The code for the
<Forecast> component is provided in Example 6-11.

The SmarterWeather Application | 107

Example 6-11. <Forecast> component renders information about the forecast

import React, { Component } from "react";

import { Text, View, StyleSheet } from "react-native";

class Forecast extends Component {
 render() {
 return (
 <View style={styles.forecast}>
 <Text style=>
 {this.props.temp}°F
 </Text>
 <Text style=>
 {this.props.main}
 </Text>
 </View>
);
 }
}

const styles = StyleSheet.create({ forecast: { alignItems: "center" } });

export default Forecast;

The <Button> Component
The <Button> component is a reusable container-style component. It provides a
properly styled <Text> wrapped by a <TouchableHighlight>. The main component
file is provided in Example 6-12, and its associated styles are provided in
Example 6-13.

Example 6-12. The <Button> component provides an appropriately styled
<TouchableHighlight> containing a <Text>

import React, { Component } from "react";

import { Text, View, TouchableHighlight } from "react-native";

import styles from "./style";

class Button extends Component {
 render() {
 return (
 <TouchableHighlight onPress={this.props.onPress}>
 <View style={[styles.button, this.props.style]}>
 <Text>
 {this.props.label}
 </Text>
 </View>

108 | Chapter 6: Platform APIs

 </TouchableHighlight>
);
 }
}

export default Button;

Example 6-13. Styles for the <Button> component

import { StyleSheet } from "react-native";

const styles = StyleSheet.create({
 button: { backgroundColor: "#FFDDFF", padding: 25, borderRadius: 5 }
});

export default styles;

The <LocationButton> Component
When pressed, the <LocationButton> fetches the user’s location and invokes a call‐
back. The component’s main JavaScript file is provided in Example 6-14, and its styles
are provided in Example 6-15.

Example 6-14. The <LocationButton> component

import React, { Component } from "react";

import Button from "./../Button";
import styles from "./style.js";

const style = { backgroundColor: "#DDDDDD" };

class LocationButton extends Component {
 _onPress() {
 navigator.geolocation.getCurrentPosition(
 initialPosition => {
 this.props.onGetCoords(
 initialPosition.coords.latitude,
 initialPosition.coords.longitude
);
 },
 error => {
 alert(error.message);
 },
 { enableHighAccuracy: true, timeout: 20000, maximumAge: 1000 }
);
 }

 render() {
 return (

The SmarterWeather Application | 109

 <Button
 label="Use Current Location"
 style={style}
 onPress={this._onPress.bind(this)}
 />
);
 }
}

export default LocationButton;

Example 6-15. Styles for <LocationButton>

import { StyleSheet } from "react-native";

const styles = StyleSheet.create({
 locationButton: { width: 200, padding: 25, borderRadius: 5 }
});

export default styles;

The <PhotoBackdrop> Component
There are two versions of <PhotoBackdrop> provided, to demonstrate different meth‐
ods of selecting an image for the background. The first, provided in Example 6-16
and listed as local_image.js in the GitHub repository, uses a simple require call to load
a standard image asset. The second, as seen in Example 6-17, selects an image from
the user’s camera roll.

Example 6-16. local_image.js is the original version; it uses a simple require call

import React, { Component } from "react";

import { Image } from "react-native";

import styles from "./style.js";

class PhotoBackdrop extends Component {
 render() {
 return (
 <Image
 style={styles.backdrop}
 source={require("./flowers.png")}
 resizeMode="cover"
 >
 {this.props.children}
 </Image>
);
 }
}

110 | Chapter 6: Platform APIs

export default PhotoBackdrop;

Example 6-17. src/smarter-weather/PhotoBackdrop/index.js programmatically selects
an image from the camera roll

import React, { Component } from "react";

import { Image, CameraRoll } from "react-native";

import styles from "./style";

class PhotoBackdrop extends Component {
 constructor(props) {
 super(props);
 this.state = { photoSource: null };
 }

 componentDidMount() {
 CameraRoll.getPhotos({ first: 1 }).then(data => {
 this.setState({ photoSource: { uri: data.edges[3].node.image.uri } });
 }, error => {
 console.warn(error);
 });
 }

 render() {
 return (
 <Image
 style={styles.backdrop}
 source={this.state.photoSource}
 resizeMode="cover"
 >
 {this.props.children}
 </Image>
);
 }
}

export default PhotoBackdrop;

Both versions share the same stylesheet, shown in Example 6-18.

Example 6-18. Both versions of the <PhotoBackdrop> use this stylesheet

import { StyleSheet } from "react-native";

export default StyleSheet.create({
 backdrop: {
 flex: 1,
 flexDirection: "column",

The SmarterWeather Application | 111

 width: undefined,
 height: undefined
 },
 button: { flex: 1, margin: 100, alignItems: "center" }
});

Summary
In this chapter, we made some modifications to the weather application. We looked at
the Geolocation, CameraRoll, and AsyncStorage APIs, and learned how to incorpo‐
rate these modules into our applications.

When React Native ships with support for a host platform API, it makes usage a
breeze. But what happens if React Native does not yet support a given API, such as in
the case of video playback, and you want to use a library or module that isn’t yet avail‐
able in JavaScript? In the next chapter, we’ll take a closer look at this scenario.

112 | Chapter 6: Platform APIs

CHAPTER 7

Modules and Native Code

Project with Native Code Required

The examples in this section apply only to projects created with
react-native-init and ejected projects created with create-react-
native-app. For more information, see Appendix C.

In Chapter 6, we looked at some of the APIs that React Native exposes for interacting
with the host platform. Because support for those APIs is built into React Native,
they’re quite easy to use. What happens when we want to use an API that isn’t sup‐
ported by React Native?

In this chapter, we’ll look at how to install modules written by members of the React
Native community using npm. We’ll also take a closer look at one such module,
react-native-video, and learn how the RCTBridgeModule can allow you to add Java‐
Script interfaces to existing Objective-C APIs. We’ll also look at importing pure Java‐
Script libraries into your project, and how to manage dependencies.

Though we will be looking at some Objective-C and Java code this chapter, don’t be
alarmed! We’ll be taking it slowly. A full introduction to mobile development for iOS
and Android is beyond the scope of this book, but we’ll walk through some examples
together.

Installing JavaScript Libraries with npm
Before we discuss how native modules work, first we should cover how to install
external dependencies in general. React Native uses npm to manage dependencies.
npm is the package manager for Node.js, but the npm registry includes packages for
all sorts of JavaScript projects, not just Node. npm uses a file called package.json to
store metadata about your project, including the list of dependencies.

113

Let’s start by creating a fresh project:

react-native init Depends

After creating a new project, your package.json will look something like Example 7-1.

Example 7-1. Depends/package.json

{
 "name": "Depends",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node node_modules/react-native/local-cli/cli.js start",
 "test": "jest"
 },
 "dependencies": {
 "react": "16.0.0-alpha.12",
 "react-native": "0.45.1"
 },
 "devDependencies": {
 "babel-jest": "20.0.3",
 "babel-preset-react-native": "2.0.0",
 "jest": "20.0.4",
 "react-test-renderer": "16.0.0-alpha.12"
 },
 "jest": {
 "preset": "react-native"
 }
}

Note that for now, the only top-level dependencies in your project are react and
react-native. Let’s add another dependency!

The lodash library provides a number of helpful utility functions, like a shuffle
function for arrays. We install it with the --save flag to indicate that it should be
added to our list of dependencies:

npm install --save lodash

Now your dependencies in package.json should be updated:

"dependencies": {
 "lodash": "^4.17.4",
 "react": "16.0.0-alpha.12",
 "react-native": "0.45.1"
}

If you want to use lodash in your React Native application, you can now import it by
name:

import _ from "lodash";

114 | Chapter 7: Modules and Native Code

Let’s use lodash to print a random number:

import _ from "lodash";
console.warn("Random number: " + _.random(0, 5));

It works! But what about other modules? Can you include arbitrary packages by
using npm install?

The answer is yes, with some caveats. Any methods that touch the DOM, for
instance, will fail. Integrating with existing packages may require some finagling
because many packages make assumptions about the environment they’ll be running
in. But in general, you can take advantage of arbitrary JavaScript packages and use
npm to manage your dependencies just like you would on any other JavaScript
project.

Installing Third-Party Components with Native Code
Now that we’ve seen what it’s like to add an outside JavaScript library, let’s add a React
Native component using npm. For this section, we are going to be using react-
native-video as our primary example. It’s part of the GitHub project react-native-
community, a collection of high-quality React Native modules.

The react-native-video component is listed in the npm registry. We can add it to
our project with npm install:

npm install react-native-video --save

If we were working with traditional web development, we would be done! react-
native-video would now be available to our project. However, this module requires
changes to our underlying iOS and Android projects, so there’s one more step:

react-native link

What does react-native link do? It makes modifications to the underlying iOS and
Android projects. For iOS, this might entail edits to AppDelegate.m and the Xcode
project file. For Android, this might include changes to MainApplication.java, set‐
tings.gradle, and build.gradle. Typically a module will specify this requirement in its
installation instructions.

Note that react-native link will work only with projects generated via react-
native init or applications created with create-react-native-app that have since
been ejected. Migrating from a create-react-native-app project to a full React
Native project is discussed in “Ejecting from Expo” on page 219.

If you are not working with an autogenerated application, you’ll need to manually
update your project files according to the instructions provided by the module
authors.

Installing Third-Party Components with Native Code | 115

https://github.com/react-native-community
https://github.com/react-native-community
https://www.npmjs.com/package/react-native-video

Now that we have installed the react-native-video module, let’s test it out. You’ll
need any MP4 video file for this step. I used a public-domain video from Flickr.

MP4 assets work just like images in React Native, so you can load the video file like
so:

let warblerVideo = require("./warbler.mp4");

Using the Video Component
We can require the <Video> component from our JavaScript code:

import Video from "react-native-video"

Then use the component just as you normally would. Here, I’ve set a few of the
optional props:

<Video source={require("./warbler.mp4")} // Can be a URL or a local file.
 rate={1.0} // 0 is paused, 1 is normal.
 volume={1.0} // 0 is muted, 1 is normal.
 muted={false} // Mutes the audio entirely.
 paused={false} // Pauses playback entirely.
 resizeMode="cover" // Fill the whole screen at aspect ratio.
 repeat={true} // Repeat forever.
 style={styles.backgroundVideo} />

Ta-da! We have a working video component! It should work on both Android and
iOS.

As you can see, including third-party modules with native code is a straightforward
process. Many such components are listed in the npm registry and often use the pre‐
fix react-native-. Take a look around and see what the community has built!

Objective-C Native Modules
Now that we’ve taken a look at how to install and use a module that includes native
code, let’s dive into how it works under the hood. We’ll start with the Objective-C side
of things.

Writing an Objective-C Native Module for iOS
Now that we’re using the react-native-video module, let’s look at how modules like
these work under the hood.

The react-native-video component is what React refers to as a native module. The
React Native documentation defines a native module as “an Objective-C class that
implements the RCTBridgeModule protocol.” (RCT is an abbreviation for ReaCT.)

116 | Chapter 7: Modules and Native Code

https://www.flickr.com/photos/michal_tuski/27831372885/
http://bit.ly/1PVBCcZ

Writing Objective-C code is not part of the standard development process with React
Native, so don’t worry—this is not necessary stuff! But having basic reading knowl‐
edge of what’s going on will be helpful even if you don’t plan on implementing your
own native modules (yet).

If you have never worked with Objective-C before, much of the syntax you’ll
encounter may seem confusing. That’s okay! We’ll take things slowly. Let’s start by
building a basic “Hello, World” module.

Objective-C classes usually have a header file that ends in .h, which contains the
interface for a class. The actual implementation goes in a .m file. Let’s start by writing
our HelloWorld.h file, shown in Example 7-2.

Example 7-2. HelloWorld.h

#import <React/RCTBridgeModule.h>

@interface HelloWorld : NSObject <RCTBridgeModule>
@end

What does this file do? On the first line, we import the RCTBridgeModule header.
(Note that the # symbol does not denote a comment, but rather an import statement.)
Then on the next line, we declare that the HelloWorld class subclasses NSObject and
implements the RCTBridgeModule interface, and end the interface declaration with
@end.

For historical reasons, many basic types in Objective-C are prefixed with NS
(NSString, NSObject, etc.).

Now let’s move on to the implementation (Example 7-3).

Example 7-3. HelloWorld.m

#import "HelloWorld.h"
#import <React/RCTLog.h>

@implementation HelloWorld

RCT_EXPORT_MODULE();

RCT_EXPORT_METHOD(greeting:(NSString *)name)
{
 RCTLogInfo(@"Saluton, %@", name);
}

@end

Objective-C Native Modules | 117

In a .m file, you’ll want to import the corresponding .h file, as we do here on the first
line. I’ve also imported RCTLog.h, so that we can log things to the console using
RCTLogInfo. When importing other classes in Objective-C, you’ll almost always want
to import the header file, not the .m file.

The @implementation and @end lines indicate that the contents between them are the
implementation of the HelloWorld class.

The remaining lines do the work of making this a React Native module. With
RCT_EXPORT_MODULE(), we invoke a special React Native macro that makes this class
accessible to the React Native bridge. Similarly, our method definition for
greeting:name is prefixed with a macro, RCT_EXPORT_METHOD, which exports the
method and thus will expose it to our JavaScript code.

Note that Objective-C methods are named with a somewhat odd syntax. Each param‐
eter’s name is included in the method name. It is React Native convention that the
JavaScript function name is the Objective-C name up until the first colon, so
greeting:name becomes greeting in JavaScript. You may use the macro
RCT_REMAP_METHOD to remap this naming if you like.

Now, you might note that these files don’t exist in your Xcode project (Figure 7-1).

Figure 7-1. Xcode project, before importing our new files

We need to add them to our project in order to include them in our application’s
build. You can do this by selecting File → Add Files to “Depends” (Figure 7-2).

Figure 7-2. The Add Files menu option in Xcode

118 | Chapter 7: Modules and Native Code

Select both HelloWorld.m and HelloWorld.h to add to your project (Figure 7-3).

Figure 7-3. Importing HelloWorld.m and HelloWorld.h to our project

Now you should see both files in your Xcode project (Figure 7-4).

Figure 7-4. The updated Xcode project’s file tree

Now that our HelloWorld files are imported, we can use the HelloWorld module from
our JavaScript code (Example 7-4).

Example 7-4. Using the HelloWorld module from our JavaScript code

import { NativeModules } from "react-native";
NativeModules.HelloWorld.greeting("Bonnie");

Objective-C Native Modules | 119

The output should appear in the console (Figure 7-5), both in Xcode and in the
Chrome developer tools, if you choose to enable them.

Figure 7-5. Console output, as viewed through the Xcode interface

Note that the syntax for importing native modules is a bit verbose. A common
approach is to wrap your native module in a JavaScript module (Example 7-5).

Example 7-5. HelloWorld.js: a JavaScript wrapper for the HelloWorld native module

import { NativeModules } from "react-native";
export default NativeModules.HelloWorld;

Then, requiring it becomes much more straightforward:

import HelloWorld from "./HelloWorld";

The HelloWorld.js JavaScript file is also a good opportunity to add any JavaScript-side
functionality to your module.

Phew. Objective-C can feel verbose, and we have to keep track of a couple of different
files. But congratulations: you’ve written a “Hello, World” for your Objective-C
module!

To review, an Objective-C module must do the following in order to be available in
React Native:

• Import the RCTBridgeModule header
• Declare that your module implements the RCTBridgeModule interface
• Call the RCT_EXPORT_MODULE() macro
• Have at least one method that is exported using the RCT_EXPORT_METHOD macro

Native modules can then make use of any API provided by the iOS SDK. (Note that
the API you provide to React Native must be asynchronous.) Apple provides exten‐
sive documentation for the iOS SDK, and there are many resources available from
third parties as well. Note that your developer licenses will come in handy here—it’s
often difficult to access the SDK documentation without one.

Now that we’ve written our own basic “Hello, World,” let’s take a deeper look at how
react-native-video is implemented.

120 | Chapter 7: Modules and Native Code

Exploring react-native-video for iOS
Just like our HelloWorld module, RCTVideo is a native module, and it implements the
RCTBridgeModule protocol. You can see the full code for RCTVideo in the react-
native-video GitHub repository. We’ll be looking at version 1.0.0.

react-native-video is basically a wrapper around the AVPlayer API provided by the
iOS SDK. Let’s take a closer look at how it works, beginning with the JavaScript entry
points Video.ios.js.

We can see that it provides a thin wrapper around the native component, RCTVideo,
performing some props normalization and a bit of extra rendering logic. The native
component is imported at the end:

const RCTVideo = requireNativeComponent('RCTVideo', Video, {
 nativeOnly: {
 src: true,
 seek: true,
 fullscreen: true,
 },
});

As we saw in our HelloWorld example, that means that somewhere the iOS imple‐
mentation of the RCTVideo component must be exported from Objective-C. Let’s look
at ios/RCTVideo.h:

// RCTVideo.h
#import <React/RCTView.h>
#import <AVFoundation/AVFoundation.h>
#import "AVKit/AVKit.h"
#import "UIView+FindUIViewController.h"
#import "RCTVideoPlayerViewController.h"
#import "RCTVideoPlayerViewControllerDelegate.h"

@class RCTEventDispatcher;

@interface RCTVideo : UIView <RCTVideoPlayerViewControllerDelegate>

@property (nonatomic, copy) RCTBubblingEventBlock onVideoLoadStart;
// ...
// ...more properties omitted here...
// ...

