

Table	of	Contents
Cover

Title	Page

Copyright

Dedication

About	the	Authors

About	the	Technical	Editor

Acknowledgments

Introduction

Who	Should	Read	This	Book

How	This	Book	Is	Organized

Minimum	Requirements

Where	to	Go	from	Here

Part	I:	The	Linux	Command	Line

CHAPTER	1:	Starting	with	Linux	Shells

Investigating	Linux

Examining	Linux	Distributions

Summary

CHAPTER	2:	Getting	to	the	Shell

Reaching	the	Command	Line

Accessing	CLI	via	a	Linux	Console	Terminal

Accessing	CLI	via	Graphical	Terminal	Emulation

Using	the	GNOME	Terminal	Emulator

Using	the	Konsole	Terminal	Emulator

Using	the	xterm	Terminal	Emulator

Summary

CHAPTER	3:	Basic	Bash	Shell	Commands

Starting	the	Shell

Using	the	Shell	Prompt

Interacting	with	the	Bash	Manual

Navigating	the	Filesystem

Listing	Files	and	Directories

Handling	Files

Managing	Directories

Viewing	File	Contents

Summary

CHAPTER	4:	More	Bash	Shell	Commands

Monitoring	Programs

Monitoring	Disk	Space

Working	with	Data	Files

Summary

CHAPTER	5:	Understanding	the	Shell

Investigating	Shell	Types

Exploring	Parent	and	Child	Shell	Relationships

Understanding	External	and	Built-In	Commands

Summary

CHAPTER	6:	Using	Linux	Environment	Variables

Exploring	Environment	Variables

Setting	User-Defined	Variables

Removing	Environment	Variables

Uncovering	Default	Shell	Environment	Variables

Setting	the	PATH	Environment	Variable

Locating	System	Environment	Variables

Learning	about	Variable	Arrays

Summary

CHAPTER	7:	Understanding	Linux	File	Permissions

Exploring	Linux	Security

Using	Linux	Groups

Decoding	File	Permissions

Changing	Security	Settings

Sharing	Files

Access	Control	Lists

Summary

CHAPTER	8:	Managing	Filesystems

Exploring	Linux	Filesystems

Working	with	Filesystems

Managing	Logical	Volumes

Summary

CHAPTER	9:	Installing	Software

Exploring	Package	Management

Inspecting	the	Debian-Based	Systems

The	Red	Hat–Based	Systems

Managing	Software	Using	Containers

Installing	from	Source	Code

Summary

CHAPTER	10:	Working	with	Editors

Visiting	the	vim	Editor

Navigating	the	nano	Editor

Exploring	the	Emacs	Editor

Exploring	the	KDE	Family	of	Editors

Exploring	the	GNOME	Editor

Summary

Part	II:	Shell	Scripting	Basics

CHAPTER	11:	Basic	Script	Building

Using	Multiple	Commands

Creating	a	Script	File

Displaying	Messages

Using	Variables

Redirecting	Input	and	Output

Employing	Pipes

Performing	Math

Exiting	the	Script

Working	through	a	Practical	Example

Summary

CHAPTER	12:	Using	Structured	Commands

Working	with	the	if-then	Statement

Exploring	the	if-then-else	Statement

Nesting	ifs

Trying	the	test	Command

Considering	Compound	Testing

Working	with	Advanced	if-then	Features

Considering	the	case	Command

Working	through	a	Practical	Example

Summary

CHAPTER	13:	More	Structured	Commands

Looking	at	the	for	Command

Trying	the	C-Style	for	Command

Exploring	the	while	Command

Using	the	until	Command

Nesting	Loops

Looping	on	File	Data

Controlling	the	Loop

Processing	the	Output	of	a	Loop

Working	through	a	Few	Practical	Examples

Summary

CHAPTER	14:	Handling	User	Input

Passing	Parameters

Using	Special	Parameter	Variables

Being	Shifty

Working	with	Options

Standardizing	Options

Getting	User	Input

Working	through	a	Practical	Example

Summary

CHAPTER	15:	Presenting	Data

Understanding	Input	and	Output

Redirecting	Output	in	Scripts

Redirecting	Input	in	Scripts

Creating	Your	Own	Redirection

Listing	Open	File	Descriptors

Suppressing	Command	Output

Using	Temporary	Files

Logging	Messages

Working	through	a	Practical	Example

Summary

CHAPTER	16:	Script	Control

Handling	Signals

Running	Scripts	in	Background	Mode

Running	Scripts	without	a	Hang-up

Controlling	the	Job

Being	Nice

Running	like	Clockwork

Working	through	a	Practical	Example

Summary

Part	III:	Advanced	Shell	Scripting

CHAPTER	17:	Creating	Functions

Exploring	Basic	Script	Functions

Returning	a	Value	from	a	Function

Using	Variables	in	Functions

Investigating	Array	Variables	and	Functions

Considering	Function	Recursion

Creating	a	Library

Using	Functions	on	the	Command	Line

Working	Through	a	Practical	Example

Summary

CHAPTER	18:	Writing	Scripts	for	Graphical	Desktops

Creating	Text	Menus

Doing	Windows

Getting	Graphic

Working	Through	a	Practical	Example

Summary

CHAPTER	19:	Introducing	sed	and	gawk

Manipulating	Text

Looking	at	the	sed	Editor	Basic	Commands

Working	Through	a	Practical	Example

Summary

CHAPTER	20:	Regular	Expressions

Exploring	Regular	Expressions

Defining	BRE	Patterns

Trying	Out	Extended	Regular	Expressions

Working	Through	Some	Practical	Examples

Summary

CHAPTER	21:	Advanced	sed

Looking	at	Multiline	Commands

Holding	Space

Negating	a	Command

Changing	the	Flow

Replacing	via	a	Pattern

Placing	sed	Commands	in	Scripts

Creating	sed	Utilities

Working	Through	a	Practical	Example

Summary

CHAPTER	22:	Advanced	gawk

Using	Variables

Working	with	Arrays

Considering	Patterns

Structured	Commands

Printing	with	Formats

Using	Built‐in	Functions
Trying	Out	User‐Defined	Functions
Working	Through	a	Practical	Example

Summary

CHAPTER	23:	Working	with	Alternative	Shells

Considering	the	Dash	Shell

Looking	at	the	Dash	Shell	Features

Scripting	in	Dash

Exploring	the	zsh	Shell

Viewing	Parts	of	the	zsh	Shell

Scripting	with	zsh

Working	Through	a	Practical	Example

Summary

Part	IV:	Creating	and	Managing	Practical	Scripts

CHAPTER	24:	Writing	Simple	Script	Utilities

Performing	Backups

Managing	Account	Deletion

Monitoring	Your	System

Summary

CHAPTER	25:	Getting	Organized

Understanding	Version	Control

Setting	Up	Your	Git	Environment

Committing	with	Git

Summary

APPENDIX	A:	Quick	Guide	to	Bash	Commands

Reviewing	Built‐In	Commands
Looking	at	Common	Bash	Commands

Assessing	Environment	Variables

APPENDIX	B:	Quick	Guide	to	sed	and	gawk

The	sed	Editor

The	gawk	Program

Index

End	User	License	Agreement

List	of	Tables
Chapter	1

TABLE	1-1	The	SysVinit	Runlevels

TABLE	1-2	Linux	Filesystems

TABLE	1-3	Linux	Shells

TABLE	1-4	Other	Linux	Graphical	Desktops

TABLE	1-5	Core	Linux	Distributions

TABLE	1-6	Specialized	Linux	Distributions

Chapter	2

TABLE	2-1	Graphical	Interface	Elements

TABLE	2-2	setterm	Options	for	Foreground	and	Background	Appearance

TABLE	2-3	Popular	Graphical	Terminal	Emulator	Packages

TABLE	2-4	The	File	Menu

TABLE	2-5	The	Edit	Menu

TABLE	2-6	The	View	Menu

TABLE	2-7	The	Search	Menu

TABLE	2-8	The	Terminal	Menu

TABLE	2-9	The	Tabs	Menu

TABLE	2-10	The	File	Menu

TABLE	2-11	The	Edit	Menu

TABLE	2-12	The	View	Menu

TABLE	2-13	The	Bookmarks	Menu

TABLE	2-14	The	Settings	Menu

TABLE	2-15	The	Help	Menu

TABLE	2-16	xterm	Command-Line	Parameters

TABLE	2-17	xterm	+/–	Command-Line	Parameters

Chapter	3

TABLE	3-1	The	Linux	Man	Page	Conventional	Section	Names

TABLE	3-2	The	Linux	Man	Page	Section	Areas

TABLE	3-3	Common	Linux	Directory	Names

Chapter	4

TABLE	4-1	The	ps	Command	Unix	Parameters

TABLE	4-2	The	ps	Command	BSD	Parameters

TABLE	4-3	The	ps	Command	GNU	Parameters

TABLE	4-4	Linux	Process	Signals

TABLE	4-5	The	mount	Command	Parameters

TABLE	4-6	The	sort	Command	Parameters

TABLE	4-7	Linux	File	Compression	Utilities

TABLE	4-8	The	tar	Command	Functions

TABLE	4-9	The	tar	Command	Options

Chapter	5

TABLE	5-1	The	bash	Command-Line	Options

Chapter	6

TABLE	6-1	The	Bash	Shell	Bourne	Variables

TABLE	6-2	The	Bash	Shell	Environment	Variables

Chapter	7

TABLE	7-1	The	useradd	Command-Line	Parameters

TABLE	7-2	The	useradd	Change	Default	Values	Parameters

TABLE	7-3	User	Account	Modification	Utilities

TABLE	7-4	The	chage	Command	Parameters

TABLE	7-5	Linux	File	Permission	Codes

TABLE	7-6	The	chmod	SUID,	SGID,	and	Sticky	Bit	Octal	Values

Chapter	8

TABLE	8-1	Journaling	Filesystem	Methods

TABLE	8-2	Common	fdisk	Commands

TABLE	8-3	Common	gdisk	Commands

TABLE	8-4	Command-Line	Programs	to	Create	Filesystems

TABLE	8-5	The	fsck	Commonly	Used	Command-Line	Options

TABLE	8-6	The	Growing	and	Shrinking	LVM	Commands

Chapter	10

TABLE	10-1	vim	Editing	Commands

TABLE	10-2	nano	Control	Commands

TABLE	10-3	The	KWrite	Edit	Menu	Items

TABLE	10-4	The	KWrite	Tools

TABLE	10-5	The	GNOME	Desktop	gedit	Plugins

Chapter	11

TABLE	11-1	The	expr	Command	Operators

TABLE	11-2	Linux	Exit	Status	Codes

Chapter	12

TABLE	12-1	The	test	Numeric	Comparisons

TABLE	12-2	The	test	String	Comparisons

TABLE	12-3	The	test	File	Comparisons

TABLE	12-4	The	Double	Parentheses	Command	Symbols

Chapter	14

TABLE	14-1	Common	Linux	Command-Line	Options

Chapter	15

TABLE	15-1	Linux	Standard	File	Descriptors

TABLE	15-2	Default	lsof	Output

Chapter	16

TABLE	16-1	Linux	Signals

TABLE	16-2	The	jobs	Command	Parameters

Chapter	17

TABLE	17.1	The	shtool	Library	Functions

Chapter	18

TABLE	18.1	The	dialog	Widgets

TABLE	18.2	The	dialog	Command	Options

TABLE	18.3	kdialog	Window	Options

TABLE	18.4	The	zenity	Window	Widgets

Chapter	19

TABLE	19.1	The	sed	Command	Options

TABLE	19.2	The	gawk	Options

Chapter	20

TABLE	20.1	BRE	Special	Character	Classes

Chapter	21

TABLE	21.1	The	sed	Editor	Hold	Space	Commands

Chapter	22

TABLE	22.1	The	gawk	Data	Field	and	Record	Variables

TABLE	22.2	More	gawk	Built‐in	Variables
TABLE	22.3	Format	Specifier	Control	Letters

TABLE	22.4	The	gawk	Mathematical	Functions

TABLE	22.5	The	gawk	String	Functions

TABLE	22.6	The	gawk	Time	Functions

Chapter	23

TABLE	23.1	The	Dash	Command-Line	Parameters

TABLE	23.2	The	Dash	Shell	Built-in	Commands

TABLE	23.3	The	zsh	Shell	Command-Line	Parameters

TABLE	23.4	The	zsh	Core	Built-in	Commands

TABLE	23.5	The	zsh	Modules

Appendix	A

TABLE	A.1	Bash	Built‐In	Commands
TABLE	A.2	The	Bash	Shell	External	Commands

TABLE	A.3	Bash	Shell	Environment	Variables

Appendix	B

TABLE	B.1	The	sed	Command	Options

TABLE	B.2	The	gawk	Options

TABLE	B.3	The	gawk	Data	Field	and	Record	Variables

TABLE	B.4	More	gawk	Built‐In	Variables

List	of	Illustrations
Chapter	1

FIGURE	1-1	The	Linux	system

FIGURE	1-2	The	Linux	system	memory	map

FIGURE	1-3	The	KDE	Plasma	desktop	on	an	openSUSE	Linux	system

FIGURE	1-4	A	GNOME	3	desktop	on	an	Ubuntu	Linux	system

FIGURE	1-5	The	Cinnamon	desktop	from	Linux	Mint

FIGURE	1-6	The	Xfce	desktop	as	seen	in	the	MX	Linux	distribution

Chapter	2

FIGURE	2-1	A	simple	terminal	emulator	running	on	a	Linux	desktop

FIGURE	2-2	Linux	virtual	console	login	screen

FIGURE	2-3	Linux	virtual	console	with	inversescreen	being	turned	on

FIGURE	2-4	Finding	GNOME	Terminal	in	GNOME	Shell

FIGURE	2-5	GNOME	Terminal	on	CentOS

FIGURE	2-6	GNOME	Terminal	on	Ubuntu

FIGURE	2-7	GNOME	Terminal	icon	in	the	Favorites	bar

FIGURE	2-8	Reaching	the	Keyboard	Shortcuts	window

FIGURE	2-9	Creating	a	keyboard	shortcut

FIGURE	2-10	The	Konsole	terminal	emulator

FIGURE	2-11	The	xterm	terminal

Chapter	3

FIGURE	3-1	Manual	pages	for	the	hostname	command

FIGURE	3-2	A	Linux	virtual	directory	file	path

FIGURE	3-3	The	Linux	file	structure

FIGURE	3-4	Using	the	more	command	to	display	a	text	file

Chapter	4

FIGURE	4-1	The	output	of	the	top	command	while	it	is	running

Chapter	5

FIGURE	5-1	Parent	and	child	Bash	shell	processes

FIGURE	5-2	Subshell	nesting

FIGURE	5-3	External	command	forking

Chapter	7

FIGURE	7-1	The	Linux	file	permissions

Chapter	10

FIGURE	10-1	The	vim	main	window

FIGURE	10-2	The	nano	editor	window

FIGURE	10-3	Editing	a	file	using	the	Emacs	editor	in	console	mode

FIGURE	10-4	The	Emacs	file	browser

FIGURE	10-5	The	Emacs	graphical	window

FIGURE	10-6	The	default	KWrite	window	editing	a	shell	script	program

FIGURE	10-7	The	KWrite	Find	section

FIGURE	10-8	The	KWrite	Tool	Mode	Script	submenu

FIGURE	10-9	The	KWrite	Configure	Editor	dialog	box

FIGURE	10-10	The	main	Kate	editing	window

FIGURE	10-11	The	Kate	Documents	List

FIGURE	10-12	The	Kate	Plugin	Manager

FIGURE	10-13	The	Kate	built-in	terminal	window

FIGURE	10-14	The	Kate	configuration	dialog	box

FIGURE	10-15	The	gedit	main	editor	window

FIGURE	10-16	The	gedit	menu	system

FIGURE	10-17	The	gedit	Side	Panel

FIGURE	10-18	The	gedit	Side	Panel's	file	manager

FIGURE	10-19	The	gedit	Plugins	tab

FIGURE	10-20	The	gedit	Plugins	tab	after	installation

FIGURE	10-21	The	gedit	Embedded	Terminal	plugin

Chapter	11

FIGURE	11-1	Using	piping	to	send	data	to	the	more	command

FIGURE	11-2	Using	the	more	command	with	the	ls	command

Chapter	18

FIGURE	18-1	Displaying	a	menu	from	a	shell	script

FIGURE	18-2	Using	the	msgbox	widget	in	the	dialog	command

FIGURE	18-3	Using	the	yesno	widget	in	the	dialog	command

FIGURE	18-4	The	inputbox	widget

FIGURE	18-5	The	textbox	widget

FIGURE	18-6	The	menu	widget	with	menu	items

FIGURE	18-7	The	fselect	widget

FIGURE	18-8	The	meminfo	command	output	displayed	using	the	textbox	dialog	op...

FIGURE	18-9	A	kdialog	checklist	dialog	window

FIGURE	18-10	The	sys	admin	menu	script	using	kdialog

FIGURE	18-11	The	zenity	calendar	dialog	window

FIGURE	18-12	The	zenity	file	selection	dialog	window

FIGURE	18-13	The	system	admin	menu	using	zenity

FIGURE	18-14	The	dialog	form	feature

Chapter	20

FIGURE	20-1	Matching	data	against	a	regular	expression	pattern

Chapter	21

FIGURE	21-1	Reversing	the	order	of	a	text	file	using	the	hold	space

Chapter	24

FIGURE	24.1	Creating	an	archive	directory	hierarchy

Chapter	25

FIGURE	25-1	Conceptual	depiction	of	the	Git	environment

FIGURE	25-2	MWGuard	remote	repository

Linux®	Command	Line	and	Shell	Scripting
BIBLE
	

	

Richard	Blum

Christine	Bresnahan

	

	

	

	

Linux®	Command	Line	and	Shell	Scripting	Bible

Copyright	©	2021	by	John	Wiley	&	Sons,	Inc.,	Indianapolis,	Indiana

Published	simultaneously	in	Canada	and	the	United	Kingdom

ISBN:	978-1-119-70091-3
ISBN:	978-1-119-70094-4	(ebk)
ISBN:	978-1-119-70093-7	(ebk)

No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system	or	transmitted	in	any	form	or	by	any	means,	electronic,
mechanical,	photocopying,	recording,	scanning	or	otherwise,	except	as	permitted	under	Sections	107	or	108	of	the	1976	United	States
Copyright	Act,	without	either	the	prior	written	permission	of	the	Publisher,	or	authorization	through	payment	of	the	appropriate	per-
copy	fee	to	the	Copyright	Clearance	Center,	222	Rosewood	Drive,	Danvers,	MA	01923,	(978)	750-8400,	fax	(978)	646-8600.
Requests	to	the	Publisher	for	permission	should	be	addressed	to	the	Permissions	Department,	John	Wiley	&	Sons,	Inc.,	111	River
Street,	Hoboken,	NJ	07030,	(201)	748-6011,	fax	(201)	748-6008,	or	online	at	www.wiley.com/go/permissions.

LIMIT	OF	LIABILITY/DISCLAIMER	OF	WARRANTY:	THE	PUBLISHER	AND	THE	AUTHOR	MAKE	NO
REPRESENTATIONS	OR	WARRANTIES	WITH	RESPECT	TO	THE	ACCURACY	OR	COMPLETENESS	OF	THE
CONTENTS	OF	THIS	WORK	AND	SPECIFICALLY	DISCLAIM	ALL	WARRANTIES,	INCLUDING	WITHOUT
LIMITATION	WARRANTIES	OF	FITNESS	FOR	A	PARTICULAR	PURPOSE.	NO	WARRANTY	MAY	BE	CREATED	OR
EXTENDED	BY	SALES	OR	PROMOTIONAL	MATERIALS.	THE	ADVICE	AND	STRATEGIES	CONTAINED	HEREIN
MAY	NOT	BE	SUITABLE	FOR	EVERY	SITUATION.	THIS	WORK	IS	SOLD	WITH	THE	UNDERSTANDING	THAT
THE	PUBLISHER	IS	NOT	ENGAGED	IN	RENDERING	LEGAL,	ACCOUNTING,	OR	OTHER	PROFESSIONAL
SERVICES.	IF	PROFESSIONAL	ASSISTANCE	IS	REQUIRED,	THE	SERVICES	OF	A	COMPETENT	PROFESSIONAL
PERSON	SHOULD	BE	SOUGHT.	NEITHER	THE	PUBLISHER	NOR	THE	AUTHOR	SHALL	BE	LIABLE	FOR
DAMAGES	ARISING	HEREFROM.	THE	FACT	THAT	AN	ORGANIZATION	OR	WEB	SITE	IS	REFERRED	TO	IN	THIS
WORK	AS	A	CITATION	AND/OR	A	POTENTIAL	SOURCE	OF	FURTHER	INFORMATION	DOES	NOT	MEAN	THAT
THE	AUTHOR	OR	THE	PUBLISHER	ENDORSES	THE	INFORMATION	THE	ORGANIZATION	OR	WEBSITE	MAY
PROVIDE	OR	RECOMMENDATIONS	IT	MAY	MAKE.	FURTHER,	READERS	SHOULD	BE	AWARE	THAT
INTERNET	WEBSITES	LISTED	IN	THIS	WORK	MAY	HAVE	CHANGED	OR	DISAPPEARED	BETWEEN	WHEN
THIS	WORK	WAS	WRITTEN	AND	WHEN	IT	IS	READ.

For	general	information	on	our	other	products	and	services	please	contact	our	Customer	Care	Department	within	the	United	States
at	(877)	762-2974,	outside	the	United	States	at	(317)	572-3993	or	fax	(317)	572-4002.

Wiley	publishes	in	a	variety	of	print	and	electronic	formats	and	by	print-on-demand.	Some	material	included	with	standard	print
versions	of	this	book	may	not	be	included	in	e-books	or	in	print-on-demand.	If	this	book	refers	to	media	such	as	a	CD	or	DVD	that	is
not	included	in	the	version	you	purchased,	you	may	download	this	material	at	booksupport.wiley.com.	For	more	information	about
Wiley	products,	visit	www.wiley.com.

Library	of	Congress	Control	Number:	2020949805

Trademarks:	Wiley	and	the	Wiley	logo	are	trademarks	or	registered	trademarks	of	John	Wiley	&	Sons,	Inc.	and/or	its	affiliates,	in	the
United	States	and	other	countries,	and	may	not	be	used	without	written	permission.	Linux	is	a	registered	trademark	of	Linus
Torvalds.	All	other	trademarks	are	the	property	of	their	respective	owners.	John	Wiley	&	Sons,	Inc.	is	not	associated	with	any	product
or	vendor	mentioned	in	this	book.

www.EBooksWorld.ir

To	the	Lord	God	Almighty,	“in	whom	are	hidden	all	the	treasures	of	wisdom	and	knowledge.”

—	Colossians	2:3

About	the	Authors
Richard	Blum	has	worked	in	the	IT	industry	for	more	than	30	years	as	both	a	systems	and	a	network
administrator.	During	that	time,	he's	had	the	opportunity	to	work	with	lots	of	different	computer	products,
including	Windows,	NetWare,	Cisco,	Avaya,	different	flavors	of	UNIX,	and	of	course,	Linux.	Over	the	years	he's	also
volunteered	for	several	nonprofit	organizations	to	help	support	small	networks	that	had	little	financial	support.	Rich
is	the	author	of	many	Linux-based	books	for	total	Linux	geeks	and	teaches	online	courses	in	Linux	and	web
programming.	When	he's	not	busy	being	a	computer	nerd,	Rich	enjoys	playing	piano	and	bass	guitar	and	spending
time	with	his	wife,	Barbara,	and	their	two	daughters,	Katie	Jane	and	Jessica.

Christine	Bresnahan	started	working	with	computers	more	than	30	years	ago	in	the	IT	industry	as	a	systems
administrator.	Christine	is	an	adjunct	professor	at	Ivy	Tech	Community	College,	where	she	teaches	Linux
certification	and	Python	programming	classes.	She	also	writes	books	and	produces	instructional	resources	for	the
classroom.	During	her	downtime,	Christine	enjoys	spending	time	with	her	husband	and	family,	hiking,	and
gardening.

About	the	Technical	Editor
Jason	W.	Eckert	is	an	experienced	technical	trainer,	consultant,	and	best-selling	author	in	the	technology
industry.	With	45	industry	certifications,	25	published	textbooks,	and	over	30	years	of	technology	and	programming
experience,	Jason	brings	his	expertise	to	every	class	that	he	teaches	at	triOS	College.	For	more	information	about
him,	visit	jasoneckert.net.

Acknowledgments
First,	all	glory	and	praise	go	to	God,	who	through	His	Son,	Jesus	Christ,	makes	all	things	possible	and	gives	us	the
gift	of	eternal	life.

Many	thanks	go	to	the	fantastic	team	of	people	at	John	Wiley	&	Sons	for	their	outstanding	work	on	this	project.
Thanks	to	Kenyon	Brown,	the	acquisitions	editor,	for	offering	us	the	opportunity	to	work	on	this	book.	Also	thanks
to	Patrick	Walsh,	the	project	editor,	for	keeping	things	on	track	and	making	this	book	more	presentable.	Thanks,
Pat,	for	all	your	hard	work	and	diligence.	The	technical	editor,	Jason	Eckert,	did	a	wonderful	job	of	double-checking
all	the	work	in	the	book,	plus	making	suggestions	to	improve	the	content.	Thanks	to	Saravanan	Dakshinamurthy
and	his	team	for	their	endless	patience	and	diligence	to	make	our	work	readable.	We	would	also	like	to	thank	Carole
Jelen	at	Waterside	Productions,	Inc.,	for	arranging	this	opportunity	for	us,	and	for	helping	us	out	in	our	writing
careers.

Christine	would	like	to	thank	her	husband,	Timothy,	for	his	encouragement,	patience,	and	willingness	to	listen,	even
when	he	has	no	idea	what	she	is	talking	about.	Rich	would	like	to	thank	his	wife,	Barbara,	for	the	life-sustaining
baked	goods	she	readily	prepared	to	help	him	keep	up	his	energy	while	writing!

Introduction
Welcome	to	the	fourth	edition	of	Linux	Command	Line	and	Shell	Scripting	Bible.	Like	all	books	in	the	Bible	series,
you	can	expect	to	find	both	hands-on	tutorials	and	real-world	information,	as	well	as	reference	and	background
information	that	provides	a	context	for	what	you	are	learning.	This	book	is	a	fairly	comprehensive	resource	on	the
Linux	command	line	and	shell	commands.	By	the	time	you	have	completed	Linux	Command	Line	and	Shell
Scripting	Bible,	you	will	be	well	prepared	to	write	your	own	shell	scripts	that	can	automate	practically	any	task	on
your	Linux	system.

Who	Should	Read	This	Book
If	you're	a	systems	administrator	in	a	Linux	environment,	you'll	benefit	greatly	by	knowing	how	to	write	shell
scripts.	The	book	doesn't	walk	you	through	the	process	of	setting	up	a	Linux	system,	but	after	you	have	it	running,
you'll	want	to	start	automating	some	of	the	routine	administrative	tasks.	That's	where	shell	scripting	comes	in,	and
that's	where	this	book	helps	you	out.	This	book	demonstrates	how	to	automate	any	administrative	task	using	shell
scripts,	from	monitoring	system	statistics	and	data	files	to	generating	reports	for	your	boss.

If	you're	a	home	Linux	enthusiast,	you'll	also	benefit	from	Linux	Command	Line	and	Shell	Scripting	Bible.
Nowadays,	it's	easy	to	get	lost	in	the	graphical	world	of	prebuilt	widgets.	Most	desktop	Linux	distributions	try	their
best	to	hide	the	Linux	system	from	the	typical	user.	However,	sometimes	you	must	know	what's	going	on	under	the
hood.	This	book	shows	you	how	to	access	the	Linux	command-line	prompt	and	what	to	do	when	you	get	there.
Often,	performing	simple	tasks,	such	as	file	management,	can	be	done	more	quickly	from	the	command	line	than
from	a	fancy	graphical	interface.	You	can	use	a	wealth	of	commands	from	the	command	line,	and	this	book	shows
you	how	to	use	them.

How	This	Book	Is	Organized
This	book	leads	you	through	the	basics	of	the	Linux	command	line	and	into	more	complicated	topics,	such	as
creating	your	own	shell	scripts.	The	book	is	divided	into	four	parts,	each	one	building	on	the	previous	parts.

Part	I	assumes	that	you	either	have	a	Linux	system	running	or	are	looking	into	getting	a	Linux	system.	Chapter	1,
“Starting	with	Linux	Shells,”	describes	the	parts	of	a	total	Linux	system	and	shows	how	the	shell	fits	in.	After
describing	the	basics	of	the	Linux	system,	this	part	continues	with	the	following:

Using	a	terminal	emulation	package	to	access	the	shell	(Chapter	2)

Introducing	the	basic	shell	commands	(Chapter	3)

Using	more	advanced	shell	commands	to	peek	at	system	information	(Chapter	4)

Understanding	what	the	shell	is	used	for	(Chapter	5)

Working	with	shell	variables	to	manipulate	data	(Chapter	6)

Understanding	the	Linux	filesystem	and	security	(Chapter	7)

Working	with	Linux	filesystems	from	the	command	line	(Chapter	8)

Installing	and	updating	software	from	the	command	line	(Chapter	9)

Using	the	Linux	editors	to	start	writing	shell	scripts	(Chapter	10)

In	Part	II,	you	begin	writing	shell	scripts.	As	you	go	through	the	chapters,	you'll	do	the	following:

Learn	how	to	create	and	run	shell	scripts	(Chapter	11)

Alter	the	program	flow	in	a	shell	script	(Chapter	12)

Iterate	through	code	sections	(Chapter	13)

Handle	data	from	the	user	in	your	scripts	(Chapter	14)

See	different	methods	for	storing	and	displaying	data	from	your	script	(Chapter	15)

Control	how	and	when	your	shell	scripts	run	on	the	system	(Chapter	16)

Part	III	dives	into	more	advanced	areas	of	shell	script	programming,	including	these	things:

Creating	your	own	functions	to	use	in	all	your	scripts	(Chapter	17)

Utilizing	the	Linux	graphical	desktop	for	interacting	with	your	script	users	(Chapter	18)

Using	advanced	Linux	commands	to	filter	and	parse	data	files	(Chapter	19)

Using	regular	expressions	to	define	data	(Chapter	20)

Learning	advanced	methods	of	manipulating	data	in	your	scripts	(Chapter	21)

Working	with	advanced	features	of	scripting	to	generate	reports	from	raw	data	(Chapter	22)

Modifying	your	shell	scripts	to	run	in	other	Linux	shells	(Chapter	23)

The	last	section	of	the	book,	Part	IV,	demonstrates	how	to	use	shell	scripts	in	real-world	environments.	In	this	part,
you	will	learn	these	things:

How	to	put	all	the	scripting	features	together	to	write	your	own	scripts	(Chapter	24)

How	to	organize	and	track	your	script	versions	using	the	popular	git	software	(Chapter	25)

Conventions	and	features
You	will	find	many	different	organizational	and	typographical	features	throughout	this	book	designed	to	help	you
get	the	most	out	of	the	information.

