Linux Command
Line and Shell
Scripting

Table of Contents

Cover

Title Page
Copyright
Dedication

About the Authors
About the Technical Editor
Acknowledgments
Introduction
Who Should Read This Book

How This Book Is Organized

Minimum Requirements
Where to Go from Here

Part I: The Linux Command Line

CHAPTER 1: Starting with Linux Shells
Investigating Linux
Examining Linux Distributions
Summary

CHAPTER 2: Getting to the Shell
Reaching the Command Line
Accessing CLI via a Linux Console Terminal
Accessing CLI via Graphical Terminal Emulation
Using the GNOME Terminal Emulator
Using the Konsole Terminal Emulator
Using the xterm Terminal Emulator
Summary

CHAPTER 3: Basic Bash Shell Commands
Starting the Shell
Using the Shell Prompt
Interacting with the Bash Manual
Navigating the Filesystem
Listing Files and Directories
Handling Files
Managing Directories
Viewing File Contents
Summary

CHAPTER 4: More Bash Shell Commands
Monitoring Programs
Monitoring Disk Space
Working with Data Files
Summary

CHAPTER 5: Understanding the Shell
Investigating Shell Types
Exploring Parent and Child Shell Relationships
Understanding External and Built-In Commands
Summary

CHAPTER 6: Using Linux Environment Variables
Exploring Environment Variables
Setting User-Defined Variables
Removing Environment Variables
Uncovering Default Shell Environment Variables
Setting the PATH Environment Variable
Locating System Environment Variables

Learning about Variable Arrays
Summary
CHAPTER 7: Understanding Linux File Permissions
Exploring Linux Security
Using Linux Groups
Decoding File Permissions
Changing Security Settings
Sharing Files
Access Control Lists
Summary
CHAPTER 8: Managing Filesystems
Exploring Linux Filesystems
Working with Filesystems
Managing Logical Volumes
Summary
CHAPTER 9: Installing Software
Exploring Package Management
Inspecting the Debian-Based Systems
The Red Hat—Based Systems
Managing Software Using Containers
Installing from Source Code
Summary
CHAPTER 10: Working with Editors
Visiting the vim Editor
Navigating the nano Editor
Exploring the Emacs Editor
Exploring the KDE Family of Editors
Exploring the GNOME Editor
Summary
Part I1: Shell Scripting Basics
CHAPTER 11: Basic Script Building
Using Multiple Commands
Creating a Script File
Displaying Messages
Using Variables
Redirecting Input and Output
Employing Pipes
Performing Math
Exiting the Script
Working through a Practical Example
Summary
CHAPTER 12: Using Structured Commands
Working with the if-then Statement
Exploring the if-then-else Statement
Nesting ifs
Trying the test Command
Working with Advanced if-then Features
Considering the case Command
Working through a Practical Example
Summary
CHAPTER 13: More Structured Commands
Looking at the for Command
Trying the C-Style for Command

Exploring the while Command
Using the until Command
Nesting Loops
Looping on File Data
Controlling the Loop
Processing the OQutput of a Loop
Working through a Few Practical Examples
Summary

CHAPTER 14: Handling User Input
Passing Parameters
Using Special Parameter Variables
Being Shifty
Working with Options
Standardizing Options
Getting User Input
Working through a Practical Example
Summary

CHAPTER 15: Presenting Data
Understanding Input and Output
Redirecting Output in Scripts
Redirecting Input in Scripts
Creating Your Own Redirection
Listing Open File Descriptors
Suppressing Command Qutput
Using Temporary Files
Logging Messages
Working through a Practical Example
Summary

CHAPTER 16: Script Control
Handling Signals
Running Scripts in Background Mode
Running Scripts without a Hang-up
Controlling the Job
Being Nice
Running like Clockwork
Working through a Practical Example
Summary

Part IT1: Advanced Shell Scripting

CHAPTER 17: Creating Functions
Exploring Basic Script Functions
Returning a Value from a Function
Using Variables in Functions
Investigating Array Variables and Functions
Considering Function Recursion
Creating a Library
Using Functions on the Command Line
Working Through a Practical Example
Summary

CHAPTER 18: Writing Scripts for Graphical Desktops
Creating Text Menus
Doing Windows
Getting Graphic
Working Through a Practical Example
Summary

CHAPTER 19: Introducing sed and gawk
Manipulating Text
Looking at the sed Editor Basic Commands
Working Through a Practical Example
Summary
CHAPTER 20: Regular Expressions
Exploring Regular Expressions
Defining BRE Patterns
Trying Out Extended Regular Expressions
Working Through Some Practical Examples
Summary
CHAPTER 21: Advanced sed
Looking at Multiline Commands
Holding Space
Negating a Command
Changing the Flow
Replacing via a Pattern
Placing sed Commands in Scripts
Creating sed Utilities
Working Through a Practical Example
Summary
CHAPTER 22: Advanced gawk
Using Variables
Working with Arrays
Considering Patterns
Structured Commands
Printing with Formats
Using Built-in Functions
Trying Out User-Defined Functions
Working Through a Practical Example
Summary
CHAPTER 23: Working with Alternative Shells
Considering the Dash Shell
Looking at the Dash Shell Features
Scripting in Dash
Exploring the zsh Shell
Viewing Parts of the zsh Shell
Scripting with zsh
Working Through a Practical Example
Summary
Part IV: Creating and Managing Practical Scripts
CHAPTER 24: Writing Simple Script Utilities
Performing Backups
Managing Account Deletion
Monitoring Your System
Summary
CHAPTER 25: Getting Organized
Understanding Version Control
Setting Up Your Git Environment
Committing with Git
Summary
APPENDIX A: Quick Guide to Bash Commands
Reviewing Built-In Commands
Looking at Common Bash Commands

Assessing Environment Variables

APPENDIX B: Quick Guide to sed and gawk
The sed Editor

The gawk Program
Index

End User License Agreement

List of Tables

Chapter 1

TABLE 1-1 The SysVinit Runlevels

TABLE 1-2 Linux Filesystems

TABLE 1-3 Linux Shells

TABLE 1-4 Other Linux Graphical Desktops

TABLE 1-5 Core Linux Distributions

TABLE 1-6 Specialized Linux Distributions
Chapter 2

TABLE 2-1 Graphical Interface Elements

TABLE 2-2 setterm Options for Foreground and Background Appearance

TABLE 2-3 Popular Graphical Terminal Emulator Packages

TABLE 2-4 The File Menu

TABLE 2-5 The Edit Menu

TABLE 2-6 The View Menu

TABLE 2-7 The Search Menu

TABLE 2-8 The Terminal Menu

TABLE 2-9 The Tabs Menu

TABLE 2-10 The File Menu

TABLE 2-11 The Edit Menu

TABLE 2-12 The View Menu

TABLE 2-13 The Bookmarks Menu

TABLE 2-14 The Settings Menu

TABLE 2-15 The Help Menu

TABLE 2-16 xterm Command-Line Parameters

TABLE 2-17 xterm +/— Command-Line Parameters
Chapter 3

TABLE 3-1 The Linux Man Page Conventional Section Names

TABLE 3-2 The Linux Man Page Section Areas

TABLE 3-3 Common Linux Directory Names
Chapter 4

TABLE 4-1 The ps Command Unix Parameters

TABLE 4-2 The ps Command BSD Parameters

TABLE 4-3 The ps Command GNU Parameters

TABLE 4-4 Linux Process Signals

TABLE 4-5 The mount Command Parameters

TABLE 4-6 The sort Command Parameters

TABLE 4-7 Linux File Compression Utilities

TABLE 4-8 The tar Command Functions

TABLE 4-9 The tar Command Options
Chapter 5

TABLE 5-1 The bash Command-Line Options

Chapter 6
TABLE 6-1 The Bash Shell Bourne Variables
TABLE 6-2 The Bash Shell Environment Variables
Chapter 7
TABLE 7-1 The useradd Command-Line Parameters
TABLE 7-2 The useradd Change Default Values Parameters
TABLE 7-3 User Account Modification Utilities
TABLE 7-4 The chage Command Parameters
TABLE 7-5 Linux File Permission Codes
TABLE 7-6 The chmod SUID, SGID, and Sticky Bit Octal Values
Chapter 8
TABLE 8-1 Journaling Filesystem Methods
TABLE 8-2 Common fdisk Commands
TABLE 8-3 Common gdisk Commands
TABLE 8-4 Command-Line Programs to Create Filesystems
TABLE 8-5 The fsck Commonly Used Command-Line Options
TABLE 8-6 The Growing and Shrinking LVM Commands
Chapter 10
TABLE 10-1 vim Editing Commands
TABLE 10-2 nano Control Commands
TABLE 10-3 The KWrite Edit Menu Items
TABLE 10-4 The KWrite Tools
TABLE 10-5 The GNOME Desktop gedit Plugins
Chapter 11
TABLE 11-1 The expr Command Operators
TABLE 11-2 Linux Exit Status Codes
Chapter 12
TABLE 12-1 The test Numeric Comparisons
TABLE 12-2 The test String Comparisons
TABLE 12-3 The test File Comparisons
TABLE 12-4 The Double Parentheses Command Symbols
Chapter 14
TABLE 14-1 Common Linux Command-Line Options
Chapter 15
TABLE 15-1 Linux Standard File Descriptors
TABLE 15-2 Default Isof Output
Chapter 16
TABLE 16-1 Linux Signals
TABLE 16-2 The jobs Command Parameters
Chapter 17
TABLE 17.1 The shtool Library Functions
Chapter 18
TABLE 18.1 The dialog Widgets
TABLE 18.2 The dialog Command Options
TABLE 18.3 kdialog Window Options
TABLE 18.4 The zenity Window Widgets
Chapter 19

TABLE 19.1 The sed Command Options

TABLE 19.2 The gawk Options
Chapter 20

TABLE 20.1 BRE Special Character Classes
Chapter 21

TABLE 21.1 The sed Editor Hold Space Commands
Chapter 22
TABLE 22.1 The gawk Data Field and Record Variables
TABLE 22.2 More gawk Built-in Variables
TABLE 22.3 Format Specifier Control Letters
TABLE 22.4 The gawk Mathematical Functions
TABLE 22.5 The gawk String Functions
TABLE 22.6 The gawk Time Functions
Chapter 23
TABLE 23.1 The Dash Command-Line Parameters
TABLE 23.2 The Dash Shell Built-in Commands
TABLE 23.3 The zsh Shell Command-Line Parameters
TABLE 23.4 The zsh Core Built-in Commands
TABLE 23.5 The zsh Modules
Appendix A
TABLE A.1 Bash Built-In Commands
TABLE A.2 The Bash Shell External Commands
TABLE A.3 Bash Shell Environment Variables
Appendix B
TABLE B.1 The sed Command Options
TABLE B.2 The gawk Options
TABLE B.3 The gawk Data Field and Record Variables
TABLE B.4 More gawk Built-In Variables

List of lllustrations
Chapter 1
FIGURE 1-1 The Linux system
FIGURE 1-2 The Linux system memory map
FIGURE 1-3 The KDE Plasma desktop on an openSUSE Linux system
FIGURE 1-4 A GNOME 3 desktop on an Ubuntu Linux system
FIGURE 1-5 The Cinnamon desktop from Linux Mint
FIGURE 1-6 The Xfce desktop as seen in the MX Linux distribution
Chapter 2
FIGURE 2-1 A simple terminal emulator running on a Linux desktop
FIGURE 2-2 Linux virtual console login screen
FIGURE 2-3 Linux virtual console with inversescreen being turned on
FIGURE 2-4 Finding GNOME Terminal in GNOME Shell
FIGURE 2-5 GNOME Terminal on CentOS
FIGURE 2-6 GNOME Terminal on Ubuntu
FIGURE 2-7 GNOME Terminal icon in the Favorites bar
FIGURE 2-8 Reaching the Keyboard Shortcuts window
FIGURE 2-9 Creating a keyboard shortcut
FIGURE 2-10 The Konsole terminal emulator
FIGURE 2-11 The xterm terminal
Chapter 3

FIGURE 3-1 Manual pages for the hostname command
FIGURE 3-2 A Linux virtual directory file path

FIGURE 3-3 The Linux file structure

FIGURE 3-4 Using the more command to display a text file

Chapter 4
FIGURE 4-1 The output of the top command while it is running
Chapter 5

FIGURE 5-1 Parent and child Bash shell processes
FIGURE 5-2 Subshell nesting
FIGURE 5-3 External command forking

Chapter 7
FIGURE 7-1 The Linux file permissions
Chapter 10

FIGURE 10-1 The vim main window
FIGURE 10-2 The nano editor window
FIGURE 10-3 Editing a file using the Emacs editor in console mode
FIGURE 10-4 The Emacs file browser
FIGURE 10-5 The Emacs graphical window
FIGURE 10-6 The default KWrite window editing a shell script program
FIGURE 10-7 The KWrite Find section
FIGURE 10-8 The KWrite Tool Mode Script submenu
FIGURE 10-9 The KWrite Configure Editor dialog box
FIGURE 10-10 The main Kate editing window
FIGURE 10-11 The Kate Documents List
FIGURE 10-12 The Kate Plugin Manager
FIGURE 10-13 The Kate built-in terminal window
FIGURE 10-14 The Kate configuration dialog box
FIGURE 10-15 The gedit main editor window
FIGURE 10-16 The gedit menu system
FIGURE 10-17 The gedit Side Panel
FIGURE 10-18 The gedit Side Panel's file manager
FIGURE 10-19 The gedit Plugins tab
FIGURE 10-20 The gedit Plugins tab after installation
FIGURE 10-21 The gedit Embedded Terminal plugin
Chapter 11
FIGURE 11-1 Using piping to send data to the more command
FIGURE 11-2 Using the more command with the 1s command
Chapter 18
FIGURE 18-1 Displaying a menu from a shell script
FIGURE 18-2 Using the msgbox widget in the dialog command
FIGURE 18-3 Using the yesno widget in the dialog command
FIGURE 18-4 The inputbox widget
FIGURE 18-5 The textbox widget
FIGURE 18-6 The menu widget with menu items
FIGURE 18-7 The fselect widget
FIGURE 18-8 The meminfo command output displayed using the textbox dialog op...
FIGURE 18-9 A kdialog checklist dialog window
FIGURE 18-10 The sys admin menu script using kdialog

FIGURE 18-11 The zenity calendar dialog window
FIGURE 18-12 The zenity file selection dialog window
FIGURE 18-13 The system admin menu using zenity
FIGURE 18-14 The dialog form feature

Chapter 20

FIGURE 20-1 Matching data against a regular expression pattern
Chapter 21

FIGURE 21-1 Reversing the order of a text file using the hold space
Chapter 24

FIGURE 24.1 Creating an archive directory hierarchy
Chapter 25

FIGURE 25-1 Conceptual depiction of the Git environment

FIGURE 25-2 MWGuard remote repository

Linux® Command Line and Shell Scripting
BIBLE

Richard Blum

Christine Bresnahan

WILEY

Linux® Command Line and Shell Scripting Bible
Copyright © 2021 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada and the United Kingdom

ISBN: 978-1-119-70091-3
ISBN: 978-1-119-70094-4 (ebk)
ISBN: 978-1-119-70093-7 (ebk)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-
copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR
EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN
MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT
THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL
PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR
DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEB SITE IS REFERRED TO IN THIS
WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT
INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN
THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department within the United States
at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print
versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is
not included in the version you purchased, you may download this material at booksupport.wiley.com. For more information about
Wiley products, visit www.wiley. com.

Library of Congress Control Number: 2020949805

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. Linux is a registered trademark of Linus
Torvalds. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product
or vendor mentioned in this book.

www.EBooksWorld.ir

To the Lord God Alinighty, “in whom are hidden all the treasures of wisdom and knowledge.”

— Colossians 2:3

About the Authors

Richard Blum has worked in the IT industry for more than 30 years as both a systems and a network
administrator. During that time, he's had the opportunity to work with lots of different computer products,
including Windows, NetWare, Cisco, Avaya, different flavors of UNIX, and of course, Linux. Over the years he's also
volunteered for several nonprofit organizations to help support small networks that had little financial support. Rich
is the author of many Linux-based books for total Linux geeks and teaches online courses in Linux and web
programming. When he's not busy being a computer nerd, Rich enjoys playing piano and bass guitar and spending
time with his wife, Barbara, and their two daughters, Katie Jane and Jessica.

Christine Bresnahan started working with computers more than 30 years ago in the IT industry as a systems
administrator. Christine is an adjunct professor at Ivy Tech Community College, where she teaches Linux
certification and Python programming classes. She also writes books and produces instructional resources for the
classroom. During her downtime, Christine enjoys spending time with her husband and family, hiking, and
gardening.

About the Technical Editor

Jason W. Eckert is an experienced technical trainer, consultant, and best-selling author in the technology
industry. With 45 industry certifications, 25 published textbooks, and over 30 years of technology and programming
experience, Jason brings his expertise to every class that he teaches at triOS College. For more information about

him, visit jasoneckert.net.

Acknowledgments

First, all glory and praise go to God, who through His Son, Jesus Christ, makes all things possible and gives us the
gift of eternal life.

Many thanks go to the fantastic team of people at John Wiley & Sons for their outstanding work on this project.
Thanks to Kenyon Brown, the acquisitions editor, for offering us the opportunity to work on this book. Also thanks
to Patrick Walsh, the project editor, for keeping things on track and making this book more presentable. Thanks,
Pat, for all your hard work and diligence. The technical editor, Jason Eckert, did a wonderful job of double-checking
all the work in the book, plus making suggestions to improve the content. Thanks to Saravanan Dakshinamurthy
and his team for their endless patience and diligence to make our work readable. We would also like to thank Carole
Jelen at Waterside Productions, Inc., for arranging this opportunity for us, and for helping us out in our writing
careers.

Christine would like to thank her husband, Timothy, for his encouragement, patience, and willingness to listen, even
when he has no idea what she is talking about. Rich would like to thank his wife, Barbara, for the life-sustaining
baked goods she readily prepared to help him keep up his energy while writing!

Introduction

Welcome to the fourth edition of Linux Command Line and Shell Scripting Bible. Like all books in the Bible series,
you can expect to find both hands-on tutorials and real-world information, as well as reference and background
information that provides a context for what you are learning. This book is a fairly comprehensive resource on the
Linux command line and shell commands. By the time you have completed Linux Command Line and Shell
Scripting Bible, you will be well prepared to write your own shell scripts that can automate practically any task on
your Linux system.

Who Should Read This Book

If you're a systems administrator in a Linux environment, you'll benefit greatly by knowing how to write shell
scripts. The book doesn't walk you through the process of setting up a Linux system, but after you have it running,
you'll want to start automating some of the routine administrative tasks. That's where shell scripting comes in, and
that's where this book helps you out. This book demonstrates how to automate any administrative task using shell
scripts, from monitoring system statistics and data files to generating reports for your boss.

If you're a home Linux enthusiast, you'll also benefit from Linux Command Line and Shell Scripting Bible.
Nowadays, it's easy to get lost in the graphical world of prebuilt widgets. Most desktop Linux distributions try their
best to hide the Linux system from the typical user. However, sometimes you must know what's going on under the
hood. This book shows you how to access the Linux command-line prompt and what to do when you get there.
Often, performing simple tasks, such as file management, can be done more quickly from the command line than
from a fancy graphical interface. You can use a wealth of commands from the command line, and this book shows
you how to use them.

How This Book Is Organized

This book leads you through the basics of the Linux command line and into more complicated topics, such as
creating your own shell scripts. The book is divided into four parts, each one building on the previous parts.

Part I assumes that you either have a Linux system running or are looking into getting a Linux system. Chapter 1,
“Starting with Linux Shells,” describes the parts of a total Linux system and shows how the shell fits in. After
describing the basics of the Linux system, this part continues with the following:

= Using a terminal emulation package to access the shell (Chapter 2)
® Introducing the basic shell commands (Chapter 3)
= Using more advanced shell commands to peek at system information (Chapter 4)
» Understanding what the shell is used for (Chapter 5)
= Working with shell variables to manipulate data (Chapter 6)
» Understanding the Linux filesystem and security (Chapter 7)
= Working with Linux filesystems from the command line (Chapter 8)
= Installing and updating software from the command line (Chapter 9)
» Using the Linux editors to start writing shell scripts (Chapter 10)
In Part I1, you begin writing shell scripts. As you go through the chapters, you'll do the following;:
= Learn how to create and run shell scripts (Chapter 11)
= Alter the program flow in a shell script (Chapter 12)
= Tterate through code sections (Chapter 13)
= Handle data from the user in your scripts (Chapter 14)
m See different methods for storing and displaying data from your script (Chapter 15)
= Control how and when your shell scripts run on the system (Chapter 16)

Part III dives into more advanced areas of shell script programming, including these things:

= Creating your own functions to use in all your scripts (Chapter 17)

» Utilizing the Linux graphical desktop for interacting with your script users (Chapter 18)

» Using advanced Linux commands to filter and parse data files (Chapter 19)

m Using regular expressions to define data (Chapter 20)

» Learning advanced methods of manipulating data in your scripts (Chapter 21)

» Working with advanced features of scripting to generate reports from raw data (Chapter 22)
= Modifying your shell scripts to run in other Linux shells (Chapter 23)

The last section of the book, Part IV, demonstrates how to use shell scripts in real-world environments. In this part,
you will learn these things:

= How to put all the scripting features together to write your own scripts (Chapter 24)
= How to organize and track your script versions using the popular git software (Chapter 25)

Conventions and features

You will find many different organizational and typographical features throughout this book designed to help you
get the most out of the information.

Tips and warnings

Whenever the authors want to bring something important to your attention, the information appears in a Warning.

WARNING

This information is important and is set off in a separate paragraph with a special icon.
Warnings provide information about things to watch out for, whether simply inconvenient or
potentially hazardous to your data or systems.

For additional items of interest that relate to the chapter text, the authors use Tip.

TIP

Tips provide additional, ancillary information that is helpful, but somewhat outside of the
current presentation of information.

Minimum Requirements

Linux Command Line and Shell Scripting Bible doesn't focus on any specific Linux distribution, so you can follow
along in the book using any Linux system you have available. The bulk of the book references the Bash shell, which is
the default shell for most Linux systems.

Where to Go from Here

After you've finished reading Linux Command Line and Shell Scripting Bible, you're well on your way to
incorporating Linux commands in your daily Linux work. In the ever-changing world of Linux, it's always a good
idea to stay in touch with new developments. Often, Linux distributions change, adding new features and removing
older ones. To keep your knowledge of Linux fresh, always stay well informed. Find a good Linux forum site and
monitor what's happening in the Linux world. Many popular Linux news sites, such as Slashdot and DistroWatch,
provide up-to-the-minute information about new advances in Linux.

Part |
The Linux Command Line

IN THIS PART
Chapter 1 Starting with Linux Shells
Chapter 2 Getting to the Shell
Chapter 3 Basic Bash Shell Commands
Chapter 4 More Bash Shell Commands
Chapter 5 Understanding the Shell
Chapter 6 Using Linux Environment Variables
Chapter 7 Understanding Linux File Permissions
Chapter 8 Managing Filesystems
Chapter 9 Installing Software
Chapter 10 Working with Editors

CHAPTER 1
Starting with Linux Shells

IN THIS CHAPTER

Investigating Linux
Understanding parts of the Linux kernel
Exploring the Linux desktop
Examining Linux distributions
Before you can dive into working with the Linux command line and shells, it's a good idea to first understand what

Linux is, where it came from, and how it works. This chapter walks you through what Linux is and explains where
the shell and command line fit in the overall Linux picture.

Investigating Linux

If you've never worked with Linux before, you may be confused as to why there are so many different versions of it
available. We're sure that you've heard various terms such as distribution, LiveDVD, and GNU when looking at
Linux packages and been confused. Wading through the world of Linux for the first time can be a tricky experience.
This chapter takes some of the mystery out of the Linux system before you start working on commands and scripts.

For starters, four main parts make up a Linux system:
» The Linux kernel
= The GNU utilities
= A graphical desktop environment
= Application software

Each of these four parts has a specific job in the Linux system. Each one of the parts by itself isn't very useful. Figure
1-1 shows a basic diagram of how the parts fit together to create the overall Linux system.

Application Software

Windows
Management GNU
Software System
Utilities

Linux Kernel

Computer Hardware

FIGURE 1-1 The Linux system

This section describes these four main parts in detail and gives you an overview of how they work together to create
a complete Linux system.

Looking into the Linux kernel

The core of the Linux system is the kernel. The kernel controls all the hardware and software on the computer
system, allocating hardware when necessary and executing software when required.

If you've been following the Linux world at all, no doubt you've heard the name Linus Torvalds. Linus is the person
responsible for creating the first Linux kernel software while he was a student at the University of Helsinki. He
intended it to be a copy of the Unix system, at the time a popular operating system used at many universities.

After developing the Linux kernel, Linus released it to the Internet community and solicited suggestions for
improving it. This simple process started a revolution in the world of computer operating systems. Soon Linus was
receiving suggestions from students as well as professional programmers from around the world.

Allowing anyone to change programming code in the kernel would result in complete chaos. To simplify things,
Linus acted as a central point for all improvement suggestions. It was ultimately Linus's decision whether or not to
incorporate suggested code in the kernel. This same concept is still in place with the Linux kernel code, except that
instead of just Linus controlling the kernel code, a team of developers has taken on the task.

The kernel is primarily responsible for four main functions:
= System memory management
= Software program management
= Hardware management
= Filesystem management

The following sections explore each of these functions in more detail.

System memory management

One of the primary functions of the operating system kernel is memory management. Not only does the kernel
manage the physical memory available on the server, but it can also create and manage virtual memory, or memory
that does not actually exist.

It does this by using space on the hard disk, called the swap space. The kernel swaps the contents of virtual memory
locations back and forth from the swap space to the actual physical memory. This allows the system to think there is
more memory available than what physically exists (shown in Figure 1-2).

Virtual Memory

Physical Memory

The Kernel

o= ey
See e

FIGURE 1-2 The Linux system memory map

The memory locations are grouped into blocks called pages. The kernel locates each page of memory in either the
physical memory or the swap space. The kernel then maintains a table of the memory pages that indicates which
pages are in physical memory and which pages are swapped out to disk.

The kernel keeps track of which memory pages are in use and automatically copies memory pages that have not been
accessed for a period of time to the swap space area (called swapping out), even if other memory is available. When
a program wants to access a memory page that has been swapped out, the kernel must make room for it in physical
memory by swapping out a different memory page, and swap in the required page from the swap space. Obviously,
this process takes time and can slow down a running process. The process of swapping out memory pages for
running applications continues for as long as the Linux system is running.

Software program management

The Linux operating system calls a running program a process. A process can run in the foreground, displaying
output on a display, or it can run in the background, behind the scenes. The kernel controls how the Linux system
manages all the processes running on the system.

The kernel creates the first process, called the init process, to start all other processes on the system. When the
kernel starts, it loads the init process into virtual memory. As the kernel starts each additional process, it gives the
process a unique area in virtual memory to store the data and code that the process uses.

A few different types of init process implementations are available in Linux, but these days the two most popular
are:

» SysVinit: The SysVinit (SysV) initialization method, the original method used by Linux, was based on the Unix
System V initialization method. Though it is not used by many Linux distributions these days, you still may find
it around in older Linux distributions.

» Systemd: The systemd initialization method, created in 2010, has become the most popular initialization and
process management system used by Linux distributions.

The SysVinit initialization method used a concept called runlevels to determine what processes to start. The runlevel
defines the state of the running Linux system and what processes should run in each state. Table 1-1 shows the
different runlevels associated with the SysVinit initialization method.

TABLE 1-1 The SysVinit Runlevels

Runlevel Description

Shut down the system

Single-user mode used for system maintenance
Multi-user mode without networking services enabled
Multi-user mode with networking services enabled
Custom

Multi-user mode with GUI available

SN W N = O

Reboot the system

The /etc/inittab file defines the default runlevel for a system. The processes that start for specific runlevels are
defined in subdirectories of the /etc/rc.d directory. You can view the current runlevel at any time using the
runlevel command:

$ runlevel
N5

$

The systemd initialization method became popular because it has the ability to start processes based on different
events:

= When the system boots

= When a particular hardware device is connected
= When a service is started

= When a network connection is established

= When a timer has expired

The systemd method determines what processes to run by linking events to unit files. Each unit file defines the
programs to start when the specified event occurs. The systemctl program allows you to start, stop, and list the unit
files currently running on the system.

The systemd method groups unit files together into targets. A target defines a specific running state of the Linux
system, similar to the SysVinit runlevel concept. At system startup, the default.target unit defines all the unit files
to start. You can view the current default target using the systemctl command:

$ systemctl get-default
graphical.target

The graphical.target unit file defines the processes to start when a multi-user graphical environment is running,
similar to the old SysVinit runlevel 5.

NOTE

In Chapter 4, “More Bash Shell Commands,” you'll see how to use the ps command to view the
processes currently running on the Linux system.

Hardware management

Still another responsibility for the kernel is hardware management. Any device that the Linux system must
communicate with needs driver code inserted inside the kernel code. The driver code allows the kernel to pass data
back and forth to the device, acting as an intermediary between applications and the hardware. Two methods are
used for inserting device driver code in the Linux kernel:

= Drivers compiled in the kernel
® Driver modules added to the kernel

Previously, the only way to insert device driver code was to recompile the kernel. Each time you added a new device
to the system, you had to recompile the kernel code. This process became even more inefficient as Linux kernels
supported more hardware. Fortunately, Linux developers devised a better method to insert driver code into the
running kernel.

Programmers developed the concept of kernel modules to allow you to insert driver code into a running kernel
without having to recompile the kernel. Also, a kernel module could be removed from the kernel when the device
was finished being used. This greatly simplified and expanded using hardware with Linux.

The Linux system identifies hardware devices as special files, called device files. There are three classifications of
device files:

= Character

= Block
= Network

Character device files are for devices that can handle data only one character at a time. Most types of modems and
terminals are created as character files. Block files are for devices that can handle data in large blocks at a time, such
as disk drives.

The network file types are used for devices that use packets to send and receive data. This includes network cards
and a special loopback device that allows the Linux system to communicate with itself using common network
programming protocols.

Linux creates special files, called nodes, for each device on the system. All communication with the device is
performed through the device node. Each node has a unique number pair that identifies it to the Linux kernel. The
number pair includes a major and a minor device number. Similar devices are grouped into the same major device
number. The minor device number is used to identify a specific device within the major device group.

Filesystem management

Unlike some other operating systems, the Linux kernel can support different types of filesystems to read and write
data to and from hard drives. Besides having over a dozen filesystems of its own, Linux can read and write to and
from filesystems used by other operating systems, such as Microsoft Windows. The kernel must be compiled with
support for all types of filesystems that the system will use. Table 1-2 lists the standard filesystems that a Linux
system can use to read and write data.

TABLE 1-2 Linux Filesystems

Filesystem Description

ext Linux extended filesystem — the original Linux filesystem

ext2 Second extended filesystem; provided advanced features over ext
ext3 Third extended filesystem; supports journaling

ext4 Fourth extended filesystem; supports advanced journaling

btrfs A newer, high-performance filesystem that supports journaling and large files
exfat The extended Windows filesystem, used mainly for SD cards and USB sticks
hpfs 0S/2 high-performance filesystem

jfs IBM's journaling filesystem

18509660 ISO 9660 filesystem (CD-ROMs)

minix MINIX filesystem

msdos Microsoft FAT16

ncp NetWare filesystem

nfs Network File System

ntfs Support for Microsoft NT filesystem

proc Access to system information

smb Samba SMB filesystem for network access

Sysv Older Unix filesystem

ufs BSD filesystem

umsdos Unix-like filesystem that resides on top of msdos

viat Windows 95 filesystem (FAT32)

XFS High-performance 64-bit journaling filesystem

Any hard drive that a Linux server accesses must be formatted using one of the filesystem types listed in Table 1-2.

The Linux kernel interfaces with each filesystem using the Virtual File System (VFS). This provides a standard
interface for the kernel to communicate with any type of filesystem. VFS caches information in memory as each
filesystem is mounted and used.

The GNU utilities

Besides having a kernel to control hardware devices, a computer operating system needs utilities to perform
standard functions, such as controlling files and programs. Although Linus created the Linux system kernel, he had
no system utilities to run on it. Fortunately for him, at the same time he was working, a group of people were
working together on the Internet trying to develop a standard set of computer system utilities that mimicked the
popular Unix operating system.

The GNU organization (GNU stands for GNU's Not Unix) developed a complete set of Unix utilities but had no
kernel system to run them on. These utilities were developed under a software philosophy called open source
software (OSS).

The concept of OSS allows programmers to develop software and then release it to the world with no licensing fees
attached. Anyone can use, modify, or incorporate the software into their own system without having to pay a license
fee. Uniting Linus's Linux kernel with the GNU operating system utilities created a complete, functional, free
operating system.

Although the bundling of the Linux kernel and GNU utilities is often just called Linux, you will see some Linux
purists on the Internet refer to it as the GNU/Linux system to give credit to the GNU organization for its
contributions to the cause.

The core GNU utilities

The GNU project was mainly designed for Unix system administrators to have a Unix-like environment available.
This focus resulted in the project porting many common Unix system command-line utilities. The core bundle of
utilities supplied for Linux systems is called the coreutils package.

The GNU coreutils package consists of three parts:
» Utilities for handling files
= (Utilities for manipulating text
m Utilities for managing processes

Each of these three main groups of utilities contains several utility programs that are invaluable to the Linux system
administrator and programmer. This book covers each of the utilities contained in the GNU coreutils package in
detail.

The shell

The GNU/Linux shell is a special interactive utility. It provides a way for users to start programs, manage files on the
filesystem, and manage processes running on the Linux system. The core of the shell is the command prompt. The
command prompt is the interactive part of the shell. It allows you to enter text commands, and then it interprets the
commands and executes them in the kernel.

The shell contains a set of internal commands that you use to control tasks such as copying files, moving files,
renaming files, displaying the programs currently running on the system, and stopping programs running on the
system. Besides the internal commands, the shell allows you to enter the name of a program at the command
prompt. The shell passes the program name off to the kernel to start it.

You can also group shell commands into files to execute as a program. Those files are called shell scripts. Any
command that you can execute from the command line can be placed in a shell script and run as a group of
commands. This provides great flexibility in creating utilities for commonly run commands or processes that require
several commands grouped together.

Quite a few Linux shells are available to use on a Linux system. Different shells have different characteristics, some
being more useful for creating scripts and some being more useful for managing processes. The default shell used in
all Linux distributions is the Bash shell. The Bash shell was developed by the GNU project as a replacement for the
standard Unix shell, called the Bourne shell (after its creator). The Bash shell name is a play on this wording,
referred to as the “Bourne again shell.”

In addition to the Bash shell, we will cover several other popular shells in this book. Table 1-3 lists the different
shells we will examine.

TABLE 1-3 Linux Shells

Shell Description

ash | Asimple, lightweight shell that runs in low-memory environments but has full compatibility with the Bash
shell

korn A programming shell compatible with the Bourne shell but supporting advanced programming features like
associative arrays and floating-point arithmetic

tesh A shell that incorporates elements from the C programming language into shell scripts
zsh | An advanced shell that incorporates features from Bash, tcsh, and korn, providing advanced programming
features, shared history files, and themed prompts

Most Linux distributions include more than one shell, although usually they pick one of them to be the default. If
your Linux distribution includes multiple shells, feel free to experiment with different shells and see which one fits
your needs.

The Linux desktop environment

In the early days of Linux (the early 1990s), all that was available was a simple text interface to the Linux operating
system. This text interface allowed administrators to start programs, control program operations, and move files
around on the system.

With the popularity of Microsoft Windows, computer users expected more than the old text interface to work with.
This spurred more development in the OSS community, and the Linux graphical desktops emerged.

Linux is famous for being able to do things in more than one way, and no place is this more relevant than in
graphical desktops. In Linux you can choose from a plethora of graphical desktops. The following sections describe a
few popular ones.

The X Window software

Two basic elements control your video environment — the video card in your PC and your monitor. To display fancy
graphics on your computer, the Linux software needs to know how to talk to both of them. The X Window software
is the core element in presenting graphics.

The X Window software is a low-level program that works directly with the video card and monitor in the PC and
controls how Linux applications can present fancy windows and graphics on your computer.

Linux isn't the only operating system that uses X Window; versions have been written for many different operating
systems. In the Linux world, a few software packages can implement it. Two X Window packages are most
commonly used in Linux:

= X.org
= Wayland

The X.org package is the older of the two, based on the original Unix X Window System version 11 (often called X11).
More Linux distributions are migrating to the newer Wayland software, which is more secure and easier to maintain.

When you first install a Linux distribution, it attempts to detect your video card and monitor, and it then creates an
X Window configuration file that contains the required information. During installation you may notice a time when
the installation program scans your monitor for supported video modes. Sometimes this causes your monitor to go
blank for a few seconds. Because lots of different types of video cards and monitors are out there, this process can
take a little while to complete.

The core X Window software produces a graphical display environment but nothing else. Although this is fine for
running individual applications, it is not too useful for day-to-day computer use. There is no desktop environment
allowing users to manipulate files or launch programs. To do that, you need a desktop environment on top of the X
Window system software.

The KDE Plasma desktop

The K Desktop Environment (KDE) was first released in 1996 as an open source project to produce a graphical
desktop similar to the Microsoft Windows environment. The KDE desktop incorporates all the features you are
probably familiar with if you are a Windows user. Figure 1-3 shows the current version, called KDE Plasma, running
in the openSUSE Linux distribution.

The KDE Plasma desktop allows you to place both application and file icons in a special area on the desktop. If you
single-click an application icon, the Linux system starts the application. If you single-click a file icon, the KDE
desktop attempts to determine what application to start to handle the file.

rich

Jo

rich@localhost localdomain (openSUSE Leap 15.1)
Web Browser

Fres

Personal Information Manager

Kentact

Word Processor

L e wrier

File Manager
Doiph

HE m

Configure Desktop

Help Center
Help

oo
.

Terminal

@LUE € » 421PM =
FIGURE 1-3 The KDE Plasma desktop on an openSUSE Linux system
The bar at the bottom of the desktop is called the Panel. The Panel consists of four parts:

= The K menu: Much like the Windows Start menu, the K menu contains links to start installed applications.

= Program shortcuts: These are quick links to start applications directly from the Panel.

» The taskbar: The taskbar shows icons for applications currently running on the desktop.

= Applets: These are small applications that have an icon in the Panel that can often change depending on
information from the application.

All of the Panel features are similar to what you would find in Windows. In addition to the desktop features, the KDE
project has produced a wide assortment of applications that run in the KDE environment.
The GNOME desktop

The GNU Network Object Model Environment (GNOME) is another popular Linux desktop environment. First
released in 1999, GNOME has become the default desktop environment for many Linux distributions (the most
popular being Red Hat Linux).

NOTE

The GNOME desktop underwent a radical change with version 3, released in 2011. It departed
from the standard look and feel of most desktops using standard menu bars and taskbars to
make the interface more user-friendly across multiple platforms, such as tablets and mobile
phones. This change led to controversy (see the “Other desktops” section), but slowly many
Linux enthusiasts accepted the new look and feel of the GNOME 3 desktop.

Figure 1-4 shows the standard GNOME desktop used in the Ubuntu Linux distribution.

April 16:19 o

OO P PONA

FIGURE 1-4 A GNOME 3 desktop on an Ubuntu Linux system

The GNOME 3 desktop cleans up the desktop interface by reducing the available menus to just three:
= Activities: Displays favorites, as well as any running application icons
= Calendar: Shows the current date/time, along with any system notification messages
= System: Shows network connections, system settings, and options to restart the system

The GNOME 3 desktop was designed to work on multiple types of devices, so you won't find a lot of menus. To
launch applications, you must search for them using the Activities Overview, which is a search feature on the
Activities menu.

Not to be outdone by KDE, the GNOME developers have also produced a host of graphical applications that
integrate with the GNOME desktop.
Other desktops

One of the main features of Linux is choice, and nowhere is that more evident than in the graphical desktop world.
There are a plethora of different types of graphical desktops available in the Linux world. If you're not happy with
the default desktop in your Linux distribution, it usually doesn't take much effort to change it to something else!

When the GNOME desktop project radically changed its interface in version 3, many Linux developers who
preferred the look and feel of GNOME version 2 created spin-off versions based on GNOME 2. Of these, two became

somewhat popular:

= Cinnamon: The Cinnamon desktop was developed in 2011 by the Linux Mint distribution in an attempt to
continue development of the original GNOME 2 desktop. It's now available as an option in several Linux
distributions, including Ubuntu Fedora and openSUSE.

= MATE: The MATE desktop was also developed in 2011 by an Arch Linux user who disliked the switch to
GNOME 3. It incorporates a few features of GNOME 3 (such as replacing the taskbar) but maintains the overall
look and feel of GNOME 2.

Figure 1-5 shows the Cinnamon desktop as it appears in the Linux Mint distribution.

The downside to these fancy graphical desktop environments is that they require a fair amount of system resources
to operate properly. In the early days of Linux, a hallmark and selling feature of Linux was its ability to operate on
older, less powerful PCs that the newer Microsoft desktop products couldn't run on. However, with the popularity of
KDE Plasma and GNOME 3 desktops, this has changed, since it takes just as much memory to run a KDE Plasma or
GNOME 3 desktop as it does to run the latest Microsoft desktop environment.

If you have an older PC, don't be discouraged. The Linux developers have banded together to take Linux back to its
roots. They've created several low memory—oriented graphical desktop applications that provide basic features that
run perfectly fine on older PCs.

Although these graphical desktops don't have all that many applications designed around them, they still run many
basic graphical applications that support features such as word processing, spreadsheets, databases, drawing, and,
of course, multimedia support.

Table 1-4 shows some of the smaller Linux graphical desktop environments that can be used on lower-powered PCs
and laptops.

T Accessibility

-5 e 2 Account details
‘ Graphics m Applets

@ internet 88 Archive Manager

B Office P Backgrounds
P Sound & Video) Backup Tool
e Administration @ Bluetooth

B Preferences @ Book Repair

B Places +@ Calculator

Recent Files B calendar

& 0 2027

FIGURE 1-5 The Cinnamon desktop from Linux Mint

TABLE 1-4 Other Linux Graphical Desktops

Desktop Description
Fluxbox | A bare-bones desktop that doesn't include a Panel, only a pop-up menu to launch applications

Xfce A desktop that's similar to the GNOME 2 desktop but with less graphics for low-memory environments

JWM Joe's Window Manager, a very lightweight desktop ideal for low-memory and low—disk space
environments

fvwm Supports some advanced desktop features such as virtual desktops and Panels, but runs in low-memory
environments

fvwmgs Derived from fvwm but made to look like a Windows 95 desktop

These graphical desktop environments are not as fancy as the KDE Plasma and GNOME 3 desktops, but they
provide basic graphical functionality just fine. Figure 1-6 shows what the Xfce desktop used in the MX Linux
distribution looks like.

429

?

Manual

» Run Program...
Enter a command you want to launch o Recently Used

onky Toggle

All Applications
Desktop system monitor on/off i PP

D LibreOffice

The office productivity suite compatible t... prent

E MX Tools
Configuration tools for MX Linux

MX Package Installer el

b Simple Package Installer @ Internet

n MX User Manual Multimedia
Orientation and information

@& MX Tools
Task Manager

.
Easy to use task manager B office

=xfceTerminaI =" Settings
Terminal Emulator ® System

E" Quick System Info
inxi -Fxxxrza 5
MX Linux &

FIGURE 1-6 The Xfce desktop as seen in the MX Linux distribution

If you are using an older PC, try a Linux distribution that uses one of these desktops and see what happens. You may
be pleasantly surprised.

Examining Linux Distributions

Now that you have seen the four main components required for a complete Linux system, you may be wondering
how you are going to get them all together to make a Linux system. Fortunately, there are people who have already
done that for you.

A complete Linux system package is called a distribution. Numerous Linux distributions are available to meet just
about any computing requirement you could have. Most distributions are customized for a specific user group, such
as business users, multimedia enthusiasts, software developers, or average home users. Each customized
distribution includes the software packages required to support specialized functions, such as audio- and video-
editing software for multimedia enthusiasts, or compilers and integrated development environments (IDEs) for
software developers.

The different Linux distributions are often divided into two categories:
» Full-core Linux distributions
» Specialized distributions

The following sections describe these types of Linux distributions and show examples in each category.

Core Linux distributions

A core Linux distribution contains a kernel, one or more graphical desktop environments, and just about every
Linux application that is available, precompiled for the kernel. It provides one-stop shopping for a complete Linux
installation. Table 1-5 shows some popular core Linux distributions.

TABLE 1-5 Core Linux Distributions

Distribution Description
Slackware One of the original Linux distribution sets; popular with Linux geeks

Red Hat Enterprise A commercial business distribution used mainly for Internet servers

Gentoo A distribution designed for advanced Linux users, containing only Linux source code
openSUSE Different distributions for business and home use
Debian Popular with Linux experts and commercial Linux products

In the early days of Linux, a distribution was released as a set of floppy disks. You had to download groups of files
and then copy them onto disks. It would usually take 20 or more disks to make an entire distribution! Needless to
say, this was a painful experience.

Nowadays, Linux distributions are released as an ISO image file. The ISO image file is a complete disk image of a
DVD as a single file. You use a software application to either burn the ISO image file onto a DVD or create a bootable
USB stick. You then just boot your workstation from the DVD or USB stick to install Linux. This makes installing
Linux much easier.

However, beginners still often run into problems when they install one of the core Linux distributions. To cover just
about any situation in which someone might want to use Linux, a single distribution has to include lots of
application software. They include everything from high-end Internet database servers to common games.

Although having lots of options available in a distribution is great for Linux geeks, it can become a nightmare for
beginning Linux users. Most core distributions ask a series of questions during the installation process to determine
which applications to load by default, what hardware is connected to the PC, and how to configure the hardware.
Beginners often find these questions confusing. As a result, they often either load way too many programs on their
computer or don't load enough and later discover that their computer won't do what they want it to.

Fortunately for beginners, there's a much simpler way to install Linux.

Specialized Linux distributions

A new subgroup of Linux distributions has started to appear. These are typically based on one of the main
distributions but contain only a subset of applications that would make sense for a specific area of use.

In addition to providing specialized software (such as only office products for business users), customized Linux
distributions attempt to help beginning Linux users by autodetecting and autoconfiguring common hardware
devices. This makes installing Linux a much more enjoyable process.

Table 1-6 shows some of the specialized Linux distributions available and what they specialize in.
TABLE 1-6 Specialized Linux Distributions

Distribution Description

Fedora A free distribution built from the Red Hat Enterprise Linux source code
Ubuntu A free distribution for school and home use
MX Linux A free distribution for home use

Linux Mint | A free distribution for home entertainment use
Puppy Linux | A free small distribution that runs well on older PCs
That's just a small sampling of specialized Linux distributions. There are literally hundreds of specialized Linux

distributions, and more are popping up all the time on the Internet. No matter your specialty, you'll probably find a
Linux distribution made for you.

Many of the specialized Linux distributions are based on the Debian Linux distribution. They use the same
installation files as Debian but package only a small fraction of a full-blown Debian system.

NOTE

Most Linux distributions also have a LiveDVD version available. The LiveDVD version is a self-
contained ISO image file that you can burn onto a DVD (or USB stick) to boot up a running
Linux system directly, without having to install it on your hard drive. Depending on the
distribution, the LiveDVD contains either a small subset of applications or, in the case of
specialized distributions, the entire system. The benefit of the LiveDVD is that you can test it
with your system hardware before going through the trouble of installing the system.

Summary

This chapter discussed the Linux system and the basics of how it works. The Linux kernel is the core of the system,

controlling how memory, programs, and hardware all interact with one another. The GNU utilities are also an
important piece in the Linux system. The Linux shell, which is the main focus of this book, is part of the GNU core
utilities. The chapter also discussed the final piece of a Linux system, the Linux desktop environment. Things have
changed over the years, and Linux now supports several graphical desktop environments.

The chapter also discussed the various Linux distributions. A Linux distribution bundles the various parts of a Linux
system into a simple package that you can easily install on your PC. The Linux distribution world consists of full-
blown Linux distributions that include just about every application imaginable, as well as specialized Linux
distributions that only include applications focused on a special function. The Linux LiveDVD craze has created
another group of Linux distributions that allow you to easily test-drive Linux without even having to install it on
your hard drive.

In the next chapter, we look at what you need to start your command-line and shell scripting experience. You'll see
what you have to do to get to the Linux shell utility from your fancy graphical desktop environment. These days,
that's not always an easy thing.

CHAPTER 2
Getting to the Shell

IN THIS CHAPTER

Accessing the command line

Reaching CLI via a Linux console terminal
Reaching CLI via a graphical terminal emulator
Using the GNOME terminal emulator

Using the Konsole terminal emulator

Using the xterm terminal emulator

In the old days of Linux, system administrators, programmers, and system users all sat at something called a Linux
console terminal entering shell commands and viewing text output. These days, with graphical desktop
environments, it's getting harder to find a shell prompt on the system in order to enter shell commands. This
chapter discusses what is required to reach a command-line environment. And it walks you through a few terminal
emulation packages you may run into in the various Linux distributions.

Reaching the Command Line

Before the days of graphical desktops, the only way to interact with a Unix system was through a text command-line
interface (CLI) provided by the shell. The CLI allowed text input only and could display only text and rudimentary
graphics output.

Because of these restrictions, output devices were not very fancy. Often, you needed only a simple dumb terminal to
interact with the Unix system. A dumb terminal was usually nothing more than a monitor and keyboard connected
to the Unix system via a communication cable (usually a multiwire serial cable). This simple combination provided
an easy way to enter text data into the Unix system and view text results.