- (instancetype)initWithEventDispatcher:
 (RCTEventDispatcher *)eventDispatcher NS_DESIGNATED_INITIALIZER;

- (AVPlayerViewController*)createPlayerViewController:
 (AVPlayer*)player withPlayerItem:(AVPlayerItem*)playerItem;

@end

Objective-C Native Modules | 121

https://github.com/react-native-community/react-native-video
https://github.com/react-native-community/react-native-video
https://github.com/react-native-community/react-native-video/blob/1.0.0/ios/RCTVideo.h

This time, instead of subclassing NSObject, RCTVideo subclasses UIView. That makes
sense because it’s rendering a view component.

If we look at the implementation file, RCTVideo.m, there’s a lot going on. At the top
are instance variables, keeping track of things like volume, playback rate, and the
AVPlayer itself:

- (AVPlayerViewController*)
 createPlayerViewController: (AVPlayer*)player
 withPlayerItem:(AVPlayerItem*)playerItem
 {
 RCTVideoPlayerViewController* playerLayer =
 [[RCTVideoPlayerViewController alloc] init];
 playerLayer.showsPlaybackControls = NO;
 playerLayer.rctDelegate = self;
 playerLayer.view.frame = self.bounds;
 playerLayer.player = _player;
 playerLayer.view.frame = self.bounds;
 return playerLayer;
}

There are also various methods for things like calculating the duration of the video,
loading in the video and setting it as the source, and more. Feel free to step through
these methods and figure out what role they play.

The other piece of the puzzle is the RCTVideoManager. To create a native UI compo‐
nent, as opposed to just a module, we also need a view manager. As the name implies,
while the view actually handles rendering logic and similar tasks, the view manager
deals with other stuff (event handling, property exports, etc.). At a minimum, the
view manager class needs to:

• Subclass RCTViewManager
• Use the RCT_EXPORT_MODULE() macro
• Implement the -(UIView *)view method

The view method should return a UIView instance. In this case, we can see that it
instantiates and returns an RCTVideo:

- (UIView *)view
{
 return [[RCTVideo alloc]
 initWithEventDispatcher:self.bridge.eventDispatcher];
}

The RCTVideoManager also exports a number of properties and constants:

#import "RCTVideoManager.h"
#import "RCTVideo.h"
#import <React/RCTBridge.h>

122 | Chapter 7: Modules and Native Code

https://github.com/react-native-community/react-native-video/blob/1.0.0/ios/RCTVideo.m

#import <AVFoundation/AVFoundation.h>

@implementation RCTVideoManager

RCT_EXPORT_MODULE();

@synthesize bridge = _bridge;

- (UIView *)view
{
 return [[RCTVideo alloc]
 initWithEventDispatcher:self.bridge.eventDispatcher];
}

- (dispatch_queue_t)methodQueue
{
 return dispatch_get_main_queue();
}

RCT_EXPORT_VIEW_PROPERTY(src, NSDictionary);
RCT_EXPORT_VIEW_PROPERTY(resizeMode, NSString);
RCT_EXPORT_VIEW_PROPERTY(repeat, BOOL);
RCT_EXPORT_VIEW_PROPERTY(paused, BOOL);
RCT_EXPORT_VIEW_PROPERTY(muted, BOOL);
RCT_EXPORT_VIEW_PROPERTY(controls, BOOL);
RCT_EXPORT_VIEW_PROPERTY(volume, float);
RCT_EXPORT_VIEW_PROPERTY(playInBackground, BOOL);
RCT_EXPORT_VIEW_PROPERTY(playWhenInactive, BOOL);
RCT_EXPORT_VIEW_PROPERTY(rate, float);
/* ... more RCT_EXPORT_VIEW_PROPERTY calls omitted here... */

- (NSDictionary *)constantsToExport
{
 return @{
 @"ScaleNone": AVLayerVideoGravityResizeAspect,
 @"ScaleToFill": AVLayerVideoGravityResize,
 @"ScaleAspectFit": AVLayerVideoGravityResizeAspect,
 @"ScaleAspectFill": AVLayerVideoGravityResizeAspectFill
 };
}

@end

Together, RCTVideo and RCTVideoManager comprise the RCTVideo native UI compo‐
nent, which we can use freely from within our application. As you can see, writing
native modules that make use of the iOS SDK is a nontrivial endeavor, though not an
insurmountable one. This is definitely one area where previous iOS development
experience will serve you well. A full explanation of iOS development is beyond the
scale of this book, but by looking at others’ native modules—even if you don’t have
much Objective-C experience—you should be able to start experimenting with your
own attempts at native module development.

Objective-C Native Modules | 123

Java Native Modules
Native modules for Android behave similarly to native modules for iOS. You can find
more information about Android native modules in the docs.

Just as with iOS, if you install a module for Android that includes native code, you’ll
want to run react-native link after adding the module to your application’s pack‐
age.json file.

Writing a Java Native Module for Android
In order to better understand how Java native modules work, we’ll write our own. Just
like with Objective-C, we’ll start with a simpe “Hello, World” module.

We’ll begin by making a directory for our HelloWorld package. It should be a sibling
to MainActivity.java. Android projects have a pretty deep nesting structure! Note that
the directory structure may vary between different versions of Android and React
Native. The key is that your new directory needs to be in the same directory as Main‐
Activity.java.

mkdir android/app/src/main/java/com/depends/helloworld

Now we’ll add a HelloWorldModule.java file to that directory, as shown in
Example 7-6.

Example 7-6. helloworld/HelloWorldModule.java

package com.depends.helloworld;

import android.util.Log;
import com.facebook.react.bridge.ReactContextBaseJavaModule;
import com.facebook.react.bridge.ReactApplicationContext;
import com.facebook.react.bridge.ReactMethod;

public class HelloWorldModule extends ReactContextBaseJavaModule {
 public HelloWorldModule(ReactApplicationContext reactContext) {
 super(reactContext);
 }

 @Override
 public String getName() {
 return "HelloWorld";
 }

 @ReactMethod
 public void greeting(String message) {
 Log.e("HelloWorldModule", "Saluton, " + message);

124 | Chapter 7: Modules and Native Code

http://bit.ly/1kQ3STm

 }
}

There’s quite a bit of boilerplate here. Let’s take this piece by piece.

First, we begin with a package statement:

package com.depends.helloworld;

This is based on the file’s location in the directory.

Next, we import several React Native–specific files, as well as android.util.Log. Any
module you write should import the same React Native files.

Then we declare our HelloWorldModule class. It’s public, meaning that external files
can use it; and it extends the ReactContextBaseJavaModule, meaning that it inherits
methods from ReactContextBaseJavaModule:

public class HelloWorldModule extends ReactContextBaseJavaModule { ... }

There are three methods implemented here: HelloWorldModule, getName, and greet
ing.

In Java, a method with the same name as the class is called the constructor. The Hello
WorldModule method is thus a bit of boilerplate; we invoke the ReactContextBase
JavaModule constructor with a call to super(reactContext) and don’t do anything
else.

getName determines which name we’ll use later on to access this module from our
JavaScript code, so make sure it’s correct! In this case, we name it “HelloWorld.” Note
that we add an @Override decorator here. You’ll want to implement getName for any
other modules you write.

Finally, greeting is our own method, which we want to be available in our JavaScript
code. We add a @ReactMethod decorator so that React Native knows this method
should be exposed. To log something when greeting is called, we call Log.e like so:

Log.e("HelloWorldModule", "Hello, " + name);

The Log object in Android provides different levels of logging. The three most com‐
monly used are INFO, WARN, and ERROR, and are invoked with Log.i, Log.w, and
Log.e, respectively. Each of these methods takes in two parameters: the “tag” for your
log, and the message. It’s standard practice to use the class name for the tag. View the
Android documentation for more details.

We also need to create a package file to wrap this module (Example 7-7) so that we
can include it in our build. It should also be a sibling to HelloWorldModule.java.

Java Native Modules | 125

http://bit.ly/1MxTUiq

Example 7-7. helloworld/HelloWorldPackage.java

package com.depends.helloworld;

import com.facebook.react.ReactPackage;
import com.facebook.react.bridge.JavaScriptModule;
import com.facebook.react.bridge.NativeModule;
import com.facebook.react.bridge.ReactApplicationContext;
import com.facebook.react.uimanager.ViewManager;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

public class HelloWorldPackage implements ReactPackage {
 @Override
 public List<NativeModule>
 createNativeModules(ReactApplicationContext reactContext) {
 List<NativeModule> modules = new ArrayList<>();
 modules.add(new HelloWorldModule(reactContext));
 return modules;
 }

 @Override public List<ViewManager>
 createViewManagers(ReactApplicationContext reactContext) {
 return Collections.emptyList();
 }
}

This file is mostly boilerplate. We don’t need to import HelloWorld because it’s part of
the same package (com.depends.helloworld) as this file. There are two methods that
we need to implement: createNativeModules and createViewManagers. React
Native uses these methods to determine what modules it should export.

Our native module doesn’t deal with native views or UI elements so createViewManag
ers returns an empty list, whereas createNativeModules returns a list containing an
instance of HelloWorld.

Finally, we need to add the package in MainApplication.java. Import the package file:

import com.depends.helloworld.HelloWorldPackage;

Then add HelloWorldPackage to getPackages():

protected List<ReactPackage> getPackages() {
 return Arrays.<ReactPackage>asList(
 new MainReactPackage(),
 new ReactVideoPackage(),
 new HelloWorldPackage()
);
}

126 | Chapter 7: Modules and Native Code

Just like with Objective-C modules, our Java module will be available via the
React.NativeModules object. We can now invoke our greeting() method from any‐
where within our app, like so:

import { NativeModules } from "react-native";
NativeModules.HelloWorld.greeting("Bonnie");

Let’s filter the logs and look for our message. Run the following from your project’s
root:

adb logcat

You will need to restart the application in order to see the log message output.

react-native run-android

Figure 7-6 shows the output you should see in your shell.

Figure 7-6. Output from logcat

Now that we’ve written our “Hello, World” example from Java, let’s look at the imple‐
mentation of react-native-video for Android.

Exploring react-native-video for Java
react-native-video for Android is basically a wrapper around the MediaPlayer
API. It consists mainly of three files:

• ReactVideoView.java
• ReactVideoPackage.java
• ReactVideoViewManager.java

The ReactVideoPackage.java file, shown in Example 7-8, looks very similar to our
HelloWorldPackage.java file.

Example 7-8. ReactVideoPackage.java

package com.brentvatne.react;

import android.app.Activity;
import com.facebook.react.ReactPackage;
import com.facebook.react.bridge.JavaScriptModule;
import com.facebook.react.bridge.NativeModule;
import com.facebook.react.bridge.ReactApplicationContext;
import com.facebook.react.uimanager.ViewManager;

Java Native Modules | 127

import java.util.Arrays;
import java.util.Collections;
import java.util.List;

public class ReactVideoPackage implements ReactPackage {

 @Override
 public List<NativeModule> createNativeModules(
 ReactApplicationContext reactContext) {
 return Collections.emptyList();
 }

 @Override
 public List<ViewManager> createViewManagers(
 ReactApplicationContext reactContext
) {
 return Arrays.<ViewManager>asList(
 new ReactVideoViewManager()
);
 }
}

The main difference is that ReactVideoPackage returns ReactVideoViewManager
from createViewManagers, while our HelloWorldPackage returned HelloWorld from
createNativeModules. What’s the difference?

For Android, any natively rendering views are created and controlled by a
ViewManager (or, more specifically, a class that extends ViewManager). Because React
VideoView is a UI component, we need to return a ViewManager. The React Native
documentation on native Android UI components has some more information on
the difference between exposing a native module (i.e., nonrendering Java code) and a
UI component.

Let’s look at ReactVideoViewManager.java next. It’s a relatively long file; you can view
the full source in the react-native-linear-gradient GitHub repo. Example 7-9
shows an abbreviated version.

Example 7-9. ReactVideoViewManager.java, abbreviated

public class ReactVideoViewManager
 extends SimpleViewManager<ReactVideoView> {

 public static final String REACT_CLASS = "RCTVideo";

 public static final String PROP_VOLUME = "volume";
 public static final String PROP_SEEK = "seek";
 /** more props skipped here ... **/

128 | Chapter 7: Modules and Native Code

https://facebook.github.io/react-native/docs/native-components-android.html
http://bit.ly/RVVMFull

 @Override
 public String getName() {
 return REACT_CLASS;
 }

 @Override
 protected ReactVideoView createViewInstance(
 ThemedReactContext themedReactContext
) {
 return new ReactVideoView(themedReactContext);
 }

 @Override
 public void onDropViewInstance(ReactVideoView view) {
 super.onDropViewInstance(view);
 view.cleanupMediaPlayerResources();
 }

 /** more methods skipped here ... **/

 @ReactProp(name = PROP_VOLUME, defaultFloat = 1.0f)
 public void setVolume(
 final ReactVideoView videoView,
 final float volume
) {
 videoView.setVolumeModifier(volume);
 }

 @ReactProp(name = PROP_SEEK)
 public void setSeek(
 final ReactVideoView videoView,
 final float seek
) {
 videoView.seekTo(Math.round(seek * 1000.0f));
 }
}

There are a few things we should pay attention to here.

The first is the implementation of getName. Note that, just as in our HelloWorld
example, we need to implement getName in order to be able to refer to this compo‐
nent from our JavaScript code.

The next is the setVolume method and the use of the @ReactProp decorator. Here we
declare that the <Video> component will take a prop named volume (as that’s the
value of PROP_VOLUME) and setVolume will be invoked when that prop changes. In
setVolume, we check to see that the underlying view exists; if it does, we pass the col‐
ors along so that it can update. There are many methods in the implementation of
ReactVideoViewManager that follow this pattern.

Java Native Modules | 129

Finally, in createViewInstance, ReactVideoViewManager handles actually creating
the view with the correct context.

In order to effectively write native Android components, you’ll want an understand‐
ing of how Android handles views in general, but looking at other React Native com‐
ponents is a good place to start.

Cross-Platform Native Modules
Is it possible to write a cross-platform native module?

The answer is yes; you just have to implement your module separately for each plat‐
form, and provide a unified JavaScript interface. This can be a good way to handle
platform-specific optimizations while still maximizing code reuse.

Creating a cross-platform native module doesn’t require much extra configuration.
Once you have implemented iOS and Android versions separately, just create a folder
containing index.ios.js and index.android.js files. Each version should import the
appropriate native module. Then you can import that folder, and React Native will
pick up the platform-appropriate version.

React Native won’t enforce a consistent API between the iOS and Android versions,
so that responsibility falls on you. If you want the iOS and Android versions to have
slightly different APIs, that’s fine, too.

Summary
So, when is it appropriate to use native Objective-C or Java code? When is it a good
idea to include third-party modules and libraries? In general, there are three main use
cases for native modules: taking advantage of existing Objective-C or Java code; writ‐
ing high-performance, multithreaded code for tasks such as graphics processing; and
exposing APIs not yet included in React Native.

For any existing mobile projects built in Objective-C or Java, writing a native module
can be a great way to reuse existing code in React Native applications. While hybrid
applications are a bit beyond the scope of this book, they’re definitely a feasible
approach, and you can use native modules to share functionality between JavaScript,
Objective-C, and Java.

Similarly, for use cases where performance is critical or for specialized tasks, it often
makes sense to work in the native language of the platform you’re developing for. In
these cases, you can do the heavy lifting in Objective-C or Java and then pass the
result back to your JavaScript application.

Finally, there will inevitably be platform APIs you’ll want to use that aren’t yet sup‐
ported by React Native. In these cases, you have two options. One is to turn to the

130 | Chapter 7: Modules and Native Code

community and hope that someone else has already solved your problem. The other
is to solve the issue yourself, and hopefully contribute your solution back to the com‐
munity! Being able to write your own native modules means that you don’t need to
rely on React Native core in order to take advantage of your host platform.

Even if you’ve never developed for iOS or Android before, if you’re planning on
developing with React Native, it’s a good idea to try to gain a reading knowledge of
Objective-C and/or Java. If you hit a wall when working with React Native, being able
to try to dig your way around it is a really invaluable asset. Don’t be afraid to try!

The React Native community, as well as the broader JavaScript ecosystem, will be val‐
uable resources as you develop your own React Native applications. Build on the
work of others, and reach out if you need help.

Summary | 131

CHAPTER 8

Platform-Specific Code

In Chapter 7 we looked at how to write native modules with separate implementa‐
tions in Java and Objective-C. This raises two questions: first, do all React Native
components have implementations on both iOS and Android? Should they? How
should you handle platform-specific implementations in your own code?

Not all components are available on all platforms, and not all interaction patterns are
appropriate for all devices. That doesn’t mean you can’t use platform-specific code in
your application, though! In this section, we’ll cover platform-specific interface and
implementations, as well as strategies for how to incorporate platform-specific com‐
ponents into your cross-platform applications.

Writing cross-platform code in React Native is not an all-or-
nothing endeavor: you can mix cross-platform and platform-
specific code in your application, as we’ll do in this section.

iOS- or Android-Only Components
Some components are available only on a specific platform. This includes things like
<TabBarIOS> or <ToolbarAndroid>. They’re usually platform-specific because they
wrap some kind of underlying platform-specific API. For some components, having a
platform-agnostic version doesn’t make sense. For instance, the <ToolbarAndroid>
component exposes an Android-specific API for a view type that doesn’t exist on iOS
anyway.

Platform-specific components are named with an appropriate suffix: either IOS or
Android. If you try to include one on the wrong platform, your application will crash.

133

Components can also have platform-specific props. These are tagged in the docu‐
mentation with a small badge indicating their usage. For instance, <TextInput> has
some props that are platform-agnostic and others that are specific to iOS or Android
(Figure 8-1).