Tips	and	warnings
Whenever	the	authors	want	to	bring	something	important	to	your	attention,	the	information	appears	in	a	Warning.

WARNING
This	information	is	important	and	is	set	off	in	a	separate	paragraph	with	a	special	icon.
Warnings	provide	information	about	things	to	watch	out	for,	whether	simply	inconvenient	or
potentially	hazardous	to	your	data	or	systems.

For	additional	items	of	interest	that	relate	to	the	chapter	text,	the	authors	use	Tip.

TIP
Tips	provide	additional,	ancillary	information	that	is	helpful,	but	somewhat	outside	of	the
current	presentation	of	information.

Minimum	Requirements
Linux	Command	Line	and	Shell	Scripting	Bible	doesn't	focus	on	any	specific	Linux	distribution,	so	you	can	follow
along	in	the	book	using	any	Linux	system	you	have	available.	The	bulk	of	the	book	references	the	Bash	shell,	which	is
the	default	shell	for	most	Linux	systems.

Where	to	Go	from	Here
After	you've	finished	reading	Linux	Command	Line	and	Shell	Scripting	Bible,	you're	well	on	your	way	to
incorporating	Linux	commands	in	your	daily	Linux	work.	In	the	ever-changing	world	of	Linux,	it's	always	a	good
idea	to	stay	in	touch	with	new	developments.	Often,	Linux	distributions	change,	adding	new	features	and	removing
older	ones.	To	keep	your	knowledge	of	Linux	fresh,	always	stay	well	informed.	Find	a	good	Linux	forum	site	and
monitor	what's	happening	in	the	Linux	world.	Many	popular	Linux	news	sites,	such	as	Slashdot	and	DistroWatch,
provide	up-to-the-minute	information	about	new	advances	in	Linux.

Part	I
The	Linux	Command	Line
IN	THIS	PART

Chapter	1	Starting	with	Linux	Shells

Chapter	2	Getting	to	the	Shell

Chapter	3	Basic	Bash	Shell	Commands

Chapter	4	More	Bash	Shell	Commands

Chapter	5	Understanding	the	Shell

Chapter	6	Using	Linux	Environment	Variables

Chapter	7	Understanding	Linux	File	Permissions

Chapter	8	Managing	Filesystems

Chapter	9	Installing	Software

Chapter	10	Working	with	Editors

CHAPTER	1
Starting	with	Linux	Shells
IN	THIS	CHAPTER

Investigating	Linux

Understanding	parts	of	the	Linux	kernel

Exploring	the	Linux	desktop

Examining	Linux	distributions

Before	you	can	dive	into	working	with	the	Linux	command	line	and	shells,	it's	a	good	idea	to	first	understand	what
Linux	is,	where	it	came	from,	and	how	it	works.	This	chapter	walks	you	through	what	Linux	is	and	explains	where
the	shell	and	command	line	fit	in	the	overall	Linux	picture.

Investigating	Linux
If	you've	never	worked	with	Linux	before,	you	may	be	confused	as	to	why	there	are	so	many	different	versions	of	it
available.	We're	sure	that	you've	heard	various	terms	such	as	distribution,	LiveDVD,	and	GNU	when	looking	at
Linux	packages	and	been	confused.	Wading	through	the	world	of	Linux	for	the	first	time	can	be	a	tricky	experience.
This	chapter	takes	some	of	the	mystery	out	of	the	Linux	system	before	you	start	working	on	commands	and	scripts.

For	starters,	four	main	parts	make	up	a	Linux	system:

The	Linux	kernel

The	GNU	utilities

A	graphical	desktop	environment

Application	software

Each	of	these	four	parts	has	a	specific	job	in	the	Linux	system.	Each	one	of	the	parts	by	itself	isn't	very	useful.	Figure
1-1	shows	a	basic	diagram	of	how	the	parts	fit	together	to	create	the	overall	Linux	system.

FIGURE	1-1	The	Linux	system

This	section	describes	these	four	main	parts	in	detail	and	gives	you	an	overview	of	how	they	work	together	to	create
a	complete	Linux	system.

Looking	into	the	Linux	kernel
The	core	of	the	Linux	system	is	the	kernel.	The	kernel	controls	all	the	hardware	and	software	on	the	computer
system,	allocating	hardware	when	necessary	and	executing	software	when	required.

If	you've	been	following	the	Linux	world	at	all,	no	doubt	you've	heard	the	name	Linus	Torvalds.	Linus	is	the	person
responsible	for	creating	the	first	Linux	kernel	software	while	he	was	a	student	at	the	University	of	Helsinki.	He
intended	it	to	be	a	copy	of	the	Unix	system,	at	the	time	a	popular	operating	system	used	at	many	universities.

After	developing	the	Linux	kernel,	Linus	released	it	to	the	Internet	community	and	solicited	suggestions	for
improving	it.	This	simple	process	started	a	revolution	in	the	world	of	computer	operating	systems.	Soon	Linus	was
receiving	suggestions	from	students	as	well	as	professional	programmers	from	around	the	world.

Allowing	anyone	to	change	programming	code	in	the	kernel	would	result	in	complete	chaos.	To	simplify	things,
Linus	acted	as	a	central	point	for	all	improvement	suggestions.	It	was	ultimately	Linus's	decision	whether	or	not	to
incorporate	suggested	code	in	the	kernel.	This	same	concept	is	still	in	place	with	the	Linux	kernel	code,	except	that
instead	of	just	Linus	controlling	the	kernel	code,	a	team	of	developers	has	taken	on	the	task.

The	kernel	is	primarily	responsible	for	four	main	functions:

System	memory	management

Software	program	management

Hardware	management

Filesystem	management

The	following	sections	explore	each	of	these	functions	in	more	detail.

System	memory	management
One	of	the	primary	functions	of	the	operating	system	kernel	is	memory	management.	Not	only	does	the	kernel
manage	the	physical	memory	available	on	the	server,	but	it	can	also	create	and	manage	virtual	memory,	or	memory
that	does	not	actually	exist.

It	does	this	by	using	space	on	the	hard	disk,	called	the	swap	space.	The	kernel	swaps	the	contents	of	virtual	memory
locations	back	and	forth	from	the	swap	space	to	the	actual	physical	memory.	This	allows	the	system	to	think	there	is
more	memory	available	than	what	physically	exists	(shown	in	Figure	1-2).

FIGURE	1-2	The	Linux	system	memory	map

The	memory	locations	are	grouped	into	blocks	called	pages.	The	kernel	locates	each	page	of	memory	in	either	the
physical	memory	or	the	swap	space.	The	kernel	then	maintains	a	table	of	the	memory	pages	that	indicates	which
pages	are	in	physical	memory	and	which	pages	are	swapped	out	to	disk.

The	kernel	keeps	track	of	which	memory	pages	are	in	use	and	automatically	copies	memory	pages	that	have	not	been
accessed	for	a	period	of	time	to	the	swap	space	area	(called	swapping	out),	even	if	other	memory	is	available.	When
a	program	wants	to	access	a	memory	page	that	has	been	swapped	out,	the	kernel	must	make	room	for	it	in	physical
memory	by	swapping	out	a	different	memory	page,	and	swap	in	the	required	page	from	the	swap	space.	Obviously,
this	process	takes	time	and	can	slow	down	a	running	process.	The	process	of	swapping	out	memory	pages	for
running	applications	continues	for	as	long	as	the	Linux	system	is	running.

Software	program	management
The	Linux	operating	system	calls	a	running	program	a	process.	A	process	can	run	in	the	foreground,	displaying
output	on	a	display,	or	it	can	run	in	the	background,	behind	the	scenes.	The	kernel	controls	how	the	Linux	system
manages	all	the	processes	running	on	the	system.

The	kernel	creates	the	first	process,	called	the	init	process,	to	start	all	other	processes	on	the	system.	When	the
kernel	starts,	it	loads	the	init	process	into	virtual	memory.	As	the	kernel	starts	each	additional	process,	it	gives	the
process	a	unique	area	in	virtual	memory	to	store	the	data	and	code	that	the	process	uses.

A	few	different	types	of	init	process	implementations	are	available	in	Linux,	but	these	days	the	two	most	popular
are:

SysVinit:	The	SysVinit	(SysV)	initialization	method,	the	original	method	used	by	Linux,	was	based	on	the	Unix
System	V	initialization	method.	Though	it	is	not	used	by	many	Linux	distributions	these	days,	you	still	may	find
it	around	in	older	Linux	distributions.

Systemd:	The	systemd	initialization	method,	created	in	2010,	has	become	the	most	popular	initialization	and
process	management	system	used	by	Linux	distributions.

The	SysVinit	initialization	method	used	a	concept	called	runlevels	to	determine	what	processes	to	start.	The	runlevel
defines	the	state	of	the	running	Linux	system	and	what	processes	should	run	in	each	state.	Table	1-1	shows	the
different	runlevels	associated	with	the	SysVinit	initialization	method.

TABLE	1-1	The	SysVinit	Runlevels

Runlevel Description

0 Shut	down	the	system

1 Single-user	mode	used	for	system	maintenance

2 Multi-user	mode	without	networking	services	enabled

3 Multi-user	mode	with	networking	services	enabled

4 Custom

5 Multi-user	mode	with	GUI	available

6 Reboot	the	system

The	/etc/inittab	file	defines	the	default	runlevel	for	a	system.	The	processes	that	start	for	specific	runlevels	are
defined	in	subdirectories	of	the	/etc/rc.d	directory.	You	can	view	the	current	runlevel	at	any	time	using	the
runlevel	command:

$	runlevel
N	5
$

The	systemd	initialization	method	became	popular	because	it	has	the	ability	to	start	processes	based	on	different
events:

When	the	system	boots

When	a	particular	hardware	device	is	connected

When	a	service	is	started

When	a	network	connection	is	established

When	a	timer	has	expired

The	systemd	method	determines	what	processes	to	run	by	linking	events	to	unit	files.	Each	unit	file	defines	the
programs	to	start	when	the	specified	event	occurs.	The	systemctl	program	allows	you	to	start,	stop,	and	list	the	unit
files	currently	running	on	the	system.

The	systemd	method	groups	unit	files	together	into	targets.	A	target	defines	a	specific	running	state	of	the	Linux
system,	similar	to	the	SysVinit	runlevel	concept.	At	system	startup,	the	default.target	unit	defines	all	the	unit	files
to	start.	You	can	view	the	current	default	target	using	the	systemctl	command:

$	systemctl	get-default
graphical.target
$

The	graphical.target	unit	file	defines	the	processes	to	start	when	a	multi-user	graphical	environment	is	running,
similar	to	the	old	SysVinit	runlevel	5.

NOTE
In	Chapter	4,	“More	Bash	Shell	Commands,”	you'll	see	how	to	use	the	ps	command	to	view	the
processes	currently	running	on	the	Linux	system.

Hardware	management
Still	another	responsibility	for	the	kernel	is	hardware	management.	Any	device	that	the	Linux	system	must
communicate	with	needs	driver	code	inserted	inside	the	kernel	code.	The	driver	code	allows	the	kernel	to	pass	data
back	and	forth	to	the	device,	acting	as	an	intermediary	between	applications	and	the	hardware.	Two	methods	are
used	for	inserting	device	driver	code	in	the	Linux	kernel:

Drivers	compiled	in	the	kernel

Driver	modules	added	to	the	kernel

Previously,	the	only	way	to	insert	device	driver	code	was	to	recompile	the	kernel.	Each	time	you	added	a	new	device
to	the	system,	you	had	to	recompile	the	kernel	code.	This	process	became	even	more	inefficient	as	Linux	kernels
supported	more	hardware.	Fortunately,	Linux	developers	devised	a	better	method	to	insert	driver	code	into	the
running	kernel.

Programmers	developed	the	concept	of	kernel	modules	to	allow	you	to	insert	driver	code	into	a	running	kernel
without	having	to	recompile	the	kernel.	Also,	a	kernel	module	could	be	removed	from	the	kernel	when	the	device
was	finished	being	used.	This	greatly	simplified	and	expanded	using	hardware	with	Linux.

The	Linux	system	identifies	hardware	devices	as	special	files,	called	device	files.	There	are	three	classifications	of
device	files:

Character

Block

Network

Character	device	files	are	for	devices	that	can	handle	data	only	one	character	at	a	time.	Most	types	of	modems	and
terminals	are	created	as	character	files.	Block	files	are	for	devices	that	can	handle	data	in	large	blocks	at	a	time,	such
as	disk	drives.

The	network	file	types	are	used	for	devices	that	use	packets	to	send	and	receive	data.	This	includes	network	cards
and	a	special	loopback	device	that	allows	the	Linux	system	to	communicate	with	itself	using	common	network
programming	protocols.

Linux	creates	special	files,	called	nodes,	for	each	device	on	the	system.	All	communication	with	the	device	is
performed	through	the	device	node.	Each	node	has	a	unique	number	pair	that	identifies	it	to	the	Linux	kernel.	The
number	pair	includes	a	major	and	a	minor	device	number.	Similar	devices	are	grouped	into	the	same	major	device
number.	The	minor	device	number	is	used	to	identify	a	specific	device	within	the	major	device	group.

Filesystem	management
Unlike	some	other	operating	systems,	the	Linux	kernel	can	support	different	types	of	filesystems	to	read	and	write
data	to	and	from	hard	drives.	Besides	having	over	a	dozen	filesystems	of	its	own,	Linux	can	read	and	write	to	and
from	filesystems	used	by	other	operating	systems,	such	as	Microsoft	Windows.	The	kernel	must	be	compiled	with
support	for	all	types	of	filesystems	that	the	system	will	use.	Table	1-2	lists	the	standard	filesystems	that	a	Linux
system	can	use	to	read	and	write	data.

TABLE	1-2	Linux	Filesystems

Filesystem Description

ext Linux	extended	filesystem — the	original	Linux	filesystem
ext2 Second	extended	filesystem;	provided	advanced	features	over	ext

ext3 Third	extended	filesystem;	supports	journaling

ext4 Fourth	extended	filesystem;	supports	advanced	journaling

btrfs A	newer,	high-performance	filesystem	that	supports	journaling	and	large	files

exfat The	extended	Windows	filesystem,	used	mainly	for	SD	cards	and	USB	sticks

hpfs OS/2	high-performance	filesystem

jfs IBM's	journaling	filesystem

iso9660 ISO	9660	filesystem	(CD-ROMs)

minix MINIX	filesystem

msdos Microsoft	FAT16

ncp NetWare	filesystem

nfs Network	File	System

ntfs Support	for	Microsoft	NT	filesystem

proc Access	to	system	information

smb Samba	SMB	filesystem	for	network	access

sysv Older	Unix	filesystem

ufs BSD	filesystem

umsdos Unix-like	filesystem	that	resides	on	top	of	msdos

vfat Windows	95	filesystem	(FAT32)

XFS High-performance	64-bit	journaling	filesystem

Any	hard	drive	that	a	Linux	server	accesses	must	be	formatted	using	one	of	the	filesystem	types	listed	in	Table	1-2.

The	Linux	kernel	interfaces	with	each	filesystem	using	the	Virtual	File	System	(VFS).	This	provides	a	standard
interface	for	the	kernel	to	communicate	with	any	type	of	filesystem.	VFS	caches	information	in	memory	as	each
filesystem	is	mounted	and	used.

The	GNU	utilities
Besides	having	a	kernel	to	control	hardware	devices,	a	computer	operating	system	needs	utilities	to	perform
standard	functions,	such	as	controlling	files	and	programs.	Although	Linus	created	the	Linux	system	kernel,	he	had
no	system	utilities	to	run	on	it.	Fortunately	for	him,	at	the	same	time	he	was	working,	a	group	of	people	were
working	together	on	the	Internet	trying	to	develop	a	standard	set	of	computer	system	utilities	that	mimicked	the
popular	Unix	operating	system.

The	GNU	organization	(GNU	stands	for	GNU's	Not	Unix)	developed	a	complete	set	of	Unix	utilities	but	had	no
kernel	system	to	run	them	on.	These	utilities	were	developed	under	a	software	philosophy	called	open	source
software	(OSS).

The	concept	of	OSS	allows	programmers	to	develop	software	and	then	release	it	to	the	world	with	no	licensing	fees
attached.	Anyone	can	use,	modify,	or	incorporate	the	software	into	their	own	system	without	having	to	pay	a	license
fee.	Uniting	Linus's	Linux	kernel	with	the	GNU	operating	system	utilities	created	a	complete,	functional,	free
operating	system.

Although	the	bundling	of	the	Linux	kernel	and	GNU	utilities	is	often	just	called	Linux,	you	will	see	some	Linux
purists	on	the	Internet	refer	to	it	as	the	GNU/Linux	system	to	give	credit	to	the	GNU	organization	for	its
contributions	to	the	cause.

The	core	GNU	utilities
The	GNU	project	was	mainly	designed	for	Unix	system	administrators	to	have	a	Unix-like	environment	available.
This	focus	resulted	in	the	project	porting	many	common	Unix	system	command-line	utilities.	The	core	bundle	of
utilities	supplied	for	Linux	systems	is	called	the	coreutils	package.

The	GNU	coreutils	package	consists	of	three	parts:

Utilities	for	handling	files

Utilities	for	manipulating	text

Utilities	for	managing	processes

Each	of	these	three	main	groups	of	utilities	contains	several	utility	programs	that	are	invaluable	to	the	Linux	system
administrator	and	programmer.	This	book	covers	each	of	the	utilities	contained	in	the	GNU	coreutils	package	in
detail.

The	shell
The	GNU/Linux	shell	is	a	special	interactive	utility.	It	provides	a	way	for	users	to	start	programs,	manage	files	on	the
filesystem,	and	manage	processes	running	on	the	Linux	system.	The	core	of	the	shell	is	the	command	prompt.	The
command	prompt	is	the	interactive	part	of	the	shell.	It	allows	you	to	enter	text	commands,	and	then	it	interprets	the
commands	and	executes	them	in	the	kernel.

The	shell	contains	a	set	of	internal	commands	that	you	use	to	control	tasks	such	as	copying	files,	moving	files,
renaming	files,	displaying	the	programs	currently	running	on	the	system,	and	stopping	programs	running	on	the
system.	Besides	the	internal	commands,	the	shell	allows	you	to	enter	the	name	of	a	program	at	the	command
prompt.	The	shell	passes	the	program	name	off	to	the	kernel	to	start	it.

You	can	also	group	shell	commands	into	files	to	execute	as	a	program.	Those	files	are	called	shell	scripts.	Any
command	that	you	can	execute	from	the	command	line	can	be	placed	in	a	shell	script	and	run	as	a	group	of
commands.	This	provides	great	flexibility	in	creating	utilities	for	commonly	run	commands	or	processes	that	require
several	commands	grouped	together.

Quite	a	few	Linux	shells	are	available	to	use	on	a	Linux	system.	Different	shells	have	different	characteristics,	some
being	more	useful	for	creating	scripts	and	some	being	more	useful	for	managing	processes.	The	default	shell	used	in
all	Linux	distributions	is	the	Bash	shell.	The	Bash	shell	was	developed	by	the	GNU	project	as	a	replacement	for	the
standard	Unix	shell,	called	the	Bourne	shell	(after	its	creator).	The	Bash	shell	name	is	a	play	on	this	wording,
referred	to	as	the	“Bourne	again	shell.”

In	addition	to	the	Bash	shell,	we	will	cover	several	other	popular	shells	in	this	book.	Table	1-3	lists	the	different
shells	we	will	examine.

TABLE	1-3	Linux	Shells

Shell Description

ash A	simple,	lightweight	shell	that	runs	in	low-memory	environments	but	has	full	compatibility	with	the	Bash
shell

korn A	programming	shell	compatible	with	the	Bourne	shell	but	supporting	advanced	programming	features	like
associative	arrays	and	floating-point	arithmetic

tcsh A	shell	that	incorporates	elements	from	the	C	programming	language	into	shell	scripts

zsh An	advanced	shell	that	incorporates	features	from	Bash,	tcsh,	and	korn,	providing	advanced	programming
features,	shared	history	files,	and	themed	prompts

Most	Linux	distributions	include	more	than	one	shell,	although	usually	they	pick	one	of	them	to	be	the	default.	If
your	Linux	distribution	includes	multiple	shells,	feel	free	to	experiment	with	different	shells	and	see	which	one	fits
your	needs.

The	Linux	desktop	environment
In	the	early	days	of	Linux	(the	early	1990s),	all	that	was	available	was	a	simple	text	interface	to	the	Linux	operating
system.	This	text	interface	allowed	administrators	to	start	programs,	control	program	operations,	and	move	files
around	on	the	system.

With	the	popularity	of	Microsoft	Windows,	computer	users	expected	more	than	the	old	text	interface	to	work	with.
This	spurred	more	development	in	the	OSS	community,	and	the	Linux	graphical	desktops	emerged.

Linux	is	famous	for	being	able	to	do	things	in	more	than	one	way,	and	no	place	is	this	more	relevant	than	in
graphical	desktops.	In	Linux	you	can	choose	from	a	plethora	of	graphical	desktops.	The	following	sections	describe	a
few	popular	ones.

The	X	Window	software
Two	basic	elements	control	your	video	environment	—	the	video	card	in	your	PC	and	your	monitor.	To	display	fancy
graphics	on	your	computer,	the	Linux	software	needs	to	know	how	to	talk	to	both	of	them.	The	X	Window	software
is	the	core	element	in	presenting	graphics.

The	X	Window	software	is	a	low-level	program	that	works	directly	with	the	video	card	and	monitor	in	the	PC	and
controls	how	Linux	applications	can	present	fancy	windows	and	graphics	on	your	computer.

Linux	isn't	the	only	operating	system	that	uses	X	Window;	versions	have	been	written	for	many	different	operating
systems.	In	the	Linux	world,	a	few	software	packages	can	implement	it.	Two	X	Window	packages	are	most
commonly	used	in	Linux:

X.org

Wayland

The	X.org	package	is	the	older	of	the	two,	based	on	the	original	Unix	X	Window	System	version	11	(often	called	X11).
More	Linux	distributions	are	migrating	to	the	newer	Wayland	software,	which	is	more	secure	and	easier	to	maintain.

When	you	first	install	a	Linux	distribution,	it	attempts	to	detect	your	video	card	and	monitor,	and	it	then	creates	an
X	Window	configuration	file	that	contains	the	required	information.	During	installation	you	may	notice	a	time	when
the	installation	program	scans	your	monitor	for	supported	video	modes.	Sometimes	this	causes	your	monitor	to	go
blank	for	a	few	seconds.	Because	lots	of	different	types	of	video	cards	and	monitors	are	out	there,	this	process	can
take	a	little	while	to	complete.

The	core	X	Window	software	produces	a	graphical	display	environment	but	nothing	else.	Although	this	is	fine	for
running	individual	applications,	it	is	not	too	useful	for	day-to-day	computer	use.	There	is	no	desktop	environment
allowing	users	to	manipulate	files	or	launch	programs.	To	do	that,	you	need	a	desktop	environment	on	top	of	the	X
Window	system	software.

The	KDE	Plasma	desktop
The	K	Desktop	Environment	(KDE)	was	first	released	in	1996	as	an	open	source	project	to	produce	a	graphical
desktop	similar	to	the	Microsoft	Windows	environment.	The	KDE	desktop	incorporates	all	the	features	you	are
probably	familiar	with	if	you	are	a	Windows	user.	Figure	1-3	shows	the	current	version,	called	KDE	Plasma,	running
in	the	openSUSE	Linux	distribution.

The	KDE	Plasma	desktop	allows	you	to	place	both	application	and	file	icons	in	a	special	area	on	the	desktop.	If	you
single-click	an	application	icon,	the	Linux	system	starts	the	application.	If	you	single-click	a	file	icon,	the	KDE
desktop	attempts	to	determine	what	application	to	start	to	handle	the	file.

FIGURE	1-3	The	KDE	Plasma	desktop	on	an	openSUSE	Linux	system

The	bar	at	the	bottom	of	the	desktop	is	called	the	Panel.	The	Panel	consists	of	four	parts:

The	K	menu:	Much	like	the	Windows	Start	menu,	the	K	menu	contains	links	to	start	installed	applications.

Program	shortcuts:	These	are	quick	links	to	start	applications	directly	from	the	Panel.

The	taskbar:	The	taskbar	shows	icons	for	applications	currently	running	on	the	desktop.

Applets:	These	are	small	applications	that	have	an	icon	in	the	Panel	that	can	often	change	depending	on
information	from	the	application.

All	of	the	Panel	features	are	similar	to	what	you	would	find	in	Windows.	In	addition	to	the	desktop	features,	the	KDE
project	has	produced	a	wide	assortment	of	applications	that	run	in	the	KDE	environment.

The	GNOME	desktop
The	GNU	Network	Object	Model	Environment	(GNOME)	is	another	popular	Linux	desktop	environment.	First
released	in	1999,	GNOME	has	become	the	default	desktop	environment	for	many	Linux	distributions	(the	most
popular	being	Red	Hat	Linux).

NOTE
The	GNOME	desktop	underwent	a	radical	change	with	version	3,	released	in	2011.	It	departed
from	the	standard	look	and	feel	of	most	desktops	using	standard	menu	bars	and	taskbars	to
make	the	interface	more	user-friendly	across	multiple	platforms,	such	as	tablets	and	mobile
phones.	This	change	led	to	controversy	(see	the	“Other	desktops”	section),	but	slowly	many
Linux	enthusiasts	accepted	the	new	look	and	feel	of	the	GNOME	3	desktop.

Figure	1-4	shows	the	standard	GNOME	desktop	used	in	the	Ubuntu	Linux	distribution.

FIGURE	1-4	A	GNOME	3	desktop	on	an	Ubuntu	Linux	system

The	GNOME	3	desktop	cleans	up	the	desktop	interface	by	reducing	the	available	menus	to	just	three:

Activities:	Displays	favorites,	as	well	as	any	running	application	icons

Calendar:	Shows	the	current	date/time,	along	with	any	system	notification	messages

System:	Shows	network	connections,	system	settings,	and	options	to	restart	the	system

The	GNOME	3	desktop	was	designed	to	work	on	multiple	types	of	devices,	so	you	won't	find	a	lot	of	menus.	To
launch	applications,	you	must	search	for	them	using	the	Activities	Overview,	which	is	a	search	feature	on	the
Activities	menu.

Not	to	be	outdone	by	KDE,	the	GNOME	developers	have	also	produced	a	host	of	graphical	applications	that
integrate	with	the	GNOME	desktop.

Other	desktops
One	of	the	main	features	of	Linux	is	choice,	and	nowhere	is	that	more	evident	than	in	the	graphical	desktop	world.
There	are	a	plethora	of	different	types	of	graphical	desktops	available	in	the	Linux	world.	If	you're	not	happy	with
the	default	desktop	in	your	Linux	distribution,	it	usually	doesn't	take	much	effort	to	change	it	to	something	else!

When	the	GNOME	desktop	project	radically	changed	its	interface	in	version	3,	many	Linux	developers	who
preferred	the	look	and	feel	of	GNOME	version	2	created	spin-off	versions	based	on	GNOME	2.	Of	these,	two	became

somewhat	popular:

Cinnamon:	The	Cinnamon	desktop	was	developed	in	2011	by	the	Linux	Mint	distribution	in	an	attempt	to
continue	development	of	the	original	GNOME	2	desktop.	It's	now	available	as	an	option	in	several	Linux
distributions,	including	Ubuntu	Fedora	and	openSUSE.

MATE:	The	MATE	desktop	was	also	developed	in	2011	by	an	Arch	Linux	user	who	disliked	the	switch	to
GNOME	3.	It	incorporates	a	few	features	of	GNOME	3	(such	as	replacing	the	taskbar)	but	maintains	the	overall
look	and	feel	of	GNOME	2.

Figure	1-5	shows	the	Cinnamon	desktop	as	it	appears	in	the	Linux	Mint	distribution.

The	downside	to	these	fancy	graphical	desktop	environments	is	that	they	require	a	fair	amount	of	system	resources
to	operate	properly.	In	the	early	days	of	Linux,	a	hallmark	and	selling	feature	of	Linux	was	its	ability	to	operate	on
older,	less	powerful	PCs	that	the	newer	Microsoft	desktop	products	couldn't	run	on.	However,	with	the	popularity	of
KDE	Plasma	and	GNOME	3	desktops,	this	has	changed,	since	it	takes	just	as	much	memory	to	run	a	KDE	Plasma	or
GNOME	3	desktop	as	it	does	to	run	the	latest	Microsoft	desktop	environment.

If	you	have	an	older	PC,	don't	be	discouraged.	The	Linux	developers	have	banded	together	to	take	Linux	back	to	its
roots.	They've	created	several	low	memory–oriented	graphical	desktop	applications	that	provide	basic	features	that
run	perfectly	fine	on	older	PCs.

Although	these	graphical	desktops	don't	have	all	that	many	applications	designed	around	them,	they	still	run	many
basic	graphical	applications	that	support	features	such	as	word	processing,	spreadsheets,	databases,	drawing,	and,
of	course,	multimedia	support.

Table	1-4	shows	some	of	the	smaller	Linux	graphical	desktop	environments	that	can	be	used	on	lower-powered	PCs
and	laptops.

FIGURE	1-5	The	Cinnamon	desktop	from	Linux	Mint

TABLE	1-4	Other	Linux	Graphical	Desktops

Desktop Description

Fluxbox A	bare-bones	desktop	that	doesn't	include	a	Panel,	only	a	pop-up	menu	to	launch	applications

Xfce A	desktop	that's	similar	to	the	GNOME	2	desktop	but	with	less	graphics	for	low-memory	environments

JWM Joe's	Window	Manager,	a	very	lightweight	desktop	ideal	for	low-memory	and	low–disk	space
environments

fvwm Supports	some	advanced	desktop	features	such	as	virtual	desktops	and	Panels,	but	runs	in	low-memory
environments

fvwm95 Derived	from	fvwm	but	made	to	look	like	a	Windows	95	desktop

These	graphical	desktop	environments	are	not	as	fancy	as	the	KDE	Plasma	and	GNOME	3	desktops,	but	they
provide	basic	graphical	functionality	just	fine.	Figure	1-6	shows	what	the	Xfce	desktop	used	in	the	MX	Linux
distribution	looks	like.

FIGURE	1-6	The	Xfce	desktop	as	seen	in	the	MX	Linux	distribution

If	you	are	using	an	older	PC,	try	a	Linux	distribution	that	uses	one	of	these	desktops	and	see	what	happens.	You	may
be	pleasantly	surprised.

Examining	Linux	Distributions
Now	that	you	have	seen	the	four	main	components	required	for	a	complete	Linux	system,	you	may	be	wondering
how	you	are	going	to	get	them	all	together	to	make	a	Linux	system.	Fortunately,	there	are	people	who	have	already
done	that	for	you.