As you well know, things are significantly different in today's Linux environment. Just about every Linux desktop
distribution uses some type of graphical desktop environment. However, to enter shell commands, you still need a
text display to access the shell's CLIL. The problem now is getting to one. Sometimes finding a way to get a CLI in a
Linux distribution is not an easy task.

Console terminals

One way to get to a CLI is to access the Linux system via text mode. This provides nothing more than a simple shell
CLI on the monitor, just like the days before graphical desktops. This mode is called the Linux console because it
emulates the old days of a hard-wired console terminal and is a direct interface to the Linux system.

When the Linux system starts, it automatically creates several virtual consoles. A virtual console is a terminal
session that runs in Linux system memory. Instead of having several dumb terminals connected to the computer,
most Linux distributions start five or six (or sometimes even more) virtual consoles that you can access from a single
computer keyboard and monitor.

Graphical terminals

The alternative to using a virtual console terminal is to use a terminal emulation package from within the Linux
graphical desktop environment. A terminal emulation package simulates working on a console terminal but within a
desktop graphical window. Figure 2-1 shows an example of a terminal emulator running in a Linux graphical
desktop environment.

Activities (-] Terminal ~ Apr23 1519
in
christine < christine@UDesktop: ~ Q =
15

FIGURE 2-1 A simple terminal emulator running on a Linux desktop

Graphical terminal emulation is responsible only for a portion of the Linux graphical experience. As a whole, the
experience is accomplished through several components, including graphical terminal emulation software (called a
client). Table 2-1 shows the different components in the Linux graphical desktop environment.

TABLE 2-1 Graphical Interface Elements
Name Examples Description

Client Graphical terminal emulator, desktop environment An application that requests graphical services
(GNOME Shell, KDE Plasma), network browser

Display Wayland, X Window System Element that manages the display (screen) and the
Server input devices (keyboard, mouse, touch screen)
Window Mutter, Metacity, Kwin Element that adds borders to windows and
Manager provides features to move and manage windows
Widgets Plasmoids, Cinnamon Spices Element that adds menus and appearance items for
Library desktop environment clients

For dealing with the command line from the desktop, the focus is on the graphical terminal emulator. You can think
of graphical terminal emulators as CLI terminals in the graphical user interface (GUI) and virtual console terminals
as CLI terminals outside the GUIL Understanding the various terminals and their features can enhance your
command-line experience.

Accessing CLI via a Linux Console Terminal

In the early days of Linux, when you booted up your system you would see a login prompt on your monitor, and
that's all. As mentioned earlier, this is called the Linux console. It was the only place you could enter commands for
the system.

Even though several virtual consoles are created at boot time, many Linux desktop distributions switch to a
graphical environment after the boot sequence completes. This provides the user with a graphical login and desktop
experience. For these systems, accessing a virtual console is done manually.

On most Linux distributions, you can access one of the Linux virtual consoles using a simple keystroke combination.
Usually, you must hold down the Ctrl+Alt key combination and then press a function key (F1 through F7) for the
virtual console you want to use. Function key F2 produces virtual console 2, key F3 produces virtual console 3, key
F4 produces virtual console 4, and so on.

NOTE

Linux distributions typically use the Ctrl+Alt key combination with F1, F7, or F8 to reach the
graphical interface. Ubuntu and CentOS both use F1. However, it is best to test and see where
your distribution puts the graphical interface, especially on older distribution versions.

Text mode virtual consoles use the whole screen and start with the text login screen displayed. An example of a text
login screen from a virtual console is shown in Figure 2-2.

Notice in Figure 2-2 the word tty?2 at the end of the first text line. The 2 in tty2 indicates that it is virtual console 2
and was reached by pressing the Ctrl+Alt+F2 key sequence. tty stands for teletypewriter. Teletypewriter is an old
term, indicating a machine used for sending messages.

Ubuntu 20.04 LTS UDesktop ttyz

UDesktop login: christine
Password:
Welcome to Ubuntu 20.04 LTS (GNUALinux 5.4.0-26-generic x86_64)

Documentation: https://help.ubuntu.com
* Management : https://landscape.canonical.com
% Support: https://ubuntu. coms/advantage

0 updates can be installed immediately.
0 of these updates are security updates.
Your Hardware Enablement Stack (HWE) is supported until April 2025.

Last login: Fri Apr 24 17:02:52 EDT 2020 on tty2
christine@UDesktop:™% _

FIGURE 2-2 Linux virtual console login screen

NOTE

Not all Linux distributions show the virtual console's tty number at the login screen. If you are
logged into a virtual console, you can enter the command tty and press Enter to see what
virtual console you are currently using. Entering commands is covered in Chapter 3, “Basic
Bash Shell Commands.”

You log into a console terminal by entering your user ID after the login: prompt and typing your password after the
Password: prompt. If you have never logged in this way before, be aware that typing your password is a different
experience than it is in a graphical environment. In a graphical environment, you may see dots or asterisks
indicating the password characters as you type. However, at the virtual console, nothing is displayed when you type
your password.

NOTE

Keep in mind that, within the Linux virtual console, you do not have the ability to run any
graphical programs.

After logging into a virtual console, you are taken to the Linux CLI, and you can switch to another virtual console

without losing your current active session. You can switch between all the virtual consoles, with multiple active
sessions running. This feature provides a great deal of flexibility while you work at the CLI.

Additional flexibility deals with the virtual console's appearance. Even though it is a text mode console terminal, you
can modify the text and background colors.

For example, it may be easier on your eyes to set the background of the terminal to white and the text to black. After
you have logged in, you can accomplish this modification in a couple of ways. One way is to type in the command
setterm --inversescreen on and press the Enter key, as shown in Figure 2-3. Notice in the figure that the --
inversescreen feature is being turned on using the option on . You can also turn it off using the off option.

Cent0S Linux 8 (Core)
Kernel 4.18.8-147.5.1.e18_1.x86_64 on an x86_64

fictivate the web console with: systemctl enable --now cockpit.socket

localhost login: christine

Passuword:

Last login: Sat Apr 25 11:38:55 on tty3
[christine@localhost ~15

[christine@localhost ~15 tty

~dev,tty3

[christine@localhost 1§ setterm --inversescreen on
[christine@localhost ~19

FIGURE 2-3 Linux virtual console with inversescreen being turned on

Another way is to type two commands, one after the other. Type setterm --background white and press Enter, and
then type setterm --foreground black and press Enter. Be careful because, when you change your terminal
background first, it may be hard to see the commands you are typing.

With the commands in the preceding paragraph, you are not turning features on and off, as with --inversescreen .
Instead, you have a choice of eight colors. The choices are black, red, green, yellow, blue , magenta, cyan, and
white (which looks gray on some distributions). You can get rather creative with your plain text mode console
terminals. Table 2-2 shows some options you can use with the setterm command to help improve your console
terminal's readability or appearance.

TABLE 2-2 setterm Options for Foreground and Background Appearance

Option Parameter Choices Description

--background |black, red, green,yellow,blue, Changesthe terminal's background color to the one specified
magenta, cyan, or white

--foreground |black, red, green, yellow, blue, | Changesthe terminal's foreground color, specifically text, to the

magenta, cyan, or white one specified
-- on or of f Switches the background color to the foreground color and the
inversescreen foreground color to the background color
--reset None Changes the terminal appearance back to its default setting and

clears the screen

--store None Sets the current terminal's foreground and background colors
as the values to be used for - - reset

Virtual console terminals are great for accessing the CLI outside the GUI. However, sometimes, you need to access
the CLI and run graphical programs. Using a terminal emulation package solves this problem and is a popular way
to access the shell CLI from within the GUI. The following sections describe common software packages that provide
graphical terminal emulation.

Accessing CLI via Graphical Terminal Emulation

The graphical desktop environment offers a great deal more variety for CLI access than the virtual console terminal
does. Many terminal emulator applications are available for the graphical environment. Each package provides its

own unique set of features and options. Some popular graphical terminal emulator applications are shown in Table
2-3 along with their websites.

TABLE 2-3 Popular Graphical Terminal Emulator Packages

Name Website
Alacritty github.com/alacritty/alacritty

cool-retro-term github.com/Swordfish90/cool-retro-term
GNOME Terminal wiki.gnome.org/Apps/Terminal

Guake guake-project.org

Konsole konsole.kde.org

kitty sw.kovidgoyal.net/kitty

rxvt-unicode software.schmorp.de/pkg/rxvt-unicode.html
Sakura pleyades.net/david/projects/sakura

st st.suckless.org

Terminator gnometerminator.blogspot.com

Terminology enlightenment.org/about-terminology.md
Termite github.com/thestinger/termite

Tilda github.com/lanoxx/tilda

xXterm invisible-island.net/xterm

Xfce4-terminal docs.xfce.org/apps/terminal/start
Yakuake kde.org/applications/system/org.kde.yakuake

Although many graphical terminal emulator applications are available, the focus in this chapter is on three. Installed
in different Linux distributions by default, they are GNOME Terminal, Konsole Terminal, and xterm.

Using the GNOME Terminal Emulator

GNOME Terminal is the GNOME Shell desktop environment's default terminal emulator. Many distributions, such
as Red Hat Enterprise Linux (RHEL), CentOS, and Ubuntu, use the GNOME Shell desktop environment by default,
and therefore use GNOME Terminal by default. It is fairly easy to use and a good terminal emulator for individuals
who are new to Linux. This section walks you through the various parts of accessing, configuring, and using GNOME
Terminal.

Accessing GNOME Terminal

In the GNOME Shell desktop environment, accessing the GNOME Terminal is fairly straightforward. Click on the
Activities icon in the upper-right corner of the desktop window. When the search bar appears, click within the bar to
access it and type terminal. The results of these actions are shown in Figure 2-4.

% Activities Apr 30 11:18

Q terminall

Terminal

FIGURE 2-4 Finding GNOME Terminal in GNOME Shell

Notice in the previous figure that the GNOME Terminal application icon is named Terminal. Click the icon to open
the terminal emulator. An open GNOME Terminal application on a CentOS distribution is shown in Figure 2-5.

M Activities [Terminal ~ Apr 30 11:19

=] christine@localhost:~

File Edit View Search Terminal Help
[christine@localhost ~]%

FIGURE 2-5 GNOME Terminal on CentOS

When you are done using the terminal emulator application, you close it just like other desktop windows: by clicking
the x in the window's upper-right corner.

The GNOME Terminal application's appearance may vary between Linux distributions. For example, in Figure 2-6,
GNOME Terminal is shown on an Ubuntu GNOME Shell desktop environment.

Activities (-] Terminal « Apr30 12:15

$s Il christine@uUDesktop: ~

FIGURE 2-6 GNOME Terminal on Ubuntu

Notice that the appearance of the GNOME Terminal application in Figure 2-6 is different compared to Figure 2-5.
This is typically due to the application's default configuration (covered later in this chapter) and the various features
a Linux distribution has in its GUI windows.

TIP

If you are using a different desktop environment than GNOME Shell (and have GNOME
Terminal installed), be aware that you may not have a search feature. In these cases, use the
environment's menu system to look for GNOME Terminal. It is typically named Terminal.

On many distributions, the first time you launch the GNOME Terminal application, its terminal emulator icon will
appear in your GNOME Shell Favorites bar. Hovering over the icon with your mouse will show the terminal
emulator's name, as shown in Figure 2-7.

Activities Apr 30 13:34

Q Type to search...

Terminal

FIGURE 2-7 GNOME Terminal icon in the Favorites bar

If for some reason the icon does not show up in your Favorites bar, you can set up a keyboard shortcut to launch it.
This approach is handy for those who don't care for using a mouse, and it allows faster access to the CLI.

TIP

GNOME Shell on the Ubuntu distribution already has a keystroke shortcut for opening the
GNOME terminal emulator: Ctrl+Alt+T.

To create a keyboard shortcut, you'll need to access the Keyboard Shortcuts window within Keyboard Settings. To
accomplish this quickly, click the Activities icon in the upper-right corner of the GNOME Shell desktop window.
When the search bar appears, click within the bar to access it, and type Keyboard Shortcuts. The results of these
actions are shown in Figure 2-8.

% Activities ¢ Settings ~ Apr 30 13:35

F 4 < Devices Keyboard Q x
Displays
Reset All...

Keyboard Shortcuts
E Keyboard
Launchers

l‘;\"
¢ Mouse & Touchpad Home folder

Printers Launch calculator

Petrovable s Launch email client

Launch help browser
€2 Thunderbolt
Launch web browser

<

4 Wacom Tablet

-4

Search

& Color Settings

Navigation

Hide all normal windows

Move to workspace above

Move to workspace below

Explorer
Calculator
Mail
Disabled
"."’V‘"‘c"‘\'ﬂ'{"\f
Search

Tools

Disabled
Super+Page Up

Super+Page Down

FIGURE 2-8 Reaching the Keyboard Shortcuts window

Once you are in the Keyboard Shortcuts window, scroll down to reach the + button, which is all the way at the
bottom. Clicking this button opens a dialog box, where you can name your new shortcut, provide the command to
open the application, and set the shortcut's keystrokes, as shown in Figure 2-9.

It is important to use the correct command name in order to properly launch the GNOME terminal emulator, so
type gnome-terminal in the Command field, as shown in Figure 2-9. When you are all done setting up your new
shortcut, click the Add button in the window. Now you can quickly launch the GNOME Terminal by just using the

keystroke combination you specified.

Several configuration options are provided by menus and shortcut keys in the application, which you can apply after
you get the GNOME terminal emulation started. Understanding these options can enhance your GNOME Terminal

CLI experience.

Activities Settings ~ Apr 30 13:46

& Displays Maximize window horizontally Disabled
Maximize window vertically Disabled
Move window Alt+F7
& Mouse & Touchpad —_—
Cancel Add Custom Shortcut Add
= Printers
Name GNOME Terminal
Removable Media

Command gnome-terminal

€ Thunderbolt
Shortcut Ctrl | +

£ Wacom Tablet

e Color

View split on left Super+Left

View split on right Super+Right

FIGURE 2-9 Creating a keyboard shortcut

The menu bar

The GNOME Terminal menu bar contains the configuration and customization options you need to make your
GNOME Terminal just the way you want it. The following tables briefly describe the configuration options in the
menu bar and shortcut keys associated with them.

TIP

If the GNOME Terminal window does not display its menu bar, right-click in the terminal
emulator session area, and click Show Menubar in the drop-down menu.

Table 2-4 shows the configuration options available within the GNOME Terminal File menu system. The File menu
item contains items to create and manage your overall CLI terminal sessions.

TABLE 2-4 The File Menu
Name Shortcut Key Description

New Tab Shift+Ctrl+T | Starts a new shell session in a new tab in the existing GNOME Terminal window
New Window Shift+Ctrl+N Starts a new shell session in a new GNOME Terminal window

Close Tab Shift+Ctrl+W Closes the current tab in the GNOME Terminal window

Close Window Shift+Ctrl+Q | Closes the current GNOME Terminal window

Notice that, as in a network browser, you can open new tabs within the GNOME Terminal session to start a whole
new CLI session. Each tab session is considered to be an independent CLI session.

TIP

You don't always have to click through the menu to reach options in the File menu. Some of the
File menu selections are also available by right-clicking in the terminal emulator session area.

The Edit menu contains items, shown in Table 2-5, for handling text within the tabs. You can copy and paste text

anywhere within the session window.

TABLE 2-5 The Edit Menu

Name Shortcut Key Description

Copy Shift+Ctrl+C | Copies selected text to the GNOME clipboard

Copy as HTML None Copies selected text, along with its font and color, to the GNOME clipboard
Paste Shift+Ctrl+V | Pastes text from the GNOME clipboard into a session

Select All None Selects output in the entire scrollback buffer

Preferences None

Edits the current session profile

Copying and pasting commands in the terminal is useful if you are lacking in keyboarding skills. Thus, the keyboard
shortcuts for the GNOME Terminal Copy and Paste functions are worth memorizing.

NOTE

As you read through these GNOME Terminal menu options, keep in mind that your Linux
distribution's GNOME Terminal may have slightly different menu options available. This is
because several Linux distributions use older versions of GNOME Terminal. You can find the
version number by clicking Help in the menu bar and selecting About from the drop-down

menu.

The View menu, shown in Table 2-6, contains items for controlling how the CLI session windows appear. These
options can be helpful for individuals with visual impairment.

TABLE 2-6 The View Menu

Name Shortcut Key Description

Show Menubar None
Full Screen Fu1
Zoom In Ctrl++
Normal Size Ctrl+o
Zoom Out Ctrl+-

Toggles on/off the menu bar display

Toggles on/off the terminal window filling the entire desktop
Enlarges the font size in the window incrementally

Returns the font size to default

Reduces the font size in the window incrementally

Be aware that if you toggle off the menu bar display, the session's menu bar disappears. However, you can easily get
the menu bar to display again by right-clicking in any terminal session window and selecting the Show Menubar

option.

The Search menu, shown in Table 2-7, contains items for conducting simple searches within the terminal session.
These searches are similar to ones you may have conducted in a network browser or word processor.

TABLE 2-7 The Search Menu

Name Shortcut Key Description

Find Shift+Ctrl+F
Find Next Shift+Ctrl+G
Find Previous | Shift+Ctrl+H
Clear Highlight Shift+Ctrl+J

Opens Find window to provide designated text search options
Searches forward from current terminal session location for designated text
Searches backward from current terminal session location for designated text

Removes highlighting of found text

The Terminal menu, shown in Table 2-8, contains options for controlling the terminal emulation session features.
There are no shortcut keys to access these items.

TABLE 2-8 The Terminal Menu

Name Description

Read-Only | Toggles on/off the terminal session accepting keyboard strokes; it does not enable/disable keyboard
shortcuts

Reset Sends reset terminal session control code

Reset and Sends reset terminal session control code and clears terminal session screen

Clear

80x24 Adjusts the current terminal window size to 80 columns wide by 24 rows high

80x43 Changes the current terminal window size to 80 columns wide by 43 rows high

132x24 Adjusts the current terminal window size to 130 columns wide by 24 rows high

130x43 Changes the current terminal window size to 130 columns wide by 43 rows high

The Reset option is extremely useful. One day, you may accidentally cause your terminal session to display random
characters and symbols. When this occurs, the text is unreadable. It is typically caused by displaying a nontext file to
the screen. You can quickly get the terminal session back to normal by selecting Reset or Reset And Clear.

NOTE

Keep in mind that when you adjust your terminal’s size, such as by using the 80x24 setting in
the Terminal menu, the actual size is determined by factors such as the character font in use.
It's a good idea to play around with the different settings to find a size that suits your taste.

The Tabs menu, shown in Table 2-9, provides items for controlling the location of the tabs and selecting which tab is
active. This menu displays only when you have more than one tab session open.

TABLE 2-9 The Tabs Menu

Name Shortcut Key Description
Previous Tab Ctrl+Page Up Makes the previous tab in the list active
Next Tab Ctrl+Page Down Makes the next tab in the list active

Move Terminal Shift+Ctrl+Page Up Shuffles the current tab in front of the previous tab
Left

Move Terminal Shift+Ctrl+Page Shuffles the current tab in front of the next tab
Right Down

Detach Terminal None Removes the tab and starts a new GNOME Terminal window using this
tab session
Finally, the Help menu contains two menu options:

= Contents provides a full GNOME Terminal manual so that you can research individual GNOME Terminal items
and features.

= About shows you the current GNOME Terminal application version that's running.

Besides the GNOME terminal emulator package, another commonly used package is Konsole. In many ways,
Konsole is similar to GNOME Terminal. However, enough differences exist to warrant its own section.

Using the Konsole Terminal Emulator

The KDE project created its own terminal emulation package called Konsole. The Konsole application incorporates
basic terminal emulation features, along with more advanced ones expected from a graphical application. This
section describes Konsole features and shows you how to use them.

Accessing Konsole

The Konsole application is the default terminal emulator for the KDE desktop environment, Plasma. You can easily
access it via the KDE environment's menu system. In other desktop environments, accessing Konsole is typically
done via search features.

In the KDE desktop environment (Plasma), you start the Konsole terminal emulator by clicking the icon labeled
Application Launcher in the lower-left corner of the screen. Then click Applications = System = Terminal
(Konsole).

NOTE

You may see two or more terminal menu options within the Plasma menu environment. If you
do, the Terminal menu option with the word Konsole beneath it is the Konsole terminal
emulator application.

In the GNOME Shell desktop environment, the Konsole application is typically not installed by default. If Konsole
has been installed, you can access it via the GNOME Shell search feature. Click the Activities icon in the upper-right
corner of the desktop window. When the search bar appears, click your mouse within the bar to access it, and type
konsole. If the terminal emulator is available on your system, you will see the Konsole icon displayed.

NOTE

You may not have the Konsole terminal emulation package installed on your system. If you
would like to install it, see Chapter 9, “Installing Software,” to learn how to install software via
the command line.

Click the Konsole icon with your mouse to open the terminal emulator. An open Konsole application on an Ubuntu
distribution is shown in Figure 2-10.

Activities (-] Konsole + May 1 09:57

‘\ ~: bash — Konsole

4 File Edit View Bookmarks Settings Help
1ne@UDesl| . 5. =

FIGURE 2-10 The Konsole terminal emulator

Remember that, in most desktop environments, you can create a keyboard shortcut to access applications such as
Konsole. The command you need to type for the shortcut in order to start up the Konsole terminal emulator is
konsole. Also, if the Konsole application is installed, you can start it from another terminal emulator by typing
konsole and pressing Enter.

TIP

In the Plasma desktop environment, the Konsole terminal emulator application already has a
default keyboard shortcut: Ctrl+Alt+T.

The Konsole terminal emulator, similar to GNOME Terminal, has several configuration options provided by menus
and shortcut keys. The following section describes these various features.

The menu bar

The Konsole menu bar contains the configuration and customization options you need to easily view and change
features in your terminal emulation session. The following tables briefly describe the menu options and associated
shortcut keys.

TIP

If the Konsole menu bar is not currently displayed, you can press Ctrl+Shift+M to enable it.

The File menu, shown in Table 2-10, provides options for starting a new tab in the current window or in a new
window.

TABLE 2-10 The File Menu

Name Shortcut Description
Key
New Window | Ctrl+Shift+N Starts a new shell session in a new Konsole Terminal window
New Tab Ctrl+Shift+T |Starts a new shell session in a new tab in the existing Konsole Terminal window
Clone Tab None Starts a new shell session in a new tab in the existing Konsole Terminal window that

attempts to duplicate the current tab

Save Output | Ctrl+Shift+S Saves the current tab's output in its scrollback buffer as either a text or an HTML file
As

Print Screen | Ctrl+Shift+P | Prints the current tab's displayed text

Open File None Opens the default file browser application
Manager

Close Session | Ctrl+Shift+W Closes the current tab session

Close Ctrl+Shift+Q Closes the current Konsole window
Window

Notice that Konsole offers two handy options for saving information from your shell session: Save Output As and
Print Screen. The Print Screen function allows you to print the displayed text to a system printer or save it as a PDF
file.

NOTE

As you read through these Konsole menu options, keep in mind that your Linux distribution's
Konsole application may have very different menu options available. This is because some
Linux distributions have kept older versions of the Konsole terminal emulation package.

The Edit menu, shown in Table 2-11, provides options for handling text in the session. Also, managing tab names is
in this options list.

TABLE 2-11 The Edit Menu

Name Shortcut Description
Key
Copy Ctrl+Shift+C Copies selected text to the Konsole clipboard
Paste Ctrl+Shift+V Pastes text from the Konsole clipboard into a session
Select All None Selects all the text in the current tab
Copy Input None Starts/stops session input copies to chosen additional sessions
To
Send Signal None Sends the selected signal from the drop-down menu to the current tab's shell process

or other process
Rename Tab | Ctrl+Alt+S Modifies session tab title bar setting

ZModem Ctrl+Alt+U | Starts the process of uploading a selected file, if the ZMODEM file transfer protocol is
Upload supported

Find Ctrl+Shift+F Opens the Find window to provide scrollback buffer text search options

Find Next F3 Finds the next text match in more recent scrollback buffer history

Find Previous Shift+F3 Finds the next text match in older scrollback buffer history

Konsole provides an excellent method for tracking what function is taking place in each tab session. Using the

Rename Tab option, you can name a tab to match its current task. This helps in tracking which open tab session is
performing what job.

NOTE

Konsole retains a history, formally called a scrollback buffer, for each tab. The history
contains output text that has scrolled out of the terminal viewing area. By default, the last
1,000 lines in the scrollback buffer are retained. You can scroll back through the scrollback
buffer by simply using the scrollbar in the viewing area. Also, you can scroll back line by line by
pressing the Shift+Up Arrow or scroll back a page (24 lines) at a time by pressing Shift+Page
Up.

The View menu, shown in Table 2-12, contains items for controlling individual session views in the Konsole
Terminal window. In addition, options are available that aid in monitoring terminal session activity.

TABLE 2-12 The View Menu

Name Shortcut Description

Key
Split View None Controls a multiple tab session display within the current Konsole window
Detach Current Ctrl+Shift+L Removes a tab session and starts a new Konsole window using this tab session
Tab
Detach Current Ctrl+Shift+H Removes the current tab session's view and starts a new Konsole window with
View it

Monitor for Silence Ctrl+Shift+I Toggles on/off a special message when no activity is occurring in the tab

session

Monitor for Ctrl+Shift+A Toggles on/off a special message when activity starts occurring in the tab

Activity session

Read-only None Toggles on/off the terminal session accepting keyboard strokes; does not
enable/disable keyboard shortcuts

Enlarge Font Ctrl++ Enlarges the font size in the window incrementally

Reset Font Size Ctrl+Alt+0 Returns the font size to default

Shrink Font Ctrl+- Reduces the font size in the window incrementally

Set Encoding None Selects the character set used to send and display characters

Clear Scrollback None Removes the text in the current session's scrollback buffer

Clear Scrollback Ctrl+Shift+K Removes the text in the current session's scrollback buffer and resets the
and Reset terminal window

Full Screen Mode F11 Toggles on/off the terminal window filling the entire monitor display area
The Monitor for Silence option is used for indicating tab silence. Tab silence occurs when no new text appears in the

current tab session for about seven seconds. This allows you to switch to another tab while waiting for the
application's output to stop.

TIP

The Konsole application provides a simple menu when you right-click in the active session
area. Several menu items are available in this easy-to-access menu.

The Bookmarks menu options, shown in Table 2-13, provide a way to manage bookmarks set in the Konsole
window. A bookmark enables you to save your active session's directory location and then easily return there in
either the same session or a new session.

TABLE 2-13 The Bookmarks Menu

Name Shortcut Key Description

Add Bookmark Ctrl+Shift+B | Creates a new bookmark at the current directory location
Bookmark Tabs as Folder None Creates a new bookmark for all current terminal tab sessions
New Bookmark Folder None Creates a new bookmark storage folder

Edit Bookmarks None Edits existing bookmarks

The Settings menu, shown in Table 2-14, allows you to customize and manage your profiles. Profiles allow a user to
automate the running of commands, set up the session's appearance, configure the scrollback buffer, and so on.
Also, within the Settings menu you can add a little more functionality to your shell sessions.

TABLE 2-14 The Settings Menu

Name Shortcut Key Description

Edit Current Profile None Opens the Edit Profile window to provide profile configuration options

Switch Profile None Applies to the current tab a selected profile

Manage Profiles None Opens the Manage Profiles window to provide profile management
options

Show Menubar Ctrl+Shift+M Toggles on/off menu bar display

Configure Keyboard None Creates Konsole command keyboard shortcuts

Shortcuts

Configure Notifications None Creates custom Konsole notifications

Configure Konsole Ctrl+Shift+, | Configures many Konsole features

Configure Notifications allows you to associate specific events that can occur within a session with different actions,
such as playing a sound. When one of the events occurs, the defined action (or actions) is taken.

The Help menu, shown in Table 2-15, provides the full Konsole handbook (if KDE handbooks were installed in your
Linux distribution) and the standard About Konsole dialog box.

TABLE 2-15 The Help Menu

Name Shortcut Description
Key
Konsole Handbook None Contains the full Konsole Handbook
What's This? Shift+F1 Contains help messages for terminal widgets
Report Bug None Opens the Submit Bug Report form
Donate None Opens the KDE donation page within a web browser
Switch Application None Opens the Switch Application Language form
Language
About Konsole None Displays information about the Konsole application, including its current
version
About KDE None Displays information about the KDE desktop environment

Rather extensive documentation is provided to help you use the Konsole terminal emulator package within the Help
menu. The Bug Report form to submit to the Konsole developers when you encounter a program bug is handy.

The Konsole terminal emulator package is young compared to another popular package, xterm. In the next section,
we explore the “old-timer” xterm.

Using the xterm Terminal Emulator

The oldest and most basic of terminal emulation packages is xterm. The xterm package has been around since before
the original days of X Window, a historically popular display server, and it's still included by default in some
distributions, such as openSUSE.

xterm is a full terminal emulation package, but it doesn't require many resources (such as memory) to operate.
Because of this, the xterm package is still popular in Linux distributions designed to run on older hardware.

Although it doesn't offer many fancy features, the xterm package does one thing extremely well: it emulates older
terminals, such as the Digital Equipment Corporation (DEC) VT102, VT220, and Tektronix 4014 terminals. For the
VT102 and VT220 terminals, xterm can even emulate the VT series of color control codes, allowing you to use color

in your scripts.

NOTE

The DEC VT102 and VT220 were dumb text terminals popular for connecting to Unix systems

in the 1980s and early 1990s. A VT102/VT220 could display text and display rudimentary
graphics using block mode graphics. This style of terminal access is still used in many business
environments today, thus keeping VIT102/VT220 emulation popular.

Figure 2-11 shows what the basic xterm display looks like running on a CentOS distribution's GNOME Shell
environment, where it had to be manually installed. You can see that it is very basic.

& Activities :J XTerm = May 1 16:24

christine@localhost:~

christine@localhost ~1%]

FIGURE 2-11 The xterm terminal

The xterm terminal emulator can be tricky to find these days. Often, it is not included in a desktop environment
graphical menu arrangement.

Accessing xterm

In the KDE desktop environment (Plasma), you can access xterm by clicking the Application Launcher icon in the
lower-left corner of the screen. Then click Applications = System = standard terminal emulator for the X Window
system (xterm).

Once the xterm package is installed, you can access it via the GNOME Shell search feature. Click the Activities icon
in the upper-right corner of the desktop window. When the search bar appears, click within the bar to access it and
type xterm, and you'll see the Konsole icon displayed. Also, remember that you can create your own keyboard
shortcut to start up xterm.

The xterm package allows you to set individual features using command-line parameters. The following sections
discuss these features and how to change them.

Command-line parameters

The list of xterm command-line parameters is extensive. You can control lots of features to customize the terminal
emulation features, such as enabling or disabling individual VT emulations.

NOTE

xterm has a huge number of configuration options — so many that they cannot all be covered

here. Extensive documentation is available via the Bash manual. Accessing the Bash manual is
covered in Chapter 3. In addition, the xterm development team provides some excellent help
on its website: invisible-island.net/xterm.

You can invoke certain configuration options by adding a parameter to the xterm command. For example, to have
the xterm emulate a DEC VT100 terminal, at the CLI type the command xterm -ti vt100 and press Enter. Table 2-
16 shows some parameters you can include when invoking the xterm terminal emulator software from the command
line.

TABLE 2-16 xterm Command-Line Parameters

Parameter Description

-bg color Specifies the color to use for the terminal background

-fb font Sets the font to use for bold text

-fgcolor Specifies the color to use for the foreground text

-fn font Sets the font to use for text

-fw font Specifies the font to use for wide text

-1f filename Sets the filename to use for screen logging

-ms color Specifies the color used for the text cursor

- name Sets the name of the application that appears in the title bar

-ti terminal Specifies the terminal type to emulate
Some xterm command-line parameters use a plus sign (+) or minus sign (-) to signify how a feature is set. A plus
sign may turn a feature on, whereas a minus sign turns it off. However, the opposite can be true as well. A plus sign

may disable a feature, whereas a minus sign enables it, such as when using the bc parameter. Table 2-17 lists some of
the more common features you can set using the + / - command-line parameters.

TABLE 2-17 xterm +/- Command-Line Parameters

Parameter Description

ah Enables/disables highlighted text cursor

aw Enables/disables auto-line-wrap

bc Enables/disables text cursor blinking

cm Enables/disables recognition of ANSI color change control codes

fullscreen Enables/disables full-screen mode

j Enables/disables jump scrolling

1 Enables/disables logging screen data to a log file
mb Enables/disables margin bell

rv Enables/disables reverse video colors

t Enables/disables Tektronix mode

It is important to note that not all implementations of xterm support all these command-line parameters. You can
determine which parameters your xterm implements by using the -help parameter when you start xterm on your
system.

NOTE

If xterm appeals to you but you'd like to use a more modern terminal emulation application,
consider trying the rxvt-unicode package. It is available to install via most distributions’
standard repositories (covered in Chapter 9), uses little RAM, and is very fast. Find out more at
software.schmorp.de/pkg/rxvt-unicode.html.

Now that you have been introduced to three terminal emulator packages, the big question is, which is the best
terminal emulator to use? There is no definite answer to that question. Which terminal emulator package you use
depends on your individual needs and desires. But it is great to have so many choices.

Summary

To start learning Linux command-line commands, you need access to a CLI. In the world of graphical interfaces, this
can sometimes be challenging. This chapter discussed various interfaces you should consider to get to the Linux
command line.

First, this chapter discussed the difference between accessing the CLI via a virtual console terminal (a terminal
outside the GUI) and a graphical terminal emulation package (a terminal inside the GUI). We took a brief look at the
basic differences between these two access methods.

Next, we explored in detail accessing the CLI via a virtual console terminal, including specifics on how to change
console terminal configuration options such as background color.

After looking at virtual console terminals, the chapter traveled through accessing the CLI via a graphical terminal
emulator. Primarily, we covered three types of terminal emulators: GNOME Terminal, Konsole, and xterm.

This chapter also covered the GNOME Shell desktop project's GNOME terminal emulation package. GNOME

Terminal is typically installed by default on the GNOME Shell desktop environment. It provides convenient ways to
set many terminal features through menu options and shortcut keys.

We also discussed the KDE desktop project's Konsole terminal emulation package. The Konsole application is
typically installed by default on the KDE desktop environment (Plasma). It provides several nice features, such as
the ability to monitor a terminal for silence.

Finally, we explored the xterm terminal emulator package. xterm was the first terminal emulator available for Linux.
It can emulate older terminal hardware such as the VT and Tektronix terminals.

In the next chapter, we'll start looking at the Linux command-line commands. We'll walk you through the
commands necessary to navigate around the Linux filesystem and to create, delete, and manipulate files.

CHAPTER 3
Basic Bash Shell Commands

IN THIS CHAPTER

Interacting with the shell

Using the Bash manual

Traversing the filesystem

Listing files and directories

Managing files and directories

Viewing file contents
The default shell used in many Linux distributions is the GNU Bash shell. This chapter describes the basic features
available in the Bash shell, such as the Bash manual, command-line completion, and how to display a file's contents.
We will walk you through how to work with Linux files and directories using the basic commands provided by the

Bash shell. If you're already comfortable with the basics in the Linux environment, feel free to skip this chapter and
go to Chapter 4, “More Bash Shell Commands,” to see more advanced commands.

Starting the Shell

The GNU Bash shell is a program that provides interactive access to the Linux system. It runs as a regular program
and is normally started whenever a user logs into a terminal. The shell that the system starts depends on your user
ID configuration.

The /etc/passwd file contains a list of all the system user accounts, along with basic configuration information about
each user. Here's a sample entry from an /etc/passwd file:

christine:x:1001:1001::/home/christine:/bin/bash

Every entry has seven data fields, separated by colons (:). The system uses the data in these fields to assign specific
features for the user. Most of these entries are discussed in more detail in Chapter 7, “Understanding Linux File
Permissions.” For now, just pay attention to the last field, which specifies the user's shell program.

NOTE

Though the focus is on the GNU Bash shell, additional shells are reviewed in this book. Chapter
23, “Working with Alternative Shells,” covers working with alternative shells, such as dash and
tesh.

In the earlier /etc/passwd sample entry, the user christine has /bin/bash set as their default shell program. This
means when christine logs into the Linux system, the GNU Bash shell program is automatically started.

Although the Bash shell program is automatically started at login, whether a shell command-line interface (CLI) is
presented depends on which login method is used. If you use a virtual console terminal to log in, the CLI prompt is

automatically presented, and you can begin to type shell commands. However, if you log into the Linux system via a
graphical desktop environment, you need to start a graphical terminal emulator to access the shell CLI prompt.

Using the Shell Prompt
After you start a terminal emulation package or log into a Linux virtual console, you get access to the shell CLI

prompt. The prompt is your gateway to the shell. This is the place where you enter shell commands.

The default prompt symbol for the Bash shell is the dollar sign ($). This symbol indicates that the shell is waiting for
you to enter text. Different Linux distributions use different formats for the prompt. On this Ubuntu Linux system,
the shell prompt looks like this:

christine@UDesktop:~$
On the CentOS Linux system, it looks like this:

[christine@localhost ~]$

Besides acting as your access point to the shell, the prompt can provide additional helpful information. In the two
preceding examples, the current user ID name, christine, is shown in the prompt. Also, the name of the system is
shown, UDesktop on the Ubuntu system and localhost on the CentOS machine. You'll learn later in this chapter
about additional items shown in the prompt.

TIP

If you are new to the CLI, keep in mind that, after you type a shell command at the prompt, you
need to press the Enter key for the shell to act upon your command.

The shell prompt is not static. It can be changed to suit your needs. Chapter 6, “Using Linux Environment
Variables,” covers the shell CLI prompt configuration.

Think of the shell CLI prompt as a helpmate, assisting you with your Linux system, giving you helpful insights, and
letting you know when the shell is ready for new commands. Another helpful item in the shell is the Bash manual.

Interacting with the Bash Manual

Most Linux distributions include an online manual for looking up information on shell commands, as well as lots of
other GNU utilities included in the distribution. You should become familiar with the manual, because it's
invaluable for working with commands, especially when you're trying to figure out various command-line
parameters.

The man command provides access to the manual pages stored on the Linux system. Entering the man command
followed by a specific command name provides that utility's manual entry. Figure 3-1 shows an example of looking
up the hostname command's manual pages. This page was reached by typing the command man hostname .

#® Activities [Terminal ~ Feb 25 15:31

= christine@localhost:~

File Edit View Search Terminal Help
HOSTNAME (1) Linux Programmer's Manual HOSTNAME(1)

NAME
hostname - show or set the system's host name
domainname - show or set the system's NIS/YP domain name
ypdomainname - show or set the system's NIS/YP domain name
nisdomainname - show or set the system's NIS/YP domain name
dnsdomainname - show the system's DNS domain name

SYNOPSIS
hostname [-a|--alias] [-d|--domain] [-f|--fqdn|--long] [-A|--all-fqdns]
[-1|--ip-address] [-I|--all-ip-addresses] [-s|--short] [-y|--yp|--nis]
hostname [-b|--boot] [-F|--file filename] [hostname]
hostname [-h|--help] [-V]--version]

domainname [nisdomain] [-F file]
ypdomainname [nisdomain] [-F file]
nisdomainname [nisdomain] [-F file]

dnsdomainname
DESCRIPTION

Hostname is used to display the system's DNS name, and to display or
set its hostname or NIS domain name.

" help or q to quit)

FIGURE 3-1 Manual pages for the hostname command

Notice the hostname command's DESCRIPTION paragraph in Figure 3-1. It is rather sparse and full of technical jargon.
The Bash manual is not a step-by-step guide but instead a quick reference.

TIP

If you are new to the Bash shell, you may find that the man pages are not very helpful at first.

However, get into the habit of using them, especially to read the first paragraph or two of a
command's DESCRIPTION section. Eventually, you will learn the technical lingo, and the man
pages will become more helpful to you.

When you use the man command to view a command's manual, the information is displayed with something called a
pager. A pager is a utility that allows you to view text a page (or a line) at a time. Thus, you can page through the
man pages by pressing the spacebar, or you can go line by line using the Enter key. In addition, you can use the
arrow keys to scroll forward and backward through the man information (assuming that your terminal emulation
package supports the arrow key functions).

When you are finished with the man pages, press the Q key to quit. When you leave the man pages, you receive a
shell CLI prompt, indicating the shell is waiting for your next command.

TIP

The Bash manual even has reference information on itself. Type man man to see information
concerning the man pages.

The manual page divides information about a command into separate sections. Each section has a conventional
naming standard, as shown in Table 3-1.

TABLE 3-1 The Linux Man Page Conventional Section Names

Section Description
Name Displays command name and a short description
Synopsis Shows command syntax

Configuration |Provides configuration information
Description Describes command generally

Options Describes command option(s)

Exit Status Defines command exit status indicator(s)
Return Value | Describes command return value(s)
Errors Provides command error messages
Environment | Describes environment variable(s) used
Files Defines files used by command

Versions Describes command version information

Conforming To | Provides standards followed

Notes Describes additional helpful command material
Bugs Provides the location to report found bugs
Example Shows command use examples

Authors Provides information on command developers
Copyright Defines command code copyright status

See Also Refers to similar available commands

Not every command's man page has all the section names described in Table 3-1. Also, some commands have section
names that are not listed in the conventional standard.

In a command's synopsis section, you can find out how the command should be entered at the shell prompt. Many
commands use a basic pattern:

COMMAND -NAME [OPTION].. [ARGUMENT]..
In the command's pattern structure,
= COMMAND-NANME is the name of the command used to run the desired program.

® [OPTION] s are additional items added to modify the command's behavior. There are typically many 0PTIONS
(also called switches) you can add. The brackets ([1) indicate that OPTIONs are not required, and the three dots
(..) show that you can use more than one OPTION at a time.

= [ARGUMENT] is typically an item you pass to the command to let the program know you want it to operate on
that item. You can see that it too is not required due to the brackets, and you can pass multiple ARGUMENTS to the
program.

TIP

If you want to use more than one command option, often you can squish them together. For
example, to use the options -a and -b , you type -ab.

Many commands were written by different individuals, so you'll find the way to use them varies as well. Thus, the
command's synopsis section within its man page is a great place to find the proper syntax in order to get things done
with the command.

TIP

If you can't remember a command's name, you can search the man pages using keywords. The
syntax is man -k keyword. For example, to find commands dealing with the terminals, you type
man -k terminal.

In addition to the conventionally named sections for a man page, there are man page section areas. Each section
area has an assigned number, starting at 1 and going to 9; they are listed in Table 3-2.

TABLE 3-2 The Linux Man Page Section Areas

Section Number Area Contents

Executable programs or shell commands

System calls

Library calls

Special files

File formats and conventions

Games

Overviews, conventions, and miscellaneous
Super user and system administration commands

Kernel routines

O 00N ok~ W N -

Typically, the man utility provides the lowest numbered content area for the command. For example, looking back to
Figure 3-1 where the command man hostname was entered, notice that in the upper-left and upper-right display
corners, the word HOSTNAME is followed by a number in parentheses, (1) . This means the man pages displayed are
coming from content area 1 (executable programs or shell commands).

NOTE

Your Linux system may include a few nonstandard section numbers in its man pages. For
example, 1p is the section covering Portable Operating System Interface (POSIX) commands
and 3n is for network functions.

Occasionally, a command has the same name as a special file or overview section in the man pages, and thus the
name is listed in multiple section content areas. For example, the man pages for hostname contain information on
the command as well as an overview section on system hostnames. Typically by default, the man information for the
lowest section number is displayed. Such was the case in Figure 3-1, where the hostname man pages from section 1
was automatically chosen. To get around the default section search order, type man section# topicname. Thus, to see
the hostname overview man pages in section 7, type man 7 hostname .

You can also step through an introduction to the various section content areas by typing man 1 intre to read about
section 1, man 2 intro to read about section 2, man 3 intro to read about section 3, and so on.

The man pages are not the only reference. There are also the information pages called info pages. You can learn
about the info pages by typing info info .

Built-in commands, which are covered in Chapter 5, “Understanding the Shell,” have their own special resource
called the help pages. For more information on using help pages, type help help . (See a pattern here?)

In addition, most commands accept the -h or --help option. For example, you can type hostname --help to see a
brief help screen.

Obviously, several helpful resources are available for reference. However, many basic shell concepts still need
detailed explanation. In the next section, we cover navigating through the Linux filesystem.

Navigating the Filesystem

When you log into the system and reach the shell command prompt, you are usually placed in your home directory.
Often, you want to explore other areas in the Linux system besides just your home directory. This section describes
how to do that using shell commands. To start, you need to take a tour of just what the Linux filesystem looks like so
you know where you are going.

Looking at the Linux filesystem

If you're new to the Linux system, you may be confused by how it references files and directories, especially if you're
used to the way the Microsoft Windows operating system does that. Before exploring the Linux system, it helps to
have an understanding of how it's laid out.

The first difference you'll notice is that Linux does not use drive letters in pathnames. In the Windows world, the
partitions on physical drives installed on the computer determine the pathname of the file. Windows assigns a letter
to each physical disk drive partition, and each one contains its own directory structure for accessing files stored on
it.

For example, in Windows you may be used to seeing the file paths such as
C:\Users\Rich\Documents\test.doc

The Windows file path tells you exactly which physical disk partition contains the file named test.doc . For example,
if you saved test.doc on a flash drive, designated by the letter E, the file path would be E: \test.doc . This path
indicates that the file is located at the root of the drive assigned the letter E.

This is not the method used by Linux. Linux stores files within a single directory structure, called a virtual directory.
The virtual directory contains file paths from all the storage devices installed on the computer, merged into a single
directory structure.

The Linux virtual directory structure contains a single base directory, called the root. Directories and files beneath
the root directory are listed based on the directory path used to get to them, similar to the way Windows does it.

TIP

You'll notice that Linux uses a forward slash (/) instead of a backward slash (\) to denote
directories in file paths. The backslash character in Linux denotes an escape character and
causes all sorts of problems when you use it in a file path. This may take some getting used to if
you're coming from a Windows environment.

In Linux, as depicted in Figure 3-2, you will see file paths similar to this:

/home/rich/Documents/test.doc

bin boot dev

home var

rich
|

Documents

test.doc
___/‘—‘\

FIGURE 3-2 A Linux virtual directory file path

This indicates that the file test.doc is in the directory Documents , under the directory rich , which is contained in
the directory home . Notice that the path doesn't provide any information as to which physical disk the file is stored
on.

The tricky part about the Linux virtual directory is how it incorporates each storage device. The first hard drive
installed in a Linux system is called the root drive. The root drive contains the virtual directory core. Everything else
builds from there.

On the root drive, Linux can use special directories as mount points. Mount points are directories in the virtual
directory where you can assign additional storage devices. Linux causes files and directories to appear within these
mount point directories, even though they are physically stored on a different drive.

Often system files are physically stored on the root drive. User files are typically stored on a separate drive or drives,
as shown in Figure 3-3.

Disk 1

Disk 2

—— bin
—— barbara

etc

o —— jesscia

katie

— USr

L var — rich

. J \ W
FIGURE 3-3 The Linux file structure

Figure 3-3 shows two hard drives on the computer. One hard drive (Disk 1) is associated with the root of the virtual
directory. Other hard drives can be mounted anywhere in the virtual directory structure. In this example, the second
hard drive (Disk 2) is mounted at the location /home , which is where the user directories are located.

The Linux filesystem structure originally evolved from the Unix file structure. In a Linux filesystem, common
directory names are used for common functions. Table 3-3 lists some common Linux virtual top-level directory
names and their contents.

TABLE 3-3 Common Linux Directory Names
Directory Usage

/ Root of the virtual directory, where normally, no files are placed

/bin Binary directory, where many GNU user-level utilities are stored

/boot Boot directory, where boot files are stored

/dev Device directory, where Linux creates device nodes

/etc System configuration files directory

/home Home directory, where Linux creates user directories, which are optional

/lib Library directory, where system and application library files are stored

/libname Library directory(ies), where alternative format system and application library files are stored, which is
optional

/media Media directory, a common place for mount points used for removable media

/mnt Mount directory, a common place used for temporarily mounting filesystems

/opt Optional directory, where third-party software packages are stored

/proc Process directory, where current kernel, system, and process information is stored

/root Root user's home directory, which is optional

/run Run directory, where runtime data is held during system operation

/sbin System binary directory, where many GNU admin-level utilities are stored

/srv Service directory, where local services store their files

/sys System directory, where devices, drivers, and some kernel feature information is stored

/tmp Temporary directory, where temporary work files can be created and destroyed

/usr User directory, a secondary directory hierarchy

/var Variable directory, for files that change frequently, such as log files

On the CentOS Linux system, the root virtual directory typically has these top-level directories within it:

bin dev home 1ib64 mnt proc run srv tmp var

boot etc lib media opt root sbin sys usr
The /usr directory deserves some special attention, because it is a secondary directory grouping, containing read-
only files that are sharable. You'll often find user commands, source code files, games, and so on. Here is an example
of the /usr directory on a CentOS system:

bin games include lib 1ib64 libexec local sbin share src tmp

The common Linux directory names are based on the Filesystem Hierarchy Standard (FHS). Many Linux
distributions maintain compliance with FHS. Therefore, you should be able to easily find files on any FHS-compliant
Linux systems.

NOTE

The FHS is occasionally updated. You may find that some Linux distributions are still using an
older FHS standard, whereas other distributions only partially implement the current
standard. To keep up to date on the FHS standard, visit its official home at

refspecs.linuxfoundation.org/fhs.shtml.

When you log into your system and reach a shell CLI prompt, your session starts in your home directory. Your home
directory is a unique directory assigned to your user account. When a user account is created, the system normally
assigns a unique directory for the account (see Chapter 7).

You can move around the virtual directory using a graphical interface. However, to move around the virtual
directory from a CLI prompt, you need to learn to use the cd command.
Traversing directories

You use the change directory command (cd) to move your shell session to another directory in the Linux filesystem.
The cd command syntax is pretty simple: cd destination.