Figure 8-1. <TextInput> has Android and iOS-specific props

Components with Platform-Specific Implementations
So, how do you handle platform-specific components or props in a cross-platform
application? The good news is that you can still use these components. By including
them inside another component with a platform-specific implementation, you’ll be
able to render the appropriate content for each platform your app is designed for.

A platform-specific component works only on a specific platform.
For example, <ToolbarAndroid> is Android-only. A component
with platform-specific implementation might work on several plat‐
forms but may be implemented and behave differently.

A very common practice is to have a parent component that “wraps” platform-
specific behavior and presents a unified API. For elements such as navigation UI, this
makes a lot of sense; the interaction patterns vary greatly between iOS and Android.

In this section, we’ll discuss how to implement platform-specific behavior in your
components.

Using Platform-Specific File Extensions
Remember how React Native applications are initialized with both an index.ios.js and
an index.android.js file? This naming convention can be used for any file to create a
component that has different implementations on Android and iOS.

Example 8-1 demonstrates the Android implementation of a simple component that
shows a pop-up message.

134 | Chapter 8: Platform-Specific Code

Example 8-1. Newsflash.android.js

import React from "react";
import { StyleSheet, Text, View, Alert } from "react-native";

export default class App extends React.Component {
 componentDidMount() {
 Alert.alert("Hey!", "You're on Android.");
 }

 render() {
 return (
 <View style={styles.container}>
 <Text>
 What? I didn't say anything.
 </Text>
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: "#fff",
 alignItems: "center",
 justifyContent: "center"
 }
});

And Example 8-2 shows the iOS version.

Example 8-2. Newsflash.ios.js

import React from "react";
import { StyleSheet, Text, View, Alert } from "react-native";

export default class App extends React.Component {
 componentDidMount() {
 Alert.alert("Hey!", "You're on iOS.");
 }

 render() {
 return (
 <View style={styles.container}>
 <Text>
 What? I didn't say anything.
 </Text>
 </View>
);
 }

Components with Platform-Specific Implementations | 135

}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: "#fff",
 alignItems: "center",
 justifyContent: "center"
 }
});

Example 8-2 looks almost identical to Example 8-1, and it implements the same API.
These files need to be located in the same directory.

To import this component, we use:

import Newsflash from "./Newsflash";

Note that we left off the file extension. The React Native packager will look for the
appropriate file extension to match the platform. On iOS, it will load Newsflash.ios.js
(see Figure 8-2). On Android, it will load Newsflash.android.js.

And, just like that, we have a cross-platform component that is compatible with both
iOS and Android but that renders differently according to the platform.

Figure 8-2. The Newsflash component for iOS

136 | Chapter 8: Platform-Specific Code

Using the Platform Module
There’s a second option for writing platform-specific code: the Platform module. This
API provides information about the operating system and OS version that your appli‐
cation is running on.

import { Platform } from "react-native";

console.log("What OS am I using?");
console.log(Platform.OS);

console.log("What version of the OS?");
console.log(Platform.Version); // e.g., 25 for Android Nougat

The Platform API can be useful when you want to adjust a few elements based on the
platform but don’t want to write fully separate component implementations. One
common use case is for stylesheets, such as when you have different color schemes
for different platforms.

import { Platform, StyleSheet } from "react-native";

const styles = StyleSheet.create({
 color: (Platform.OS === "ios") ? "#FF6666" : "#DD4444",
});

When to Use Platform-Specific Components
When is it appropriate to use a platform-specific component? In most cases, you’ll
want to do so when there’s a platform-specific interaction pattern that you want your
application to adhere to. If you want your application to feel truly “native,” it’s worth
paying attention to platform-specific UI norms.

Apple and Google both provide human interface guidelines for their platforms which
are worth consulting:

• iOS Human Interface Guidelines
• Android Design Reference

By creating platform-specific versions of only certain components, you can strike a
balance between code reuse and platform-based customization. In most cases, you
should only need separate implementations of a handful of components in order to
support both iOS and Android.

When to Use Platform-Specific Components | 137

http://bit.ly/designing_for_ios
http://bit.ly/android_design_reference

CHAPTER 9

Debugging and Developer Tools

As you develop your own applications, chances are that something will go wrong
along the way. When it’s time to debug your applications, we happily have some React
Native–specific tools that will make the job easier. There are also some nasty bugs
that can crop up at the intersection of React Native and its host platform. In this
chapter, we’ll dig into the common pitfalls of React Native development and the tools
you can use to tackle them. And because any discussion of debugging would be
incomplete without reference to testing, we’ll also cover the basics of getting automa‐
ted testing set up for your React Native code.

JavaScript Debugging Practices, Translated
When working with React for the web, we have a number of common JavaScript-
based tools and techniques to help us debug our applications. Most of these are also
available for React Native, though occasionally with some minor adjustments. React
Native gives us access to the console, debugger, and React developer tools that we’re
accustomed to using, so debugging JavaScript-based issues in React Native should feel
familiar.

Activating the Developer Options
In order to avail yourself of these tools, you’ll need to enable Chrome Developer
Tools in the in-app developer menu (Figure 9-1). You can access this menu by shak‐
ing the device. In the iOS simulator, you can access the menu by pressing Command
+D. In an Android emulator, you can press Command+M (if on Mac) or Control+M
(if on Windows). From there, you can select Debug in Chrome to enable the Chrome
Developer Tools.

139

Figure 9-1. The in-app developer menu, as viewed from Android (left) and iOS (right)

Note that the developer menu is disabled in production builds.

If you’re using an Expo app (i.e., one created with Create React Native App), the same
shortcuts will open the Expo developer menu (see Figure 9-2).

140 | Chapter 9: Debugging and Developer Tools

Figure 9-2. Expo developer menu

Debugging with console.log
One of the most basic, and common, forms of debugging is the “print it out and see
what’s happening” tactic. For many web-based developers, being able to add
console.log to our code is an almost unconscious part of our workflow.

The JavaScript console works straight out of the box with React Native; you don’t
need to do any special configuration in order to use your print statements.

When using Xcode, you will see your console statements as output in the Xcode con‐
sole (Figure 9-3). Note that you can expand how much room is allotted to the console
by tweaking the visible Xcode panes.

JavaScript Debugging Practices, Translated | 141

Figure 9-3. Console output as viewed in Xcode

Similarly, for Android, you can view the logs for your device by running logcat from
your project’s root (Figure 9-4 shows the output):

adb logcat

Figure 9-4. Console output appears with the tag of “ReactNativeJS” in logcat

However, these views are rather cluttered, and also include logging related to
platform-specific things. Console output is tagged with ReactNativeJS, so we can
instead run:

adb logcat | grep ReactNativeJS

We can hop over into the browser-based developer tools for a more familiar—and
cleaner—experience. Activate the developer menu and select Debug Remote JS, and
then open the console in your web browser. As shown in Figure 9-5, you will be able
to see the console output from the Chrome developer tools.

142 | Chapter 9: Debugging and Developer Tools

Figure 9-5. Console output as viewed in Chrome

Note that you need to open the console before you’ll see things appear here.

How does this work? When you load your React Native application with remote Java‐
Script debugging enabled, the browser loads your React Native JavaScript code from
the React Native packager using a standard <script> tag, so that you have full
browser-based debugging control. The packager then uses WebSockets to communi‐
cate between the device and the browser.

We don’t need to be too concerned with the specifics; we just need to know how to
take advantage of these tools!

In addition to using console.log, you can also utilize console.warn or con
sole.error. In developer builds, console.warn will display a yellow box at the bot‐
tom of your application, while messages from console.error will display a full-
screen red message. These visual indicators will be disabled in production builds so
you don’t need to worry about them being displayed to end users.

Using the JavaScript Debugger
You can also use the JavaScript debugger just as you normally would for web-based
React development. Open up the developer tools in Chrome and switch to the source
tab, and then your breakpoints will be activated. You can see this in action in
Figure 9-6.

Note that, similar to the JavaScript console, if you don’t already have the developer
tools pane open, the debugger may not be activated on your breakpoints. Likewise, if
you don’t have Debug Remote JS enabled, the debugger will not be activated.

JavaScript Debugging Practices, Translated | 143

Figure 9-6. Using the debugger

When using the debugger, you have access to the usual view of your source code from
within Chrome, and you can interact with the current JavaScript context via the in-
browser console as well.

Working with the React Developer Tools
When you’re developing with React for the web, the React developer tools are quite
useful. They allow you to inspect the component hierarchy, examine the props and
state of components, and modify the state from your browser. The React developer
tools are available as a Chrome extension.

The React developer tools work with React Native as well. You’ll need to install the
standalone version to use them with React Native:

npm install -g react-devtools

Then launch the DevTools app, shown in Figure 9-7, by running:

react-devtools

144 | Chapter 9: Debugging and Developer Tools

http://bit.ly/1O5DTlX

Figure 9-7. The React DevTools application

React Native Debugging Tools
In addition to the usual JavaScript-based web debugging tools, there are also some
features specific to React Native that are relevant to debugging.

Using Inspect Element
While you can use the React developer tools via the browser, you may find that the
“inspect element” functionality leaves something to be desired. However, there’s also
an in-app “inspect element” that you may find helpful. It has support for viewing
things like style and gives you a quick way to dig through the component hierarchy.
In Figure 9-8, you can see the result of inspecting a <Button> component.

React Native Debugging Tools | 145

Figure 9-8. Using Inspect Element will let you click on a component to view more infor‐
mation

This view also displays some basic performance metrics.

Interpreting the Red Screen of Death
One of the most common sights you’ll see during application development is the Red
Screen of Death. Alarming appearance aside, the Red Screen of Death is actually a
boon: it takes errors and parses them into meaningful messages. So, learning to parse
the information it displays is critical to an effective developer workflow.

For example, a syntax error might produce the output shown in Figure 9-9, indicating
the file and line number where the error occurred.

146 | Chapter 9: Debugging and Developer Tools

Figure 9-9. Red Screen of Death for a syntax error

Other common errors include attempting to use a variable without importing or
defining it. For instance, a common issue is failing to explicitly import the <Text>
component, like so:

import React, { Component } from "react";

export default class App extends Component {
 render() {
 return (
 <View>
 <Text>
 I haven't imported things properly!
 </Text>
 </View>
);
 }
}

React Native Debugging Tools | 147

This results in the error message shown in Figure 9-10.

Figure 9-10. Error message from forgetting to import <Text>

148 | Chapter 9: Debugging and Developer Tools

Attempting to use an undeclared variable results in another error message (see
Figure 9-11).

Figure 9-11. Error message from attempting to use an undeclared variable

React Native Debugging Tools | 149

Of particular use are the style-related error messages. For instance, if you pass in a
bad value to a StyleSheet.create call, React Native will helpfully inform you which
values would have been appropriate (see Figure 9-12).

Figure 9-12. Error message from missetting a style property

While the Red Screen of Death may look alarming, it’s really there to help you, and
the error messages it presents are useful information. If for some reason you need to
dismiss the screen, pressing the Escape key in the device simulator will take you back
to your application.

Debugging Beyond JavaScript
As you write mobile applications with React Native, you will encounter errors not
only in your React code but also in your application in general. If you are new to
mobile development, these issues can be frustrating. Additionally, sometimes you’ll

150 | Chapter 9: Debugging and Developer Tools

see cryptic error messages and issues where your JavaScript codebase meets the host
platform; the combination of host platform code and React Native can lead to confus‐
ing symptoms.

Learning to debug issues outside of pure JavaScript-based problems is critical to a
productive development process with React Native. Happily, many of these issues are
simpler than they might seem at first glance, and we have plenty of tools to help us
along the way.

Common Development Environment Issues
Managing your developer environment for iOS, Android, and JavaScript can be a bit
annoying, and it’s not uncommon to encounter issues with any combination of the
above.

If you encounter issues with the packager starting, or with building or running your
application using npm start or react-native run-android, it’s possible that you
have a dependency problem.

If you’re having dependency issues, one common solution is just to clean out your
installed npm packages and reinstall them:

rm -rf node_modules
npm install

Common Xcode Problems
When you build your iOS application, if your application has any errors, they will
appear in the Issues pane in Xcode (Figure 9-13). You can view them by selecting the
warning icon.

Figure 9-13. Viewing the issues pane

Xcode will then point you to the relevant file and line number, and highlight the issue
in the IDE. Figure 9-14 shows an example of a common error.

Figure 9-14. Interface error

Debugging Beyond JavaScript | 151

This “No visible interface for RCTRootView” issue indicates that React Native’s
Objective-C classes are for some reason not visible to Xcode. In general, if you
encounter “X is undefined” error messages in Xcode, where X is an RCT-prefixed
class or otherwise part of React Native, it’s a good idea to check on the packager and
make sure that your JavaScript dependencies are in order:

1. Quit the packager.
2. Quit Xcode.
3. Run npm install from the project directory.
4. Reopen Xcode.

Another common problem deals with asset sizes (see Figure 9-15).

Figure 9-15. Warning regarding a missized image

Because assets should be sized appropriately for the device they’re intended for (espe‐
cially your application’s icon), Xcode will throw a warning if you include an asset of
an inappropriate size.

Deciphering Xcode’s warnings may take some time at first, especially if you are unfa‐
miliar with Objective-C. Some of the most confusing issues deal with the integration
of React Native and your Xcode project, but doing a clean install of React Native usu‐
ally clears up any problems.

Common Android Problems
When you run react-native run-android, some error messages may appear, pre‐
venting you from loading your application. The two most common issues are typi‐
cally missing Android dependencies, or a failure to boot an Android Virtual Device
(or plug in an eligible device via USB).

152 | Chapter 9: Debugging and Developer Tools

If you receive a warning about a missing package, run android and check to see if
that package is listed as “installed.” If not, install it. If it is installed but React Native
can’t find it, follow the steps just given to try to fix any issues with your development
environment. You should also check to make sure that your ANDROID_HOME environ‐
ment variable is properly set and points to your installation of the Android SDK. For
example, on my system it looks like this:

$ echo $ANDROID_HOME
/usr/local/opt/android-sdk

If you receive a warning about no eligible device being available as a build target,
check your device. Did you attempt to launch the emulator? If the emulator is still
booting, the react-native run-android command will fail; give it a few seconds and
try again. For a physical device, make sure that USB debugging is enabled.

You may also see issues after you create a signed version of your Android app:

$./gradlew installRelease
...
INSTALL_PARSE_FAILED_INCONSISTENT_CERTIFICATES:
New package has a different signature

You can solve this by uninstalling the old application from your device or emulator,
and reattempting the installation. The error is caused by attempting to install an
application with a different signing key—which happens after you generate your first
signed APK.

The React Native Packager
Because React Native depends on the packager in order to rebuild your code, issues
with the packager will manifest in problems fairly quickly.

The React Native packager will launch automatically when you run your project,
either from Xcode or using react-native run-android. However, it will not quit
automatically when you close your project. This means that if you switch projects, the
packager will still be running—just from the wrong directory, so it will fail to compile
your code. Always make sure that the packager is running from your project’s root
directory. You can launch it yourself with npm start.

If the React Native packager throws strange errors upon starting, chances are good
that your development environment is in a bad state. Following the steps just
described, make sure that your local installations of npm, Node, and react-native are
all in a good state.

Issues Deploying to an iOS Device
When attempting to test your application on a real iOS device, you may encounter
some peculiar issues.

Debugging Beyond JavaScript | 153

If you are having trouble uploading to your iOS device, make sure that your device is
selected correctly as the build target. Is your device of a supported type, based on
your project settings? If your app explicitly disallows iPads, for instance, you won’t be
able to deploy to an iPad.

If you are using the React Native packager to rebuild your files as you make edits, you
may see the screen shown in Figure 9-16.

Figure 9-16. Could not connect to the development server

This indicates that your application has attempted to load its bundled JavaScript file
from the React Native packager but is unable to do so. In this case, run through the
following checks:

• Are your computer and iOS device on the same WiFi network?
• Is the React Native packager running from the project directory?

154 | Chapter 9: Debugging and Developer Tools

Simulator Behavior
You may also see strange behavior in the device simulator from time to time. If your
application continues to crash repeatedly or it seems like changes to your code are not
being reflected on the simulator, the easiest first step is to delete your application
from the device.

Note that simply deleting your application may not have the desired effect; on many
systems, your app may leave behind files that can cause side effects later on. As shown
in Figure 9-17, the most straightforward way to start over with a clean slate on iOS is
to reset the device simulator entirely, which removes all files and applications from
the simulated device.

Figure 9-17. The Reset Content and Settings… option will delete everything from your
device

Similarly, for Android emulators, you can delete the emulator and start over with a
fresh device.

Testing Your Code
Debugging is all well and good, but you’ll also want to prevent errors before they arise
(and catch them when they inevitably do!). Automated tests and static type checking
are useful tools that you’ll probably want to make use of in your applications.

Testing JavaScript Code

Much of the React Native code you write may not even be aware
that it’s running in a mobile environment. For example, any busi‐
ness logic can probably be isolated from rendering logic. That
means that you can test your JavaScript code using whatever tools
you prefer for ordinary JavaScript development.

Testing Your Code | 155

In this section, we’re going to look specifically at type checking with Flow and unit
testing with Jest.

Type Checking with Flow
Flow is a JavaScript library for static type checking. It relies on type inference to
detect type errors—even in unannotated code—and allows you to slowly add type
annotations to existing projects. Type checking can help you detect possible issues
early and helps you enforce sane APIs between various components and modules.