A	complete	Linux	system	package	is	called	a	distribution.	Numerous	Linux	distributions	are	available	to	meet	just
about	any	computing	requirement	you	could	have.	Most	distributions	are	customized	for	a	specific	user	group,	such
as	business	users,	multimedia	enthusiasts,	software	developers,	or	average	home	users.	Each	customized
distribution	includes	the	software	packages	required	to	support	specialized	functions,	such	as	audio-	and	video-
editing	software	for	multimedia	enthusiasts,	or	compilers	and	integrated	development	environments	(IDEs)	for
software	developers.

The	different	Linux	distributions	are	often	divided	into	two	categories:

Full-core	Linux	distributions

Specialized	distributions

The	following	sections	describe	these	types	of	Linux	distributions	and	show	examples	in	each	category.

Core	Linux	distributions
A	core	Linux	distribution	contains	a	kernel,	one	or	more	graphical	desktop	environments,	and	just	about	every
Linux	application	that	is	available,	precompiled	for	the	kernel.	It	provides	one-stop	shopping	for	a	complete	Linux
installation.	Table	1-5	shows	some	popular	core	Linux	distributions.

TABLE	1-5	Core	Linux	Distributions

Distribution Description

Slackware One	of	the	original	Linux	distribution	sets;	popular	with	Linux	geeks

Red	Hat	Enterprise A	commercial	business	distribution	used	mainly	for	Internet	servers

Gentoo A	distribution	designed	for	advanced	Linux	users,	containing	only	Linux	source	code

openSUSE Different	distributions	for	business	and	home	use

Debian Popular	with	Linux	experts	and	commercial	Linux	products

In	the	early	days	of	Linux,	a	distribution	was	released	as	a	set	of	floppy	disks.	You	had	to	download	groups	of	files
and	then	copy	them	onto	disks.	It	would	usually	take	20	or	more	disks	to	make	an	entire	distribution!	Needless	to
say,	this	was	a	painful	experience.

Nowadays,	Linux	distributions	are	released	as	an	ISO	image	file.	The	ISO	image	file	is	a	complete	disk	image	of	a
DVD	as	a	single	file.	You	use	a	software	application	to	either	burn	the	ISO	image	file	onto	a	DVD	or	create	a	bootable
USB	stick.	You	then	just	boot	your	workstation	from	the	DVD	or	USB	stick	to	install	Linux.	This	makes	installing
Linux	much	easier.

However,	beginners	still	often	run	into	problems	when	they	install	one	of	the	core	Linux	distributions.	To	cover	just
about	any	situation	in	which	someone	might	want	to	use	Linux,	a	single	distribution	has	to	include	lots	of
application	software.	They	include	everything	from	high-end	Internet	database	servers	to	common	games.

Although	having	lots	of	options	available	in	a	distribution	is	great	for	Linux	geeks,	it	can	become	a	nightmare	for
beginning	Linux	users.	Most	core	distributions	ask	a	series	of	questions	during	the	installation	process	to	determine
which	applications	to	load	by	default,	what	hardware	is	connected	to	the	PC,	and	how	to	configure	the	hardware.
Beginners	often	find	these	questions	confusing.	As	a	result,	they	often	either	load	way	too	many	programs	on	their
computer	or	don't	load	enough	and	later	discover	that	their	computer	won't	do	what	they	want	it	to.

Fortunately	for	beginners,	there's	a	much	simpler	way	to	install	Linux.

Specialized	Linux	distributions
A	new	subgroup	of	Linux	distributions	has	started	to	appear.	These	are	typically	based	on	one	of	the	main
distributions	but	contain	only	a	subset	of	applications	that	would	make	sense	for	a	specific	area	of	use.

In	addition	to	providing	specialized	software	(such	as	only	office	products	for	business	users),	customized	Linux
distributions	attempt	to	help	beginning	Linux	users	by	autodetecting	and	autoconfiguring	common	hardware
devices.	This	makes	installing	Linux	a	much	more	enjoyable	process.

Table	1-6	shows	some	of	the	specialized	Linux	distributions	available	and	what	they	specialize	in.

TABLE	1-6	Specialized	Linux	Distributions

Distribution Description

Fedora A	free	distribution	built	from	the	Red	Hat	Enterprise	Linux	source	code

Ubuntu A	free	distribution	for	school	and	home	use

MX	Linux A	free	distribution	for	home	use

Linux	Mint A	free	distribution	for	home	entertainment	use

Puppy	Linux A	free	small	distribution	that	runs	well	on	older	PCs

That's	just	a	small	sampling	of	specialized	Linux	distributions.	There	are	literally	hundreds	of	specialized	Linux
distributions,	and	more	are	popping	up	all	the	time	on	the	Internet.	No	matter	your	specialty,	you'll	probably	find	a
Linux	distribution	made	for	you.

Many	of	the	specialized	Linux	distributions	are	based	on	the	Debian	Linux	distribution.	They	use	the	same
installation	files	as	Debian	but	package	only	a	small	fraction	of	a	full-blown	Debian	system.

NOTE
Most	Linux	distributions	also	have	a	LiveDVD	version	available.	The	LiveDVD	version	is	a	self-
contained	ISO	image	file	that	you	can	burn	onto	a	DVD	(or	USB	stick)	to	boot	up	a	running
Linux	system	directly,	without	having	to	install	it	on	your	hard	drive.	Depending	on	the
distribution,	the	LiveDVD	contains	either	a	small	subset	of	applications	or,	in	the	case	of
specialized	distributions,	the	entire	system.	The	benefit	of	the	LiveDVD	is	that	you	can	test	it
with	your	system	hardware	before	going	through	the	trouble	of	installing	the	system.

Summary
This	chapter	discussed	the	Linux	system	and	the	basics	of	how	it	works.	The	Linux	kernel	is	the	core	of	the	system,

controlling	how	memory,	programs,	and	hardware	all	interact	with	one	another.	The	GNU	utilities	are	also	an
important	piece	in	the	Linux	system.	The	Linux	shell,	which	is	the	main	focus	of	this	book,	is	part	of	the	GNU	core
utilities.	The	chapter	also	discussed	the	final	piece	of	a	Linux	system,	the	Linux	desktop	environment.	Things	have
changed	over	the	years,	and	Linux	now	supports	several	graphical	desktop	environments.

The	chapter	also	discussed	the	various	Linux	distributions.	A	Linux	distribution	bundles	the	various	parts	of	a	Linux
system	into	a	simple	package	that	you	can	easily	install	on	your	PC.	The	Linux	distribution	world	consists	of	full-
blown	Linux	distributions	that	include	just	about	every	application	imaginable,	as	well	as	specialized	Linux
distributions	that	only	include	applications	focused	on	a	special	function.	The	Linux	LiveDVD	craze	has	created
another	group	of	Linux	distributions	that	allow	you	to	easily	test-drive	Linux	without	even	having	to	install	it	on
your	hard	drive.

In	the	next	chapter,	we	look	at	what	you	need	to	start	your	command-line	and	shell	scripting	experience.	You'll	see
what	you	have	to	do	to	get	to	the	Linux	shell	utility	from	your	fancy	graphical	desktop	environment.	These	days,
that's	not	always	an	easy	thing.

CHAPTER	2
Getting	to	the	Shell
IN	THIS	CHAPTER

Accessing	the	command	line

Reaching	CLI	via	a	Linux	console	terminal

Reaching	CLI	via	a	graphical	terminal	emulator

Using	the	GNOME	terminal	emulator

Using	the	Konsole	terminal	emulator

Using	the	xterm	terminal	emulator

In	the	old	days	of	Linux,	system	administrators,	programmers,	and	system	users	all	sat	at	something	called	a	Linux
console	terminal	entering	shell	commands	and	viewing	text	output.	These	days,	with	graphical	desktop
environments,	it's	getting	harder	to	find	a	shell	prompt	on	the	system	in	order	to	enter	shell	commands.	This
chapter	discusses	what	is	required	to	reach	a	command-line	environment.	And	it	walks	you	through	a	few	terminal
emulation	packages	you	may	run	into	in	the	various	Linux	distributions.

Reaching	the	Command	Line
Before	the	days	of	graphical	desktops,	the	only	way	to	interact	with	a	Unix	system	was	through	a	text	command-line
interface	(CLI)	provided	by	the	shell.	The	CLI	allowed	text	input	only	and	could	display	only	text	and	rudimentary
graphics	output.

Because	of	these	restrictions,	output	devices	were	not	very	fancy.	Often,	you	needed	only	a	simple	dumb	terminal	to
interact	with	the	Unix	system.	A	dumb	terminal	was	usually	nothing	more	than	a	monitor	and	keyboard	connected
to	the	Unix	system	via	a	communication	cable	(usually	a	multiwire	serial	cable).	This	simple	combination	provided
an	easy	way	to	enter	text	data	into	the	Unix	system	and	view	text	results.

As	you	well	know,	things	are	significantly	different	in	today's	Linux	environment.	Just	about	every	Linux	desktop
distribution	uses	some	type	of	graphical	desktop	environment.	However,	to	enter	shell	commands,	you	still	need	a
text	display	to	access	the	shell's	CLI.	The	problem	now	is	getting	to	one.	Sometimes	finding	a	way	to	get	a	CLI	in	a
Linux	distribution	is	not	an	easy	task.

Console	terminals
One	way	to	get	to	a	CLI	is	to	access	the	Linux	system	via	text	mode.	This	provides	nothing	more	than	a	simple	shell
CLI	on	the	monitor,	just	like	the	days	before	graphical	desktops.	This	mode	is	called	the	Linux	console	because	it
emulates	the	old	days	of	a	hard-wired	console	terminal	and	is	a	direct	interface	to	the	Linux	system.

When	the	Linux	system	starts,	it	automatically	creates	several	virtual	consoles.	A	virtual	console	is	a	terminal
session	that	runs	in	Linux	system	memory.	Instead	of	having	several	dumb	terminals	connected	to	the	computer,
most	Linux	distributions	start	five	or	six	(or	sometimes	even	more)	virtual	consoles	that	you	can	access	from	a	single
computer	keyboard	and	monitor.

Graphical	terminals
The	alternative	to	using	a	virtual	console	terminal	is	to	use	a	terminal	emulation	package	from	within	the	Linux
graphical	desktop	environment.	A	terminal	emulation	package	simulates	working	on	a	console	terminal	but	within	a
desktop	graphical	window.	Figure	2-1	shows	an	example	of	a	terminal	emulator	running	in	a	Linux	graphical
desktop	environment.

FIGURE	2-1	A	simple	terminal	emulator	running	on	a	Linux	desktop

Graphical	terminal	emulation	is	responsible	only	for	a	portion	of	the	Linux	graphical	experience.	As	a	whole,	the
experience	is	accomplished	through	several	components,	including	graphical	terminal	emulation	software	(called	a
client).	Table	2-1	shows	the	different	components	in	the	Linux	graphical	desktop	environment.

TABLE	2-1	Graphical	Interface	Elements

Name Examples Description

Client Graphical	terminal	emulator,	desktop	environment
(GNOME	Shell,	KDE	Plasma),	network	browser

An	application	that	requests	graphical	services

Display
Server

Wayland,	X	Window	System Element	that	manages	the	display	(screen)	and	the
input	devices	(keyboard,	mouse,	touch	screen)

Window
Manager

Mutter,	Metacity,	Kwin Element	that	adds	borders	to	windows	and
provides	features	to	move	and	manage	windows

Widgets
Library

Plasmoids,	Cinnamon	Spices Element	that	adds	menus	and	appearance	items	for
desktop	environment	clients

For	dealing	with	the	command	line	from	the	desktop,	the	focus	is	on	the	graphical	terminal	emulator.	You	can	think
of	graphical	terminal	emulators	as	CLI	terminals	in	the	graphical	user	interface	(GUI)	and	virtual	console	terminals
as	CLI	terminals	outside	the	GUI.	Understanding	the	various	terminals	and	their	features	can	enhance	your
command-line	experience.

Accessing	CLI	via	a	Linux	Console	Terminal
In	the	early	days	of	Linux,	when	you	booted	up	your	system	you	would	see	a	login	prompt	on	your	monitor,	and
that's	all.	As	mentioned	earlier,	this	is	called	the	Linux	console.	It	was	the	only	place	you	could	enter	commands	for
the	system.

Even	though	several	virtual	consoles	are	created	at	boot	time,	many	Linux	desktop	distributions	switch	to	a
graphical	environment	after	the	boot	sequence	completes.	This	provides	the	user	with	a	graphical	login	and	desktop
experience.	For	these	systems,	accessing	a	virtual	console	is	done	manually.

On	most	Linux	distributions,	you	can	access	one	of	the	Linux	virtual	consoles	using	a	simple	keystroke	combination.
Usually,	you	must	hold	down	the	Ctrl+Alt	key	combination	and	then	press	a	function	key	(F1	through	F7)	for	the
virtual	console	you	want	to	use.	Function	key	F2	produces	virtual	console	2,	key	F3	produces	virtual	console	3,	key
F4	produces	virtual	console	4,	and	so	on.

NOTE
Linux	distributions	typically	use	the	Ctrl+Alt	key	combination	with	F1,	F7,	or	F8	to	reach	the
graphical	interface.	Ubuntu	and	CentOS	both	use	F1.	However,	it	is	best	to	test	and	see	where
your	distribution	puts	the	graphical	interface,	especially	on	older	distribution	versions.

Text	mode	virtual	consoles	use	the	whole	screen	and	start	with	the	text	login	screen	displayed.	An	example	of	a	text
login	screen	from	a	virtual	console	is	shown	in	Figure	2-2.

Notice	in	Figure	2-2	the	word	tty2	at	the	end	of	the	first	text	line.	The	2	in	tty2	indicates	that	it	is	virtual	console	2
and	was	reached	by	pressing	the	Ctrl+Alt+F2	key	sequence.	tty	stands	for	teletypewriter.	Teletypewriter	is	an	old
term,	indicating	a	machine	used	for	sending	messages.

FIGURE	2-2	Linux	virtual	console	login	screen

NOTE
Not	all	Linux	distributions	show	the	virtual	console's	tty	number	at	the	login	screen.	If	you	are
logged	into	a	virtual	console,	you	can	enter	the	command	tty	and	press	Enter	to	see	what
virtual	console	you	are	currently	using.	Entering	commands	is	covered	in	Chapter	3,	“Basic
Bash	Shell	Commands.”

You	log	into	a	console	terminal	by	entering	your	user	ID	after	the	login:	prompt	and	typing	your	password	after	the
Password:	prompt.	If	you	have	never	logged	in	this	way	before,	be	aware	that	typing	your	password	is	a	different
experience	than	it	is	in	a	graphical	environment.	In	a	graphical	environment,	you	may	see	dots	or	asterisks
indicating	the	password	characters	as	you	type.	However,	at	the	virtual	console,	nothing	is	displayed	when	you	type
your	password.

NOTE
Keep	in	mind	that,	within	the	Linux	virtual	console,	you	do	not	have	the	ability	to	run	any
graphical	programs.

After	logging	into	a	virtual	console,	you	are	taken	to	the	Linux	CLI,	and	you	can	switch	to	another	virtual	console

without	losing	your	current	active	session.	You	can	switch	between	all	the	virtual	consoles,	with	multiple	active
sessions	running.	This	feature	provides	a	great	deal	of	flexibility	while	you	work	at	the	CLI.

Additional	flexibility	deals	with	the	virtual	console's	appearance.	Even	though	it	is	a	text	mode	console	terminal,	you
can	modify	the	text	and	background	colors.

For	example,	it	may	be	easier	on	your	eyes	to	set	the	background	of	the	terminal	to	white	and	the	text	to	black.	After
you	have	logged	in,	you	can	accomplish	this	modification	in	a	couple	of	ways.	One	way	is	to	type	in	the	command
setterm	--inversescreen	on	and	press	the	Enter	key,	as	shown	in	Figure	2-3.	Notice	in	the	figure	that	the	--
inversescreen	feature	is	being	turned	on	using	the	option	on	.	You	can	also	turn	it	off	using	the	off	option.

FIGURE	2-3	Linux	virtual	console	with	inversescreen	being	turned	on

Another	way	is	to	type	two	commands,	one	after	the	other.	Type	setterm	--background	white	and	press	Enter,	and
then	type	setterm	--foreground	black	and	press	Enter.	Be	careful	because,	when	you	change	your	terminal
background	first,	it	may	be	hard	to	see	the	commands	you	are	typing.

With	the	commands	in	the	preceding	paragraph,	you	are	not	turning	features	on	and	off,	as	with	--inversescreen	.
Instead,	you	have	a	choice	of	eight	colors.	The	choices	are	black	,	red	,	green	,	yellow	,	blue	,	magenta	,	cyan	,	and
white	(which	looks	gray	on	some	distributions).	You	can	get	rather	creative	with	your	plain	text	mode	console
terminals.	Table	2-2	shows	some	options	you	can	use	with	the	setterm	command	to	help	improve	your	console
terminal's	readability	or	appearance.

TABLE	2-2	setterm	Options	for	Foreground	and	Background	Appearance

Option Parameter	Choices Description

--background black	,	red	,	green	,	yellow	,	blue	,
magenta	,	cyan	,	or	white

Changes	the	terminal's	background	color	to	the	one	specified

--foreground black	,	red	,	green	,	yellow	,	blue	,
magenta	,	cyan	,	or	white

Changes	the	terminal's	foreground	color,	specifically	text,	to	the
one	specified

--
inversescreen

on	or	off Switches	the	background	color	to	the	foreground	color	and	the
foreground	color	to	the	background	color

--reset None Changes	the	terminal	appearance	back	to	its	default	setting	and
clears	the	screen

--store None Sets	the	current	terminal's	foreground	and	background	colors
as	the	values	to	be	used	for	--reset

Virtual	console	terminals	are	great	for	accessing	the	CLI	outside	the	GUI.	However,	sometimes,	you	need	to	access
the	CLI	and	run	graphical	programs.	Using	a	terminal	emulation	package	solves	this	problem	and	is	a	popular	way
to	access	the	shell	CLI	from	within	the	GUI.	The	following	sections	describe	common	software	packages	that	provide
graphical	terminal	emulation.

Accessing	CLI	via	Graphical	Terminal	Emulation
The	graphical	desktop	environment	offers	a	great	deal	more	variety	for	CLI	access	than	the	virtual	console	terminal
does.	Many	terminal	emulator	applications	are	available	for	the	graphical	environment.	Each	package	provides	its

own	unique	set	of	features	and	options.	Some	popular	graphical	terminal	emulator	applications	are	shown	in	Table
2-3	along	with	their	websites.

TABLE	2-3	Popular	Graphical	Terminal	Emulator	Packages

Name Website

Alacritty github.com/alacritty/alacritty

cool-retro-term github.com/Swordfish90/cool-retro-term

GNOME	Terminal wiki.gnome.org/Apps/Terminal

Guake guake-project.org

Konsole konsole.kde.org

kitty sw.kovidgoyal.net/kitty

rxvt-unicode software.schmorp.de/pkg/rxvt-unicode.html

Sakura pleyades.net/david/projects/sakura

st st.suckless.org

Terminator gnometerminator.blogspot.com

Terminology enlightenment.org/about-terminology.md

Termite github.com/thestinger/termite

Tilda github.com/lanoxx/tilda

xterm invisible-island.net/xterm

Xfce4-terminal docs.xfce.org/apps/terminal/start

Yakuake kde.org/applications/system/org.kde.yakuake

Although	many	graphical	terminal	emulator	applications	are	available,	the	focus	in	this	chapter	is	on	three.	Installed
in	different	Linux	distributions	by	default,	they	are	GNOME	Terminal,	Konsole	Terminal,	and	xterm.

Using	the	GNOME	Terminal	Emulator
GNOME	Terminal	is	the	GNOME	Shell	desktop	environment's	default	terminal	emulator.	Many	distributions,	such
as	Red	Hat	Enterprise	Linux	(RHEL),	CentOS,	and	Ubuntu,	use	the	GNOME	Shell	desktop	environment	by	default,
and	therefore	use	GNOME	Terminal	by	default.	It	is	fairly	easy	to	use	and	a	good	terminal	emulator	for	individuals
who	are	new	to	Linux.	This	section	walks	you	through	the	various	parts	of	accessing,	configuring,	and	using	GNOME
Terminal.

Accessing	GNOME	Terminal
In	the	GNOME	Shell	desktop	environment,	accessing	the	GNOME	Terminal	is	fairly	straightforward.	Click	on	the
Activities	icon	in	the	upper-right	corner	of	the	desktop	window.	When	the	search	bar	appears,	click	within	the	bar	to
access	it	and	type	terminal.	The	results	of	these	actions	are	shown	in	Figure	2-4.

FIGURE	2-4	Finding	GNOME	Terminal	in	GNOME	Shell

Notice	in	the	previous	figure	that	the	GNOME	Terminal	application	icon	is	named	Terminal.	Click	the	icon	to	open
the	terminal	emulator.	An	open	GNOME	Terminal	application	on	a	CentOS	distribution	is	shown	in	Figure	2-5.

FIGURE	2-5	GNOME	Terminal	on	CentOS

When	you	are	done	using	the	terminal	emulator	application,	you	close	it	just	like	other	desktop	windows:	by	clicking
the	x	in	the	window's	upper-right	corner.

The	GNOME	Terminal	application's	appearance	may	vary	between	Linux	distributions.	For	example,	in	Figure	2-6,
GNOME	Terminal	is	shown	on	an	Ubuntu	GNOME	Shell	desktop	environment.

FIGURE	2-6	GNOME	Terminal	on	Ubuntu

Notice	that	the	appearance	of	the	GNOME	Terminal	application	in	Figure	2-6	is	different	compared	to	Figure	2-5.
This	is	typically	due	to	the	application's	default	configuration	(covered	later	in	this	chapter)	and	the	various	features
a	Linux	distribution	has	in	its	GUI	windows.

TIP
If	you	are	using	a	different	desktop	environment	than	GNOME	Shell	(and	have	GNOME
Terminal	installed),	be	aware	that	you	may	not	have	a	search	feature.	In	these	cases,	use	the
environment's	menu	system	to	look	for	GNOME	Terminal.	It	is	typically	named	Terminal.

On	many	distributions,	the	first	time	you	launch	the	GNOME	Terminal	application,	its	terminal	emulator	icon	will
appear	in	your	GNOME	Shell	Favorites	bar.	Hovering	over	the	icon	with	your	mouse	will	show	the	terminal
emulator's	name,	as	shown	in	Figure	2-7.

FIGURE	2-7	GNOME	Terminal	icon	in	the	Favorites	bar

If	for	some	reason	the	icon	does	not	show	up	in	your	Favorites	bar,	you	can	set	up	a	keyboard	shortcut	to	launch	it.
This	approach	is	handy	for	those	who	don't	care	for	using	a	mouse,	and	it	allows	faster	access	to	the	CLI.

TIP
GNOME	Shell	on	the	Ubuntu	distribution	already	has	a	keystroke	shortcut	for	opening	the
GNOME	terminal	emulator:	Ctrl+Alt+T.

To	create	a	keyboard	shortcut,	you'll	need	to	access	the	Keyboard	Shortcuts	window	within	Keyboard	Settings.	To
accomplish	this	quickly,	click	the	Activities	icon	in	the	upper-right	corner	of	the	GNOME	Shell	desktop	window.
When	the	search	bar	appears,	click	within	the	bar	to	access	it,	and	type	Keyboard	Shortcuts.	The	results	of	these
actions	are	shown	in	Figure	2-8.

FIGURE	2-8	Reaching	the	Keyboard	Shortcuts	window

Once	you	are	in	the	Keyboard	Shortcuts	window,	scroll	down	to	reach	the	+	button,	which	is	all	the	way	at	the
bottom.	Clicking	this	button	opens	a	dialog	box,	where	you	can	name	your	new	shortcut,	provide	the	command	to
open	the	application,	and	set	the	shortcut's	keystrokes,	as	shown	in	Figure	2-9.

It	is	important	to	use	the	correct	command	name	in	order	to	properly	launch	the	GNOME	terminal	emulator,	so
type	gnome-terminal	in	the	Command	field,	as	shown	in	Figure	2-9.	When	you	are	all	done	setting	up	your	new
shortcut,	click	the	Add	button	in	the	window.	Now	you	can	quickly	launch	the	GNOME	Terminal	by	just	using	the
keystroke	combination	you	specified.

Several	configuration	options	are	provided	by	menus	and	shortcut	keys	in	the	application,	which	you	can	apply	after
you	get	the	GNOME	terminal	emulation	started.	Understanding	these	options	can	enhance	your	GNOME	Terminal
CLI	experience.

FIGURE	2-9	Creating	a	keyboard	shortcut

The	menu	bar
The	GNOME	Terminal	menu	bar	contains	the	configuration	and	customization	options	you	need	to	make	your
GNOME	Terminal	just	the	way	you	want	it.	The	following	tables	briefly	describe	the	configuration	options	in	the
menu	bar	and	shortcut	keys	associated	with	them.

TIP
If	the	GNOME	Terminal	window	does	not	display	its	menu	bar,	right-click	in	the	terminal
emulator	session	area,	and	click	Show	Menubar	in	the	drop-down	menu.

Table	2-4	shows	the	configuration	options	available	within	the	GNOME	Terminal	File	menu	system.	The	File	menu
item	contains	items	to	create	and	manage	your	overall	CLI	terminal	sessions.

TABLE	2-4	The	File	Menu

Name Shortcut	Key Description

New	Tab Shift+Ctrl+T Starts	a	new	shell	session	in	a	new	tab	in	the	existing	GNOME	Terminal	window

New	Window Shift+Ctrl+N Starts	a	new	shell	session	in	a	new	GNOME	Terminal	window

Close	Tab Shift+Ctrl+W Closes	the	current	tab	in	the	GNOME	Terminal	window

Close	Window Shift+Ctrl+Q Closes	the	current	GNOME	Terminal	window

Notice	that,	as	in	a	network	browser,	you	can	open	new	tabs	within	the	GNOME	Terminal	session	to	start	a	whole
new	CLI	session.	Each	tab	session	is	considered	to	be	an	independent	CLI	session.

TIP
You	don't	always	have	to	click	through	the	menu	to	reach	options	in	the	File	menu.	Some	of	the
File	menu	selections	are	also	available	by	right-clicking	in	the	terminal	emulator	session	area.

The	Edit	menu	contains	items,	shown	in	Table	2-5,	for	handling	text	within	the	tabs.	You	can	copy	and	paste	text

anywhere	within	the	session	window.

TABLE	2-5	The	Edit	Menu

Name Shortcut	Key Description

Copy Shift+Ctrl+C Copies	selected	text	to	the	GNOME	clipboard

Copy	as	HTML None Copies	selected	text,	along	with	its	font	and	color,	to	the	GNOME	clipboard

Paste Shift+Ctrl+V Pastes	text	from	the	GNOME	clipboard	into	a	session

Select	All None Selects	output	in	the	entire	scrollback	buffer

Preferences None Edits	the	current	session	profile

Copying	and	pasting	commands	in	the	terminal	is	useful	if	you	are	lacking	in	keyboarding	skills.	Thus,	the	keyboard
shortcuts	for	the	GNOME	Terminal	Copy	and	Paste	functions	are	worth	memorizing.

NOTE
As	you	read	through	these	GNOME	Terminal	menu	options,	keep	in	mind	that	your	Linux
distribution's	GNOME	Terminal	may	have	slightly	different	menu	options	available.	This	is
because	several	Linux	distributions	use	older	versions	of	GNOME	Terminal.	You	can	find	the
version	number	by	clicking	Help	in	the	menu	bar	and	selecting	About	from	the	drop-down
menu.

The	View	menu,	shown	in	Table	2-6,	contains	items	for	controlling	how	the	CLI	session	windows	appear.	These
options	can	be	helpful	for	individuals	with	visual	impairment.

TABLE	2-6	The	View	Menu

Name Shortcut	Key Description

Show	Menubar None Toggles	on/off	the	menu	bar	display

Full	Screen F11 Toggles	on/off	the	terminal	window	filling	the	entire	desktop

Zoom	In Ctrl++ Enlarges	the	font	size	in	the	window	incrementally

Normal	Size Ctrl+0 Returns	the	font	size	to	default

Zoom	Out Ctrl+- Reduces	the	font	size	in	the	window	incrementally

Be	aware	that	if	you	toggle	off	the	menu	bar	display,	the	session's	menu	bar	disappears.	However,	you	can	easily	get
the	menu	bar	to	display	again	by	right-clicking	in	any	terminal	session	window	and	selecting	the	Show	Menubar
option.

The	Search	menu,	shown	in	Table	2-7,	contains	items	for	conducting	simple	searches	within	the	terminal	session.
These	searches	are	similar	to	ones	you	may	have	conducted	in	a	network	browser	or	word	processor.

TABLE	2-7	The	Search	Menu

Name Shortcut	Key Description

Find Shift+Ctrl+F Opens	Find	window	to	provide	designated	text	search	options

Find	Next Shift+Ctrl+G Searches	forward	from	current	terminal	session	location	for	designated	text

Find	Previous Shift+Ctrl+H Searches	backward	from	current	terminal	session	location	for	designated	text

Clear	Highlight Shift+Ctrl+J Removes	highlighting	of	found	text

The	Terminal	menu,	shown	in	Table	2-8,	contains	options	for	controlling	the	terminal	emulation	session	features.
There	are	no	shortcut	keys	to	access	these	items.

TABLE	2-8	The	Terminal	Menu

Name Description

Read-Only Toggles	on/off	the	terminal	session	accepting	keyboard	strokes;	it	does	not	enable/disable	keyboard
shortcuts

Reset Sends	reset	terminal	session	control	code

Reset	and
Clear

Sends	reset	terminal	session	control	code	and	clears	terminal	session	screen

80x24 Adjusts	the	current	terminal	window	size	to	80	columns	wide	by	24	rows	high

80x43 Changes	the	current	terminal	window	size	to	80	columns	wide	by	43	rows	high

132x24 Adjusts	the	current	terminal	window	size	to	130	columns	wide	by	24	rows	high

130x43 Changes	the	current	terminal	window	size	to	130	columns	wide	by	43	rows	high

The	Reset	option	is	extremely	useful.	One	day,	you	may	accidentally	cause	your	terminal	session	to	display	random
characters	and	symbols.	When	this	occurs,	the	text	is	unreadable.	It	is	typically	caused	by	displaying	a	nontext	file	to
the	screen.	You	can	quickly	get	the	terminal	session	back	to	normal	by	selecting	Reset	or	Reset	And	Clear.

NOTE
Keep	in	mind	that	when	you	adjust	your	terminal's	size,	such	as	by	using	the	80x24	setting	in
the	Terminal	menu,	the	actual	size	is	determined	by	factors	such	as	the	character	font	in	use.
It's	a	good	idea	to	play	around	with	the	different	settings	to	find	a	size	that	suits	your	taste.