The cd command may take a single argument, destination, which specifies the directory name you want to go to. If
you don't specify a destination on the cd command, it takes you to your home directory.

The destination argument can be expressed using two different methods. One method is using an absolute directory
reference. The other method uses a relative directory reference.

The following sections describe each of these methods. The differences between these two methods are important to

understand as you traverse the filesystem.

Using absolute directory references

You can reference a directory name within the virtual directory system using an absolute directory reference. The
absolute directory reference defines exactly where the directory is in the virtual directory structure, starting at the
root. Think of the absolute directory reference as the full name for a directory.

An absolute directory reference always begins with a forward slash (/), indicating the virtual directory system's root.
Thus, to reference user binaries, contained within the usr directory's bin subdirectory, you would use

/usr/bin

With the absolute directory reference, there's no doubt as to exactly where you want to go. To move to a specific
location in the filesystem using the absolute directory reference, you just specify the full pathname in the cd
command:

[christine@localhost ~]$ cd /usr/bin
[christine@localhost bin]$

Notice in the preceding example that the prompt originally had a tilde (~) in it. After the change to a new directory
occurred, the tilde was replaced by bin . This is where a CLI prompt can help you keep track of where you are in the
virtual directory structure. The tilde indicates that your shell session is located in your home directory. After you
move out of your home directory, the partial directory reference is shown in the prompt (if the prompt has been
configured to do so).

NOTE

If your shell CLI prompt does not show your shell session's current location, then it has not
been configured to do so. Chapter 6 discusses CLI prompt configuration, if you desire
modifications to your CLI prompt.

If your prompt has not been configured to show the shell session's current absolute directory location, then you can
display the location via a shell command. The pwd command displays the shell session's current directory location,
which is called the present working directory or current working directory. An example of using the pwd command
is shown here:

[christine@localhost bin]$ pwd
/usr/bin
[christine@localhost binl$

TIP

It is a good habit to use the pwd command whenever you change to a new present working
directory. Because many shell commands operate on the present working directory, you
always want to make sure you are in the correct directory before issuing a command.

You can move to any level within the entire Linux virtual directory structure from any level using the absolute
directory reference:

[christine@localhost bin]$ cd /var/log
[christine@localhost logl$ pwd
/var/log

[christine@localhost logl$

You can also quickly jump to your home directory from any level within the Linux virtual directory structure:

[christine@localhost logl$ cd
[christine@localhost ~1$ pwd
/home/christine
[christine@localhost ~1%

However, if you're just working within your own home directory structure, often using absolute directory references
can get tedious. For example, if you're already in the directory /home/christine, it seems somewhat cumbersome to
have to type the command

cd /home/christine/Documents

just to get to your Documents directory. Fortunately, there's a simpler solution.

Using relative directory references

Relative directory references allow you to specify a destination directory reference relative to your current location.
A relative directory reference doesn't start with a forward slash (/).

Instead, a relative directory reference starts with either a directory name (if you're traversing to a directory under
your current directory) or a special character. For example, if you are in your home directory and want to move to

your Documents subdirectory, you can use the cd command along with a relative directory reference:

[christine@localhost ~]1$ pwd
/home/christine

[christine@localhost ~]$ cd Documents
[christine@localhost Documentsl$ pwd
/home/christine/Documents
[christine@localhost Documents]$

In the preceding example, note that no forward slash (/) was used. Instead, a relative directory reference was used
and the present work directory was changed from /home/christine to /home/christine/Documents , with much less

typing.

TIP

If you are new to the command line and the Linux directory structure, it is recommended that
you stick with absolute directory references for a while. After you become more familiar with
the directory layout, switch to using relative directory references.

You can use a relative directory reference with the cd command in any directory containing subdirectories. You can
also use a special character to indicate a relative directory location.

The two special characters used for relative directory references are:
» The single dot (.) to represent the current directory
® The double dot (. .) to represent the parent directory

You can use the single dot, but it doesn't make sense to use it with the cd command. Later in the chapter, you will
see how another command uses the single dot for relative directory references effectively.

The double-dot character is extremely handy when trying to traverse a directory hierarchy. For example, if you are in
the Documents directory under your home directory and need to go to your Downloads directory, also under your
home directory, you can do this:

[christine@localhost Documents]$ pwd
/home/christine/Documents

[christine@localhost Documents]$ cd ../Downloads
[christine@localhost Downloads]$ pwd
/home/christine/Downloads

[christine@localhost Downloads]$

The double-dot character takes you back up one level to your home directory; then the /Downloads portion of the
command takes you back down into the Downloads directory. You can use as many double-dot characters as
necessary to move around. For example, if you are in your home directory (/home/christine) and want to go to the
/etc directory, you could type the following:

[christine@localhost ~]$ cd ../../etc
[christine@localhost etc]$ pwd

/etc

[christine@localhost etc]$

Of course, in a case like this, you actually have to do more typing rather than just typing the absolute directory
reference, /etc . Thus, use a relative directory reference only if it makes sense to do so.

NOTE

It's helpful to have a long informative shell CLI prompt, as used in this chapter section.
However, for clarity purposes, a simple $ prompt is used in the rest of the book's examples.

Now that you know how to traverse the directory system and confirm your present working directory, you can start
to explore what's contained within the various directories. The next section takes you through the process of looking
at files within the directory structure.

Listing Files and Directories
To see what files are available on the system, use the list command (1s). This section describes the 1s command and
options available to format the information it can display.
Displaying a basic listing
The 1s command at its most basic form displays the files and directories located in your current directory:
$ 1s

Desktop Downloads my script Public test file
Documents Music Pictures Templates Videos

$

Notice that the 1s command produces the listing in alphabetical order (in columns rather than rows). If you're using
a terminal emulator that supports color, the 1s command may also show different types of entries in different colors.
The LS COLORS environment variable controls this feature. (Environment variables are covered in Chapter 6.
Different Linux distributions set this environment variable depending on the capabilities of the terminal emulator.

If you don't have a color terminal emulator, you can use the -F parameter with the 1s command to easily distinguish
files from directories. Using the -F parameter produces the following output:

$ s -F

Desktop/ Downloads/ my script* Public/ test file
Documents/ Music/ Pictures/ Templates/ Videos/
$

The -F parameter flags the directories with a forward slash (/), to help identify them in the listing. Similarly, it
marks executable files (like the my script file in the preceding code) with an asterisk (*), to help you more easily find
files that can be run on the system.

The basic 1s command can be somewhat misleading. It shows the files and directories contained in the current
directory, but not necessarily all of them. Linux often uses hidden files to store configuration information. In Linux,
hidden files are files with filenames starting with a period (.). These files don't appear in the default s listing. Thus,
they are called hidden files.

To display hidden files along with normal files and directories, use the -a parameter. Here is an example of using the
-a parameter with the 1s command:

$ s -a

. .bash _profile Desktop .ICEauthority my script Templates
.. .bashrc Documents .local Pictures test file
.bash_history .cache Downloads .mozilla .pki Videos
.bash_logout .config .esd_auth Music Public

$

All the files beginning with a period, hidden files, are now shown. Notice that four files begin with .bash. These are
hidden files that are used by the Bash shell environment and are covered in detail in Chapter 6.

The -R parameter is another option the 1s command can use. Called the recursive option, it shows files that are
contained within subdirectories in the current directory. If you have lots of subdirectories, this can be quite a long
listing. Here's a simple example of what the -R parameter produces. The -F option was tacked on to help you see the
file types:

$ s -F -R

bésktop/ Downloads/ my script* Public/ test file
Documents/ Music/ Pictures/ Templates/ Videos/

./Desktop:
./Documents:
./Downloads:

./Music:
ILovelLinux.mp3*

./Pictures:
./Public:
./Templates:

./Videos:

$
Notice that the -R parameter shows the contents of the current directory, which are the files from a user's home
directory shown in earlier examples. It also shows each subdirectory in the user's home directory and their contents.
The only subdirectory containing a file is the Music subdirectory, and it contains the executable file ILoveLinux.mp3.

TIP

Option parameters don't have to be entered separately as shown in the previous example: 1s -F
-R . They can often be combined as follows: 1s -FR.

In the previous example, there were no subdirectories within subdirectories. If there had been further
subdirectories, the -R parameter would have continued to traverse those as well. As you can imagine, for large
directory structures, this can become quite a long listing.

Displaying a long listing

In the basic listings, the 1s command doesn't produce much information about each file. For listing additional
information, another popular parameter is -1. The -1 parameter produces a long listing format, providing more
information about each file in the directory:

$ 1s -1
total 8

drwxr-xr-x. 2 christine christine 6 Feb 20 14:23 Desktop
drwxr-xr-x. 2 christine christine 6 Feb 20 14:23 Documents
drwxr-xr-x. 2 christine christine 6 Feb 20 14:23 Downloads
drwxr-xr-x. 2 christine christine 28 Feb 29 15:42 Music
-rwxrw-r--. 1 christine christine 74 Feb 29 15:49 my script
drwxr-xr-x. 2 christine christine 6 Feb 20 14:23 Pictures
drwxr-xr-x. 2 christine christine 6 Feb 20 14:23 Public
drwxr-xr-x. 2 christine christine 6 Feb 20 14:23 Templates
-rw-rw-r--. 1 christine christine 74 Feb 29 15:50 test file
drwxr-xr-x. 2 christine christine 6 Feb 20 14:23 Videos

$

The long listing format lists each file and directory on a single line. Along with the filename, the listing shows
additional useful information. The first line in the output shows the total number of allocated blocks for the files
within the directory (8). After that, each line contains the following information about each file (or directory):

= The file type — such as directory (d), file (-), linked file (1), character device (c), or block device (b)
» The file permissions (see Chapter 7)

® The number of file hard links (see the section “Linking Files” in this chapter).

= The file owner username

» The file primary group name

= The file byte size

® The last time the file was modified

» The filename or directory name

The -1 parameter is a powerful tool to have. Armed with this parameter, you can see most of the information you
need for any file or directory.

TIP

If you want to view the long listing for only one file, simply tack on the file's name to your 1s -1
command. However, if you want to see such a listing for a directory, and not its contents, you'll
not only need to add its name to the command, but add the -d switch, as in: Is -1d Directory-
Name.

The 1s command has lots of parameters that can come in handy as you do file management. If you type man 1s at the
shell prompt, you see several pages of available parameters for you to use to modify the 1s command output.

Don't forget that you can also combine many of the parameters. You can often find a parameter combination that
not only displays the desired output, but is also easy to remember, such as 1s -alF.
Filtering listing output

As you've seen in the examples, by default the 1s command lists all the non-hidden directory files. Sometimes, this
can be overkill, especially when you're just looking for information on a few files.

Fortunately, the 1s command also provides a way for you to define a filter on the command line. It uses the filter to
determine which files or directories it should display in the output.

Before using the filter command, let's create some files to play with via the touch command (covered in the next
section). If the file already exists, the command won't hurt the file:

$ touch my_script my_scrapt my_file
$ touch fall fell fill full

$ s

Desktop Downloads fell full my file my script Public test file
Documents fall fill Music my scrapt Pictures Templates Videos
$

The filter works as a simple text-matching string. Include the filter after any command line parameters you want to
use:

$ 1s -1 my_script
-rwxrw-r--. 1 christine christine 74 Feb 29 16:12 my script

$

When you specify the name of a specific file as the filter, the 1s command only shows that file's information.
Sometimes, you might not know the exact filename you're looking for. The 1s command also recognizes standard
wildcard characters and uses them to match patterns within the filter:

m A question mark (?) to represent one character
= An asterisk (*) to represent any number of characters
The question mark can be used to replace exactly one character anywhere in the filter string. For example:

$ Ls -1 my_scr?pt
-rw-rw-r--. 1 christine christine 0 Feb 29 16:12 my scrapt
-rwxrw-r--. 1 christine christine 74 Feb 29 16:12 my script

$

The filter my scr?pt matched two files in the directory. Similarly, the asterisk can be used to match zero or more
characters:

$ s -1 my*

-rw-rw-r--. 1 christine christine 0 Feb 29 16:12 my_ file
-rw-rw-r--. 1 christine christine 0 Feb 29 16:12 my scrapt
-rwxrw-r--. 1 christine christine 74 Feb 29 16:12 my script
$

Using the asterisk finds three different files, starting with the name my . As with the question mark, you can place the
asterisks anywhere in the filter:

$ 1s -1 my_s*t
-rw-rw-r--. 1 christine christine 0 Feb 29 16:12 my scrapt
-rwxrw-r--. 1 christine christine 74 Feb 29 16:12 my script

$

Using the asterisk and question mark in the filter is called file globbing. File globbing is the process of pattern
matching using wildcards. The wildcards are officially called metacharacter wildcards. You can use more
metacharacter wildcards for file globbing than just the asterisk and question mark. You can also use brackets:

$ touch my_scrypt

$ s -1 my_scrlaylpt

-rw-rw-r--. 1 christine christine 0 Feb 29 16:12 my scrapt
-rw-rw-r--. 1 christine christine 0 Feb 29 16:18 my scrypt

$

In this example, we used the brackets along with two potential choices for a single character in that position, aory .
The brackets represent a single character position and give you multiple options for file globbing. You can list
choices of characters, as shown in the preceding example, and you can specify a range of characters, such as an
alphabetic range [a-i] :

$ s f*11

fall fell fill full
$ 1s fla-i]11

fall fell fill

$

Also, you can specify what should not be included in the pattern match by using the exclamation point (!):

$ s -1 f[!a]ll

-rw-rw-r--. 1 christine christine 0 Feb 29 16:12 fell
-rw-rw-r--. 1 christine christine 0 Feb 29 16:12 fill
-rw-rw-r--. 1 christine christine 0 Feb 29 16:12 full
$

File globbing is a powerful feature when searching for files. It can also be used with other shell commands besides 1s
. You'll find out more about this later in the chapter.

Handling Files

The shell provides many file manipulation commands on the Linux filesystem. This section walks you through the
basic shell commands you need to handle files.

Creating files

Every once in a while you run into a situation where you need to create an empty file. For example, sometimes
applications expect a log file to be present before they can write to it. In these situations, you can use the touch
command to easily create an empty file:

$ touch test_one
$ ls -1 test_one
-rw-rw-r--. 1 christine christine 0 Feb 29 17:24 test one

$

The touch command creates the new file you specify and assigns your username as the file owner. Notice in the
preceding example that the file size is zero because the touch command just created an empty file.

The touch command can also be used to change the modification time. This is done without changing the file
contents:

$ ls -1 test_one
-rw-rw-r--. 1 christine christine 0 Feb 29 17:24 test one
$ touch test_one

$ 1s -1 test_one
-rw-rw-r--. 1 christine christine 0 Feb 29 17:26 test one

$
The modification time of test one is now updated to 17:26 from the original time, 17:24.

Creating empty files and altering file time stamps is not something you will do on a Linux system daily. However,
copying files is an action you will do often while using the shell.

Copying files

Copying files and directories from one location in the filesystem to another is a common practice for system
administrators. The cp command provides this feature.

In its most basic form, the cp command uses two parameters — the source object and the destination object: cp
source destination.

When both the source and destination parameters are filenames, the cp command copies the source file to a new
destination file. The new file acts like a brand-new file, with an updated modification time:

$ cp test_one test_two

$ 1s -1 test_one test_two

-rw-rw-r--. 1 christine christine 0 Feb 29 17:26 test one
-rw-rw-r--. 1 christine christine 0 Feb 29 17:46 test two

$

The new file test two shows a different modification time than the test_one file. If the destination file already exists,
the cp command may not prompt you to this fact. It is best to add the -i option to force the shell to ask whether you
want to overwrite a file:

$ ls -1 test_one test_two
-rw-rw-r--. 1 christine christine 0 Feb 29 17:26 test one
-rw-rw-r--. 1 christine christine 0 Feb 29 17:46 test two

$
$ cp -i test_one test_two
cp: overwrite 'test two'? n

$
If you don't answer y , the file copy does not proceed. You can also copy a file into a preexisting directory:

$ cp -i test_one /home/christine/Documents/

$ 1s -1 /home/christine/Documents/

total 0

-rw-rw-r--. 1 christine christine 0 Feb 29 17:48 test_one
$

The new file is now under the Documents directory, using the same filename as the original.

NOTE

The preceding example uses a trailing forward slash (/) on the destination directory name.
Using the slash indicates Documents is a directory and not a file. This is helpful for clarity
purposes and is important when copying single files. If the forward slash is not used and the
subdirectory /home/christine/Documents does not exist, a file named Documents is created within the
current directory and no error message is displayed. That is problematic, so use a trailing
forward slash on your destination directory names.

This last example used an absolute directory reference, but you can just as easily use a relative directory reference:

$ cp -i test_two Documents/
$ 1s -1 Documents/

total 0

-rw-rw-r--. 1 christine christine 0 Feb 29 17:48 test one
-rw-rw-r--. 1 christine christine 0 Feb 29 17:51 test two
$

Earlier in this chapter, you read about the special symbols that can be used in relative directory references. One of
them, the single dot (.), is great to use with the cp command. Remember that the single dot represents your current
working directory. If you need to copy a file with a long source object name to your current working directory, the
single dot can simplify the task:

$ cp /etc/NetworkManager/NetworkManager.conf .
$ ls *,conf
NetworkManager.conf

$

It's hard to see that single dot! If you look closely, you'll see it at the end of the first example code line. Using the
single dot symbol is much easier than typing a full destination object name when you have long source object names.

The -R parameter is a powerful cp command option. It allows you to recursively copy the contents of an entire
directory in one command:

$ 1s -1 Documents/

total 0
-rw-rw-r--. 1 christine christine 0 Feb 29 17:48 test_one
-rw-rw-r--. 1 christine christine 0 Feb 29 17:51 test two

$ cp -R Documents/ NewDocuments/
$ s -1 NewDocuments/

total 0

-rw-rw-r--. 1 christine christine 0 Feb 29 17:55 test one
-rw-rw-r--. 1 christine christine 0 Feb 29 17:55 test two
$

The directory NewDocuments did not exist prior to the cp -R command. It was created with the cp -R command, and
the entire Documents directory's contents were copied into it. Notice that all the files in the new NewDocuments
directory have new dates associated with them. Now NewDocuments is a complete copy of the Documents directory.

TIP

There are many more cp command parameters than those described here. Remember that you
can see all the different parameters available for the cp command by typing man cp.

You can also use wildcard metacharacters in your cp commands:

$ 1s

Desktop fall full my scrapt NetworkManager.conf Public test one
Documents fell Music my script NewDocuments Templates test two
Downloads fill my file my scrypt Pictures test file Videos

$

$ cp my* NewDocuments/
$ 1s NewDocuments/
my file my scrapt my script my scrypt test one test two

This command copied any files that started with my to NewDocuments . Now the directory contains six files instead of
just two.

When copying files, another shell feature can help you besides the single dot and wildcard metacharacters. It is
called command-line completion.

Using command-line completion

When working at the command line, you can easily mistype a command, directory name, or filename. In fact, the
longer a directory reference or filename, the greater the chance you will mistype it.

This is where command-line completion (also called tab completion) can be a lifesaver. Tab completion allows you
to start typing a filename or directory name, and then press the tab key to have the shell complete it for you:

$ touch really_ridiculously long_file_name

$ cp really_ridiculously_long_file_name NewDocuments/

$ 1s NewDocuments/

my file my script really ridiculously long file name test two

my scrapt my scrypt test one

$
After creating a file with a very long name in the preceding example, we typed the command cp really and pressed
the Tab key, and the shell autocompleted the rest of the filename for us! Of course, the destination directory had to
be typed, but still tab completion saved the command from several potential typographical errors.

The trick to using command-line completion is to give the shell enough filename characters so it can distinguish the
desired file from other files. For example, if another filename started with really, pressing the Tab key would not
autocomplete the filename. Instead, you would hear a beep. If this happens, you can press the Tab key again, and the
shell shows you all the filenames starting with really . This feature allows you to see what needs to be typed for tab
completion to work properly.

Linking files

Linking files is a great option available in the Linux filesystem. If you need to maintain two (or more) copies of the
same file on the system, instead of having separate physical copies, you can use one physical copy and multiple
virtual copies, called links. A link is a placeholder in a directory that points to the real location of the file. Two types
of file links are available in Linux:

= A symbolic link
= A hard link

A symbolic link, also called a soft link, is simply a physical file that points to another file somewhere in the virtual
directory structure. The two symbolically linked together files do not share the same contents.

To create a symbolic link, the original file must already exist. We then use the 1n command with the -s option to

create the symbolic link:

$ 1s -1 test_file
-rw-rw-r--. 1 christine christine 74 Feb 29 15:50 test file

$
$ 1n -s test_file slink_test_file

$

$ 1s -1 *test_file

lrwxrwxrwx. 1 christine christine 9 Mar 4 09:46 slink test file -> test file
-rw-rw-r--. 1 christine christine 74 Feb 29 15:50 test file

$

In the preceding example, notice that the name of the symbolic link, slink test file, is listed second in the 1n
command. The —> symbol displayed after the symbolic link file's name in its long listing (1s -1) shows that it is
symbolically linked to the file test_file.

Also note the symbolic link's file size versus the data file's file size. The symbolic link, slink _test file,isonly9
bytes, whereas the test_file is 74 bytes. This is because slink_test_file is only pointing to test_file . They do not
share contents and are two physically separate files.

Another way to tell that these linked files are separate physical files is by viewing their inode numbers. The inode
number of a file or directory is a unique identification number that the kernel assigns to each object in the
filesystem. To view a file or directory's inode number, add the -i parameter to the 1s command:

$ s -i *test_file

1415020 slink test file 1415523 test file

$
The example shows that the test file's inode number is 1415523 , whereas the slink test file inode number is
different (it is 1415020). Thus, they are different files.

A hard link creates a separate virtual file that contains information about the original file and where to locate it.
However, the two files are actually the same physical file. To create a hard link, again the original file must preexist,
except that this time no parameter is needed on the 1n command:

$ Ls -1 *test_one

-rw-rw-r--. 1 christine christine 0 Feb 29 17:26 test one
$

$ 1n test_one hlink_test_one

$

$ 1s -1i *test_one

1415016 -rw-rw-r--. 2 christine christine 0 Feb 29 17:26 hlink test one
1415016 -rw-rw-r--. 2 christine christine 0 Feb 29 17:26 test one

$

In the preceding example, after creating the hard link file, we used the 1s -1i command to show both the inode
numbers and a long listing for the *test_one . Notice that both files, which are hard-linked together, share the same
inode number. This is because they are physically the same file. Their file size is exactly the same as well.

NOTE

You can only create a hard link between files on the same physical medium. To create a link
between files under separate physical mediums, you must use a symbolic link.

You may find symbolic and hard links difficult concepts. Fortunately, renaming files, the topic of our next section, is
a great deal easier to understand.

Renaming files

In the Linux world, renaming files is called moving files. The mv command is available to move both files and
directories to another location or a new name:

$ s -1i f?211

1414976 -rw-rw-r--.
1415004 -rw-rw-r--.
1415005 -rw-rw-r--.
1415011 -rw-rw-r--.

Feb 29 16:12 fall
Feb 29 16:12 fell
Feb 29 16:12 fill
Feb 29 16:12 full

christine christine
christine christine
christine christine
christine christine

$

$ mv fall fzl1

$

$ 1ls -1i f?211
1415004 -rw-rw-r--.
1415005 -rw-rw-r--.
1415011 -rw-rw-r--.
1414976 -rw-rw-r--.
$

Notice that moving the file changed the name from fall to fz11 but it kept the same inode number and time stamp
value. This is because mv affects only a file's name.

Feb 29 16:12 fell
Feb 29 16:12 fill
Feb 29 16:12 full
Feb 29 16:12 fzll

christine christine
christine christine
christine christine
christine christine

You can also use mv to change a file's location:

$ 1s -1i /home/christine/fz11l
1414976 -rw-rw-r--. 1 christine christine 0 Feb 29 16:12 /home/christine/fzll

$ 1s -1i /home/christine/NewDocuments/fz1l
1s: cannot access '/home/christine/NewDocuments/fz1ll': No such file or directory

$ mv /home/christine/fzll /home/christine/NewDocuments/

$ s -1i /home/christine/NewDocuments/fz1l
1414976 -rw-rw-r--. 1 christine christine 0 Feb 29 16:12
/home/christine/NewDocuments/fz11

$

$ 1s -1i /home/christine/fz11l

1s: cannot access '/home/christine/fz1ll': No such file or directory

$
In the preceding example, we moved the file fz11 from /home/christine to /home/christine/NewDocuments using the
mv command. Again, there were no changes to the file's inode number or time stamp value.

TIP

Like the cp command, you can use the -i option on the mv command. Thus, you are asked before
the command attempts to overwrite any preexisting files.

The only change was to the file's location. The fz11 file no longer exists in /home/christine , because a copy of it was
not left in its original location, as the cp command would have done.

You can use the mv command to move a file's location and rename it, all in one easy step:

$ s -1i NewDocuments/fzll
1414976 -rw-rw-r--. 1 christine christine 0 Feb 29 16:12 NewDocuments/fz1ll
$

$ mv /home/christine/NewDocuments/fz1ll /home/christine/fall

$

$ 1s -1i /home/christine/fall

1414976 -rw-rw-r--. 1 christine christine 0 Feb 29 16:12 /home/christine/fall

$

$ 1s -1i /home/christine/NewDocuments/fz11l

1s: cannot access '/home/christine/NewDocuments/fz1l1l': No such file or directory

$
For this example, we moved the file fz11 from a subdirectory, NewDocuments , to the home directory, /home/christine
, and renamed it fall . Neither the timestamp value nor the inode number changed. Only the location and name
were altered.

You can also use the mv command to move entire directories and their contents:

$ 1s NewDocuments
my file my script really ridiculously long file name test two
my scrapt my scrypt test one

$ mv NewDocuments OldDocuments

$
$ ls NewDocuments
1s: cannot access 'NewDocuments': No such file or directory

$
$ 1s OldDocuments
my file my script really ridiculously long file name test two
my scrapt my scrypt test one
The directory's entire contents are unchanged. The only thing that changes is the name of the directory.
Once you know how to rename...err...move files with the mv command, you realize how simple it is to accomplish.
Another easy, but potentially dangerous, task is deleting files.
Deleting files

Most likely at some point you'll want to be able to delete existing files. Whether it's to clean up a filesystem or to
remove temporary work data, you always have opportunities to delete files.

In the Linux world, deleting is called removing. The command to remove files in the Bash shell is rm . The basic form
of the rm command is simple:

$ rm -i fall

rm: remove regular empty file 'fall'? y

$ s fall

1s: cannot access 'fall': No such file or directory
$

Notice that the -i command parameter prompts you to make sure that you're serious about removing the file. The
shell has no recycle bin or trashcan. After you remove a file, it's gone forever. Therefore, a good habit is to always
tack on the -1i parameter to the rm command.

You can also use wildcard metacharacters to remove groups of files. However, again, use that -i option to protect
yourself:

$ rm -i f211

rm: remove regular empty file 'fell'? y
rm: remove regular empty file 'fill'? y
rm: remove regular empty file 'full'? y

$ 1s f?211
1s: cannot access 'f?11': No such file or directory
$

One other feature of the rm command, if you're removing lots of files and don't want to be bothered with the prompt,
is to use the - f parameter to force the removal. Just be careful!

Managing Directories

Linux has a few commands that work for both files and directories (such as the cp command) and some that work
only for directories. To create a new directory, you need to use a specific command, which is covered in this section.
Removing directories can get interesting, so that is covered in this section as well.

Creating directories
Creating a new directory in Linux is easy — just use the mkdir command:

$ mkdir New_Dir
$ 1s -1d New_Dir
drwxrwxr-x. 2 christine christine 6 Mar 6 14:40 New Dir

$

The system creates a new directory named New_Dir . Notice in the new directory's long listing that the directory's
record begins with a d . This indicates that New Dir is a directory.

Occasionally, you may need to create directories and subdirectories in “bulk.” To do this, add the -p option to the
mkdir command as shown here:

$ mkdir -p New_Dir/SubDir/UnderDir
$ 1s -R New_Dir

New Dir:

SubDir

New Dir/SubDir:
UnderDir

New _Dir/SubDir/UnderDir:
$

The -p option on the mkdir command makes any missing parent directories as needed. A parent directory is a
directory that contains other directories at the next level down the directory tree.

Of course, after you make something, you need to know how to delete it. This is especially useful if you created a
directory in the wrong location.

Deleting directories

Removing directories can be tricky, and for good reason. There are lots of opportunities for bad things to happen
when you start deleting directories. The shell tries to protect us from accidental catastrophes as much as possible.

The basic command for removing a directory is rmdir :

$ mkdir Wrong_Dir
$ touch Wrong_Dir/newfile

$
$ rmdir Wrong_Dir/
rmdir: failed to remove 'Wrong Dir/': Directory not empty

$

By default, the rmdir command works only for removing empty directories. Because we created a file, newfile, in
the Wrong_Dir directory, the rmdir command refuses to remove it.

To use rmdir to remove this directory, we must remove the file first. Then we can use the rmdir command on the now
empty directory:

$ rm -i Wrong_Dir/newfile

rm: remove regular empty file 'Wrong Dir/newfile'? y

$ rmdir Wrong_Dir/

$ 1s Wrong_Dir

1s: cannot access 'Wrong Dir': No such file or directory

$

The rmdir has no -i option to ask if you want to remove the directory. This is one reason it is helpful that rmdir
removes only empty directories.

You can also use the rm command on entire nonempty directories. Using the - r option allows the command to
descend into the directory, remove the files, and then remove the directory itself:

$ mkdir TestDir

$ touch TestDir/fileone TestDir/filetwo

$ 1s TestDir

fileone filetwo

$ rm -ir TestDir

rm: descend into directory 'TestDir'? y

rm: remove regular empty file 'TestDir/fileone'? y
rm: remove regular empty file 'TestDir/filetwo'? y
rm: remove directory 'TestDir'? y

$ 1s TestDir

1s: cannot access 'TestDir': No such file or directory

$

This also works for descending into multiple subdirectories and is especially useful when you have lots of directories
and files to delete:

$ touch New_Dir/testfile
$ ls -FR New_Dir

New Dir:

SubDir/ testfile

New Dir/SubDir:
UnderDir/

New_Dir/SubDir/UnderDir:
$

$ rm -iR New_Dir

rm: descend into directory 'New Dir'? y

rm: descend into directory 'New Dir/SubDir'? y

rm: remove directory 'New Dir/SubDir/UnderDir'? y
rm: remove directory 'New Dir/SubDir'? y

rm: remove regular empty file 'New Dir/testfile'? y
rm: remove directory 'New Dir'? y

$

Although this works, it's somewhat awkward. Notice that you still must verify each and every file that gets removed.
For a directory with lots of files and subdirectories, this can become tedious.

NOTE

For the rm command, the -r parameter and the -R parameter work exactly the same — it
recursively traverses through the directory removing files. It is unusual for a shell command to
have different cased parameters with the same function.

The ultimate solution for quickly deleting a directory tree is the rm -rf command. It gives no warnings and no
messages, and it just deletes the directory specified and all its contents. This, of course, is an extremely dangerous

tool to have. Use it sparingly, and only after triple checking to make sure that you're doing exactly what you want to
do!

In the last few sections, we looked at managing both files and directories. So far we've covered everything you need
to know about files, except for how to peek inside them.

Viewing File Contents

You can use several commands for looking inside files without having to pull out a text editor utility (see Chapter 10,
“Working with Editors”). This section demonstrates a few of those commands.

Viewing the file type

Before you go charging off trying to display a file, you need to get a handle on what type of file it is. If you attempt to
display a binary file, you may get lots of gibberish on your screen and possibly even lock up your terminal emulator.

The file command is a handy little utility to have around. It can peek inside a file and determine just what kind of
file it is:

$ file .bashrc
.bashrc: ASCII text
$

The file in the preceding example is a text file. The file command determined not only that the file contains text
but also the character code format of the text file, ASCII.

This following example shows a file that is simply a directory. Thus, the file command gives you another method to
distinguish a directory:

$ file Documents
Documents/: directory
$

This third file command example shows a file that is a symbolic link. Note that the file command even tells you to

which file it is symbolically linked:

$ file slink_test_file
slink test file: symbolic link to test file
$

The following example shows what the file command returns for a script file. Although the file is ASCIT text,
because it's a script file, you can execute (run) it on the system:

$ file my_script
my script: Bourne-Again shell script, ASCII text executable

The final example is a binary executable program. The file command determines the platform that the program was
compiled for and what types of libraries it requires. This is an especially handy feature if you have a binary
executable program from an unknown source:

$ file /usr/bin/1ls

/usr/bin/ls: ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),
dynamically linked, interpreter /1ib64/1d-1linux-x86-64.s0.2,

for GNU/Linux 3.2.0,[...]

$

Now that you know a quick method for viewing a file's type, you can start displaying and viewing files.

Viewing the whole file

If you have a large text file on your hands, you may want to be able to see what's inside it. Linux has three different
commands that can help you here.

Using the cat command
The cat command is a handy tool for displaying all the data inside a text file:

$ cat test_file

Hello World

Hello World again

Hello World a third time
How are you World?

$

Nothing too exciting, just the contents of the text file. However, the cat command has a few parameters that can
help you out.

The -n parameter numbers all the lines for you:

$ cat -n test_file
1 Hello World
2 Hello World again
3 Hello World a third time
4 How are you World?
5
$

That feature will come in handy when you're examining scripts. If you just want to number the lines that have text in
them, the -b parameter is for you:

$ cat -b test_file
1 Hello World
2 Hello World again
3 Hello World a third time
4 How are you World?

$

For large files, the cat command can be somewhat annoying. The text in the file just quickly scrolls off the display
without stopping. Fortunately, we have a simple way to solve this problem.

Using the more command

The main drawback of the cat command is that you can't control what's happening after you start it. To solve that
problem, developers created the more command. The more command displays a text file but stops after it displays
each page of data. We typed the command more /etc/profile to produce the sample more screen shown in Figure 3-
4.

/Jetc/profile

System wide environment and startup programs, for login setup

Functions and aliases go in /etc/bashrc

|# It's NOT a good idea to change this file unless you know what you
are doing. It's much better to create a custom.sh shell script in
/etc/profile.d/ to make custom changes to your environment, as this
will prevent the need for merging in future updates.

|pathmunge () {
case ":${PATH}:" in

* : ll$lll :*}
*) rr
if ["$2" = "after"] ; then
PATH=$PATH: $1
else

PATH=4$1:$PATH
fi

€s5ac

FIGURE 3-4 Using the more command to display a text file

Notice at the bottom of the screen in Figure 3-4 that the more command displays a tag showing that you're still in the
more application and how far along (29%) in the text file you are. This is the prompt for the more command.

TIP

If you're following along with the examples, and your Linux system does not have the
/etc/profile file or it's rather short, try using more on the /etc/passwd file instead. Type more
/ete/passwd and press Enter at your shell prompt.

The more command is a pager utility. Earlier in this chapter we discussed that a pager utility displays selected Bash
manual pages when you use the man command. Similarly to navigating through the man pages, you can use more to
navigate through a text file by pressing the spacebar, or you can go forward line by line using the Enter key. When

you are finished navigating through the file using more , type q to quit.

The more command allows some rudimentary movement through the text file. For more advanced features, try the
less command.

Using the less command

From its name, it sounds like it shouldn't be as advanced as the more command. However, the less command name
is actually a play on words and is an advanced version of the more command (the less command name comes from
the phrase “less is more”). It provides several very handy features for scrolling both forward and backward through a
text file, as well as some pretty advanced searching capabilities.

The less command can also display a file's contents before it finishes reading the entire file. The cat and more
commands cannot do this.

The less command operates much the same as the more command, displaying one screen of text from a file at a time.
It supports the same command set as the more command, plus many more options.

TIP

To see all the options available for the less command, view its man pages by typing man less.
You can do the same for the more command to see the reference material concerning its various
options.

One set of features is that the less command recognizes the up and down arrow keys as well as the Page Up and
Page Down keys (assuming that you're using a properly defined terminal). This gives you full control when viewing a
file.

NOTE

The less utility is typically the pager service used for the man pages. Thus, the more you learn
about less , the easier it will be for you to navigate through various commands' man pages.

Viewing parts of a file

Often the data you want to view is located either right at the top or buried at the bottom of a text file. If the
information is at the top of a large file, you still need to wait for the cat or more command to load the entire file
before you can view it. If the information is located at the bottom of a file (such as a log file), you need to wade
through thousands of lines of text just to get to the last few entries. Fortunately, Linux has specialized commands to
solve both of these problems.

Using the tail command

14 &

The tail command displays the last lines in a file (the file's “tail”). By default, it shows the last 10 lines in the file.

For these examples, we created a text file containing 15 text lines. It is displayed here in its entirety using the cat
command:

$ cat log_file
linel

line2

line3

lined

Hello World - line5
line6

line7

1ine8

1ine9

Hello again World - 1linel®
linell

linel2

linel3

lineld

Last Line - linel5

$

Now that you have seen the entire text file, you can see the effect of using tail to view the file's last 10 lines:

$ tail log_file
line6

line7

1ine8

1ine9

Hello again World - linel®
linell

linel2

linel3

lineld

Last Line - linel5

$

You can change the number of lines shown using tail by including the -n parameter. In this example, only the last
two lines of the file are displayed, by adding -n 2 to the tail command:

$ tail -n 2 log_file
lineld
Last Line - linel5

The - f parameter is a pretty cool feature of the tail command. It allows you to peek inside a file as the file is being
used by other processes. The tail command stays active and continues to display new lines as they appear in the
text file. This is a great way to monitor the system log files in real-time mode.

Using the head command

The head command does what you'd expect; it displays a file's first group of lines (the file's “head”). By default, it
displays the first 10 lines of text:

$ head log_file
linel

line2

line3

line4

Hello World - line5
line6

line7

line8

1ine9

Hello again World - linel®

$

Similar to the tail command, the head command supports the -n parameter so that you can alter what's displayed.
Both commands also allow you to simply type a dash along with the number of lines to display, as shown here:

$ head -3 log_file

linel

line2

line3

$
Usually the beginning of a file doesn't change, so the head command doesn't support the - f parameter feature as the
tail command does. The head command is a handy way to just peek at the beginning of a file.

Summary

This chapter covered the basics of working with the Linux filesystem from a shell prompt. We began with a
discussion of the Bash shell and showed you how to interact with the shell. The CLI uses a prompt string to indicate
when it's ready for you to enter commands.

The shell provides a wealth of utilities you can use to create and manipulate files. Before you start playing with files,
you should understand how Linux stores them. This chapter discussed the basics of the Linux virtual directory and
showed you how Linux references storage media devices. After describing the Linux filesystem, we walked you
through using the cd command to move around the virtual directory.

After showing you how to get to a directory, we demonstrated how to use the 1s command to list the files and
subdirectories. Lots of parameters can customize the output of the 1s command. You can obtain information on both
files and directories by using this command.

The touch command is useful for creating empty files and for changing the access or modification times on an
existing file. We also discussed using the cp command to copy existing files from one location to another. We walked
you through the process of linking files instead of copying them, providing an easy way to have the same file in two
locations without making a separate copy. The 1n command provides this linking ability.

Next, you learned how to rename files (called moving) in Linux using the mv command and how to delete files (called
removing) using the rm command. We also showed you how to perform the same tasks with directories, using the
mkdir and rmdir commands.

Finally, this chapter closed with a discussion on viewing the contents of files. The cat , more , and less commands
provide easy methods for viewing the entire contents of a file, whereas the tail and head commands are great for
peeking inside a file to just see a small portion of it.

The next chapter continues the discussion on Bash shell commands. We'll look at more advanced administrator
commands that come in handy as you administer your Linux system.

CHAPTER 4
More Bash Shell Commands

IN THIS CHAPTER

Managing processes
Getting disk statistics
Mounting new disks
Sorting data
Archiving data

Chapter 3, “Basic Bash Shell Commands,” covered the basics of rummaging through the Linux filesystem and
working with the files and directories. File and directory management is a major feature of the Linux shell; however,
we should look at some more things before we start our script programming. This chapter digs into the Linux system
management commands, showing you how to peek inside your Linux system using command-line commands. After
that, it shows you a few handy commands that you can use to work with data files on the system.

Monitoring Programs

One of the toughest jobs of being a Linux system administrator is keeping track of what's running on the system —
especially now, when graphical desktops take a handful of programs just to produce a single desktop. There are
always a lot of programs running on the system.

Fortunately, a few command-line tools are available that can help make life easier for you. This section covers a few
of the basic tools you'll need to know to manage programs on your Linux system.

Peeking at the processes

When a program runs on the system, it's referred to as a process. To examine these processes, you must become
familiar with the ps command, the Swiss Army knife of utilities. It can produce lots of information about all the
programs running on your system.

Unfortunately, with this robustness comes complexity — in the form of numerous parameters — making the ps
command probably one of the most difficult commands to master. Most system administrators find a subset of these
parameters that provide the information they want and then stick with using only those.

That said, however, the basic ps command doesn't provide all that much information:

$ ps
PID TTY TIME CMD
3081 pts/@ 00:00:00 bash
3209 pts/0 00:00:00 ps
$
Not too exciting. By default the ps command shows only the processes that belong to the current user and that are
running on the current terminal. In this case, we only had our Bash shell running (remember, the shell is just
another program running on the system) and, of course, the ps command itself.

The basic output shows the process ID (PID) of the programs, the terminal (TTY) that they are running from, and
the CPU time the process has used.

NOTE

The tricky feature of the ps command (and the part that makes it so complicated) is that at one
time there were two versions of it. Each version had its own set of command-line parameters
controlling what information it displayed and how. Recently, Linux developers have combined
the two ps command formats into a single ps program (and of course added their own touches).

The GNU ps command that's used in Linux systems supports three different types of command-line parameters:
» Unix-style parameters, which are preceded by a dash
= BSD-style parameters, which are not preceded by a dash
= GNU long parameters, which are preceded by a double dash

The following sections examine the three different parameter types and show examples of how they work.

Unix-style parameters

The Unix-style parameters originated with the original ps command that ran on the AT&T Unix systems invented by

Bell Labs. These parameters are shown in Table 4-1.
TABLE 4-1 The ps Command Unix Parameters

Parameter Description

Show all processes except session headers and processes without a terminal.

Display specific columns in the list format, along with the default columns.

Display processes in a hierarchical format (showing parent processes).

-A Show all processes.

-N Show the opposite of the specified parameters.

-a

-d Show all processes except session headers.

-e Show all processes.

-C cmslist Show processes contained in the list cmdlist.

-G grplist Show processes with a group ID listed in grplist.

-U userlist Show processes owned by a user ID listed in userlist.
-ggrplist | Show processes by session or by group ID contained in grplist.
-ppidlist Show processes with PIDs in the list pidlist.

-s sesslist Show processes with a session ID in the list sesslist.

-t ttylist Show processes with a terminal ID in the list ttylist.
-uuserlist Show processes by an effective user ID in the list userlist.
-F Use extra full output.

-0 format

-M Display security information about the process.

-C Show additional scheduler information about the process.
-f Display a full format listing.

-] Show job information.

-1 Display a long listing.

-0 format Display only specific columns listed in format.

-y Don't show process flags.

-Z Display the security context information.

-H

-n namelist Define the values to display in the WCHAN output column.
-w Use wide output format, for unlimited width displays.

-L Show process threads.

-V Display the version of ps .

That's a lot of parameters, and remember, there are still more! The key to using the ps command is not to memorize
all the available parameters but only those you find most useful. Most Linux system administrators have their own
sets of commonly used parameters that they remember for extracting pertinent information. For example, if you
need to see everything running on the system, use the -ef parameter combination (the ps command lets you

combine parameters like this):

$ ps -ef

UID PID PPID C STIME TTY

root 1 0 0 12:14 7 00:
root 2 0 0 12:14 7 00:
root 3 2 0 12:14 7 00:
root 4 2 0 12:14 7 00:
root 5 2 0 12:14 7 00:
root 6 2 0 12:14 7 00:
root 7 2 0 12:14 7 00:
rich 2209 1438 0 12:17 ? 00:
rich 2221 2209 0 12:17 pts/0 00:
rich 2325 2221 0 12:20 pts/0 00:
$

TIME

00:
00:
00:
00:
00:
00:
00:

00:
00:
00:

02
00
00
00
00
00
00

01
00
00

CMD

/sbin/init splash
[kthreadd]

[rcu_gpl

[rcu par gpl
[kworker/0:0-events]
[kworker/0:0H-kblockd]
[kworker/0:1-events]

/usr/libexec/gnome-terminal-
bash
ps -ef

Quite a few lines have been cut from the output to save space, but as you can see, lots of processes run on a Linux
system. This example uses two parameters: the -e parameter, which shows all of the processes running on the
system, and the - f parameter, which expands the output to show a few useful columns of information:

= UID: The user responsible for launching the process

= PID: The process ID of the process

= PPID: The PID of the parent process (if a process is started by another process)

C: Processor utilization over the lifetime of the process

STIME: The system time when the process started

TTY: The terminal device from which the process was launched

TIME: The cumulative CPU time required to run the process
= CMD: The name of the program that was started

This produces a reasonable amount of information, which is what many system administrators would like to see. For
even more information, you can use the -1 parameter, which produces the long format output:

$ ps -1

F'S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
0 S 500 3081 3080 0 80 O - 1173 do wai pts/0 00:00:00 bash
0 R 500 4463 30681 1 80 ©O - 1116 - pts/0 00:00:00 ps
$

Notice the extra columns that appear when you use the -1 parameter:
= F: System flags assigned to the process by the kernel

® s: The state of the process (0 = running on processor; S = sleeping; R = runnable, waiting to run; Z = zombie,
process terminated but parent not available; T = process stopped)

® PRI: The priority of the process (higher numbers mean lower priority)

m NI: The nice value, used for determining priorities

= ADDR: The memory address of the process

® SZ: Approximate amount of swap space required if the process was swapped out

® WCHAN: Address of the kernel function where the process is sleeping

BSD-style parameters

Now that you've seen the Unix parameters, let's take a look at the BSD-style parameters. The Berkeley Software
Distribution (BSD) was a version of Unix developed at (of course) the University of California, Berkeley. It had many
subtle differences from the AT&T Unix system, thus sparking many Unix wars over the years. The BSD version of the
ps command parameters are shown in Table 4-2.

TABLE 4-2 The ps Command BSD Parameters

Parameter Description

T Show all processes associated with this terminal.

a Show all processes associated with any terminal.

g Show all processes, including session headers.

r Show only running processes.

x Show all processes, even those without a terminal device assigned.

Uuserlist Show processes owned by a user ID listed in userlist.
p pidlist Show processes with a PID listed in pidlist.

t ttylist | Show processes associated with a terminal listed in ttylist.

0 format List specific columns in format to display along with the standard columns.
X Display data in the register format.

z Include security information in the output.

j Show job information.

1 Use the long format.

o format Display only columns specified in format.

s Use the signal format.

u Use the user-oriented format.

v Use the virtual memory format.

N namelist | Define the values to use in the WCHAN column.

0 order Define the order in which to display the information columns.

S Sum numerical information, such as CPU and memory usage, for child processes into the parent
process.

c Display the true command name (the name of the program used to start the process).

e Display any environment variables used by the command.

f Display processes in a hierarchical format, showing which processes started which processes.

h Don't display the header information.

k sort Define the column(s) to use for sorting the output.

n Use numeric values for user and group IDs, along with WCHAN information.

w Produce wide output for wider terminals.

H Display threads as if they were processes.

m Display threads after their processes.

L List all format specifiers.

Vv Display the version of ps .

As you can see, a lot of overlap exists between the Unix and BSD types of parameters. Most of the information you
can get from one you can also get from the other. Most of the time, you choose a parameter type based on which
format you're more comfortable with (for example, if you were used to a BSD environment before using Linux).

When you use the BSD-style parameters, the ps command automatically changes the output to simulate the BSD
format. Here's an example using the 1 parameter:

$ps 1

$ ps 1

F UID PID PPID PRI NI ~ VSZ RSS WCHAN STAT TTY TIME COMMAND
4 1000 1491 1415 20 0 163992 6580 poll s Ssl+ tty2 0:00 /usr/li
4 1000 1496 1491 20 0 225176 58712 ep pol Sl+ tty2 0:05 /usr/li
® 1000 1538 1491 20 0 192844 15768 poll s Sl+ tty2 0:00 /usr/li
0 1000 2221 2209 20 0O 10608 4740 do wai Ss pts/0 0:00 bash

0 1000 2410 2221 20 0 11396 1156 - R+ pts/0 0:00 ps 1

$

Notice that while many of the output columns are the same as when we used the Unix-style parameters, there are a
few different ones:

m VSZ: The size in kilobytes of the process in memory
= RSS: The physical memory that a process has used that isn't swapped out
= STAT: A multicharacter state code representing the current process state

Many system administrators like the BSD-style 1 parameter because it produces a more detailed state code for

processes (the STAT column). The multicharacter code defines exactly what's happening with the process more
precisely than the single-character Unix-style output.

The first character uses the same values as the Unix-style S output column, showing when a process is sleeping,
running, or waiting. The following characters further define the process's status:

® <: The process is running at high priority.
® N: The process is running at low priority.
L: The process has pages locked in memory.
® s: The process is a session leader.
® 1: The process is multithreaded.
m +: The process is running in the foreground.
From the simple example shown previously, you can see that the bash command is sleeping, but it is a session leader
(it's the main process in my session), whereas the ps command is running in the foreground on the system.
The GNU long parameters

Finally, the GNU developers put their own touches on the new, improved ps command by adding a few more options
to the parameter mix. Some of the GNU long parameters copy existing Unix- or BSD-style parameters, whereas
others provide new features. Table 4-3 lists the available GNU long parameters.