You can install Flow using npm:

$ npm install -g flow-bin

Running Flow is simple:

$ flow check

The default application comes with a .flowconfig file, which configures Flow’s behav‐
ior. If you see many errors related to files in node_modules, you may need to add this
line to your .flowconfig under [ignore]:

.*/node_modules/.*

You should then be able to run flow check without seeing any errors:

$ flow check
$ Found 0 errors.

Feel free to use Flow to assist you as you develop your React Native applications.

Unit Testing with Jest
React Native supports testing of React components using Jest. Jest is a unit testing
framework built on top of Jasmine. It provides aggressive automocking of dependen‐
cies, and it meshes nicely with React’s testing utilities.

To use Jest, you will first need to install it:

npm install jest-cli --save-dev

Because we only need Jest for development, not for our production build, we install it
with the --save-dev flag.

Update your package.json file to include a test script:

{
 ...
 "scripts": {
 "test": "jest"
 }
 ...
}

156 | Chapter 9: Debugging and Developer Tools

http://flowtype.org/

This will run jest when you type npm test.

Next, create the tests/ directory. Jest will recursively search for files in a tests/ direc‐
tory, and run them:

mkdir __tests__

Now let’s create a new file, tests/dummy-test.js, and write our first test:

'use strict';

describe('a silly test', function() {
 it('expects true to be true', function() {
 expect(true).toBe(true);
 });
});

Now if you run npm test, you should see that the test has passed.

Of course, there is much more to testing than this trivial example. If you want to read
more about Jest, I recommend starting with the documentation.

Snapshot Testing with Jest
Snapshot tests are excellent for ensuring that your UI does not change unexpectedly.
This makes them a good fit for React components. Plus, snapshot tests are easy to
write and require minimal configuration.

Snapshot testing for React Native requires the react-test-renderer package.

npm install --save react-test-renderer

Example 9-1 demonstrates a simple Jest test.

Example 9-1. Styles/tests/FlexDemo-test.js

import React from "react";
import FlexDemo from "../FlexDemo";

import renderer from "react-test-renderer";

test("renders correctly", () => {
 const tree = renderer.create(<FlexDemo />).toJSON();

 expect(tree).toMatchSnapshot();
});

As you can see, very little code is needed to add a snapshot test.

You’ll also need to update your package.json file to add Jest as a dependency, with the
react-native testing preset.

Testing Your Code | 157

https://facebook.github.io/jest/

 "dependencies": {
 ...
 "jest": "*"
 ...
 },
 "jest": {
 "preset": "react-native"
 }

The first time you run npm test, a “snapshot” will be generated.

$ npm test
 PASS __tests__/FlexDemo-test.js
 ✓ renders correctly (1216ms)

Snapshot Summary
 › 1 snapshot written in 1 test suite.

The snapshot file will look something like Example 9-2.

Example 9-2. The initial snapshot file

// Jest Snapshot v1, https://goo.gl/fbAQLP

exports[`renders correctly 1`] = `
<View
 style={
 Object {
 "alignItems": "flex-end",
 "backgroundColor": "#F5FCFF",
 "borderColor": "#0099AA",
 "borderWidth": 5,
 "flex": 1,
 "flexDirection": "row",
 "marginTop": 30,
 }
 }
>
 <Text
 accessible={true}
 allowFontScaling={true}
 ellipsizeMode="tail"
 style={
 Object {
 "borderColor": "#AA0099",
 "borderWidth": 2,
 "flex": 1,
 "fontSize": 24,
 "textAlign": "center",
 }
 }
 >

158 | Chapter 9: Debugging and Developer Tools

 Child One
 </Text>
 <Text
 accessible={true}
 allowFontScaling={true}
 ellipsizeMode="tail"
 style={
 Object {
 "borderColor": "#AA0099",
 "borderWidth": 2,
 "flex": 1,
 "fontSize": 24,
 "textAlign": "center",
 }
 }
 >
 Child Two
 </Text>
 <Text
 accessible={true}
 allowFontScaling={true}
 ellipsizeMode="tail"
 style={
 Object {
 "borderColor": "#AA0099",
 "borderWidth": 2,
 "flex": 1,
 "fontSize": 24,
 "textAlign": "center",
 }
 }
 >
 Child Three
 </Text>
</View>
`;

Don’t edit these files manually. Instead, when you update your application, run npm
test again. If a component renders differently from the snapshot, Jest will fail and
show you a diff between the expected and received version of the component:

$ npm test
 FAIL __tests__/FlexDemo-test.js
 ● renders correctly

 expect(value).toMatchSnapshot()

 Received value does not match stored snapshot 1.

 - Snapshot
 + Received

Testing Your Code | 159

 @@ -41,22 +41,6 @@
 }
 }
 >
 Child Two
 </Text>
 - <Text
 - accessible={true}
 - allowFontScaling={true}
 - ellipsizeMode="tail"
 - style={
 - Object {
 - "borderColor": "#AA0099",
 - "borderWidth": 2,
 - "flex": 1,
 - "fontSize": 24,
 - "textAlign": "center",
 - }
 - }
 - >
 - Child Three
 - </Text>
 </View>

 at Object.<anonymous> (__tests__/FlexDemo-test.js:11:14)

 ✕ renders correctly (66ms)

Snapshot Summary
 › 1 snapshot test failed in 1 test suite.

When inspecting the diff, you can then decide whether or not the changes were in
error or if you want to update your snapshot to reflect the changes. Snapshot files
should be checked into source control.

When You’re Stuck
If you end up with a particularly nasty problem that you can’t solve on your own, you
can try consulting the community. There are plenty of places to go to ask for advice:

• The #reactnative IRC chat (irc.lc/freenode/reactnative)
• The React discussion forum
• StackOverflow

If you suspect your issue may be a bug in React Native itself, check the existing list of
issues on GitHub. When you report issues, it’s useful to create a small proof-of-
concept application demonstrating the problem.

160 | Chapter 9: Debugging and Developer Tools

http://irc.lc/freenode/reactnative
https://discuss.reactjs.org/
http://stackoverflow.com/questions/tagged/react-native
https://github.com/facebook/react-native/issues

Summary
In general, debugging with React Native should feel quite similar to debugging your
React code on the web. Most of the tools you are already familiar with are available
here, too, which makes the transition to React Native much easier. That being said,
React Native applications bring their own variety of complexity, and sometimes that
complexity can manifest in frustrating bugs. Knowing how to debug your applica‐
tions and becoming familiar with the error messages produced by your environment
will go a long way in helping you to cultivate a productive workflow.

Summary | 161

CHAPTER 10

Navigation and Structure in
Larger Applications

Now that we’ve covered many of the pieces you need to build your own React Native
applications, let’s put everything together. Up until now, we’ve mostly dealt with small
examples. In this chapter, we’ll look at the structure of a larger application. We’ll cover
how to use the <StackNavigation> component from react-navigation to handle
transitions between different screens in an application.

The example application from this chapter will also be used in Chapter 11, where
we’ll look at how to integrate the state management library Redux into our applica‐
tion.

The Flashcard Application
In this chapter, we’re going to be building a flashcard application that allows users to
create decks of cards and then review them. The flashcard application is more com‐
plex than the sample applications we’ve been building so far. It’s meant to model what
a more fleshed-out application might look like. All the code is available on GitHub.
This application is entirely JavaScript-based and cross-platform: it will work on iOS
or Android, and is compatible with Expo (meaning you can use the Create React
Native App).

As illustrated in Figure 10-1, the Flashcard app has three main views:

• The home page, which lists available decks and allows you to create new decks
• The card creation screen
• The review screen

163

http://bit.ly/flashcardslrn

Figure 10-1. Viewing decks, card creation, and card review

Users of the app go through two main interaction flows. The first deals with content
creation (i.e., the creation of decks as well as cards). The content creation process
works as follows (illustrated in Figure 10-2):

1. The user taps Create Deck.
2. The user enters a deck name, then either taps the Return button or Create Deck

again.
3. The user enters values for Front and Back, and then taps Create Card.
4. After entering zero or more cards, the user may tap Done, bringing him or her

back to the original screen. Alternatively, the user may tap Review Deck and
begin reviewing.

The user may also initiate card creation at a later date by tapping the + buttons on the
home screen.

164 | Chapter 10: Navigation and Structure in Larger Applications

Figure 10-2. Creating a deck

The second main interaction flow deals with card review (illustrated in Figure 10-3):

1. The user taps the deck’s name that he/she wishes to review.
2. The user is presented with the question screen.
3. The user taps one of the provided options.
4. The user receives feedback based on whether the guess was correct.
5. To view the next review, the user taps Continue.
6. Once all reviews are completed, the user reaches the “Reviews cleared!” screen.

Figure 10-3. Reviewing cards

The Flashcard Application | 165

We’ll be using the flashcard app, and in particular the features just described, to talk
through some of the patterns and problems that emerge when building a more com‐
plete application.

Project Structure
Here’s the structure of the flashcard application:

flashcards
 ├── icon.png
 ├── index.js
 ├── src_checkpoint_01
 ├── components
 │ ├── Button.js
 │ ├── DeckScreen
 │ ├── Flashcards.js
 │ ├── Header
 │ ├── HeadingText.js
 │ ├── Input.js
 │ ├── LabeledInput.js
 │ ├── NewCardScreen
 │ ├── NormalText.js
 │ └── ReviewScreen
 ├── data
 │ ├── Card.js
 │ ├── Deck.js
 │ ├── Mocks.js
 │ └── QuizCardView.js
 └── styles
 ├── colors.js
 └── fonts.js
 ├── src_checkpoint_02
 ├── ...
 ├── src_checkpoint_03
 ├── ...
 ├── src_checkpoint_04
 ├── ...

You’ll notice that within the flashcards directory, there are actually four folders:
src_checkpoint_01, src_checkpoint_02, src_checkpoint_03, and src_checkpoint_04.
These each represent the state of the application as we work through the development
process. We’re going to begin with src_checkpoint_01.

components/
All of our React components live here.

data/
This is where you’ll find our data models, representing cards, decks, and reviews.

166 | Chapter 10: Navigation and Structure in Larger Applications

styles/
Here you’ll find stylesheet objects, which are reused elsewhere.

Application Screens
There are three main scenes that may be displayed at any given time.

First, we have deck creation, from the main deck screen. This screen will display as
many decks as currently exist in the app, as shown in Figure 10-4.

Figure 10-4. Creating a deck from the main deck screen

In the code we’re starting with, each of these screens is implemented as a component,
but they aren’t connected yet. If you try to interact with the application, it shows a
“Not implemented” warning (see Figure 10-5).

Project Structure | 167

Figure 10-5. If you try to interact with the application, you get a warning

The root component for the application is located in components/Flashcards.js (see
Example 10-1).

Example 10-1. src_checkpoint_01/components/Flashcards.js

import React, { Component } from "react";
import { StyleSheet, View } from "react-native";

import Heading from "./Header";
import DeckScreen from "./DeckScreen";
import NewCardScreen from "./NewCardScreen";
import ReviewScreen from "./ReviewScreen";

class Flashcards extends Component {
 _renderScene() {
 // return <ReviewScreen />;

168 | Chapter 10: Navigation and Structure in Larger Applications

 // return <NewCardScreen />;
 return <DeckScreen />;
 }
 render() {
 return (
 <View style={styles.container}>
 <Heading />
 {this._renderScene()}
 </View>
);
 }
}

const styles = StyleSheet.create({ container: { flex: 1, marginTop: 30 } });

export default Flashcards;

The deck screen, card creation screen, and review screen are implemented as the
<DeckScreen>, <NewCardScreen>, and <ReviewScreen> components, respectively.

<DeckScreen>, shown in Example 10-2, renders existing decks and a button for creat‐
ing new decks.

Example 10-2. src_checkpoint_01/components/DeckScreen/index.js

import React, { Component } from "react";
import { View } from "react-native";

import { MockDecks } from "./../../data/Mocks";
import Deck from "./Deck";
import DeckCreation from "./DeckCreation";

class DecksScreen extends Component {
 static displayName = "DecksScreen";

 constructor(props) {
 super(props);
 this.state = { decks: MockDecks };
 }

 _mkDeckViews() {
 if (!this.state.decks) {
 return null;
 }

 return this.state.decks.map(deck => {
 return <Deck deck={deck} count={deck.cards.length} key={deck.id} />;
 });
 }

 render() {

Project Structure | 169

 return (
 <View>
 {this._mkDeckViews()}
 <DeckCreation />
 </View>
);
 }
}

export default DecksScreen;

<NewCard>, shown in Example 10-3, has input fields for creating new cards. The call‐
backs for handling actual card creation are not yet implemented.

Example 10-3. src_checkpoint_01/components/NewCardScreen/index.js

import React, { Component } from "react";
import { StyleSheet, View } from "react-native";

import DeckModel from "./../../data/Deck";

import Button from "../Button";
import LabeledInput from "../LabeledInput";
import NormalText from "../NormalText";
import colors from "./../../styles/colors";

class NewCard extends Component {
 constructor(props) {
 super(props);
 this.state = { font: "", back: "" };
 }

 _handleFront = text => {
 this.setState({ front: text });
 };

 _handleBack = text => {
 this.setState({ back: text });
 };

 _createCard = () => {
 console.warn("Not implemented");
 };

 _reviewDeck = () => {
 console.warn("Not implemented");
 };

 _doneCreating = () => {
 console.warn("Not implemented");
 };

170 | Chapter 10: Navigation and Structure in Larger Applications

 render() {
 return (
 <View>
 <LabeledInput
 label="Front"
 clearOnSubmit={false}
 onEntry={this._handleFront}
 onChange={this._handleFront}
 />
 <LabeledInput
 label="Back"
 clearOnSubmit={false}
 onEntry={this._handleBack}
 onChange={this._handleBack}
 />

 <Button style={styles.createButton} onPress={this._createCard}>
 <NormalText>Create Card</NormalText>
 </Button>

 <View style={styles.buttonRow}>
 <Button style={styles.secondaryButton} onPress={this._doneCreating}>
 <NormalText>Done</NormalText>
 </Button>

 <Button style={styles.secondaryButton} onPress={this._reviewDeck}>
 <NormalText>Review Deck</NormalText>
 </Button>
 </View>
 </View>
);
 }
}

const styles = StyleSheet.create({
 createButton: { backgroundColor: colors.green },
 secondaryButton: { backgroundColor: colors.blue },
 buttonRow: { flexDirection: "row" }
});

export default NewCard;

<ReviewScreen>, shown in Example 10-4, displays a series of reviews in a multiple-
choice style format. Once the user selects an answer, it renders the next review.

Example 10-4. src_checkpoint_01/components/ReviewScreen/index.js

import React, { Component } from "react";
import { StyleSheet, View } from "react-native";

Project Structure | 171

import ViewCard from "./ViewCard";
import { MockReviews } from "./../../data/Mocks";
import { mkReviewSummary } from "./ReviewSummary";
import colors from "./../../styles/colors";

class ReviewScreen extends Component {
 static displayName = "ReviewScreen";

 constructor(props) {
 super(props);
 this.state = {
 numReviewed: 0,
 numCorrect: 0,
 currentReview: 0,
 reviews: MockReviews
 };
 }

 onReview = correct => {
 if (correct) {
 this.setState({ numCorrect: this.state.numCorrect + 1 });
 }
 this.setState({ numReviewed: this.state.numReviewed + 1 });
 };

 _nextReview = () => {
 this.setState({ currentReview: this.state.currentReview + 1 });
 };

 _quitReviewing = () => {
 console.warn("Not implemented");
 };

 _contents() {
 if (!this.state.reviews || this.state.reviews.length === 0) {
 return null;
 }

 if (this.state.currentReview < this.state.reviews.length) {
 return (
 <ViewCard
 onReview={this.onReview}
 continue={this._nextReview}
 quit={this._quitReviewing}
 {...this.state.reviews[this.state.currentReview]}
 />
);
 } else {
 let percent = this.state.numCorrect / this.state.numReviewed;
 return mkReviewSummary(percent, this._quitReviewing);
 }
 }

172 | Chapter 10: Navigation and Structure in Larger Applications

 render() {
 return (
 <View style={styles.container}>
 {this._contents()}
 </View>
);
 }
}

const styles = StyleSheet.create({
 container: { backgroundColor: colors.blue, flex: 1, paddingTop: 24 }
});

export default ReviewScreen;

You’ll notice that many of the components used by these screens are not built-in
React Native components, but rather reusable components provided for the purposes
of building out the flashcard app. Let’s take a look at them now.

Reusable Components
As mentioned earlier, when you’re building larger applications it’s useful to have some
styled components that you can reuse over and over again. You may have noticed that
the preceding components do not use <Text> in order to render text: instead, they
use <HeadingText> and <NormalText>. Similarly, the <Button> component is reused
frequently, as are the <Input> and <LabeledInput> components. This helps with code
readability, makes creating new components easier, and makes it easy to restyle the
application.

The following components are reusable components. We’ll use them throughout the
flashcard application as we flesh out the starter code and turn it into a working appli‐
cation.

The first of these components is a simple <Button>, shown in Example 10-5. It wraps
an arbitrary component (i.e., this.props.children) in a <TouchableOpacity> com‐
ponent. It takes an onPress callback and also allows you to override the style via
props.

Example 10-5. src_checkpoint_01/components/Button.js

import React, { Component } from "react";
import { StyleSheet, View, TouchableOpacity } from "react-native";

import colors from "./../styles/colors";

class Button extends Component {
 static displayName = "Button";

Project Structure | 173

 render() {
 let opacity = this.props.disabled ? 1 : 0.5;
 return (
 <TouchableOpacity
 activeOpacity={opacity}
 onPress={this.props.onPress}
 style={[styles.wideButton, this.props.style]}
 >
 {this.props.children}
 </TouchableOpacity>
);
 }
}

Button.defaultProps = { disabled: false };

export default Button;

const styles = StyleSheet.create({
 wideButton: {
 justifyContent: "center",
 alignItems: "center",
 padding: 10,
 margin: 10,
 backgroundColor: colors.pink
 }
});

Next up is the <NormalText> component, shown in Example 10-6. It’s mostly an ordi‐
nary <Text> component with some styles applied to scale the font size based on the
window dimensions.