The	Tabs	menu,	shown	in	Table	2-9,	provides	items	for	controlling	the	location	of	the	tabs	and	selecting	which	tab	is
active.	This	menu	displays	only	when	you	have	more	than	one	tab	session	open.

TABLE	2-9	The	Tabs	Menu

Name Shortcut	Key Description

Previous	Tab Ctrl+Page	Up Makes	the	previous	tab	in	the	list	active

Next	Tab Ctrl+Page	Down Makes	the	next	tab	in	the	list	active

Move	Terminal
Left

Shift+Ctrl+Page	Up Shuffles	the	current	tab	in	front	of	the	previous	tab

Move	Terminal
Right

Shift+Ctrl+Page
Down

Shuffles	the	current	tab	in	front	of	the	next	tab

Detach	Terminal None Removes	the	tab	and	starts	a	new	GNOME	Terminal	window	using	this
tab	session

Finally,	the	Help	menu	contains	two	menu	options:

Contents	provides	a	full	GNOME	Terminal	manual	so	that	you	can	research	individual	GNOME	Terminal	items
and	features.

About	shows	you	the	current	GNOME	Terminal	application	version	that's	running.

Besides	the	GNOME	terminal	emulator	package,	another	commonly	used	package	is	Konsole.	In	many	ways,
Konsole	is	similar	to	GNOME	Terminal.	However,	enough	differences	exist	to	warrant	its	own	section.

Using	the	Konsole	Terminal	Emulator
The	KDE	project	created	its	own	terminal	emulation	package	called	Konsole.	The	Konsole	application	incorporates
basic	terminal	emulation	features,	along	with	more	advanced	ones	expected	from	a	graphical	application.	This
section	describes	Konsole	features	and	shows	you	how	to	use	them.

Accessing	Konsole
The	Konsole	application	is	the	default	terminal	emulator	for	the	KDE	desktop	environment,	Plasma.	You	can	easily
access	it	via	the	KDE	environment's	menu	system.	In	other	desktop	environments,	accessing	Konsole	is	typically
done	via	search	features.

In	the	KDE	desktop	environment	(Plasma),	you	start	the	Konsole	terminal	emulator	by	clicking	the	icon	labeled
Application	Launcher	in	the	lower-left	corner	of	the	screen.	Then	click	Applications	➪	System	➪	Terminal
(Konsole).

NOTE
You	may	see	two	or	more	terminal	menu	options	within	the	Plasma	menu	environment.	If	you
do,	the	Terminal	menu	option	with	the	word	Konsole	beneath	it	is	the	Konsole	terminal
emulator	application.

In	the	GNOME	Shell	desktop	environment,	the	Konsole	application	is	typically	not	installed	by	default.	If	Konsole
has	been	installed,	you	can	access	it	via	the	GNOME	Shell	search	feature.	Click	the	Activities	icon	in	the	upper-right
corner	of	the	desktop	window.	When	the	search	bar	appears,	click	your	mouse	within	the	bar	to	access	it,	and	type
konsole.	If	the	terminal	emulator	is	available	on	your	system,	you	will	see	the	Konsole	icon	displayed.

NOTE
You	may	not	have	the	Konsole	terminal	emulation	package	installed	on	your	system.	If	you
would	like	to	install	it,	see	Chapter	9,	“Installing	Software,”	to	learn	how	to	install	software	via
the	command	line.

Click	the	Konsole	icon	with	your	mouse	to	open	the	terminal	emulator.	An	open	Konsole	application	on	an	Ubuntu
distribution	is	shown	in	Figure	2-10.

FIGURE	2-10	The	Konsole	terminal	emulator

Remember	that,	in	most	desktop	environments,	you	can	create	a	keyboard	shortcut	to	access	applications	such	as
Konsole.	The	command	you	need	to	type	for	the	shortcut	in	order	to	start	up	the	Konsole	terminal	emulator	is
konsole.	Also,	if	the	Konsole	application	is	installed,	you	can	start	it	from	another	terminal	emulator	by	typing
konsole	and	pressing	Enter.

TIP
In	the	Plasma	desktop	environment,	the	Konsole	terminal	emulator	application	already	has	a
default	keyboard	shortcut:	Ctrl+Alt+T.

The	Konsole	terminal	emulator,	similar	to	GNOME	Terminal,	has	several	configuration	options	provided	by	menus
and	shortcut	keys.	The	following	section	describes	these	various	features.

The	menu	bar
The	Konsole	menu	bar	contains	the	configuration	and	customization	options	you	need	to	easily	view	and	change
features	in	your	terminal	emulation	session.	The	following	tables	briefly	describe	the	menu	options	and	associated
shortcut	keys.

TIP
If	the	Konsole	menu	bar	is	not	currently	displayed,	you	can	press	Ctrl+Shift+M	to	enable	it.

The	File	menu,	shown	in	Table	2-10,	provides	options	for	starting	a	new	tab	in	the	current	window	or	in	a	new
window.

TABLE	2-10	The	File	Menu

Name Shortcut
Key

Description

New	Window Ctrl+Shift+N Starts	a	new	shell	session	in	a	new	Konsole	Terminal	window

New	Tab Ctrl+Shift+T Starts	a	new	shell	session	in	a	new	tab	in	the	existing	Konsole	Terminal	window

Clone	Tab None Starts	a	new	shell	session	in	a	new	tab	in	the	existing	Konsole	Terminal	window	that
attempts	to	duplicate	the	current	tab

Save	Output
As

Ctrl+Shift+S Saves	the	current	tab's	output	in	its	scrollback	buffer	as	either	a	text	or	an	HTML	file

Print	Screen Ctrl+Shift+P Prints	the	current	tab's	displayed	text

Open	File
Manager

None Opens	the	default	file	browser	application

Close	Session Ctrl+Shift+W Closes	the	current	tab	session

Close
Window

Ctrl+Shift+Q Closes	the	current	Konsole	window

Notice	that	Konsole	offers	two	handy	options	for	saving	information	from	your	shell	session:	Save	Output	As	and
Print	Screen.	The	Print	Screen	function	allows	you	to	print	the	displayed	text	to	a	system	printer	or	save	it	as	a	PDF
file.

NOTE
As	you	read	through	these	Konsole	menu	options,	keep	in	mind	that	your	Linux	distribution's
Konsole	application	may	have	very	different	menu	options	available.	This	is	because	some
Linux	distributions	have	kept	older	versions	of	the	Konsole	terminal	emulation	package.

The	Edit	menu,	shown	in	Table	2-11,	provides	options	for	handling	text	in	the	session.	Also,	managing	tab	names	is
in	this	options	list.

TABLE	2-11	The	Edit	Menu

Name Shortcut
Key

Description

Copy Ctrl+Shift+C Copies	selected	text	to	the	Konsole	clipboard

Paste Ctrl+Shift+V Pastes	text	from	the	Konsole	clipboard	into	a	session

Select	All None Selects	all	the	text	in	the	current	tab

Copy	Input
To

None Starts/stops	session	input	copies	to	chosen	additional	sessions

Send	Signal None Sends	the	selected	signal	from	the	drop-down	menu	to	the	current	tab's	shell	process
or	other	process

Rename	Tab Ctrl+Alt+S Modifies	session	tab	title	bar	setting

ZModem
Upload

Ctrl+Alt+U Starts	the	process	of	uploading	a	selected	file,	if	the	ZMODEM	file	transfer	protocol	is
supported

Find Ctrl+Shift+F Opens	the	Find	window	to	provide	scrollback	buffer	text	search	options

Find	Next F3 Finds	the	next	text	match	in	more	recent	scrollback	buffer	history

Find	Previous Shift+F3 Finds	the	next	text	match	in	older	scrollback	buffer	history

Konsole	provides	an	excellent	method	for	tracking	what	function	is	taking	place	in	each	tab	session.	Using	the
Rename	Tab	option,	you	can	name	a	tab	to	match	its	current	task.	This	helps	in	tracking	which	open	tab	session	is
performing	what	job.

NOTE
Konsole	retains	a	history,	formally	called	a	scrollback	buffer,	for	each	tab.	The	history
contains	output	text	that	has	scrolled	out	of	the	terminal	viewing	area.	By	default,	the	last
1,000	lines	in	the	scrollback	buffer	are	retained.	You	can	scroll	back	through	the	scrollback
buffer	by	simply	using	the	scrollbar	in	the	viewing	area.	Also,	you	can	scroll	back	line	by	line	by
pressing	the	Shift+Up	Arrow	or	scroll	back	a	page	(24	lines)	at	a	time	by	pressing	Shift+Page
Up.

The	View	menu,	shown	in	Table	2-12,	contains	items	for	controlling	individual	session	views	in	the	Konsole
Terminal	window.	In	addition,	options	are	available	that	aid	in	monitoring	terminal	session	activity.

TABLE	2-12	The	View	Menu

Name Shortcut
Key

Description

Split	View None Controls	a	multiple	tab	session	display	within	the	current	Konsole	window

Detach	Current
Tab

Ctrl+Shift+L Removes	a	tab	session	and	starts	a	new	Konsole	window	using	this	tab	session

Detach	Current
View

Ctrl+Shift+H Removes	the	current	tab	session's	view	and	starts	a	new	Konsole	window	with
it

Monitor	for	Silence Ctrl+Shift+I Toggles	on/off	a	special	message	when	no	activity	is	occurring	in	the	tab
session

Monitor	for
Activity

Ctrl+Shift+A Toggles	on/off	a	special	message	when	activity	starts	occurring	in	the	tab
session

Read-only None Toggles	on/off	the	terminal	session	accepting	keyboard	strokes;	does	not
enable/disable	keyboard	shortcuts

Enlarge	Font Ctrl++ Enlarges	the	font	size	in	the	window	incrementally

Reset	Font	Size Ctrl+Alt+0 Returns	the	font	size	to	default

Shrink	Font Ctrl+- Reduces	the	font	size	in	the	window	incrementally

Set	Encoding None Selects	the	character	set	used	to	send	and	display	characters

Clear	Scrollback None Removes	the	text	in	the	current	session's	scrollback	buffer

Clear	Scrollback
and	Reset

Ctrl+Shift+K Removes	the	text	in	the	current	session's	scrollback	buffer	and	resets	the
terminal	window

Full	Screen	Mode F11 Toggles	on/off	the	terminal	window	filling	the	entire	monitor	display	area

The	Monitor	for	Silence	option	is	used	for	indicating	tab	silence.	Tab	silence	occurs	when	no	new	text	appears	in	the
current	tab	session	for	about	seven	seconds.	This	allows	you	to	switch	to	another	tab	while	waiting	for	the
application's	output	to	stop.

TIP
The	Konsole	application	provides	a	simple	menu	when	you	right-click	in	the	active	session
area.	Several	menu	items	are	available	in	this	easy-to-access	menu.

The	Bookmarks	menu	options,	shown	in	Table	2-13,	provide	a	way	to	manage	bookmarks	set	in	the	Konsole
window.	A	bookmark	enables	you	to	save	your	active	session's	directory	location	and	then	easily	return	there	in
either	the	same	session	or	a	new	session.

TABLE	2-13	The	Bookmarks	Menu

Name Shortcut	Key Description

Add	Bookmark Ctrl+Shift+B Creates	a	new	bookmark	at	the	current	directory	location

Bookmark	Tabs	as	Folder None Creates	a	new	bookmark	for	all	current	terminal	tab	sessions

New	Bookmark	Folder None Creates	a	new	bookmark	storage	folder

Edit	Bookmarks None Edits	existing	bookmarks

The	Settings	menu,	shown	in	Table	2-14,	allows	you	to	customize	and	manage	your	profiles.	Profiles	allow	a	user	to
automate	the	running	of	commands,	set	up	the	session's	appearance,	configure	the	scrollback	buffer,	and	so	on.
Also,	within	the	Settings	menu	you	can	add	a	little	more	functionality	to	your	shell	sessions.

TABLE	2-14	The	Settings	Menu

Name Shortcut Key	Description

Edit	Current	Profile None Opens	the	Edit	Profile	window	to	provide	profile	configuration	options

Switch	Profile None Applies	to	the	current	tab	a	selected	profile

Manage	Profiles None Opens	the	Manage	Profiles	window	to	provide	profile	management
options

Show	Menubar Ctrl+Shift+M Toggles	on/off	menu	bar	display

Configure	Keyboard
Shortcuts

None Creates	Konsole	command	keyboard	shortcuts

Configure	Notifications None Creates	custom	Konsole	notifications

Configure	Konsole Ctrl+Shift+, Configures	many	Konsole	features

Configure	Notifications	allows	you	to	associate	specific	events	that	can	occur	within	a	session	with	different	actions,
such	as	playing	a	sound.	When	one	of	the	events	occurs,	the	defined	action	(or	actions)	is	taken.

The	Help	menu,	shown	in	Table	2-15,	provides	the	full	Konsole	handbook	(if	KDE	handbooks	were	installed	in	your
Linux	distribution)	and	the	standard	About	Konsole	dialog	box.

TABLE	2-15	The	Help	Menu

Name Shortcut
Key

Description

Konsole	Handbook None Contains	the	full	Konsole	Handbook

What's	This? Shift+F1 Contains	help	messages	for	terminal	widgets

Report	Bug None Opens	the	Submit	Bug	Report	form

Donate None Opens	the	KDE	donation	page	within	a	web	browser

Switch	Application
Language

None Opens	the	Switch	Application	Language	form

About	Konsole None Displays	information	about	the	Konsole	application,	including	its	current
version

About	KDE None Displays	information	about	the	KDE	desktop	environment

Rather	extensive	documentation	is	provided	to	help	you	use	the	Konsole	terminal	emulator	package	within	the	Help
menu.	The	Bug	Report	form	to	submit	to	the	Konsole	developers	when	you	encounter	a	program	bug	is	handy.

The	Konsole	terminal	emulator	package	is	young	compared	to	another	popular	package,	xterm.	In	the	next	section,
we	explore	the	“old-timer”	xterm.

Using	the	xterm	Terminal	Emulator
The	oldest	and	most	basic	of	terminal	emulation	packages	is	xterm.	The	xterm	package	has	been	around	since	before
the	original	days	of	X	Window,	a	historically	popular	display	server,	and	it's	still	included	by	default	in	some
distributions,	such	as	openSUSE.

xterm	is	a	full	terminal	emulation	package,	but	it	doesn't	require	many	resources	(such	as	memory)	to	operate.
Because	of	this,	the	xterm	package	is	still	popular	in	Linux	distributions	designed	to	run	on	older	hardware.

Although	it	doesn't	offer	many	fancy	features,	the	xterm	package	does	one	thing	extremely	well:	it	emulates	older
terminals,	such	as	the	Digital	Equipment	Corporation	(DEC)	VT102,	VT220,	and	Tektronix	4014	terminals.	For	the
VT102	and	VT220	terminals,	xterm	can	even	emulate	the	VT	series	of	color	control	codes,	allowing	you	to	use	color
in	your	scripts.

NOTE
The	DEC	VT102	and	VT220	were	dumb	text	terminals	popular	for	connecting	to	Unix	systems
in	the	1980s	and	early	1990s.	A	VT102/VT220	could	display	text	and	display	rudimentary
graphics	using	block	mode	graphics.	This	style	of	terminal	access	is	still	used	in	many	business
environments	today,	thus	keeping	VT102/VT220	emulation	popular.

Figure	2-11	shows	what	the	basic	xterm	display	looks	like	running	on	a	CentOS	distribution's	GNOME	Shell
environment,	where	it	had	to	be	manually	installed.	You	can	see	that	it	is	very	basic.

FIGURE	2-11	The	xterm	terminal

The	xterm	terminal	emulator	can	be	tricky	to	find	these	days.	Often,	it	is	not	included	in	a	desktop	environment
graphical	menu	arrangement.

Accessing	xterm
In	the	KDE	desktop	environment	(Plasma),	you	can	access	xterm	by	clicking	the	Application	Launcher	icon	in	the
lower-left	corner	of	the	screen.	Then	click	Applications	➪	System	➪	standard	terminal	emulator	for	the	X	Window
system	(xterm).

Once	the	xterm	package	is	installed,	you	can	access	it	via	the	GNOME	Shell	search	feature.	Click	the	Activities	icon
in	the	upper-right	corner	of	the	desktop	window.	When	the	search	bar	appears,	click	within	the	bar	to	access	it	and
type	xterm,	and	you'll	see	the	Konsole	icon	displayed.	Also,	remember	that	you	can	create	your	own	keyboard
shortcut	to	start	up	xterm.

The	xterm	package	allows	you	to	set	individual	features	using	command-line	parameters.	The	following	sections
discuss	these	features	and	how	to	change	them.

Command-line	parameters
The	list	of	xterm	command-line	parameters	is	extensive.	You	can	control	lots	of	features	to	customize	the	terminal
emulation	features,	such	as	enabling	or	disabling	individual	VT	emulations.

NOTE
xterm	has	a	huge	number	of	configuration	options	—	so	many	that	they	cannot	all	be	covered
here.	Extensive	documentation	is	available	via	the	Bash	manual.	Accessing	the	Bash	manual	is
covered	in	Chapter	3.	In	addition,	the	xterm	development	team	provides	some	excellent	help
on	its	website:	invisible-island.net/xterm.

You	can	invoke	certain	configuration	options	by	adding	a	parameter	to	the	xterm	command.	For	example,	to	have
the	xterm	emulate	a	DEC	VT100	terminal,	at	the	CLI	type	the	command	xterm	-ti	vt100	and	press	Enter.	Table	2-
16	shows	some	parameters	you	can	include	when	invoking	the	xterm	terminal	emulator	software	from	the	command
line.

TABLE	2-16	xterm	Command-Line	Parameters

Parameter Description

-bg	color Specifies	the	color	to	use	for	the	terminal	background

-fb	font Sets	the	font	to	use	for	bold	text

-fg	color Specifies	the	color	to	use	for	the	foreground	text

-fn	font Sets	the	font	to	use	for	text

-fw	font Specifies	the	font	to	use	for	wide	text

-lf	filename Sets	the	filename	to	use	for	screen	logging

-ms	color Specifies	the	color	used	for	the	text	cursor

-	name Sets	the	name	of	the	application	that	appears	in	the	title	bar

-ti	terminal Specifies	the	terminal	type	to	emulate

Some	xterm	command-line	parameters	use	a	plus	sign	(+)	or	minus	sign	(-)	to	signify	how	a	feature	is	set.	A	plus
sign	may	turn	a	feature	on,	whereas	a	minus	sign	turns	it	off.	However,	the	opposite	can	be	true	as	well.	A	plus	sign
may	disable	a	feature,	whereas	a	minus	sign	enables	it,	such	as	when	using	the	bc	parameter.	Table	2-17	lists	some	of
the	more	common	features	you	can	set	using	the	+	/	-	command-line	parameters.

TABLE	2-17	xterm	+/–	Command-Line	Parameters

Parameter Description

ah Enables/disables	highlighted	text	cursor

aw Enables/disables	auto-line-wrap

bc Enables/disables	text	cursor	blinking

cm Enables/disables	recognition	of	ANSI	color	change	control	codes

fullscreen Enables/disables	full-screen	mode

j Enables/disables	jump	scrolling

l Enables/disables	logging	screen	data	to	a	log	file

mb Enables/disables	margin	bell

rv Enables/disables	reverse	video	colors

t Enables/disables	Tektronix	mode

It	is	important	to	note	that	not	all	implementations	of	xterm	support	all	these	command-line	parameters.	You	can
determine	which	parameters	your	xterm	implements	by	using	the	-help	parameter	when	you	start	xterm	on	your
system.

NOTE
If	xterm	appeals	to	you	but	you'd	like	to	use	a	more	modern	terminal	emulation	application,
consider	trying	the	rxvt-unicode	package.	It	is	available	to	install	via	most	distributions’
standard	repositories	(covered	in	Chapter	9),	uses	little	RAM,	and	is	very	fast.	Find	out	more	at
software.schmorp.de/pkg/rxvt-unicode.html.

Now	that	you	have	been	introduced	to	three	terminal	emulator	packages,	the	big	question	is,	which	is	the	best
terminal	emulator	to	use?	There	is	no	definite	answer	to	that	question.	Which	terminal	emulator	package	you	use
depends	on	your	individual	needs	and	desires.	But	it	is	great	to	have	so	many	choices.

Summary
To	start	learning	Linux	command-line	commands,	you	need	access	to	a	CLI.	In	the	world	of	graphical	interfaces,	this
can	sometimes	be	challenging.	This	chapter	discussed	various	interfaces	you	should	consider	to	get	to	the	Linux
command	line.

First,	this	chapter	discussed	the	difference	between	accessing	the	CLI	via	a	virtual	console	terminal	(a	terminal
outside	the	GUI)	and	a	graphical	terminal	emulation	package	(a	terminal	inside	the	GUI).	We	took	a	brief	look	at	the
basic	differences	between	these	two	access	methods.

Next,	we	explored	in	detail	accessing	the	CLI	via	a	virtual	console	terminal,	including	specifics	on	how	to	change
console	terminal	configuration	options	such	as	background	color.

After	looking	at	virtual	console	terminals,	the	chapter	traveled	through	accessing	the	CLI	via	a	graphical	terminal
emulator.	Primarily,	we	covered	three	types	of	terminal	emulators:	GNOME	Terminal,	Konsole,	and	xterm.

This	chapter	also	covered	the	GNOME	Shell	desktop	project's	GNOME	terminal	emulation	package.	GNOME

Terminal	is	typically	installed	by	default	on	the	GNOME	Shell	desktop	environment.	It	provides	convenient	ways	to
set	many	terminal	features	through	menu	options	and	shortcut	keys.

We	also	discussed	the	KDE	desktop	project's	Konsole	terminal	emulation	package.	The	Konsole	application	is
typically	installed	by	default	on	the	KDE	desktop	environment	(Plasma).	It	provides	several	nice	features,	such	as
the	ability	to	monitor	a	terminal	for	silence.

Finally,	we	explored	the	xterm	terminal	emulator	package.	xterm	was	the	first	terminal	emulator	available	for	Linux.
It	can	emulate	older	terminal	hardware	such	as	the	VT	and	Tektronix	terminals.

In	the	next	chapter,	we'll	start	looking	at	the	Linux	command-line	commands.	We'll	walk	you	through	the
commands	necessary	to	navigate	around	the	Linux	filesystem	and	to	create,	delete,	and	manipulate	files.

CHAPTER	3
Basic	Bash	Shell	Commands
IN	THIS	CHAPTER

Interacting	with	the	shell

Using	the	Bash	manual

Traversing	the	filesystem

Listing	files	and	directories

Managing	files	and	directories

Viewing	file	contents

The	default	shell	used	in	many	Linux	distributions	is	the	GNU	Bash	shell.	This	chapter	describes	the	basic	features
available	in	the	Bash	shell,	such	as	the	Bash	manual,	command-line	completion,	and	how	to	display	a	file's	contents.
We	will	walk	you	through	how	to	work	with	Linux	files	and	directories	using	the	basic	commands	provided	by	the
Bash	shell.	If	you're	already	comfortable	with	the	basics	in	the	Linux	environment,	feel	free	to	skip	this	chapter	and
go	to	Chapter	4,	“More	Bash	Shell	Commands,”	to	see	more	advanced	commands.

Starting	the	Shell
The	GNU	Bash	shell	is	a	program	that	provides	interactive	access	to	the	Linux	system.	It	runs	as	a	regular	program
and	is	normally	started	whenever	a	user	logs	into	a	terminal.	The	shell	that	the	system	starts	depends	on	your	user
ID	configuration.

The	/etc/passwd	file	contains	a	list	of	all	the	system	user	accounts,	along	with	basic	configuration	information	about
each	user.	Here's	a	sample	entry	from	an	/etc/passwd	file:

christine:x:1001:1001::/home/christine:/bin/bash

Every	entry	has	seven	data	fields,	separated	by	colons	(:).	The	system	uses	the	data	in	these	fields	to	assign	specific
features	for	the	user.	Most	of	these	entries	are	discussed	in	more	detail	in	Chapter	7,	“Understanding	Linux	File
Permissions.”	For	now,	just	pay	attention	to	the	last	field,	which	specifies	the	user's	shell	program.

NOTE
Though	the	focus	is	on	the	GNU	Bash	shell,	additional	shells	are	reviewed	in	this	book.	Chapter
23,	“Working	with	Alternative	Shells,”	covers	working	with	alternative	shells,	such	as	dash	and
tcsh.

In	the	earlier	/etc/passwd	sample	entry,	the	user	christine	has	/bin/bash	set	as	their	default	shell	program.	This
means	when	christine	logs	into	the	Linux	system,	the	GNU	Bash	shell	program	is	automatically	started.

Although	the	Bash	shell	program	is	automatically	started	at	login,	whether	a	shell	command-line	interface	(CLI)	is
presented	depends	on	which	login	method	is	used.	If	you	use	a	virtual	console	terminal	to	log	in,	the	CLI	prompt	is
automatically	presented,	and	you	can	begin	to	type	shell	commands.	However,	if	you	log	into	the	Linux	system	via	a
graphical	desktop	environment,	you	need	to	start	a	graphical	terminal	emulator	to	access	the	shell	CLI	prompt.

Using	the	Shell	Prompt
After	you	start	a	terminal	emulation	package	or	log	into	a	Linux	virtual	console,	you	get	access	to	the	shell	CLI
prompt.	The	prompt	is	your	gateway	to	the	shell.	This	is	the	place	where	you	enter	shell	commands.

The	default	prompt	symbol	for	the	Bash	shell	is	the	dollar	sign	($).	This	symbol	indicates	that	the	shell	is	waiting	for
you	to	enter	text.	Different	Linux	distributions	use	different	formats	for	the	prompt.	On	this	Ubuntu	Linux	system,
the	shell	prompt	looks	like	this:

christine@UDesktop:~$

On	the	CentOS	Linux	system,	it	looks	like	this:

[christine@localhost	~]$

Besides	acting	as	your	access	point	to	the	shell,	the	prompt	can	provide	additional	helpful	information.	In	the	two
preceding	examples,	the	current	user	ID	name,	christine	,	is	shown	in	the	prompt.	Also,	the	name	of	the	system	is
shown,	UDesktop	on	the	Ubuntu	system	and	localhost	on	the	CentOS	machine.	You'll	learn	later	in	this	chapter
about	additional	items	shown	in	the	prompt.

TIP
If	you	are	new	to	the	CLI,	keep	in	mind	that,	after	you	type	a	shell	command	at	the	prompt,	you
need	to	press	the	Enter	key	for	the	shell	to	act	upon	your	command.

The	shell	prompt	is	not	static.	It	can	be	changed	to	suit	your	needs.	Chapter	6,	“Using	Linux	Environment
Variables,”	covers	the	shell	CLI	prompt	configuration.

Think	of	the	shell	CLI	prompt	as	a	helpmate,	assisting	you	with	your	Linux	system,	giving	you	helpful	insights,	and
letting	you	know	when	the	shell	is	ready	for	new	commands.	Another	helpful	item	in	the	shell	is	the	Bash	manual.

Interacting	with	the	Bash	Manual
Most	Linux	distributions	include	an	online	manual	for	looking	up	information	on	shell	commands,	as	well	as	lots	of
other	GNU	utilities	included	in	the	distribution.	You	should	become	familiar	with	the	manual,	because	it's
invaluable	for	working	with	commands,	especially	when	you're	trying	to	figure	out	various	command-line
parameters.

The	man	command	provides	access	to	the	manual	pages	stored	on	the	Linux	system.	Entering	the	man	command
followed	by	a	specific	command	name	provides	that	utility's	manual	entry.	Figure	3-1	shows	an	example	of	looking
up	the	hostname	command's	manual	pages.	This	page	was	reached	by	typing	the	command	man	hostname	.

FIGURE	3-1	Manual	pages	for	the	hostname	command

Notice	the	hostname	command's	DESCRIPTION	paragraph	in	Figure	3-1.	It	is	rather	sparse	and	full	of	technical	jargon.
The	Bash	manual	is	not	a	step-by-step	guide	but	instead	a	quick	reference.

TIP
If	you	are	new	to	the	Bash	shell,	you	may	find	that	the	man	pages	are	not	very	helpful	at	first.
However,	get	into	the	habit	of	using	them,	especially	to	read	the	first	paragraph	or	two	of	a
command's	DESCRIPTION	section.	Eventually,	you	will	learn	the	technical	lingo,	and	the	man
pages	will	become	more	helpful	to	you.

When	you	use	the	man	command	to	view	a	command's	manual,	the	information	is	displayed	with	something	called	a
pager.	A	pager	is	a	utility	that	allows	you	to	view	text	a	page	(or	a	line)	at	a	time.	Thus,	you	can	page	through	the
man	pages	by	pressing	the	spacebar,	or	you	can	go	line	by	line	using	the	Enter	key.	In	addition,	you	can	use	the
arrow	keys	to	scroll	forward	and	backward	through	the	man	information	(assuming	that	your	terminal	emulation
package	supports	the	arrow	key	functions).

When	you	are	finished	with	the	man	pages,	press	the	Q	key	to	quit.	When	you	leave	the	man	pages,	you	receive	a
shell	CLI	prompt,	indicating	the	shell	is	waiting	for	your	next	command.

TIP
The	Bash	manual	even	has	reference	information	on	itself.	Type	man	man	to	see	information
concerning	the	man	pages.

The	manual	page	divides	information	about	a	command	into	separate	sections.	Each	section	has	a	conventional
naming	standard,	as	shown	in	Table	3-1.

TABLE	3-1	The	Linux	Man	Page	Conventional	Section	Names

Section Description

Name Displays	command	name	and	a	short	description

Synopsis Shows	command	syntax

Configuration Provides	configuration	information

Description Describes	command	generally

Options Describes	command	option(s)

Exit	Status Defines	command	exit	status	indicator(s)

Return	Value Describes	command	return	value(s)

Errors Provides	command	error	messages

Environment Describes	environment	variable(s)	used

Files Defines	files	used	by	command

Versions Describes	command	version	information

Conforming	To Provides	standards	followed

Notes Describes	additional	helpful	command	material

Bugs Provides	the	location	to	report	found	bugs

Example Shows	command	use	examples

Authors Provides	information	on	command	developers

Copyright Defines	command	code	copyright	status

See	Also Refers	to	similar	available	commands

Not	every	command's	man	page	has	all	the	section	names	described	in	Table	3-1.	Also,	some	commands	have	section
names	that	are	not	listed	in	the	conventional	standard.

In	a	command's	synopsis	section,	you	can	find	out	how	the	command	should	be	entered	at	the	shell	prompt.	Many
commands	use	a	basic	pattern:

COMMAND-NAME	[OPTION]…	[ARGUMENT]…

In	the	command's	pattern	structure,

COMMAND-NAME	is	the	name	of	the	command	used	to	run	the	desired	program.