TABLE 4-3 The ps Command GNU Parameters

Parameter Description

--deselect Show all processes except those listed in the command line.
--Group grplist Show processes whose group ID is listed in grplist.

--User userlist 'Show processes whose user ID is listed in userlist.

--group grplist Show processes whose effective group ID is listed in grplist.
--pid pidlist |Show processes whose process ID is listed in pidlist.

--ppid pidlist | Show processes whose parent process ID is listed in pidlist.
--sid sidlist Show processes whose session ID is listed in sidlist.

--tty ttylist | Show processes whose terminal device ID is listed in ttylist.
--user userlist Show processes whose effective user ID is listed in userlist.

--format format Display only columns specified in the format .

--context Display additional security information.
--colsn Set screen width to n columns.
--columns n Set screen width to n columns.

--cumulative Include stopped child process information.
--forest Display processes in a hierarchical listing showing parent processes.
--headers Repeat column headers on each page of output.

--no-headers Don't display column headers.

--lines n Set the screen height to n lines.

--rows n Set the screen height to n rows.

--sort order Define the column(s) to use for sorting the output.
--width n Set the screen width to n columns.

--help Display the help information.

--info Display debugging information.

--version Display the version of the ps program.

You can combine GNU long parameters with either Unix- or BSD-style parameters to customize your display. One
cool feature of GNU long parameters that we really like is the - - forest parameter. It displays the hierarchical
process information but uses ASCII characters to draw cute charts:

1981 ? 00:00:00 sshd

3078 7 00:00:00 _ sshd

3080 7 00:00:00 _ sshd

3081 pts/0 00:00:00 _ bash
16676 pts/0 00:00:00 _ ps

This format makes tracing child and parent processes a snap!

Real-time process monitoring

The ps command is great for gleaning information about processes running on the system, but it has one drawback.
The ps command can display information for only a specific point in time. If you're trying to find trends about
processes that are frequently swapped in and out of memory, it's hard to do that with the ps command.

Instead, the top command can solve this problem. The top command displays process information similarly to the ps
command, but it does so in real-time mode. Figure 4-1 is a snapshot of the top command in action.

I+ rich@ubuntu20: ~/Desktop N =

top - 12:34:13 up 19 min, 1 user, load average: 0.38, 0.14, 0.18

Tasks: 180 total, 2 running, 178 sleeping, 0 stopped, ® zombie

%Cpu(s): 21.0 us, 3.1 sy, 0.0 ni, 75.9 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
MiB Mem : 5199.4 total, 3405.3 free, 741.7 used, 1052.4 buff/cache

MiB Swap: 899.3 total, B99.3 free, 0.0 used. 4206.5 availl Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1785 rich 20 0 3375032 316868 121388 S 14.6 6.0 0:24.99 gnome-+
1496 rich 20 0 260476 81908 48092 0:08.27 Xorg
2209 rich 20 0 959584 50012 37744 0:05.43 gnome-+
1651 rich 20 0 91380 2100 1724 0:04.05 VBoxCl+
2450 rich 20 0 11836 3596 3096 0:00.12 top
0
0

v n

[Py
I

w

Q000000 ONKOUOLUWNM

.

1 root 20 102236 11608 8288 0:02.44 systemd
root 20 0 (0] 0 0:00.00 kthrea+
root 0 -20 0:00.00 rcu_gp
root 0:00.00 rcu_pa+
root 0:00.00 kworke+
root 0:00.14 kworke+
root 0:00.00 mm_per+
root 0:00.20 ksofti+
root 0:00.84 rcu_sc+ I

. .

.

= r s

NDnanHHHHKHKHWLWBaODWM

.

root 0:00.01 migrat+
0:00.00 idle_i+

D000 D00
0000000
SO0 Q200
Q000020000002 W
D000 020000 WWOO:
000000000000

(%3]

root

FIGURE 4-1 The output of the top command while it is running

The first section of the output shows general system information. The first line shows the current time, how long the
system has been up, the number of users logged in, and the load average on the system.

The load average appears as three numbers, the 1-minute, 5-minute, and 15-minute load averages. The higher the
values, the more load the system is experiencing. It's not uncommon for the 1-minute load value to be high for short
bursts of activity. If the 15-minute load value is high, your system may be in trouble.

NOTE

The trick in Linux system administration is defining what exactly a high load average value is.

This value depends on what's normally running on your system and the hardware
configuration. What's high for one system might be normal for another. The best practice is to
note the load levels of your system under normal conditions, which will make it easier to detect
when your system is under load.

The second line shows general process information (called tasks in top): how many processes are running, sleeping,
stopped, and zombie (have finished but their parent process hasn't responded).

The next line shows general CPU information. The top display breaks down the CPU utilization into several
categories depending on the owner of the process (user versus system processes) and the state of the processes
(running, idle, or waiting).

Following that, there are two lines that detail the status of the system memory. The first line shows the status of the
physical memory in the system, how much total memory there is, how much is currently being used, and how much
is free. The second memory line shows the status of the swap memory area in the system (if any is installed), with
the same information.

Finally, the next section shows a detailed list of the currently running processes, with some information columns
that should look familiar from the ps command output:

= PID: The process ID of the process
®» USER: The username of the owner of the process

= PR: The priority of the process

m NI: The nice value of the process

= VIRT: The total amount of virtual memory used by the process

= RES: The amount of physical memory the process is using

= SHR: The amount of memory the process is sharing with other processes

= S: The process status (D = interruptible sleep, R = running, S = sleeping, T = traced or stopped, or Z = zombie)
= %CPU: The share of CPU time that the process is using

= %MEM: The share of available physical memory the process is using

= TIME+: The total CPU time the process has used since starting

= COMMAND: The command-line name of the process (program started)

By default, when you start top it sorts the processes based on the %CPU value. You can change the sort order by
using one of several interactive commands while top is running. Each interactive command is a single character you
can press while top is running that changes the behavior of the program. Pressing F allows you to select the field to
use to sort the output, and pressing d allows you to change the polling interval. Press q to exit the top display. You
have lots of control over the output of the top command. Using this tool, you can often find offending processes that
have taken over your system. Of course, once you find one, the next job is to stop it, which brings us to the next
topic.

Stopping processes

A crucial part of being a system administrator is knowing when and how to stop a process. Sometimes a process gets
hung up and just needs a gentle nudge to either get going again or stop. Other times, a process runs away with the
CPU and refuses to give it up. In both cases, you need a command that will allow you to control a process. Linux
follows the Unix method of interprocess communication.

In Linux, processes communicate with each other using signals. A process signal is a predefined message that
processes recognize and may choose to ignore or act on. The developers program how a process handles signals.
Most well-written applications have the ability to receive and act on the standard Unix process signals. These signals
are shown in Table 4-4.

TABLE 4-4 Linux Process Signals

Signal Name Description

1 HUP Hang up.

2 INT Interrupt.

3 QUIT | Stop running.

9 KILL | Unconditionally terminate.

11 SEGV | Segment violation.

15 TERM | Terminate if possible.

17 STOP | Stop unconditionally but don't terminate.

18 TSTP | Stop or pause but continue to run in background.
19 CONT Resume execution after STOP or TSTP .

A few different commands are available in Linux that allow you to send process signals to running processes. This
section discusses the two most common ones: kill and pkill.

The kill command

The kill command allows you to send signals to processes based on their PIDs. By default, the kill command sends
a TERM signal to all the PIDs listed on the command line. Unfortunately, you can use only the process PID instead of
its command name, making the kill command difficult to use sometimes.

To send a process signal, you must either be the owner of the process or be logged in as the root user:

$ kill 3940
-bash: kill: (3940) - Operation not permitted
$

The TERM signal tells the process to stop running. Unfortunately, if you have a runaway process, most likely it will
ignore the request. When you need to get forceful, the -s parameter allows you to specify other signals (using either
their name or their signal number).

As you can see from the following example, no output is associated with the kill command:

kill -s HUP 3940
#

To see if the command was effective, you'll have to perform another ps or top command to see if the offending
process stopped.

The pkill command

The pkill command is a powerful way to stop processes by using their names rather than the PID numbers. The
pkill command allows you to use wildcard characters as well, making it a very useful tool when you've got a system
that's gone awry:

pkill http*
#

This example will kill all the processes that start with http , such as the httpd services for the Apache Web Server.

CAUTION

Be extremely careful using the pkill command when logged in as the root user. It's easy to get
carried away with wildcard characters and accidentally stop important system processes. This
could lead to a damaged filesystem.

Monitoring Disk Space

Another important task of the system administrator is to keep track of the disk usage on the system. Whether you're
running a simple Linux desktop or a large Linux server, you'll need to know how much space you have for your
applications.

A few command-line commands are available that can help you manage the media environment on your Linux
system. This section describes the core commands you'll likely run into during your system administration duties.

Mounting media

As discussed in Chapter 3, the Linux filesystem combines all media disks into a single virtual directory. Before you
can use a new media disk on your system, you need to place it in the virtual directory. This task is called mounting.

In today's graphical desktop world, most Linux distributions have the ability to automatically mount specific types of
removable media. A removable media device is a medium that (obviously) can be easily removed from the PC, such
as DVDs and USB memory sticks.

If you're not using a distribution that automatically mounts and unmounts removable media, you'll have to do it
yourself. This section describes the Linux command-line commands that help you manage your removable media
devices.

The mount command

Oddly enough, the command used to mount media is called mount . By default, the mount command displays a list of
media devices currently mounted on the system. However, the newer version of the kernel mounts lots of virtual
filesystems for management purposes, besides your standard storage devices. This can make the default output of
the mount command very cluttered and confusing. If you know the filesystem type used for your drive partitions, you
can filter that out using

$ mount -t ext4

/dev/sda5 on / type ext4 (rw,relatime,errors=remount-ro)

$ mount -t vfat

/dev/sda2 on /boot/efi type vfat

(rw, relatime, fmask=0077,dmask=0077, codepage=437,iocharset=1s088591,
shortname=mixed, errors=remount-ro)

/dev/sdbl on /media/rich/54A1-7D7D type vfat

(rw,nosuid,nodev, relatime,uid=1000,9id=1000, fmask=0022,dmask=0022, codepage=437,
iocharset=1508859-1, shortname=mixed, showexec,utf8, flush,
errors=remountro,uhelper=udisks2)

$
The mount command provides four pieces of information:

= The device filename of the media

= The mount point in the virtual directory where the media is mounted
m The filesystem type

» The access status of the mounted media

The last entry in the preceding example is a USB memory stick that the GNOME desktop automatically mounted at
the /media/rich/54A1-7D7D mount point. The vfat filesystem type shows that it was formatted for a Microsoft
Windows PC.

To manually mount a media device in the virtual directory, you'll need to be logged in as the root user, or use the
sudo command to run the command as the root user. The following is the basic command for manually mounting a
media device:

mount -t type device directory

The type parameter defines the filesystem type the disk was formatted under. Linux recognizes numerous filesystem
types. If you share removable media devices with your Windows PCs, the types you're most likely to run into are:

» vfat: Windows FAT32 filesystem with support for long filenames

ntfs: Windows advanced filesystem used in Windows NT and later operating systems

exfat: Windows filesystem optimized for removable media
= i$09660: The standard CD-ROM and DVD filesystem

Most USB memory sticks are formatted using the vfat filesystem. If you need to mount a data CD or DVD, you'll
have to use the is09660 filesystem type.

The next two parameters define the location of the device file for the media device and the location in the virtual
directory for the mount point. For example, to manually mount the USB memory stick at device /dev/sdbl at
location /media/disk , you'd use the following command:

mount -t vfat /dev/sdbl /media/disk

Once a media device is mounted in the virtual directory, the root user will have full access to the device, but access
by other users will be restricted. You can control who has access to the device using directory permissions (discussed
in Chapter 7, “Understanding Linux File Permissions”).

In case you need to use some of the more exotic features of the mount command, the available parameters are shown
in Table 4-5.

TABLE 4-5 The mount Command Parameters

Parameter Description

-a Mount all filesystems specified in the /etc/fstab file.

-f Causes the mount command to simulate mounting a device but not actually mount it.
-F When used with the -a parameter, mounts all filesystems at the same time.

-v Verbose mode; explains all the steps required to mount the device.

-i Don't use any filesystem helper files under /sbin/mount.filesystem.

-1 Add the filesystem labels automatically for ext2, ext3, ext4, or XFS filesystems.
-n Mount the device without registering it in the /etc/mtab mounted device file.
-p num For encrypted mounting, read the passphrase from the file descriptor num.

-s Ignore mount options not supported by the filesystem.

-r Mount the device as read-only.

-w Mount the device as read-write (the default).

-L label Mount the device with the specified label.

-Uuuid Mount the device with the specified uuid.
-0 When used with the -a parameter, limits the set of filesystems applied.
-0 Add specific options to the filesystem.

The -o option allows you to mount the filesystem with a comma-separated list of additional options. The popular
options to use are as follows:

= ro: Mount as read-only.

= rw: Mount as read-write.

= user : Allow an ordinary user to mount the filesystem.

® check=none : Mount the filesystem without performing an integrity check.

= loop : Mount a file.

The umount command

To remove a removable media device, you should never just remove it from the system. Instead, you should always
unmount it first.

TIP

Linux doesn't allow you to eject a mounted CD or DVD. If you ever have trouble removing a CD
or DVD from the drive, most likely it means it is still mounted in the virtual directory.
Unmount it first, and then try to eject it.

The command used to unmount devices is umount (yes, there's no “n” in the command, which gets confusing

sometimes). The format for the umount command is pretty simple:

umount [directory | device]

The umount command gives you the choice of defining the media device by either its device location or its mounted
directory name. If any program has a file open on a device, the system won't let you unmount it.

umount /home/rich/mnt

umount: /home/rich/mnt: device is busy
umount: /home/rich/mnt: device is busy
cd /home/rich

umount /home/rich/mnt

1s -1 mnt

total 0O

#

In this example, the command prompt was still in a directory within the filesystem structure, so the umount
command couldn't unmount the image file. Once the command prompt was moved out of the image file filesystem,
the umount command was able to successfully unmount the image file.

Using the df command

Sometimes you need to see how much disk space is available on an individual device. The df command allows you to
easily see what's happening on all the mounted disks:

$ df -t ext4 -t vfat

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda5 19475088 7326256 11136508 40% /

/dev/sda2 524272 4 524268 1% /boot/efi

/dev/sdbl 983552 247264 736288 26% /media/rich/54A1-7D7D
$

The df command shows each mounted filesystem that contains data. Similar to the mount command, the df
command shows any of the virtual filesystems mounted by the kernel, so we've filtered those out from the listing by
specifying the filesystem type using the -t options. The command displays the following:

= The device location of the device

= How many 1024-byte blocks of data it can hold
= How many 1024-byte blocks are used

= How many 1024-byte blocks are available

= The amount of used space as a percentage

® The mount point where the device is mounted

A few different command-line parameters are available with the df command, most of which you'll never use. One
popular parameter is -h , which shows the disk space in human-readable form, usually as an M for megabytes or a G
for gigabytes:

$ df -h

Filesystem Size Used Avail Use% Mounted on
/dev/sda5 196 7.0G 11G 40% /

/dev/sda2 512M 4.0K 512M 1% /boot/efi

/dev/sdbl 961M 242M 720M 26% /media/rich/54A1-7D7D
$

Now instead of having to decode those ugly block numbers, all of the disk sizes are shown using “normal” sizes. The
df command is invaluable in troubleshooting disk space problems on the system.

NOTE

Remember that the Linux system always has processes that handle files running in the
background. The values from the df command reflect what the Linux system thinks are the
current values at that point in time. It's possible that you have a process running that has
created or deleted a file but has not released the file yet. This value is not included in the free
space calculation.

Using the du command

With the df command, it is easy to see when a disk is running out of space. The next problem for the system
administrator is to know what to do when that happens.

Another useful command to help you out is the du command. The du command shows the disk usage for a specific
directory (by default, the current directory). This is a quick way to determine if you have any obvious disk hogs on
the system.

By default, the du command displays all the files, directories, and subdirectories under the current directory, and it
shows how many disk blocks each file or directory takes. For a standard-sized directory, this can be quite a listing.

Here's a partial listing of using the du command:

$ du

484 ./.gstreamer-0.10

8 ./Templates

8 ./Download

8 ./.ccache/7/0

24 /.ccache/7

368 /.ccache/a/d

384 /.ccache/a

424 ./.ccache

8 ./Public

8 ./ .gphpedit/plugins
32 ./ .gphpedit

72 ./.gconfd

128 ./.nautilus/metafiles
384 ./ .nautilus

8 ./Videos

8 ./Music

16 ./.config/gtk-2.0
40 ./.config

8 ./Documents

The number at the left of each line is the number of disk blocks that each file or directory takes. Notice that the
listing starts at the bottom of a directory and works its way up through the files and subdirectories contained within
the directory.

The du command by itself can be somewhat useless. It's nice to be able to see how much disk space each individual
file and directory takes up, but it can be meaningless when you have to wade through pages and pages of
information before you find what you're looking for.

You can use the following command-line parameters with the du command to make things a little more legible:
m -c: Produce a grand total of all the files listed.
= -h: Print sizes in human-readable form, using K for kilobyte, M for megabyte, and G for gigabyte.
® -s:Summarize each argument.

The next step for the system administrator is to use some file-handling commands for manipulating large amounts
of data. That's exactly what the next section covers.

Working with Data Files

When you have a large amount of data, it's often difficult to handle the information and make it useful. As you saw
with the du command in the previous section, it's easy to get data overload when working with system commands.

The Linux system provides several command-line tools to help you manage large amounts of data. This section
covers the basic commands that every system administrator — as well as any everyday Linux user — should know to
make their lives easier.

Sorting data

One popular function that comes in handy when working with large amounts of data is the sort command. The sort
command does what it says — it sorts data.

By default, the sort command sorts the data lines in a text file using standard sorting rules for the language you
specify as the default for the session:

$ cat filel
one

two

three

four

five

$ sort filel
five

four

one

three

two

$
Pretty simple. However, things aren't always as easy as they appear. Take a look at this example:

$ cat file2

$ sort file2

1
10
100
145
2

3
45
75
$

If you were expecting the numbers to sort in numerical order, you were disappointed. By default, the sort command
interprets numbers as characters and performs a standard character sort, producing output that might not be what
you want. To solve this problem, use the -n parameter, which tells the sort command to recognize numbers as
numbers instead of characters and to sort them based on their numerical values:

$ sort -n file2
1

2

3

10

45

75

100

145

$

Now, that's much better! Another parameter that's commonly used is -M, the month sort. Linux log files usually
contain a time stamp at the beginning of the line to indicate when the event occurred:

Apr 13 07:10:09 testbox smartd[2718]: Device: /dev/sda, opened
If you sort a file that uses time stamp dates using the default sort, you'll get something like this:

$ sort file3
Apr
Aug
Dec
Feb
Jan
Jul
Jun
Mar
May
Nov
Oct
Sep
$

Not exactly what you wanted. If you use the -M parameter, the sort command recognizes the three-character-month
nomenclature and sorts appropriately:

$ sort -M file3
Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec

$
Table 4-6 shows other handy sort parameters you can use.

TABLE 4-6 The sort Command Parameters

Single Double Dash Description
Dash
-b --ignore- Ignore leading blanks when sorting.
leading-blanks
-C --check=quiet Don't sort, but don't report if data is out of sort order.
-c --check Don't sort, but check if the input data is already sorted. Report if not sorted.
-d --dictionary- Consider only blanks and alphanumeric characters; don't consider special characters.
order
-f --ignore-case By default, sort orders capitalized letters first. This parameter ignores case.
-g --general- Use general numerical value to sort.
numeric-sort
-i --ignore- Ignore nonprintable characters in the sort.
nonprinting
-k -- Sort based on position P0SI and end at P0S2 if specified.
key=P0S1[,P0S2]
-M --month-sort Sort by month order using three-character month names.
-m --merge Merge two already sorted data files.
-n --numeric-sort Sort by string numerical value.
-0 --output=file Write results to file specified.
-R --random-sort Sort by a random hash of keys.
--random- Specify the file for random bytes used by the -R parameter.
source=FILE
-r --reverse Reverse the sort order (descending instead of ascending).
-S --buffer- Specify the amount of memory to use.
size=SIZE
-s --stable Disable last-resort comparison.
-T --temporary- Specify a location to store temporary working files.
direction=DIR
-t --field- Specify the character used to distinguish key positions.

-u --unique With the -c parameter, check for strict ordering; without the -c parameter, output
only the first occurrence of two similar lines.
-z --zero- End all lines with a NULL character instead of a new line.
terminated

The -k and -t parameters are handy when sorting data that uses fields, such as the /etc/passwd file. Use the -t
parameter to specify the field separator character, and use the -k parameter to specify which field to sort on. For

separator=SEP

example, to sort the password file based on numerical user ID, just do this:

$ sor

t -t '

-k 3 -n /etc/passwd

root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
4:7:1p:/var/spool/lpd:/sbin/nologin
x:5:0:sync:/sbin:/bin/sync
own:x:6:0:shutdown:/sbin:/sbin/shutdown
x:7:0:halt:/sbin:/sbin/halt
x:8:12:mail:/var/spool/mail:/sbin/nologin
x:9:13:news:/etc/news:
uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin

lp:x:
sync:
shutd
halt:
mail:
news:

operator:x:11:0:operator:/root:/sbin/nologin
games:x:12:100:games:/usr/games:/sbin/nologin
gopher:x:13:30:gopher:/var/gopher:/sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin
Now the data is perfectly sorted based on the third field, which is the numerical user ID value.
The -n parameter is great for sorting numerical outputs, such as the output of the du command:

$ du -sh * | sort -nr

1008k mrtg-2.9.29.tar.gz
972k bldgl

888k fbs2.pdf

760k Printtest

680k rsync-2.6.6.tar.gz

660k code

516k figle0l.tiff

496k test

496k php-common-4.0.4pl1-6mdk.1586.rpm
448k MesaGLUT-6.5.1.tar.gz

400k plp

Notice that the - r option also sorts the values in descending order so that you can easily see what files are taking up
the most space in your directory.

NOTE

The pipe command (|) used in this example redirects the output of the du command to the sort
command. That's discussed in more detail in Chapter 11, “Basic Script Building.”

Searching for data

Often in a large file, you have to look for a specific line of data buried somewhere in the middle of the file. Instead of
manually scrolling through the entire file, you can let the grep command search for you. The command-line format
for the grep command is

grep [options] pattern [file]

The grep command searches either the input or the file you specify for lines that contain characters that match the
specified pattern. The output from grep is the lines that contain the matching pattern.

Here are two simple examples of using the grep command with the filel file used in the “Sorting Data” section:

$ grep three filel
three

$ grep t filel

two

three

$
The first example searches the file filel for text matching the pattern three. The grep command produces the line

that contains the matching pattern. The next example searches the file filel for the text matching the pattern t. In
this case, two lines matched the specified pattern, and both are displayed.

Because of the popularity of the grep command, it has undergone lots of development changes over its lifetime.
Many features have been added to the grep command. If you look over the man pages for the grep command, you'll
see how versatile it is.

If you want to reverse the search (output lines that don't match the pattern), use the -v parameter:

$ grep -v t filel
one
four
five

$
If you need to find the line numbers where the matching patterns are found, use the -n parameter:

$ grep -n t filel
2:two

3:three

$

If you just need to see a count of how many lines contain the matching pattern, use the -c parameter:
$ grep -c t filel
2

$
If you need to specify more than one matching pattern, use the -e parameter to specify each individual pattern:

$ grep -e t -e f filel
two

three

four

five

$
This example outputs lines that contain either the string t or the string f.

By default, the grep command uses basic Unix-style regular expressions to match patterns. A Unix-style regular
expression uses special characters to define how to look for matching patterns. For a more detailed explanation of
regular expressions, see Chapter 20, “Regular Expressions.”

Here's a simple example of using a regular expression in a grep search:

$ grep [tf] filel
two

three

four

five

$
The square brackets in the regular expression indicate that grep should look for matches that contain either a t or an
f character. Without the regular expression, grep would search for text that would match the string tf.

The egrep command is an offshoot of grep , which allows you to specify POSIX extended regular expressions, which
contain more characters for specifying the matching pattern (again, see Chapter 20 for more details). The fgrep
command is another version that allows you to specify matching patterns as a list of fixed-string values, separated by
newline characters. This allows you to place a list of strings in a file and then use that list in the fgrep command to
search for the strings in a larger file.

Compressing data

If you've done any work in the Microsoft Windows world, no doubt you've used zip files. It became such a popular
feature that Microsoft eventually incorporated it into the Windows operating system starting with XP. The zip utility
allows you to easily compress large files (both text and executable) into smaller files that take up less space.

Linux contains several file compression utilities. Although this may sound great, it often leads to confusion and
chaos when trying to download files. Table 4-7 lists the file compression utilities available for Linux.

TABLE 4-7 Linux File Compression Utilities

Utility File Description
Extension
bzip2 .bz2 Uses the Burrows—Wheeler block sorting text compression algorithm and Huffman
coding
compress .Z Original Unix file compression utility; starting to fade away into obscurity
gzip .9z The GNU Project's compression utility; uses Lempel—Ziv-Welch coding
Xz .X2Z A general-purpose compression utility gaining in popularity
zip .zip The Unix version of the PKZIP program for Windows

The compress file compression utility is not often found on Linux systems. If you download a file with a . Z extension,
you can usually install the compress package (called ncompress in many Linux distributions) using the software
installation methods discussed in Chapter 9, “Installing Software,” and then uncompress the file with the uncompress
command. The gzip utility is the most popular compression tool used in Linux.

The gzip package is a creation of the GNU Project in their attempt to create a free version of the original Unix
compress utility. This package includes these files:

® gzip for compressing files
® gzcat for displaying the contents of compressed text files
= gunzip for uncompressing files

These utilities work the same way as the bzip2 utilities:

$ gzip myprog

$ ls -1 my*
-rwxrwxr-x 1 rich rich 2197 2007-09-13 11:29 myprog.gz
$

The gzip command compresses the file you specify on the command line. You can also specify more than one
filename or even use wildcard characters to compress multiple files at once:

$ gzip my*
$ 1s -1 my*
-rWXr--r-- 1 rich rich 103 Sep 6 13:43 myprog.c.gz
- rWXr-Xr-x 1 rich rich 5178 Sep 6 13:43 myprog.gz
-rwWXr--r-- 1 rich rich 59 Sep 6 13:46 myscript.gz
-rwWXr--r-- 1 rich rich 60 Sep 6 13:44 myscript2.9z
$

The gzip command compresses every file in the directory that matches the wildcard pattern.

Archiving data

Although the zip command works great for compressing and archiving data into a single file, it's not the standard
utility used in the Unix and Linux worlds. By far the most popular archiving tool used in Unix and Linux is the tar
command.

The tar command was originally used to write files to a tape device for archiving. However, it can also write the
output to a file, which has become a popular way to archive data in Linux.

Here is the format of the tar command:

tar function [options] objectl object2 ...

The function parameter defines what the tar command should do, as shown in Table 4-8.
TABLE 4-8 The tar Command Functions

Function Long Description
Name
-A -- Append an existing tar archive file to another existing tar archive file.
concatenate
-C --create Create a new tar archive file.
-d --diff Check the differences between a tar archive file and the filesystem.
--delete Delete from an existing tar archive file.
-r --append Append files to the end of an existing tar archive file.
-t --list List the contents of an existing tar archive file.
-u --update Append files to an existing tar archive file that are newer than a file with the same name in

the existing archive.

-X --extract | Extract files from an existing archive file.

Each function uses options to define a specific behavior for the tar archive file. Table 4-9 lists the common options
that you can use with the tar command.

TABLE 4-9 The tar Command Options
Option Description
-Cdir | Change to the specified directory.
-f file Output results to file (or device) file.

-3 Redirect output to the bzip2 command for compression.

-] Redirect output to the xz command for compression.

-p Preserve all file permissions.

-v List files as they are processed.

-z Redirect the output to the gzip command for compression.

-Z Redirect the output to the compress command for compression.

These options are usually combined to create the following scenarios. First, you'll want to create an archive file using
this command:

tar -cvf test.tar test/ test2/

This command creates an archive file called test. tar containing the contents of both the test directory and the
test2 directory. Next, the command

tar -tf test.tar
lists (but doesn't extract) the contents of the tar file test. tar . Finally, the command
tar -xvf test.tar

extracts the contents of the tar file test.tar . If the tar file was created from a directory structure, the entire
directory structure is re-created starting at the current directory.

As you can see, using the tar command is a simple way to create archive files of entire directory structures. This is a
common method for distributing source code files for open source applications in the Linux world.

TIP

If you download open source software, often you'll see filenames that end in .tgz. These are
gzipped tar files, and they can be extracted using the command tar -zxvf filename.tgz.

Summary

This chapter discussed some of the more advanced bash commands used by Linux system administrators and
programmers. The ps and top commands are vital in determining the status of the system, allowing you to see what
applications are running and how many resources they are consuming.

In this day of removable media, another popular topic for system administrators is mounting storage devices. The
mount command allows you to mount a physical storage device into the Linux virtual directory structure. To remove
the device, you use the umount command.

Finally, we discussed various utilities used for handling data. The sort utility easily sorts large data files to help you

organize data, and the grep utility allows you to quickly scan through large data files looking for specific information.
A few file compression utilities are available in Linux, including gzip and zip . Each one allows you to compress
large files to help save space on your filesystem. The Linux tar utility is a popular way to archive directory structures
into a single file that can easily be ported to another system.

The next chapter discusses Linux environment variables. Environment variables allow you to access information
about the system from your scripts, as well as provide a convenient way to store data within your scripts.

CHAPTER 5
Understanding the Shell

IN THIS CHAPTER

Investigating shell types
Understanding the parent/child shell relationship
Using subshells creatively

Investigating built-in shell commands

Now that you know a few shell basics, such as reaching the shell and rudimentary commands, it's time to explore the
actual shell process. To understand it, you need to know how it operates in different circumstances.

A shell is not just a CLL. It is a complicated interactive running program. Entering commands and using the shell to
run scripts can raise some interesting and confusing issues. Understanding the shell process and its relationships
helps you resolve these issues or avoid them altogether.

This chapter takes you through learning about the shell process and how it operates in various situations. We'll
explore how subshells are created as well as the relationship to their parent shell. The different commands that
create child processes are examined along with those that don't (built-in commands). We also cover some shell tips
and tricks you can try to make your CLI experience more productive.

Investigating Shell Types

The shell program that the system starts, when you log into the system, depends on your user ID configuration. In
the /etc/passwd file, the user ID has its default shell program listed in field #7 of its entry. This default shell program
is started when the user either logs into a virtual console terminal or starts a terminal emulator in the GUL.

In the following example, the user christine has the GNU Bash shell as their default shell program:
$ cat /etc/passwd

|
christine:x:1001:1001::/home/christine:/bin/bash
$
The Bash shell program (bash) typically resides in the /usr/bin directory on modern Linux systems. However, on
your Linux system you may find it in the /bin directory. The which bash command can help here by providing the
directory and filename to use for the Bash shell:

$ which bash
/usr/bin/bash
$

A long listing reveals that the bash file (the Bash shell) is an executable program via the trailing asterisk (*) on the
file's name:

$ 1s -1F /usr/bin/bash
-rwxr-xr-x. 1 root root 1219248 Nov 8 11:30 /usr/bin/bash*
$

NOTE

Typically on modern Linux systems, the /bin directory is symbolically linked to the /usr/bin/
directory, which is why the user christine has /bin/bash listed as their default shell program, but
the Bash shell program actually resides in the /usr/bin/ directory. Symbolic (soft) links were
covered in Chapter 3, “Basic Bash Shell Commands.”

Several other shell programs are on this particular Linux system. They include tcsh, which is based on the original C
shell:

$ which tcsh

/usr/bin/tcsh

$ 1s -1F /usr/bin/tcsh

-rwxr-xr-x. 1 root root 465200 May 14 2019 /usr/bin/tcsh*
$

Another shell on this system is zsh, which is a more elaborate version of the Bash shell. It also has a few tcsh features
as well as other elements:

$ which zsh

/usr/bin/zsh

$ 1s -1F /usr/bin/zsh

-rwxr-xr-x. 1 root root 879872 May 11 2019 /usr/bin/zsh*
$

TIP

If you don't find some of these shells on your Linux system, you may be able to install them.
Chapter 9, “Installing Software,” can help you accomplish this task.

A soft link (see Chapter 3) of the C shell points to the tcsh shell:

$ which csh

/usr/bin/csh

$ s -1F /usr/bin/csh

lrwxrwxrwx. 1 root root 4 May 14 2019 /usr/bin/csh -> tcsh*

$
On Debian-based Linux systems, such as Ubuntu, you often find dash , which is a version of the Ash shell:

$ which dash

/usr/bin/dash

$ ls -1F /usr/bin/dash

-rwxr-xr-x 1 root root 129816 Jul 18 2019 /usr/bin/dash*

$

NOTE

A brief description of various shells was included in Chapter 1, “Starting with Linux Shells.’
You may be interested in learning even more about shells other than the GNU Bash shell.
Additional alternative shell information is in Chapter 23, “Working with Alternative Shells.”

o

On most Linux systems, you'll find the various installed shells that can be used as the user's default shell within the
/etc/shells file, as shown here:

$ cat /etc/shells
/bin/sh
/bin/bash
/usr/bin/sh
/usr/bin/bash
/bin/csh
/bin/tcsh
/usr/bin/csh
/usr/bin/tcsh
/usr/bin/zsh
/bin/zsh

$

NOTE

On many Linux distributions, you'll find that it appears as if a shell file exists in two places —

/bin and /usr/bin . This is because on modern Linux systems, these two directories are often
symbolically linked together, with /bin pointing to /usr/bin . And you can use either directory to
access the shell. Symbolic links, also called soft links, were covered in Chapter 3.

A user can set any of these different shell programs on this system as their shell. However, due to its popularity, it is
rare to use any other shell instead of Bash as an account's default interactive shell. The default interactive shell, also
called a login shell, starts whenever a user logs into a virtual console terminal or starts a terminal emulator in the

GUI

Another shell, sh, is the default system shell. The default system shell is used for system shell scripts, such as those
needed at startup.

Often, you see a distribution with its default system shell (sh) pointing to the Bash shell using a soft link. An example
of this is shown here on a CentOS distribution:

$ which sh

/usr/bin/sh

$ 1s -1 /usr/bin/sh

lrwxrwxrwx. 1 root root 4 Nov 8 11:30 /usr/bin/sh -> bash
$

However, be aware that on some distributions, the default system shell is linked differently, such as on this Ubuntu
distribution:

$ which sh

/usr/bin/sh

$ 1s -1 /usr/bin/sh

lrwxrwxrwx 1 root root 4 Mar 10 18:43 /usr/bin/sh -> dash

$

In this case, the default system shell, /usr/bin/sh, points to the Dash shell, instead of the Bash shell.

TIP

For Bash shell scripts, these two different shells, default interactive shell and default system
shell, can cause problems. Be sure to read about the important syntax needed for a Bash shell
script's first line in Chapter 11, “Basic Script Building,” to avoid these issues.

You are not forced to stick with your default interactive shell. You can start any shell available on your distribution
simply by typing its name. However, there's no fanfare or message displayed to indicate what shell you are currently
using. But help is available from the $0 variable. The command echo $6 will display the name of your current shell,
providing the needed reference.

NOTE

The echo $0 command shows the current shell in use only when issued at a shell prompt. If used
in a shell script, it will display the script's name instead. This is covered in Chapter 14,
“Handling User Input.”

With our handy $0 variable, we'll display the shell we are currently using, start the Dash shell by typing the
command dash, and show the new shell's name via echo $0 again:

$ echo $0
-bash

$

$ dash

$

$ echo $0

dash
$

NOTE

In the previous example, notice the dash (-) in front of the bash response from the first echo $0
command. This indicates that this shell is the user's login shell.

The $ prompt is a CLI prompt for the Dash shell. You can leave the Dash shell program (and the Bash shell for that
matter) by typing the command exit :

$ echo $0

dash

$ exit

$ echo $0

-bash

$
Jumping back and forth through the various shells seems simple, but there is more to the action happening behind
the scenes. To understand this process, the next section explores the relationship between a login shell program and

a newly started shell program.

Exploring Parent and Child Shell Relationships

The default interactive shell (login shell) that starts when a user logs into a virtual console terminal or starts a
terminal emulator in the GUI is a parent shell. As you have read so far in this book, a parent shell process provides a
CLI prompt and waits for commands to be entered.

When the bash command (or other shell program name) is entered at the CLI prompt, a new shell program is
created. This is a child shell. A child shell also has a CLI prompt and waits for commands to be entered.

Because you do not see any relevant messages when you type bash and spawn a child shell, another command can
help bring clarity. The ps command was covered in Chapter 4, “More Bash Shell Commands.” Using this with the - f
option before and after entering a child shell is useful:

$ ps -f

UID PID PPID C STIME TTY TIME CMD

christi+ 6160 6156 0 11:01 pts/1 00:00:00 -bash
christi+ 7141 6160 0 12:51 pts/1 00:00:00 ps -f

$
$ bash
$

$ ps -f
uID PID PPID C STIME TTY TIME CMD

christi+ 6160 6156 0 11:01 pts/1 00:00:00 -bash
christi+ 7142 6160 0 12:52 pts/1 00:00:00 bash
christi+ 7164 7142 0 12:52 pts/1 00:00:00 ps -f
$

The first use of ps - f shows two processes. One process has a process ID of 6160 (second column) and is running the
Bash shell program (last column). The second process (process ID 7141) is the actual ps -f command running.

NOTE

A process is a running program. The Bash shell is a program, and when it runs, it is a process.
A running shell is simply one type of process. Therefore, when reading about running a Bash
shell, you often see the word “shell” and the word “process” used interchangeably.

In the previous example, after the command bash is entered, a child shell is created. The second ps -f is executed
from within the child shell. From this display, you can see that two Bash shell programs are running. The first Bash
shell program, the parent shell process, has the original process ID (PID) of 6160. The second Bash shell program,
the child shell process, has a PID of 7142. Note that the child shell has a parent process ID (PPID) of 6160, denoting
that the parent shell process is its parent. Figure 5-1 diagrams this relationship.

Parent shell Child shell

Creates
issues command: subshell | issues command:
bash ps -f

FIGURE 5-1 Parent and child Bash shell processes

When a child shell process is spawned, only some of the parent's environment is copied to the child's shell
environment. This can cause problems with items such as variables. How to prevent such problems is covered in
Chapter 6, “Using Linux Environment Variables.”

A child shell is also called a subshell. A subshell can be created from a parent shell, and a subshell can be created
from another subshell:

$ ps -f
UID PID PPID C STIME TTY TIME CMD
christi+ 7650 7649 0 16:01 pts/0 00:00:00 -bash
christi+ 7686 7650 0 16:02 pts/0 00:00:00 ps -f
$
$ bash
$ bash
$ bash
$
$ ps --forest
PID TTY TIME CMD
7650 pts/0 00:00:00 bash
7687 pts/0 00:00:00 _ bash

7709 pts/0 00:00:00 _ bash

7731 pts/0 00:00:00 _ bash
7753 pts/0 00:00:00 _ ps
$

In the preceding example, the bash command was entered three times. Effectively, this created three subshells. The
ps --forest command shows the nesting of these subshells. Figure 5-2 also shows this subshell nesting.

The ps -f command can be useful in subshell nesting, because it displays who is whose parent via the PPID column:

$ ps -f

UID PID PPID C STIME TTY TIME CMD
christi+ 7650 7649 0 16:01 pts/0 00:00:00 -bash
christi+ 7687 7650 0 16:02 pts/0 00:00:00 bash
christi+ 7709 7687 0 16:02 pts/0 00:00:00 bash
christi+ 7731 7709 0 16:02 pts/0 00:00:00 bash
christi+ 7781 7731 0 16:04 pts/0 00:00:00 ps -f

$

The Bash shell program can use command-line options to modify the shell's start. Table 5-1 lists a few of these
available switches to use with the bash command.

Parent shell Bash child subshell

Creates
Issues command: subshell | issues command:
bash bash

Creates

subshell

Y
Bash great- Bash grandchild
grandchild subshell \ (aates subshell

issues command:
bash

iIssues command:
ps --forest

~ subshell

FIGURE 5-2 Subshell nesting
TABLE 5-1 The bash Command-Line Options

Option Description

-c string Reads commands from string and processes them

-i Starts an interactive shell, allowing input from the user

-1 Acts as if invoked as a login shell

-r Starts a restricted shell, limiting the user to the default directory
-s Reads commands from the standard input

You can find more help on the bash command and even more command-line parameters by typing man bash . The
bash --help command provides additional assistance as well.

TIP

If you'd like to see the version of the Bash shell, just type bash --version at the command line.
This won't create a subshell, but instead displays the current version of your system's GNU
Bash shell program.

You can gracefully exit out of each subshell by entering the exit command:

$ ps -f
UID PID PPID C STIME TTY TIME CMD
christi+ 7650 7649 0 16:01 pts/0 00:00:00 -bash
christi+ 7687 7650 0 16:02 pts/0 00:00:00 bash
christi+ 7709 7687 0 16:02 pts/0 00:00:00 bash
christi+ 7731 7709 0 16:02 pts/0 00:00:00 bash
christi+ 8080 7731 0 16:35 pts/0 00:00:00 ps -f
$
$ exit
exit
$
$ ps --forest

PID TTY TIME CMD

7650 pts/0 00:00:00 bash
7687 pts/0 00:00:00 _ bash
7709 pts/0 00:00:00 _ bash
8081 pts/0 00:00:00 _ ps
$
$ exit
exit
$ exit
exit
$
$ ps --forest
PID TTY TIME CMD
7650 pts/0 00:00:00 bash
8082 pts/0 00:00:00 _ ps
$

Not only does the exit command allow you to leave child subshells, but you can log out of your current virtual

console terminal or terminal emulation software as well. Just type exit in the parent shell, and you gracefully exit
the CLI.

Also, a subshell is sometimes created when you run a shell script. You learn more about that topic in Chapter 11.
Next we'll cover how a subshell is spawned using a process list.

Looking at process lists

On a single line, you can designate a list of commands to be run one after another. This is done by entering a
command list using a semicolon (;) between the commands:

$ pwd ; s test* ; cd /etc ; pwd ; cd ; pwd ; s my*
/home/christine

test file test one test two

/etc

/home/christine

my file my scrapt my script my scrypt

In the preceding example, the commands all executed one after another with no problems. However, while using
commands in this manner is called a list, it is not a process list. For a command list to be considered a process list,
the commands must be encased in parentheses:

$ (pwd ; s test* ; cd /etc ; pwd ; cd ; pwd ; ls my*)
/home/christine

test file test one test two

/etc

/home/christine

my file my scrapt my script my scrypt

$

Though the parentheses addition may not appear to be a big difference, they do cause a very different effect. Adding
parentheses and turning the command list into a process list created a subshell to execute the commands.

NOTE

A process list is a command grouping type. Another command grouping type puts the
commands between curly brackets and ends the command list with a semicolon (;). The syntax
is as follows: { command; } . Using curly brackets for command grouping does not create a
subshell as a process list does.

To indicate if a subshell was spawned, a command using an environment variable is needed here. (Environment
variables are covered in detail in Chapter 6). The command needed is echo $BASH_SUBSHELL . If it returns 0, then
there is no subshell. If it returns 1 or more, a subshell was created.

First, the example using just a command list is executed with the echo $BASH SUBSHELL tacked onto the end:

$ pwd ; 1s test* ; cd /etc ; pwd ; cd ; pwd ; 1s my* ; echo $BASH_SUBSHELL
/home/christine

test file test one test two

/etc

/home/christine

my file my scrapt my script my scrypt

0

$
At the very end of the commands' output, you can see the number zero (0) is displayed. This indicates a subshell was
not created to execute these commands.
The results are different using a process list. The list is executed with echo $BASH_SUBSHELL tacked onto the end:

$ (pwd ; s test* ; cd /etc ; pwd ; cd ; pwd ; ls my* ; echo $BASH_SUBSHELL)
/home/christine

test file test one test two

/etc

/home/christine

my file my scrapt my script my scrypt

1

$

In this case, the number one (1) displayed at the output's end. This indicates a subshell was indeed created and used
for executing these commands.

Thus, a process list is a command grouping enclosed with parentheses, which creates a subshell to execute the
command(s). You can even create a grandchild subshell by embedding parentheses within a process list:

$ (pwd ; echo $BASH_SUBSHELL)

/home/christine

1

$ (pwd ; (echo $BASH_SUBSHELL))
/home/christine

2

$

Notice in the first process list, the number one (1) is displayed, indicating a child subshell as you would expect.
However, in the example's second process list, additional parentheses were included around the echo
$BASH_SUBSHELL command. These additional parentheses caused a grandchild subshell to be created for the
command's execution. Thus, a number two (2) was displayed, indicating a subshell within a subshell.

Subshells are often used for multiprocessing in shell scripts. However, entering a subshell is an expensive method.
(In this situation, expensive means that more resources, such as memory and processing power, are consumed.) It
can also significantly slow down completion of the task. Subshell issues exist also for an interactive CLI shell session,
which is not truly multiprocessing, because the terminal gets tied up with the subshell's I/O.

Creatively using subshells

At the interactive shell CLI, you have more productive ways to use subshells. Process lists, co-processes, and pipes
(covered in Chapter 11) all use subshells. Each can be used effectively within the interactive shell.

One productive subshell method in the interactive shell uses background mode. Before we discuss how to use
background mode and subshells together, you need to understand background mode.
Investigating background mode

Running a command in background mode allows the command to be processed and frees up your CLI for other use.
A classic command to demonstrate background mode is the sleep command.

The sleep command accepts as a parameter the number of seconds you want the process to wait (sleep). This
command is often used to introduce pauses in shell scripts. The command sleep 10 causes the session to pause for
10 seconds and then return a shell CLI prompt:

$ sleep 10
$

To put a command into background mode, the & character is tacked onto its end. Putting the sleep command into
background mode allows a little investigation with the ps command:

$ sleep 3000&

[1] 2542

$

$ ps -f

UID PID PPID C STIME TTY TIME CMD

christi+ 2356 2352 0 13:27 pts/0 00:00:00 -bash
christi+ 2542 2356 0 13:44 pts/0 00:00:00 sleep 3000
christi+ 2543 2356 0 13:44 pts/0 00:00:00 ps -f

$

The sleep command was told to sleep for 3000 seconds (50 minutes) in the background (&). When it was put into the
background, two informational items were displayed before the shell CLI prompt was returned. The first

informational item is the background job's number (1) displayed in brackets. The second item is the background
job's process ID (2542).

The ps command was used to display the various processes. Notice that the sleep 3000 command is listed. Also note
that its PID in the second column is the same PID displayed when the command went into the background, 2542.

In addition to the ps command, you can use the jobs command to display background job information. The jobs
command displays your processes (jobs) currently running in background mode:

$ jobs
[1]+ Running sleep 3000 &
$

The jobs command shows the job number (1) in brackets. It also displays the job's current status (Running) as well as
the command itself (sleep 3000 &).

You can see even more information by using the -1 (lowercase L) parameter on the jobs command. The -1
parameter displays the command's PID in addition to the other information:

$ jobs -1
[1]+ 2542 Running sleep 3000 &
$

TIP

When you have more than one background process running, there is some additional helpful
information to show which background job was started last. The most recently started job has
a plus sign (+) next to its job number in the jobs command's display. And the second newest
process will have a minus sign (-) to provide you with additional information.

When the background job is finished, its completion status is displayed the next time you press the Enter key at the
command line:

$
[1]+ Done sleep 3000

$
Background mode is very handy. And it provides a method for creating useful subshells at the CLI.

Putting process lists into the background

By placing process lists into the background, you can do large amounts of multiprocessing within a subshell. A side
benefit is that your terminal is not tied up with the subshell's I/O.

As stated earlier, a process list is a command or series of commands executed within a subshell. Using a process list
including sleep commands and displaying the BASH_SUBSHELL variable operates as you would expect:

$ (sleep 2 ; echo $BASH_SUBSHELL ; sleep 2)
1

$

In the preceding example, a two-second pause occurs, the number one (1) is displayed indicating a single subshell
level (child shell), and then another two-second pause occurs before the prompt returns. Nothing too dramatic here.

Putting the same process list into background mode can cause a slightly different effect with command output:

$ (sleep 2 ; echo $BASH_SUBSHELL ; sleep 2)&

[1] 2553

$1

[1]+ Done (sleep 2; echo $BASH SUBSHELL; sleep 2)
$

Putting the process list into the background causes a job number and process ID to appear, and the prompt returns.
However, the odd event is that the displayed number one (1), indicating a single-level subshell, is displayed next to
the prompt! Don't let this confuse you. Simply press the Enter key, and you get another prompt back.

Using a process list in background mode is one creative method for using subshells at the CLI. This allows you to be
more productive with fewer keystrokes.

Of course, the process list of sleep and echo commands are just for example purposes. Creating backup files with tar
(see Chapter 4) is a more practical example of using background process lists effectively:

$ (tar -cf Doc.tar Documents ; tar -cf Music.tar Music)é&
[1] 2567

$

$ s *.tar

Doc.tar Music.tar

[1]1+ Done (tar -cf Doc.tar Documents;
tar -cf Music.tar Music)

$

Putting a process list in background mode is not the only way to use subshells creatively at the CLI. Co-processing is
another method.

Looking at co-processing

Co-processing does two things at the same time. It spawns a subshell in background mode and it executes a
command within that subshell.

To perform co-processing, the coproc command is used along with the command to be executed in the subshell:

$ coproc sleep 10

[1] 2689

$
Co-processing performs almost identically to putting a command in background mode, except for the fact that it
creates a subshell. You'll notice that when the coproc command and its parameters were entered, a background job
was started. The background job number (1) and process ID (2689) were displayed on the screen.