Example 10-6. src_checkpoint_01/components/NormalText.js

import React, { Component } from "react";
import { StyleSheet, Text, View } from "react-native";

import { fonts, scalingFactors } from "./../styles/fonts";
import Dimensions from "Dimensions";
let { width } = Dimensions.get("window");

class NormalText extends Component {
 static displayName = "NormalText";

 render() {
 return (
 <Text style={[this.props.style, fonts.normal, scaled.normal]}>
 {this.props.children}
 </Text>
);

174 | Chapter 10: Navigation and Structure in Larger Applications

 }
}

const scaled = StyleSheet.create({
 normal: { fontSize: width * 1.0 / scalingFactors.normal }
});

export default NormalText;

<HeadingText>, shown in Example 10-7, is much the same as <NormalText>, but with
a larger font size.

Example 10-7. src_checkpoint_01/components/HeadingText.js

import React, { Component } from "react";
import { StyleSheet, Text, View } from "react-native";

import { fonts, scalingFactors } from "./../styles/fonts";
import Dimensions from "Dimensions";
let { width } = Dimensions.get("window");

class HeadingText extends Component {
 static displayName = "HeadingText";

 render() {
 return (
 <Text style={[this.props.style, fonts.big, scaled.big]}>
 {this.props.children}
 </Text>
);
 }
}

const scaled = StyleSheet.create({
 big: { fontSize: width / scalingFactors.big }
});

export default HeadingText;

<Input>, shown in Example 10-8, provides some sensible default props around the
built-in <TextInput> component and handles updating state as well as triggering call‐
backs.

Example 10-8. src_checkpoint_01/components/Input.js

import React, { Component } from "react";
import { StyleSheet, TextInput, View } from "react-native";

import colors from "./../styles/colors";
import { fonts } from "./../styles/fonts";

Project Structure | 175

class Input extends Component {
 constructor(props) {
 super(props);
 this.state = { text: "" };
 }

 _create = () => {
 this.props.onEntry(this.state.text);
 this.setState({ text: "" });
 };

 _onSubmit = ev => {
 this.props.onEntry(ev.nativeEvent.text);
 if (this.props.clearOnSubmit) {
 this.setState({ text: "" });
 }
 };

 _onChange = text => {
 this.setState({ text: text });
 if (this.props.onChange) {
 this.props.onChange(text);
 }
 };

 render() {
 return (
 <TextInput
 style={[
 styles.nameField,
 styles.wideButton,
 fonts.normal,
 this.props.style
]}
 ref="newDeckInput"
 multiline={false}
 autoCorrect={false}
 onChangeText={this._onChange}
 onSubmitEditing={this._onSubmit}
 />
);
 }
}

// Default props are used if not otherwise specified
Input.defaultProps = { clearOnSubmit: true };

export default Input;

const styles = StyleSheet.create({
 nameField: { backgroundColor: colors.tan, height: 60 },

176 | Chapter 10: Navigation and Structure in Larger Applications

 wideButton: { justifyContent: "center", padding: 10, margin: 10 }
});

<LabledInput>, shown in Example 10-9, combines an <Input> with a <NormalText>
component.

Example 10-9. src_checkpoint_01/components/LabeledInput.js

import React, { Component } from "react";

import { StyleSheet, View } from "react-native";

import Input from "./Input";
import NormalText from "./NormalText";

class LabeledInput extends Component {
 render() {
 return (
 <View style={styles.wrapper}>
 <NormalText style={styles.label}>
 {this.props.label}:
 </NormalText>
 <Input
 onEntry={this.props.onEntry}
 onChange={this.props.onChange}
 clearOnSubmit={this.props.clearOnSubmit}
 style={this.props.inputStyle}
 />
 </View>
);
 }
}

const styles = StyleSheet.create({
 label: { paddingLeft: 10 },
 wrapper: { padding: 5 }
});

export default LabeledInput;

Styles
In addition to the reusable components, there are a couple of stylesheets located in
the styles directory that are reused throughout the flashcard application. These files
won’t be modified as we develop the flashcard application.

The first, fonts.js, sets some default font sizes and colors (see Example 10-10).

Project Structure | 177

Example 10-10. src_checkpoint_01/styles/fonts.js

import { StyleSheet } from "react-native";

export const fonts = StyleSheet.create({
 normal: { fontSize: 24 },
 alternate: { fontSize: 50, color: "#FFFFFF" },
 big: { fontSize: 32, alignSelf: "center" }
});

export const scalingFactors = { normal: 15, big: 10 };

The second, colors.js, defines some of the color values used in the application (see
Example 10-11).

Example 10-11. src_checkpoint_01/styles/colors.js

export default (palette = {
 pink: "#FDA6CD",
 pink2: "#d35d90",
 green: "#65ed99",
 tan: "#FFEFE8",
 blue: "#5DA9E9",
 gray1: "#888888"
});

Data Models
Now that we’ve seen a bit about how our flashcard application handles rendering,
how does it handle data? What data do we need to keep track of, and how do we do
so?

We are concerned with two basic models: cards and decks. Reviews are constructed
on the basis of cards and decks, but we won’t need to store them. The following
classes provide some convenient methods for working with decks and cards so that
we don’t need to deal with plain JavaScript objects.

The Deck class, shown in Example 10-12, lets you construct a deck based on a name.
Each Deck contains an array of Cards. It also provides a convenience method for
adding a card to a deck.

In Example 10-12, we’re using the md5 module to generate simple IDs for cards and
decks, based on their data.

Example 10-12. src_checkpoint_01/data/Deck.js

import md5 from "md5";

178 | Chapter 10: Navigation and Structure in Larger Applications

class Deck {
 constructor(name) {
 this.name = name;
 this.id = md5("deck:" + name);
 this.cards = [];
 }

 setFromObject(ob) {
 this.name = ob.name;
 this.cards = ob.cards;
 this.id = ob.id;
 }

 static fromObject(ob) {
 let d = new Deck(ob.name);
 d.setFromObject(ob);
 return d;
 }

 addCard(card) {
 this.cards = this.cards.concat(card);
 }
}

export default Deck;

A card has two sides and belongs to a deck. The Card class is shown in
Example 10-13.

Example 10-13. src_checkpoint_01/data/Card.js

import md5 from "md5";

class Card {
 constructor(front, back, deckID) {
 this.front = front;
 this.back = back;
 this.deckID = deckID;
 this.id = md5(front + back + deckID);
 }

 setFromObject(ob) {
 this.front = ob.front;
 this.back = ob.back;
 this.deckID = ob.deckID;
 this.id = ob.id;
 }

 static fromObject(ob) {
 let c = new Card(ob.front, ob.back, ob.deckID);
 c.setFromObject(ob);

Project Structure | 179

 return c;
 }
}

export default Card;

A QuizCardView, shown in Example 10-14, is really a partial review, comprising a
question, several possible answers, and a correct answer, as well as the card’s orienta‐
tion (whether it’s from English to Spanish or Spanish to English, for example). This
class also includes a method for generating reviews from a set of cards.

Example 10-14. src_checkpoint_01/data/QuizCardView.js

import _ from "lodash";

class QuizCardView {
 constructor(orientation, cardID, prompt, correctAnswer, answers) {
 this.orientation = orientation;
 this.cardID = cardID;
 this.prompt = prompt;
 this.correctAnswer = correctAnswer;
 this.answers = answers;
 }
}

function mkReviews(cards) {
 let makeReviews = function(sideOne, sideTwo) {
 return cards.map(card => {
 let others = cards.filter(other => {
 return other.id !== card.id;
 });

 let answers = _.shuffle(
 [card[sideTwo]].concat(_.sampleSize(_.map(others, sideTwo), 3))
);

 return new QuizCardView(
 sideOne,
 card.id,
 card[sideOne],
 card[sideTwo],
 answers
);
 });
 };

 let reviews = makeReviews("front", "back").concat(
 makeReviews("back", "front")
);
 return _.shuffle(reviews);
}

180 | Chapter 10: Navigation and Structure in Larger Applications

export { mkReviews, QuizCardView };

Finally, the Mocks class provides some mock data, which is useful for testing and
developing our application (see Example 10-15).

Example 10-15. src_checkpoint_01/data/Mocks.js

import CardModel from "./Card";
import DeckModel from "./Deck";
import { mkReviews } from "./QuizCardView";

let MockCards = [
 new CardModel("der Hund", "the dog", "fakeDeckID"),
 new CardModel("das Kind", "the child", "fakeDeckID"),
 new CardModel("die Frau", "the woman", "fakeDeckID"),
 new CardModel("die Katze", "the cat", "fakeDeckID")
];

let MockCard = MockCards[0];
let MockReviews = mkReviews(MockCards);
let MockDecks = [new DeckModel("French"), new DeckModel("German")];

MockDecks.map(deck => {
 deck.addCard(new CardModel("der Hund", "the dog", deck.id));
 deck.addCard(new CardModel("die Katze", "the cat", deck.id));
 deck.addCard(new CardModel("das Brot", "the bread", deck.id));
 deck.addCard(new CardModel("die Frau", "the woman", deck.id));
 return deck;
});

let MockDeck = MockDecks[0];

export { MockReviews, MockCards, MockCard, MockDecks, MockDeck };

The files in the data directory won’t change as we develop our flashcard application.

Using React-Navigation
Right now we have a skeletal application with much of the rendering taken care of,
but it’s not functional. Let’s make it so that we can navigate through the app.

Mobile applications usually involve several screens and provide ways to transition
between them. Navigation libraries handle those transitions and give developers a
way to express the relationships between screens. There are several libraries available
for use with React Native. We’re going to use React Navigation, which is a library pro‐
vided by the react-community GitHub project.

Using React-Navigation | 181

https://github.com/react-community

Creating a StackNavigator
Let’s start by adding react-navigation to our project.

npm install --save react-navigation

React Navigation actually provides several navigators. Navigators render common,
configurable UI elements, such as headers. They also determine your application’s
navigation structure. We’re going to use the StackNavigator, which renders a single
screen at a time and provides transitions between a “stack” of screens. This is proba‐
bly the most common UI pattern for mobile applications.

Other navigators provided by React Navigation, such as the TabNavigator and the
DrawerNavigator, provide slightly different perspectives on application structure.
You can also combine several navigators within a single application.

For now, let’s import the StackNavigator in components/Flashcards.js.
import { StackNavigator } from "react-navigation"

In order to use the StackNavigator, we need to create it with information about the
available screens.

let navigator = StackNavigator({
 Home: { screen: DeckScreen },
 Review: { screen: ReviewScreen },
 CardCreation: { screen: NewCardScreen }
});

Then, instead of exporting the <Flashcards> component from Flashcards.js, we can
export the navigator.

export default navigator;

Using navigation.navigate to Transition Between Screens
What does creating a StackNavigator get us? Well, now each screen included in the
StackNavigator will be rendered with a special navigation prop. If we call:

this.props.navigation.navigate("SomeRoute");

The navigator will attempt to find the appropriately named screen to render.

Additionally, we can navigate one step backward in the stack:

this.props.navigation.goBack();

Let’s modify the <DeckScreen> component so that tapping on a deck brings us to the
<ReviewScreen>.

First, let’s look at the <Deck> component, which is used by <DeckScreen> (see
Example 10-16).

182 | Chapter 10: Navigation and Structure in Larger Applications

Example 10-16. src_checkpoint_01/components/DeckScreen/Deck.js

import React, { Component } from "react";
import { StyleSheet, View } from "react-native";

import DeckModel from "./../../data/Deck";
import Button from "./../Button";
import NormalText from "./../NormalText";
import colors from "./../../styles/colors";

class Deck extends Component {
 static displayName = "Deck";

 _review = () => {
 console.warn("Not implemented");
 };

 _addCards = () => {
 console.warn("Not implemented");
 };

 render() {
 return (
 <View style={styles.deckGroup}>

 <Button style={styles.deckButton} onPress={this._review}>
 <NormalText>
 {this.props.deck.name}: {this.props.count} cards
 </NormalText>
 </Button>

 <Button style={styles.editButton} onPress={this._addCards}>
 <NormalText>+</NormalText>
 </Button>
 </View>
);
 }
}

const styles = StyleSheet.create({
 deckGroup: {
 flexDirection: "row",
 alignItems: "stretch",
 padding: 10,
 marginBottom: 5
 },
 deckButton: { backgroundColor: colors.pink, padding: 10, margin: 0, flex: 1 },
 editButton: {
 width: 60,
 backgroundColor: colors.pink2,
 justifyContent: "center",
 alignItems: "center",

Using React-Navigation | 183

 alignSelf: "center",
 padding: 0,
 paddingTop: 10,
 paddingBottom: 10,
 margin: 0,
 flex: 0
 }
});

export default Deck;

Let’s modify _review() in Deck.js to invoke a review prop:

_review = () => {
 this.props.review();
}

Now this prop will be invoked when someone taps the button associated with a deck.

Next, we need to update DeckScreen/index.js.

Let’s add a _review function here as well:

_review = () => {
 console.warn("Actual reviews not implemented");
 this.props.navigation.navigate("Review");
}

Note that we use the fat-arrow function declaration syntax in order to properly bind
the function to the component class. While React lifecycle methods are automatically
bound to the component instance, other methods are not.

Then, update the rendered <Deck> component to include the appropriate prop:

_mkDeckViews() {
 if (!this.state.decks) {
 return null;
 }

 return this.state.decks.map((deck) => {
 return (
 <Deck
 deck={deck}
 count={deck.cards.length}
 key={deck.id}
 review={this._review} />);
 });
}

Run the application. When you tap on a deck, it should bring you to the review
screen. Nice!

184 | Chapter 10: Navigation and Structure in Larger Applications

Configuring the Header with navigationOptions
We can also pass in navigationOptions to the StackNavigator in order to configure
what gets rendered in the header.

Let’s update the Flashcards.js file to set some basic header style options (see
Example 10-17).

Example 10-17. src_checkpoint_02/components/Flashcards.js

import React, { Component } from "react";
import { StyleSheet, View } from "react-native";
import { StackNavigator } from "react-navigation";

import Logo from "./Header/Logo";
import DeckScreen from "./DeckScreen";
import NewCardScreen from "./NewCardScreen";
import ReviewScreen from "./ReviewScreen";

let headerOptions = {
 headerStyle: { backgroundColor: "#FFFFFF" },
 headerLeft: <Logo />
};

let navigator = StackNavigator({
 Home: { screen: DeckScreen, navigationOptions: headerOptions },
 Review: { screen: ReviewScreen, navigationOptions: headerOptions },
 CardCreation: { screen: NewCardScreen, navigationOptions: headerOptions }
});

export default navigator;

Additionally, in the DeckScreen/index.js file, let’s set some more navigationOptions.

class DecksScreen extends Component {

 static navigationOptions = {
 title: 'All Decks'
 };

 ...
}

Setting a title will change the rendered title in the StackNavigator header.

If we look at our application again, we can see the changes take effect (Figure 10-6).

Using React-Navigation | 185

Figure 10-6. Setting the title via navigationOptions

Implementing the Rest
Now that we have the StackNavigator in place, we need to wire it up to the rest of
the application. Specifically, the following interactions should work:

• Tapping a deck from the <DeckScreen> should navigate to the <ReviewScreen>
• Tapping the plus button from the <DeckScreen> should navigate to the <New
CardScreen>

• Tapping Done from the <NewCardScreen> should navigate back to the
<DeckScreen>

• Tapping Create Card from the <NewCardScreen> should navigate to a fresh <New
CardScreen>

186 | Chapter 10: Navigation and Structure in Larger Applications

• Tapping Review Deck from the <NewCardScreen> should navigate to the
<ReviewScreen>

• Tapping Stop Reviewing from the <ReviewScreen> should navigate back to the
<DeckScreen>

• Tapping Done from the <ReviewScreen> should navigate back to the
<DeckScreen>

• Creating a deck from the <DeckScreen> should navigate to the <NewCardScreen>

The updated code for this section is located on GitHub. The following files will be
updated:

• components/DeckScreen/Deck.js
• components/DeckScreen/DeckCreation.js
• components/DeckScreen/index.js
• components/NewCardScreen/index.js
• components/ReviewScreen/index.js
• components/Flashcards.js
• components/Header/Logo.js

Summary
Organizing larger applications in React Native is sometimes a challenge. While we’ve
looked at the pieces necessary to build React Native applications in previous chapters,
the flashcards application is a meatier example of how it all fits together. By using the
React Navigation library, we can combine many disparate screens of an app into a
cohesive user experience.

In the next section, we’ll improve upon the flashcards application by adding Redux, a
state management library, and integrating it with AsyncStorage to persist state
between application launches.

Summary | 187

https://github.com/bonniee/learning-react-native/tree/2.0.0/src/flashcards/src_checkpoint_02

CHAPTER 11

State Management in Larger Applications

In Chapter 10, we used the flashcard application as a jumping-off point to discuss the
structure of larger applications. One of the common issues that React applications
encounter as they grow is state management. React Native is no different: as our appli‐
cation gets larger, we can benefit from using a state management library. In this chap‐
ter, we’ll look at Redux, a library for managing data flow, and integrate it with our
flashcards application. We’ll also integrate AsyncStorage with our Redux store.