[OPTION]	s	are	additional	items	added	to	modify	the	command's	behavior.	There	are	typically	many	OPTIONs
(also	called	switches)	you	can	add.	The	brackets	([])	indicate	that	OPTIONs	are	not	required,	and	the	three	dots
(…)	show	that	you	can	use	more	than	one	OPTION	at	a	time.

[ARGUMENT]	is	typically	an	item	you	pass	to	the	command	to	let	the	program	know	you	want	it	to	operate	on
that	item.	You	can	see	that	it	too	is	not	required	due	to	the	brackets,	and	you	can	pass	multiple	ARGUMENTs	to	the
program.

TIP
If	you	want	to	use	more	than	one	command	option,	often	you	can	squish	them	together.	For
example,	to	use	the	options	-a	and	-b	,	you	type	-ab.

Many	commands	were	written	by	different	individuals,	so	you'll	find	the	way	to	use	them	varies	as	well.	Thus,	the
command's	synopsis	section	within	its	man	page	is	a	great	place	to	find	the	proper	syntax	in	order	to	get	things	done
with	the	command.

TIP
If	you	can't	remember	a	command's	name,	you	can	search	the	man	pages	using	keywords.	The
syntax	is	man	-k	keyword.	For	example,	to	find	commands	dealing	with	the	terminals,	you	type
man	-k	terminal.

In	addition	to	the	conventionally	named	sections	for	a	man	page,	there	are	man	page	section	areas.	Each	section
area	has	an	assigned	number,	starting	at	1	and	going	to	9;	they	are	listed	in	Table	3-2.

TABLE	3-2	The	Linux	Man	Page	Section	Areas

Section	Number Area	Contents

1 Executable	programs	or	shell	commands

2 System	calls

3 Library	calls

4 Special	files

5 File	formats	and	conventions

6 Games

7 Overviews,	conventions,	and	miscellaneous

8 Super	user	and	system	administration	commands

9 Kernel	routines

Typically,	the	man	utility	provides	the	lowest	numbered	content	area	for	the	command.	For	example,	looking	back	to
Figure	3-1	where	the	command	man	hostname	was	entered,	notice	that	in	the	upper-left	and	upper-right	display
corners,	the	word	HOSTNAME	is	followed	by	a	number	in	parentheses,	(1)	.	This	means	the	man	pages	displayed	are
coming	from	content	area	1	(executable	programs	or	shell	commands).

NOTE
Your	Linux	system	may	include	a	few	nonstandard	section	numbers	in	its	man	pages.	For
example,	1p	is	the	section	covering	Portable	Operating	System	Interface	(POSIX)	commands
and	3n	is	for	network	functions.

Occasionally,	a	command	has	the	same	name	as	a	special	file	or	overview	section	in	the	man	pages,	and	thus	the
name	is	listed	in	multiple	section	content	areas.	For	example,	the	man	pages	for	hostname	contain	information	on
the	command	as	well	as	an	overview	section	on	system	hostnames.	Typically	by	default,	the	man	information	for	the
lowest	section	number	is	displayed.	Such	was	the	case	in	Figure	3-1,	where	the	hostname	man	pages	from	section	1
was	automatically	chosen.	To	get	around	the	default	section	search	order,	type	man	section#	topicname.	Thus,	to	see
the	hostname	overview	man	pages	in	section	7,	type	man	7	hostname	.

You	can	also	step	through	an	introduction	to	the	various	section	content	areas	by	typing	man	1	intro	to	read	about
section	1,	man	2	intro	to	read	about	section	2,	man	3	intro	to	read	about	section	3,	and	so	on.

The	man	pages	are	not	the	only	reference.	There	are	also	the	information	pages	called	info	pages.	You	can	learn
about	the	info	pages	by	typing	info	info	.

Built-in	commands,	which	are	covered	in	Chapter	5,	“Understanding	the	Shell,”	have	their	own	special	resource
called	the	help	pages.	For	more	information	on	using	help	pages,	type	help	help	.	(See	a	pattern	here?)

In	addition,	most	commands	accept	the	-h	or	--help	option.	For	example,	you	can	type	hostname	--help	to	see	a
brief	help	screen.

Obviously,	several	helpful	resources	are	available	for	reference.	However,	many	basic	shell	concepts	still	need
detailed	explanation.	In	the	next	section,	we	cover	navigating	through	the	Linux	filesystem.

Navigating	the	Filesystem
When	you	log	into	the	system	and	reach	the	shell	command	prompt,	you	are	usually	placed	in	your	home	directory.
Often,	you	want	to	explore	other	areas	in	the	Linux	system	besides	just	your	home	directory.	This	section	describes
how	to	do	that	using	shell	commands.	To	start,	you	need	to	take	a	tour	of	just	what	the	Linux	filesystem	looks	like	so
you	know	where	you	are	going.

Looking	at	the	Linux	filesystem
If	you're	new	to	the	Linux	system,	you	may	be	confused	by	how	it	references	files	and	directories,	especially	if	you're
used	to	the	way	the	Microsoft	Windows	operating	system	does	that.	Before	exploring	the	Linux	system,	it	helps	to
have	an	understanding	of	how	it's	laid	out.

The	first	difference	you'll	notice	is	that	Linux	does	not	use	drive	letters	in	pathnames.	In	the	Windows	world,	the
partitions	on	physical	drives	installed	on	the	computer	determine	the	pathname	of	the	file.	Windows	assigns	a	letter
to	each	physical	disk	drive	partition,	and	each	one	contains	its	own	directory	structure	for	accessing	files	stored	on
it.

For	example,	in	Windows	you	may	be	used	to	seeing	the	file	paths	such	as

C:\Users\Rich\Documents\test.doc

The	Windows	file	path	tells	you	exactly	which	physical	disk	partition	contains	the	file	named	test.doc	.	For	example,
if	you	saved	test.doc	on	a	flash	drive,	designated	by	the	letter	E,	the	file	path	would	be	E:\test.doc	.	This	path
indicates	that	the	file	is	located	at	the	root	of	the	drive	assigned	the	letter	E.

This	is	not	the	method	used	by	Linux.	Linux	stores	files	within	a	single	directory	structure,	called	a	virtual	directory.
The	virtual	directory	contains	file	paths	from	all	the	storage	devices	installed	on	the	computer,	merged	into	a	single
directory	structure.

The	Linux	virtual	directory	structure	contains	a	single	base	directory,	called	the	root.	Directories	and	files	beneath
the	root	directory	are	listed	based	on	the	directory	path	used	to	get	to	them,	similar	to	the	way	Windows	does	it.

TIP
You'll	notice	that	Linux	uses	a	forward	slash	(/)	instead	of	a	backward	slash	(\)	to	denote
directories	in	file	paths.	The	backslash	character	in	Linux	denotes	an	escape	character	and
causes	all	sorts	of	problems	when	you	use	it	in	a	file	path.	This	may	take	some	getting	used	to	if
you're	coming	from	a	Windows	environment.

In	Linux,	as	depicted	in	Figure	3-2,	you	will	see	file	paths	similar	to	this:

/home/rich/Documents/test.doc

FIGURE	3-2	A	Linux	virtual	directory	file	path

This	indicates	that	the	file	test.doc	is	in	the	directory	Documents	,	under	the	directory	rich	,	which	is	contained	in
the	directory	home	.	Notice	that	the	path	doesn't	provide	any	information	as	to	which	physical	disk	the	file	is	stored
on.

The	tricky	part	about	the	Linux	virtual	directory	is	how	it	incorporates	each	storage	device.	The	first	hard	drive
installed	in	a	Linux	system	is	called	the	root	drive.	The	root	drive	contains	the	virtual	directory	core.	Everything	else
builds	from	there.

On	the	root	drive,	Linux	can	use	special	directories	as	mount	points.	Mount	points	are	directories	in	the	virtual
directory	where	you	can	assign	additional	storage	devices.	Linux	causes	files	and	directories	to	appear	within	these
mount	point	directories,	even	though	they	are	physically	stored	on	a	different	drive.

Often	system	files	are	physically	stored	on	the	root	drive.	User	files	are	typically	stored	on	a	separate	drive	or	drives,
as	shown	in	Figure	3-3.

FIGURE	3-3	The	Linux	file	structure

Figure	3-3	shows	two	hard	drives	on	the	computer.	One	hard	drive	(Disk	1)	is	associated	with	the	root	of	the	virtual
directory.	Other	hard	drives	can	be	mounted	anywhere	in	the	virtual	directory	structure.	In	this	example,	the	second
hard	drive	(Disk	2)	is	mounted	at	the	location	/home	,	which	is	where	the	user	directories	are	located.

The	Linux	filesystem	structure	originally	evolved	from	the	Unix	file	structure.	In	a	Linux	filesystem,	common
directory	names	are	used	for	common	functions.	Table	3-3	lists	some	common	Linux	virtual	top-level	directory
names	and	their	contents.

TABLE	3-3	Common	Linux	Directory	Names

Directory Usage

/ Root	of	the	virtual	directory,	where	normally,	no	files	are	placed

/bin Binary	directory,	where	many	GNU	user-level	utilities	are	stored

/boot Boot	directory,	where	boot	files	are	stored

/dev Device	directory,	where	Linux	creates	device	nodes

/etc System	configuration	files	directory

/home Home	directory,	where	Linux	creates	user	directories,	which	are	optional

/lib Library	directory,	where	system	and	application	library	files	are	stored

/libname Library	directory(ies),	where	alternative	format	system	and	application	library	files	are	stored,	which	is
optional

/media Media	directory,	a	common	place	for	mount	points	used	for	removable	media

/mnt Mount	directory,	a	common	place	used	for	temporarily	mounting	filesystems

/opt Optional	directory,	where	third-party	software	packages	are	stored

/proc Process	directory,	where	current	kernel,	system,	and	process	information	is	stored

/root Root	user's	home	directory,	which	is	optional

/run Run	directory,	where	runtime	data	is	held	during	system	operation

/sbin System	binary	directory,	where	many	GNU	admin-level	utilities	are	stored

/srv Service	directory,	where	local	services	store	their	files

/sys System	directory,	where	devices,	drivers,	and	some	kernel	feature	information	is	stored

/tmp Temporary	directory,	where	temporary	work	files	can	be	created	and	destroyed

/usr User	directory,	a	secondary	directory	hierarchy

/var Variable	directory,	for	files	that	change	frequently,	such	as	log	files

On	the	CentOS	Linux	system,	the	root	virtual	directory	typically	has	these	top-level	directories	within	it:

bin		dev	home	lib64	mnt	proc	run		srv	tmp	var
boot	etc	lib		media	opt	root	sbin	sys	usr

The	/usr	directory	deserves	some	special	attention,	because	it	is	a	secondary	directory	grouping,	containing	read-
only	files	that	are	sharable.	You'll	often	find	user	commands,	source	code	files,	games,	and	so	on.	Here	is	an	example
of	the	/usr	directory	on	a	CentOS	system:

bin	games	include	lib	lib64	libexec	local	sbin	share	src	tmp

The	common	Linux	directory	names	are	based	on	the	Filesystem	Hierarchy	Standard	(FHS).	Many	Linux
distributions	maintain	compliance	with	FHS.	Therefore,	you	should	be	able	to	easily	find	files	on	any	FHS-compliant
Linux	systems.

NOTE
The	FHS	is	occasionally	updated.	You	may	find	that	some	Linux	distributions	are	still	using	an
older	FHS	standard,	whereas	other	distributions	only	partially	implement	the	current
standard.	To	keep	up	to	date	on	the	FHS	standard,	visit	its	official	home	at
refspecs.linuxfoundation.org/fhs.shtml.

When	you	log	into	your	system	and	reach	a	shell	CLI	prompt,	your	session	starts	in	your	home	directory.	Your	home
directory	is	a	unique	directory	assigned	to	your	user	account.	When	a	user	account	is	created,	the	system	normally
assigns	a	unique	directory	for	the	account	(see	Chapter	7).

You	can	move	around	the	virtual	directory	using	a	graphical	interface.	However,	to	move	around	the	virtual
directory	from	a	CLI	prompt,	you	need	to	learn	to	use	the	cd	command.

Traversing	directories
You	use	the	change	directory	command	(cd)	to	move	your	shell	session	to	another	directory	in	the	Linux	filesystem.
The	cd	command	syntax	is	pretty	simple:	cd	destination.

The	cd	command	may	take	a	single	argument,	destination,	which	specifies	the	directory	name	you	want	to	go	to.	If
you	don't	specify	a	destination	on	the	cd	command,	it	takes	you	to	your	home	directory.

The	destination	argument	can	be	expressed	using	two	different	methods.	One	method	is	using	an	absolute	directory
reference.	The	other	method	uses	a	relative	directory	reference.

The	following	sections	describe	each	of	these	methods.	The	differences	between	these	two	methods	are	important	to

understand	as	you	traverse	the	filesystem.

Using	absolute	directory	references
You	can	reference	a	directory	name	within	the	virtual	directory	system	using	an	absolute	directory	reference.	The
absolute	directory	reference	defines	exactly	where	the	directory	is	in	the	virtual	directory	structure,	starting	at	the
root.	Think	of	the	absolute	directory	reference	as	the	full	name	for	a	directory.

An	absolute	directory	reference	always	begins	with	a	forward	slash	(/),	indicating	the	virtual	directory	system's	root.
Thus,	to	reference	user	binaries,	contained	within	the	usr	directory's	bin	subdirectory,	you	would	use

/usr/bin

With	the	absolute	directory	reference,	there's	no	doubt	as	to	exactly	where	you	want	to	go.	To	move	to	a	specific
location	in	the	filesystem	using	the	absolute	directory	reference,	you	just	specify	the	full	pathname	in	the	cd
command:

[christine@localhost	~]$	cd	/usr/bin
[christine@localhost	bin]$	

Notice	in	the	preceding	example	that	the	prompt	originally	had	a	tilde	(~)	in	it.	After	the	change	to	a	new	directory
occurred,	the	tilde	was	replaced	by	bin	.	This	is	where	a	CLI	prompt	can	help	you	keep	track	of	where	you	are	in	the
virtual	directory	structure.	The	tilde	indicates	that	your	shell	session	is	located	in	your	home	directory.	After	you
move	out	of	your	home	directory,	the	partial	directory	reference	is	shown	in	the	prompt	(if	the	prompt	has	been
configured	to	do	so).

NOTE
If	your	shell	CLI	prompt	does	not	show	your	shell	session's	current	location,	then	it	has	not
been	configured	to	do	so.	Chapter	6	discusses	CLI	prompt	configuration,	if	you	desire
modifications	to	your	CLI	prompt.

If	your	prompt	has	not	been	configured	to	show	the	shell	session's	current	absolute	directory	location,	then	you	can
display	the	location	via	a	shell	command.	The	pwd	command	displays	the	shell	session's	current	directory	location,
which	is	called	the	present	working	directory	or	current	working	directory.	An	example	of	using	the	pwd	command
is	shown	here:

[christine@localhost	bin]$	pwd
/usr/bin
[christine@localhost	bin]$

TIP
It	is	a	good	habit	to	use	the	pwd	command	whenever	you	change	to	a	new	present	working
directory.	Because	many	shell	commands	operate	on	the	present	working	directory,	you
always	want	to	make	sure	you	are	in	the	correct	directory	before	issuing	a	command.

You	can	move	to	any	level	within	the	entire	Linux	virtual	directory	structure	from	any	level	using	the	absolute
directory	reference:

[christine@localhost	bin]$	cd	/var/log
[christine@localhost	log]$	pwd
/var/log
[christine@localhost	log]$

You	can	also	quickly	jump	to	your	home	directory	from	any	level	within	the	Linux	virtual	directory	structure:

[christine@localhost	log]$	cd
[christine@localhost	~]$	pwd
/home/christine
[christine@localhost	~]$

However,	if	you're	just	working	within	your	own	home	directory	structure,	often	using	absolute	directory	references
can	get	tedious.	For	example,	if	you're	already	in	the	directory	/home/christine	,	it	seems	somewhat	cumbersome	to
have	to	type	the	command

cd	/home/christine/Documents

just	to	get	to	your	Documents	directory.	Fortunately,	there's	a	simpler	solution.

Using	relative	directory	references
Relative	directory	references	allow	you	to	specify	a	destination	directory	reference	relative	to	your	current	location.
A	relative	directory	reference	doesn't	start	with	a	forward	slash	(/).

Instead,	a	relative	directory	reference	starts	with	either	a	directory	name	(if	you're	traversing	to	a	directory	under
your	current	directory)	or	a	special	character.	For	example,	if	you	are	in	your	home	directory	and	want	to	move	to

your	Documents	subdirectory,	you	can	use	the	cd	command	along	with	a	relative	directory	reference:

[christine@localhost	~]$	pwd
/home/christine
[christine@localhost	~]$	cd	Documents
[christine@localhost	Documents]$	pwd
/home/christine/Documents
[christine@localhost	Documents]$

In	the	preceding	example,	note	that	no	forward	slash	(/)	was	used.	Instead,	a	relative	directory	reference	was	used
and	the	present	work	directory	was	changed	from	/home/christine	to	/home/christine/Documents	,	with	much	less
typing.

TIP
If	you	are	new	to	the	command	line	and	the	Linux	directory	structure,	it	is	recommended	that
you	stick	with	absolute	directory	references	for	a	while.	After	you	become	more	familiar	with
the	directory	layout,	switch	to	using	relative	directory	references.

You	can	use	a	relative	directory	reference	with	the	cd	command	in	any	directory	containing	subdirectories.	You	can
also	use	a	special	character	to	indicate	a	relative	directory	location.

The	two	special	characters	used	for	relative	directory	references	are:

The	single	dot	(.)	to	represent	the	current	directory

The	double	dot	(..)	to	represent	the	parent	directory

You	can	use	the	single	dot,	but	it	doesn't	make	sense	to	use	it	with	the	cd	command.	Later	in	the	chapter,	you	will
see	how	another	command	uses	the	single	dot	for	relative	directory	references	effectively.

The	double-dot	character	is	extremely	handy	when	trying	to	traverse	a	directory	hierarchy.	For	example,	if	you	are	in
the	Documents	directory	under	your	home	directory	and	need	to	go	to	your	Downloads	directory,	also	under	your
home	directory,	you	can	do	this:

[christine@localhost	Documents]$	pwd
/home/christine/Documents
[christine@localhost	Documents]$	cd	../Downloads
[christine@localhost	Downloads]$	pwd
/home/christine/Downloads
[christine@localhost	Downloads]$	

The	double-dot	character	takes	you	back	up	one	level	to	your	home	directory;	then	the	/Downloads	portion	of	the
command	takes	you	back	down	into	the	Downloads	directory.	You	can	use	as	many	double-dot	characters	as
necessary	to	move	around.	For	example,	if	you	are	in	your	home	directory	(/home/christine)	and	want	to	go	to	the
/etc	directory,	you	could	type	the	following:

[christine@localhost	~]$	cd	../../etc
[christine@localhost	etc]$	pwd
/etc
[christine@localhost	etc]$

Of	course,	in	a	case	like	this,	you	actually	have	to	do	more	typing	rather	than	just	typing	the	absolute	directory
reference,	/etc	.	Thus,	use	a	relative	directory	reference	only	if	it	makes	sense	to	do	so.

NOTE
It's	helpful	to	have	a	long	informative	shell	CLI	prompt,	as	used	in	this	chapter	section.
However,	for	clarity	purposes,	a	simple	$	prompt	is	used	in	the	rest	of	the	book's	examples.

Now	that	you	know	how	to	traverse	the	directory	system	and	confirm	your	present	working	directory,	you	can	start
to	explore	what's	contained	within	the	various	directories.	The	next	section	takes	you	through	the	process	of	looking
at	files	within	the	directory	structure.

Listing	Files	and	Directories
To	see	what	files	are	available	on	the	system,	use	the	list	command	(ls).	This	section	describes	the	ls	command	and
options	available	to	format	the	information	it	can	display.

Displaying	a	basic	listing
The	ls	command	at	its	most	basic	form	displays	the	files	and	directories	located	in	your	current	directory:

$	ls
Desktop				Downloads		my_script		Public					test_file
Documents		Music						Pictures			Templates		Videos

$	

Notice	that	the	ls	command	produces	the	listing	in	alphabetical	order	(in	columns	rather	than	rows).	If	you're	using
a	terminal	emulator	that	supports	color,	the	ls	command	may	also	show	different	types	of	entries	in	different	colors.
The	LS_COLORS	environment	variable	controls	this	feature.	(Environment	variables	are	covered	in	Chapter	6.
Different	Linux	distributions	set	this	environment	variable	depending	on	the	capabilities	of	the	terminal	emulator.

If	you	don't	have	a	color	terminal	emulator,	you	can	use	the	-F	parameter	with	the	ls	command	to	easily	distinguish
files	from	directories.	Using	the	-F	parameter	produces	the	following	output:

$	ls	-F
Desktop/				Downloads/		my_script*		Public/					test_file
Documents/		Music/						Pictures/			Templates/		Videos/
$

The	-F	parameter	flags	the	directories	with	a	forward	slash	(/),	to	help	identify	them	in	the	listing.	Similarly,	it
marks	executable	files	(like	the	my_script	file	in	the	preceding	code)	with	an	asterisk	(*),	to	help	you	more	easily	find
files	that	can	be	run	on	the	system.

The	basic	ls	command	can	be	somewhat	misleading.	It	shows	the	files	and	directories	contained	in	the	current
directory,	but	not	necessarily	all	of	them.	Linux	often	uses	hidden	files	to	store	configuration	information.	In	Linux,
hidden	files	are	files	with	filenames	starting	with	a	period	(.).	These	files	don't	appear	in	the	default	ls	listing.	Thus,
they	are	called	hidden	files.

To	display	hidden	files	along	with	normal	files	and	directories,	use	the	-a	parameter.	Here	is	an	example	of	using	the
-a	parameter	with	the	ls	command:

$	ls	-a
.														.bash_profile		Desktop				.ICEauthority		my_script		Templates
..													.bashrc								Documents		.local									Pictures			test_file
.bash_history		.cache									Downloads		.mozilla							.pki							Videos
.bash_logout			.config								.esd_auth		Music										Public
$

All	the	files	beginning	with	a	period,	hidden	files,	are	now	shown.	Notice	that	four	files	begin	with	.bash.	These	are
hidden	files	that	are	used	by	the	Bash	shell	environment	and	are	covered	in	detail	in	Chapter	6.

The	-R	parameter	is	another	option	the	ls	command	can	use.	Called	the	recursive	option,	it	shows	files	that	are
contained	within	subdirectories	in	the	current	directory.	If	you	have	lots	of	subdirectories,	this	can	be	quite	a	long
listing.	Here's	a	simple	example	of	what	the	-R	parameter	produces.	The	-F	option	was	tacked	on	to	help	you	see	the
file	types:

$	ls	-F	-R
.:
Desktop/				Downloads/		my_script*		Public/					test_file
Documents/		Music/						Pictures/			Templates/		Videos/
	
./Desktop:
	
./Documents:
	
./Downloads:
	
./Music:
ILoveLinux.mp3*
	
./Pictures:
	
./Public:
	
./Templates:
	
./Videos:
$	

Notice	that	the	-R	parameter	shows	the	contents	of	the	current	directory,	which	are	the	files	from	a	user's	home
directory	shown	in	earlier	examples.	It	also	shows	each	subdirectory	in	the	user's	home	directory	and	their	contents.
The	only	subdirectory	containing	a	file	is	the	Music	subdirectory,	and	it	contains	the	executable	file	ILoveLinux.mp3.

TIP
Option	parameters	don't	have	to	be	entered	separately	as	shown	in	the	previous	example:	ls	-F
-R	.	They	can	often	be	combined	as	follows:	ls	-FR.

In	the	previous	example,	there	were	no	subdirectories	within	subdirectories.	If	there	had	been	further
subdirectories,	the	-R	parameter	would	have	continued	to	traverse	those	as	well.	As	you	can	imagine,	for	large
directory	structures,	this	can	become	quite	a	long	listing.

Displaying	a	long	listing

In	the	basic	listings,	the	ls	command	doesn't	produce	much	information	about	each	file.	For	listing	additional
information,	another	popular	parameter	is	-l.	The	-l	parameter	produces	a	long	listing	format,	providing	more
information	about	each	file	in	the	directory:

$	ls	-l
total	8
drwxr-xr-x.	2	christine	christine		6	Feb	20	14:23	Desktop
drwxr-xr-x.	2	christine	christine		6	Feb	20	14:23	Documents
drwxr-xr-x.	2	christine	christine		6	Feb	20	14:23	Downloads
drwxr-xr-x.	2	christine	christine	28	Feb	29	15:42	Music
-rwxrw-r--.	1	christine	christine	74	Feb	29	15:49	my_script
drwxr-xr-x.	2	christine	christine		6	Feb	20	14:23	Pictures
drwxr-xr-x.	2	christine	christine		6	Feb	20	14:23	Public
drwxr-xr-x.	2	christine	christine		6	Feb	20	14:23	Templates
-rw-rw-r--.	1	christine	christine	74	Feb	29	15:50	test_file
drwxr-xr-x.	2	christine	christine		6	Feb	20	14:23	Videos
$	

The	long	listing	format	lists	each	file	and	directory	on	a	single	line.	Along	with	the	filename,	the	listing	shows
additional	useful	information.	The	first	line	in	the	output	shows	the	total	number	of	allocated	blocks	for	the	files
within	the	directory	(8).	After	that,	each	line	contains	the	following	information	about	each	file	(or	directory):

The	file	type	—	such	as	directory	(d),	file	(-),	linked	file	(l),	character	device	(c),	or	block	device	(b)

The	file	permissions	(see	Chapter	7)

The	number	of	file	hard	links	(see	the	section	“Linking	Files”	in	this	chapter).

The	file	owner	username

The	file	primary	group	name

The	file	byte	size

The	last	time	the	file	was	modified

The	filename	or	directory	name

The	-l	parameter	is	a	powerful	tool	to	have.	Armed	with	this	parameter,	you	can	see	most	of	the	information	you
need	for	any	file	or	directory.

TIP
If	you	want	to	view	the	long	listing	for	only	one	file,	simply	tack	on	the	file's	name	to	your	ls	-l
command.	However,	if	you	want	to	see	such	a	listing	for	a	directory,	and	not	its	contents,	you'll
not	only	need	to	add	its	name	to	the	command,	but	add	the	-d	switch,	as	in:	ls	-ld	Directory-
Name.

The	ls	command	has	lots	of	parameters	that	can	come	in	handy	as	you	do	file	management.	If	you	type	man	ls	at	the
shell	prompt,	you	see	several	pages	of	available	parameters	for	you	to	use	to	modify	the	ls	command	output.

Don't	forget	that	you	can	also	combine	many	of	the	parameters.	You	can	often	find	a	parameter	combination	that
not	only	displays	the	desired	output,	but	is	also	easy	to	remember,	such	as	ls	-alF.

Filtering	listing	output
As	you've	seen	in	the	examples,	by	default	the	ls	command	lists	all	the	non-hidden	directory	files.	Sometimes,	this
can	be	overkill,	especially	when	you're	just	looking	for	information	on	a	few	files.

Fortunately,	the	ls	command	also	provides	a	way	for	you	to	define	a	filter	on	the	command	line.	It	uses	the	filter	to
determine	which	files	or	directories	it	should	display	in	the	output.

Before	using	the	filter	command,	let's	create	some	files	to	play	with	via	the	touch	command	(covered	in	the	next
section).	If	the	file	already	exists,	the	command	won't	hurt	the	file:

$	touch	my_script	my_scrapt	my_file	
$	touch	fall	fell	fill	full
$	ls
Desktop				Downloads		fell		full			my_file				my_script		Public					test_file
Documents		fall							fill		Music		my_scrapt		Pictures			Templates		Videos
$

The	filter	works	as	a	simple	text-matching	string.	Include	the	filter	after	any	command	line	parameters	you	want	to
use:

$	ls	-l	my_script
-rwxrw-r--.	1	christine	christine	74	Feb	29	16:12	my_script
$	

When	you	specify	the	name	of	a	specific	file	as	the	filter,	the	ls	command	only	shows	that	file's	information.
Sometimes,	you	might	not	know	the	exact	filename	you're	looking	for.	The	ls	command	also	recognizes	standard
wildcard	characters	and	uses	them	to	match	patterns	within	the	filter:

A	question	mark	(?)	to	represent	one	character

An	asterisk	(*)	to	represent	any	number	of	characters

The	question	mark	can	be	used	to	replace	exactly	one	character	anywhere	in	the	filter	string.	For	example:

$	ls	-l	my_scr?pt
-rw-rw-r--.	1	christine	christine		0	Feb	29	16:12	my_scrapt
-rwxrw-r--.	1	christine	christine	74	Feb	29	16:12	my_script
$	

The	filter	my_scr?pt	matched	two	files	in	the	directory.	Similarly,	the	asterisk	can	be	used	to	match	zero	or	more
characters:

$	ls	-l	my*
-rw-rw-r--.	1	christine	christine		0	Feb	29	16:12	my_file
-rw-rw-r--.	1	christine	christine		0	Feb	29	16:12	my_scrapt
-rwxrw-r--.	1	christine	christine	74	Feb	29	16:12	my_script
$	

Using	the	asterisk	finds	three	different	files,	starting	with	the	name	my	.	As	with	the	question	mark,	you	can	place	the
asterisks	anywhere	in	the	filter:

$	ls	-l	my_s*t
-rw-rw-r--.	1	christine	christine		0	Feb	29	16:12	my_scrapt
-rwxrw-r--.	1	christine	christine	74	Feb	29	16:12	my_script
$

Using	the	asterisk	and	question	mark	in	the	filter	is	called	file	globbing.	File	globbing	is	the	process	of	pattern
matching	using	wildcards.	The	wildcards	are	officially	called	metacharacter	wildcards.	You	can	use	more
metacharacter	wildcards	for	file	globbing	than	just	the	asterisk	and	question	mark.	You	can	also	use	brackets:

$	touch	my_scrypt
$	ls	-l	my_scr[ay]pt
-rw-rw-r--.	1	christine	christine	0	Feb	29	16:12	my_scrapt
-rw-rw-r--.	1	christine	christine	0	Feb	29	16:18	my_scrypt
$	

In	this	example,	we	used	the	brackets	along	with	two	potential	choices	for	a	single	character	in	that	position,	a	or	y	.
The	brackets	represent	a	single	character	position	and	give	you	multiple	options	for	file	globbing.	You	can	list
choices	of	characters,	as	shown	in	the	preceding	example,	and	you	can	specify	a	range	of	characters,	such	as	an
alphabetic	range	[a-i]	:

$	ls	f*ll
fall		fell		fill		full
$	ls	f[a-i]ll
fall		fell		fill
$	

Also,	you	can	specify	what	should	not	be	included	in	the	pattern	match	by	using	the	exclamation	point	(!):

$	ls	-l	f[!a]ll
-rw-rw-r--.	1	christine	christine	0	Feb	29	16:12	fell
-rw-rw-r--.	1	christine	christine	0	Feb	29	16:12	fill
-rw-rw-r--.	1	christine	christine	0	Feb	29	16:12	full
$

File	globbing	is	a	powerful	feature	when	searching	for	files.	It	can	also	be	used	with	other	shell	commands	besides	ls
.	You'll	find	out	more	about	this	later	in	the	chapter.