The jobs command allows you to display the co-processing status:

$ jobs
[1]1+ Running coproc COPROC sleep 10 &
$

From the preceding example, you can see that the background command executing in the subshell is coproc COPROC
sleep 10 .COPROC is a name given to the process by the coproc command. You can set the name yourself by using
extended syntax for the command:

$ coproc My Job { sleep 10; }

[1] 2706

$

$ jobs

[1]+ Running coproc My Job { sleep 10; } &

$
By using the extended syntax, the co-processing name was set to My_Job . Be careful here, because the extended
syntax is a little tricky. Make sure you place a space after the first curly bracket ({) and before the start of your
command. Also, the command must end with a semicolon (;). And you must put a space after the semicolon and
before the closing curly bracket (}).

NOTE

Co-processing allows you to get very fancy and send/receive information to the process
running in the subshell. The only time you need to name a co-process is when you have
multiple co-processes running and you need to communicate with them all. Otherwise, just let
the coproc command set the name to the default, corroc.

You can be really clever and combine co-processing with process lists, creating nested subshells. Just type your
process list and put the command coproc in front of it:

$ coproc (sleep 10; sleep 2)
[1] 2750
$
$ jobs
[1]1+ Running coproc COPROC (sleep 10; sleep 2) &
$
$ ps --forest
PID TTY TIME CMD
2367 pts/0 00:00:00 bash
2750 pts/0 00:00:00 _ bash
2751 pts/0 00:00:00 | _ sleep
2752 pts/0 00:00:00 _ ps
$

Just remember that spawning a subshell can be expensive and slow. Creating nested subshells is even more so!

Using subshells can provide flexibility as well as convenience. Understanding their behavior is important in order to

reach these goals. Command actions are also important to understand. In the next section, the behavior differences
between built-in and external commands are explored.

Understanding External and Built-ln Commands

While learning about the GNU Bash shell, you likely have heard the term built-in command. It is important to
understand both shell built-in and non—built-in (external) commands. Built-in commands and non—built-in
commands operate very differently.

Looking at external commands

An external command, sometimes called a filesystem command, is a program that exists outside of the Bash shell.
In other words, it is not built into the shell program. An external command program is typically located in /bin,
/usr/bin, /sbin, or /usr/sbin directories.

The ps command is an external command. You can find its filename by using both the which and the type
commands:

$ which ps

/usr/bin/ps

$

$ type ps

ps is /usr/bin/ps

$

$ 1s -1 /usr/bin/ps

-rwxr-xr-x. 1 root root 142216 May 11 2019 /usr/bin/ps
$

Whenever an external command is executed, a child process is created. This action is termed forking. Conveniently,
the external command ps displays its current parent as well as its own forked child processes:

$ ps -f

UuID PID PPID C STIME TTY TIME CMD
christi+ 2367 2363 0 10:47 pts/0 00:00:00 -bash
christi+ 4242 2367 0 13:48 pts/0 00:00:00 ps -f
$

Because it is an external command, when the ps command executes, a child process is created. In this case, the ps
command's PID is 4242 and the parent PID is 2367 . The Bash shell process, which in this case is the parent process,
has a PID of 2367 . Figure 5-3 illustrates the forking that occurs when an external command is executed.

Parent process Child process

Forks chilq_

Drocess executes external

command:
ps -f

Issues external
command:
ps -f

FIGURE 5-3 External command forking

Whenever a process must fork, it takes time and effort to set up the new child process's environment. Thus, external
commands can be a little expensive.

NOTE

If you fork a child process or create a subshell, you can still communicate with it via signaling,
which is extremely helpful in both the command line and in writing shell scripts. Signaling
allows process communication via signals. Signals and signaling are covered in Chapter 16,
“Script Control.”

When using a built-in command, no forking is required. Therefore, built-in commands are less expensive.

Looking at built-in commands

Built-in commands are different in that they do not need a child process to execute. They were compiled into the
shell, and thus are part of the shell's toolkit. No external program file exists to run them.

Both the cd and exit commands are built into the Bash shell. You can tell a command is built-in by using the type
command:

$ type cd
cd is a shell builtin

$

$ type exit

exit is a shell builtin
$

Because they do not need to fork a child process to execute or open a program file, built-in commands are faster and
more efficient. A list of GNU Bash shell built-in commands is provided in Appendix A.

Be aware that some commands have multiple flavors. For example, both echo and pwd have a built-in command
flavor as well as an external command flavor. These flavors are slightly different. To see multiple flavors for
commands, use the -a option on the type command:

$ type -a echo
echo is a shell builtin
echo is /usr/bin/echo

$ which echo
/usr/bin/echo

$

$ type -a pwd

pwd is a shell builtin
pwd is /usr/bin/pwd

$

$ which pwd

/usr/bin/pwd

$
Using the type -a command shows both types (built-in and external) for each of the two commands. Note that the
which command shows only the external command file.

TIP

To use the external command for a command that has multiple flavors, directly reference the
file. For example, to use the pwd external command, type /usr/bin/pwd.

Using the history command

The Bash shell keeps track of the most recent commands you have used. You can recall these commands and even
reuse them. A helpful built-in command that lets you explore and manage these previously issued commands is the
history command.

To see a list of recently used commands, type the history command with no options:

$ history
1 ps -f
2 pwd
3 1s
4 coproc (sleep 10; sleep 2)
5 jobs
6 ps --forest
7 1s
8 ps -f
9 pwd
10 1s -1 /usr/bin/ps
11 history
12 cd /etc
13 pwd
14 1s
15 cd

16 type -a pwd
17 which pwd
18 type -a echo
19 which echo
20 1s

[...1]

$

In this example, the listing is snipped and only the first 20 commands are shown. Typically, the last 1,000
commands are kept in history. That's a lot of commands!

TIP

You can set the number of commands to keep in the Bash history. To do so, you need to modify
an environment variable called HISTSIZE (see Chapter 6).

You can recall and reuse the last command in your history list. This can save time and typing. To recall and reuse
your last command, type !'! and press the Enter key:

$ ps --forest

PID TTY TIME CMD
2367 pts/0 00:00:00 bash
5240 pts/0 00:00:00 _ ps

$
$ It
ps --forest
PID TTY TIME CMD

2367 pts/0 00:00:00 bash
5241 pts/0 00:00:00 \ ps
$
When ! ! was entered, the Bash shell first displayed the command it was recalling from the shell's history. And after
the command was displayed, it was executed.

Command history is kept in the hidden .bash history file, which is located in each user's home directory:

$ pwd
/home/christine

$

$ 1s .bash_history
.bash_history

$

Be aware that during your CLI session, the bash command history is stored in memory. It is only written out into the
history file when the shell is exited:

$ history
1 ps -f
2 pwd

38 exit

39 history

40 ps --forest
41 ps --forest

42 pwd
43 1s .bash history
44 history
$
$ cat .bash_history
ps -f
pwd
[...]
1s
history
exit
$

Notice that when the history command is run, the last commands displayed do not match final commands in the
.bash_history file. There were six additional commands issued, which are not recorded in the history file.

You can force the command history to be written to the .bash_history file without leaving a shell session. In order to
impose this write, use the -a option on the history command:

$ history -a

$
$ history
1 ps -f
2 pwd
[...]
38 exit
39 history
40 ps --forest
41 ps --forest
42 pwd
43 1s .bash history
44 history
45 cat .bash history
46 history -a
47 history
$
$ cat .bash_history
ps -f

exit

history

ps --forest

ps --forest

pwd

1s .bash _history
history

cat .bash history
history -a

$

Notice that contents from both the history command and the .bash history file match, except for the very last
command listed (the history command), because it came after the history -a command was issued.

NOTE

If you have multiple terminal sessions open, you can still append .bash_history in each open
session using the history -a command. However, the histories are not automatically updated
for your other open terminal sessions. This is because the .bash_history file is read-only when a
terminal session is first started. To force the .bash_history file to be reread and a terminal
session's history in memory to be updated, use the history -n command.

You can recall any command from the history list. Just enter an exclamation point and the command's number from
the history list:

$ history
1 ps -f
2 pwd
[...]
39 history

40 cat .bash history
41 ps --forest

42 pwd
43 ps -f
44 history

45 cat .bash_history
46 history -a

47 history
48 cat .bash history
49 history

$

$ 142

pwd

/home/christine

$

Command number 42 was pulled from the history list. Notice that similar to executing the last command in history,
the Bash shell first displays the command it is recalling from the shell's history. After the command is displayed, it is
executed.

TIP

If for some reason you need to clear out command history, it's simple to do. Just type history -c
and the contents of the current history are wiped. Next enter history -a to also clear out the
.bash_history file.

Using Bash shell command history can be a great timesaver. You can do even more with the built-in history
command. Be sure to view the Bash manual pages for history by typing man history .

Using command aliases

The alias command is another useful built-in shell command. A command alias allows you to create an alias name
for common commands (along with their parameters) to help keep your typing to a minimum.

Most likely, your Linux distribution has already set some common command aliases for you. To see a list of the
active aliases, use the alias command along with the -p parameter:

$ alias -p

alias 1='ls -CF'

alias la='ls -A'

alias 11='ls -alF'

alias ls='ls --color=auto'

$
Notice that, on this Ubuntu Linux distribution, an alias is used to override the standard 1s command. It

automatically provides the - -color=auto parameter, which will cause the 1s command to use color coding (for
example, directories may be shown in blue), if the terminal supports colorization. The LS COLORS environment
variable controls the color codes used (environment variables are covered in Chapter 6).

TIP

When jumping between various distributions, be cautious using color coding to help you
determine which listed name is a directory and which is a file. Because color codes are not
standardized, it's best to use the 1s -F command to see the file's type code instead.

You can create your own aliases using the alias command:

$ alias li='ls -i'

$
$ i
34665652 Desktop 1415018 NetworkManager.conf
1414976 Doc.tar 50350618 OldDocuments
34665653 Documents 1414981 Pictures
51693739 Downloads 16789591 Public
1415016 hlink test one 1415019 really ridiculously long file name
1415021 log file 1415020 slink test file
51693757 Music 1415551 Templates
1414978 Music.tar 1415523 test file
1415525 my file 1415016 test one
1415524 my scrapt 1415017 test two
1415519 my script 16789592 Videos
1415015 my scrypt
$

After you define an alias value, you can use it at any time in your shell, including in shell scripts. Be aware that
because command aliases are built-in commands, an alias is valid only for the shell process in which it is defined:

$ alias li='ls -i'

$

$ bash

$ i

bash: 1i: command not found...

$

$ exit

exit

$

$ i

34665652 Desktop 1415018 NetworkManager.conf
1414976 Doc.tar 50350618 0ldDocuments
[...]

1415524 my scrapt 1415017 test two
1415519 my script 16789592 Videos
1415015 my_scrypt

$

TIP

If needed, you can turn off an alias by typing unalias alias-name at the command line. Keep in
mind, if the alias wasn't set by you, it will be turned back on the next time you log into the
system. You can modify your environment files to permanently disable an alias. Environment
files are covered in Chapter 6.

Fortunately, you can make an alias value permanent across subshells. The next chapter covers how to do that, along
with environment variables.

Summary

This chapter discussed the complicated interactive program, the GNU Bash shell. We covered understanding the
shell process and its relationships, including how subshells are spawned and their relationship to the parent shell.
We also explored commands that create child processes and commands that don't.

The default interactive shell is normally started whenever a user logs into a terminal. The shell that the system starts
depends on a user ID configuration. Typically, it is /usr/bin/bash . The default system shell, /usr/bin/sh , is used for
system shell scripts, such as those needed at startup.

A subshell or child shell can be spawned using the bash command. They are also created when a process list or the
coproc command is used. Using subshells at the command line can allow for creative and productive use of the CLI.
Subshells can be nested, spawning grandchild shells and great-grandchild shells. Creating a subshell is an expensive
process because a new environment for the shell must be created as well.

Finally, we looked at two different types of shell commands: built-in and external commands. External commands

create a child process with a new environment, but a built-in command does not. This causes external commands to
be more expensive to use. Because a new environment is not needed, built-in commands are more efficient and not
affected by any environment changes.

Shells, subshells, processes, and forked processes are all affected by environment variables. How the variables affect
and can be used within these different contexts is explored in the next chapter.

CHAPTER 6
Using Linux Environment Variables

IN THIS CHAPTER

Looking at environment variables
Creating your own local variables
Removing variables
Exploring default shell environment variables
Setting the PATH environment variable
Locating environment files
Using variable arrays
Linux environment variables help define your Linux shell experience. Many programs and scripts use environment

variables to obtain system information and store temporary data as well as configuration information. Environment
variables are set in lots of places on the Linux system, and it's helpful to know their locations.

This chapter walks you through the world of Linux environment variables, showing where they are, how to use them,
and even how to create your own. The chapter concludes with how to use variable arrays.

Exploring Environment Variables

The Bash shell uses a feature called environment variables to store information about the shell session and the
working environment (thus the name environment variables). This feature also allows you to store data in memory
that can be easily accessed by any program or script running from the shell. It is a handy way to store needed
persistent data.

There are two environment variable types in the Bash shell:
= Global variables
m Local variables

This section describes each type of environment variable and shows how to view and use them.

NOTE

Even though the Bash shell uses specific environment variables that are consistent, different
Linux distributions often add their own environment variables. The environment variable
examples you see in this chapter may differ slightly from what's available on your specific
distribution. If you run into an environment variable not covered here, check your Linux
distribution's documentation.

Looking at global environment variables

Global environment variables are visible from the shell session and from any spawned child subshells. Local
variables are available only in the shell that creates them. This fact makes global environment variables useful in
applications that create child subshells, which require parent shell information.

The Linux system sets several global environment variables when you start your Bash session. (For more details
about what variables are started at that time, see the “Locating System Environment Variables” section later in this
chapter.) The system environment variables almost always use all capital letters to differentiate them from user-
defined variables.

To view global environment variables, use the env or the printenv command:

$ printenv

[...]
USER=christine

[...]
PWD=/home/christine
HOME=/home/christine
[...1]

TERM=xterm
SHELL=/bin/bash

HISTSIZE=1000
[...]
$

So many global environment variables get set for the Bash shell that the display had to be snipped. Not only are
many set during the login process, but how you log in can affect which ones are set as well.

To display an individual environment variable's value, you can use the printenv command, but not the env
command:

$ printenv HOME

/home/christine

$

$ env HOME

env: 'HOME': No such file or directory
$

You can also use the echo command to display a variable's value. When referencing an environment variable in this
case, you must place a dollar sign ($) before the environment variable name:

$ echo $HOME

/home/christine

$
Using the dollar sign along with the variable name does more than just display its current definition when used with
the echo command. The dollar sign before a variable name allows the variable to be passed as a parameter to various
other commands:

$ ls $HOME
Desktop Music NetworkManager.conf Templates
Doc.tar Music.tar OldDocuments test file
Documents my file Pictures test one
Downloads my scrapt Public test two
hlink test one my script really ridiculously long file name Videos
log file my scrypt slink test file
$

As mentioned earlier, global environment variables are also available to any process's subshells:
$ bash
$ ps -f
UID PID PPID C STIME TTY TIME CMD

christi+ 2770 2766 0 11:19 pts/0 00:00:00 -bash
christi+ 2981 2770 4 11:37 pts/0 00:00:00 bash
christi+ 3003 2981 0 11:37 pts/0 00:00:00 ps -f

$

$ echo $HOME

/home/christine

$ exit

exit

$
In this example, after spawning a subshell using the bash command, the HOME environment variable's current value is
shown. It is set to the exact same value, /home/christine, as it was in the parent shell.

Looking at local environment variables

Local environment variables, as their name implies, can be seen only in the local process in which they are defined.
Even though they are local, they are just as important as global environment variables. In fact, the Linux system also
defines standard local environment variables for you by default. However, you can also define your own local
variables. These, as you would assume, are called user-defined local variables.

Trying to see the local variables list is a little tricky at the CLI. Unfortunately, there isn't a command that displays
only these variables. The set command displays all variables defined for a specific process, including both local and
global environment variables as well as user-defined variables:

$ set
BASH=/bin/bash

[...]
HOME=/home/christine
[...]
PWD=/home/christine

SHELL=/bin/bash
TéAtioxtern
6éé§lchristine
£6i615=/home/christine/.dircolors
T¥TY?riable='Hello World'

command ()

{

[...]

$
All the global environment variables displayed using the env or printenv command appear in the set command's
output. The additional environment variables are the local environment and user-defined variables. Also included in

the set command's output are local shell functions, such as the command function listed in the previous display. Shell
functions are covered in Chapter 17, “Creating Functions.”

NOTE

The differences between the commands env , printenv , and set are subtle. The set command
displays global and local environment variables, user-defined variables, and local functions. It

also sorts the display alphabetically. The env and printenv are different from set in that they do
not sort the variables, nor do they include local environment variables, local user-defined
variables, or local shell functions. Used in this context, env and printenv produce duplicate
listings. However, the env command has additional functionality that printenv does not have,
making it the slightly more powerful command.

Setting User-Defined Variables

You can set your own variables directly from the Bash shell. This section shows you how to create your own variables
and reference them from an interactive shell or shell script program.

Setting local user-defined variables

After you start a Bash shell (or spawn a shell script), you're allowed to create local user-defined variables that are
visible within your shell process. You can assign either a numeric or a string value to an environment variable by
assigning the variable to a value using the equal sign:

$ my_variable=Hello
$ echo $my_variable
Hello

$

That was simple! Now, any time you need to reference the my_variable user-defined variable's value, just reference it
by the name $my variable.

If you need to assign a string value that contains spaces, you must use a single or double quotation mark to delineate
the beginning and the end of the string:

$ my_variable=Hello World

bash: World: command not found...
$

$ my_variable="Hello World"

$ echo $my_variable

Hello World

$

Without the quotation marks, the Bash shell assumes that the next word (World) is another command to process.
Notice that for the local variable you defined, you used lowercase letters, whereas the system environment variables
you've seen so far have all used uppercase letters.

TIP

The standard Bash shell convention is for all environment variables to use uppercase letters. If
you are creating a local variable for yourself and your own shell scripts, use lowercase letters.
Variables are case sensitive. By keeping your user-defined local variables lowercase, you avoid
the potential disaster of redefining a system environment variable.

It's extremely important that you not use spaces between the variable name, the equal sign, and the value. If you put
any spaces in the assignment, the Bash shell interprets the value as a separate command:

$ my_variable = "Hello World"
bash: my variable: command not found...
$

After you set a local variable, it's available for use anywhere within your shell process. However, if you spawn
another shell, it's not available in the child shell:

$ my_variable="Hello World"

$
$ bash
$ echo $my_variable

$ exit

exit

$ echo $my_variable
Hello World

$

In this example, a child shell was spawned via the bash command. The user-defined my variable was not available in
the child shell. This is demonstrated by the blank line returned after the echo $my variable command. After the
child shell was exited and returned to the original shell, the local variable was available.

Similarly, if you set a local variable in a child process, after you leave the child process, the local variable is no longer
available:

$ echo $my_child_variable

$ bash

$ my_child_variable="Hello Little World"
$ echo $my_child_variable

Hello Little World

$ exit

exit

$ echo $my_child_variable

$
The local variable set within the child shell doesn't exist after a return to the parent shell. You can change this

behavior by turning your local user-defined variable into a global variable.
Setting global environment variables

Global environment variables are visible from any child processes created by the parent process that sets the
variable. The method used to create a global environment variable is to first create a local variable and then export it
to the global environment.

This is done by using the export command and the variable name (minus the dollar sign):

$ my_variable="I am Global now"

A

export my_variable

$
$
$ echo $my_variable
I am Global now
$ bash

$ echo $my_variable
I am Global now
exit

exit

$ echo $my_variable
I am Global now

$

After defining and exporting the local variable my variable, a child shell was started by the bash command. The
child shell was able to properly display the my_variable variable's value. The variable kept its value, because the
export command made it global.

B3

TIP

To keep typing to a minimum, you can set the variable and export it all in one command. Using
the previous example, you would type export my_variable="I am Global Now" and press Enter at the
command line.

Changing a global environment variable within a child shell does not affect the variable's value in the parent shell:

$ export my_variable="I am Global now"
$ echo $my_variable
am Global now

echo $my_variable
am Global now
my_variable="Null"
$ echo $my_variable
Null

$ exit

exit

I
$
$ bash
$
I

B3

$ echo $my_variable

I am Global now

$
After defining and exporting the variable my variable, a subshell was started by the bash command. The subshell
properly displayed the value of the my_variable global environment variable. The variable's value was then changed
by the child shell. However, the variable's value was modified only within the child shell, and not in the parent's shell
environment.

A child shell cannot even use the export command to change the parent shell's global variable's value:

$ echo $my_variable

I am Global now

$

$ bash

$ export my_variable="Null"
$ echo $my_variable

Null

$ exit

exit

$ echo $my_variable
I am Global now

$

Even though the child shell redefined and exported the variable my variable, the parent shell's my variable variable
kept its original value.

Removing Environment Variables

Of course, if you can create a new environment variable, it makes sense that you can also remove an existing
environment variable. You can do this with the unset command. When referencing the environment variable in the
unset command, remember not to use the dollar sign:

my_variable="I am going to be removed"
echo $my_variable
am going to be removed

unset my_variable
echo $my_variable

A S A A H A A

TIP

It can be confusing to remember when to use and when not to use the dollar sign with
environment variables. Just remember this: If you are doing anything with the variable, use
the dollar sign. If you are doing anything to the variable, don’t use the dollar sign. The
exception to this rule is using printenv to display a variable's value.

When dealing with global environment variables, things get a little tricky. If you're in a child process and unset a
global environment variable, it applies only to the child process. The global environment variable is still available in
the parent process:

$ export my_variable="I am Global now"
$ echo $my_variable
am Global now

I
$
$ bash

$ echo $my_variable
I am Global now

$ unset my_variable
$ echo $my_variable

$ echo $my_variable
I am Global now
$

Just as with modifying a variable, you cannot unset it in a child shell and have the variable be unset in the parent's
shell.

Uncovering Default Shell Environment Variables

The Bash shell uses specific environment variables by default to define the system environment. You can always
count on these variables being set or available to be set on your Linux system. Because the Bash shell is a derivative
of the original Unix Bourne shell, it also includes environment variables originally defined in that shell.

Table 6-1 shows the environment variables that the Bash shell provides that are compatible with the original Unix
Bourne shell.

TABLE 6-1 The Bash Shell Bourne Variables

Variable Description

CDPATH A colon-separated list of directories used as a search path for the cd command

HOME The current user's home directory
IFS Alist of characters that separate fields used by the shell to split text strings
MAIL The filename for the current user's mailbox (the Bash shell checks this file for new mail)

MAILPATH A colon-separated list of multiple filenames for the current user's mailbox (the Bash shell checks each
file in this list for new mail)

OPTARG The value of the last option argument processed by the getopt command

OPTIND The index value of the last option argument processed by the getopt command

PATH A colon-separated list of directories where the shell looks for commands
PS1 The primary shell command-line interface's prompt string
PS2 The secondary shell command-line interface's prompt string

Besides the default Bourne environment variables, the Bash shell also provides several variables of its own, as shown
in Table 6-2.

TABLE 6-2 The Bash Shell Environment Variables

Variable Description

BASH The full pathname to execute the current instance of the Bash shell

BASH_ALIASES An associative array of currently set aliases

BASH_ARGC A variable array that contains the number of parameters being passed to a subroutine or
shell script

BASH_ARCV A variable array that contains the parameters being passed to a subroutine or shell script

BASH_ARCVO A variable that contains the name of either the shell or, if used within a script, the shell
script's name

BASH_CMDS An associative array of locations of commands the shell has executed

BASH_COMMAND The shell command currently being or about to be executed

BASH_COMPAT A value designating the shell's compatibility level

BASH_ENV When set, each Bash script attempts to execute a startup file defined by this variable before
running.

BASH_EXECUTION STRING The command(s) passed using the bash command's - ¢ option

BASH_LINENO A variable array containing the source code line number of the currently executing shell
function

BASH_LOADABLE PATH A colon-separated list of directories where the shell looks for dynamically loadable built-
ins

BASH_REMATCH A read-only variable array containing patterns and their sub-patterns for positive matches
using the regular expression comparison operator, =~

BASH_SOURCE A variable array containing the source code filename of the currently executing shell
function

BASH_SUBSHELL The current nesting level of a subshell environment (the initial value is 0)

BASH_VERSINFO A variable array that contains the individual major and minor version numbers of the
current instance of the Bash shell

BASH_VERSION The version number of the current instance of the Bash shell

BASH_XTRACEFD If set to a valid file descriptor (0,1,2), trace output generated from the 'set -x' debugging
option can be redirected. This is often used to separate trace output into a file.

BASHOPTS A list of Bash shell options that are currently enabled

BASHPID Process ID of the current Bash process

CHILD MAX A setting that controls the number of exited child status values for the shell to track

COLUMNS Contains the terminal width of the terminal used for the current instance of the Bash shell

COMP_CWORD An index into the variable COMP_WORDS , which contains the current cursor position

COMP_LINE The current command line

COMP_POINT The index of the current cursor position relative to the beginning of the current command

COMP_KEY The final key used to invoke the current completion of a shell function

COMP_TYPE

COMP_WORDBREAKS
COMP_WORDS
COMPREPLY
COPROC

DIRSTACK

EMACS
EPOCHREALTIME

EPOCHSECONDS

ENV

EUID
EXECIGNORE

FCEDIT
FIGNORE
FUNCNAME
FUNCNEST

GLOBIGNORE

GROUPS
histchars
HISTCMD
HISTCONTROL
HISTFILE
HISTFILESIZE
HISTIGNORE

HISTSIZE
HISTTIMEFORMAT

HOSTFILE

HOSTNAME
HOSTTYPE
IGNOREEOF

INPUTRC
INSIDE_EMACS

LANG
LC ALL
LC_COLLATE
LC_CTYPE

LC_MESSAGES

LC_NUMERIC
LC_TIME
LINENO

An integer value representing the type of completion attempted that caused a completion
shell function to be invoked

The Readline library word separator characters for performing word completion

An array variable that contains the individual words on the current command line

An array variable that contains the possible completion codes generated by a shell function
An array variable that holds an unnamed coprocess's I/O file descriptors

An array variable that contains the current contents of the directory stack

Indicates the emacs shell buffer is executing and line editing is disabled, when set to 't*

Contains the number of seconds since the Unix Epoch (00:00:00 UTC on 1 January 1970)
with micro-seconds included

Contains the number of seconds since the Unix Epoch (00:00:00 UTC on 1 January 1970)
without micro-seconds

When set, executes the startup file defined before a Bash shell script runs (it is used only
when the Bash shell has been invoked in POSIX mode)

The numeric effective user ID of the current user

A colon-separated list of filters that determine executable files to ignore (such as shared
library files), when employing PATH in a search

The default editor used by the fc command
A colon-separated list of suffixes to ignore when performing filename completion
The name of the currently executing shell function

Sets the maximum allowed function nesting level, when set to a number greater than o (if
it is exceeded, the current command aborts)

A colon-separated list of patterns defining the set of filenames to be ignored by filename
expansion

A variable array containing the list of groups of which the current user is a member
Up to three characters, which control history expansion

The history number of the current command

Controls what commands are entered in the shell history list

The name of the file in which to save the shell history list (.bash_history by default)
The maximum number of lines to save in the history file

A colon-separated list of patterns used to decide which commands are ignored for the
history file

The maximum number of commands stored in the history file

Used as a formatting string to print each command's time stamp in Bash history, if set and
not null

Contains the name of the file that should be read when the shell needs to complete a
hostname

The name of the current host
A string describing the machine the Bash shell is running on

The number of consecutive EOF characters the shell must receive before exiting (if this
value doesn't exist, the default is 1)

The name of the Readline initialization file (the default is . inputrc)

Set only when process is running in an Emacs editor shell buffer and can disable line
editing (disablement of line editing also depends on the value in the TERM variable)

The locale category for the shell
Overrides the LANG variable, defining a locale category
Sets the collation order used when sorting string values

Determines the interpretation of characters used in filename expansion and pattern
matching

Determines the locale setting used when interpreting double-quoted strings preceded by a
dollar sign

Determines the locale setting used when formatting numbers
Determines the locale setting used when formatting data and time

The line number in a script currently executing

LINES
MACHTYPE
MAILCHECK
MAPFILE

OLDPWD
OPTERR
O0STYPE
PIPESTATUS

POSIXLY_CORRECT
PPID
PROMPT_COMMAND
PROMPT_DIRTRIM

PSO

PS3
PS4
PWD
RANDOM

READLINE LINE
READLINE POINT
REPLY

SECONDS

SHELL
SHELLOPTS
SHLVL
TIMEFORMAT
TMOUT

TMPDIR
UID

Defines the number of lines available on the terminal
A string defining the system type in cpu-company-system format
How often (in seconds) the shell should check for new mail (the default is 60)

An array variable that holds read-in text from the mapfile command when no array
variable name is given

The previous working directory used in the shell
If set to 1, the Bash shell displays errors generated by the getopts command.
A string defining the operating system the shell is running on

A variable array containing a list of exit status values from the processes in the foreground
process

If set, Bash starts in POSIX mode.
The process ID (PID) of the Bash shell's parent process
If set, the command to execute before displaying the primary prompt

An integer used to indicate the number of trailing directory names to display when using
the \w and \W prompt string escapes (the directory names removed are replaced with one
set of ellipses)

If set, contents are displayed by the interactive shell after the command is entered but
before command is executed.

The prompt to use for the select command
The prompt displayed before the command line is echoed if the Bash -x parameter is used
The current working directory

Returns a random number between 0 and 32767 (assigning a value to this variable seeds
the pseudo-random number generator)

Readline buffer contents when using bind -x command
Readline buffer content insertion point's current position when using bind -x command
The default variable for the read command

The number of seconds since the shell was started (assigning a value resets the timer to the
value)

The full pathname to the Bash shell

A colon-separated list of enabled Bash shell options

Indicates the shell level, incremented by one each time a new Bash shell is started
A format specifying how the shell displays time values

The value of how long (in seconds) the select and read commands should wait for input
(the default of 0 indicates to wait indefinitely)

Directory name where the Bash shell creates temporary files for its use
The numeric real user ID of the current user

You may notice that not all default environment variables are shown when the set command is used. When not in
use, a default environment variable is not required to contain a value.

NOTE

Whether or not a default environment variable is in use on your system sometimes depends on
the version of the Bash shell running. For example, EPOCHREALTIME is only available on Bash shell
version 5 and above. You can view your Bash shell's version number by typing bash --version
and pressing Enter at the CLI.

Setting the PATH Environment Variable

When you enter an external command (see Chapter 5, “Understanding the Shell”) in the shell CLI, the shell must
search the system to find the program. The PATH environment variable defines the directories it searches looking for
commands and programs. On this Ubuntu Linux system, the PATH environment variable looks like this:

$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:
/sbin:/bin:/usr/games:/usr/local/games:/snap/bin

$

The directories in the PATH are separated by colons. And this shows that there are nine directories where the shell
looks for commands and programs.

If a command's or program's location is not included in the PATH variable, the shell cannot find it without an absolute
directory reference. If the shell cannot find the command or program, it produces an error message:

$ myprog
myprog: command not found

The problem is that sometimes applications place their executable programs in directories that aren't in the PATH
environment variable. The trick is to ensure your PATH environment variable includes all the directories where your
applications reside.

NOTE

Some script builders use the env command as the first line in a Bash shell script (covered in
Chapter 11, “Basic Script Building”) as in the following: #! /usr/bin/env bash . The advantage of
this method is that the env utility searches for the bash shell program within the $PATH
directories, making the script more portable to other Linux distributions.

You can add new search directories to the existing PATH environment variable without having to rebuild it from
scratch. The individual directories listed in the PATH are separated by colons. All you need to do is reference the
original PATH value, add a colon (:), and type in the new directory using an absolute directory reference. On a CentOS
Linux system, it looks something like this:

$ ls /home/christine/Scripts/

myprog
$ echo $PATH
/home/christine/.local/bin:/home/christine/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin

$

$ PATH=$PATH:/home/christine/Scripts
$

$ myprog

The factorial of 5 is 120

$

By adding the directory to the PATH environment variable, you can now execute your program from anywhere in the
virtual directory structure:

$ cd /etc

$ myprog

The factorial of 5 is 120
$

TIP

If you want your program's location to be available to subshells, be sure to export your
modified PATH environment variable.

Changes to the PATH variable last only until you exit the system or the system reboots. The changes are not
persistent. In the next section, you see how you can make changes to environment variables permanent.

Locating System Environment Variables

The Linux system uses environment variables for many purposes. You know now how to modify system
environment variables and create your own variables. The trick is in how these environment variables are made
persistent.

When you start a Bash shell by logging into the Linux system, by default Bash checks several files for commands.
These files are called startup files or environment files. Which startup files Bash processes depends on the method
you use to start the Bash shell. You can start a Bash shell in three ways:

= As a default login shell at login time
= As an interactive shell that is started by spawning a subshell
= As a noninteractive shell to run a script

The following sections describe the startup files the Bash shell executes in each of these startup methods.

Understanding the login shell process

When you log into the Linux system, the Bash shell starts as a login shell. The login shell typically looks for five
different startup files to process commands from:

m /etc/profile

® ¢HOME/.bash profile
® $HOME/.bashrc

® $HOME/.bash login

® $HOME/.profile

The /etc/profile file is the main default startup file for the Bash shell on the system. All users on the system execute
this startup file when they log in.

NOTE

Be aware that some Linux distributions use pluggable authentication modules (PAM). In this
case, before the Bash shell is started, PAM files are processed, including ones that may contain
environment variables. PAM file examples include the /etc/environment file and the

$HOME/ . pam_environment file. Find more information about PAM at www. linux-pam.org.

The other four startup files are specific for each user, located in the home ($HOME) directory, and can be customized
for an individual user's requirements. Let's look more closely at these files.

Viewing the /etc/profile file

The /etc/profile file is the main default startup file for the Bash shell. Whenever you log into the Linux system,
Bash executes the commands in the /etc/profile startup file first. Different Linux distributions place different
commands in this file. On this Ubuntu Linux system, the file looks like this:

$ cat /etc/profile
/etc/profile: system-wide .profile file for the Bourne shell (sh(1))
and Bourne compatible shells (bash(1l), ksh(1l), ash(1l), ...).

if ["${PS1-}" 1; then
if ["${BASH-}" 1 && "$BASH" != "/bin/sh" 1; then
The file bash.bashrc already sets the default PS1.
PS1="\h:\w\$ '
if [-f /etc/bash.bashrc 1; then
. /etc/bash.bashrc
fi
else
if [""id -u™" -eq 0 1; then
PS1="# "'
else
pPS1='$ '
fi
fi
fi

if [-d /etc/profile.d]; then
for 1 in /etc/profile.d/*.sh; do
if [-r $1 1; then
L%
fi
done
unset i
fi
$
Most of the commands and syntax you see in this file are covered in more detail in Chapter 12, “Using Structure
Commands,” and later chapters. Each distribution's /etc/profile file has different settings and commands. For
example, notice that a file is mentioned in this Ubuntu distribution's /etc/profile file, called /etc/bash.bashrc . It
contains system environment variables.

However, in this next CentOS distribution's /etc/profile file listed, no /etc/bash.bashrc file is called. Also note that
it sets and exports some system environment variables (HISTSIZE ; HOSTNAME) within itself:

$ cat /etc/profile
/etc/profile

System wide environment and startup programs, for login setup
Functions and aliases go in /etc/bashrc

#
#
#
It's NOT a good idea to change this file unless you know what you
are doing. It's much better to create a custom.sh shell script in
/etc/profile.d/ to make custom changes to your environment, as this
will prevent the need for merging in future updates.
pathmunge () {

case ":${PATH}:" in

:u$1u :)

*)
if ["$2" = "after"] ; then
PATH=$PATH: $1
else
PATH=$1: $PATH
fi
esac

if [-x /usr/bin/id]; then
if [-z "$EUID"]; then
ksh workaround
EUID="id -u’
UID="id -ru’
fi
USER=""id -un™"
LOGNAME=$USER
MAIL="/var/spool/mail/$USER"
fi

Path manipulation

if ["$EUID" = "0"]; then
pathmunge /usr/sbin
pathmunge /usr/local/sbin

else
pathmunge /usr/local/sbin after
pathmunge /usr/sbin after

fi

HOSTNAME="/usr/bin/hostname 2>/dev/null’
HISTSIZE=1000
if ["$HISTCONTROL" = "ignorespace"] ; then
export HISTCONTROL=ignoreboth
else
export HISTCONTROL=ignoredups
fi

export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE HISTCONTROL

By default, we want umask to get set. This sets it for login shell
Current threshold for system reserved uid/gids is 200
You could check uidgid reservation validity in
/usr/share/doc/setup-*/uidgid file
if [$UID -gt 199] && "“id -gn™" = ""id -un™"]; then
umask 002
else
umask 022
fi

for i in /etc/profile.d/*.sh /etc/profile.d/sh.local ; do
if [-r "$i" 1; then

if ["${-#xi}" '= "$-"]; then
.O'eit
else
"$i">/dev/null
fi
fi

done
unset i

unset -f pathmunge

if [-n "${BASH VERSION-}"] ; then
if [-f /etc/bashrc] ; then
Bash login shells run only /etc/profile
Bash non-login shells run only /etc/bashrc
Check for double sourcing is done in /etc/bashrc.
. /etc/bashrc
fi
fi
$
Both distributions' /etc/profile files use a certain feature. It is a for statement that iterates through any files
located in the /etc/profile.d directory. (for statements are discussed in detail in Chapter 13, “More Structured
Commands.”) This provides a place for the Linux system to place application-specific and/or administrator-
customized startup files that are executed by the shell when you log in. On this Ubuntu Linux system, the following
files are in the /etc/profile.d directory:

$ 1s /etc/profile.d

01-locale-fix.sh bash completion.sh gawk.csh Z97-byobu.sh
apps-bin-path.sh cedilla-portuguese.sh gawk.sh
$

You can see that this CentOS system has quite a few more files in /etc/profile.d:

$ 1s /etc/profile.d

bash _completion.sh colorxzgrep.csh flatpak.sh Tless.csh vim.sh
colorgrep.csh colorxzgrep.sh gawk.csh less.sh vte.sh
colorgrep.sh colorzgrep.csh gawk.sh PackageKit.sh which2.csh
colorls.csh colorzgrep.sh lang.csh sh.local which2.sh
colorls.sh csh.local lang.sh vim.csh

$

Notice that several files are related to specific applications on the system. Most applications create two startup files
— one for the Bash shell (using the . sh extension) and one for the C shell (using the .csh extension).
Viewing the $HOME startup files

The remaining startup files are all used for the same function — to provide a user-specific startup file for defining
user-specific environment variables. Most Linux distributions use only one or two of these four startup files:

® $HOME/.bash _profile
® $HOME/.bashrc

® $HOME/.bash login
® $HOME/.profile

Notice that all four files start with a dot, making them hidden files (they don't appear in a normal 1s command
listing). Because they are in the user's $HOME directory, each user can edit the files and add their own environment
variables that are active for every Bash shell session they start.

NOTE

Environment files are one area where Linux distributions vary greatly. Not every $HOME file
listed in this section exists for every user. For example, some users may have only the
$HOME/ .bash_profile file. This is normal.

The first file found in the following ordered list is run, and the rest are ignored:
$HOME/ .bash profile
$HOME/ .bash _login
$HOME/ .profile

Notice that $HOME/ . bashrc is not in this list. This is because it is typically run from one of the other files.

TIP

Remember that $HOME represents a user's home directory. Also, the tilde (~) is used to represent
a user's home directory.

This CentOS Linux system contains the following in the .bash profile file:

$ cat $HOME/.bash_profile
.bash_profile

Get the aliases and functions
if [-f ~/.bashrc]; then

. ~/.bashrc
fi

User specific environment and startup programs

The .bash_profile startup file first checks to see if the startup file, .bashrc, is present in the $ HOME directory. If it's
there, the startup file executes the commands in it.

Understanding the interactive shell process

If you start a Bash shell without logging into a system (if you just type bash at a CLI prompt, for example), you start
what's called an interactive shell. The interactive shell, like the login shell, provides a CLI prompt for you to enter
commands.

If Bash is started as an interactive shell, it doesn't process the /etc/profile file. Instead, it checks only for the
.bashrc file in the user's $ HOME directory.

On this Linux CentOS distribution, the file looks like this:

$ cat $HOME/.bashrc
.bashrc

Source global definitions
if [-f /etc/bashrc 1; then

. /etc/bashrc
fi

User specific environment

PATH="$HOME/.local/bin:$HOME/bin: $PATH"

export PATH

Uncomment the following line if you don't like systemctl's auto-paging feature:
export SYSTEMD_PAGER=

User specific aliases and functions

$

The .bashrc file does two things. First, it checks for a common bashrc file in the /etc directory. Second, it provides a
place for the user to enter personal command aliases (discussed in Chapter 5) and script functions (described in

Chapter 17).

Understanding the noninteractive shell process

The last type of shell is a noninteractive subshell. This is the shell where the system can start to execute a shell
script. This is different in that there isn't a CLI prompt to worry about. However, you may want to run specific
startup commands each time you start a script on your system.

TIP

Scripts can be executed in different ways. Only some execution methods start a subshell. You'll
learn about the different shell execution methods in Chapter 11.

To accommodate that situation, the Bash shell provides the BASH_ENV environment variable. When the shell starts a
noninteractive subshell process, it checks this environment variable for the startup file name to execute. If one is
present, the shell executes the file's commands, which typically include variables set for the shell scripts.

On this CentOS Linux distribution, this environment value is not set by default. When a variable is not set, the
printenv command simply returns the CLI prompt:

$ printenv BASH_ENV
$

On this Ubuntu distribution, the BASH_ENV variable isn't set either. Remember that, when a variable is not set, the
echo command displays a blank line and returns the CLI prompt:

$ echo $BASH_ENV

$

So if the BASH_ENV variable isn't set, how do the shell scripts get their environment variables? Remember that some
shell script execution methods start a subshell, also called a child shell (see Chapter 5). A child shell inherits its
parent shell's exported variables.

For example, if the parent shell was a login shell and had variables set and exported in the /etc/profile file,
/etc/profile.d/*.sh files, and the $HOME/ .bashrc file, the child shell for the script inherits these exported variables.

TIP

Any variables set, but not exported, by the parent shell are local variables. Local variables are
not inherited by a subshell.

For scripts that do not start a subshell, the variables are already available in the current shell. Thus, even if BASH ENV
is not set, both the current shell's local and global variables are present to be used.

Making environment variables persistent

Now that you know your way around the various shell process types and their various environment files, locating the
permanent environment variables is much easier. You can also set your own permanent global or local variables
using these files.

For global environment variables (those variables needed by all the users on a Linux system), it may be tempting to
put new or modified variable settings in /etc/profile, but this is a bad idea. The file could be changed when your
distribution is upgraded, and you would lose all the customized variable settings.

It is a better idea to create a file ending with .sh in the /etc/profile.d/ directory. In that file, place all your new or
modified global environment variable settings.

On most distributions, the best place to store an individual user's persistent Bash shell variables is in the
$HOME/ . bashrc file. This is true for all shell process types. However, if the BASH_ENV variable is set, keep in mind that
unless it points to $HOME/ . bashrc , you may need to store a user's variables for noninteractive shell types elsewhere.

NOTE

User environment variables for graphical interface elements, such as the GUI client, may need
to be set in different configuration files than where Bash shell environment variables are set.

Recall from Chapter 5 that the command alias settings are also not persistent. You can also store your personal
alias settings in the $HOME/ .bashrc startup file to make them permanent.

Learning about Variable Arrays

A really cool feature of environment variables is that they can be used as arrays. An array is a variable that can hold
multiple values. Values can be referenced either individually or as a whole for the entire array.

To set multiple values for an environment variable, just list them in parentheses, with values separated by spaces:

$ mytest=(zero one two three four)

Not much excitement there. If you try to display the array as a normal environment variable, you'll be disappointed:

$ echo $mytest
zero

$
Only the first value in the array appears. To reference an individual array element, you must use a numerical index

value, which represents its place in the array. The numeric value is enclosed in square brackets, and everything after
the dollar sign is encased by curly brackets:

$ echo ${mytest[2]}
two

$

TIP

Environment variable arrays start with an index value of 0. This can be confusing.

To display an entire array variable, you use the asterisk wildcard character as the index value:

$ echo ${mytest[*]}
zero one two three four

$
You can also change the value of an individual index position:

$ mytest[2]=seven
$ echo ${mytest[2]}
seven

$

You can even use the unset command to remove an individual value within the array, but be careful, because this
gets tricky. Consider this example:

$ unset mytest[2]
$ echo ${mytest[*]}
zero one three four

$
$ echo ${mytest[2]}

$ echo ${mytest[3]}
three

$

This example uses the unset command to remove the value at index value 2. When you display the array, it appears
that the other index values just dropped down one. However, if you specifically display the data at index value 2, you
see that that location is empty.

You can remove the entire array just by using the array name in the unset command:

$ unset mytest
$ echo ${mytest[*]}

$

Sometimes variable arrays just complicate matters, so they're often not used in shell script programming. They're
not very portable to other shell environments, which is a downside if you do lots of shell programming for different
shells. Some Bash system environment variables use arrays (such as BASH_VERSINF0), but overall you probably won't
run into them very often.

Summary

This chapter examined the world of Linux environment variables. Global environment variables can be accessed
from any child shell spawned by the parent shell in which they're defined. Local environment variables can be
accessed only from the process in which they're defined.

The Linux system uses both global and local environment variables to store information about the system
environment. You can access this information from the shell command-line interface, as well as within shell scripts.
The Bash shell uses the system environment variables defined in the original Unix Bourne shell, as well as lots of
new environment variables. The PATH environment variable defines the search pattern the Bash shell takes to find an
executable command. You can modify the PATH environment variable to add your own directories.

You can also create global and local environment variables for your own use. After you create an environment
variable, it's accessible for the entire duration of your shell session.

The Bash shell executes several startup files when it starts up. These startup files can contain environment variable
definitions to set standard environment variables for each Bash session. When you log into the Linux system, the
Bash shell accesses the /etc/profile startup file and local startup files for each user. Users can customize these files
to include environment variables and startup scripts for their own use.

Finally, we discussed the use of environment variable arrays. These environment variables can contain multiple
values in a single variable. You can access the values either individually by referencing an index value or as a whole
by referencing the entire environment variable array name.

The next chapter dives into the world of Linux file permissions. This is possibly the most difficult topic for novice
Linux users. However, to write good shell scripts, you need to understand how file permissions work and be able to
use them on your Linux system.

CHAPTER 7
Understanding Linux File Permissions

IN THIS CHAPTER
Understanding Linux security
Decoding the permissions

Working with Linux groups

No system is complete without some form of security. A mechanism must be available to protect files from
unauthorized viewing or modification. The Linux system follows the Unix method of file permissions, allowing
individual users and groups access to files based on a set of security settings for each file and directory. This chapter
discusses how to use the Linux file security system to protect data when necessary and share data when desired.

Exploring Linux Security

The core of the Linux security system is the user account. Each individual who accesses a Linux system should have
a unique user account assigned. What permissions users have to objects on the system depends on the user account
they log in with.

User permissions are tracked using a user ID (often called a UID), which is assigned to an account when it's created.
The UID is a numerical value, unique for each user. However, you don't log into a Linux system using your UID.
Instead, you use a login name. The login name is an alphanumeric text string of eight characters or fewer that the
user uses to log into the system (along with an associated password).

The Linux system uses special files and utilities to track and manage user accounts on the system. Before we can
discuss file permissions, we need to examine how Linux handles user accounts. This section describes the files and
utilities required for user accounts so that you can understand how to use them when working with file permissions.

The /etc/passwd file

The Linux system uses a special file to match the login name to a corresponding UID value. This file is the
/etc/passwd file. The /etc/passwd file contains several pieces of information about the user. Here's what a typical
/etc/passwd file looks like on a Linux system:

$ cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:1p:/var/spool/1lpd:/sbin/nologin
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt

rich:x:500:500:Rich Blum:/home/rich:/bin/bash
mama:x:501:501:Mama: /home/mama:/bin/bash
katie:x:502:502:katie:/home/katie:/bin/bash
jessica:x:503:503:Jessica:/home/jessica:/bin/bash
mysql:x:27:27:MySQL Server:/var/lib/mysql:/bin/bash
$

The list can be very long, so we've truncated the file from our system. The root user account is the administrator for
the Linux system and is always assigned UID 0. As you can see, the Linux system creates lots of user accounts for
various functions that aren't actual users. These are called system accounts. A system account is a special account
that services running on the system use to gain access to resources on the system. All services that run in
background mode need to be logged into the Linux system under a system user account.

Before security became a big issue, these services often just logged in using the root user account. Unfortunately, if
an unauthorized person broke into one of these services, they instantly gained access to the system as the root user.
To prevent this, now just about every service that runs in the background on a Linux server has its own user account
to log in with. This way, if a troublemaker does compromise a service, they still can't necessarily get access to the
whole system.

Linux reserves UIDs below 500 for system accounts. Some services even require specific UIDs to work properly.
When you create accounts for normal users, most Linux systems assign the first available UID starting at 500
(although this is not necessarily true for all Linux distributions, such as Ubuntu, which starts at 1000).

You probably noticed that the /etc/passwd file contains lots more than just the login name and UID for the user. The
fields of the /etc/passwd file contain the following information:

= The login username

= The password for the user

The numerical UID of the user account

The numerical group ID (GID) of the user's primary group

A text description of the user account (called the comment field)

The location of the $HOME directory for the user
The default shell for the user

The password field in the /etc/passwd file is set to an x. This doesn't mean that all the user accounts have the same
password. In the old days of Linux, the /etc/passwd file contained an encrypted version of the user's password.
However, since lots of programs need to access the /etc/passwd file for user information, this became somewhat of a
security problem. With the advent of software that could easily decrypt encrypted passwords, the bad folks had a
field day trying to break user passwords stored in the /etc/passwd file. Linux developers needed to rethink that
policy.