Using Redux to Manage State
Redux is based somewhat on the Flux data flow pattern, as well as functional pro‐
gramming concepts. Previous examples we’ve looked at in this book haven’t required
much in the way of data flow management. With smaller applications, communicat‐
ing between components is usually a trivial issue. Consider the case where a button
tap has an impact on the parent’s state:

class Child extends Component {
 render() {
 <TouchableOpacity onPress={this.props.onPress}>
 <Text>Child Component</Text>
 </TouchableOpacity>
 }
}

By passing a callback from the parent to the child, we can alert the parent about inter‐
actions with the child:

class Parent extends Component {
 constructor(props) {
 super(props);
 this.initialState = { numTaps: 0 };
 }

189

 _handlePress = () => {
 this.setState({numTaps: this.state.numTaps + 1});
 }

 render() {
 <Child onPress={this._handlePress}/>
 }
}

For simple use cases, this pattern works just fine.

Our need for a more robust data flow architecture becomes apparent when we con‐
sider a more complex interaction. What happens when a component much farther
down the component tree needs to impact an application state located on a higher
level? It’s very easy to end up with a tangle of spaghetti, and to spend tedious time
stringing callbacks through your code. Managing active routes, handling user interac‐
tions, fetching data from the server, animating changes—as you add more state to
your application, the complexity grows, and cascading updates can be triggered in
unpredictable ways.

Redux is one of many libraries designed to make it easier to manage your applica‐
tion’s state, with the goal of making state changes predictable and easy to manage.

In Redux, state is located in a single object, in a single store, which acts as the sole
source of truth. Components that need to render based on state can connect to that
store and receive the state as props. Components cannot modify state directly.

Changes to state are triggered by a set of predefined actions. A single reducer com‐
bines the previous state and information from the action in order to calculate the new
state. Thus, logic about how your state can change, and when, is centralized in one
easy-to-debug location.

All of this will likely make more sense in practice than in theory. Let’s install Redux
and look at how to add it to our flashcard application. In addition to the redux pack‐
age, we will want to install the react-redux package, which contains the React bind‐
ings for redux.

npm install --save redux react-redux

Actions
First things first: let’s define what types of actions can result in state changes. We’re
going to create some string constants to represent the different types of actions (see
Example 11-1).

190 | Chapter 11: State Management in Larger Applications

Example 11-1. src_checkpoint_03/actions/types.js

export const ADD_DECK = "ADD_DECK";
export const ADD_CARD = "ADD_CARD";
export const REVIEW_DECK = "REVIEW_DECK";
export const STOP_REVIEW = "STOP_REVIEW";
export const NEXT_REVIEW = "NEXT_REVIEW";

Each of these action types represents a user interaction and covers the basic function‐
ality of our application: adding cards or decks, or starting or stopping a review.

An action in Redux is an object that contains a key named type, and some optional
extra data. We need to add some action creators to create these objects (see
Example 11-2). While we could theoretically skip having a separate file with action
creators, centralizing this code will help keep our React components clean, and gives
us a single file to glance at to find action definitions.

Example 11-2. src_checkpoint_03/actions/creators.js

import {
 ADD_DECK,
 ADD_CARD,
 REVIEW_DECK,
 STOP_REVIEW,
 NEXT_REVIEW
} from "./types";

import Card from "../data/Card";
import Deck from "../data/Deck";

export const addDeck = name => {
 return { type: ADD_DECK, data: new Deck(name) };
};

export const addCard = (front, back, deckID) => {
 return { type: ADD_CARD, data: new Card(front, back, deckID) };
};

export const reviewDeck = deckID => {
 return { type: REVIEW_DECK, data: { deckID: deckID } };
};

export const stopReview = () => {
 return { type: STOP_REVIEW, data: {} };
};

export const nextReview = () => {
 return { type: NEXT_REVIEW, data: {} };
};

Actions | 191

In many ways, these action creators act as convenience functions. For example, the
addDeck action creator takes a deck name as a parameter and then handles the actual
construction of a Deck.

Reducers
Actions represent things that happened in your application. Reducers describe how
your application state changes in response to actions. A reducer is a “pure function”:
it has no side effects, and its return value is determined only by its inputs. (Don’t call
Math.random in a reducer.)

The simplest reducer we could write would look like:

const reducer = (state = {}, action) => {
 return state;
}

Our state is going to contain two items: an array of decks and information about the
current review. The default state will look like this:

decks: [],
currentReview: {
 deckID = null,
 questions = [],
 currentQuestionIndex = 0
}

Let’s start writing our first reducer by looking at the ADD_DECK action. Looking back at
actions/creators.js, we see the following action:

{
 type: ADD_DECK,
 data: new Deck(name)
}

If we want to write a reducer for the decks key, the signature needs to look like:

const decksReducer = (state = [], action) => {
 // returns some state
}

We want to add the new deck from our action to the existing state, so let’s implement
the deckReducer.

const deckReducer = (state = [], action) => {
 switch (action.type) {
 case ADD_DECK:
 return state.concat(action.data);
 }
 return state;
}

192 | Chapter 11: State Management in Larger Applications

First, we need a switch statement based on the action’s type. We’re only handling the
ADD_DECK action for now. In all other cases we return the original state, unmodified.
This is very important—don’t forget to handle the default case!

Then, if the action type is in fact ADD_DECK, we concatenate the new deck to our exist‐
ing deck state and return it.

Now let’s implement the rest of the deckReducer (see Example 11-3).

Example 11-3. src_checkpoint_03/reducers/decks.js

import { ADD_DECK, ADD_CARD } from "../actions/types";

function decksWithNewCard(oldDecks, card) {
 return oldDecks.map(deck => {
 if (deck.id === card.deckID) {
 deck.addCard(card);
 return deck;
 } else {
 return deck;
 }
 });
}

const reducer = (state = [], action) => {
 console.warn("Changes are not persisted to disk");

 switch (action.type) {
 case ADD_DECK:
 return state.concat(action.data);
 case ADD_CARD:
 return decksWithNewCard(state, action.data);
 }
 return state;
};

export default reducer;

Next, let’s look at the reviews reducer (Example 11-4). This reducer will handle the
REVIEW_DECK, NEXT_REVIEW, and STOP_REVIEW actions. Handling STOP_REVIEW is sim‐
plest: we’ll replace the state with the default state. For NEXT_REVIEW, we increment the
review index. Handling REVIEW_DECK is somewhat more complex because we have to
take a deck of cards and generate questions based on it.

Example 11-4. src_checkpoint_03/reducers/reviews.js

import { mkReviews } from "./../data/QuizCardView";
import { REVIEW_DECK, NEXT_REVIEW, STOP_REVIEW } from "./../actions/types";

Reducers | 193

export const mkReviewState = (
 deckID = null,
 questions = [],
 currentQuestionIndex = 0
) => {
 return { deckID, questions, currentQuestionIndex };
};

function findDeck(decks, id) {
 return decks.find(d => {
 return d.id === id;
 });
}

function generateReviews(deck) {
 return mkReviewState(deck.id, mkReviews(deck.cards), 0);
}

function nextReview(state) {
 return mkReviewState(
 state.deckID,
 state.questions,
 state.currentQuestionIndex + 1
);
}

const reducer = (state = mkReviewstate(), action, decks) => {
 switch (action.type) {
 case REVIEW_DECK:
 return generateReviews(findDeck(decks, action.data.deckID));
 case NEXT_REVIEW:
 return nextReview(state);
 case STOP_REVIEW:
 return mkReviewState();
 }
 return state;
};

export default reducer;

Note that this reducer depends on deck information, so its signature is slightly differ‐
ent than the decksReducer.

Now let’s wire them up together. In Redux, you only connect a single reducer to your
store, so we need to combine these into one reducer (see Example 11-5).

Example 11-5. src_checkpoint_03/reducers/index.js

import { MockDecks, MockCards } from "./../data/Mocks";

import DecksReducer from "./decks";

194 | Chapter 11: State Management in Larger Applications

import ReviewReducer, { mkReviewState } from "./reviews";

const initialState = () => {
 return { decks: MockDecks, currentReview: mkReviewState() };
};

export const reducer = (state = initialState(), action) => {
 let decks = DecksReducer(state.decks, action);

 return {
 decks: decks,
 currentReview: ReviewReducer(state.currentReview, action, decks)
 };
};

Now that we’ve written some Redux-specific code, the next step is to integrate it into
our actual application.

Connecting Redux
Remember how we said that state is located in a single Redux store? Let’s open up
components/Flashcard.js, which is the root component for our application, and create
that store.

First we need to import the createStore method from redux, as well as the reducer
that we just created in reducers/index.js. Then we can create the store.

import { createStore } from "redux";
import { reducer } from "../reducers/index";

let store = createStore(reducer);

Next, in order to use this store from our application, we need to add a <Provider>
component.

Wrapping your application’s root component in a <Provider> makes the Redux store
available to any component at any part of the component hierarchy. Remember, state
in Redux is read-only, so there’s no risk of complications from reading state at any
point in the component hierarchy. <Provider> is part of the react-redux package.

Let’s wire that in. Example 11-6 shows the full component file after we integrate our
Redux store.

Example 11-6. src_checkpoint_03/components/Flashcards.js

import React, { Component } from "react";
import { StyleSheet, View } from "react-native";
import { StackNavigator } from "react-navigation";
import { createStore } from "redux";

Connecting Redux | 195

import { Provider } from "react-redux";

import { reducer } from "../reducers/index";

import Logo from "./Header/Logo";
import DeckScreen from "./DeckScreen";
import NewCardScreen from "./NewCardScreen";
import ReviewScreen from "./ReviewScreen";

let store = createStore(reducer);

let headerOptions = {
 headerStyle: { backgroundColor: "#FFFFFF" },
 headerLeft: <Logo />
};

const Navigator = StackNavigator({
 Home: { screen: DeckScreen, navigationOptions: headerOptions },
 Review: { screen: ReviewScreen, navigationOptions: headerOptions },
 CardCreation: {
 screen: NewCardScreen,
 path: "createCard/:deckID",
 navigationOptions: headerOptions
 }
});

class App extends Component {
 render() {
 return (
 <Provider store={store}>
 <Navigator />
 </Provider>
);
 }
}

export default App;

Now that we’ve integrated Redux, let’s use it to render some data. We’ll start by modi‐
fying the <DecksScreen> component to display decks based on the contents of the
Redux store.

In order to connect a given component to our Redux store, we use the react-redux
bindings.

import { connect } from "react-redux"

Then we need to define two functions: mapStateToProps and mapDispatchToProps.

mapStateToProps describes how the Redux store’s state will be provided to this com‐
ponent as props. Our state includes an array of decks. We’ll want to calculate the
counts here, too.

196 | Chapter 11: State Management in Larger Applications

const mapStateToProps = state => {
 return {
 decks: state.decks,
 counts: state.decks.reduce(
 (sum, deck) => {
 sum[deck.id] = deck.cards.length;
 return sum;
 },
 {}
)
 };
};

Meanwhile, mapDispatchToProps defines the props that a component will receive,
which can be used to dispatch actions. We need to import our action creators and
then invoke them from here.

import { addDeck, reviewDeck } from "./../../actions/creators";
...
const mapDispatchToProps = dispatch => {
 return {
 createDeck: deckAction => {
 dispatch(deckAction);
 },
 reviewDeck: deckID => {
 dispatch(reviewDeck(deckID));
 }
 };
};

Finally, we need to call connect() to create a Redux-connected component.

export default connect(mapStateToProps, mapDispatchToProps)(DecksScreen);

Pulling it all together, we can use these new props (reviewDeck, createDeck, decks,
and counts) in our component. Now, the <DecksScreen> will render based on props
received from Redux, and it will also dispatch Redux actions instead of modifying
state directly (see Example 11-7).

Example 11-7. src_checkpoint_03/components/DeckScreen/index.js

import React, { Component } from "react";
import { View } from "react-native";

import { connect } from "react-redux";

import { MockDecks } from "./../../data/Mocks";
import { addDeck, reviewDeck } from "./../../actions/creators";
import Deck from "./Deck";
import DeckCreation from "./DeckCreation";

class DecksScreen extends Component {

Connecting Redux | 197

 static displayName = "DecksScreen";

 static navigationOptions = { title: "All Decks" };

 _createDeck = name => {
 let createDeckAction = addDeck(name);
 this.props.createDeck(createDeckAction);
 this.props.navigation.navigate("CardCreation", {
 deckID: createDeckAction.data.id
 });
 };

 _addCards = deckID => {
 this.props.navigation.navigate("CardCreation", { deckID: deckID });
 };

 _review = deckID => {
 this.props.reviewDeck(deckID);
 this.props.navigation.navigate("Review");
 };

 _mkDeckViews() {
 if (!this.props.decks) {
 return null;
 }

 return this.props.decks.map(deck => {
 return (
 <Deck
 deck={deck}
 count={this.props.counts[deck.id]}
 key={deck.id}
 add={() => {
 this._addCards(deck.id);
 }}
 review={() => {
 this._review(deck.id);
 }}
 />
);
 });
 }

 render() {
 return (
 <View>
 {this._mkDeckViews()}
 <DeckCreation create={this._createDeck} />
 </View>
);
 }
}

198 | Chapter 11: State Management in Larger Applications

const mapDispatchToProps = dispatch => {
 return {
 createDeck: deckAction => {
 dispatch(deckAction);
 },
 reviewDeck: deckID => {
 dispatch(reviewDeck(deckID));
 }
 };
};

const mapStateToProps = state => {
 return {
 decks: state.decks,
 counts: state.decks.reduce(
 (sum, deck) => {
 sum[deck.id] = deck.cards.length;
 return sum;
 },
 {}
)
 };
};

export default connect(mapStateToProps, mapDispatchToProps)(DecksScreen);

In general, when you are converting to Redux or a similar library, replacing access to
or mutating this.state is a common pattern. The more your components rely on
props instead of state, the easier it is to manage growing complexity in your applica‐
tion.

We need to make similar updates to the <NewCardScreen> and <ReviewScreen> com‐
ponents as well; see Examples 11-8 and 11-9, respectively. As we did with
<DecksScreen>, we implement mapDispatchToProps and mapStateToProps for each
of them.

Example 11-8. src_checkpoint_03/components/NewCardScreen/index.js

import React, { Component } from "react";
import { StyleSheet, View } from "react-native";

import DeckModel from "./../../data/Deck";
import { addCard } from "./../../actions/creators";
import { connect } from "react-redux";

import Button from "../Button";
import LabeledInput from "../LabeledInput";
import NormalText from "../NormalText";
import colors from "./../../styles/colors";

Connecting Redux | 199

class NewCard extends Component {
 static navigationOptions = { title: "Create Card" };

 static initialState = { front: "", back: "" };

 constructor(props) {
 super(props);
 this.state = this.initialState;
 }

 _deckID = () => {
 return this.props.navigation.state.params.deckID;
 };

 _handleFront = text => {
 this.setState({ front: text });
 };

 _handleBack = text => {
 this.setState({ back: text });
 };

 _createCard = () => {
 this.props.createCard(this.state.front, this.state.back, this._deckID());
 this.props.navigation.navigate("CardCreation", { deckID: this._deckID() });
 };

 _reviewDeck = () => {
 this.props.navigation.navigate("Review");
 };

 _doneCreating = () => {
 this.props.navigation.navigate("Home");
 };

 render() {
 return (
 <View>
 <LabeledInput
 label="Front"
 clearOnSubmit={false}
 onEntry={this._handleFront}
 onChange={this._handleFront}
 />
 <LabeledInput
 label="Back"
 clearOnSubmit={false}
 onEntry={this._handleBack}
 onChange={this._handleBack}
 />

200 | Chapter 11: State Management in Larger Applications

 <Button style={styles.createButton} onPress={this._createCard}>
 <NormalText>Create Card</NormalText>
 </Button>

 <View style={styles.buttonRow}>
 <Button style={styles.secondaryButton} onPress={this._doneCreating}>
 <NormalText>Done</NormalText>
 </Button>

 <Button style={styles.secondaryButton} onPress={this._reviewDeck}>
 <NormalText>Review Deck</NormalText>
 </Button>
 </View>
 </View>
);
 }
}

const styles = StyleSheet.create({
 createButton: { backgroundColor: colors.green },
 secondaryButton: { backgroundColor: colors.blue },
 buttonRow: { flexDirection: "row" }
});

const mapStateToProps = state => {
 return { decks: state.decks };
};

const mapDispatchToProps = dispatch => {
 return {
 createCard: (front, back, deckID) => {
 dispatch(addCard(front, back, deckID));
 }
 };
};

export default connect(mapStateToProps, mapDispatchToProps)(NewCard);

Example 11-9. src_checkpoint_03/components/ReviewScreen/index.js

import React, { Component } from "react";
import { StyleSheet, View } from "react-native";

import { connect } from "react-redux";
import ViewCard from "./ViewCard";
import { mkReviewSummary } from "./ReviewSummary";
import colors from "./../../styles/colors";
import { reviewCard, nextReview, stopReview } from "./../../actions/creators";

class ReviewScreen extends Component {
 static displayName = "ReviewScreen";

Connecting Redux | 201

 static navigationOptions = { title: "Review" };

 constructor(props) {
 super(props);
 this.state = { numReviewed: 0, numCorrect: 0 };
 }

 onReview = correct => {
 if (correct) {
 this.setState({ numCorrect: this.state.numCorrect + 1 });
 }
 this.setState({ numReviewed: this.state.numReviewed + 1 });
 };

 _nextReview = () => {
 this.props.nextReview();
 };

 _quitReviewing = () => {
 this.props.stopReview();
 this.props.navigation.goBack();
 };

 _contents() {
 if (!this.props.reviews || this.props.reviews.length === 0) {
 return null;
 }

 if (this.props.currentReview < this.props.reviews.length) {
 return (
 <ViewCard
 onReview={this.onReview}
 continue={this._nextReview}
 quit={this._quitReviewing}
 {...this.props.reviews[this.props.currentReview]}
 />
);
 } else {
 let percent = this.state.numCorrect / this.state.numReviewed;
 return mkReviewSummary(percent, this._quitReviewing);
 }
 }

 render() {
 return (
 <View style={styles.container}>
 {this._contents()}
 </View>
);
 }
}

202 | Chapter 11: State Management in Larger Applications

const styles = StyleSheet.create({
 container: { backgroundColor: colors.blue, flex: 1, paddingTop: 24 }
});

const mapDispatchToProps = dispatch => {
 return {
 nextReview: () => {
 dispatch(nextReview());
 },
 stopReview: () => {
 dispatch(stopReview());
 }
 };
};

const mapStateToProps = state => {
 return {
 reviews: state.currentReview.questions,
 currentReview: state.currentReview.currentQuestionIndex
 };
};

export default connect(mapStateToProps, mapDispatchToProps)(ReviewScreen);

Persisting Data with AsyncStorage
Right now, our flashcard application’s state isn’t persisted, so if we add new decks or
cards and then restart the app, our data is lost. Let’s fix this by saving the application’s
state with AsyncStorage.