Handling	Files
The	shell	provides	many	file	manipulation	commands	on	the	Linux	filesystem.	This	section	walks	you	through	the
basic	shell	commands	you	need	to	handle	files.

Creating	files
Every	once	in	a	while	you	run	into	a	situation	where	you	need	to	create	an	empty	file.	For	example,	sometimes
applications	expect	a	log	file	to	be	present	before	they	can	write	to	it.	In	these	situations,	you	can	use	the	touch
command	to	easily	create	an	empty	file:

$	touch	test_one
$	ls	-l	test_one
-rw-rw-r--.	1	christine	christine	0	Feb	29	17:24	test_one
$	

The	touch	command	creates	the	new	file	you	specify	and	assigns	your	username	as	the	file	owner.	Notice	in	the
preceding	example	that	the	file	size	is	zero	because	the	touch	command	just	created	an	empty	file.

The	touch	command	can	also	be	used	to	change	the	modification	time.	This	is	done	without	changing	the	file
contents:

$	ls	-l	test_one
-rw-rw-r--.	1	christine	christine	0	Feb	29	17:24	test_one
$	touch	test_one

$	ls	-l	test_one
-rw-rw-r--.	1	christine	christine	0	Feb	29	17:26	test_one
$

The	modification	time	of	test_one	is	now	updated	to	17:26	from	the	original	time,	17:24.

Creating	empty	files	and	altering	file	time	stamps	is	not	something	you	will	do	on	a	Linux	system	daily.	However,
copying	files	is	an	action	you	will	do	often	while	using	the	shell.

Copying	files
Copying	files	and	directories	from	one	location	in	the	filesystem	to	another	is	a	common	practice	for	system
administrators.	The	cp	command	provides	this	feature.

In	its	most	basic	form,	the	cp	command	uses	two	parameters	—	the	source	object	and	the	destination	object:	cp
source	destination.

When	both	the	source	and	destination	parameters	are	filenames,	the	cp	command	copies	the	source	file	to	a	new
destination	file.	The	new	file	acts	like	a	brand-new	file,	with	an	updated	modification	time:

$	cp	test_one	test_two
$	ls	-l	test_one	test_two
-rw-rw-r--.	1	christine	christine	0	Feb	29	17:26	test_one
-rw-rw-r--.	1	christine	christine	0	Feb	29	17:46	test_two
$

The	new	file	test_two	shows	a	different	modification	time	than	the	test_one	file.	If	the	destination	file	already	exists,
the	cp	command	may	not	prompt	you	to	this	fact.	It	is	best	to	add	the	-i	option	to	force	the	shell	to	ask	whether	you
want	to	overwrite	a	file:

$	ls	-l	test_one	test_two
-rw-rw-r--.	1	christine	christine	0	Feb	29	17:26	test_one
-rw-rw-r--.	1	christine	christine	0	Feb	29	17:46	test_two
$
$	cp	-i	test_one	test_two
cp:	overwrite	'test_two'?	n
$

If	you	don't	answer	y	,	the	file	copy	does	not	proceed.	You	can	also	copy	a	file	into	a	preexisting	directory:

$	cp	-i	test_one	/home/christine/Documents/
$
$	ls	-l	/home/christine/Documents/
total	0
-rw-rw-r--.	1	christine	christine	0	Feb	29	17:48	test_one
$

The	new	file	is	now	under	the	Documents	directory,	using	the	same	filename	as	the	original.

NOTE
The	preceding	example	uses	a	trailing	forward	slash	(/)	on	the	destination	directory	name.
Using	the	slash	indicates	Documents	is	a	directory	and	not	a	file.	This	is	helpful	for	clarity
purposes	and	is	important	when	copying	single	files.	If	the	forward	slash	is	not	used	and	the
subdirectory	/home/christine/Documents	does	not	exist,	a	file	named	Documents	is	created	within	the
current	directory	and	no	error	message	is	displayed.	That	is	problematic,	so	use	a	trailing
forward	slash	on	your	destination	directory	names.

This	last	example	used	an	absolute	directory	reference,	but	you	can	just	as	easily	use	a	relative	directory	reference:

$	cp	-i	test_two	Documents/
$	ls	-l	Documents/
total	0
-rw-rw-r--.	1	christine	christine	0	Feb	29	17:48	test_one
-rw-rw-r--.	1	christine	christine	0	Feb	29	17:51	test_two
$

Earlier	in	this	chapter,	you	read	about	the	special	symbols	that	can	be	used	in	relative	directory	references.	One	of
them,	the	single	dot	(.),	is	great	to	use	with	the	cp	command.	Remember	that	the	single	dot	represents	your	current
working	directory.	If	you	need	to	copy	a	file	with	a	long	source	object	name	to	your	current	working	directory,	the
single	dot	can	simplify	the	task:

$	cp	/etc/NetworkManager/NetworkManager.conf	.
$	ls	*.conf
NetworkManager.conf
$

It's	hard	to	see	that	single	dot!	If	you	look	closely,	you'll	see	it	at	the	end	of	the	first	example	code	line.	Using	the
single	dot	symbol	is	much	easier	than	typing	a	full	destination	object	name	when	you	have	long	source	object	names.

The	-R	parameter	is	a	powerful	cp	command	option.	It	allows	you	to	recursively	copy	the	contents	of	an	entire
directory	in	one	command:

$	ls	-l	Documents/
total	0
-rw-rw-r--.	1	christine	christine	0	Feb	29	17:48	test_one
-rw-rw-r--.	1	christine	christine	0	Feb	29	17:51	test_two
$
$	cp	-R	Documents/	NewDocuments/
$	ls	-l	NewDocuments/
total	0
-rw-rw-r--.	1	christine	christine	0	Feb	29	17:55	test_one
-rw-rw-r--.	1	christine	christine	0	Feb	29	17:55	test_two
$

The	directory	NewDocuments	did	not	exist	prior	to	the	cp	-R	command.	It	was	created	with	the	cp	-R	command,	and
the	entire	Documents	directory's	contents	were	copied	into	it.	Notice	that	all	the	files	in	the	new	NewDocuments
directory	have	new	dates	associated	with	them.	Now	NewDocuments	is	a	complete	copy	of	the	Documents	directory.

TIP
There	are	many	more	cp	command	parameters	than	those	described	here.	Remember	that	you
can	see	all	the	different	parameters	available	for	the	cp	command	by	typing	man	cp.

You	can	also	use	wildcard	metacharacters	in	your	cp	commands:

$	ls
Desktop				fall		full					my_scrapt		NetworkManager.conf		Public					test_one
Documents		fell		Music				my_script		NewDocuments									Templates		test_two
Downloads		fill		my_file		my_scrypt		Pictures													test_file		Videos
$
$	cp	my*	NewDocuments/
$	ls	NewDocuments/
my_file		my_scrapt		my_script		my_scrypt		test_one		test_two
$

This	command	copied	any	files	that	started	with	my	to	NewDocuments	.	Now	the	directory	contains	six	files	instead	of
just	two.

When	copying	files,	another	shell	feature	can	help	you	besides	the	single	dot	and	wildcard	metacharacters.	It	is
called	command-line	completion.

Using	command-line	completion
When	working	at	the	command	line,	you	can	easily	mistype	a	command,	directory	name,	or	filename.	In	fact,	the
longer	a	directory	reference	or	filename,	the	greater	the	chance	you	will	mistype	it.

This	is	where	command-line	completion	(also	called	tab	completion)	can	be	a	lifesaver.	Tab	completion	allows	you
to	start	typing	a	filename	or	directory	name,	and	then	press	the	tab	key	to	have	the	shell	complete	it	for	you:

$	touch	really_ridiculously_long_file_name
$
$	cp	really_ridiculously_long_file_name	NewDocuments/
$	ls	NewDocuments/
my_file				my_script		really_ridiculously_long_file_name		test_two
my_scrapt		my_scrypt		test_one
$

After	creating	a	file	with	a	very	long	name	in	the	preceding	example,	we	typed	the	command	cp	really	and	pressed
the	Tab	key,	and	the	shell	autocompleted	the	rest	of	the	filename	for	us!	Of	course,	the	destination	directory	had	to
be	typed,	but	still	tab	completion	saved	the	command	from	several	potential	typographical	errors.

The	trick	to	using	command-line	completion	is	to	give	the	shell	enough	filename	characters	so	it	can	distinguish	the
desired	file	from	other	files.	For	example,	if	another	filename	started	with	really	,	pressing	the	Tab	key	would	not
autocomplete	the	filename.	Instead,	you	would	hear	a	beep.	If	this	happens,	you	can	press	the	Tab	key	again,	and	the
shell	shows	you	all	the	filenames	starting	with	really	.	This	feature	allows	you	to	see	what	needs	to	be	typed	for	tab
completion	to	work	properly.

Linking	files
Linking	files	is	a	great	option	available	in	the	Linux	filesystem.	If	you	need	to	maintain	two	(or	more)	copies	of	the
same	file	on	the	system,	instead	of	having	separate	physical	copies,	you	can	use	one	physical	copy	and	multiple
virtual	copies,	called	links.	A	link	is	a	placeholder	in	a	directory	that	points	to	the	real	location	of	the	file.	Two	types
of	file	links	are	available	in	Linux:

A	symbolic	link

A	hard	link

A	symbolic	link,	also	called	a	soft	link,	is	simply	a	physical	file	that	points	to	another	file	somewhere	in	the	virtual
directory	structure.	The	two	symbolically	linked	together	files	do	not	share	the	same	contents.

To	create	a	symbolic	link,	the	original	file	must	already	exist.	We	then	use	the	ln	command	with	the	-s	option	to

create	the	symbolic	link:

$	ls	-l	test_file
-rw-rw-r--.	1	christine	christine	74	Feb	29	15:50	test_file
$
$	ln	-s	test_file	slink_test_file
$
$	ls	-l	*test_file
lrwxrwxrwx.	1	christine	christine		9	Mar		4	09:46	slink_test_file	->	test_file
-rw-rw-r--.	1	christine	christine	74	Feb	29	15:50	test_file
$

In	the	preceding	example,	notice	that	the	name	of	the	symbolic	link,	slink_test_file	,	is	listed	second	in	the	ln
command.	The	—>	symbol	displayed	after	the	symbolic	link	file's	name	in	its	long	listing	(ls	-l)	shows	that	it	is
symbolically	linked	to	the	file	test_file.

Also	note	the	symbolic	link's	file	size	versus	the	data	file's	file	size.	The	symbolic	link,	slink_test_file	,	is	only	9
bytes,	whereas	the	test_file	is	74	bytes.	This	is	because	slink_test_file	is	only	pointing	to	test_file	.	They	do	not
share	contents	and	are	two	physically	separate	files.

Another	way	to	tell	that	these	linked	files	are	separate	physical	files	is	by	viewing	their	inode	numbers.	The	inode
number	of	a	file	or	directory	is	a	unique	identification	number	that	the	kernel	assigns	to	each	object	in	the
filesystem.	To	view	a	file	or	directory's	inode	number,	add	the	-i	parameter	to	the	ls	command:

$	ls	-i	*test_file
1415020	slink_test_file		1415523	test_file
$

The	example	shows	that	the	test	file's	inode	number	is	1415523	,	whereas	the	slink_test_file	inode	number	is
different	(it	is	1415020).	Thus,	they	are	different	files.

A	hard	link	creates	a	separate	virtual	file	that	contains	information	about	the	original	file	and	where	to	locate	it.
However,	the	two	files	are	actually	the	same	physical	file.	To	create	a	hard	link,	again	the	original	file	must	preexist,
except	that	this	time	no	parameter	is	needed	on	the	ln	command:

$	ls	-l	*test_one
-rw-rw-r--.	1	christine	christine	0	Feb	29	17:26	test_one
$
$	ln	test_one	hlink_test_one
$
$	ls	-li	*test_one
1415016	-rw-rw-r--.	2	christine	christine	0	Feb	29	17:26	hlink_test_one
1415016	-rw-rw-r--.	2	christine	christine	0	Feb	29	17:26	test_one
$

In	the	preceding	example,	after	creating	the	hard	link	file,	we	used	the	ls	-li	command	to	show	both	the	inode
numbers	and	a	long	listing	for	the	*test_one	.	Notice	that	both	files,	which	are	hard-linked	together,	share	the	same
inode	number.	This	is	because	they	are	physically	the	same	file.	Their	file	size	is	exactly	the	same	as	well.

NOTE
You	can	only	create	a	hard	link	between	files	on	the	same	physical	medium.	To	create	a	link
between	files	under	separate	physical	mediums,	you	must	use	a	symbolic	link.

You	may	find	symbolic	and	hard	links	difficult	concepts.	Fortunately,	renaming	files,	the	topic	of	our	next	section,	is
a	great	deal	easier	to	understand.

Renaming	files
In	the	Linux	world,	renaming	files	is	called	moving	files.	The	mv	command	is	available	to	move	both	files	and
directories	to	another	location	or	a	new	name:

$	ls	-li	f?ll
1414976	-rw-rw-r--.	1	christine	christine	0	Feb	29	16:12	fall
1415004	-rw-rw-r--.	1	christine	christine	0	Feb	29	16:12	fell
1415005	-rw-rw-r--.	1	christine	christine	0	Feb	29	16:12	fill
1415011	-rw-rw-r--.	1	christine	christine	0	Feb	29	16:12	full
$
$	mv	fall	fzll
$
$	ls	-li	f?ll
1415004	-rw-rw-r--.	1	christine	christine	0	Feb	29	16:12	fell
1415005	-rw-rw-r--.	1	christine	christine	0	Feb	29	16:12	fill
1415011	-rw-rw-r--.	1	christine	christine	0	Feb	29	16:12	full
1414976	-rw-rw-r--.	1	christine	christine	0	Feb	29	16:12	fzll
$

Notice	that	moving	the	file	changed	the	name	from	fall	to	fzll	but	it	kept	the	same	inode	number	and	time	stamp
value.	This	is	because	mv	affects	only	a	file's	name.

You	can	also	use	mv	to	change	a	file's	location:

$	ls	-li	/home/christine/fzll
1414976	-rw-rw-r--.	1	christine	christine	0	Feb	29	16:12	/home/christine/fzll
$
$	ls	-li	/home/christine/NewDocuments/fzll
ls:	cannot	access	'/home/christine/NewDocuments/fzll':	No	such	file	or	directory
$
$	mv	/home/christine/fzll	/home/christine/NewDocuments/
$
$	ls	-li	/home/christine/NewDocuments/fzll
1414976	-rw-rw-r--.	1	christine	christine	0	Feb	29	16:12	
/home/christine/NewDocuments/fzll
$
$	ls	-li	/home/christine/fzll
ls:	cannot	access	'/home/christine/fzll':	No	such	file	or	directory
$

In	the	preceding	example,	we	moved	the	file	fzll	from	/home/christine	to	/home/christine/NewDocuments	using	the
mv	command.	Again,	there	were	no	changes	to	the	file's	inode	number	or	time	stamp	value.

TIP
Like	the	cp	command,	you	can	use	the	-i	option	on	the	mv	command.	Thus,	you	are	asked	before
the	command	attempts	to	overwrite	any	preexisting	files.

The	only	change	was	to	the	file's	location.	The	fzll	file	no	longer	exists	in	/home/christine	,	because	a	copy	of	it	was
not	left	in	its	original	location,	as	the	cp	command	would	have	done.

You	can	use	the	mv	command	to	move	a	file's	location	and	rename	it,	all	in	one	easy	step:

$	ls	-li	NewDocuments/fzll
1414976	-rw-rw-r--.	1	christine	christine	0	Feb	29	16:12	NewDocuments/fzll
$
$	mv	/home/christine/NewDocuments/fzll	/home/christine/fall
$
$	ls	-li	/home/christine/fall
1414976	-rw-rw-r--.	1	christine	christine	0	Feb	29	16:12	/home/christine/fall
$
$	ls	-li	/home/christine/NewDocuments/fzll
ls:	cannot	access	'/home/christine/NewDocuments/fzll':	No	such	file	or	directory
$

For	this	example,	we	moved	the	file	fzll	from	a	subdirectory,	NewDocuments	,	to	the	home	directory,	/home/christine
,	and	renamed	it	fall	.	Neither	the	timestamp	value	nor	the	inode	number	changed.	Only	the	location	and	name
were	altered.

You	can	also	use	the	mv	command	to	move	entire	directories	and	their	contents:

$	ls	NewDocuments
my_file				my_script		really_ridiculously_long_file_name		test_two
my_scrapt		my_scrypt		test_one
$
$	mv	NewDocuments	OldDocuments
$
$	ls	NewDocuments
ls:	cannot	access	'NewDocuments':	No	such	file	or	directory
$
$	ls	OldDocuments
my_file				my_script		really_ridiculously_long_file_name		test_two
my_scrapt		my_scrypt		test_one
$

The	directory's	entire	contents	are	unchanged.	The	only	thing	that	changes	is	the	name	of	the	directory.

Once	you	know	how	to	rename…err…move	files	with	the	mv	command,	you	realize	how	simple	it	is	to	accomplish.
Another	easy,	but	potentially	dangerous,	task	is	deleting	files.

Deleting	files
Most	likely	at	some	point	you'll	want	to	be	able	to	delete	existing	files.	Whether	it's	to	clean	up	a	filesystem	or	to
remove	temporary	work	data,	you	always	have	opportunities	to	delete	files.

In	the	Linux	world,	deleting	is	called	removing.	The	command	to	remove	files	in	the	Bash	shell	is	rm	.	The	basic	form
of	the	rm	command	is	simple:

$	rm	-i	fall
rm:	remove	regular	empty	file	'fall'?	y
$	ls	fall
ls:	cannot	access	'fall':	No	such	file	or	directory
$

Notice	that	the	-i	command	parameter	prompts	you	to	make	sure	that	you're	serious	about	removing	the	file.	The
shell	has	no	recycle	bin	or	trashcan.	After	you	remove	a	file,	it's	gone	forever.	Therefore,	a	good	habit	is	to	always
tack	on	the	-i	parameter	to	the	rm	command.

You	can	also	use	wildcard	metacharacters	to	remove	groups	of	files.	However,	again,	use	that	-i	option	to	protect
yourself:

$	rm	-i	f?ll
rm:	remove	regular	empty	file	'fell'?	y
rm:	remove	regular	empty	file	'fill'?	y
rm:	remove	regular	empty	file	'full'?	y
$	ls	f?ll
ls:	cannot	access	'f?ll':	No	such	file	or	directory
$

One	other	feature	of	the	rm	command,	if	you're	removing	lots	of	files	and	don't	want	to	be	bothered	with	the	prompt,
is	to	use	the	-f	parameter	to	force	the	removal.	Just	be	careful!

Managing	Directories
Linux	has	a	few	commands	that	work	for	both	files	and	directories	(such	as	the	cp	command)	and	some	that	work
only	for	directories.	To	create	a	new	directory,	you	need	to	use	a	specific	command,	which	is	covered	in	this	section.
Removing	directories	can	get	interesting,	so	that	is	covered	in	this	section	as	well.

Creating	directories
Creating	a	new	directory	in	Linux	is	easy	—	just	use	the	mkdir	command:

$	mkdir	New_Dir
$	ls	-ld	New_Dir
drwxrwxr-x.	2	christine	christine	6	Mar		6	14:40	New_Dir
$

The	system	creates	a	new	directory	named	New_Dir	.	Notice	in	the	new	directory's	long	listing	that	the	directory's
record	begins	with	a	d	.	This	indicates	that	New_Dir	is	a	directory.

Occasionally,	you	may	need	to	create	directories	and	subdirectories	in	“bulk.”	To	do	this,	add	the	-p	option	to	the
mkdir	command	as	shown	here:

$	mkdir	-p	New_Dir/SubDir/UnderDir
$	ls	-R	New_Dir
New_Dir:
SubDir
	
New_Dir/SubDir:
UnderDir
	
New_Dir/SubDir/UnderDir:
$

The	-p	option	on	the	mkdir	command	makes	any	missing	parent	directories	as	needed.	A	parent	directory	is	a
directory	that	contains	other	directories	at	the	next	level	down	the	directory	tree.

Of	course,	after	you	make	something,	you	need	to	know	how	to	delete	it.	This	is	especially	useful	if	you	created	a
directory	in	the	wrong	location.

Deleting	directories
Removing	directories	can	be	tricky,	and	for	good	reason.	There	are	lots	of	opportunities	for	bad	things	to	happen
when	you	start	deleting	directories.	The	shell	tries	to	protect	us	from	accidental	catastrophes	as	much	as	possible.

The	basic	command	for	removing	a	directory	is	rmdir	:

$	mkdir	Wrong_Dir
$	touch	Wrong_Dir/newfile
$
$	rmdir	Wrong_Dir/
rmdir:	failed	to	remove	'Wrong_Dir/':	Directory	not	empty
$

By	default,	the	rmdir	command	works	only	for	removing	empty	directories.	Because	we	created	a	file,	newfile	,	in
the	Wrong_Dir	directory,	the	rmdir	command	refuses	to	remove	it.

To	use	rmdir	to	remove	this	directory,	we	must	remove	the	file	first.	Then	we	can	use	the	rmdir	command	on	the	now
empty	directory:

$	rm	-i	Wrong_Dir/newfile
rm:	remove	regular	empty	file	'Wrong_Dir/newfile'?	y
$	rmdir	Wrong_Dir/
$	ls	Wrong_Dir
ls:	cannot	access	'Wrong_Dir':	No	such	file	or	directory
$

The	rmdir	has	no	-i	option	to	ask	if	you	want	to	remove	the	directory.	This	is	one	reason	it	is	helpful	that	rmdir
removes	only	empty	directories.

You	can	also	use	the	rm	command	on	entire	nonempty	directories.	Using	the	-r	option	allows	the	command	to
descend	into	the	directory,	remove	the	files,	and	then	remove	the	directory	itself:

$	mkdir	TestDir
$	touch	TestDir/fileone	TestDir/filetwo
$	ls	TestDir
fileone		filetwo
$	rm	-ir	TestDir
rm:	descend	into	directory	'TestDir'?	y
rm:	remove	regular	empty	file	'TestDir/fileone'?	y
rm:	remove	regular	empty	file	'TestDir/filetwo'?	y
rm:	remove	directory	'TestDir'?	y
$	ls	TestDir
ls:	cannot	access	'TestDir':	No	such	file	or	directory
$

This	also	works	for	descending	into	multiple	subdirectories	and	is	especially	useful	when	you	have	lots	of	directories
and	files	to	delete:

$	touch	New_Dir/testfile
$	ls	-FR	New_Dir
New_Dir:
SubDir/		testfile
	
New_Dir/SubDir:
UnderDir/
	
New_Dir/SubDir/UnderDir:
$
$	rm	-iR	New_Dir
rm:	descend	into	directory	'New_Dir'?	y
rm:	descend	into	directory	'New_Dir/SubDir'?	y
rm:	remove	directory	'New_Dir/SubDir/UnderDir'?	y
rm:	remove	directory	'New_Dir/SubDir'?	y
rm:	remove	regular	empty	file	'New_Dir/testfile'?	y
rm:	remove	directory	'New_Dir'?	y
$

Although	this	works,	it's	somewhat	awkward.	Notice	that	you	still	must	verify	each	and	every	file	that	gets	removed.
For	a	directory	with	lots	of	files	and	subdirectories,	this	can	become	tedious.

NOTE
For	the	rm	command,	the	-r	parameter	and	the	-R	parameter	work	exactly	the	same	—	it
recursively	traverses	through	the	directory	removing	files.	It	is	unusual	for	a	shell	command	to
have	different	cased	parameters	with	the	same	function.

The	ultimate	solution	for	quickly	deleting	a	directory	tree	is	the	rm	-rf	command.	It	gives	no	warnings	and	no
messages,	and	it	just	deletes	the	directory	specified	and	all	its	contents.	This,	of	course,	is	an	extremely	dangerous
tool	to	have.	Use	it	sparingly,	and	only	after	triple	checking	to	make	sure	that	you're	doing	exactly	what	you	want	to
do!

In	the	last	few	sections,	we	looked	at	managing	both	files	and	directories.	So	far	we've	covered	everything	you	need
to	know	about	files,	except	for	how	to	peek	inside	them.

Viewing	File	Contents
You	can	use	several	commands	for	looking	inside	files	without	having	to	pull	out	a	text	editor	utility	(see	Chapter	10,
“Working	with	Editors”).	This	section	demonstrates	a	few	of	those	commands.

Viewing	the	file	type
Before	you	go	charging	off	trying	to	display	a	file,	you	need	to	get	a	handle	on	what	type	of	file	it	is.	If	you	attempt	to
display	a	binary	file,	you	may	get	lots	of	gibberish	on	your	screen	and	possibly	even	lock	up	your	terminal	emulator.

The	file	command	is	a	handy	little	utility	to	have	around.	It	can	peek	inside	a	file	and	determine	just	what	kind	of
file	it	is:

$	file	.bashrc
.bashrc:	ASCII	text
$

The	file	in	the	preceding	example	is	a	text	file.	The	file	command	determined	not	only	that	the	file	contains	text
but	also	the	character	code	format	of	the	text	file,	ASCII.

This	following	example	shows	a	file	that	is	simply	a	directory.	Thus,	the	file	command	gives	you	another	method	to
distinguish	a	directory:

$	file	Documents
Documents/:	directory
$

This	third	file	command	example	shows	a	file	that	is	a	symbolic	link.	Note	that	the	file	command	even	tells	you	to

which	file	it	is	symbolically	linked:

$	file	slink_test_file
slink_test_file:	symbolic	link	to	test_file
$

The	following	example	shows	what	the	file	command	returns	for	a	script	file.	Although	the	file	is	ASCII	text	,
because	it's	a	script	file,	you	can	execute	(run)	it	on	the	system:

$	file	my_script
my_script:	Bourne-Again	shell	script,	ASCII	text	executable
$

The	final	example	is	a	binary	executable	program.	The	file	command	determines	the	platform	that	the	program	was
compiled	for	and	what	types	of	libraries	it	requires.	This	is	an	especially	handy	feature	if	you	have	a	binary
executable	program	from	an	unknown	source:

$	file	/usr/bin/ls
/usr/bin/ls:	ELF	64-bit	LSB	shared	object,	x86-64,	version	1	(SYSV),
dynamically	linked,	interpreter	/lib64/ld-linux-x86-64.so.2,	
for	GNU/Linux	3.2.0,[...]
$

Now	that	you	know	a	quick	method	for	viewing	a	file's	type,	you	can	start	displaying	and	viewing	files.

Viewing	the	whole	file
If	you	have	a	large	text	file	on	your	hands,	you	may	want	to	be	able	to	see	what's	inside	it.	Linux	has	three	different
commands	that	can	help	you	here.

Using	the	cat	command
The	cat	command	is	a	handy	tool	for	displaying	all	the	data	inside	a	text	file:

$	cat	test_file
Hello	World
Hello	World	again
Hello	World	a	third	time
How	are	you	World?
	
$

Nothing	too	exciting,	just	the	contents	of	the	text	file.	However,	the	cat	command	has	a	few	parameters	that	can
help	you	out.

The	-n	parameter	numbers	all	the	lines	for	you:

$	cat	-n	test_file
					1		Hello	World
					2		Hello	World	again
					3		Hello	World	a	third	time
					4		How	are	you	World?
					5
$

That	feature	will	come	in	handy	when	you're	examining	scripts.	If	you	just	want	to	number	the	lines	that	have	text	in
them,	the	-b	parameter	is	for	you:

$	cat	-b	test_file
					1		Hello	World
					2		Hello	World	again
					3		Hello	World	a	third	time
					4		How	are	you	World?
	
$

For	large	files,	the	cat	command	can	be	somewhat	annoying.	The	text	in	the	file	just	quickly	scrolls	off	the	display
without	stopping.	Fortunately,	we	have	a	simple	way	to	solve	this	problem.

Using	the	more	command
The	main	drawback	of	the	cat	command	is	that	you	can't	control	what's	happening	after	you	start	it.	To	solve	that
problem,	developers	created	the	more	command.	The	more	command	displays	a	text	file	but	stops	after	it	displays
each	page	of	data.	We	typed	the	command	more	/etc/profile	to	produce	the	sample	more	screen	shown	in	Figure	3-
4.

FIGURE	3-4	Using	the	more	command	to	display	a	text	file

Notice	at	the	bottom	of	the	screen	in	Figure	3-4	that	the	more	command	displays	a	tag	showing	that	you're	still	in	the
more	application	and	how	far	along	(29%)	in	the	text	file	you	are.	This	is	the	prompt	for	the	more	command.

TIP
If	you're	following	along	with	the	examples,	and	your	Linux	system	does	not	have	the
/etc/profile	file	or	it's	rather	short,	try	using	more	on	the	/etc/passwd	file	instead.	Type	more
/etc/passwd	and	press	Enter	at	your	shell	prompt.

The	more	command	is	a	pager	utility.	Earlier	in	this	chapter	we	discussed	that	a	pager	utility	displays	selected	Bash
manual	pages	when	you	use	the	man	command.	Similarly	to	navigating	through	the	man	pages,	you	can	use	more	to
navigate	through	a	text	file	by	pressing	the	spacebar,	or	you	can	go	forward	line	by	line	using	the	Enter	key.	When
you	are	finished	navigating	through	the	file	using	more	,	type	q	to	quit.

The	more	command	allows	some	rudimentary	movement	through	the	text	file.	For	more	advanced	features,	try	the
less	command.

Using	the	less	command
From	its	name,	it	sounds	like	it	shouldn't	be	as	advanced	as	the	more	command.	However,	the	less	command	name
is	actually	a	play	on	words	and	is	an	advanced	version	of	the	more	command	(the	less	command	name	comes	from
the	phrase	“less	is	more”).	It	provides	several	very	handy	features	for	scrolling	both	forward	and	backward	through	a
text	file,	as	well	as	some	pretty	advanced	searching	capabilities.

The	less	command	can	also	display	a	file's	contents	before	it	finishes	reading	the	entire	file.	The	cat	and	more
commands	cannot	do	this.

The	less	command	operates	much	the	same	as	the	more	command,	displaying	one	screen	of	text	from	a	file	at	a	time.
It	supports	the	same	command	set	as	the	more	command,	plus	many	more	options.

TIP
To	see	all	the	options	available	for	the	less	command,	view	its	man	pages	by	typing	man	less.
You	can	do	the	same	for	the	more	command	to	see	the	reference	material	concerning	its	various
options.

One	set	of	features	is	that	the	less	command	recognizes	the	up	and	down	arrow	keys	as	well	as	the	Page	Up	and
Page	Down	keys	(assuming	that	you're	using	a	properly	defined	terminal).	This	gives	you	full	control	when	viewing	a
file.