Now, most Linux systems hold user passwords in a separate file (called the shadow file, located at /etc/shadow).
Only special programs (such as the login program) are allowed access to this file.

As you can see, the /etc/passwd file is a standard text file. You can use any text editor to manually perform user
management functions (such as adding, modifying, or removing user accounts) directly in the /etc/passwd file.
However, this is an extremely dangerous practice. If the /etc/passwd file becomes corrupted, the system won't be
able to read it, and it will prevent anyone (even the root user) from logging in. Instead, it's safer to use the standard
Linux user management utilities to perform all user management functions.

The /etc/shadow file

The /etc/shadow file provides more control over how the Linux system manages passwords. Only the root user has
access to the /etc/shadow file, making it more secure than the /etc/passwd file.

The /etc/shadow file contains one record for each user account on the system. A record looks like this:
rich:1.FfcKOns$f1lUgiyHQ25wrB/hykCn020:11627:0:99999:7:::

Each /etc/shadow file record includes nine fields:

= The login name corresponding to the login name in the /etc/passwd file

® The encrypted password

» The day the password was last changed, depicted as the number of days since January 1, 1970

® The minimum number of days before the password can be changed

= The number of days before the password must be changed

= The number of days before password expiration that the user is warned to change the password

= The number of days after a password expires before the account will be disabled

= The date (stored as the number of days since January 1, 1970) since the user account was disabled

= A field reserved for future use
Using the shadow password system, the Linux system has much finer control over user passwords. It can control
how often a user must change their password and when to disable the account if the password hasn't been changed.
Adding a new user

The primary tool used to add new users to your Linux system is useradd . This command provides an easy way to
create a new user account and set up the user's $HOME directory structure all at once. The useradd command uses a
combination of system default values and command-line parameters to define a user account. To see the system
default values used on your Linux distribution, enter the useradd command with the -b parameter:

useradd -D
GROUP=100

HOME=/home
INACTIVE=-1

EXPIRE=
SHELL=/bin/bash
SKEL=/etc/skel
CREATE_MAIL SPOOL=yes
#

NOTE

The default values for the useradd command are set using the /etc/default/useradd file. Also,
further security settings are defined in the /etc/login.defs file. You can tweak these files to
change the default security behavior on your Linux system.

The -D parameter shows what defaults the useradd command uses if you don't specify them in the command line

when creating a new user account. This example shows the following default values:
® The new user will be added to a common group with group ID 100.
= The new user will have a HOME account created in the directory /home/ loginname.
® The account will not be disabled when the password expires.
= The new account will not be set to expire at a set date.
= The new account will use the bash shell as the default shell.
= The system will copy the contents of the /etc/skel directory to the user's $HOME directory.
= The system will create a file in the mail directory for the user account to receive mail.

The useradd command allows an administrator to create a default $HOME directory configuration and then uses that
as a template to create the new user's $HOME directory. This allows you to place default files for the system in every
new user's $HOME directory automatically. In the Ubuntu Linux system, the /etc/skel directory has the following
files:

$ s -al /etc/skel

total 32

drwxr-xr-x 2 root root 4096 2010-04-29 08:26 .
drwxr-xr-x 135 root root 12288 2010-09-23 18:49

-rwW-r--r-- 1 root root 220 2010-04-18 21:51 .bash logout
-rW-r--r-- 1 root root 3103 2010-04-18 21:51 .bashrc
-rw-r--r-- 1 root root 179 2010-03-26 08:31 examples.desktop
-rw-r--r-- 1 root root 675 2010-04-18 21:51 .profile

$

You should recognize these files from Chapter 6, “Using Linux Environment Variables.” These are the standard
startup files for the Bash shell environment. The system automatically copies these default files into every user's
$HOME directory you create.

You can test this by creating a new user account using the default system parameters and then looking at the $HOME
directory for the new user:

useradd -m test
ls -al /home/test

total 24

drwxr-xr-x 2 test test 4096 2010-09-23 19:01 .

drwxr-xr-x 4 root root 4096 2010-09-23 19:01 ..

-rw-r--r-- 1 test test 220 2010-04-18 21:51 .bash logout

-rw-r--r-- 1 test test 3103 2010-04-18 21:51 .bashrc

-rw-r--r-- 1 test test 179 2010-03-26 08:31 examples.desktop
1

-rwW-r--r--
#

test test 675 2010-04-18 21:51 .profile

For many Linux distributions the useradd command doesn't create a $HOME directory by default, but the —m
command-line option tells it to create the $HOME directory. You can change that behavior within the /etc/login.defs
file. As you can see in the example, the useradd command created the new $HOME directory, using the files contained
in the /etc/skel directory.

NOTE

To run the user account administration commands in this chapter, you need to either be logged
in as the special root user account or use the sudo command to run the commands as the root
user account.

If you want to override a default value or behavior when creating a new user, you can do that with command-line
parameters. These are shown in Table 7-1.

TABLE 7-1 The useradd Command-Line Parameters

Parameter Description
-c comment Add text to the new user's comment field.
-d home dir |Specify a different name for the home directory other than the login name.

-e Specify a date, in YYYY-MM-DD format, when the account will expire.
expire date

-f Specify the number of days after a password expires when the account will be disabled. A value of 0
inactive_days disables the account as soon as the password expires; a value of -1 disables this feature.

-g Specify the group name or GID of the user's login group.

initial group

-Ggroup . . Specify one or more supplementary groups the user belongs to.

-k Copy the /etc/skel directory contents into the user's $HOME directory (must use -m as well).
-m Create the user's $HOME directory.

-M Don't create a user's $HOME directory (used if the default setting is to create one).

-n Create a new group using the same name as the user's login name.

-r Create a system account.

-p passwd Specify a default password for the user account.

-s shell Specify the default login shell.

-uuid Specify a unique UID for the account.

As you can see, you can override all the system default values when creating a new user account just by using
command-line parameters. However, if you find yourself having to override a value all the time, it's easier to just
change the system default value.

You can change the system default new user values by using the -D parameter, along with a parameter representing
the value you need to change. These parameters are shown in Table 7-2.

TABLE 7-2 The useradd Change Default Values Parameters
Parameter Description

-b default _home Change the location where users' home directories are created.

-e expiration date Change the expiration date on new accounts.

-f inactive Change the number of days after a password has expired before the account is disabled.
-g group Change the default group name or GID used.
-s shell Change the default login shell.

Changing the default values is a snap:

useradd -D -s /bin/tsch
useradd -D

GROUP=100

HOME=/home

INACTIVE=-1

EXPIRE=

SHELL=/bin/tsch
SKEL=/etc/skel
CREATE_MAIL SPOOL=yes

#

Now, the useradd command will use the tsch shell as the default login shell for all new user accounts you create.

Removing a user

If you want to remove a user from the system, the userdel command is what you need. By default, the userdel
command removes only the user information from the /etc/passwd and /etc/shadow files. It doesn't remove any files
the account owns on the system.

If you use the - r parameter, userdel will remove the user's $HOME directory, along with the user's mail directory.
However, there may still be other files owned by the deleted user account on the system. This can be a problem in
some environments.

Here's an example of using the userdel command to remove an existing user account:
userdel -r test

1ls -al /home/test
1s: cannot access /home/test: No such file or directory
#

After using the - r parameter, the user's old /home/test directory no longer exists.

CAUTION

Be careful when using the -r parameter in an environment with lots of users. You never know
if a user had important files stored in their $HOME directory that are used by someone else or
another program. Always check before removing a user's $HOME directory!

Modifying a user
Linux provides a few utilities for modifying the information for existing user accounts. Table 7-3 shows these
utilities.
TABLE 7-3 User Account Modification Utilities
Command Description
usermod Edits user account fields, and specifies primary and secondary group membership
passwd Changes the password for an existing user

chpasswd Reads a file of login name and password pairs, and updates the passwords

chage Changes the password's expiration date
chfn Changes the user account's comment information
chsh Changes the user account's default shell

Each utility provides a specific function for changing information about user accounts. The following sections
describe each of these utilities.

usermod

The usermod command is the most robust of the user account modification utilities. It provides options for changing
most of the fields in the /etc/passwd file. To do that, you just need to use the command-line parameter that
corresponds to the value you want to change. The parameters are mostly the same as the useradd parameters (such
as -c to change the comment field, -e to change the expiration date, and -g to change the default login group).
However, a few additional parameters might come in handy:

= -1 to change the login name of the user account
® .| tolock the account so the user can't log in
= _p to change the password for the account
= -Uto unlock the account so that the user can log in
The -L parameter is especially handy. Use it to lock an account so that a user can't log in without having to remove
the account and the user's data. To return the account to normal, just use the -U parameter.
passwd and chpasswd
A quick way to change just the password for a user is the passwd command:

passwd test
Changing password for user test.
New UNIX password:
Retype new UNIX password:
passwd: all authentication tokens updated successfully.
#
If you just use the passwd command by itself, it will change your own password. Any user in the system can change

their own password, but only the root user can change someone else's password.

The -e option is a handy way to force a user to change the password on the next login. This allows you to set the
user's password to a simple value and then force them to change it to something harder that they can remember.

If you ever need to do a mass password change for lots of users on the system, the chpasswd command can be a
lifesaver. The chpasswd command reads a list of login name and password pairs (colon-separated) from the standard
input, automatically encrypts the password, and sets it for the user account. You can also use the redirection
command to redirect a file of username: password pairs into the command:

chpasswd < users.txt
#

chsh, chfn, and chage

The chsh, chfn, and chage utilities are used for specific account modification functions. The chsh command allows
you to quickly change the default login shell for a user. You must use the full pathname for the shell and not just the
shell name:

chsh -s /bin/csh test
Changing shell for test.
Shell changed.

#

The chfn command provides a standard method for storing information in the comments field in the /etc/passwd
file. Instead of just inserting random text, such as names or nicknames, or even just leaving the comment field
blank, the chfn command uses specific information used in the Unix finger command to store information in the
comment field. The finger command allows you to easily find information about people on your Linux system:

finger rich

Login: rich Name: Rich Blum
Directory: /home/rich Shell: /bin/bash
On since Thu Sep 20 18:03 (EDT) on pts/0 from 192.168.1.2
No mail.

No Plan.

#

NOTE

Because of security concerns, most Linux distributions don't install the finger command by
default. Be aware that installing it may open your system to attack vulnerabilities.

If you use the chfn command with no parameters, it queries you for the appropriate values to enter in the comment
field:

chfn test

Changing finger information for test.
Name []: Ima Test

Office []: Director of Technology
0ffice Phone []: (123)555-1234

Home Phone []: (123)555-9876

Finger information changed.
finger test

Login: test Name: Ima Test
Directory: /home/test Shell: /bin/csh
Office: Director of Technology 0ffice Phone: (123)555-1234

Home Phone: (123)555-9876
Never logged in.

No mail.

No Plan.

#

If you now check the entry in the /etc/passwd file, it looks like this:

grep test /etc/passwd
test:x:504:504:Ima Test,Director of Technology, (123)555-
1234, (123)555-9876: /home/test:/bin/csh
#
All of the finger information is neatly stored away in the /etc/passwd file entry.

Finally, the chage command helps you manage the password aging process for user accounts. There are several
parameters to set individual values, as shown in Table 7-4.

TABLE 7-4 The chage Command Parameters

Parameter Description

-d Set the number of days since the password was last changed.

-E Set the date the password will expire.

-1 Set the number of days of inactivity after the password expires to lock the account.
-m Set the minimum number of days between password changes.

-M Set the maximum number of days the password is valid.

-W Set the number of days before the password expires that a warning message appears.

The chage date values can be expressed using one of two methods:
= A date in YYYY-MM-DD format
= A numerical value representing the number of days since January 1, 1970

One neat feature of the chage command is that it allows you to set an expiration date for an account. Using this
feature, you can create temporary user accounts that automatically expire on a set date, without your having to
remember to delete them! Expired accounts are similar to locked accounts. The account still exists, but the user can't
log in with it.

Using Linux Groups

User accounts are great for controlling security for individual users, but they aren't so good at allowing groups of
users to share resources. To accomplish this, the Linux system uses another security concept, called groups.

Group permissions allow multiple users to share a common set of permissions for an object on the system, such as a
file, directory, or device (more on that later in the “Decoding File Permissions” section).

Linux distributions differ somewhat on how they handle default group memberships. Some Linux distributions
create just one group that contains all the user accounts as members. You need to be careful if your Linux
distribution does this, because your files may be readable by all other users on the system. Other distributions create
a separate user account for each user to provide a little more security.

Each group has a unique GID, which, like UIDs, is a unique numerical value on the system. Along with the GID, each
group has a unique group name. There are a few group utilities you can use to create and manage your own groups
on the Linux system. This section discusses how group information is stored and how to use the group utilities to
create new groups and modify existing groups.

The /etc/group file

Just like user accounts, group information is stored in a file on the system. The /etc/group file contains information
about each group used on the system. Here are a few examples from a typical /etc/group file on a Linux system:

root:x:0:root
bin:x:1:root,bin,daemon
daemon:x:2:root,bin,daemon
sys:x:3:root,bin,adm
adm:x:4:root,adm,daemon
rich:x:500:
mama:x:501:
katie:x:502:
jessica:x:503:
mysql:x:27:
test:x:504:

Like UIDs, GIDs are assigned using a special format. Groups used for system accounts are assigned GIDs below 500,

and user groups are assigned GIDs starting at 500. The /etc/group file uses four fields:
= The group name
= The group password
= The GID
= The list of user accounts that belong to the group

The group password allows a non-group member to temporarily become a member of the group by using the
password. This feature is not used all that commonly, but it does exist.

Since the /etc/group file is a standard text file, you can manually edit the file to add and modify group memberships.
However, be careful that you don't make any typos or you could corrupt the file and cause problems for your system.
Instead, it's safer to use the usermod command (discussed earlier in the “Exploring Linux Security” section) to add a
user account to a group. Before you can add users to different groups, you must create the groups.

NOTE

The list of user accounts is somewhat misleading. You'll notice that there are several groups in
the list that don't have any users listed. This isn't because they don't have any members. When
a user account uses a group as the primary group in the /etc/passwd file, the user account
doesn't appear in the /etc/group file as a member. This has caused confusion for more than one
system administrator over the years!

Creating new groups
The groupadd command allows you to create new groups on your system:

/usr/sbin/groupadd shared
tail /etc/group
haldaemon:x:68:
xfs:ix:43:
gdm:x:42:
rich:x:500:
mama:x:501:
katie:x:502:
jessica:x:503:
mysql:x:27:
test:x:504:
shared:x:505:

#

When you create a new group, no users are assigned to it by default. The groupadd command doesn't provide an
option for adding user accounts to the group. Instead, to add new users, use the usermod command:

/usr/sbin/usermod -G shared rich
/usr/sbin/usermod -G shared test
tail /etc/group

haldaemon:x:68:

xfs:ix:43:

gdm:x:42:

rich:x:500:

mama:x:501:

katie:x:502:

jessica:x:503:

mysql:x:27:

test:x:504:

shared:x:505:rich, test

#

The shared group now has two members, test and rich. The -G parameter in usermod appends the new group to the
list of groups for the user account.

NOTE

If you change the user groups for an account that is currently logged into the system, the user
will have to log out, then back in for the group changes to take effect.

CAUTION

Be careful when assigning groups for user accounts. If you use the -g parameter, the group
name you specify replaces the primary group assigned to the user account in the /etc/passwd
file. The -G parameter adds the group to the list of groups the user belongs to, keeping the
primary group intact.

Modifying groups

As you can see from the /etc/group file, there isn't too much information about a group for you to modify. The
groupmod command allows you to change the GID (using the -g parameter) or the group name (using the -n
parameter) of an existing group:

groupmod -n sharing shared
tail /etc/group
haldaemon:x:68:
xfs:ix:43:

gdm:x:42:

rich:x:500:

mama:x:501:
katie:x:502:
jessica:x:503:
mysql:x:27:

test:x:504:
sharing:x:505:test, rich
#

When changing the name of a group, the GID and group members remain the same and only the group name
changes. Because all security permissions are based on the GID, you can change the name of a group as often as you
wish without adversely affecting file security.

Decoding File Permissions

Now that you know about users and groups, it's time to decode the cryptic file permissions you've seen when using
the 1s command. This section describes how to decipher the permissions and where they come from.

Using file permission symbols

As you'll recall from Chapter 3, “Basic Bash Shell Commands,” the 1s command allows you to see the file
permissions for files, directories, and devices on the Linux system:

$ 1s -1
total 68
-rw-rw-r-- 1 rich rich 50 2010-09-13 07:49 filel.gz
-rw-rw-r-- 1 rich rich 23 2010-09-13 07:50 file2
-rw-rw-r-- 1 rich rich 48 2010-09-13 07:56 file3
-rw-rw-r-- 1 rich rich 34 2010-09-13 08:59 file4
-rwxrwxr-x 1 rich rich 4882 2010-09-18 13:58 myprog
-rw-rw-r-- 1 rich rich 237 2010-09-18 13:58 myprog.c
drwxrwxr-x 2 rich rich 4096 2010-09-03 15:12 testl

2

drwXxrwxr-x rich rich 4096 2010-09-03 15:12 test2

$

The first field in the output listing is a code that describes the permissions for the files and directories. The first
character in the field defines the type of the object:

= - for files
= d for directories
m 1 for links
» ¢ for character devices
= p for block devices
= p for named pipes
= s for network sockets
After that, there are three sets of three characters. Each set of three characters defines an access permission triplet:
= rfor read permission for the object
= w for write permission for the object
» x for execute permission for the object

If a permission is denied, a dash appears in the location. The three sets relate to the three levels of security for the
object:

® The owner of the object
= The group that owns the object
= Everyone else on the system

This is broken down in Figure 7-1.

W
r
i
t
e

o oo I
D~ O X M
o oo D
D~ O XM
o @ I
D~ O M XM

><
-
=
|
-
|
|

- | R| W

Owner Group Others
FIGURE 7-1 The Linux file permissions

The easiest way to discuss this is to take an example and decode the file permissions one by one:
-rwxrwxr-x 1 rich rich 4882 2010-09-18 13:58 myprog
The file myprog has the following sets of permissions:
= rwx for the file owner (set to the login name rich)
= rwx for the file group owner (set to the group name rich)
= r-x for everyone else on the system

These permissions indicate that the user login name rich can read, write, and execute the file (considered full
permissions). Likewise, members in the group rich can also read, write, and execute the file. However, anyone else
not in the rich group can only read and execute the file; the w is replaced with a dash, indicating that write
permissions are not assigned to this security level.

Default file permissions

You may be wondering about where these file permissions come from. The answer is umask. The umask command
sets the default permissions for any file or directory you create:

$ touch newfile
$ 1s -al newfile
-rw-r--r-- 1 rich rich 0 Sep 20 19:16 newfile

$

The touch command created the file using the default permissions assigned to my user account. The umask command
shows and sets the default permissions:

$ umask

0022

$
Unfortunately, the umask command setting isn't overtly clear, and trying to understand exactly how it works makes
things even muddier. The first digit represents a special security feature assigned to the file. We'll talk more about
that later on in this chapter in the “Sharing Files” section.

The next three digits represent the octal values of the umask for a file or directory. To understand how umask works,
you first need to understand octal mode security settings.

Octal mode security settings take the three rwx permission values and convert them into a 3-bit binary value,
represented by a single octal value. In the binary representation, each position is a binary bit. Thus, if the read
permission is the only permission set, the value becomes r- - , relating to a binary value of 100, indicating the octal
value of 4. Table 7-5 shows the possible combinations you'll run into.

TABLE 7-5 Linux File Permission Codes

Permissions Binary Octal Description

--- 000 0 No permissions

--X 001 1 Execute-only permission

-w- 010 2 Write-only permission

-wX o11 3 Write and execute permissions

r-- 100 4 Read-only permission

r-x 101 5 Read and execute permissions

rw- 110 6 Read and write permissions

rwx 111 7 Read, write, and execute permissions

Octal mode takes the octal permissions and lists three of them in order for the three security levels (user, group, and
everyone). Thus, the octal mode value 664 represents read and write permissions for the user and group but read-
only permission for everyone else.

Now that you know about octal mode permissions, the umask value becomes even more confusing. The octal mode
shown for the default umask on my Linux system is 0022, but the file I created had an octal mode permission of
644. How did that happen?

The umask value is just that, a mask. It masks out the permissions you don't want to give to the security level. Now
we have to dive into some octal arithmetic to figure out the rest of the story.

The umask value is subtracted from the full permission set for an object. The full permission for a file is mode 666
(read/write permission for all), but for a directory it's 777 (read/write/execute permission for all).

Thus, in the example, the file starts out with permissions 666, and the umask of 022 is applied, leaving a file
permission of 644.

The umask value is normally set in the /etc/profile startup file (see Chapter 6). You can specify a different default
umask setting using the umask command:

$ umask 026

$ touch newfile2

$ ls -1 newfile2

STW-r----- 1 rich rich 0 Sep 20 19:46 newfile2

$

When we set the umask value to 026, the default file permissions became 640, so the new file is now restricted to
read-only for the group members, and everyone else on the system has no permissions to the file.

The umask value also applies to making new directories:

$ mkdir newdir

$ 1s -1
drwxr-x--x 2 rich rich 4096 Sep 20 20:11 newdir/
$

Because the default permissions for a directory are 777, the resulting permissions from the umask are different from
those of a new file. The 026 umask value is subtracted from 777, leaving the 751 directory permission setting.

Changing Security Settings

If you've already created a file or directory and need to change the security settings on it, a few different utilities for
this purpose are available in Linux. This section shows you how to change the existing permissions, the default
owner, and the default group settings for a file or directory.

Changing permissions

The chmod command allows you to change the security settings for files and directories. The format of the chmod
command is

chmod options mode file

The mode parameter allows you to set the security settings using either octal or symbolic mode. The octal mode
settings are pretty straightforward; just use the standard three-digit octal code you want the file to have:

$ chmod 760 newfile

$ 1s -1 newfile

-rwXrw---- 1 rich rich 0 Sep 20 19:16 newfile
$

The octal file permissions are automatically applied to the file indicated. The symbolic mode permissions are not so
easy to implement.

Instead of using the normal string of three sets of three characters, the chmod command takes a different approach.
The following is the format for specifying a permission in symbolic mode:

[ugoa...]l[[+-=][rwxXstugo...]
Makes perfectly good sense, doesn't it? The first group of characters defines to whom the new permissions apply:
m for the user
= g for the group
m o for others (everyone else)
= a for all of the above

Next, a symbol is used to indicate whether you want to add the permission to the existing permissions (+), subtract
the permission from the existing permissions (-), or set the permissions to the value (=).

Finally, the third symbol is the permission used for the setting. You may notice that there are more than the normal
rwx values here. The additional settings are as follows:

= X to assign execute permissions only if the object is a directory or if it already had execute permissions
= s to set the SUID or SGID on execution
=t to set the sticky bit
® uto set the permissions to the owner's permissions
= g to set the permissions to the group's permissions
= o to set the permissions to the others’ permissions
Using these permissions looks like this:

$ chmod o+r newfile
$ ls -1 newfile
- rwWXrw-r-- 1 rich rich 0 Sep 20 19:16 newfile

$
The o+r entry adds the read permission to whatever permissions the everyone security level already had.

$ chmod u-x newfile

$ s -1 newfile

-rw-rw-r-- 1 rich rich 0 Sep 20 19:16 newfile

$
The u-x entry removes the execute permission that the user already had. Note that the settings for the 1s command
indicate if a file has execution permissions by adding an asterisk to the filename.

The options parameters provide a few additional features to augment the behavior of the chmod command. The -R
parameter performs the file and directory changes recursively. You can use wildcard characters for the filename
specified, changing the permissions on multiple files with just one command.

Changing ownership

Sometimes you need to change the owner of a file, such as when someone leaves an organization or a developer
creates an application that needs to be owned by a system account when it's in production. Linux provides two
commands for doing that. The chown command makes it easy to change the owner of a file, and the chgrp command
allows you to change the default group of a file.

The format of the chown command is
chown options owner[.group] file
You can specify either the login name or the numeric UID for the new owner of the file:

chown dan newfile
1s -1 newfile
-rw-rw-r-- 1 dan rich 0 Sep 20 19:16 newfile

#

Simple. The chown command also allows you to change both the user and group of a file:

chown dan.shared newfile

1s -1 newfile

SrW-rw-r-- 1 dan shared 0 Sep 20 19:16 newfile
#

If you really want to get tricky, you can just change the default group for a file:

chown .rich newfile

1s -1 newfile

-rw-rw-r-- 1 dan rich 0 Sep 20 19:16 newfile
#

Finally, if your Linux system uses individual group names that match user login names, you can change both with
just one entry:

chown test. newfile

1s -1 newfile

-rW-rw-r-- 1 test test 0 Sep 20 19:16 newfile
#

The chown command uses a few different options parameters. The -R parameter allows you to make changes
recursively through subdirectories and files, using a wildcard character. The -h parameter also changes the
ownership of any files that are symbolically linked to the file.

NOTE

Only the root user can change the owner of a file. Any user can change the default group of a
file, but the user must be a member of the groups the file is changed from and to.

The chgrp command provides an easy way to change just the default group for a file or directory:

$ chgrp shared newfile
$ 1s -1 newfile
SrW-rw-r-- 1 rich shared 0 Sep 20 19:16 newfile
$
Now any member in the shared group can write to the file. This is one way to share files on a Linux system.
However, sharing files among a group of people on the system can get tricky. The next section discusses how to do
this.

Sharing Files

As you've probably already figured out, creating groups is the way to share access to files on the Linux system.
However, for a complete file-sharing environment, things are more complicated.

As you've already seen in the “Decoding File Permissions” section, when you create a new file, Linux assigns the file
permissions of the new file using your default UID and GID. To allow others access to the file, you need to either
change the security permissions for the everyone security group or assign the file a different default group that
contains other users.

This can be a pain in a large environment if you want to create and share documents among several people.
Fortunately, there's a simple solution for this problem.

Linux stores three additional bits of information for each file and directory:

= The set user ID (SUID): When a file is executed by a user, the program runs under the permissions of the file
owner.

= The set group ID (SGID): For a file, the program runs under the permissions of the file group. For a
directory, new files created in the directory use the directory group as the default group.

» The sticky bit: When applied to a directory, only file owners can delete or rename the files in the directory.

The SGID bit is important for sharing files. By enabling the SGID bit, you can force all new files created in a shared
directory to be owned by the directory's group and now the individual user's group.

The SGID is set using the chmod command. It's added to the beginning of the standard three-digit octal value
(making a four-digit octal value), or you can use the symbol s in symbolic mode.

If you're using octal mode, you'll need to know the arrangement of the bits, shown in Table 7-6.

TABLE 7-6 The chmod SUID, SGID, and Sticky Bit Octal Values
Binary Octal Description

000 o] All bits are cleared.

001 1 The sticky bit is set.

010 2 The SGID bit is set.

011 3 The SGID and sticky bits are set.
100 4 The SUID bit is set.

101 5 The SUID and sticky bits are set.
110 6 The SUID and SGID bits are set.
111 7 All bits are set.

So, to create a shared directory that always sets the directory group for all new files, all you need to do is set the
SGID bit for the directory:

$ mkdir testdir

$ 1s -1

drwxrwxr-x 2 rich rich 4096 Sep 20 23:12 testdir/
$ chgrp shared testdir

$ chmod g+s testdir

$ 1s -1

drwxrwsr-x 2 rich shared 4096 Sep 20 23:12 testdir/
$ umask 002

$ cd testdir

$ touch testfile

$ 1s -1

total 0

-rw-rw-r-- 1 rich shared 0 Sep 20 23:13 testfile

$
The first step is to create a directory that you want to share using the mkdir command. Next, the chgrp command is
used to change the default group for the directory to a group that contains the members who need to share files.
Finally, the SGID bit is set for the directory to ensure that any files created in the directory use the shared group
name as the default group.

For this environment to work properly, all of the group members need to have their umask values set to make files
writable by group members. In the preceding example, the umask is changed to 002 so that the files are writable by
the group.

After all that's done, any member of the group can go to the shared directory and create a new file. As expected, the
new file uses the default group of the directory, not the user account's default group. Now any user in the shared
group can access this file.

Access Control Lists

The basic Linux method of permissions has one drawback in that it's somewhat limited. You can assign permissions
for a file or directory only to a single group or user account. In a complex business environment with different
groups of people needing different permissions to files and directories, that doesn't work.

Linux developers have devised a more advanced method of file and directory security called an access control list
(ACL). The ACL allows you to specify a list of multiple user or groups, and the permissions that are assigned to
them. Just like the basic security method, ACL permissions use the same read, write, and execute permission bits
but can now be assigned to multiple users and groups.

To use the ACL feature in Linux, you use the setfacl and getfacl commands. The getfacl command allows you to
view the ACLs assigned to a file or directory:

$ touch test

$ s -1

total 0

-rw-r----- 1 rich rich 0 Apr 19 17:33 test
$ getfacl test

file: test

owner: rich

group: rich

user::rw-
group::r--
other::---
$

If you've only assigned basic security permissions to the file, those still appear in the getfacl output, as shown in
this example.

To assign permissions for additional users or groups, you use the setfacl command:

setfacl [options] rule filenames

The setfacl command allows you to modify the permissions assigned to a file or directory using the -m option, or
remove specific permissions using the -x option. You define the rule with three formats:

u[ser]:uid:perms

gl[roup]:gid:perms

o[ther]::perms
To assign permissions for additional user accounts, use the user format; for additional groups, use the group format;
and for others, use the other format. For the uid or gid values, you can use either the numerical user ID or group ID,
or the names. Here's an example:

$ setfacl -m g:sales:rw test

$ s -1

total 0

-rw-rw----+ 1 rich rich @ Apr 19 17:33 test
$

This example adds read and write permissions for the sales group to the test file. Notice that there's no output from
the setfacl command. When you list the file, only the standard owner, group, and other permissions are shown, but
note that there's a plus sign (+) added to the permissions list. This indicates that the file has additional ACLs applied
to it. To view the additional ACLs, use the getfacl command again:

$ getfacl test

file: test

owner: rich

group: rich

user::rw-

group::r--

group:sales:rw-

mask: :rw-

other::---

$
The getfacl output now shows that there are permissions assigned to two groups. The default file group (rich) is
assigned read permissions, but now the sales group has read and write permissions to the file. To remove the

permissions, use the -x option:

$ setfacl -x g:sales test
$ getfacl test

file: test

owner: rich

group: rich

user::rw-

group::r--

mask::r--

other::---

$

Linux also allows you to set a default ACL on a directory that is automatically inherited by any file created in the
directory. This feature is called inheritance.

To create a default ACL on a directory, start the rule with d: followed by the normal rule definition. That looks like
this:

$ sudo setfacl -m d:g:sales:rw /sales

This example assigns the read and write permissions to the sales group for the /sales directory. Now all files
created in that folder will automatically be assigned read and write permissions for the sales group.

Summary

This chapter discussed the command-line commands you need to know to manage the Linux security on your
system. Linux uses a system of user IDs and group IDs to protect access to files, directories, and devices. Linux
stores information about user accounts in the /etc/passwd file and information about groups in the /etc/group file.
Each user is assigned a unique numeric user ID, along with a text login name to identify the user in the system.
Groups are also assigned unique numerical group IDs, and text group names. A group can contain one or more users
allowed shared access to system resources.

Several commands are available for managing user accounts and groups. The useradd command allows you to create
new user accounts, and the groupadd command allows you to create new group accounts. To modify an existing user
account, use the usermod command. Similarly, the groupmod command is used to modify group account information.

Linux uses a complicated system of bits to determine access permissions for files and directories. Each file contains
three security levels of protection: the file's owner, a default group that has access to the file, and a level for everyone
else on the system. Each security level is defined by three access bits: read, write, and execute. The combination of
three bits is often referred to by the symbols rwx , for read, write, and execute. If a permission is denied, its symbol is
replaced with a dash (such as r- - for read-only permission).

The symbolic permissions are often referred to as octal values, with the three bits combined into one octal value and
three octal values representing the three security levels. The umask command is used to set the default security
settings for files and directories created on the system. The system administrator normally sets a default umask

value in the /etc/profile file, but you can use the umask command to change your umask value at any time.

The chmod command is used to change security settings for files and directories. Only the file's owner can change
permissions for a file or directory. However, the root user can change the security settings for any file or directory on
the system. The chown and chgrp commands can be used to change the default owner and group of the file.

The chapter also discussed how to use the set GID bit to create a shared directory. The SGID bit forces any new files
or directories created in a directory to use the default group name of the parent directory, not that of the user who
created them. This provides an easy way to share files between users on the system.

Finally, the chapter provided a primer on using the Linux ACL feature to assign more detailed and advanced
permissions to files and directories. The getfacl and setfacl commands provide access to this feature.

Now that you're up to speed with file permissions, it's time to take a closer look at how to work with the actual
filesystem in Linux. The next chapter shows you how to create new partitions in Linux from the command line and
then how to format the new partitions so that they can be used in the Linux virtual directory.

CHAPTER 8
Managing Filesystems

IN THIS CHAPTER

Understanding filesystem basics
Exploring journaling and volume-managing filesystems
Managing filesystems
Investigating the logical volume layout
Using the Linux Logical Volume Manager
When you're working with your Linux system, one of the decisions you'll need to make is what filesystem to use for

the storage devices. Most Linux distributions provide a default filesystem for you at installation time, and most
beginning Linux users just use it without giving the topic another thought.

Although using the default filesystem isn't necessarily a bad thing, sometimes it helps to know the other options
available to you. This chapter discusses the different filesystem options you have available in the Linux world and
shows you how to create and manage them from the Linux command line.

Exploring Linux Filesystems

Chapter 3, “Basic Bash Shell Commands,” discussed how Linux uses a filesystem to store files and folders on a
storage device. The filesystem provides a way for Linux to bridge the gap between the ones and zeroes stored in the
hard drive and the files and folders you work with in your applications.

Linux supports several types of filesystems to manage files and folders. Each filesystem implements the virtual
directory structure on storage devices using slightly different features. This section walks you through the strengths
and weaknesses of common filesystems used in the Linux environment as well as some history regarding them.
Exploring the Linux filesystem evolution

The original Linux system used a simple filesystem that mimicked the functionality of the Unix filesystem. This
section discusses its improvements through time.

Looking at the ext filesystem

The original filesystem introduced with the Linux operating system was called the extended filesystem (or just ext
for short). It provided a basic Unix-like filesystem for Linux, using virtual directories to handle physical devices and
storing data in fixed-length blocks on the physical devices.

The ext filesystem used a system called inodes to track information about the files stored in the virtual directory. The
inode system created a separate table on each physical device, called the inode table, to store file information. Each
stored file in the virtual directory had an entry in the inode table. The extended part of the name comes from the
additional data that it tracked on each file, which consisted of these items:

® The filename

» The file size

» The owner of the file

= The group the file belongs to

® Access permissions for the file

= Pointers to each disk block that contains data from the file

Linux referenced each inode in the inode table using a unique number (called the inode number), assigned by the
filesystem as data files were created. The filesystem used the inode number to identify the file rather than having to
use the full filename and path.

Looking at the ext2 filesystem

The original ext filesystem had quite a few limitations, such as restraining files to only 2 GB in size. Not too long
after Linux was first introduced, the ext filesystem was upgraded to create the second extended filesystem, called
ext2.

The ext2 filesystem maintained the same ext filesystem structure but expanded its abilities:
= Created, modified, and last accessed time values for files were added to the inode table.
®» The maximum file size allowed was increased to 2 TB, and then later to 32 TB.
= Disk blocks were allocated in groups when a file was saved.

The ext2 filesystem too had limitations. If something happened to the system between a file being stored and the

inode table being updated, a potential result was losing the file's data location on the disk. The ext2 filesystem was
notorious for experiencing these corruptions due to system crashes and power outages. And it wasn't long before
developers were exploring a different avenue of Linux filesystems.

Digging into journaling filesystems

Journaling filesystems provide a new level of safety to the Linux system. Instead of writing data directly to the
storage device and then updating the inode table, journaling filesystems write file changes into a temporary file
(called the journal) first. After data is successfully written to the storage device and the inode table, the journal entry
is deleted.

If the system should crash or suffer a power outage before the data can be written to the storage device, the
journaling filesystem reads through the journal file and processes any uncommitted data.

Linux commonly uses three different methods of journaling, each with different levels of protection. These are
shown in Table 8-1.

TABLE 8-1 Journaling Filesystem Methods
Method Description

Data Both inode and file data are journaled. Low risk of losing data, but poor performance
mode

Ordered Only inode data is written to the journal, but not removed until file data is successfully written. Good
mode compromise between performance and safety

Writeback Only inode data is written to the journal; no control over when the file data is written. Higher risk of
mode losing data but still better than not using journaling

The data mode journaling method is by far the safest for protecting data, but it is also the slowest. All the data
written to a storage device must be written twice, once to the journal and again to the actual storage device. This can
cause poor performance, especially for systems that do lots of data writing.

Over the years, a few different journaling filesystems have appeared in Linux. The following sections briefly describe
the popular Linux journaling filesystems available.

Looking at the ext3 filesystem

The ext3 filesystem is a descendant of ext2 that supports files up to 2 TB, with a total file system size of 32 TB. By
default, it uses the ordered mode method of journaling, but the other modes are available via command-line options.
It doesn't provide any recovery from accidental file deletion or allow data compression by default.

Looking at the ext4 filesystem

A still popular descendant of ext3, the ext4 filesystem supports files up to 16 tebibytes (TiB), with a total file system
size of 1 exbibyte (EiB). By default, it uses the ordered mode method of journaling, but the other modes are available
via command-line options. It supports encryption, compression, and unlimited subdirectories within a single
directory. Old ext2 and ext3 filesystems can be mounted as if they were ext4 to improve their performance.

Looking at the JFS filesystem

Possibly one of the oldest journaling filesystems around, the Journaled File System (JFS) was developed by IBM in
1990 for its AIX (Advanced Interactive Executive) flavor of Unix. However, it wasn't until its second version that it
was ported to the Linux environment.

NOTE

The official IBM name of the second version of the JFS filesystem is JFS2, but most Linux
systems refer to it as just JFS.

The JFS filesystem uses the ordered journaling method, storing only the inode table data in the journal and not
removing it until the actual file data is written to the storage device.
Looking at ReiserFS

In 2001, Hans Reiser created the first journaling filesystem for Linux, called ReiserFS, which provides features now
found in both ext3 and ext4. Linux has dropped support for the most recent version, Reiser4.

Looking at XFS

The X File System (XFS) was created by Silicon Graphics for their (now defunct) advanced graphical workstations.
The filesystem provided some advanced high-performance features that make it still popular in Linux.

The XFS filesystem uses the writeback mode of journaling, which provides high performance but does introduce an
amount of risk because the actual data isn't stored in the journal file.

Understanding the volume-managing filesystems

With journaling, you must choose between safety and performance. Although data mode journaling provides the
highest safety, performance suffers because both inode and data are journaled. With writeback mode journaling,
performance is acceptable but safety is compromised.

For filesystems, an alternative to journaling is a technique called copy-on-write (COW). COW offers both safety and
performance via snapshots. For modifying data, a clone or writable snapshot is used. Instead of writing modified
data over current data, the modified data is put in a new filesystem location.

NOTE

A true COW system modifies the old data only when the data modification is completed. If old
data is never overwritten, the proper term to call this action is a redirect-on-write (ROW).
However, typically ROWs are simply called COWs.

Though disk sizes have grown significantly over the years, the need for more space is constant. Storage pools, which
are created from one or more disks or disk partitions, provide the ability to create what appears to be a single disk,
called a volume. Using these storage pools allows volumes to be grown as needed, providing flexibility and a lot less
downtime.

Filesystems with COW, snapshot, and volume-management features are gaining in popularity. Two of the most
popular, Btrfs and ZFS, are briefly reviewed in the following sections as well as a newcomer, Stratis.

Looking at the ZFS filesystem

The ZFS filesystem was initially released in 2005 by Sun Microsystems for the OpenSolaris operating system. It
began being ported to Linux in 2008 and was finally available for Linux production use in 2012.

ZFS is a stable filesystem that competes well against Resier4, Btrfs, and ext4. It boasts data integrity verification
along with automatic repair, provides a maximum file size of 16 exabytes, and has a 256 quadrillion Zettabytes
maximum storage size. That's one large filesystem!

Unfortunately, its biggest detractor is that ZFS does not have a GNU General Public License (GPL) and thus cannot
be included in the Linux kernel. Fortunately, most Linux distributions provide a way for it to be installed.

Looking at the Btrfs filesystem

The Btrfs filesystem (typically pronounced butter-fs) is also called the B-tree filesystem. Oracle started development
on Btrfs in 2007. It was based on many of Reiser4's features but offered improvements in reliability. Over time,
additional developers joined in and helped Btrfs quickly rise toward the top of the popular filesystems list. This
popularity is due to stability and ease of use, as well as the ability to dynamically resize a mounted filesystem.

While the openSUSE Linux distribution established Btrfs as its default filesystem, in 2017 Red Hat deprecated it,
meaning that it would no longer support the filesystem (as of RHEL version 8 and beyond). Unfortunately, for those
organizations who are married to RHEL, it means that Btrfs is not the filesystem of choice.

Looking at the Stratis filesystem

When Red Hat deprecated Btrfs, the decision was made to create a new filesystem, Stratis. But you cannot
accurately call Stratis a filesystem using the standard definition. Instead, it provides more of a management
perspective. The storage pools it maintains are made up of one or more XFS filesystems. And it also offers COW
functionality like the more traditional volume-management filesystems, such as ZFS and Btrfs. The terms “ease of
use” and “advanced storage features” are often used to describe it, but at this point, it's too early to tell how close to
those concepts Stratis performs.

NOTE

XFS in recent years has been improving its COW offerings. For example, it now has an
always_cow mode, which causes XFS to not overwrite original data when it is modified.

Stratis was first offered for inspection in Fedora 29 (released in 2018), and it is considered to be a technological
preview feature in RHEL v8. This means that Stratis is not yet intended for use in a production environment. You've
been warned.

Working with Filesystems

Linux provides a few utilities that make it easier to work with filesystems from the command line. You can add new
filesystems or change existing filesystems from the comfort of your own keyboard. This section walks you through
the commands for managing filesystems from a command-line environment.

Creating partitions

To start out, you need to create a partition on the storage device to contain the filesystem. The partition can be an
entire disk or a subset of a disk that will contain a portion of the virtual directory.

Several utilities are available that can help you organize and manage partitions. The three CLI programs we'll focus
on in this section are:

m fdisk
m gdisk
= GNU parted

Sometimes, the hardest part of creating a new disk partition is trying to find the physical disk on your Linux system.
Linux uses a standard format for assigning device names to hard drives, and you need to be familiar with the format
before partitioning a drive:

m SATA drives and SCSI drives: Linux uses /dev/sd x, where x is a letter based on the order in which the drive is
detected (a for the first drive, b for the second, and so on)

= SSD NVMe drives: The device name format is /dev/nvme N n #, where N is a number based on the order in which
the drive is detected, starting at 0 . And the # is the number assigned to the drive's namespace structure, starting
at1l.

m IDE drives: Linux uses /dev/hd x, where x is a letter based on the order in which the drive is detected (a for the
first drive, b for the second, and so on).

Once you have the correct drive name, you can consider which partitioning tool to use. The following sections take a
look at three choices.

Looking at the fdisk utility

The fdisk utility is an older but powerful tool for creating and managing partitions on any drive. However, fdisk
handles only disks up to 2 TB in size. If you have a disk larger than that, you can use either the gdisk or the GNU
parted utility instead.

TIP

If this is the first time you're partitioning the storage device, fdisk gives you a warning that a
partition table is not on the device.

The fdisk command is an interactive program that allows you to enter commands to walk through the steps of
partitioning a hard drive. To start the fdisk utility, you need to specify the device name of the storage device you
want to partition, and you need to have super user privileges (be logged in as the root user or use the sudo
command).

whoami
root
fdisk /dev/sda

Welcome to fdisk (util-linux 2.32.1).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.

Command (m for help):

The fdisk program uses its own command line that allows you to submit commands to work with the drive
partitions. Table 8-2 shows the common commands you have available with which to work.

TABLE 8-2 Common fdisk Commands

Command Description

a Toggle a bootable flag.

b Edit bad disk label.

c Toggle the DOS compatibility flag.

d Delete a partition.

g Create a new empty GPT partition table.
G Create an IRIX (SGI) partition table.

1 List known partition types.

m Print this menu.

n Add a new partition.

o Create a new empty DOS partition table.
p Print the partition table.

q Quit without saving changes.

s Create a new empty Sun disk label.

t Change a partition's system ID.

u Change display/entry units.

v Verify the partition table.

W Write table to disk and exit.

x Extra functionality (experts only).

The p command displays the current partition scheme on the selected drive:

Command (m for help): p

Disk /dev/sda: 20 GiB, 21474836480 bytes, 41943040 sectors
Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/0 size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos

Disk identifier: Ox8al36eb4d

Device Boot Start End Sectors Size Id Type
/dev/sdal * 2048 2099199 2097152 1G 83 Linux
/dev/sda2 2099200 41943039 39843840 19G 8e Linux LVM

Command (m for help):

In this example, the /dev/sda drive is sectioned into two partitions, sdal and sda2 . The first partition is allocated
about 1 GB of space (shown in the Size column), while the second is allocated a little over 19 GB of space.

The fdisk command is somewhat rudimentary in that it doesn't allow you to alter the size of an existing partition; all
you can do is delete the existing partition and rebuild it from scratch.

TIP

Some distributions and older distribution versions do not automatically inform your Linux
system of a new partition after it is made. In this case, you need to use either the partprobe or
the hdparm command (see their man pages), or reboot your system so that it reads the updated
partition table.

If you make any changes to the drive partitions, you must exit using the w command to write the changes to the
drive. To quit without making any modifications, use the g command:

Command (m for help): q
#

The following example makes a new partition on the /dev/sdb drive to use in the “Creating a Filesystem” section
later in this chapter:

$ sudo fdisk /dev/sdb
[sudo] password for christine:
[...]
Command (m for help): n
Partition type
p primary (0 primary, O extended, 4 free)
e extended (container for logical partitions)
Select (default p): p
Partition number (1-4, default 1): 1

First sector (2048-4194303, default 2048):
Last sector, +sectors or +size{K,M,G,T,P} (2048-4194303, default 4194303):

Created a new partition 1 of type 'Linux' and of size 2 GiB.

Command (m for help): w

The partition table has been altered.
Calling ioctl() to re-read partition table.
Syncing disks.

$

Now a new disk partition, /dev/sdbl , is ready for formatting. Be aware when creating a new disk partition with
fdisk , you don't have to type in any information. Instead, just press Enter to accept the displayed defaults.

Working with gdisk

If you're working with drives that use the GUID Partition Table (GPT) indexing method, you can use the gdisk
program:

$ sudo gdisk /dev/sda
[sudo] password for christine:
GPT fdisk (gdisk) version 1.0.3

Partition table scan:
MBR: MBR only
BSD: not present
APM: not present
GPT: not present

K >k 3k 3k >k 3k 3k >k 3k >k >k 3k >k >k 5k 5k >k 3k >k >k 3k >k >k 5k >k >k 3k >k >k 3k >k >k 3k >k >k 5k >k >k 3k >k >k 3k >k >k 3k >k >k >k >k >k 3k >k >k 5k >k %k >k Xk >k >k %k k
Found invalid GPT and valid MBR; converting MBR to GPT format
in memory. THIS OPERATION IS POTENTIALLY DESTRUCTIVE! Exit by
typing 'q' if you don't want to convert your MBR partitions

to GPT format!

3k >k 3k 3k >k 3k 3k >k 3k 3k >k 3k >k >k 3k >k >k 3k 5k >k 3k >k >k 3k >k >k 3k >k >k 3k >k >k 3k >k >k 3k >k >k 3k >k >k 3k >k >k 3k >k >k >k >k >k 3k >k >k 3k >k >k >k Xk >k >k %k k
[...]

Command (? for help): q

$

The gdisk program identifies the type of formatting used on the drive. If the drive doesn't currently use the GPT
method, gdisk offers you the option to convert it to a GPT drive.

WARNING

Be careful with converting the drive method specified for your drive. The method you select
must be compatible with the system firmware (BIOS or UEFI). If not, your drive will not be
able to boot.

The gdisk program also uses its own command prompt, allowing you to enter commands to manipulate the drive
layout, as shown in Table 8-3.

TABLE 8-3 Common gdisk Commands

Command Description

b Back up GPT data to a file.
c Change a partition's name.
d Delete a partition.

Show detailed information on a partition.

1 List known partition types.

n Add a new partition.

0 Create a new empty GUID partition table (GPT).
p Print the partition table.

q Quit without saving changes.

r Recovery and transformation options (experts only).
s Sort partitions.

t Change a partition's type code.

v Verify disk.

W Write table to disk and exit.

x Extra functionality (experts only).

? Print this menu.

You'll notice that many of the gdisk commands are similar to those in the fdisk program, making it easier to switch
between the two programs.

The GNU parted command

The GNU parted program provides yet another command-line interface for working with drive partitions. Unlike the
fdisk and gdisk programs, the commands within this utility are more word-like:

$ sudo parted

GNU Parted 3.2

Using /dev/sda

Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) print

Model: ATA VBOX HARDDISK (scsi)

Disk /dev/sda: 21.5GB

Sector size (logical/physical): 512B/512B

Partition Table: msdos

Disk Flags:

Number Start End Size Type File system Flags
1 1049kB 1075MB 1074MB primary ext4 boot
2 1075MB 21.5GB 20.4GB primary lvm

(parted) quit
$

One of the selling features of the parted program is that it allows you to modify existing partition sizes, so you can
easily shrink or grow partitions on the drive.