This is an example of how Redux can really shine: because our state management
logic is centralized, making this change is simpler than it would otherwise be.

We’ll start by adding a file that handles read/write logic for persisting our state to
disk; see Example 11-10. Remember, AsyncStorage.getItem and AsyncStor

age.setItem are both asynchronous APIs.

Example 11-10. src_checkpoint_04/storage/decks.js

import { AsyncStorage } from "react-native";
import Deck from "./../data/Deck";
export const DECK_KEY = "flashcards:decks";
import { MockDecks } from "./../data/Mocks";

async function read(key, deserializer) {
 try {
 let val = await AsyncStorage.getItem(key);
 if (val !== null) {
 let readValue = JSON.parse(val).map(serialized => {
 return deserializer(serialized);

Persisting Data with AsyncStorage | 203

 });
 return readValue;
 } else {
 console.info(`${key} not found on disk.`);
 return [];
 }
 } catch (error) {
 console.warn("AsyncStorage error: ", error.message);
 }
}

async function write(key, item) {
 try {
 await AsyncStorage.setItem(key, JSON.stringify(item));
 } catch (error) {
 console.error("AsyncStorage error: ", error.message);
 }
}

export const readDecks = () => {
 return read(DECK_KEY, Deck.fromObject);
};

export const writeDecks = decks => {
 return write(DECK_KEY, decks);
};

// For debug/test purposes.
const replaceData = writeDecks(MockDecks);

Remember that our Redux state has two elements: decks and currentReview.
Because currentReview is transient information, we only need to worry about saving
decks.

Now that we have an easy way of reading and writing our decks to AsyncStorage, let’s
add a new action type, LOAD_DATA, to actions/types.js, as shown in Example 11-11.

Example 11-11. Adding a new type to src_checkpoint_04/actions/types.js

export const LOAD_DATA = "LOAD_DATA";

We also need an accompanying action creator in actions/creators.js (see
Example 11-12).

Example 11-12. Adding a new action creator to src_checkpoint_04/actions/creators.js

export const loadData = data => {
 return { type: LOAD_DATA, data: data };
};

204 | Chapter 11: State Management in Larger Applications

Next, update Flashcards.js to load data from disk after our store is created.

import { readDecks } from "../storage/decks";
import { loadData } from "../actions/creators";

...

let store = createStore(reducer);

// On application start, read saved state from disk.
readDecks().then(decks => {
 store.dispatch(loadData(decks));
});

Now that we have dispatched the action, we need to update our deck reducer to han‐
dle the LOAD_DATA action. Additionally, when handling the ADD_CARD or ADD_DECK
actions, this reducer should save the deck state (see Example 11-13).

Example 11-13. Updating src_checkpoint_04/reducers/decks.js to save state

import { ADD_DECK, ADD_CARD, LOAD_DATA } from "../actions/types";
import Deck from "./../data/Deck";
import { writeDecks } from "./../storage/decks";

function decksWithNewCard(oldDecks, card) {
 let newState = oldDecks.map(deck => {
 if (deck.id === card.deckID) {
 deck.addCard(card);
 return deck;
 } else {
 return deck;
 }
 });
 saveDecks(newState);
 return newState;
}

function saveDecks(state) {
 writeDecks(state);
 return state;
}

const reducer = (state = [], action) => {
 switch (action.type) {
 case LOAD_DATA:
 return action.data;
 case ADD_DECK:
 let newState = state.concat(action.data);
 saveDecks(newState);
 return newState;
 case ADD_CARD:

Persisting Data with AsyncStorage | 205

 return decksWithNewCard(state, action.data);

 }
 return state;
};

export default reducer;

And…that’s it! Because state is managed by Redux, we can be confident that by modi‐
fying our deck reducer, we’ve ensured that all relevant state changes will be persisted
to AsyncStorage.

Summary and Homework
A common critique of Redux—and similar state management libraries—is that it
adds significant boilerplate to your application. Indeed, we had to write several new
files in order to integrate Redux into our flashcard application. However, by express‐
ing state relationships explicitly rather than mutating state locally, this “boilerplate”
makes existing complexity much more manageable. It’s harder to write state-based
bugs with Redux! You also get some nice bonuses like time travel debugging. Plus, as
we saw when integrating AsyncStorage, making further changes to your application
becomes much easier.

Which particular state management library you use doesn’t matter so much; there are
many reasonable ways to structure a large application. However, as with any large
React application, if you don’t plan for state management, eventually you will proba‐
bly start to encounter bugs related to state mutations and have difficulty making
changes to existing components. This is a good sign that you need to put more plan‐
ning into your state and data flow management.

The flashcard application is meant to serve as a reference. In many ways, it’s a “mini‐
mum viable project,” and there are plenty of ways it could be improved. That being
said, there’s still plenty to explore in the codebase, and I encourage you to dig into it.

If you want to get some more practice working within the context of React Native,
check out the GitHub repository and try extending the flashcard application. Here
are some ideas to get you started:

• Add the ability to delete decks
• Add a screen where you can view all cards in a deck
• Display statistics about review performance over time
• Experiment with different styles

206 | Chapter 11: State Management in Larger Applications

Conclusion

If you’ve made it this far, congratulations!

We’ve gone from creating your very first “Hello, World” React Native application all
the way up through a complex, fully featured application with total code reuse across
iOS and Android. In order to do so, we started by looking at the basic components
for React Native, and how to style them. We learned how to work with touch and
platform native APIs, like the AsyncStorage and Geolocation APIs. We covered how
to debug React Native applications with the developer tools, and how to deploy your
applications to real devices. For functionality beyond the standard React Native
library, we also saw how to use native Objective-C and Java modules as well as third-
party JavaScript libraries using npm.

Your knowledge of JavaScript and React, coupled with the topics we’ve covered in this
book, should enable you to quickly and efficiently write cross-platform mobile appli‐
cations for Android and iOS. Of course, there’s still plenty to learn, and this single
book can’t cover all the things you’ll need to know in order to develop mobile appli‐
cations with React Native. If you get stuck or have questions, reach out to the com‐
munity, whether that’s on Stack Overflow or on IRC (irc.lc/freenode/reactnative).

Keep in touch! Join the Learning React Native mailing list at LearningReactNa‐
tive.com for more resources and updates related to the book. You can also find me on
Twitter as @brindelle.

Finally, and most importantly, have fun! I’m looking forward to seeing what you
build.

207

http://stackoverflow.com/questions/tagged/react-native
http://irc.lc/freenode/reactnative
http://learningreactnative.com
http://learningreactnative.com
http://twitter.com/brindelle

APPENDIX A

Modern JavaScript Syntax

Some of the code samples in this book use modern JavaScript syntax. If you’re not
familiar with this syntax, don’t worry—it’s a pretty straightforward translation from
the JavaScript you might be accustomed to.

ECMAScript 5, or ES5, is the JavaScript language specification with the broadest
adoption. However, there are many compelling language features introduced in ES6,
ES7, and beyond. React Native uses Babel, the JavaScript compiler, to transform our
JavaScript and JSX code. One of Babel’s features is its ability to compile newer-style
syntax into ES5-compliant JavaScript. This enables us to use language features from
ES6 and beyond throughout our React codebase.

let and const
In pre-ES6 JavaScript, we use var to declare variables.

In ES6, there are two additional ways to declare variables: let and const. A variable
declared with const cannot be reassigned; that is to say, the following is invalid:

const count = 2;
count = count + 1; // BAD

Variables declared with let or var may be reassigned. A variable declared with let
may only be used in the same block as it is defined.

Some of the examples in this book still use var, but you’ll also see let and const.
Don’t worry about the distinctions too much.

209

https://babeljs.io/

Importing Modules
We could use CommonJS module syntax to export our components and other Java‐
Script modules (Example A-1). In this system, we use require to import other mod‐
ules, and assign a value to module.exports in order to make a file’s contents available
to other modules.

Example A-1. Requiring and exporting modules using CommonJS syntax

var OtherComponent = require('./other_component');

class MyComponent extends Component {
 ...
}

module.exports = MyComponent;

With ES6 module syntax, we can use the export and import commands instead.
Example A-2 shows the equivalent code, using ES6 module syntax.

Example A-2. Importing and exporting modules using ES6 module syntax

import OtherComponent from './other_component';

class MyComponent extends Component {
 ...
}

export default MyComponent;

Destructuring
Destructuring assignments provide us with a convenient shorthand for extracting
data from objects.

Take this ES5-compliant snippet:

var myObj = {a: 1, b: 2};
var a = myObj.a;
var b = myObj.b;

We can use destructuring to do this more succinctly:

var {a, b} = {a: 1, b: 2};

You’ll often see this used with import statements. When we import React, we’re
actually receiving an object. We could import without using destructuring, as shown
in Example A-3.

210 | Appendix A: Modern JavaScript Syntax

http://mzl.la/21cv5QF
http://mzl.la/1I6ppBl

Example A-3. Importing the Component class without destructuring

import React from "react";
let Component = React.Component;

But it’s much nicer to use destructuring, as shown in Example A-4.

Example A-4. Using destructuring to import the Component class

import React, { Component } from "react";

Function Shorthand
ES6’s function shorthand is also convenient. In ES5-compliant JavaScript, we define
functions as shown in Example A-5.

Example A-5. Longhand function declaration

render: function() {
 return <Text>Hi</Text>;
}

Writing out function over and over again can get annoying. Example A-6 shows the
same function, this time applying ES6’s function shorthand.

Example A-6. Shorthand function declaration

render() {
 return <Text>Hi</Text>;
}

Fat-Arrow Functions
In ES5-compliant JavaScript, we often need to bind our functions to make sure that
their context (i.e., the value of this) is as expected (Example A-7). This is especially
common when we’re dealing with callbacks.

Example A-7. Binding functions manually with ES5-compliant JavaScript

var callbackFunc = function(val) {
 console.log('Do something');
}.bind(this);

Fat-arrow functions are automatically bound so we don’t need to do that ourselves
(Example A-8).

Modern JavaScript Syntax | 211

http://mzl.la/1SW4AJ4
http://mzl.la/1MN2cRj

Example A-8. Using a fat-arrow function for binding

var callbackFunc = (val) => {
 console.log('Do something');
};

Default Parameters
You can specify default parameters for a function, as shown in Example A-9.

Example A-9. Using default parameters

var helloWorld = (name = "Bonnie") => {
 console.log("Hello, " + name);
}

helloWorld("Zach"); // Prints "Hello, Zach"
helloWorld(); // Prints "Hello, Bonnie"

This syntax is convenient when you want to guarantee a sensible default value for a
parameter.

String Interpolation
In ES5-compliant JavaScript, we might build a string by using code such as that in
Example A-10.

Example A-10. String concatenation in ES5-compliant JavaScript

var API_KEY = 'abcdefg';
var url = 'http://someapi.com/request&key=' + API_KEY;

Instead, we can use tempate strings, which support multiline strings and string inter‐
polation. By enclosing a string in backticks, we can insert other variable values using
the ${} syntax (Example A-11).

Example A-11. String interpolation in ES6

var API_KEY = 'abcdefg';
var url = `http://someapi.com/request&key=${API_KEY}`;

Working with Promises
A promise is an object representing something that will eventually happen. Instead of
handcrafting your handling of success and error callbacks, promises have a consistent
API for interacting with asynchronous operations.

212 | Appendix A: Modern JavaScript Syntax

http://mzl.la/21cvceS

Let’s say that you have two callbacks: one for success and one for error handling (see
Example A-12).

Example A-12. Defining two callbacks

function successCallback(result) {
 console.log("It succeeded: ", result);
}

function errorCallback(error) {
 console.log("It failed: ", error);
}

An old-style function might expect two callbacks and call one of them based on suc‐
cess or failure (see Example A-13).

Example A-13. Passing success and error callbacks in old-style JavaScript

uploadToSomeAPI(successCallback, errorCallback);

With modern promise-based syntax, you can pass success and error callbacks as
shown in Example A-14.

Example A-14. Passing success and error callbacks with promises

uploadToSomeAPI().then(successCallback, errorCallback);

These two examples look very similar, but the advantages of using promises becomes
evident when you have many callbacks or asynchronous operations to execute. Let’s
say that you need to upload some data to an API, update a user interface, and then
look for new data.

With old-style callbacks, we can quickly end up in what is sometimes referred to as
“callback hell” (Example A-15).

Example A-15. Chaining callbacks together can get messy quickly and is also repetitive

uploadToSomeAPI(
 (result) => {
 updateUserInterface(
 result,
 uiUpdateResult => {
 checkForNewData(
 uiUpdateResult,
 newDataResult => {
 successCallback(newDataResult);
 },

Modern JavaScript Syntax | 213

 errorCallback
);
 },
 errorCallback
);
 }, errorCallback
);

With promises, we can chain calls to the then method, as Example A-16 shows.

Example A-16. Chaining promises together is simpler

uploadToSomeAPI()
 .then(result => updateUserInterface(result))
 .then(uiUpdateResult => checkForNewData(uiUpdateResult))
 .then(newDataResult => successCallback(newDataResult))
 .catch(errorCallback)

This keeps our code cleaner. It also means that we don’t need to reimplement callback
handling each time we write a function.

214 | Appendix A: Modern JavaScript Syntax

APPENDIX B

Deploying Your Application

Once you have built your totally awesome application, you’ll want to get it into the
hands of your users.

The process for building and deploying your production application varies by plat‐
form, and both Google and Apple periodically update the specific steps required.
However, the basic process remains the same:

1. Triple-check your assets: application icon, launch screen, and so on.
2. Specify target OS versions and devices.
3. Create a release build.
4. Get your paperwork in order.
5. Create an App Store and Play Store listing, including promotional screenshots.
6. Send the app to your beta testers and solicit feedback.
7. Submit for review.
8. Release!

Check Your Application Assets and Specify Target OS
Versions and Devices
It’s easy to overlook these steps during development. You’ll want to make sure that
you have a suitable application icon and launch screen for your application in the
correct sizes and resolutions for all the devices you intend to target.

Similarly, for any images, video, or other assets utilized by your application, make
sure that you have included versions appropriate to each targeted device.

215

Create a Release Build
You will need to compile your application into a production-ready release build
before shipping it off to your end users. This version of your application won’t have
debugging enabled and will include the bundled JavaScript instead of relying on the
React Native packager.

For both iOS and Android, the official React Native documentation includes guid‐
ance on creating production-ready builds.

Complete Your Paperwork
In order to distribute your application to Android devices, you’ll probably want to
register with Google Play. Similarly, you’ll need to register for an Apple Developer
account in order to submit to the App Store.

As part of this process, you need to provide some standard information, such as con‐
tact and payment information.

Beta Test Your Application
You’ll want to test your application on a variety of devices and operating system ver‐
sions. How does it perform in landscape versus portrait mode? With low battery?
With a slow network? What happens when you get interrupted by push notifications?

Getting your application into the hands of real users is the best way to evaluate how
your application performs in real-world scenarios. Both the Play Store and the App
Store have built-in programs to facilitate distribution of your application to beta
testers.

Create a Listing
You’ll need to convince people to download your application! Gather your promo‐
tional screenshots, select the appropriate category, and write a compelling descrip‐
tion.

Once that’s done, you can submit your application for review.

Wait for Review
As web developers, we’re used to having more control over our deploy processes. You
may be accustomed to shipping code to production many times in a single day, where
versions are usually a nonissue. With the iOS App Store and Google Play Store,
deployment is more complicated, and new version releases typically require review.

216 | Appendix B: Deploying Your Application

https://facebook.github.io/react-native/docs/running-on-device.html
https://developer.android.com
https://developer.apple.com
https://developer.apple.com

Review times vary from a day to a couple of weeks. Thus, it’s important to take the
submission and review process into account during your planning phase.

Release
After putting in the hard work to create your application, seeing it go live
(Figure B-1) can feel exhilarating. However, releasing your application to users is just
the beginning, as you’ll have to support your application postrelease. Unlike the web,
where you can deploy often and easily, new mobile versions take time, and have a
longer lifespan. Many iOS and Android users don’t have auto-updating enabled, so
every version counts. And at minimum you’ll need to wait for application review each
time you wish to submit an update or bug fix. (For truly critical bug fixes, you can
request an expedited review, but use these carefully.)