NOTE
The	less	utility	is	typically	the	pager	service	used	for	the	man	pages.	Thus,	the	more	you	learn
about	less	,	the	easier	it	will	be	for	you	to	navigate	through	various	commands'	man	pages.

Viewing	parts	of	a	file
Often	the	data	you	want	to	view	is	located	either	right	at	the	top	or	buried	at	the	bottom	of	a	text	file.	If	the
information	is	at	the	top	of	a	large	file,	you	still	need	to	wait	for	the	cat	or	more	command	to	load	the	entire	file
before	you	can	view	it.	If	the	information	is	located	at	the	bottom	of	a	file	(such	as	a	log	file),	you	need	to	wade
through	thousands	of	lines	of	text	just	to	get	to	the	last	few	entries.	Fortunately,	Linux	has	specialized	commands	to
solve	both	of	these	problems.

Using	the	tail	command
The	tail	command	displays	the	last	lines	in	a	file	(the	file's	“tail”).	By	default,	it	shows	the	last	10	lines	in	the	file.

For	these	examples,	we	created	a	text	file	containing	15	text	lines.	It	is	displayed	here	in	its	entirety	using	the	cat
command:

$	cat	log_file
line1
line2
line3
line4
Hello	World	-	line5
line6
line7
line8
line9
Hello	again	World	-	line10
line11
line12
line13
line14
Last	Line	-	line15
$

Now	that	you	have	seen	the	entire	text	file,	you	can	see	the	effect	of	using	tail	to	view	the	file's	last	10	lines:

$	tail	log_file
line6
line7
line8
line9
Hello	again	World	-	line10
line11
line12
line13
line14
Last	Line	-	line15
$

You	can	change	the	number	of	lines	shown	using	tail	by	including	the	-n	parameter.	In	this	example,	only	the	last
two	lines	of	the	file	are	displayed,	by	adding	-n	2	to	the	tail	command:

$	tail	-n	2	log_file
line14
Last	Line	-	line15
$

The	-f	parameter	is	a	pretty	cool	feature	of	the	tail	command.	It	allows	you	to	peek	inside	a	file	as	the	file	is	being
used	by	other	processes.	The	tail	command	stays	active	and	continues	to	display	new	lines	as	they	appear	in	the
text	file.	This	is	a	great	way	to	monitor	the	system	log	files	in	real-time	mode.

Using	the	head	command
The	head	command	does	what	you'd	expect;	it	displays	a	file's	first	group	of	lines	(the	file's	“head”).	By	default,	it
displays	the	first	10	lines	of	text:

$	head	log_file
line1
line2
line3
line4
Hello	World	-	line5
line6
line7
line8
line9
Hello	again	World	-	line10

$

Similar	to	the	tail	command,	the	head	command	supports	the	-n	parameter	so	that	you	can	alter	what's	displayed.
Both	commands	also	allow	you	to	simply	type	a	dash	along	with	the	number	of	lines	to	display,	as	shown	here:

$	head	-3	log_file
line1
line2
line3
$

Usually	the	beginning	of	a	file	doesn't	change,	so	the	head	command	doesn't	support	the	-f	parameter	feature	as	the
tail	command	does.	The	head	command	is	a	handy	way	to	just	peek	at	the	beginning	of	a	file.

Summary
This	chapter	covered	the	basics	of	working	with	the	Linux	filesystem	from	a	shell	prompt.	We	began	with	a
discussion	of	the	Bash	shell	and	showed	you	how	to	interact	with	the	shell.	The	CLI	uses	a	prompt	string	to	indicate
when	it's	ready	for	you	to	enter	commands.

The	shell	provides	a	wealth	of	utilities	you	can	use	to	create	and	manipulate	files.	Before	you	start	playing	with	files,
you	should	understand	how	Linux	stores	them.	This	chapter	discussed	the	basics	of	the	Linux	virtual	directory	and
showed	you	how	Linux	references	storage	media	devices.	After	describing	the	Linux	filesystem,	we	walked	you
through	using	the	cd	command	to	move	around	the	virtual	directory.

After	showing	you	how	to	get	to	a	directory,	we	demonstrated	how	to	use	the	ls	command	to	list	the	files	and
subdirectories.	Lots	of	parameters	can	customize	the	output	of	the	ls	command.	You	can	obtain	information	on	both
files	and	directories	by	using	this	command.

The	touch	command	is	useful	for	creating	empty	files	and	for	changing	the	access	or	modification	times	on	an
existing	file.	We	also	discussed	using	the	cp	command	to	copy	existing	files	from	one	location	to	another.	We	walked
you	through	the	process	of	linking	files	instead	of	copying	them,	providing	an	easy	way	to	have	the	same	file	in	two
locations	without	making	a	separate	copy.	The	ln	command	provides	this	linking	ability.

Next,	you	learned	how	to	rename	files	(called	moving)	in	Linux	using	the	mv	command	and	how	to	delete	files	(called
removing)	using	the	rm	command.	We	also	showed	you	how	to	perform	the	same	tasks	with	directories,	using	the
mkdir	and	rmdir	commands.

Finally,	this	chapter	closed	with	a	discussion	on	viewing	the	contents	of	files.	The	cat	,	more	,	and	less	commands
provide	easy	methods	for	viewing	the	entire	contents	of	a	file,	whereas	the	tail	and	head	commands	are	great	for
peeking	inside	a	file	to	just	see	a	small	portion	of	it.

The	next	chapter	continues	the	discussion	on	Bash	shell	commands.	We'll	look	at	more	advanced	administrator
commands	that	come	in	handy	as	you	administer	your	Linux	system.

CHAPTER	4
More	Bash	Shell	Commands
IN	THIS	CHAPTER

Managing	processes

Getting	disk	statistics

Mounting	new	disks

Sorting	data

Archiving	data

Chapter	3,	“Basic	Bash	Shell	Commands,”	covered	the	basics	of	rummaging	through	the	Linux	filesystem	and
working	with	the	files	and	directories.	File	and	directory	management	is	a	major	feature	of	the	Linux	shell;	however,
we	should	look	at	some	more	things	before	we	start	our	script	programming.	This	chapter	digs	into	the	Linux	system
management	commands,	showing	you	how	to	peek	inside	your	Linux	system	using	command-line	commands.	After
that,	it	shows	you	a	few	handy	commands	that	you	can	use	to	work	with	data	files	on	the	system.

Monitoring	Programs
One	of	the	toughest	jobs	of	being	a	Linux	system	administrator	is	keeping	track	of	what's	running	on	the	system	—
especially	now,	when	graphical	desktops	take	a	handful	of	programs	just	to	produce	a	single	desktop.	There	are
always	a	lot	of	programs	running	on	the	system.

Fortunately,	a	few	command-line	tools	are	available	that	can	help	make	life	easier	for	you.	This	section	covers	a	few
of	the	basic	tools	you'll	need	to	know	to	manage	programs	on	your	Linux	system.

Peeking	at	the	processes
When	a	program	runs	on	the	system,	it's	referred	to	as	a	process.	To	examine	these	processes,	you	must	become
familiar	with	the	ps	command,	the	Swiss	Army	knife	of	utilities.	It	can	produce	lots	of	information	about	all	the
programs	running	on	your	system.

Unfortunately,	with	this	robustness	comes	complexity	—	in	the	form	of	numerous	parameters	—	making	the	ps
command	probably	one	of	the	most	difficult	commands	to	master.	Most	system	administrators	find	a	subset	of	these
parameters	that	provide	the	information	they	want	and	then	stick	with	using	only	those.

That	said,	however,	the	basic	ps	command	doesn't	provide	all	that	much	information:

	$	ps
			PID	TTY										TIME	CMD
		3081	pts/0				00:00:00	bash
		3209	pts/0				00:00:00	ps
	$

Not	too	exciting.	By	default	the	ps	command	shows	only	the	processes	that	belong	to	the	current	user	and	that	are
running	on	the	current	terminal.	In	this	case,	we	only	had	our	Bash	shell	running	(remember,	the	shell	is	just
another	program	running	on	the	system)	and,	of	course,	the	ps	command	itself.

The	basic	output	shows	the	process	ID	(PID)	of	the	programs,	the	terminal	(TTY)	that	they	are	running	from,	and
the	CPU	time	the	process	has	used.

NOTE
The	tricky	feature	of	the	ps	command	(and	the	part	that	makes	it	so	complicated)	is	that	at	one
time	there	were	two	versions	of	it.	Each	version	had	its	own	set	of	command-line	parameters
controlling	what	information	it	displayed	and	how.	Recently,	Linux	developers	have	combined
the	two	ps	command	formats	into	a	single	ps	program	(and	of	course	added	their	own	touches).

The	GNU	ps	command	that's	used	in	Linux	systems	supports	three	different	types	of	command-line	parameters:

Unix-style	parameters,	which	are	preceded	by	a	dash

BSD-style	parameters,	which	are	not	preceded	by	a	dash

GNU	long	parameters,	which	are	preceded	by	a	double	dash

The	following	sections	examine	the	three	different	parameter	types	and	show	examples	of	how	they	work.

Unix-style	parameters
The	Unix-style	parameters	originated	with	the	original	ps	command	that	ran	on	the	AT&T	Unix	systems	invented	by

Bell	Labs.	These	parameters	are	shown	in	Table	4-1.

TABLE	4-1	The	ps	Command	Unix	Parameters

Parameter Description

-A Show	all	processes.

-N Show	the	opposite	of	the	specified	parameters.

-a Show	all	processes	except	session	headers	and	processes	without	a	terminal.

-d Show	all	processes	except	session	headers.

-e Show	all	processes.

-C	cmslist Show	processes	contained	in	the	list	cmdlist.

-G	grplist Show	processes	with	a	group	ID	listed	in	grplist.

-U	userlist Show	processes	owned	by	a	user	ID	listed	in	userlist.

-g	grplist Show	processes	by	session	or	by	group	ID	contained	in	grplist.

-p	pidlist Show	processes	with	PIDs	in	the	list	pidlist.

-s	sesslist Show	processes	with	a	session	ID	in	the	list	sesslist.

-t	ttylist Show	processes	with	a	terminal	ID	in	the	list	ttylist.

-u	userlist Show	processes	by	an	effective	user	ID	in	the	list	userlist.

-F Use	extra	full	output.

-O	format Display	specific	columns	in	the	list	format,	along	with	the	default	columns.

-M Display	security	information	about	the	process.

-c Show	additional	scheduler	information	about	the	process.

-f Display	a	full	format	listing.

-j Show	job	information.

-l Display	a	long	listing.

-o	format Display	only	specific	columns	listed	in	format.

-y Don't	show	process	flags.

-Z Display	the	security	context	information.

-H Display	processes	in	a	hierarchical	format	(showing	parent	processes).

-n	namelist Define	the	values	to	display	in	the	WCHAN	output	column.

-w Use	wide	output	format,	for	unlimited	width	displays.

-L Show	process	threads.

-V Display	the	version	of	ps	.

That's	a	lot	of	parameters,	and	remember,	there	are	still	more!	The	key	to	using	the	ps	command	is	not	to	memorize
all	the	available	parameters	but	only	those	you	find	most	useful.	Most	Linux	system	administrators	have	their	own
sets	of	commonly	used	parameters	that	they	remember	for	extracting	pertinent	information.	For	example,	if	you
need	to	see	everything	running	on	the	system,	use	the	-ef	parameter	combination	(the	ps	command	lets	you
combine	parameters	like	this):

$	ps	-ef
UID										PID				PPID		C	STIME	TTY										TIME	CMD
root											1							0		0	12:14	?								00:00:02	/sbin/init	splash
root											2							0		0	12:14	?								00:00:00	[kthreadd]
root											3							2		0	12:14	?								00:00:00	[rcu_gp]
root											4							2		0	12:14	?								00:00:00	[rcu_par_gp]
root											5							2		0	12:14	?								00:00:00	[kworker/0:0-events]
root											6							2		0	12:14	?								00:00:00	[kworker/0:0H-kblockd]
root											7							2		0	12:14	?								00:00:00	[kworker/0:1-events]
...
rich								2209				1438		0	12:17	?								00:00:01	/usr/libexec/gnome-terminal-
rich								2221				2209		0	12:17	pts/0				00:00:00	bash
rich								2325				2221		0	12:20	pts/0				00:00:00	ps	-ef
$

Quite	a	few	lines	have	been	cut	from	the	output	to	save	space,	but	as	you	can	see,	lots	of	processes	run	on	a	Linux
system.	This	example	uses	two	parameters:	the	-e	parameter,	which	shows	all	of	the	processes	running	on	the
system,	and	the	-f	parameter,	which	expands	the	output	to	show	a	few	useful	columns	of	information:

UID:	The	user	responsible	for	launching	the	process

PID:	The	process	ID	of	the	process

PPID:	The	PID	of	the	parent	process	(if	a	process	is	started	by	another	process)

C:	Processor	utilization	over	the	lifetime	of	the	process

STIME:	The	system	time	when	the	process	started

TTY:	The	terminal	device	from	which	the	process	was	launched

TIME:	The	cumulative	CPU	time	required	to	run	the	process

CMD:	The	name	of	the	program	that	was	started

This	produces	a	reasonable	amount	of	information,	which	is	what	many	system	administrators	would	like	to	see.	For
even	more	information,	you	can	use	the	-l	parameter,	which	produces	the	long	format	output:

	$	ps	-l
	F	S		UID	PID		PPID		C	PRI		NI	ADDR	SZ	WCHAN			TTY									TIME			CMD
	0	S		500	3081		3080		0		80			0	-		1173	do_wai	pts/0			00:00:00			bash
	0	R		500	4463		3081		1		80			0	-		1116	-						pts/0			00:00:00			ps
	$

Notice	the	extra	columns	that	appear	when	you	use	the	-l	parameter:

F:	System	flags	assigned	to	the	process	by	the	kernel

S:	The	state	of	the	process	(O	=	running	on	processor;	S	=	sleeping;	R	=	runnable,	waiting	to	run;	Z	=	zombie,
process	terminated	but	parent	not	available;	T	=	process	stopped)

PRI:	The	priority	of	the	process	(higher	numbers	mean	lower	priority)

NI:	The	nice	value,	used	for	determining	priorities

ADDR:	The	memory	address	of	the	process

SZ:	Approximate	amount	of	swap	space	required	if	the	process	was	swapped	out

WCHAN:	Address	of	the	kernel	function	where	the	process	is	sleeping

BSD-style	parameters
Now	that	you've	seen	the	Unix	parameters,	let's	take	a	look	at	the	BSD-style	parameters.	The	Berkeley	Software
Distribution	(BSD)	was	a	version	of	Unix	developed	at	(of	course)	the	University	of	California,	Berkeley.	It	had	many
subtle	differences	from	the	AT&T	Unix	system,	thus	sparking	many	Unix	wars	over	the	years.	The	BSD	version	of	the
ps	command	parameters	are	shown	in	Table	4-2.

TABLE	4-2	The	ps	Command	BSD	Parameters

Parameter Description

T Show	all	processes	associated	with	this	terminal.

a Show	all	processes	associated	with	any	terminal.

g Show	all	processes,	including	session	headers.

r Show	only	running	processes.

x Show	all	processes,	even	those	without	a	terminal	device	assigned.

U	userlist Show	processes	owned	by	a	user	ID	listed	in	userlist.

p	pidlist Show	processes	with	a	PID	listed	in	pidlist.

t	ttylist Show	processes	associated	with	a	terminal	listed	in	ttylist.

O	format List	specific	columns	in	format	to	display	along	with	the	standard	columns.

X Display	data	in	the	register	format.

Z Include	security	information	in	the	output.

j Show	job	information.

l Use	the	long	format.

o	format Display	only	columns	specified	in	format.

s Use	the	signal	format.

u Use	the	user-oriented	format.

v Use	the	virtual	memory	format.

N	namelist Define	the	values	to	use	in	the	WCHAN	column.

O	order Define	the	order	in	which	to	display	the	information	columns.

S Sum	numerical	information,	such	as	CPU	and	memory	usage,	for	child	processes	into	the	parent
process.

c Display	the	true	command	name	(the	name	of	the	program	used	to	start	the	process).

e Display	any	environment	variables	used	by	the	command.

f Display	processes	in	a	hierarchical	format,	showing	which	processes	started	which	processes.

h Don't	display	the	header	information.

k	sort Define	the	column(s)	to	use	for	sorting	the	output.

n Use	numeric	values	for	user	and	group	IDs,	along	with	WCHAN	information.

w Produce	wide	output	for	wider	terminals.

H Display	threads	as	if	they	were	processes.

m Display	threads	after	their	processes.

L List	all	format	specifiers.

V Display	the	version	of	ps	.

As	you	can	see,	a	lot	of	overlap	exists	between	the	Unix	and	BSD	types	of	parameters.	Most	of	the	information	you
can	get	from	one	you	can	also	get	from	the	other.	Most	of	the	time,	you	choose	a	parameter	type	based	on	which
format	you're	more	comfortable	with	(for	example,	if	you	were	used	to	a	BSD	environment	before	using	Linux).

When	you	use	the	BSD-style	parameters,	the	ps	command	automatically	changes	the	output	to	simulate	the	BSD
format.	Here's	an	example	using	the	l	parameter:

$	ps	l
$	ps	l
F			UID					PID				PPID	PRI		NI				VSZ			RSS	WCHAN		STAT	TTY								TIME	COMMAND
4		1000				1491				1415		20			0	163992		6580	poll_s	Ssl+	tty2							0:00	/usr/li
4		1000				1496				1491		20			0	225176	58712	ep_pol	Sl+		tty2							0:05	/usr/li
0		1000				1538				1491		20			0	192844	15768	poll_s	Sl+		tty2							0:00	/usr/li
0		1000				2221				2209		20			0		10608		4740	do_wai	Ss			pts/0						0:00	bash
0		1000				2410				2221		20			0		11396		1156	-						R+			pts/0						0:00	ps	l
$

Notice	that	while	many	of	the	output	columns	are	the	same	as	when	we	used	the	Unix-style	parameters,	there	are	a
few	different	ones:

VSZ:	The	size	in	kilobytes	of	the	process	in	memory

RSS:	The	physical	memory	that	a	process	has	used	that	isn't	swapped	out

STAT:	A	multicharacter	state	code	representing	the	current	process	state

Many	system	administrators	like	the	BSD-style	l	parameter	because	it	produces	a	more	detailed	state	code	for

processes	(the	STAT	column).	The	multicharacter	code	defines	exactly	what's	happening	with	the	process	more
precisely	than	the	single-character	Unix-style	output.

The	first	character	uses	the	same	values	as	the	Unix-style	S	output	column,	showing	when	a	process	is	sleeping,
running,	or	waiting.	The	following	characters	further	define	the	process's	status:

<:	The	process	is	running	at	high	priority.

N:	The	process	is	running	at	low	priority.

L:	The	process	has	pages	locked	in	memory.

s:	The	process	is	a	session	leader.

l:	The	process	is	multithreaded.

+:	The	process	is	running	in	the	foreground.

From	the	simple	example	shown	previously,	you	can	see	that	the	bash	command	is	sleeping,	but	it	is	a	session	leader
(it's	the	main	process	in	my	session),	whereas	the	ps	command	is	running	in	the	foreground	on	the	system.

The	GNU	long	parameters
Finally,	the	GNU	developers	put	their	own	touches	on	the	new,	improved	ps	command	by	adding	a	few	more	options
to	the	parameter	mix.	Some	of	the	GNU	long	parameters	copy	existing	Unix-	or	BSD-style	parameters,	whereas
others	provide	new	features.	Table	4-3	lists	the	available	GNU	long	parameters.

TABLE	4-3	The	ps	Command	GNU	Parameters

Parameter Description

--deselect Show	all	processes	except	those	listed	in	the	command	line.

--Group	grplist Show	processes	whose	group	ID	is	listed	in	grplist.

--User	userlist Show	processes	whose	user	ID	is	listed	in	userlist.

--group	grplist Show	processes	whose	effective	group	ID	is	listed	in	grplist.

--pid	pidlist Show	processes	whose	process	ID	is	listed	in	pidlist.

--ppid	pidlist Show	processes	whose	parent	process	ID	is	listed	in	pidlist.

--sid	sidlist Show	processes	whose	session	ID	is	listed	in	sidlist.

--tty	ttylist Show	processes	whose	terminal	device	ID	is	listed	in	ttylist.

--user	userlist Show	processes	whose	effective	user	ID	is	listed	in	userlist.

--format	format Display	only	columns	specified	in	the	format	.

--context Display	additional	security	information.

--cols	n Set	screen	width	to	n	columns.

--columns	n Set	screen	width	to	n	columns.

--cumulative Include	stopped	child	process	information.

--forest Display	processes	in	a	hierarchical	listing	showing	parent	processes.

--headers Repeat	column	headers	on	each	page	of	output.

--no-headers Don't	display	column	headers.

--lines	n Set	the	screen	height	to	n	lines.

--rows	n Set	the	screen	height	to	n	rows.

--sort	order Define	the	column(s)	to	use	for	sorting	the	output.

--width	n Set	the	screen	width	to	n	columns.

--help Display	the	help	information.

--info Display	debugging	information.

--version Display	the	version	of	the	ps	program.

You	can	combine	GNU	long	parameters	with	either	Unix-	or	BSD-style	parameters	to	customize	your	display.	One
cool	feature	of	GNU	long	parameters	that	we	really	like	is	the	--forest	parameter.	It	displays	the	hierarchical
process	information	but	uses	ASCII	characters	to	draw	cute	charts:

		1981	?								00:00:00	sshd
		3078	?								00:00:00		_	sshd
		3080	?								00:00:00						_	sshd
		3081	pts/0				00:00:00										_	bash
	16676	pts/0				00:00:00														_	ps

This	format	makes	tracing	child	and	parent	processes	a	snap!

Real-time	process	monitoring

The	ps	command	is	great	for	gleaning	information	about	processes	running	on	the	system,	but	it	has	one	drawback.
The	ps	command	can	display	information	for	only	a	specific	point	in	time.	If	you're	trying	to	find	trends	about
processes	that	are	frequently	swapped	in	and	out	of	memory,	it's	hard	to	do	that	with	the	ps	command.

Instead,	the	top	command	can	solve	this	problem.	The	top	command	displays	process	information	similarly	to	the	ps
command,	but	it	does	so	in	real-time	mode.	Figure	4-1	is	a	snapshot	of	the	top	command	in	action.

FIGURE	4-1	The	output	of	the	top	command	while	it	is	running

The	first	section	of	the	output	shows	general	system	information.	The	first	line	shows	the	current	time,	how	long	the
system	has	been	up,	the	number	of	users	logged	in,	and	the	load	average	on	the	system.

The	load	average	appears	as	three	numbers,	the	1-minute,	5-minute,	and	15-minute	load	averages.	The	higher	the
values,	the	more	load	the	system	is	experiencing.	It's	not	uncommon	for	the	1-minute	load	value	to	be	high	for	short
bursts	of	activity.	If	the	15-minute	load	value	is	high,	your	system	may	be	in	trouble.

NOTE
The	trick	in	Linux	system	administration	is	defining	what	exactly	a	high	load	average	value	is.
This	value	depends	on	what's	normally	running	on	your	system	and	the	hardware
configuration.	What's	high	for	one	system	might	be	normal	for	another.	The	best	practice	is	to
note	the	load	levels	of	your	system	under	normal	conditions,	which	will	make	it	easier	to	detect
when	your	system	is	under	load.

The	second	line	shows	general	process	information	(called	tasks	in	top):	how	many	processes	are	running,	sleeping,
stopped,	and	zombie	(have	finished	but	their	parent	process	hasn't	responded).

The	next	line	shows	general	CPU	information.	The	top	display	breaks	down	the	CPU	utilization	into	several
categories	depending	on	the	owner	of	the	process	(user	versus	system	processes)	and	the	state	of	the	processes
(running,	idle,	or	waiting).

Following	that,	there	are	two	lines	that	detail	the	status	of	the	system	memory.	The	first	line	shows	the	status	of	the
physical	memory	in	the	system,	how	much	total	memory	there	is,	how	much	is	currently	being	used,	and	how	much
is	free.	The	second	memory	line	shows	the	status	of	the	swap	memory	area	in	the	system	(if	any	is	installed),	with
the	same	information.

Finally,	the	next	section	shows	a	detailed	list	of	the	currently	running	processes,	with	some	information	columns
that	should	look	familiar	from	the	ps	command	output:

PID:	The	process	ID	of	the	process

USER:	The	username	of	the	owner	of	the	process

PR:	The	priority	of	the	process

NI:	The	nice	value	of	the	process

VIRT:	The	total	amount	of	virtual	memory	used	by	the	process

RES:	The	amount	of	physical	memory	the	process	is	using

SHR:	The	amount	of	memory	the	process	is	sharing	with	other	processes

S:	The	process	status	(D	=	interruptible	sleep,	R	=	running,	S	=	sleeping,	T	=	traced	or	stopped,	or	Z	=	zombie)

%CPU:	The	share	of	CPU	time	that	the	process	is	using

%MEM:	The	share	of	available	physical	memory	the	process	is	using

TIME+:	The	total	CPU	time	the	process	has	used	since	starting

COMMAND:	The	command-line	name	of	the	process	(program	started)

By	default,	when	you	start	top	it	sorts	the	processes	based	on	the	%CPU	value.	You	can	change	the	sort	order	by
using	one	of	several	interactive	commands	while	top	is	running.	Each	interactive	command	is	a	single	character	you
can	press	while	top	is	running	that	changes	the	behavior	of	the	program.	Pressing	F	allows	you	to	select	the	field	to
use	to	sort	the	output,	and	pressing	d	allows	you	to	change	the	polling	interval.	Press	q	to	exit	the	top	display.	You
have	lots	of	control	over	the	output	of	the	top	command.	Using	this	tool,	you	can	often	find	offending	processes	that
have	taken	over	your	system.	Of	course,	once	you	find	one,	the	next	job	is	to	stop	it,	which	brings	us	to	the	next
topic.

Stopping	processes
A	crucial	part	of	being	a	system	administrator	is	knowing	when	and	how	to	stop	a	process.	Sometimes	a	process	gets
hung	up	and	just	needs	a	gentle	nudge	to	either	get	going	again	or	stop.	Other	times,	a	process	runs	away	with	the
CPU	and	refuses	to	give	it	up.	In	both	cases,	you	need	a	command	that	will	allow	you	to	control	a	process.	Linux
follows	the	Unix	method	of	interprocess	communication.

In	Linux,	processes	communicate	with	each	other	using	signals.	A	process	signal	is	a	predefined	message	that
processes	recognize	and	may	choose	to	ignore	or	act	on.	The	developers	program	how	a	process	handles	signals.
Most	well-written	applications	have	the	ability	to	receive	and	act	on	the	standard	Unix	process	signals.	These	signals
are	shown	in	Table	4-4.

TABLE	4-4	Linux	Process	Signals

Signal Name Description

1 HUP Hang	up.

2 INT Interrupt.

3 QUIT Stop	running.

9 KILL Unconditionally	terminate.

11 SEGV Segment	violation.

15 TERM Terminate	if	possible.

17 STOP Stop	unconditionally	but	don't	terminate.

18 TSTP Stop	or	pause	but	continue	to	run	in	background.

19 CONT Resume	execution	after	STOP	or	TSTP	.

A	few	different	commands	are	available	in	Linux	that	allow	you	to	send	process	signals	to	running	processes.	This
section	discusses	the	two	most	common	ones:	kill	and	pkill.

The	kill	command
The	kill	command	allows	you	to	send	signals	to	processes	based	on	their	PIDs.	By	default,	the	kill	command	sends
a	TERM	signal	to	all	the	PIDs	listed	on	the	command	line.	Unfortunately,	you	can	use	only	the	process	PID	instead	of
its	command	name,	making	the	kill	command	difficult	to	use	sometimes.

To	send	a	process	signal,	you	must	either	be	the	owner	of	the	process	or	be	logged	in	as	the	root	user:

	$	kill	3940
	-bash:	kill:	(3940)	-	Operation	not	permitted
	$

The	TERM	signal	tells	the	process	to	stop	running.	Unfortunately,	if	you	have	a	runaway	process,	most	likely	it	will
ignore	the	request.	When	you	need	to	get	forceful,	the	-s	parameter	allows	you	to	specify	other	signals	(using	either
their	name	or	their	signal	number).

As	you	can	see	from	the	following	example,	no	output	is	associated	with	the	kill	command:

	#	kill	-s	HUP	3940
	#

To	see	if	the	command	was	effective,	you'll	have	to	perform	another	ps	or	top	command	to	see	if	the	offending
process	stopped.

The	pkill	command
The	pkill	command	is	a	powerful	way	to	stop	processes	by	using	their	names	rather	than	the	PID	numbers.	The
pkill	command	allows	you	to	use	wildcard	characters	as	well,	making	it	a	very	useful	tool	when	you've	got	a	system
that's	gone	awry:

#	pkill	http*
#

This	example	will	kill	all	the	processes	that	start	with	http	,	such	as	the	httpd	services	for	the	Apache	Web	Server.

CAUTION
Be	extremely	careful	using	the	pkill	command	when	logged	in	as	the	root	user.	It's	easy	to	get
carried	away	with	wildcard	characters	and	accidentally	stop	important	system	processes.	This
could	lead	to	a	damaged	filesystem.

Monitoring	Disk	Space
Another	important	task	of	the	system	administrator	is	to	keep	track	of	the	disk	usage	on	the	system.	Whether	you're
running	a	simple	Linux	desktop	or	a	large	Linux	server,	you'll	need	to	know	how	much	space	you	have	for	your
applications.

A	few	command-line	commands	are	available	that	can	help	you	manage	the	media	environment	on	your	Linux
system.	This	section	describes	the	core	commands	you'll	likely	run	into	during	your	system	administration	duties.

Mounting	media
As	discussed	in	Chapter	3,	the	Linux	filesystem	combines	all	media	disks	into	a	single	virtual	directory.	Before	you
can	use	a	new	media	disk	on	your	system,	you	need	to	place	it	in	the	virtual	directory.	This	task	is	called	mounting.

In	today's	graphical	desktop	world,	most	Linux	distributions	have	the	ability	to	automatically	mount	specific	types	of
removable	media.	A	removable	media	device	is	a	medium	that	(obviously)	can	be	easily	removed	from	the	PC,	such
as	DVDs	and	USB	memory	sticks.

If	you're	not	using	a	distribution	that	automatically	mounts	and	unmounts	removable	media,	you'll	have	to	do	it
yourself.	This	section	describes	the	Linux	command-line	commands	that	help	you	manage	your	removable	media
devices.