Creating a filesystem

Before you can store data on the partition, you must format it with a filesystem so that Linux can use it. Each
filesystem type uses its own command-line program to format partitions. Table 8-4 lists the utilities used for the
filesystems discussed in this chapter.

TABLE 8-4 Command-Line Programs to Create Filesystems
Utility Purpose
mkefs Creates an ext filesystem.
mke2fs Creates an ext2 filesystem.
mkfs.ext3 |Creates an ext3 filesystem.
mkfs.ext4 |Creates an ext4 filesystem.
mkreiserfs | Creates a ReiserFsS filesystem.
jfs mkfs Creates a JFS filesystem.
mkfs.xfs |Creates an XFS filesystem.
mkfs.zfs | Creates a ZFS filesystem.
mkfs.btrfs Creates a Btrfs filesystem.

Not all filesystem utilities are installed by default. To determine whether you have a particular filesystem utility, use
the type command:

$ type mkfs.ext4
mkfs.ext4 is /usr/sbin/mkfs.ext4

$

$ type mkfs.btrfs

-bash: type: mkfs.btrfs: not found
$

The preceding example shows that the mkfs.ext4 utility is available. However, the Btrfs utility is not.

TIP

Check if the Linux distribution you are using supports the filesystem you wish to create. If it is
supported, and its filesystem utilities are not currently furnished, you can install the needed
software and utilities. See Chapter 9, “Installing Software,” for more details.

All the filesystem commands allow you to create a default filesystem with just the simple command with no options,
but you'll need to have super user privileges:

$ sudo mkfs.ext4 /dev/sdbl

[sudo] password for christine:

mke2fs 1.44.6 (5-Mar-2019)

Creating filesystem with 524032 4k blocks and 131072 inodes
[...]

Creating journal (8192 blocks): done

Writing superblocks and filesystem accounting information: done

The new filesystem uses the ext4 filesystem type, which is a journaling filesystem in Linux. Notice that part of the
creation process was to create the new journal.

TIP

Each filesystem utility command has lots of command-line options that allow you to customize

just how the filesystem is created in the partition. To see all the command-line options
available, use the man command (see Chapter 3) to display the manual pages for the filesystem
command you wish to use.

After you create the filesystem for a partition, the next step is to mount it on a virtual directory mount point so that
you can store data there. You can mount the new filesystem anywhere in your virtual directory where you need the
extra space.

$ mkdir /home/christine/part

$
$ sudo mount -t ext4 /dev/sdbl /home/christine/part
[sudo] password for christine:

$
$ lsblk -f /dev/sdb

NAME FSTYPE LABEL UUID MOUNTPOINT

sdb

—sdbl ext4 a8dld[...] /home/christine/part
$

The mkdir command (Chapter 3) creates the mount point in the virtual directory, and the mount command adds the
new hard drive partition to the mount point. The -t option on the mount command indicates what filesystem type,
ext4 , you are mounting. And the 1sblk -f command allows you to see the newly formatted and mounted partition.

WARNING

This method of mounting a filesystem only temporarily mounts the filesystem. When you
reboot your Linux system, the filesystem doesn't automatically mount. To force Linux to
automatically mount the new filesystem at boot time, add the new filesystem to the /etc/fstab
file.

Now that the filesystem is mounted within the virtual directory system, it can start to be used on a regular basis.
Unfortunately, with regular use comes the potential for serious problems, such as filesystem corruption. The next
section looks at how to deal with these issues.

Checking and repairing a filesystem

Even with modern filesystems, things can go wrong if power is unexpectedly lost or if a wayward application locks
up the system while file access is in progress. Fortunately, some command-line tools are available to help you
attempt to restore the filesystem back to order.

Each filesystem has its own recovery command for interacting with the filesystem. That has the potential of getting
ugly, because more and more filesystems are available in the Linux environment, making for lots of individual
commands you have to know. Fortunately, a common front-end program can determine the filesystem on the
storage device and use the appropriate filesystem recovery command based on the filesystem being recovered.

The fsck command is used to check and repair most Linux filesystem types, including ones discussed earlier in this
chapter. The format of the command is

fsck options filesystem

You can list multiple filesystem entries on the command line to check. Filesystems are referenced using several
methods, such as the device name or its mount point in the virtual directory. However, the device must be
unmounted before you use fsck on it.

TIP

Although journaling filesystems users do need the fsck command, it is arguable as to whether
filesystems that employ COW do. In fact, the ZFS filesystem does not even have an interface to
the fsck utility. The fsck.xfs and fsck.btrfs commands are nothing but stubs, and do nothing.
For COW filesystems, check the man pages for their individual filesystem repair tool(s), if you
need advanced repair options.

The fsck command uses the /etc/fstab file to automatically determine the filesystem on a storage device that's
normally mounted on the system. If the storage device isn't normally mounted (e.g., if you just created a filesystem
on a new storage device), you need to use the -t command-line option to specify the filesystem type. Table 8-5 lists
the other commonly used command-line options available.

TABLE 8-5 The fsck Commonly Used Command-Line Options

Option Description

-a Automatically repairs the filesystem if errors are detected.

-A Checks all the filesystems listed in the /etc/fstab file.

-N Doesn't run the check; only displays what checks would be performed.
-r Prompts to fix if errors found.

-R Skips the root filesystem if using the -A option.

-t Specifies the filesystem type to check.

-V Produces verbose output during the checks.

-y Automatically repairs the filesystem if errors detected.

You may notice that some of the command-line options are redundant. That's part of the problem of trying to
implement a common front end for multiple commands. Some of the individual filesystem repair commands have
additional options that can be used.

TIP

You run the fsck command only on unmounted filesystems. For most filesystems, just unmount
the filesystem to check it, and then remount it when you're finished. However, because the root
filesystem contains all the core Linux commands and log files, you can't unmount it on a
running system.

This is a time when having a Linux Live CD, DVD, or USB comes in handy! Just boot your
system with the Linux Live media, and then run the fsck command on the root filesystem.

This chapter has showed you how to handle filesystems contained in physical storage devices. Linux also provides a
few ways to create logical storage devices for filesystems. The next section examines how you can use a logical
storage device for your filesystems.

Managing Logical Volumes

Data has a habit of increasing. If you create your filesystems using standard partitions on hard drives, trying to add
space to an existing filesystem can be somewhat of a painful experience. If no more space is available on that hard
drive, you're stuck having to get a larger hard drive and manually moving the existing filesystem to the new drive.

What would come in handy is a way to dynamically add more space to an existing filesystem by just adding a
partition from another hard drive to the existing filesystem. The Linux Logical Volume Management or Manager
(LVM) allows you to do just that. It provides an easy way for you to manipulate disk space on a Linux system without
having to rebuild entire filesystems. This section covers logical volumes and various terms, and offers practical steps
for setting them up.

Exploring LVM layout

LVM allows multiple partitions to be grouped together and used as a single partition for formatting, mounting on
the Linux virtual directory structure, storing data, and so on. You can also add partitions to a logical volume as your
data needs grow.

LVM has three primary parts, covered in the next few sections. Each part plays an important role in creating and
maintaining logical volumes.
Physical volume

A physical volume (PV) is created using the LVM's pvcreate command. This utility designates an unused disk
partition (or whole drive) to be used by LVM. The LVM structures, a volume label, and metadata are added to the
partition during this process.

Volume group

A volume group (VG) is created using the LVM's vgcreate command, which adds PVs to a storage pool. This storage
pool is used in turn to build various logical volumes.

You can have multiple volume groups. When you use the command to add a PV(s) to a VG, volume group metadata
is added to the PV during this process.

A disk's partition, designated as a PV, can only belong to a single VG. However, a disk's other partitions, also
designated as PVs, can belong to other VGs.

Logical volume

A logical volume (LV) is created using the LVM's lvcreate command. This is the final object in logical volume
creation. An LV consists of storage space chunks from a VG pool. It can be formatted with a filesystem, mounted,
and used just like a typical disk partition.

While you can have multiple VGs, each LV is created from only one designated VG. However, you can have multiple
LVs sharing a single VG. You can resize (grow or reduce) an LV using the appropriate LVM commands. This feature
adds a great deal of flexibility to your data storage management.

There are many ways to divide up and manage your data storage media using LVM. Next, we'll dive into the details
of creating and managing these volumes.
Understanding the LVM in Linux

The lvm utility is an interactive utility for creating and managing LVs. If not installed, you can install it via the 1vm2
package (see Chapter 9). You do not need to enter the lvm utility to access the various LVM tools. Instead, you can
access the tools directly at the CLI, as covered in this section.

NOTE

The 2 in lvm2 or LVM2 refers to version 2 of LVM. It adds some additional features and an
improved design over LVM version 1 (lvim1). We're using LVM2 in this chapter.

To set up a logical volume for the first time:

=

Create physical volumes.
2. Create a volume group.
3. Create a logical volume.
4. Format the logical volume.
5. Mount the logical volume.
Important considerations are involved in the first three steps of setting up your logical volume. Each decision you
make in the early steps will determine how flexible and easy it is to manage your LVs.
Create the PVs

Before designating drives as PVs, ensure that they are partitioned and currently unused. You designate the partitions
as a PV using the pvcreate command along with super user privileges:

$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
[...]

sd 8:16 0 2G 0 disk
—sdbl 8:17 0 2G 0 part
sdc 8:32 0 16 0 disk
wsdcl 8:33 0 1023M 0 part
sdd 8:48 0 16 0 disk
—sddl 8:49 0 1023M 0 part
sde 8:64 0 16 0 disk
wsdel 8:65 0 1023M 0 part
sro 11:0 1 1024M 0O rom
$

$ sudo pvcreate /dev/sdcl /dev/sddl /dev/sdel
[sudo] password for christine:
Physical volume "/dev/sdcl" successfully created.
Physical volume "/dev/sddl" successfully created.
Physical volume "/dev/sdel" successfully created.

$

It's wise to set up more than one PV. The whole point of LVM is having additional storage media to add on the fly to
your LVs. Once you have PVs set up, create a VG.

Create a VG

Any PV can be added to a volume group. The command to use is vgcreate.

TIP

You can designate more than one PV during the VG creation process. If you need to add PVs to
a VG at a later time, use the vgextend command.

Common practice names the first VG vgoo , and the next one vgo1, and so on. However, it's your choice what to
name your volume group. Because many distributions set up LVM during installation for the virtual directory
structure's root (/), it's a good idea to check for any current VGs on your system using the vgdisplay command:

$ sudo vgdisplay
--- Volume group ---

VG Name cl
System ID
Format lvm2

[...1

$
Notice in the preceding example that a VG named c1 is already set up. Thus, we're safe to use the vgoe name for our
first volume group:

$ sudo vgcreate vg00 /dev/sdcl /dev/sddl
Volume group "vg00" successfully created
$
In the preceding example, only two of our PVs were used to create VG vgoo : /dev/sdcl and /dev/sdd1l . Now that our
VG storage pool contains at least one PV, we can create an LV.

Create an LV

To create a logical volume, use the lvcreate command. The resulting storage volume's size is set using the -L option,
which uses space from the designated VG storage pool:

$ sudo lvcreate -L 1g -v vgoo

[sudo] password for christine:
Archiving volume group "vg0@0" metadata (seqno 1).
Creating logical volume 1lvoloO

]

.I'_c.>gica1 volume "lvol@" created.

[

$
Notice that the first LV from this VG's default name is 1vol0 . Its full device pathname is /dev/vg06/1vole.

NOTE

If for some reason a VG does not have enough partition space to give to the LV for the
designated size, the lvcreate command will not make the LV. Instead, you will receive an
insufficient free space error message.

Once the LV is created, use the 1vdisplay command to show its information. Notice that the full pathname is used to
designate the logical volume to the command:

$ sudo lvdisplay /dev/vg00/lvolO
[sudo] password for christine:
--- Logical volume ---

LV Path /dev/vg00/1lvolo
LV Name lvolo
VG Name vgoo
[...]
LV Size 1.00 GiB

[...]

$
Besides the 1vdisplay command, you can use the lvs and the lvscan commands to display information on all your
systems' LVs. It's nice to have options.

Using the Linux LVM

Once your LV is created, treat it as if it is a regular partition. Of course, it is different in that you can grow or shrink
this partition on the fly as needed. But before you can do any of that, you'll need to attach your LV to the virtual
directory structure.

Format and mount an LV

With your LV, there is nothing special you have to do in order to make a filesystem on it and then mount it to the
virtual directory structure:

$ sudo mkfs.ext4 /dev/vgo0d/lvolO
[sudo] password for christine:

[...]

Writing inode tables: done

Creating journal (8192 blocks): done

Writing superblocks and filesystem accounting information: done

$ mkdir my_LV

$ sudo mount -t ext4 /dev/vg00/lvolO my_LV

$ s my_LV

lost+found

$
Now that all the various LVM parts are created and the LV is attached to your virtual directory structure, you can use
it as needed. Keep in mind that you'll want to add a record to the /etc/fstab file so that your new LV is mounted
automatically when the system boots.

Growing or shrinking your VGs and LVs

The time comes when you need to increase a VG's or LV's size. It may be due to increasing data on the volume, or it
could be a new application being installed. However, you may want to shrink a VG or LV. If you don't have access to
a fancy graphical interface for handling these activities on your Linux LVM environment, all is not lost. Table 8-6
lists the common commands that are available to accomplish these tasks.

TABLE 8-6 The Growing and Shrinking LVM Commands

Command Function

vgextend | Adds physical volumes to a volume group.
vgreduce | Removes physical volumes from a volume group.
lvextend Increases the size of a logical volume.

lvreduce | Decreases the size of a logical volume.

Using these command-line programs, you have more control over your Linux LVM environment. Be sure to consult
their man pages for additional details.

TIP

To see all the various LVM commands available, type Ivin help at the CLI and press Enter.

Using the various command-line programs we covered, you have full control over your Linux LVM environment.
And you gain the added flexibility LVM provides.

Summary

Working with storage devices in Linux requires that you know a bit about filesystems. Knowing how to create and
work with filesystems from the command line can come in handy as you work on Linux systems. This chapter
discussed how to handle filesystems from the Linux command line.

Before you can install a filesystem on a storage device, you must first prepare the drive. The fdisk, gdisk , and
parted commands are used to partition storage devices to get them ready for the filesystem. When you partition the
storage device, you must define what type of filesystem will be used on it.

After you partition a storage device, you can use one of several filesystems for the partition. Popular Linux
filesystems include journaling or volume-managing features, making them less prone to errors and problems.

One limiting factor in creating filesystems directly on a storage device partition is that you can't easily change the
size of the filesystem if you run out of disk space. However, Linux supports logical volume management, a method of
creating virtual partitions across multiple storage devices, which allows you to easily expand an existing filesystem
without having to completely rebuild it.

Now that you've seen the core Linux command-line commands, it's close to the time to start creating some shell
script programs. However, before you start coding, we need to discuss another element: installing software. If you
plan to write shell scripts, you need an environment in which to create your masterpieces. The next chapter
discusses how to install and manage software packages from the command line in different Linux environments.

CHAPTER 9
Installing Software

IN THIS CHAPTER

Installing software

Using Debian packages

Working with Red Hat packages
Exploring application containers

Revisiting tarballs

In the old days of Linux, installing software could be a painful experience. Fortunately, the Linux developers have
made life a little easier for us by bundling software into prebuilt packages that are much easier to install. However,
there's still a little work on our part to get the software packages installed, especially if you want to do so from the
command line. This chapter takes a look at the various package management systems available in Linux and the
command-line tools used for software installation, management, and removal.

Exploring Package Management

Before diving into the world of Linux software package management, this chapter goes through a few of the basics.
Each of the major Linux distributions utilizes some form of package management system to control installing
software applications and libraries. A package management system uses a database that keeps track of the
following:

= What software packages are installed on the Linux system
= What files have been installed for each package
= Versions of each of the software packages installed

Software packages are stored on servers, called repositories, and are accessed across the Internet via package
management system utilities running on your local Linux system. You can use these utilities to search for new
software packages or even updates to software packages already installed on the system.

A software package will often have dependencies, or other packages that must be installed first for the software to
run properly. The package management system utilities will detect these dependencies and offer to install any
additionally needed software packages before installing the desired package.

The downside to a package management system is that there isn't a single standard utility. Whereas all the Bash
shell commands discussed so far in this book will work no matter which Linux distribution you use, this is not true
with software package management.

The package management system utilities and their associated commands are vastly different between the various
Linux distributions. The two primary package management system base utilities commonly used in the Linux world
are dpkg and rpm.

Debian-based distributions such as Ubuntu and Linux Mint use, at the base of their package management system
utilities, the dpkg command. This command interacts directly with the package management system on the Linux
system and is used for installing, managing, and removing software packages.

The Red Hat—based distributions, such as Fedora, CentOS, and openSUSE, use the rpm command at the base of their
package management system. Similar to the dpkg command, the rpm command can list installed packages, install
new packages, and remove existing software.

Note that these two commands are the core of their respective package management system, not the entire package
management system itself. Many Linux distributions that use the dpkg or rpm methods have built additional specialty
package management system utilities upon these base commands to make your life much easier. The following
sections walk through various package management system utility commands you'll run into in the popular Linux
distributions.

Inspecting the Debian-Based Systems

The dpkg command is at the core of the Debian-based family of package management system tools. It provides
options to install, update, and remove DEB package files on your Linux system.

The dpkg command assumes you have the DEB package file either downloaded onto your local Linux system or
available as a URL. More often than not, that isn't the case. Usually you'll want to install an application package
from the repository for your Linux distribution. To do that, you'll use the Advanced Package Tool (APT) suite of
tools:

B apt-cache

® apt-get
" apt

The apt command is essentially a front end for both the apt-cache and apt-get commands. The nice thing about
APT is that you don't need to remember which tool to use when—it covers everything you need to do with package
management. The basic format for the apt command is

apt [options] command

The command defines the action for apt to take. If needed, you can specify one or more options to fine-tune what
happens. This section looks at how to use the APT command-line tool to work with the software packages on your
Linux system.

Managing packages with apt

A common task faced by Linux system administrators is to determine what packages are already installed on the
system. The apt list command displays all the packages available in the repository, but by adding the - -installed
option you can limit the output to only those packages already installed on your system:

$ apt --installed list

Listing... Done

accountsservice/focal,now 0.6.55-0ubuntull amd64 [installed,automatic]
acl/focal,now 2.2.53-6 amd64 [installed,automatic]
acpi-support/focal,now 0.143 amd64 [installed,automatic]

acpid/focal,now 1:2.0.32-1ubuntul amd64 [installed,automatic]
adduser/focal, focal,now 3.118ubuntu2 all [installed,automatic]
adwaita-icon-theme/focal, focal,now 3.36.0-1ubuntul all [installed,automatic]
aisleriot/focal,now 1:3.22.9-1 amd64 [installed,automatic]
alsa-base/focal, focal,now 1.0.25+dfsg-OQubuntu5 all [installed,automatic]
alsa-topology-conf/focal,focal,now 1.2.2-1 all [installed,automatic]
alsa-ucm-conf/focal,focal,now 1.2.2-1 all [installed,automatic]

.

As you can guess, the list of installed packages will be very long, so we've abbreviated the output to show just a
sample of what the output looks like. Next to the package name is additional information about the package, such as
the version name, and whether the package is installed and flagged for automatic upgrades.

If you already know the packages on your system and want to quickly display detailed information about a particular
package, use the show command:

apt show package name

Here's an example of displaying the details of the package zsh :

$ apt show zsh
Package: zsh
Version: 5.8-3ubuntul
Priority: optional
Section: shells
Origin: Ubuntu
Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
Original-Maintainer: Debian Zsh Maintainers <pkg-zsh-devel@lists.alioth.debian.org>
Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size: 2,390 kB
Depends: zsh-common (= 5.8-3ubuntul), libc6 (>= 2.29), libcap2 (>= 1:2.10), libtinfo6 (>= 6)
Recommends: libgdbm6 (>= 1.16), libncursesw6 (>= 6), libpcre3
Suggests: zsh-doc
Homepage: https://www.zsh.org/
Download-Size: 707 kB
APT-Sources: http://us.archive.ubuntu.com/ubuntu focal/main amd64 Packages
Description: shell with lots of features
Zsh is a UNIX command interpreter (shell) usable as an
interactive login shell and as a shell script command
processor. Of the standard shells, zsh most closely resembles
ksh but includes many enhancements. Zsh has command-line editing,
built-in spelling correction, programmable command completion,
shell functions (with autoloading), a history mechanism, and a
host of other features.

NOTE

The apt show command does not indicate that the package is installed on the system. It shows
only detailed package information from the software repository.

One detail you cannot get with apt is a listing of all the files associated with a particular software package. To get this
list, you will need to go to the dpkg command itself:

dpkg -L package name

Here's an example of using dpkg to list all the files installed as part of the acl package:
$ dpkg -L acl
/

/bin

/bin/chacl

/bin/getfacl

/bin/setfacl

/usr

/usr/share

/usr/share/doc
/usr/share/doc/acl
/usr/share/doc/acl/copyright
/usr/share/man
/usr/share/man/manl
/usr/share/man/manl/chacl.l.gz
/usr/share/man/manl/getfacl.l.gz
/usr/share/man/manl/setfacl.l.gz
/usr/share/man/man5
/usr/share/man/man5/acl.5.gz
/usr/share/doc/acl/changelog.Debian.gz
$

You can also do the reverse — find what package a particular file belongs to:
dpkg --search absolute file name

Note that you need to use an absolute file reference for this to work:

$ dpkg --search /bin/getfacl
acl: /bin/getfacl
$

The output shows the getfacl file was installed as part of the acl package.

Installing software packages with apt

Now that you know more about listing software package information on your system, this section walks you through
a software package installation. First, you'll want to determine the package name to install. How do you find a
particular software package? Use apt with the search command:

apt search package name

The beauty of the search command is that you do not need to insert wildcards around package_name. Wildcards
are implied. By default, the search command displays packages that contain the search term in either the package
name or the package description, which can be misleading at times. If you want to limit the output to only package
names, include the - -names-only option:

$ apt --names-only search zsh

Sorting... Done

Full Text Search... Done

fizsh/focal, focal 1.0.9-1 all
Friendly Interactive ZSHell

zsh/focal 5.8-3ubuntul amd64
shell with lots of features

zsh-antigen/focal, focal 2.2.3-2 all
manage your zsh plugins

zsh-autosuggestions/focal, focal 0.6.4-1 all
Fish-like fast/unobtrusive autosuggestions for zsh

zsh-common/focal, focal 5.8-3ubuntul all
architecture independent files for Zsh

zsh-dev/focal 5.8-3ubuntul amd64
shell with lots of features (development files)

zsh-doc/focal, focal 5.8-3ubuntul all
zsh documentation - info/HTML format

zsh-static/focal 5.8-3ubuntul amd64
shell with lots of features (static link)

zsh-syntax-highlighting/focal, focal 0.6.0-3 all
Fish shell like syntax highlighting for zsh

zsh-theme-powerlevel9k/focal, focal 0.6.7-2 all
powerlevel9k is a theme for zsh which uses powerline fonts

zshdb/focal, focal 1.1.2-1 all
debugger for Z-Shell scripts

$
Once you find the package you'd like to install, installing it using apt is as easy as this:

apt install package name
The output will show basic information about the package and ask if you want to proceed with the installation:

$ sudo apt install zsh
[sudo] password for rich:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
zsh-common
Suggested packages:
zsh-doc
The following NEW packages will be installed:
zsh zsh-common
0 upgraded, 2 newly installed, 0 to remove and 56 not upgraded.
Need to get 4,450 kB of archives.
After this operation, 18.0 MB of additional disk space will be used.
Do you want to continue? [Y/n] y
Get:1 http://us.archive.ubuntu.com/ubuntu focal/main amd64 zsh-common all 5.8-3ubuntul [3,744 kB]
Get:2 http://us.archive.ubuntu.com/ubuntu focal/main amd64 zsh amd64 5.8-3ubuntul [707 kB]
Fetched 4,450 kB in 4s (1,039 kB/s)
Selecting previously unselected package zsh-common.
(Reading database ... 179515 files and directories currently installed.)
Preparing to unpack .../zsh-common 5.8-3ubuntul all.deb ...
Unpacking zsh-common (5.8-3ubuntul)
Selecting previously unselected package zsh.
Preparing to unpack .../zsh 5.8-3ubuntul amd64.deb ...
Unpacking zsh (5.8-3ubuntul) ...
Setting up zsh-common (5.8-3ubuntul)
Setting up zsh (5.8-3ubuntul) ...
Processing triggers for man-db (2.9.1-1)
$

NOTE

Before the apt command in the preceding listing, the sudo command is used. The sudo command
allows you to run a command as the root user. You can use the sudo command to run
administrative tasks, such as installing software.

To check if the installation processed properly, just use the 1ist command with the - -installed option again. You
should see the package appear, indicating that it is installed.

Notice that when installing the requested package, apt asked to install other packages as well. This is because apt
automatically resolves any necessary package dependencies for us and installs the needed additional library and
software packages. This is a wonderful feature included in many package management systems.

Upgrading software with apt

While apt helps protect you from problems installing software, trying to coordinate a multiple-package update with
dependencies can get tricky. To safely upgrade all the software packages on a system with any new versions in the
repository, use the upgrade command:

apt upgrade

Notice that this command doesn't take any software package names as an argument. That's because the upgrade
option will upgrade all the installed packages to the most recent version available in the repository, which is safer for
system stabilization.

Here's a sample output from running the apt upgrade command:

$

$ sudo apt upgrade

Reading package lists... Done

Building dependency tree

Reading state information... Done

Calculating upgrade... Done

The following NEW packages will be installed:
binutils binutils-common binutils-x86-64-linux-gnu build-essential dpkg-dev
fakeroot g++ g++-9 gcc gcc-9 libalgorithm-diff-perl
libalgorithm-diff-xs-perl libalgorithm-merge-perl libasan5 libatomicl
libbinutils libc-dev-bin libc6-dev libcrypt-dev libctf-nobfd0@ libctf0@
libfakeroot libgcc-9-dev libitml liblsan® libquadmath® libstdc++-9-dev
libtsan@® libubsanl linux-libc-dev make manpages-dev

The following packages will be upgraded:
chromium-codecs-ffmpeg-extra eog file-roller fonts-opensymbol gedit
gedit-common girl.2-gnomedesktop-3.0 glib-networking glib-networking-common
glib-networking-services gnome-control-center gnome-control-center-data
gnome-control-center-faces gnome-desktop3-data gnome-initial-setup
libgnome-desktop-3-19 libjuh-java libjurt-java libnautilus-extensionla
libnetplan@ libreoffice-base-core libreoffice-calc libreoffice-common
libreoffice-core libreoffice-draw libreoffice-gnome libreoffice-gtk3

libreoffice-help-common libreoffice-help-en-us libreoffice-impress
libreoffice-math libreoffice-ogltrans libreoffice-pdfimport
libreoffice-style-breeze libreoffice-style-colibre
libreoffice-style-elementary libreoffice-style-tango libreoffice-writer
libridl-java libuno-cppu3 libuno-cppuhelpergcc3-3 libuno-purpenvhelpergcc3-3
libuno-sal3 libuno-salhelpergcc3-3 libunoloader-java nautilus nautilus-data
netplan.io python3-distupgrade python3-uno thermald ubuntu-drivers-common
ubuntu-release-upgrader-core ubuntu-release-upgrader-gtk uno-libs-private
ure

56 upgraded, 32 newly installed, 0@ to remove and 0 not upgraded.

Need to get 133 MB of archives.

After this operation, 143 MB of additional disk space will be used.

Do you want to continue? [Y/n]

In the output, notice that apt lists the packages that will be upgraded, but also any new packages that are required to
be installed because of upgrades.

The upgrade command won't remove any packages as part of the upgrade process. If a package needs to be removed
as part of an upgrade, use the command
apt full-upgrade

Although this may seem like an odd thing, sometimes it's required to remove packages to keep things synchronized
between distribution upgrades.

NOTE

Obviously, running apt 's upgrade option is something you should do on a regular basis to keep
your system up to date. However, it is especially important to run it after a fresh distribution
installation. Usually there are lots of security patches and updates that have been released
since the last full release of a distribution.

Uninstalling software with apt

Getting rid of software packages with apt is as easy as installing and upgrading them. The only real choice you have
to make is whether or not to keep the software's data and configuration files around afterward.

To remove a software package, but not the data and configuration files, use apt 's remove command. To remove a
software package and the related data and configuration files, use the purge option:

$ sudo apt purge zsh

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following package was automatically installed and is no longer required:
zsh-common

Use 'sudo apt autoremove' to remove it.

The following packages will be REMOVED:
zsh*

0 upgraded, 0 newly installed, 1 to remove and 56 not upgraded.

After this operation, 2,390 kB disk space will be freed.

Do you want to continue? [Y/n] y

(Reading database ... 180985 files and directories currently installed.)

Removing zsh (5.8-3ubuntul)

Processing triggers for man-db (2.9.1-1)

(Reading database ... 180928 files and directories currently installed.)

Purging configuration files for zsh (5.8-3ubuntul)

Notice, though, as part of the purge output apt warns us that the zsh-common package that was installed as a
dependency wasn't removed automatically, just in case it might be required for some other package. If you're sure
the dependency package isn't required by anything else, you can remove it using the autoremove command:

$ sudo apt autoremove
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following packages will be REMOVED:
zsh-common
0 upgraded, 0 newly installed, 1 to remove and 56 not upgraded.
After this operation, 15.6 MB disk space will be freed.
Do you want to continue? [Y/n] y
(Reading database ... 180928 files and directories currently installed.)
Removing zsh-common (5.8-3ubuntul)
Processing triggers for man-db (2.9.1-1)
$

The autoremove command will check for all packages that are marked as dependencies and no longer required.

The apt repositories

The default software repository locations for apt are set up for you when you install your Linux distribution. The
repository locations are stored in the file /etc/apt/sources.list.

In many cases, you will never need to add/remove a software repository, so you won't need to touch this file.
However, apt will only pull software from these repositories. Also, when searching for software to install or update,
apt will only check these repositories. If you need to include some additional software repositories for your package
management system, this is the place to do it.

TIP

The Linux distribution developers work hard to make sure package versions added to the
repositories don't conflict with one another. Usually it's safest to upgrade or install a software
package from the repository. Even if a newer version is available elsewhere, you may want to
hold off installing it until that version is available in your Linux distribution's repository.

The following is an example of a sources. list file from an Ubuntu system:

$ cat /etc/apt/sources.list
#deb cdrom: [Ubuntu 20.04 LTS Focal Fossa_ - Release amd64 (20200423)]/ focal main restricted

See http://help.ubuntu.com/community/UpgradeNotes for how to upgrade to
newer versions of the distribution.

deb http://us.archive.ubuntu.com/ubuntu/ focal main restricted

deb-src http://us.archive.ubuntu.com/ubuntu/ focal main restricted

Major bug fix updates produced after the final release of the

distribution.

deb http://us.archive.ubuntu.com/ubuntu/ focal-updates main restricted

deb-src http://us.archive.ubuntu.com/ubuntu/ focal-updates main restricted

N.B. software from this repository is ENTIRELY UNSUPPORTED by the Ubuntu
team. Also, please note that software in universe WILL NOT receive any
review or updates from the Ubuntu security team.

deb http://us.archive.ubuntu.com/ubuntu/ focal universe

deb-src http://us.archive.ubuntu.com/ubuntu/ focal universe

deb http://us.archive.ubuntu.com/ubuntu/ focal-updates universe

deb-src http://us.archive.ubuntu.com/ubuntu/ focal-updates universe

N.B. software from this repository is ENTIRELY UNSUPPORTED by the Ubuntu
team, and may not be under a free licence. Please satisfy yourself as to
your rights to use the software. Also, please note that software in

multiverse WILL NOT receive any review or updates from the Ubuntu

security team.

deb http://us.archive.ubuntu.com/ubuntu/ focal multiverse

deb-src http://us.archive.ubuntu.com/ubuntu/ focal multiverse

deb http://us.archive.ubuntu.com/ubuntu/ focal-updates multiverse

deb-src http://us.archive.ubuntu.com/ubuntu/ focal-updates multiverse

N.B. software from this repository may not have been tested as

extensively as that contained in the main release, although it includes

newer versions of some applications which may provide useful features.

Also, please note that software in backports WILL NOT receive any review

or updates from the Ubuntu security team.

deb http://us.archive.ubuntu.com/ubuntu/ focal-backports main restricted universe multiverse

deb-src http://us.archive.ubuntu.com/ubuntu/ focal-backports main restricted universe multiverse

Uncomment the following two lines to add software from Canonical's

'partner' repository.

This software is not part of Ubuntu, but is offered by Canonical and the
respective vendors as a service to Ubuntu users.

deb http://archive.canonical.com/ubuntu focal partner

deb-src http://archive.canonical.com/ubuntu focal partner

deb http://security.ubuntu.com/ubuntu focal-security main restricted

deb-src http://security.ubuntu.com/ubuntu focal-security main restricted
deb http://security.ubuntu.com/ubuntu focal-security universe

deb-src http://security.ubuntu.com/ubuntu focal-security universe

deb http://security.ubuntu.com/ubuntu focal-security multiverse

deb-src http://security.ubuntu.com/ubuntu focal-security multiverse

*H

This system was installed using small removable media

(e.g. netinst, live or single CD). The matching "deb cdrom"
entries were disabled at the end of the installation process.
For information about how to configure apt package sources,
see the sources.list(5) manual.

First, notice that the file is full of helpful comments and warnings. The repository sources specified use the following
structure:

deb (or deb-src) address distribution name package type list

The deb or deb-src value indicates the software package type. The deb value indicates it is a source of compiled
programs, whereas the deb-src value indicates it is a source of source code.

The address entry is the software repository's web address. The distribution_name entry is the name of this
particular software repository's distribution version. In the example, the distribution name is focal . This does not
necessarily mean that the distribution you are running is Ubuntu's Focal Fossa; it just means the Linux distribution
is using the Ubuntu Focal Fossa software repositories. For example, in Linux Mint's sources. list file, you will see a
mix of Linux Mint and Ubuntu software repositories.

Finally, the package type list entry may be more than one word and indicates what type of packages the repository
has in it. For example, you may see values such as main , restricted, universe, or partner.

When you need to add a software repository to your sources file, you can try to wing it yourself, but that more than
likely will cause problems. Often, software repository sites or various package developer sites will have an exact line
of text that you can copy from their website and paste into your sources. list file. It's best to choose the safer route
and just copy/paste.

The front-end interface, apt , provides intelligent command-line options for working with the Debian-based dpkg
utility. Now it's time to take a look at the Red Hat—based distributions' rpm utility and its various front-end
interfaces.

The Red Hat-Based Systems

Like the Debian-based distributions, the Red Hat—based systems have several different front-end tools available.
The common ones are:

= yum: Used in Red Hat, CentOS, and Fedora
m zypper : Used in openSUSE
= dnf : An updated version of yum with some additional features

These front ends are all based on the rpm command-line tool. The following section discusses how to manage
software packages using these various rpm -based tools. The focus will be on dnf , but the other packages use similar
commands and formats.

Listing installed packages
To find out what is currently installed on your system, at the shell prompt type the following command:

dnf list installed

The information will probably whiz by you on the display screen, so it's best to redirect the installed software listing
into a file. You can then use the more or less command (or a GUI editor) to look at the list in a controlled manner.

dnf list installed> installed software

To find out detailed information for a particular software package, dnf really shines. Not only will it give you a very
verbose description of the package, but with another simple command, you can see whether the package is installed:

$ dnf list xterm

Last metadata expiration check: 0:05:17 ago on Sat 16 May 2020 12:10:24 PM EDT.
Available Packages

xterm.x86 64 351-1.fc31 updates

$ dnf list installed xterm
Error: No matching Packages to list

$ dnf list installed bash

Installed Packages

Bash.x86_64 5.0.11-1.fc31 @updates
$

Finally, if you need to find out what software package provides a particular file on your filesystem, the versatile dnf
can do that, too! Just enter the command

dnf provides file name
Here's an example of trying to find what software provided the file /usr/bin/gzip :
$ dnf provides /usr/bin/gzip

Last metadata expiration check: 0:12:06 ago on Sat 16 May 2020 12:10:24 PM EDT.
gzip-1.10-1.fc31.x86 64 : The GNU data compression program

Repo : @System
Matched from:
Filename 1 /usr/bin/gzip

gzip-1.10-1.fc31.x86 64 : The GNU data compression program

Repo : fedora
Matched from:
Filename 1 /usr/bin/gzip

$

dnf checked two separate repositories: the local system and the default fedora repository.

Installing software with dnf
Installation of a software package using dnf is incredibly easy. The following is the basic command for installing a
software package, all its needed libraries, and package dependencies from a repository:
dnf install package name
Here's an example of installing the zsh package, which provides an alternative command-line shell:
$ sudo dnf install zsh

[sudo] password for rich:
Last metadata expiration check: 0:19:45 ago on Sat 16 May 2020 12:05:01 PM EDT.

Dependencies resolved.

Package Architecture Version Repository Size
Installing:
zsh x86 64 5.7.1-6.fc31 updates 2.9 M

Transaction Summary

Install 1 Package

Total download size: 2.9 M

Installed size: 7.4 M

Is this ok [y/N]:

Downloading Packages:

zsh-5.7.1-6.fc31.x86_64.rpm 1.5 MB/s | 2.9 MB 00:01
Total 1.0 MB/s | 2.9 MB 00:02
Running transaction check

Transaction check succeeded.

Running transaction test

Transaction test succeeded.

Running transaction

Preparing : 1/1
Installing : zsh-5.7.1-6.fc31.x86_64 1/1
Running scriptlet: zsh-5.7.1-6.fc31.x86 64 1/1
Verifying : zsh-5.7.1-6.fc31.x86_64 1/1
Installed:
zsh-5.7.1-6.fc31.x86 64
Complete!
$

NOTE

Before the dnf command in the preceding listing, the sudo command is used. This command
allows you to switch to the root user to run the command. You should only switch to root user
temporarily in order to run administrative tasks, such as installing and updating software.

You can begin to see that one of dnf 's strengths is that it uses very logical and user-friendly commands.

Upgrading software with dnf

In most Linux distributions, when you're working away in the GUI, you get those nice little notification icons telling
you a software upgrade to a new version is needed. Here at the command line, it takes a little more work.

To see the list of all the available upgrades for your installed packages, type the following command:

dnf list upgrades

It's always nice to get no response to this command because it means you have nothing to upgrade! However, if you
do discover that a particular software package needs upgrading, then type in the following command:

dnf upgrade package name
If you'd like to upgrade all the packages listed in the upgrade list, just enter the following command:

dnf upgrade

NOTE

One nice extra feature in dnf is the upgrade-minimal command. It upgrades a package to the latest
bug fix or security patch version instead of the latest and greatest version.

Uninstalling software with dnf
The dnf tool also provides an easy way to uninstall software you no longer want on your system:

dnf remove package name

Unfortunately, as of this writing there isn't an option or command to remove the application files but keep any
configuration or data files.

While life is considerably easier with package management system packages, it's not always problem free.
Occasionally things do go wrong. Fortunately, there's help.
Dealing with broken dependencies

Sometimes as multiple software packages get loaded, a software dependency for one package can get overwritten by
the installation of another package. This is called a broken dependency.

If this should happen on your system, first try the following command:

dnf clean all
Then try to use the upgrade option in the dnf command. Sometimes, just cleaning up any misplaced files can help.
If that doesn't solve the problem, try the following command:

dnf repoquery --deplist package name

This command displays all the package's library dependencies and what software package provides them. Once you
know the libraries required for a package, you can then install them. Here's an example of determining the
dependencies for the xterm package:

dnf repoquery --deplist xterm

#

NOTE

The yum tool's upgrade command includes support for the --skip-broken option that skips over
broken packages but tries to continue upgrading other packages. The dnf tool does this
automatically.

RPM repositories

Just like the apt systems, dnf has its software repositories set up at installation. For most purposes, these
preinstalled repositories will work just fine for your needs. But if and when the time comes that you need to install
software from a different repository, here are some things you will need to know.

TIP

A wise system administrator sticks with approved repositories. An approved repository is one

that is sanctioned by the distribution's official site. If you start adding unapproved
repositories, you lose the guarantee of stability. And you will be heading into broken
dependencies territory.

To see what repositories you are currently pulling software from, type the following command:

dnf repolist

If you don't find a repository you need software from, then you will need to do a little configuration file editing.
There are two places where the dnf repository definitions can be located:

= In the /etc/dnf/dnf.conf configuration file
= Asseparate files in the /etc/yum. repos.d directory

Good repository sites such as rpmfusion.org will lay out all the steps necessary to use them. Sometimes these
repository sites will offer an RPM file that you can download and install. The installation of the RPM file will do all

the repository setup work for you. Now that's convenient!

Managing Software Using Containers

Although package management systems have certainly made software installation in the Linux world much easier,
they do have their drawbacks. To start with, as you've already seen in this chapter, there are multiple competing
package management systems. So for application developers to distribute an application that can be installed in all
Linux distributions, they must create multiple versions to distribute.

But there's even more complexity than that. Every application has some type of library functions that it depends on

to run. When developers create a Linux application, they must take into consideration what library files are available
in most Linux distributions, and not only that, but also what versions of the library files. Although package
management systems can track dependencies, as you can guess, this can quickly turn into a nightmare for software
developers trying to get their applications working in most Linux distributions.

With cloud computing came a new paradigm in how applications can be packaged: application containers. An
application container creates an environment where all the files required for an application to run are bundled
together, including runtime library files. The developer can then release the application container as a single
package and be guaranteed that it'll run just fine on any Linux system.

Though still relatively new, several competing application container standards are starting to emerge. The following
sections take a look at two of the more popular ones: snap and flatpak.

Using snap containers

Canonical, the creators of the Ubuntu Linux distribution, have developed an application container format called
snap. The snap packaging system bundles all the files required for an application into a single snap distribution file.
The snapd application runs in the background, and you use the snap command-line tool to query the snap database
to display installed snap packages, as well as to install, upgrade, and remove snap packages.

To check whether snap is running on your system, use the snap version command:

$ snap version

snap 2.44.3+20.04
snapd 2.44.3+20.04
series 16

ubuntu 20.04

kernel 5.4.0-31-generic
$

If snap is running, you can see a list of the currently installed snap applications by using the snap list command:

$ snap list

Name Version Rev Tracking Publisher Notes
core 16-2.44.3 9066 latest/stable canonicalv core
corel8 20200427 1754 latest/stable canonicalv base
gimp 2.10.18 273 latest/stable snapcrafters -
gnome-3-28-1804 3.28.0-16-927c9498.27c9 116 Tlatest/stable canonicalv -
gnome-3-34-1804 0+git.3009fc7 33 Tlatest/stable/... canonicalv -
gtk-common-themes 0.1-36-gc75f853 1506 latest/stable/... canonicalv -
gtk2-common-themes 0.1 9 Tlatest/stable canonicalv -
snap-store 3.36.0-74-gal6dec9 433 Tlatest/stable/... canonicalv -
snapd 2.44.3 7264 latest/stable canonicalv snapd
$

To search the snap repository for new applications, use the snap find command:

$ snap find solitaire

Name Version Publisher Notes Summary

solitaire 1.0 lbsyl - usual Solitaire card game,

as known as Patience or Klondike

kmahjongg 20.04.1 kdev - Mahjong Solitaire

kshisen 19.08.0 kdev - Shisen-Sho Mahjongg-like TileGame
kpat 20.04.0 kdev - Solitaire card game
freecell-solitaire 1.0 lbsyl - FreeCell Solitaire, card game
open-solitaire-classic 0.9.2 metasmug - Open-source implementation of the
classic solitaire game

spider-solitaire 1.0 lbsyl - Spider Solitaire card game
solvitaire master popey - solitaire (klondike & spider) in your terminal
gnome-mahjongg 3.34.0 ken-vandine - Match tiles and clear the board

$

To view more information about a snap application (snap for short), use the snap info command:

$ snap info solitaire

name: solitaire

summary: usual Solitaire card game, as known as Patience or Klondike
publisher: Sylvain Becker (1lbsyl)

store-url: https://snapcraft.io/solitaire

contact: sylvain.becker@gmail.com
license: Proprietary
description: |

This is the usual Solitaire card game. Also known as Patience or Klondike.
snap-id: OrnkesZh4jFy90ovDTvL661qVTW4iDdE

channels:
latest/stable: 1.0 2017-05-17 (2) 11MB -
latest/candidate: 1.0 2017-05-17 (2) 11MB -
latest/beta: 1.0 2017-05-17 (2) 11MB -
latest/edge: 1.0 2017-05-17 (2) 11MB -
$

To install a new snap, use the snap install command:

$ sudo snap install solitaire
[sudo] password for rich:

solitaire 1.0 from Sylvain Becker (lbsyl) installed
$

Notice that you must have root user privileges to install snap. In Ubuntu, that means using the sudo command.

NOTE

When you install a snap, the snapd program mounts it as a drive. You can see the new snap
mount by using the mount command.

If you need to remove a snap, just use the snap remove command:

$ sudo snap remove solitaire
solitaire removed

$
As the snap is removed, you'll see some messages about the progress of the removal.

NOTE

Instead of removing a snap, you can just disable it without removing it. Just use the snap disable
command. To reenable the snap, use the snap enable command.

Using flatpak containers

The flatpak application container format was created as an independent open source project with no direct ties to
any specific Linux distribution. That said, battle lines have already been drawn, with Red Hat, CentOS, and Fedora
oriented toward using flatpak instead of Canonical's snap container format.

If you're using a Linux distribution that supports flatpak, you can list the installed application containers using the
flatpak list command:

$ flatpak list

Name Application ID Version Branch Installation
Platform org.fedoraproject.Platform 32 system
$

To find an application in the flatpak repository, you use the flatpak search command:

$ flatpak search solitaire

Name Description Application ID Version Branch Remotes
Aisleriot Solitaire org.gnome.Aisleriot stable fedora

GNOME Mahjongg org.gnome.Mahjongg 3.32.0 stable fedora
$

We edited out some of the information in the output to help simplify things. When working with a container you
must use its Application ID value and not its name. To install the application, use the flatpak install command:

$ sudo flatpak install org.gnome.Aisleriot

Looking for matches...

Found similar ref(s) for 'org.gnome.Aisleriot' in remote 'fedora' (system).
Use this remote? [Y/n]: y

org.gnome.Aisleriot permissions:
ipc pulseaudio wayland x11 dri file access [1] dbus
access [2]

[1] xdg-run/dconf, ~/.config/dconf:ro
[2] ca.desrt.dconf, org.gnome.GConf
ID Arch Branch Remote Download

1. [v] org.gnome.Aisleriot x86_ 64 stable fedora 8.4MB / 8.4MB

Installation complete.
$

To check if the installation went well, you can use the flatpak list command again:

$ flatpak list

Name Application ID Version Branch Installation
Platform org.fedoraproject.Platform 32 system
Aisleriot Solitaire org.gnome.Aisleriot stable system

$

And finally, to remove an application container, use the flatpak uninstall command:

$ sudo flatpak uninstall org.gnome.Aisleriot

ID Arch Branch
1. [-] org.gnome.Aisleriot x86_64 stable

Uninstall complete.

$
Using application containers is similar to using package management systems, but what goes on behind the scenes is
fundamentally different. However, the end result is that you have an application installed on your Linux system that
can be easily maintained and upgraded.

Installing from Source Code

Before package management systems and application containers, open source application developers had to
distribute their software as source code and allow users to compile the applications on their own systems. Source
code packages were commonly released as tarballs. Chapter 4, “More Bash Shell Commands,” discussed tarball
packages — how to create them using the tar command-line command and how to unpack them.

If you develop or work with open source software source code much, there's a good chance you will still find software
packed up as a tarball. This section walks you through the process of unpacking and installing a tarball software
package.

For this example, the software package sysstat will be used. The sysstat utility is a very nice software package that
provides a variety of system monitoring tools.

First, you will need to download the sysstat tarball to your Linux system. While you can often find the sysstat
package available on different Linux sites, it's usually best to go straight to the source of the program. In this case,
it's the website sebastien.godard.pagesperso-orange. fr.

When you click the Download link, you'll go to the page that contains the files for downloading. The current version
as of this writing is 12.3.3, and the distribution filename is sysstat-12.3.3.tar.xz.

Click the link to download the file to your Linux system. Once you have downloaded the file, you can unpack it.
To unpack a software tarball, use the standard tar command:

$ tar -JIxvf sysstat-12.3.3.tar.xz

sysstat-12.3.3/
sysstat-12.3.3/pcp_stats.h
sysstat-12.3.3/rd_sensors.h
sysstat-12.3.3/xml/
sysstat-12.3.3/xml/sysstat.xsd
sysstat-12.3.3/xml/sysstat-3.9.dtd
sysstat-12.3.3/sa.h
sysstat-12.3.3/man/
sysstat-12.3.3/man/sadf.in
sysstat-12.3.3/man/mpstat.1
sysstat-12.3.3/pcp_stats.c
sysstat-12.3.3/pr_stats.h
sysstat-12.3.3/rd_stats.c
sysstat-12.3.3/pr_stats.c
sysstat-12.3.3/.travis.yml
sysstat-12.3.3/configure

$

Now that the tarball is unpacked and the files have neatly put themselves into a directory called sysstat-12.3.3, you
can dive down into that directory and continue.