Figure B-1. The flashcard application, live on the Play Store

And, finally: congratulations on shipping your app!

Deploying Your Application | 217

APPENDIX C

Working with Expo Applications

Expo is a tool that allows you to write React Native apps without using Xcode or
Android Studio. Projects created with the Create React Native App tool are Expo
projects.

Expo makes it very easy to develop on your physical device and removes many of the
initial roadblocks to getting started with React Native. Thus, it’s a great choice while
you’re learning to develop using React Native.

You can read more about Expo and install the Expo mobile app at expo.io.

Ejecting from Expo
Any project that relies on custom native code (either your own, or third-party mod‐
ules that instruct you to run react-native link to install them) will not work with
Expo. Expo provides a way to “eject” from Expo into a traditional, full React Native
project. Ejecting will create a full React Native project from your existing Expo appli‐
cation. This is a one-way migration, so you won’t be able to go back to Expo after‐
wards.

You will also need to eject from Expo if you want more control over building and
publishing your application for the iOS App Store or Google Play Store.

More information is available in the Create React Native App documentation.

219

https://expo.io/
https://github.com/react-community/create-react-native-app

Index

Symbols
symbol, 117

A
absolute positioning, 84-85 (see also layouts)
acknowledgments, xiii
Android

<Drawer LayoutAndroid>, 70
<ToolbarAndroid>, 70, 133
Android-only components, 133
creating applications for, 14, 16
debugging application problems, 152

(see also debugging and developer tools)
deployment and release steps, 215-217
design guidelines, 71
failure to boot virtual device, 152
human interface guidelines, 137
previewing your app on, 15
react-native-video component, 127-130
rendering images on, 42
running apps on, 18
running apps on simulators, 25, 88, 94, 155
View, 8
viewing logs, 142
writing Java native modules for, 124-127

Android Studio, 18
animations, 50
applications, building

environment setup choices, 13
environment setup using Create React

Native App command, 14-16
environment setup using traditional

approach, 16-18
exploring sample code, 19-22

weather app example, 22-36
applications, building larger

Flashcard application example, 163-166
project structure, 166-181
state management, 189-206
using React Navigation, 181-187

applications, deploying, 215-217
assets

checking before deployment, 215
sizing appropriately, 152

AsyncStorage API, 103, 203-206
attributions, xi
auto-updating, 217

B
Babel compiler, 209
background images, adding, 32, 110
beta testing, 216
bridge interface, 7, 12
<Button> component, 44, 108, 173

C
CameraRoll API

getPhotoParams, 100
interacting with, 99
rendering images from, 101
requesting images, 100
uploading images to servers, 102

Chrome Developer Tools, 139, 142
code examples, obtaining and using, xi
code signing, configuring, 17
components

binding callbacks to, 25
changing callbacks on, 30

221

creating, 27, 45-48
creating component classes, 24
for lists, 54-67
for navigation, 69, 181-187
for organization, 70
for touch and gestures, 44-54
for views, 8
importing, 9, 21
installing third-party, 115
mobile- vs. web-based, 39-44
modifying with setNativeProps, 50
platform-specific, 133-137
in React Native, 8
reusing, 173
structuring, 9, 166
styling, 10, 41

console.error, 143
console.log, 141-143
console.warn, 143
Create React Native App command

benefits and drawbacks of, 14
creating new projects using, 14
package installation, 14
previewing apps on iOS or Android, 15
project structure, 14

createViewInstance, 130
CSS (Cascading Style Sheets), 10, 73

D
data

fetching from the Web, 29-31
handling application data, 178-181
persistent data storage, 103, 189, 203-206

(see also state management)
<DatePickerIOS>, 8
Debug Remote JS, 142
debugging and developer tools

Android problems, 152
console.log, 141-143
development environment issues, 151
getting help, 160
iOS device deployment issues, 153
JavaScript debugging options, 139-144
React Native debugging tools, 145-150
React Native packager, 153
simulator behavior, 155
testing your code, 155-160
Xcode problems, 151

dependencies, managing, 113, 151-152

deployment
basic process, 215
beta testing, 216
icons, launch screen, and assets, 215
release builds, 216
review process, 216

development environment
activating developer options, 139
Create React Native App, 14-16
debugging problems with, 151
React developer tools, 144
Red Screen of Death, 146-150
setup choices, 13, 16-18

<Drawer LayoutAndroid> component, 70

E
ECMAScript 5 (ES5), 209
errata, xii
Expo

activating developer options, 140
benefits of, 219
ejecting from Expo, 219
installing, 16

F
fat-arrow syntax, 25, 184, 211
Fetch API, 29
Flashcard application example

application screens, 167-173
data models, 178-181
downloading code for, 163
interaction flows, 164-166
main views, 163
navigation capability, 181-187
project structure, 166
reusable components, 173-177
styles, 177

<FlatList> component
basic use, 56
best use of, 55
integrating real data, 63
updating contents, 59

flexbox, 10, 80-84
Flow, 156
fonts, default settings for, 42, 177

G
Geofencing API, 95

222 | Index

Geolocation API
handling permissions, 93
non-supported features, 95
React Native support for, 91
reading user's location, 92
testing in emulated devices, 94
watching user's location, 95

gestures (see touch and gestures)
getting started (see applications, building)

H
<HeadingText> component, 175
host platform APIs

accessing, 91
AsyncStorage, 103, 203-206
CameraRoll, 98-103
Geolocation, 91-98
React Native support for, 11
SmarterWeather application, 104-112
working with non-supported, 113

HTML elements, Native counterparts to, 39

I
<Image> component, 42-44
images

adding background, 33, 43, 110
including web-based sources, 43
interacting with CameraRoll API, 98
rendering from CameraRoll, 101
requesting with getPhotoParams, 100
setting image paths, 42
sizing appropriately, 152
styling, 43
uploading to servers, 102

import statements, 20, 25, 117
in-app developer menu, 139
inline styles, 11, 41, 74
inspect element tool, 145
iOS

<DatePickerIOS>, 8
<SegmentedControlIOS>, 70
<TabBarIOS>, 70, 133
creating applications for, 14, 16
debugging application errors, 151

(see also debugging and developer tools)
debugging deployment issues, 153
deployment and release steps, 215-217
design guidelines, 71
human interface guidelines, 137

iOS-only components, 133
previewing your app on, 15
react-native-video component for, 121-123
rendering images on, 42
running apps on, 17
running apps on simulators, 25, 88, 94, 155
UIView, 8
writing Objective-C modules for, 116-120

J
Java native modules, 124-127

getName, 125, 129
JavaScript

Babel compiler for, 209
debugging practices in Native, 139-144
default parameters, 212
destructuring, 210
fat-arrow syntax, 211
function shorthand, 211
importing modules, 210
installing JavaScript libraries, 113
let and const, 209
string interpolation, 212
testing code, 155
working with Promises, 212-214

Jest
snapshot testing with, 157-160
unit testing with, 156

JSX (JavaScript eXtension), 9

L
layouts

creating complicated, 85-88, 167-173
navigating between screens, 181-187
React Native approach to, 80
using absolute positioning, 84
with flexbox, 80-84

library functions, importing, 21
lists

API selection for, 55
as central element of mobile, 54
optimizing list rendering, 55
using <FlatList> component, 56-65
using <SectionList> component, 65-67

Location Services, 91
location-based features, advanced, 95
logcat command (Android), 142

Index | 223

M
MDN Geolocation API web specification, 91
modules and native code

benefits of modular approach, 74
cross-platform native modules, 130
definition of native modules, 116
importing JavaScript, 210
importing modules, 21
installing JavaScript libraries, 113
installing third-party, 115
Java native modules, 124-130
Objective-C modules, 116-124
use cases for, 130

MP4 video assets, 116

N
native code (see modules and native code)
navigation

adding react-navigation to project, 182
components for, 69
configuring headers, 185
creating a StackNavigator, 182
implementing interactions, 186
transitioning between scenes, 182

<Navigator> component, 69
<NavigatorIOS> component, 69
networking APIs, 29
<NormalText> component, 174
npm package manager, 113, 151

O
Objective-C native modules, 116-120
onSubmitEditing prop, 25
OpenWeatherMap API, 29
organizational components, 70

P
package.json file, 113
packages, installing, 14, 113, 151
PanResponder class, 48-54
persistent data, storing, 103, 189, 203-206
Platform API, 137
platform-specific code, 133-137
position property, 84
positioning, absolute, 84-85 (see also layouts)
post release application support, 217
project structure, flashcard application, 166
Promises

Promise-based syntax, 29
working with, 212-214

R
RCTBridgeModule

creating React Native modules, 118
implementing, 117
importing, 117

RCTLogInfo, 118
RCTVideo, 121
RCTVideoManager, 122
RCT_EXPORT_METHOD macro, 118
RCT_EXPORT_MODULE() macro, 118
React Native

advantages of, 2-4
basics of, 1
creating components in, 8-11
debugging packager issues, 153
debugging tools, 145-150
developer tools, 144
documentation, 16
drawbacks and risks of, 4
JSX syntax used in, 9
platforms supported, 1, 7, 11
prerequisites to learning, ix
project structure, 19-22
rendering lifecycle, 7
resources, xii, 160
traditional installation, 16-22

React Navigation library, 181-187
react-native command

creating applications using, 16
installing developer tools, 16
running apps on Android, 18
running apps on iOS, 17

react-native link, 115
react-native-video component

for Android, 127-130
for iOS, 121-123
installing, 115
using, 116

react-native-web, 40
react-test-renderer package, 157
ReactVideoViewManager, 128-129
Red Screen of Death, 146-150
Redux library

benefits of for state management, 189-190
connecting Redux, 195-199
defining actions, 190

224 | Index

describing actions with reducers, 192-195
persisting data with AsyncStorage, 203-206

render lifecycle, 7
require call, 33
resizeMode prop, 43
resources, xii, 160

S
<SectionList> component, 55, 65-67
<SegmentedControlIOS> component, 70
setNativeProps, 50
setVolume, 129
SmarterWeather sample application, 104-111
snapshot testing, 157-160
source prop, 33, 42
StackNavigator, 182
state management, using Redux library for, 189
string interpolation, 212
styles

color values, 178
concatenating, 76
declaring and manipulating, 73-77
font sizes, 177
inline styles, 11, 41, 74
organization and inheritance, 77-79
passing as props, 78
positioning and designing layouts, 80-88
reusing and sharing, 73, 79, 173
style objects, 74-78

StyleSheet.create, 75

T
<TabBarIOS> component, 70, 133
testing

beta testing pre-deployment, 216
JavaScript code, 155
snapshot testing with Jest, 157-160
type checking with Flow, 156
unit testing with Jest, 156
using Xcode for, 17

text
default font settings, 42, 177
header elements, 42
rendering, 40-42
style inheritance, 42, 77-79
styling, 41

<Text> component, 40-42
<TextInput> component, 24, 30
<ToolbarAndroid> component, 70, 133

touch and gestures
choosing how to handle, 54
creating interactive components, 45-48
interactive buttons, 44, 173
platform-specific norms, 44
position, velocity, and distance, 48-54

<TouchableHighlight> component, 45-48
type checking, 156
typographical conventions, x

U
unit testing, 156

V
<Video> component, 115
<View> component, 8
views

platform-specific React components, 8
working with, 8
written using JSX, 9

Virtual DOM
abstraction layer provided by, 6
bridge interface, 7
performing calculations in, 6
purpose of, 5

<VirtualizedList> component, 55

W
weather app sample application

adding background image to, 32, 110
displaying data, 26-29
fetching data from the Web, 29-31
finished weather app, 22, 34-36
handling user input, 24-25
platform APIs, 96-98, 104-112
replacing default code, 23

X
Xcode

adding files to projects, 118
application testing using, 17
configuring code signing, 17
console statements in, 120, 141
debugging problems with, 151
device registration, 18
launching, 17

XHR module, 102

Index | 225

About the Author
Bonnie Eisenman is a software engineer at Twitter with previous experience at Code‐
cademy, Google, and Fog Creek Software. She has spoken at several conferences on
topics ranging from React to musical programming and Arduinos. In her spare time,
she enjoys building electronic musical instruments, laser-cutting chocolate, and
learning languages.

Colophon
The animal on the cover of Learning React Native is a ringtail possum (Pseudocheirus
peregrinus), a marsupial that is native to Australia. Ringtail possums are herbivorous
and live primarily in forested regions. It is named for its prehensile tail, which is often
coiled at the tip.

Ringtail possums are gray-brown in color and can grow up to 35 centimeters in
length. The diet of the ringtail possum consists of a variety of leaves, flowers, and
fruits. They are nocturnal and live in communal nests known as dreys. As marsupials,
ringtail possums carry their young in pouches until they are developed enough to
survive on their own.

The ringtail possum population declined steeply in the 1950s but has recovered in
recent years. However, they are still at risk of habitat loss due to deforestation.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Shaw’s Zoology. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	Prerequisites
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Resources
	Acknowledgments

	Chapter 1. What Is React Native?
	Advantages of React Native
	Developer Experience
	Code Reuse and Knowledge Sharing

	Risks and Drawbacks
	Summary

	Chapter 2. Working with React Native
	How Does React Native Work?
	Rendering Lifecycle
	Creating Components in React Native
	Working with Views
	Using JSX
	Styling Native Components

	Host Platform APIs
	Summary

	Chapter 3. Building Your First Application
	Setting Up Your Environment
	Developer Setup: Create React Native App
	Creating Your First Application with create-react-native-app
	Previewing Your App on iOS or Android

	Developer Setup: The Traditional Approach
	Creating Your First Application with react-native
	Running Your App on iOS
	Running Your App on Android

	Exploring the Sample Code
	Building a Weather App
	Handling User Input
	Displaying Data
	Fetching Data from the Web
	Adding a Background Image
	Putting It All Together

	Summary

	Chapter 4. Components for Mobile
	Analogies Between HTML Elements and Native Components
	The <Text> Component
	The <Image> Component

	Working with Touch and Gestures
	Creating Basic Interactions with <Button>
	Using the <TouchableHighlight> Component
	Using the PanResponder Class

	Working with Lists
	Using the Basic <FlatList> Component
	Updating the <FlatList> Contents
	Integrating Real Data
	Working with <SectionList>

	Navigation
	Other Organizational Components
	Summary

	Chapter 5. Styles
	Declaring and Manipulating Styles
	Using Inline Styles
	Styling with Objects
	Using StyleSheet.create
	Concatenating Styles

	Organization and Inheritance
	Exporting Style Objects
	Passing Styles as Props
	Reusing and Sharing Styles

	Positioning and Designing Layouts
	Using Layouts with Flexbox
	Using Absolute Positioning
	Putting It Together

	Summary

	Chapter 6. Platform APIs
	Using Geolocation
	Reading the User’s Location
	Handling Permissions
	Testing Geolocation in Emulated Devices
	Watching the User’s Location
	Working Around Limitations
	Updating the Weather Application

	Accessing the User’s Images and Camera
	Interacting with the CameraRoll Module
	Requesting Images with GetPhotoParams
	Rendering an Image from the Camera Roll
	Uploading an Image to a Server

	Storing Persistent Data with AsyncStorage
	The SmarterWeather Application
	The <WeatherProject> Component
	The <Forecast> Component
	The <Button> Component
	The <LocationButton> Component
	The <PhotoBackdrop> Component

	Summary

	Chapter 7. Modules and Native Code
	Installing JavaScript Libraries with npm
	Installing Third-Party Components with Native Code
	Using the Video Component

	Objective-C Native Modules
	Writing an Objective-C Native Module for iOS
	Exploring react-native-video for iOS

	Java Native Modules
	Writing a Java Native Module for Android
	Exploring react-native-video for Java

	Cross-Platform Native Modules
	Summary

	Chapter 8. Platform-Specific Code
	iOS- or Android-Only Components
	Components with Platform-Specific Implementations
	Using Platform-Specific File Extensions
	Using the Platform Module

	When to Use Platform-Specific Components

	Chapter 9. Debugging and Developer Tools
	JavaScript Debugging Practices, Translated
	Activating the Developer Options
	Debugging with console.log
	Using the JavaScript Debugger
	Working with the React Developer Tools

	React Native Debugging Tools
	Using Inspect Element
	Interpreting the Red Screen of Death

	Debugging Beyond JavaScript
	Common Development Environment Issues
	Common Xcode Problems
	Common Android Problems
	The React Native Packager
	Issues Deploying to an iOS Device
	Simulator Behavior

	Testing Your Code
	Type Checking with Flow
	Unit Testing with Jest
	Snapshot Testing with Jest

	When You’re Stuck
	Summary

	Chapter 10. Navigation and Structure in Larger Applications
	The Flashcard Application
	Project Structure
	Application Screens
	Reusable Components
	Styles
	Data Models

	Using React-Navigation
	Creating a StackNavigator
	Using navigation.navigate to Transition Between Screens
	Configuring the Header with navigationOptions
	Implementing the Rest

	Summary

	Chapter 11. State Management in Larger Applications
	Using Redux to Manage State
	Actions
	Reducers
	Connecting Redux
	Persisting Data with AsyncStorage
	Summary and Homework

	Conclusion
	Appendix A. Modern JavaScript Syntax
	let and const
	Importing Modules
	Destructuring
	Function Shorthand
	Fat-Arrow Functions
	Default Parameters
	String Interpolation
	Working with Promises

	Appendix B. Deploying Your Application
	Check Your Application Assets and Specify Target OS Versions and Devices
	Create a Release Build
	Complete Your Paperwork
	Beta Test Your Application
	Create a Listing
	Wait for Review
	Release

	Appendix C. Working with Expo Applications
	Ejecting from Expo

	Index
	About the Author
	Colophon