First, use the cd command to get into the new directory and then list the contents of the directory:

$ cd sysstat-12.3.3

$ 1s

activity.c images pr stats.h sar.c

BUG_REPORT INSTALL raw_stats.c sa_wrap.c

build ioconf.c raw_stats.h svg_stats.c
CHANGES ioconf.h rd_sensors.c svg_stats.h
cifsiostat.c iostat.c rd sensors.h sysconfig.in
cifsiostat.h iostat.h rd_stats.c sysstat-12.3.3.1lsm
common. ¢ json_stats.c rd_stats.h sysstat-12.3.3.spec
common.h json_stats.h README . md sysstat.in
configure Makefile.in rndr_stats.c sysstat.ioconf
configure.in man rndr_stats.h sysstat.service.in
contrib mpstat.c sal.in sysstat.sysconfig.in
COPYING mpstat.h sa2.in systest.c

count.c nls sa_common.c systest.h

count.h pcp_def metrics.c sa conv.c tapestat.c

CREDITS pcp_def metrics.h sa conv.h tapestat.h

cron pcp_stats.c sadc.c tests

do_test pcp_stats.h sadf.c version.in

FAQ.md pidstat.c sadf.h xml

format.c pidstat.h sadf misc.c xml:stats.c
iconfig pr_stats.c sa.h xml:stats.h

$

In the directory listing, you should typically see a README or an INSTALL file. It is very important to read this file. In

the file will be the instructions you will need to finish the software's installation.

Following the advice contained in the INSTALL file, the next step is to run the configure utility for your system. This
checks your Linux system to ensure it has the proper library dependencies, in addition to the proper compiler to
compile the source code:

$./configure
éheck programs:

checking for gcc... gcc
checking whether the C compiler works... yes

checking for C compiler default output file name... a.out
checking for suffix of executables...
checking whether we are cross compiling... no
checking for suffix of object files... o
checking whether we are using the GNU C compiler... yes
checking whether gcc accepts -g... yes
config.status: creating man/cifsiostat.l
config.status: creating tests/variables
config.status: creating Makefile
Sysstat version: 12.3.3
Installation prefix: /usr/local
rc directory: /etc
Init directory: /etc/init.d
Systemd unit dir: /lib/systemd/system
Configuration file: /etc/sysconfig/sysstat
Man pages directory: ${datarootdir}/man

Compiler: gcc
Compiler flags: -g -02

$
If anything does go wrong, the configure step will display an error message explaining what's missing.

NOTE

Most Linux utility programs are written using the C or C++ programming language. To compile
them on your system, you will need the gcc package installed, as well as the make package. Most
Linux desktop distributions don't install these by default. If the configure program shows an
error that these parts are missing, consult your specific Linux distribution docs on what
packages you need to install.

The next stage is to build the various binary files using the make command. The make command compiles the source
code and then the linker to create the final executable files for the package. As with the configure command, the
make command produces lots of output as it goes through the steps of compiling and linking all the source code files:

$ make
gcc -0 sadc.o -c -g -02 -Wall -Wstrict-prototypes -pipe -02
-DSA DIR=\"/var/log/sa\" -DSADC PATH=\"/usr/local/lib/sa/sadc\"
-DHAVE_SYS SYSMACROS H -DHAVE_ LINUX SCHED H -DHAVE_SYS PARAM H sadc.c
gcc -0 act sadc.o -c -g -02 -Wall -Wstrict-prototypes -pipe -02 -DSOURCE SADC
-DSA DIR=\"/var/log/sa\" -DSADC PATH=\"/usr/local/lib/sa/sadc\"
-DHAVE_SYS SYSMACROS H -DHAVE LINUX SCHED H -DHAVE_SYS PARAM H activity.c
gcc -0 sa wrap.o -c -g -02 -Wall -Wstrict-prototypes -pipe -02 -DSOURCE SADC
-DSA DIR=\"/var/log/sa\" -DSADC PATH=\"/usr/local/lib/sa/sadc\"
-DHAVE_SYS SYSMACROS H -DHAVE LINUX SCHED H -DHAVE_SYS PARAM H sa wrap.c
gcc -0 sa common _sadc.o -c -g -02 -Wall -Wstrict-prototypes -pipe -02 -DSOURCE_SADC
-DSA DIR=\"/var/log/sa\" -DSADC PATH=\"/usr/local/lib/sa/sadc\"
-DHAVE _SYS SYSMACROS H -DHAVE LINUX SCHED H -DHAVE SYS PARAM H sa common.c

$
When make is finished, you'll have the actual sysstat software program available in the directory! However, it's
somewhat inconvenient to have to run it from that directory. Instead, you'll want to install it in a common location

on your Linux system. To do that, you'll need to log in as the root user account (or use the sudo command if your
Linux distribution prefers), and then use the install option of the make command:

make install

mkdir -p /usr/local/share/man/manl

mkdir -p /usr/local/share/man/man5

mkdir -p /usr/local/share/man/man8

rm -f /usr/local/share/man/man8/sal.8%*

install -m 644 -g man man/sal.8 /usr/local/share/man/man8
rm -f /usr/local/share/man/man8/sa2.8%*

install -m 644 -g man man/sa2.8 /usr/local/share/man/man8
rm -f /usr/local/share/man/man8/sadc.8*

irlwétall -m 644 -g man man/sadc.8 /usr/local/share/man/man8

install -m 644 FAQ /usr/local/share/doc/sysstat-12.3.3

install -m 644 *.1lsm /usr/local/share/doc/sysstat-12.3.3

#
Now the sysstat package is installed on the system! Though not quite as easy as installing a software package via a
package management system, installing software using tarballs is not that difficult.

Summary

This chapter discussed how to work with a software package management system to install, update, or remove
software from the command line. Most of the Linux distributions use fancy GUI tools for software package
management, but you can also perform package management from the command line.

The Debian-based Linux distributions use the dpkg utility to interface with the package management system from
the command line, and the apt-cache and apt-get utilities to interface with a common repository to easily download
and install new software. A front end to these utilities is apt . It provides simple command-line options for working
with software packages in the dpkg format.

The Red Hat—based Linux distributions are based on the rpm utility but use different front-end tools at the command
line. Red Hat, CentOS, and Fedora use dnf for installing and managing software packages. The openSUSE
distribution uses zypper for managing software.

Application containers are a relatively new player in software package management. An application container
bundles all the files necessary for an application to run in one installable package. This means the application
doesn't rely on any external dependencies such as library files, and the container bundle can be installed in any
Linux distribution and run. Currently the two most popular container packages are snap, common in the Ubuntu
Linux distribution, and flatpak, used in Red Hat Linux environments.

The chapter closed with a discussion on how to install software packages that are only distributed in source code
tarballs. The tar command allows you to unpack the source code files from the tarball, and then configure and make
allow you to build the final executable program from the source code.

The next chapter takes a look at the various editors available in Linux distributions. As you get ready to start
working on shell scripts, it will come in handy to know what editors are available to use.

CHAPTER 10
Working with Editors

IN THIS CHAPTER
Working with the vim editor

Exploring nano

Understanding Emacs

Getting comfortable with KWrite
Looking at Kate

Using the GNOME editor

Before you start your shell scripting career, it's wise to gain proficiency using at least one text editor in Linux. Using
features such as searching, cutting, and pasting allows you to develop your shell scripts more quickly.

You have the choice of several editors. Many individuals find a particular editor whose functionality they love and
use that one exclusively. This chapter provides a brief sampling of a few of the text editors you can employ in the
Linux world.

Visiting the vim Editor

The vi editor was one of the early editors used on Unix systems. It uses the console graphics mode to emulate a text-
editing window, allowing you to see the lines of your file; move around within the file; and insert, edit, and replace
text.

Although it is quite possibly the most complicated editor in the world (at least in the opinion of those who don’t like
it), vi provides many features that have made it a staple for programmers and system administrators for decades.

When the GNU Project ported the vi editor to the open source world, they chose to make some improvements to it.
Because it extended the original vi editor found in the Unix world, the developers also renamed it “vi improved” or
vim.

This section walks you through the basics of using the vim editor to edit your text shell script files.

Checking your vim package

Before you begin your exploration of the vim editor, it's a good idea to understand what vim package your Linux
system has installed. On some distributions, you will have the full vim package installed and an alias for the vi
command, as shown on this CentOS distribution:

$ alias vi

alias vi='vim'

$

$ which vim

/usr/bin/vim

$

$ 1s -1 /usr/bin/vim

-rwxr-xr-x. 1 root root 3522560 Nov 11 14:08 /usr/bin/vim
$

Notice that the program file's long listing does not show any linked files (see Chapter 3, “Basic Bash Shell
Commands,” for more information on linked files). If the vim program is linked, it may be linked to a less than full-
featured editor. Thus, it's a good idea to check for linked files.

On other distributions, you will find various flavors of the vim editor. Notice on this Ubuntu distribution that not
only is there no alias for the vi command, but the /usr/bin/vi program file belongs to a series of file links:

$ alias vi

-bash: alias: vi: not found

$

$ which vi

/usr/bin/vi

$

$ 1s -1 /usr/bin/vi

lrwxrwxrwx 1 root root 20 Apr 23 14:33 /usr/bin/vi ->
/etc/alternatives/vi

$ s -1 /etc/alternatives/vi
lTrwxrwxrwx 1 root root 17 Apr 23 14:33 /etc/alternatives/vi ->
/usr/bin/vim.tiny

$
$ readlink -f /usr/bin/vi
/usr/bin/vim.tiny

$

Thus, when the vi command is entered, the /usr/bin/vim.tiny program is executed. The vim.tiny program provides
only a few vim editor features. If you are serious about trying out the vim editor and are using a distribution that
uses a vim alternative, such as vim. tiny, consider installing the basic vim package for more vim features.

NOTE

Notice in the preceding example that, instead of having to use the 1s -1 command multiple
times to find a series of linked files' final object, you can use the readlink -f command. It
immediately produces the linked file series' final object.

Software package management was covered in detail in Chapter 9, “Installing Software.” Installing the basic vim
package on this Ubuntu distribution is fairly straightforward:

$ sudo apt install vim
[sudo] password for christine:
[...1]
The following additional packages will be installed:
vim-runtime
Suggested packages:
ctags vim-doc vim-scripts
The following NEW packages will be installed:
vim vim-runtime
[...]
Do you want to continue? [Y/n] Y
[...]
Setting up vim (2:8.1.2269-1ubuntu5)
[...]
Processing triggers for man-db (2.9.1-1)
$
$ readlink -f /usr/bin/vi
/usr/bin/vim.basic
$
The basic vim editor is now installed on this Ubuntu distribution, and the /usr/bin/vi program file's link was
automatically changed to point to /usr/bin/vim.basic . Thus, when the vi command is entered on this Ubuntu
system, the basic vim editor is used instead of tiny vim.

Exploring vim basics

The vim editor works with data in a memory buffer. To start the vim editor, just type the vim command (or vi if
there's an alias or linked file) and the name of the file you want to edit:

$ vi myprog.c

If you start vim without a filename, or if the file doesn't exist, vim opens a new buffer area for editing. If you specify
an existing file on the command line, vim reads the entire file's contents into a buffer area, where it is ready for
editing, as shown in Figure 10-1.

#include <stdio.h>

int main()
{
int 1;
int factorial

:1;
int number = 5;

for(i = 1; 1 <= number; i++)
{
}

printf("The factorial of %d is %d\n", number, factorial);
return 0;

factorial = factorial * 1i;

"myprog.c" 16L, 248C 2,0-1 All

FIGURE 10-1 The vim main window

The vim editor detects the terminal type for the session (see Chapter 2, “Getting to the Shell”) and uses a full-screen
mode to consume the entire console window for the editor area.

The initial vim edit window shows the contents of the file (if there are any) along with a message line at the bottom
of the window. If the file contents don't take up the entire screen, vim places a tilde (~) on lines that are not part of
the file (as shown in Figure 10-1).

The message line at the bottom indicates information about the edited file, depending on the file's status, and the
default settings in your vim installation. If the file is new, the message [New File] appears.

The vim editor has three modes of operation:
= Command mode
= Ex mode
= Insert mode

When you first open a file (or start a new file) for editing, the vim editor enters command mode (sometimes called
normal mode). In command mode, the vim editor interprets keystrokes as commands (more on those later).

In insert mode, vim places the letter, number, or symbol of the keys you type at the current cursor location in the
buffer. To enter insert mode, enter i . To get out of insert mode and go back into command mode, press the Esc key
on your keyboard.

In command mode, you can move the cursor around the text area by using the arrow keys (as long as your terminal
type is detected properly by vim). If you happen to be on an unusual terminal connection that doesn't have the arrow
keys defined, all hope is not lost. The vim editor include commands for moving the cursor:

= h to move left one character

= j to move down one line (the next line in the text)
= k to move up one line (the previous line in the text)
= 1 to move right one character

Moving around within large text files line by line can get tedious. Fortunately, vim provides a few commands to help
speed things along:

= Press PageDown (or Ctrl+F) to move forward one screen of data.
m Press PageUp (or Ctrl+B) to move backward one screen of data.

= Enter G to move to the last line in the buffer.

= Enter num G to move to the line number num in the buffer.
= Enter gg to move to the first line in the buffer.

The vim editor has a special feature within command mode called Ex mode. This mode provides an interactive
command line where you can enter additional commands to control the actions in vim. To get to Ex mode, press the
colon key (:) in command mode. The cursor moves to the message line, and a colon (:) appears, waiting for you to
enter a command.

Within the Ex mode are several commands for saving the buffer to the file and exiting vim:
® qto quit if no changes have been made to the buffer data
® q! to quit and discard any changes made to the buffer data
® filename to save the file under a different filename
= wq to save the buffer data to the file and quit

After seeing just a few basic vim commands, you might understand why some people loathe the vim editor. To use
vim to its fullest, you must know plenty of obscure commands. However, after you get a few of the basic vim
commands down, you can quickly edit files directly from the command line, no matter what type of environment
you're in. Due to its enormous functionality and despite its steep learning curve, the vim editor maintains its
popularity. It is still considered one of the top 10 text editors.

Editing data

While in command mode, the vim editor provides several commands for editing the data in the buffer. Table 10-1
lists some common editing commands for vim.

TABLE 10-1 vim Editing Commands

Command Description

x Deletes the character at the current cursor position.

dd Deletes the line at the current cursor position.

dw Deletes the word at the current cursor position.

ds$ Deletes to the end of the line from the current cursor position.

J Deletes the line break at the end of the line at the current cursor position (joins lines).
u Undoes the previous edit command.

a Appends data after the current cursor position.

A Appends data to the end of the line at the current cursor position.

r char Replaces a single character at the current cursor position with char.

R text Overwrites the data at the current cursor position with text , until you press Esc.

Some of the editing commands also allow you to use a numeric modifier to indicate how many times to perform the
command. For example, the command 2x deletes two characters, starting from the current cursor position, and the
command 5dd deletes five lines, starting at the line from the current cursor position.

NOTE

Be careful when trying to use the keyboard Backspace or Delete key while in the vim editor's
command mode. The vim editor usually recognizes the Delete key only as the functionality of
the x command, deleting the character at the current cursor location. Usually, the vim editor
doesn't recognize the Backspace key in command mode as a deleting action, but instead as a
method to move the cursor back one space.

Copying and pasting

A standard editor feature is the ability to cut or copy data and paste it elsewhere in the document. The vim editor
provides a way to do this.

Cutting and pasting is relatively easy. You've already seen the commands in Table 10-1 that can remove data from
the buffer. However, when vim removes data, it actually keeps it stored in a separate area. While in command mode,
that data is retrievable by using the p command.

For example, use the dd command to delete a line of text, move the cursor to the buffer location where you want to
place it, and then use the p command. The p command inserts the text after the line at the current cursor position.
You can do this with any command that removes text while in command mode.

Copying text is a little bit trickier. The copy command in vim is y (for yank). You can use the same second character
with y as with the d command (yw to yank a word, y$ to yank to the end of a line). After you yank the text, move the

cursor to the location where you want to place the text and use the p command. The yanked text now appears at that
location.

Yanking is tricky in that you can't see what happened because you're not affecting the text that you yank. You never
know for sure what you yanked until you paste it somewhere. But there's another feature in vim that helps you out
with yanking.

While in command mode, the visual mode highlights text as you move the cursor. You use visual mode to select text
to yank for pasting. To enter visual mode, move the cursor to the location where you want to start yanking, and press
v . Notice that the text at the cursor position is now highlighted. Next, move the cursor to cover the text you want to
yank (you can even move down lines to yank more than one line of text). As you move the cursor, vim highlights the
text in the yank area. After you've covered the text you want to copy, enter y to activate the yank command. Now that
you have the text in the register, just move the cursor to where you want to paste and use the p command.

Searching and substituting

You can easily search for data in the buffer using the vim search command. To enter a search string, press the
forward slash (/) key. The cursor goes to the message line, and vim displays a forward slash. Enter the text you want
to find, and press the Enter key. The vim editor responds with one of three actions:

= If the word appears after the current cursor location, it jumps to the first location where the text appears.

= If the word doesn't appear after the current cursor location, it wraps around the end of the file to the first
location in the file where the text appears (and indicates this with a message).

» It produces an error message stating that the text was not found in the file.

If the word appears, to continue searching for the same word, press the forward slash character and then press the
Enter key, or you can use n, which stands for next.

NOTE

Are you more familiar with writing scripts and programs on a Microsoft Windows platform
with an integrated development environment (IDE)? If so, Microsoft's Visual Studio Code is
available on Linux. (We'll wait a minute for you to reread that last sentence.) Yes, Microsoft
offers Visual Studio for Linux. Find information for installing it on your particular Linux
distribution at code.visualstudio.com/docs/setup/linux. If desired, you can add the VSCodeVim
plugin to Visual Studio, and have all the vim commands at your fingertips.

The substitute command, performed within Ex mode, allows you to quickly replace (substitute) one word for
another in the text. To get to the substitute command, you must be in command-line mode. The format for the
substitute command is :s/ old / new / . The vim editor jumps to the first occurrence of the text old and replaces it
with the text new . You can make a few modifications to the substitute command to replace more than one occurrence
of the text:

® :s/old/ new /g to replace all occurrences of old in a line

® :n,ms/old/ new/gtoreplace all occurrences of old between line numbers n and m

® :%s/ old / new /g to replace all occurrences of old in the entire file

® :%s/old / new /gc to replace all occurrences of old in the entire file, but prompt for each occurrence

As you can see, for a console mode text editor, vim contains quite a few advanced features. Because nearly every
Linux distribution includes it, it's a good idea to at least know the basics of the vim editor so that you can always edit
scripts, no matter where you are or what you have available.

Navigating the nano Editor

In contrast to vim, which is a complicated editor with powerful features, nano is a simple editor. For individuals who
need a simple console mode text editor that is easy to navigate, nano is the tool to use. It's also a great text editor for
those who are just starting on their Linux command-line adventure.

The nano text editor is a clone of the Unix systems' Pico editor. Although Pico also is a light and simple text editor, it
is not licensed under the GPL. Not only is the nano text editor licensed under the GPL, it is also part of the GNU
project.

The nano text editor is installed on most Linux distributions by default. Everything about the nano text editor is
easy. To open a file at the command line with nano, enter

$ nano myprog.c
If you start nano without a filename, or if the file doesn't exist, nano simply opens a new buffer area for editing. If

you specify an existing file on the command line, nano reads the entire contents of the file into a buffer area, where it
is ready for editing, as shown in Figure 10-2.

int main()

{

int 1:
int factorial = 1;
int number = 5;

or(i = 1; 1 <= number; i++)

{
factorial = factorial * 1i;
}
printf("The factorial of %d is %d\n", number, factorial);
return 0;

b |

[Read 16 lines
gl Where Is gy Cut Text Justify
&l Replace MY Paste Text gl To Spell

Get Help Write Out
ad Exit flil Read File

FIGURE 10-2 The nano editor window

Notice that at the bottom of the nano editor window, various commands with brief descriptions are shown. These
commands are the nano control commands. The caret () symbol shown represents the Ctrl key. Therefore, ~X
stands for the keyboard sequence Ctrl+X.

TIP

Though the nano control commands list capital letters in the keyboard sequences, you can use
either lowercase or uppercase characters for control commands.

Having most of the basic commands listed right in front of you is great — no need to memorize what control
command does what. Table 10-2 presents the various nano control commands.

TABLE 10-2 nano Control Commands

Command Description

Ctrl+C Displays the cursor's position within the text editing buffer.
Ctrl+G Displays nano's main help window.

Ctrl+J Justifies the current text paragraph.

Ctrl+K Cuts the text line and stores it in cut buffer.

Ctrl+O Writes out the current text editing buffer to a file.

Ctrl+R Reads a file into the current text editing buffer.

Ctrl+T Starts the available spell checker.

Ctrl+U Pastes text stored in cut buffer and places in current line.
Ctrl+V Scrolls text editing buffer to next page.

Ctrl+W Searches for word or phrases within text editing buffer.
Ctrl+X Closes the current text editing buffer, exits nano, and returns to the shell.
Ctrl+Y Scrolls text editing buffer to previous page.

The control commands listed in Table 10-2 are really all you need. However, if you desire more powerful control

features than those listed, nano has them. To see more control commands, press Ctrl+G in the nano text editor to
display its main help window containing additional control commands.

NOTE

Some of these additional commands available in nano are called Meta-key sequences. In the
nano documentation, they are denoted by the letter M. For example, you'll find the key
sequence to undo the last task denoted as M-U in the nano help system. But don't press the M
key to accomplish this. Instead, M represents either the Esc, Alt, or Meta key, depending on
your keyboard's configuration. Thus, you might press the Alt+U key combination to undo the
last task within nano.

Even more features are available through command-line options to control the nano editor. Creating a backup file
before editing is one nice selection. Type man nano to see these additional command-line options for starting nano.

The vim and nano text editors offer a choice between powerful and simple console mode text editors. However,
neither offers the ability to use graphical features for editing. Some text editors can operate in both worlds, as
explored in the next section.

Exploring the Emacs Editor

The Emacs editor was an extremely popular editor for Digital Equipment Corporation (DEC) computers in the late
1970s. Developers liked it so much that they ported it to the Unix environment, and then to the Linux environment,
where its official name is GNU Emacs. Though currently not as popular as vim, it still has its place in the world.

The Emacs editor started out life as a console editor, much like vim, but was migrated to the graphical world. The
original console mode editor is still available, but it can use a graphical window to allow editing text in a graphical
environment. Typically, when you start the Emacs editor from a command line, if the editor determines you have an
available graphical session, it starts in graphical mode. If you don't, it starts in console mode.

This section describes both the console mode and graphical mode Emacs editors so that you'll know how to use
either one if you want (or need) to.

Checking your Emacs package

Many distributions do not come with the Emacs editor installed by default. You can check your Red Hat—based
distribution by using the which and/or dnf 1list (use yum list on older versions of Red Hat-based distributions)
command, as shown on this CentOS distribution:

$ which emacs

/usr/bin/which: no emacs in (/home/christine/.local/bin:
/home/christine/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:
/usr/sbin)

$ dnf list emacs
[...

Available Packages
emacs.x86 64[...]
$

The emacs editor package is not currently installed on this CentOS distribution. However, it is available to be
installed. (For a more thorough discussion on displaying installed software, see Chapter q.)

For a Debian-based distribution, check for the Emacs editor package by using the which and/or apt show command,
as shown on this Ubuntu distribution:

$ which emacs

$ apt show emacs

Package: emacs

[...]

Description: GNU Emacs editor (metapackage)

GNU Emacs is the extensible self-documenting text editor.
This is a metapackage that will always depend on the latest
recommended Emacs variant (currently emacs-gtk).

$

The which command operates a little differently here. When it does not find the installed command, it simply returns
the Bash shell prompt. The emacs editor package for this Ubuntu distribution is available to be installed. The
following shows the Emacs editor being installed on Ubuntu:

$ sudo apt install emacs
[sudo] password for christine:
Reading package lists... Done
[...]

Do you want to continue? [Y/n] Y

[...]

$ which emacs

/usr/bin/emacs

$
Now when the which command is used, it points to the emacs program file. The Emacs editor is ready for use on this
Ubuntu distribution.

For the CentOS distribution, install the Emacs editor using the dnf install or yum install command:

$ sudo yum install emacs
[sudo] password for christine:

[...]

Dependencies resolved.
[...]

Is this ok [y/N]: Y
Downloading Packages:
[...]

Complete!

$ which emacs
/usr/bin/emacs

$

With the Emacs editor successfully installed on your Linux distribution, you can begin to explore its different
features, starting with using it on the console.

Using Emacs on the console

The console mode version of Emacs is another editor that uses lots of key commands to perform editing functions.
The Emacs editor uses key combinations involving the Ctrl key and the Meta key. In most terminal emulator
packages, the Meta key is mapped to the Alt key.

The official Emacs documents abbreviate the Ctrl key as C- and the Meta key as M-. Thus, the Ctrl+X key
combination is shown in the document as C-x. This chapter section uses the Emacs' documentation format.
Exploring the basics of Emacs

To edit a file using Emacs, from the command line, enter

$ emacs myprog.c
The Emacs console mode window appears and loads the file into the active buffer, as shown in Figure 10-3.

#include <stdio.h>
int main()
{
int 1i;
int factorial = 1;
int number = 5;
for(i = 1; 1 <= number; i++)
1
factorial = factorial * i;
}
printf("The factorial of %d is %d\n", number, factorial);
return 0;
}
-UU-:----F1 myprog.c All L1 (C/*L Abbrev) -----vcecrrcccrcreneccnanns

FIGURE 10-3 Editing a file using the Emacs editor in console mode

You'll notice that the top of the console mode window shows a typical menu bar. Unfortunately, you can't use the
menu bar in console mode, only in graphical mode.

NOTE

If you run Emacs in a graphical desktop environment, some commands in this section work
differently than described. To use Emac's console mode in a graphical desktop environment,
use the emacs - nw command. If you want to use Emacs's graphical features, see the section
“Using Emacs in a GUL.”

Unlike the vim editor, where you move into and out of insert mode and switch between entering commands and
inserting text, the Emacs editor has only one mode. If you type a printable character, Emacs inserts it at the current
cursor position. If you type a command, Emacs executes the command.

To move the cursor around the buffer area, you can use the arrow keys and the PageUp and PageDown keys,
assuming that Emacs detected your terminal emulator correctly. If not, these commands move the cursor around:

= C-p moves up one line (the previous line in the text).
m C-b moves left (back) one character.
= C-f moves right (forward) one character.
= C-n moves down one line (the next line in the text).
The following commands make longer jumps within the text:
= M-f moves right (forward) to the next word.
= M-b moves left (backward) to the previous word.
= C-amoves to the beginning of the current line.
® C-e moves to the end of the current line.
= M-a moves to the beginning of the current sentence.
= M-e moves to the end of the current sentence.
= M-v moves back one screen of data.
= C-v moves forward one screen of data.
= M-<moves to the first line of the text.
= M->moves to the last line of the text.
You should know these commands for saving the editor buffer back into the file and exiting Emacs:
® C-x C-s saves the current buffer contents to the file.
= (C-z exits Emacs but keeps it running in your session so you can come back to it.
® C-x C-c exits Emacs and stops the program.
You'll notice that two of these features require two key combinations. The C-x command is called the extend
command. This provides yet another whole set of commands to work with.
Editing data

The Emacs editor is pretty robust about inserting and deleting text in the buffer. To insert text, just move the cursor
to the location where you want to insert the text and start typing.

To delete text, Emacs uses the Backspace key to delete the character before the current cursor position and the
Delete key to delete the character at the current cursor location.

The Emacs editor also has commands for cutting text. The Emacs documentation calls this killing text, but we'll stick
with the friendlier cutting terminology.

The difference between deleting text and cutting text is that when you cut text, Emacs places it in a temporary area
where you can retrieve it (see the next section, “Copying and Pasting”). Deleted text is gone forever.

These commands are for cutting text in the buffer:
= M-Backspace cuts the word before the current cursor position.
m M-d cuts the word after the current cursor position.
® C-k cuts from the current cursor position to the end of the line.

= M-k cuts from the current cursor position to the end of the sentence.

TIP

If you happen to make a mistake when cutting text, the c-/ command undoes the cut command
and returns the data to the state it was in before you cut it.

The Emacs editor also includes a fancy way of mass-cutting text. Just move the cursor to the start of the area you
want to cut, and press either the C-@ or C-spacebar keys. Then move the cursor to the end of the area you want to
cut, and enter C-w . All the text between the two locations is cut.

Copying and pasting

You've seen how to cut data from the Emacs buffer area; now it's time to see how to paste it somewhere else.
Unfortunately, if you use the vim editor, this process may confuse you when you use the Emacs editor.

In an unfortunate coincidence, pasting data in Emacs is called yanking. In the vim editor, copying is called yanking,
which is what makes this a difficult thing to remember if you happen to use both editors.

After you cut data using one of the cut commands, move the cursor to the location where you want to paste the data,
and use the C-y command. This yanks the text out of the temporary area and pastes it at the current cursor position.
The C-y command yanks the text from the last cut command. If you've performed multiple cut commands, you can
cycle through them using the M-y command.

To copy text, just yank it back into the same location you cut it from and then move to the new location and use the
C-y command again. You can yank text back as many times as you desire.

Searching and replacing

Searching for text in the Emacs editor is done by using the C-s and C-r commands. The C-s command performs a
forward search in the buffer area from the current cursor position to the end of the buffer, whereas the C-r
command performs a backward search in the buffer area from the current cursor position to the start of the buffer.

When you enter either the C-s or the C-r command, a prompt appears in the bottom line, querying you for the text to
search. You can perform two types of searches in Emacs.

In an incremental search, the Emacs editor performs the text search in real-time mode as you type the word. When
you type the first letter, it highlights all the occurrences of that letter in the buffer. When you type the second letter,
it highlights all the occurrences of the two-letter combination in the text and so on until you complete the text you're
searching for.

In a non-incremental search, press the Enter key after the C-s or C-r command. This locks the search query into the
bottom line area and allows you to type the search text in full before searching.

To replace an existing text string with a new text string, you must use the M-x command. This command requires a
text command, along with parameters.

The text command is replace-string . After typing the command, press the Enter key, and Emacs queries you for
the existing text string. After entering that, press the Enter key again and Emacs queries you for the new
replacement text string.

Using buffers in Emacs

The Emacs editor allows you to edit multiple files at the same time by having multiple buffer areas. You can load
files into a buffer and switch between buffers while editing.

To load a new file into a buffer while you're in Emacs, use the C-x C-f commands. This is the Emacs find-file mode,
called Dired. It takes you to the bottom line in the window and allows you to enter the name of the file you want to
start to edit. If you don't know the name or location of the file, just press the Enter key. This brings up a file browser
in the edit window, as shown in Figure 10-4.

dit Optio

/home/christine:
total used in directory
drwxr-xr-x 17 christine
drwxr-xr-x 4 root
“TW-=====~ 1 christine
-rw-r--r-- 1 christine
-rw-r--r-- 1 christine
drwx------ 14 christine
drwxr-xr-x 13 christine
drwxr-xr-x 2 christine
drwxr-xr-x 2 christine
drwxr-xr-x 2 christine
drwx------ 3 christine
drwx------ 3 christine
drwxr-xr-x 3 christine
drwx------ 5 christine
drwxr-xr-x 2 christine
-rwxrwxr-x 1 christine
-rw-rw-r-- 1 christine
lrwxrwxrwx 1 christine
@UDesktop.3662:1588962380
-rw-rw-r-- 1 christine
-FW------- 1 christine
drwxr-xr-x 2 christine
-rw-r--r-- 1 christine
drwxr-xr-x 2 christine
-UUU:%%--F1 christine

120 available 11645800

christine 4096
root 4096
christine 828
christine 220
christine 3782
christine 4096
christine 4096
christine 4096
christine 4096
christine 4096
christine 4096
christine 4096
christine 4696
christine 4096
christine 4096
christine 16688
christine 248
christine 34
christine 248
christine 20
christine 4096
christine 807
christine 4096
Top L3

May
Apr
May
Feb
May
May
May
Apr
Apr
Apr
May
May
Apr
May
Apr
May
May
May

May
May
Apr
Feb
Apr

(Dired by name)

8
23
8
25
7
al
1
e
T
23
8
2
23
1
23
7
8
8

8
T
23
25
2

16:05
15:12
14:11
07:03
13355
15:14
15:06
355
a5
15:13
15:35
16:35
15:13
15:14
25:12
14:26
16:05
16:03

31:11
14:29
352114
07:03
]

.bash_history
.bash_logout
.bashrc
.cache
.config
Desktop
Documents
Downloads
.emacs.d
.gnupg

.local
.mozilla
Music

myprog
#myprog.c#
.#myprog.c -> christine\

myprog.c
myprog.c.save
Pictures
.profile
Public

FIGURE 10-4 The Emacs file browser

From here, you can browse to the file you want to edit. To traverse up a directory level, go to the double dot entry
and press the Enter key. To traverse down a directory, go to the directory entry and press Enter. When you've found
the file you want to edit, press Enter and Emacs loads it into a new buffer area.

TIP

When you start the file browser in the edit window, you may decide you don't want to open a
file. In this case, enter q to quit the file browser window.

You can list the active buffer areas by entering the C-x C-b extended command combination. The Emacs editor splits
the editor window and displays a list of buffers in the bottom window. Emacs provides two buffers in addition to

your main editing buffer:
= A scratch area called scratch

= A message area called Messages

The scratch area allows you to enter LISP programming commands as well as enter notes to yourself. The messages
area shows messages generated by Emacs while operating. If any errors occur while using Emacs, they appear in the

messages area.

You can switch to a different buffer area in the window in two ways:

m Use C-x C-bto open the buffer listing window. Use C-x b and then type *Buffer List* to switch to that
window. Use the arrow keys to move the cursor to the buffer area you want and press the Enter key.

m Use C-x b to type in the name of the buffer area you want to switch to.

When you select the option to switch to the buffer listing window, Emacs opens the buffer area in a new window
area. The Emacs editor allows you to have multiple windows open in a single session. The following section
discusses how to manage multiple windows in Emacs.

Using windows in console mode Emacs

The console mode Emacs editor was developed many years before the idea of graphical windows appeared.
However, it was advanced for its time in that it could support multiple editing windows within the main Emacs

window.

You can split the Emacs editing window into multiple windows by using one of two commands:

m C-x 2 splits the window horizontally into two windows.
® C-x 3 splits the window vertically into two windows.

To move from one window to another, use the C-x o command. Notice that when you create a new window, Emacs
uses the buffer area from the original window in the new window. After you move into the new window, you can use
the C-x C-f command to load a new file or use one of the commands to switch to a different buffer area in the new
window.

To close a window, move to it and use the C-x 0 (that's a zero) command. If you want to close all the windows except
the one you're in, use the C-x 1 (that's a numerical one) command.
Using Emacs in a GUI

If you use Emacs from a GUI environment (such as in the GNOME Shell desktop), it starts in graphical mode, as
shown in Figure 10-5.

Activities © Emacs (GUI) * May8 17:38

$s emacs@UDesktop

File Edit Options Buffers Tools C Help

#include <stdio.h>

int main()
{
int 1:
int factorial = 1;
int number = 5;
@ for(i = 1; 1 <= number; i++)
{
factorial = factorial * 1i;
% -:--- myprog.c Top L2 (C/*1 Abbrev) |
Eelcome to GNU Emacs, one component of the GNU/Linux operating system.
= To follow a link, click Mouse-1 on it, or move to it and type RET.
To quit a partially entered command, type Control-g.
A

Important Help menu items:

— Emacs Tutorial Learn basic Emacs keystroke commands

? Read the Emacs Manual View the Emacs manual using Info

ng” (MNon)Warranty GNU Emacs comes with ABSOLUTELY NO WARRANTY
Copving Conditions Conditions for redistributing and changing Emacs

More Manuals / Ordering Manuals How to order printed manuals from the FSF

lleaful tacke-
U:%%- *GNU Emacs* Top L1 (Fundamental)

FIGURE 10-5 The Emacs graphical window

If you've already used Emacs in console mode, you should be fairly familiar with the graphical mode. All the key
commands are available as menu bar items. The Emacs menu bar contains the following items:

= File allows you to open files in the window, create new windows, close windows, save buffers, and print buffers.

= Edit allows you to cut and copy selected text to the clipboard, paste clipboard data to the current cursor
position, search for text, and replace text.

= Options provides settings for many more Emacs features, such as highlighting, word wrap, cursor type, and
setting fonts.

= Buffers lists the current buffers available and allows you to easily switch between buffer areas.

= Tools provides access to the advanced features in Emacs, such as the command-line interface access, spell
checking, comparing text between files (called diff), sending an email message, calendar, and the calculator.

m C allows advanced settings for highlighting C program syntax, compiling, running, and debugging the code.
= Help provides the Emacs manual online for access to help on specific Emacs functions.

The graphical Emacs window is an example of an older console application that made the migration to the graphical
world. Now that many Linux distributions provide graphical desktops (even on servers that don't need them),
graphical editors are becoming more commonplace. Popular Linux desktop environments (such as KDE Plasma and
GNOME Shell) have also provided graphical text editors specifically for their environments, which are covered in the

rest of this chapter.

Exploring the KDE Family of Editors

If you're using a Linux distribution that uses the KDE Plasma desktop environment, you have a couple of options
when it comes to text editors. The KDE project officially supports two popular text editors:

= KWrite: A single-screen text-editing package
= Kate: A full-featured, multiwindow text-editing package

Both of these editors are graphical text editors that contain many advanced features. The Kate editor also provides
extra niceties not often found in standard text editors. This section describes each of the editors and shows some of
the features you can use to help with your shell script editing.

Looking at the KWrite editor

The basic editor for the KDE Plasma environment is KWrite. It provides simple word processing—style text editing,
along with support for code syntax highlighting and editing. The default KWrite editing window is shown in Figure
10-6.

factorial.sh — KWrite

File Edit View Bookmarks Tools Settings Help

[new ™ oOpen... Save [0» SaveAs.. [Close

#1 in/

bash

factorial=1
number=5

for ((i=1; i == $number; i++))
> {

factorial=$({expr $factorial * $1i)

}
echo The factorial of $number is $factorial.

= Line 10, Column 45 INSERT Soft Tabs: 4 v UTF-8 Vv Bash v

@ = Bl usert : kwrite — Konsole factorial.sh — KWrite O =EE P ~11:21 AM =

FIGURE 10-6 The default KWrite window editing a shell script program

You can't tell from Figure 10-6, but the KWrite editor recognizes several types of programming languages and uses
color coding to distinguish constants, functions, and comments. The KWrite editing window provides full cut and
paste capabilities, using the mouse and the arrow keys. As with a word processor, you can highlight and cut (or copy)
text anywhere in the buffer area and paste it at any other place.

TIP

Typically, KWrite is no longer installed by default on the KDE desktop environment. However,
you can easily install it (see Chapter 9) on Plasma or other desktop environments, where
available. The package name is kwrite.

To edit a file using KWrite, you can either select KWrite from the KDE menu system on your desktop (some Linux
distributions even create a Panel icon for it) or start it from the command-line prompt:

$ kwrite factorial.sh

The kwrite command has several command-line parameters you can use to customize how it starts. Here are few of
the more practical ones:

® --stdin causes KWrite to read data from the standard input device instead of a file.
® - _encoding specifies a character encoding type to use for the file.

= --line specifies a line number in the file to start at in the editor window.

® - -column specifies a column number in the file to start at in the editor window.

The KWrite editor provides both a menu bar and a toolbar at the top of the edit window, allowing you to select
features and change the configuration settings of the KWrite editor.

The menu bar contains these items:
= File loads, saves, prints, and exports text from files.
= Edit manipulates text in the buffer area.
= View manages how the text appears in the editor window.

= Bookmarks handle pointers to return to specific locations in the text; this option may need to be enabled in
the configurations.

= Tools contains specialized features to manipulate the text.
= Settings configures the way the editor handles text.
= Help gives you information about the editor and commands.

The Edit menu bar item provides commands for all your text-editing needs. Instead of having to remember cryptic
key commands (which by the way, KWrite also supports), you can just select items in the Edit menu bar, as shown in

Table 10-3.
TABLE 10-3 The KWrite Edit Menu Items

Item Description

Undo Reverses the last action or operation.

Redo Reverses the last undo action.

Cut Deletes the selected text and places it in the clipboard.

Copy Copies the selected text to the clipboard.

Paste Inserts the current contents of the clipboard at the current cursor position.

Clipboard Displays portions of text recently copied to the clipboard from which you can select to paste.
History

Copy As Copies the selected text as HTML.
HTML

Select All Selects all text in the editor.

Deselect Deselects any text that is currently selected.

Block Toggles on/off block selection mode which allows vertical text selection.
Selection

Mode

Input Toggles between a normal and a vi-like editing mode.

Modes

Overwrite | Toggles insert mode to overwrite mode, replacing text with new typed text instead of just inserting the
Mode new text.

Find Produces the Find Text dialog box, which allows you to customize a text search.

Find Provides a submenu of various text searches — Find Next, Find Previous, Find Selected, and Find
Variants Selected Backwards.

Replace Produces the Replace With dialog box, which allows you to customize a text search and replace.
Go To Provides a submenu of various Go To choices — Move To Matching Bracket, Select To Matching

Bracket, Move To Previous Modified Line, Move To Next Modified Line, Go To Line.

The Find feature has two modes. Normal mode performs simple text searches and power searches. Replace mode
lets you do advanced searching and replacing if necessary. You toggle between the two modes using the icon on the
lower-right side of the window, as shown in Figure 10-7.

factorial.sh — KWrite

File Edit View Bookmarks Tools Settings Help

D New

D Open... Save E'} Save As... f‘ Close

n/basn

factorial=1
number=5

for ((i=1; i <= $number; i++))
=

factorial=$(expr $factorial * §i)

echo The factorial of $number is $factorial.

[>] Find:

Replace:

Mode: | Plain text

@- . user1 : kwrite — Konsole factorial.sh — KWrite ®m L E) a 4'24 PM =

FIGURE 10-7 The KWrite Find section

The Find power mode allows you to search not only with words, but with a regular expression (discussed in Chapter
20, “Regular Expressions”) for the search. You can use some other options to customize the search as well,
indicating, for example, whether or not to perform a case-sensitive search or to look only for whole words instead of
finding the text within words.

The Tools menu bar item provides several handy features for working with the text in the buffer area. Table 10-4
describes the tools available in KWrite.

TABLE 10-4 The KWrite Tools

Tool

Read Only Mode
Mode
Highlighting
Indentation
Encoding

End of Line

Add Byte Order
Mark

Scripts

Invoke Code
Completion

Word Completion
Spelling

Clean
Indentation

Align

Toggle Comment
Uppercase
Lowercase
Capitalize

Join Lines

Apply Word
Wrap

Description

Locks the text so that no changes can be made while in the editor.

Sets the file type arrangement for the text from a submenu selection.

Selects the text highlighting plan from a submenu selection.

Sets the indentation style for the text from a submenu selection.

Chooses the character set encoding used by the text.

Switches the End of Line characters between Unix, Windows/DOS, and Macintosh.
Toggles on/off setting a byte order mark (BOM) at the start of the text.

Selects scripted actions from a submenu for quickly accomplishing such items as editing.

Displays a tooltip suggesting the code text to use at the cursor's location; autocompletion using
the tip is selected by pressing Enter.

Performs autocompletion of the current typed text from a submenu selection.
Starts and/or controls the spell-check program for the text.

Returns all paragraph indentation to the original settings.

Forces the current line or the selected lines to return to the default indentation settings.
Turns the text line into a comment line using syntax based on the current mode selected.
Sets the selected text, or the character at the current cursor position, to uppercase.

Sets the selected text, or the character at the current cursor position, to lowercase.
Capitalizes the first letter of the selected text or the word at the current cursor position.

Combines the selected lines, or the line at the current cursor position and the next line, into one
line.

Enables word wrapping in the text. If a line extends past the editor window edge, the line
continues on the next line.

There are lots of tools for this simple text editor! The Mode and Indentation tools are particularly nice to help you
along if you are writing a script or program. The Mode's Script submenu is displayed in Figure 10-8.

() 4DOS BatchToMemory
) AMPLE

() AutoHotKey
() AWK

@ Bash

(_) BrightSeript
() Chicken
O cust

() CoffeeScript
(_) CubeScript
() Erlang

() Euphoria

() ferite
(0) GNU Linker Script
O

() JavaScript

(_) JavaScript React
1% [
)k

() LsL
() Lua

() Mason

MEL

() MS-DOS Batch

) UnrealScript

) NSIS (O Velocity

) Perl () Xonotic Script

() PHP (HTML) () Zsh
() Pig

() Pike

) PowerShell

) Praat

() Puppet

_) Python

filn

() QML

() Quake Script
) REXX

) Ruby

() Scheme

) sed

() Ssieve

() Taskjuggler

) Tk

() Tcsh

() TypeScript

) TypeScript React

3D
Assembler »
Configuration >
Database >
Hardware ?
Markup >
Other >

Scientific

Sources

| @ « 950 AM =

FIGURE 10-8 The KWrite Tool Mode Script submenu

The Settings menu includes the Configure Editor dialog box, shown in Figure 10-9.

The Configuration dialog box uses icons on the left side for you to select the feature in KWrite to configure. When
you select an icon, the right side of the dialog box shows the configuration settings for the feature.

The Appearance feature allows you to set several features that control how the text appears in the text editor
window. You can enable word wrap, line count (great for programmers), and word count from here. With the Fonts
& Colors feature, you can customize the complete color scheme for the editor, determining what colors to make each
category of text in the program code. There are also several customizations you can choose, such as encoding and

mode, so you don't have to set them via the menu system each time you open a file.

- Appearance
Appearance
General Borders
I (M| Dynamic Word Wrap
Fonts & Colors

[] wrap dynamic at static word wrap marker

Edi;m Dynamic word wrap indicators (if applicable):| Follow Line Numbers

I:gﬂ Align dynamically wrapped lines to indentation depth:| 80% of View Width .,
o /5

it Whitespace Highlighting
(W] Highlight tabulators
[] Highlight trailing spaces

Highlight marker size: | I
Advanced
[] show indentation lines
[] Highlight range between selected brackets
[] Animate bracket matching
(] Fold first line
[] show word count
[] Show line count
H Help v OK " Apply ® cancel

FIGURE 10-9 The KWrite Configure Editor dialog box

Looking at the Kate editor

The Kate editor is the flagship editor for the KDE Project. It uses the same core text editor as the KWrite application
(so most of those features are the same), but it incorporates lots of other features into a single package, including a
multiple document interface (MDI).

TIP

If you find that the Kate editor has not been installed with your KDE desktop environment, you
can easily install it (see Chapter 9). The package name that contains Kate is kate or kdesdk .

When you start the Kate editor from the Plasma menu system, you see the main Kate editor window, shown in
Figure 10-10.

You'll notice the window looks very similar to the KWrite editing window shown previously in Figure 10-6. However,
there are differences. For example, the left side frame shows the Documents icon. Clicking this icon opens a new
interface called the Documents List, shown in Figure 10-11, which allows switching between open documents,
creating new documents, and exploring other files to open.

factorial.sh — Kate

File Edit View Projects Bookmarks Sessions Tools Settings Help
. factorial.sh (B 00
@
E 1 #!/bin/bash
3| 2 |
8 factorial=1
4 number=5
B s
& for ((i=1; i == $number; i++))
7w {
8 factorial=$({expr $factorial * $i)
:;‘
10 echo The factorial of $number is $factorial.
11
= Line 11, Column 1 INSERT Soft Tabs: 4 UTF-8 Bash v
Q, search and Replace

FIGURE 10-10 The main Kate editing window

B~ factorial.sh — Kate v~ 0
Edit View Projects Bookmarks Sessions Tools Settings Help

DMl A v 5 factorial.sh O 00
1 P! /bin/bash

Create new document

3 factorial=1
factorial.sh 4 number=5
: for ((i=1; 1 <= $number; i++))

Documents [gsal
3]

factorial=$(expr $factorial * %$i)

P

echo The factorial of $number is
$factorial.
1 5 |

= ine1,Column1 INSERT oftTabs:. v JTF£ ~ Bash v

Q, Search and Replace

FIGURE 10-11 The Kate Documents List

Kate also supports several external plugin applications, which can be activated in the Plugin Manager window,
shown in Figure 10-12. You reach this feature by choosing Settings = Configure = Kate = Plugins. In this window,
you can select various plugins to make your shell scripting environment more productive.

Configure — Kate

Plugin Manager

! General
Q, Sessions Name
Plugins [] crags
92 Documents [:| Document Preview

92 Projects (W] Document switcher
H Terminal (W] Documents
v g mponen [] File system browser
~~ Appearance [j GDB
@ Fonts & Colors [] Lumen
Editing [] open Header
Open/Save (m) Project Plugin
[] Replicode
[] Rust code completion
(W] search & Replace
Snippets tool view
(] sqL Plugin

D Symbol Viewer
(M) Terminal tool view
(] Text Filter

[] XML Completion
[] XML validation

Description

Look up definitions/declarations with CTags

Preview the document in the target format

Quick document switching with ALT+Tab behavior

Displays the open documents in a file tree

File system browser tool view

Provides a simple GDB frontend

Lumen is a Autocompletion Plugin for D, using the DCD autoc...
Opens the corresponding .h/[.cpp|.c] file

Project plugin for Kate

Replicode

Code completion for Rust source code

Search & replace in opened documents or in files on disk
Toolview embedding the snippets management

Execute query on SQL databases

Extract and show reference symbols from source

Toolview embedding a terminal widget

Process text using terminal commands

Lists XML elements, attributes, attribute values and entities all...

Validates XML files using xmllint

B Help

" OK " Apply

FIGURE 10-12 The Kate Plugin Manager

One great feature of the Kate editor is the built-in terminal plugin (Terminal tool view), which provides a terminal
window, shown in Figure 10-13. The terminal icon at the bottom text editor's window starts the built-in terminal

emulator in Kate (using the KDE Konsole terminal emulator is covered in Chapter 2, “Getting to the Shell”).

TIP

If you don't see the terminal icon at