The	mount	command
Oddly	enough,	the	command	used	to	mount	media	is	called	mount	.	By	default,	the	mount	command	displays	a	list	of
media	devices	currently	mounted	on	the	system.	However,	the	newer	version	of	the	kernel	mounts	lots	of	virtual
filesystems	for	management	purposes,	besides	your	standard	storage	devices.	This	can	make	the	default	output	of
the	mount	command	very	cluttered	and	confusing.	If	you	know	the	filesystem	type	used	for	your	drive	partitions,	you
can	filter	that	out	using

$	mount	-t	ext4
/dev/sda5	on	/	type	ext4	(rw,relatime,errors=remount-ro)
$	mount	-t	vfat
/dev/sda2	on	/boot/efi	type	vfat
(rw,relatime,fmask=0077,dmask=0077,codepage=437,iocharset=iso88591,
shortname=mixed,errors=remount-ro)
/dev/sdb1	on	/media/rich/54A1-7D7D	type	vfat
(rw,nosuid,nodev,relatime,uid=1000,gid=1000,fmask=0022,dmask=0022,codepage=437,
iocharset=iso8859-1,shortname=mixed,showexec,utf8,flush,
errors=remountro,uhelper=udisks2)
$

The	mount	command	provides	four	pieces	of	information:

The	device	filename	of	the	media

The	mount	point	in	the	virtual	directory	where	the	media	is	mounted

The	filesystem	type

The	access	status	of	the	mounted	media

The	last	entry	in	the	preceding	example	is	a	USB	memory	stick	that	the	GNOME	desktop	automatically	mounted	at
the	/media/rich/54A1-7D7D	mount	point.	The	vfat	filesystem	type	shows	that	it	was	formatted	for	a	Microsoft
Windows	PC.

To	manually	mount	a	media	device	in	the	virtual	directory,	you'll	need	to	be	logged	in	as	the	root	user,	or	use	the
sudo	command	to	run	the	command	as	the	root	user.	The	following	is	the	basic	command	for	manually	mounting	a
media	device:

	mount	-t	type	device	directory

The	type	parameter	defines	the	filesystem	type	the	disk	was	formatted	under.	Linux	recognizes	numerous	filesystem
types.	If	you	share	removable	media	devices	with	your	Windows	PCs,	the	types	you're	most	likely	to	run	into	are:

vfat:	Windows	FAT32	filesystem	with	support	for	long	filenames

ntfs:	Windows	advanced	filesystem	used	in	Windows	NT	and	later	operating	systems

exfat:	Windows	filesystem	optimized	for	removable	media

iso9660:	The	standard	CD-ROM	and	DVD	filesystem

Most	USB	memory	sticks	are	formatted	using	the	vfat	filesystem.	If	you	need	to	mount	a	data	CD	or	DVD,	you'll
have	to	use	the	iso9660	filesystem	type.

The	next	two	parameters	define	the	location	of	the	device	file	for	the	media	device	and	the	location	in	the	virtual
directory	for	the	mount	point.	For	example,	to	manually	mount	the	USB	memory	stick	at	device	/dev/sdb1	at
location	/media/disk	,	you'd	use	the	following	command:

	mount	-t	vfat	/dev/sdb1	/media/disk

Once	a	media	device	is	mounted	in	the	virtual	directory,	the	root	user	will	have	full	access	to	the	device,	but	access
by	other	users	will	be	restricted.	You	can	control	who	has	access	to	the	device	using	directory	permissions	(discussed
in	Chapter	7,	“Understanding	Linux	File	Permissions”).

In	case	you	need	to	use	some	of	the	more	exotic	features	of	the	mount	command,	the	available	parameters	are	shown
in	Table	4-5.

TABLE	4-5	The	mount	Command	Parameters

Parameter Description

-a Mount	all	filesystems	specified	in	the	/etc/fstab	file.

-f Causes	the	mount	command	to	simulate	mounting	a	device	but	not	actually	mount	it.

-F When	used	with	the	-a	parameter,	mounts	all	filesystems	at	the	same	time.

-v Verbose	mode;	explains	all	the	steps	required	to	mount	the	device.

-i Don't	use	any	filesystem	helper	files	under	/sbin/mount.filesystem	.

-l Add	the	filesystem	labels	automatically	for	ext2,	ext3,	ext4,	or	XFS	filesystems.

-n Mount	the	device	without	registering	it	in	the	/etc/mtab	mounted	device	file.

-p	num For	encrypted	mounting,	read	the	passphrase	from	the	file	descriptor	num.

-s Ignore	mount	options	not	supported	by	the	filesystem.

-r Mount	the	device	as	read-only.

-w Mount	the	device	as	read-write	(the	default).

-L	label Mount	the	device	with	the	specified	label.

-U	uuid Mount	the	device	with	the	specified	uuid.

-O When	used	with	the	-a	parameter,	limits	the	set	of	filesystems	applied.

-o Add	specific	options	to	the	filesystem.

The	-o	option	allows	you	to	mount	the	filesystem	with	a	comma-separated	list	of	additional	options.	The	popular
options	to	use	are	as	follows:

ro	:	Mount	as	read-only.

rw	:	Mount	as	read-write.

user	:	Allow	an	ordinary	user	to	mount	the	filesystem.

check=none	:	Mount	the	filesystem	without	performing	an	integrity	check.

loop	:	Mount	a	file.

The	umount	command
To	remove	a	removable	media	device,	you	should	never	just	remove	it	from	the	system.	Instead,	you	should	always
unmount	it	first.

TIP
Linux	doesn't	allow	you	to	eject	a	mounted	CD	or	DVD.	If	you	ever	have	trouble	removing	a	CD
or	DVD	from	the	drive,	most	likely	it	means	it	is	still	mounted	in	the	virtual	directory.
Unmount	it	first,	and	then	try	to	eject	it.

The	command	used	to	unmount	devices	is	umount	(yes,	there's	no	“n”	in	the	command,	which	gets	confusing

sometimes).	The	format	for	the	umount	command	is	pretty	simple:

	umount	[directory	|	device]

The	umount	command	gives	you	the	choice	of	defining	the	media	device	by	either	its	device	location	or	its	mounted
directory	name.	If	any	program	has	a	file	open	on	a	device,	the	system	won't	let	you	unmount	it.

	#	umount	/home/rich/mnt
	umount:	/home/rich/mnt:	device	is	busy
	umount:	/home/rich/mnt:	device	is	busy
	#	cd	/home/rich
	#	umount	/home/rich/mnt
	#	ls	-l	mnt
	total	0
	#

In	this	example,	the	command	prompt	was	still	in	a	directory	within	the	filesystem	structure,	so	the	umount
command	couldn't	unmount	the	image	file.	Once	the	command	prompt	was	moved	out	of	the	image	file	filesystem,
the	umount	command	was	able	to	successfully	unmount	the	image	file.

Using	the	df	command
Sometimes	you	need	to	see	how	much	disk	space	is	available	on	an	individual	device.	The	df	command	allows	you	to
easily	see	what's	happening	on	all	the	mounted	disks:

$	df	-t	ext4	-t	vfat
Filesystem					1K-blocks						Used	Available	Use%	Mounted	on
/dev/sda5							19475088			7326256		11136508		40%	/
/dev/sda2									524272									4				524268			1%	/boot/efi
/dev/sdb1									983552				247264				736288		26%	/media/rich/54A1-7D7D
$

The	df	command	shows	each	mounted	filesystem	that	contains	data.	Similar	to	the	mount	command,	the	df
command	shows	any	of	the	virtual	filesystems	mounted	by	the	kernel,	so	we've	filtered	those	out	from	the	listing	by
specifying	the	filesystem	type	using	the	-t	options.	The	command	displays	the	following:

The	device	location	of	the	device

How	many	1024-byte	blocks	of	data	it	can	hold

How	many	1024-byte	blocks	are	used

How	many	1024-byte	blocks	are	available

The	amount	of	used	space	as	a	percentage

The	mount	point	where	the	device	is	mounted

A	few	different	command-line	parameters	are	available	with	the	df	command,	most	of	which	you'll	never	use.	One
popular	parameter	is	-h	,	which	shows	the	disk	space	in	human-readable	form,	usually	as	an	M	for	megabytes	or	a	G
for	gigabytes:

$	df	-h
Filesystem												Size		Used	Avail	Use%	Mounted	on
/dev/sda5								19G		7.0G			11G		40%	/
/dev/sda2							512M		4.0K		512M			1%	/boot/efi
/dev/sdb1							961M		242M		720M		26%	/media/rich/54A1-7D7D
$

Now	instead	of	having	to	decode	those	ugly	block	numbers,	all	of	the	disk	sizes	are	shown	using	“normal”	sizes.	The
df	command	is	invaluable	in	troubleshooting	disk	space	problems	on	the	system.

NOTE
Remember	that	the	Linux	system	always	has	processes	that	handle	files	running	in	the
background.	The	values	from	the	df	command	reflect	what	the	Linux	system	thinks	are	the
current	values	at	that	point	in	time.	It's	possible	that	you	have	a	process	running	that	has
created	or	deleted	a	file	but	has	not	released	the	file	yet.	This	value	is	not	included	in	the	free
space	calculation.

Using	the	du	command
With	the	df	command,	it	is	easy	to	see	when	a	disk	is	running	out	of	space.	The	next	problem	for	the	system
administrator	is	to	know	what	to	do	when	that	happens.

Another	useful	command	to	help	you	out	is	the	du	command.	The	du	command	shows	the	disk	usage	for	a	specific
directory	(by	default,	the	current	directory).	This	is	a	quick	way	to	determine	if	you	have	any	obvious	disk	hogs	on
the	system.

By	default,	the	du	command	displays	all	the	files,	directories,	and	subdirectories	under	the	current	directory,	and	it
shows	how	many	disk	blocks	each	file	or	directory	takes.	For	a	standard-sized	directory,	this	can	be	quite	a	listing.

Here's	a	partial	listing	of	using	the	du	command:

	$	du
	484					./.gstreamer-0.10
	8							./Templates
	8							./Download
	8							./.ccache/7/0
	24						./.ccache/7
	368					./.ccache/a/d
	384					./.ccache/a
	424					./.ccache
	8							./Public
	8							./.gphpedit/plugins
	32						./.gphpedit
	72						./.gconfd
	128					./.nautilus/metafiles
	384					./.nautilus
	8							./Videos
	8							./Music
	16						./.config/gtk-2.0
	40						./.config
	8							./Documents

The	number	at	the	left	of	each	line	is	the	number	of	disk	blocks	that	each	file	or	directory	takes.	Notice	that	the
listing	starts	at	the	bottom	of	a	directory	and	works	its	way	up	through	the	files	and	subdirectories	contained	within
the	directory.

The	du	command	by	itself	can	be	somewhat	useless.	It's	nice	to	be	able	to	see	how	much	disk	space	each	individual
file	and	directory	takes	up,	but	it	can	be	meaningless	when	you	have	to	wade	through	pages	and	pages	of
information	before	you	find	what	you're	looking	for.

You	can	use	the	following	command-line	parameters	with	the	du	command	to	make	things	a	little	more	legible:

-c	:	Produce	a	grand	total	of	all	the	files	listed.

-h	:	Print	sizes	in	human-readable	form,	using	K	for	kilobyte,	M	for	megabyte,	and	G	for	gigabyte.

-s	:	Summarize	each	argument.

The	next	step	for	the	system	administrator	is	to	use	some	file-handling	commands	for	manipulating	large	amounts
of	data.	That's	exactly	what	the	next	section	covers.

Working	with	Data	Files
When	you	have	a	large	amount	of	data,	it's	often	difficult	to	handle	the	information	and	make	it	useful.	As	you	saw
with	the	du	command	in	the	previous	section,	it's	easy	to	get	data	overload	when	working	with	system	commands.

The	Linux	system	provides	several	command-line	tools	to	help	you	manage	large	amounts	of	data.	This	section
covers	the	basic	commands	that	every	system	administrator	—	as	well	as	any	everyday	Linux	user	—	should	know	to
make	their	lives	easier.

Sorting	data
One	popular	function	that	comes	in	handy	when	working	with	large	amounts	of	data	is	the	sort	command.	The	sort
command	does	what	it	says	—	it	sorts	data.

By	default,	the	sort	command	sorts	the	data	lines	in	a	text	file	using	standard	sorting	rules	for	the	language	you
specify	as	the	default	for	the	session:

	$	cat	file1
	one
	two
	three
	four
	five
	$	sort	file1
	five
	four
	one
	three
	two
	$

Pretty	simple.	However,	things	aren't	always	as	easy	as	they	appear.	Take	a	look	at	this	example:

	$	cat	file2
	1
	2
	100
	45
	3
	10
	145
	75
	$	sort	file2

	1
	10
	100
	145
	2
	3
	45
	75
	$

If	you	were	expecting	the	numbers	to	sort	in	numerical	order,	you	were	disappointed.	By	default,	the	sort	command
interprets	numbers	as	characters	and	performs	a	standard	character	sort,	producing	output	that	might	not	be	what
you	want.	To	solve	this	problem,	use	the	-n	parameter,	which	tells	the	sort	command	to	recognize	numbers	as
numbers	instead	of	characters	and	to	sort	them	based	on	their	numerical	values:

	$	sort	-n	file2
	1
	2
	3
	10
	45
	75
	100
	145
	$

Now,	that's	much	better!	Another	parameter	that's	commonly	used	is	-M	,	the	month	sort.	Linux	log	files	usually
contain	a	time	stamp	at	the	beginning	of	the	line	to	indicate	when	the	event	occurred:

	Apr	13	07:10:09	testbox	smartd[2718]:	Device:	/dev/sda,	opened

If	you	sort	a	file	that	uses	time	stamp	dates	using	the	default	sort,	you'll	get	something	like	this:

	$	sort	file3
	Apr
	Aug
	Dec
	Feb
	Jan
	Jul
	Jun
	Mar
	May
	Nov
	Oct
	Sep
	$

Not	exactly	what	you	wanted.	If	you	use	the	-M	parameter,	the	sort	command	recognizes	the	three-character-month
nomenclature	and	sorts	appropriately:

	$	sort	-M	file3
	Jan
	Feb
	Mar
	Apr
	May
	Jun
	Jul
	Aug
	Sep
	Oct
	Nov
	Dec
	$

Table	4-6	shows	other	handy	sort	parameters	you	can	use.

TABLE	4-6	The	sort	Command	Parameters

Single
Dash

Double	Dash Description

-b --ignore-
leading-blanks

Ignore	leading	blanks	when	sorting.

-C --check=quiet Don't	sort,	but	don't	report	if	data	is	out	of	sort	order.

-c --check Don't	sort,	but	check	if	the	input	data	is	already	sorted.	Report	if	not	sorted.

-d --dictionary-
order

Consider	only	blanks	and	alphanumeric	characters;	don't	consider	special	characters.

-f --ignore-case By	default,	sort	orders	capitalized	letters	first.	This	parameter	ignores	case.

-g --general-
numeric-sort

Use	general	numerical	value	to	sort.

-i --ignore-
nonprinting

Ignore	nonprintable	characters	in	the	sort.

-k --
key=POS1[,POS2]

Sort	based	on	position	POS1	and	end	at	POS2	if	specified.

-M --month-sort Sort	by	month	order	using	three-character	month	names.

-m --merge Merge	two	already	sorted	data	files.

-n --numeric-sort Sort	by	string	numerical	value.

-o --output=file Write	results	to	file	specified.

-R --random-sort Sort	by	a	random	hash	of	keys.

--random-
source=FILE

Specify	the	file	for	random	bytes	used	by	the	-R	parameter.

-r --reverse Reverse	the	sort	order	(descending	instead	of	ascending).

-S --buffer-
size=SIZE

Specify	the	amount	of	memory	to	use.

-s --stable Disable	last-resort	comparison.

-T --temporary-
direction=DIR

Specify	a	location	to	store	temporary	working	files.

-t --field-
separator=SEP

Specify	the	character	used	to	distinguish	key	positions.

-u --unique With	the	-c	parameter,	check	for	strict	ordering;	without	the	-c	parameter,	output
only	the	first	occurrence	of	two	similar	lines.

-z --zero-
terminated

End	all	lines	with	a	NULL	character	instead	of	a	new	line.

The	-k	and	-t	parameters	are	handy	when	sorting	data	that	uses	fields,	such	as	the	/etc/passwd	file.	Use	the	-t
parameter	to	specify	the	field	separator	character,	and	use	the	-k	parameter	to	specify	which	field	to	sort	on.	For
example,	to	sort	the	password	file	based	on	numerical	user	ID,	just	do	this:

	$	sort	-t	':'	-k	3	-n	/etc/passwd
	root:x:0:0:root:/root:/bin/bash
	bin:x:1:1:bin:/bin:/sbin/nologin
	daemon:x:2:2:daemon:/sbin:/sbin/nologin
	adm:x:3:4:adm:/var/adm:/sbin/nologin
	lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
	sync:x:5:0:sync:/sbin:/bin/sync
	shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
	halt:x:7:0:halt:/sbin:/sbin/halt
	mail:x:8:12:mail:/var/spool/mail:/sbin/nologin
	news:x:9:13:news:/etc/news:
	uucp:x:10:14:uucp:/var/spool/uucp:/sbin/nologin
	operator:x:11:0:operator:/root:/sbin/nologin
	games:x:12:100:games:/usr/games:/sbin/nologin
	gopher:x:13:30:gopher:/var/gopher:/sbin/nologin
	ftp:x:14:50:FTP	User:/var/ftp:/sbin/nologin

Now	the	data	is	perfectly	sorted	based	on	the	third	field,	which	is	the	numerical	user	ID	value.

The	-n	parameter	is	great	for	sorting	numerical	outputs,	such	as	the	output	of	the	du	command:

	$	du	-sh	*	|	sort	-nr
	1008k			mrtg-2.9.29.tar.gz
	972k				bldg1
	888k				fbs2.pdf
	760k				Printtest
	680k				rsync-2.6.6.tar.gz

	660k				code
	516k				fig1001.tiff
	496k				test
	496k				php-common-4.0.4pl1-6mdk.i586.rpm
	448k				MesaGLUT-6.5.1.tar.gz
	400k				plp

Notice	that	the	-r	option	also	sorts	the	values	in	descending	order	so	that	you	can	easily	see	what	files	are	taking	up
the	most	space	in	your	directory.

NOTE
The	pipe	command	(|)	used	in	this	example	redirects	the	output	of	the	du	command	to	the	sort
command.	That's	discussed	in	more	detail	in	Chapter	11,	“Basic	Script	Building.”

Searching	for	data
Often	in	a	large	file,	you	have	to	look	for	a	specific	line	of	data	buried	somewhere	in	the	middle	of	the	file.	Instead	of
manually	scrolling	through	the	entire	file,	you	can	let	the	grep	command	search	for	you.	The	command-line	format
for	the	grep	command	is

	grep	[options]	pattern	[file]

The	grep	command	searches	either	the	input	or	the	file	you	specify	for	lines	that	contain	characters	that	match	the
specified	pattern.	The	output	from	grep	is	the	lines	that	contain	the	matching	pattern.

Here	are	two	simple	examples	of	using	the	grep	command	with	the	file1	file	used	in	the	“Sorting	Data”	section:

	$	grep	three	file1
	three
	$	grep	t	file1
	two
	three
	$

The	first	example	searches	the	file	file1	for	text	matching	the	pattern	three.	The	grep	command	produces	the	line
that	contains	the	matching	pattern.	The	next	example	searches	the	file	file1	for	the	text	matching	the	pattern	t.	In
this	case,	two	lines	matched	the	specified	pattern,	and	both	are	displayed.

Because	of	the	popularity	of	the	grep	command,	it	has	undergone	lots	of	development	changes	over	its	lifetime.
Many	features	have	been	added	to	the	grep	command.	If	you	look	over	the	man	pages	for	the	grep	command,	you'll
see	how	versatile	it	is.

If	you	want	to	reverse	the	search	(output	lines	that	don't	match	the	pattern),	use	the	-v	parameter:

	$	grep	-v	t	file1
	one
	four
	five
	$

If	you	need	to	find	the	line	numbers	where	the	matching	patterns	are	found,	use	the	-n	parameter:

	$	grep	-n	t	file1
	2:two
	3:three
	$

If	you	just	need	to	see	a	count	of	how	many	lines	contain	the	matching	pattern,	use	the	-c	parameter:

	$	grep	-c	t	file1
	2
	$

If	you	need	to	specify	more	than	one	matching	pattern,	use	the	-e	parameter	to	specify	each	individual	pattern:

	$	grep	-e	t	-e	f	file1
	two
	three
	four
	five
	$

This	example	outputs	lines	that	contain	either	the	string	t	or	the	string	f.

By	default,	the	grep	command	uses	basic	Unix-style	regular	expressions	to	match	patterns.	A	Unix-style	regular
expression	uses	special	characters	to	define	how	to	look	for	matching	patterns.	For	a	more	detailed	explanation	of
regular	expressions,	see	Chapter	20,	“Regular	Expressions.”

Here's	a	simple	example	of	using	a	regular	expression	in	a	grep	search:

	$	grep	[tf]	file1
	two

	three
	four
	five
	$

The	square	brackets	in	the	regular	expression	indicate	that	grep	should	look	for	matches	that	contain	either	a	t	or	an
f	character.	Without	the	regular	expression,	grep	would	search	for	text	that	would	match	the	string	tf.

The	egrep	command	is	an	offshoot	of	grep	,	which	allows	you	to	specify	POSIX	extended	regular	expressions,	which
contain	more	characters	for	specifying	the	matching	pattern	(again,	see	Chapter	20	for	more	details).	The	fgrep
command	is	another	version	that	allows	you	to	specify	matching	patterns	as	a	list	of	fixed-string	values,	separated	by
newline	characters.	This	allows	you	to	place	a	list	of	strings	in	a	file	and	then	use	that	list	in	the	fgrep	command	to
search	for	the	strings	in	a	larger	file.

Compressing	data
If	you've	done	any	work	in	the	Microsoft	Windows	world,	no	doubt	you've	used	zip	files.	It	became	such	a	popular
feature	that	Microsoft	eventually	incorporated	it	into	the	Windows	operating	system	starting	with	XP.	The	zip	utility
allows	you	to	easily	compress	large	files	(both	text	and	executable)	into	smaller	files	that	take	up	less	space.

Linux	contains	several	file	compression	utilities.	Although	this	may	sound	great,	it	often	leads	to	confusion	and
chaos	when	trying	to	download	files.	Table	4-7	lists	the	file	compression	utilities	available	for	Linux.

TABLE	4-7	Linux	File	Compression	Utilities

Utility File
Extension

Description

bzip2 .bz2 Uses	the	Burrows–Wheeler	block	sorting	text	compression	algorithm	and	Huffman
coding

compress .Z Original	Unix	file	compression	utility;	starting	to	fade	away	into	obscurity

gzip .gz The	GNU	Project's	compression	utility;	uses	Lempel–Ziv-Welch	coding

xz .xz A	general-purpose	compression	utility	gaining	in	popularity

zip .zip The	Unix	version	of	the	PKZIP	program	for	Windows

The	compress	file	compression	utility	is	not	often	found	on	Linux	systems.	If	you	download	a	file	with	a	.Z	extension,
you	can	usually	install	the	compress	package	(called	ncompress	in	many	Linux	distributions)	using	the	software
installation	methods	discussed	in	Chapter	9,	“Installing	Software,”	and	then	uncompress	the	file	with	the	uncompress
command.	The	gzip	utility	is	the	most	popular	compression	tool	used	in	Linux.

The	gzip	package	is	a	creation	of	the	GNU	Project	in	their	attempt	to	create	a	free	version	of	the	original	Unix
compress	utility.	This	package	includes	these	files:

gzip	for	compressing	files

gzcat	for	displaying	the	contents	of	compressed	text	files

gunzip	for	uncompressing	files

These	utilities	work	the	same	way	as	the	bzip2	utilities:

	$	gzip	myprog
	$	ls	-l	my*
-rwxrwxr-x	1	rich	rich	2197	2007-09-13	11:29	myprog.gz
	$

The	gzip	command	compresses	the	file	you	specify	on	the	command	line.	You	can	also	specify	more	than	one
filename	or	even	use	wildcard	characters	to	compress	multiple	files	at	once:

	$	gzip	my*
$	ls	-l	my*
-rwxr--r--				1	rich					rich										103	Sep		6	13:43	myprog.c.gz
	-rwxr-xr-x				1	rich					rich									5178	Sep		6	13:43	myprog.gz
	-rwxr--r--				1	rich					rich											59	Sep		6	13:46	myscript.gz
	-rwxr--r--				1	rich					rich											60	Sep		6	13:44	myscript2.gz
	$

The	gzip	command	compresses	every	file	in	the	directory	that	matches	the	wildcard	pattern.

Archiving	data
Although	the	zip	command	works	great	for	compressing	and	archiving	data	into	a	single	file,	it's	not	the	standard
utility	used	in	the	Unix	and	Linux	worlds.	By	far	the	most	popular	archiving	tool	used	in	Unix	and	Linux	is	the	tar
command.

The	tar	command	was	originally	used	to	write	files	to	a	tape	device	for	archiving.	However,	it	can	also	write	the
output	to	a	file,	which	has	become	a	popular	way	to	archive	data	in	Linux.

Here	is	the	format	of	the	tar	command:

	tar	function	[options]	object1	object2	...

The	function	parameter	defines	what	the	tar	command	should	do,	as	shown	in	Table	4-8.

TABLE	4-8	The	tar	Command	Functions

Function Long
Name

Description

-A --
concatenate

Append	an	existing	tar	archive	file	to	another	existing	tar	archive	file.

-c --create Create	a	new	tar	archive	file.

-d --diff Check	the	differences	between	a	tar	archive	file	and	the	filesystem.

--delete Delete	from	an	existing	tar	archive	file.

-r --append Append	files	to	the	end	of	an	existing	tar	archive	file.

-t --list List	the	contents	of	an	existing	tar	archive	file.

-u --update Append	files	to	an	existing	tar	archive	file	that	are	newer	than	a	file	with	the	same	name	in
the	existing	archive.

-x --extract Extract	files	from	an	existing	archive	file.

Each	function	uses	options	to	define	a	specific	behavior	for	the	tar	archive	file.	Table	4-9	lists	the	common	options
that	you	can	use	with	the	tar	command.

TABLE	4-9	The	tar	Command	Options

Option Description

-C	dir Change	to	the	specified	directory.

-f	file Output	results	to	file	(or	device)	file.

-j Redirect	output	to	the	bzip2	command	for	compression.

-J Redirect	output	to	the	xz	command	for	compression.

-p Preserve	all	file	permissions.

-v List	files	as	they	are	processed.

-z Redirect	the	output	to	the	gzip	command	for	compression.

-Z Redirect	the	output	to	the	compress	command	for	compression.

These	options	are	usually	combined	to	create	the	following	scenarios.	First,	you'll	want	to	create	an	archive	file	using
this	command:

	tar	-cvf	test.tar	test/	test2/

This	command	creates	an	archive	file	called	test.tar	containing	the	contents	of	both	the	test	directory	and	the
test2	directory.	Next,	the	command

	tar	-tf	test.tar

lists	(but	doesn't	extract)	the	contents	of	the	tar	file	test.tar	.	Finally,	the	command

	tar	-xvf	test.tar

extracts	the	contents	of	the	tar	file	test.tar	.	If	the	tar	file	was	created	from	a	directory	structure,	the	entire
directory	structure	is	re-created	starting	at	the	current	directory.

As	you	can	see,	using	the	tar	command	is	a	simple	way	to	create	archive	files	of	entire	directory	structures.	This	is	a
common	method	for	distributing	source	code	files	for	open	source	applications	in	the	Linux	world.

TIP
If	you	download	open	source	software,	often	you'll	see	filenames	that	end	in	.tgz.	These	are
gzipped	tar	files,	and	they	can	be	extracted	using	the	command	tar	-zxvf	filename.tgz.

Summary
This	chapter	discussed	some	of	the	more	advanced	bash	commands	used	by	Linux	system	administrators	and
programmers.	The	ps	and	top	commands	are	vital	in	determining	the	status	of	the	system,	allowing	you	to	see	what
applications	are	running	and	how	many	resources	they	are	consuming.

In	this	day	of	removable	media,	another	popular	topic	for	system	administrators	is	mounting	storage	devices.	The
mount	command	allows	you	to	mount	a	physical	storage	device	into	the	Linux	virtual	directory	structure.	To	remove
the	device,	you	use	the	umount	command.

Finally,	we	discussed	various	utilities	used	for	handling	data.	The	sort	utility	easily	sorts	large	data	files	to	help	you

organize	data,	and	the	grep	utility	allows	you	to	quickly	scan	through	large	data	files	looking	for	specific	information.
A	few	file	compression	utilities	are	available	in	Linux,	including	gzip	and	zip	.	Each	one	allows	you	to	compress
large	files	to	help	save	space	on	your	filesystem.	The	Linux	tar	utility	is	a	popular	way	to	archive	directory	structures
into	a	single	file	that	can	easily	be	ported	to	another	system.

The	next	chapter	discusses	Linux	environment	variables.	Environment	variables	allow	you	to	access	information
about	the	system	from	your	scripts,	as	well	as	provide	a	convenient	way	to	store	data	within	your	scripts.

CHAPTER	5
Understanding	the	Shell
IN	THIS	CHAPTER

Investigating	shell	types

Understanding	the	parent/child	shell	relationship

Using	subshells	creatively

Investigating	built-in	shell	commands

Now	that	you	know	a	few	shell	basics,	such	as	reaching	the	shell	and	rudimentary	commands,	it's	time	to	explore	the
actual	shell	process.	To	understand	it,	you	need	to	know	how	it	operates	in	different	circumstances.

A	shell	is	not	just	a	CLI.	It	is	a	complicated	interactive	running	program.	Entering	commands	and	using	the	shell	to
run	scripts	can	raise	some	interesting	and	confusing	issues.	Understanding	the	shell	process	and	its	relationships
helps	you	resolve	these	issues	or	avoid	them	altogether.

This	chapter	takes	you	through	learning	about	the	shell	process	and	how	it	operates	in	various	situations.	We'll
explore	how	subshells	are	created	as	well	as	the	relationship	to	their	parent	shell.	The	different	commands	that
create	child	processes	are	examined	along	with	those	that	don't	(built-in	commands).	We	also	cover	some	shell	tips
and	tricks	you	can	try	to	make	your	CLI	experience	more	productive.

Investigating	Shell	Types
The	shell	program	that	the	system	starts,	when	you	log	into	the	system,	depends	on	your	user	ID	configuration.	In
the	/etc/passwd	file,	the	user	ID	has	its	default	shell	program	listed	in	field	#7	of	its	entry.	This	default	shell	program
is	started	when	the	user	either	logs	into	a	virtual	console	terminal	or	starts	a	terminal	emulator	in	the	GUI.

In	the	following	example,	the	user	christine	has	the	GNU	Bash	shell	as	their	default	shell	program:

$	cat	/etc/passwd
[...]
christine:x:1001:1001::/home/christine:/bin/bash
$

The	Bash	shell	program	(bash)	typically	resides	in	the	/usr/bin	directory	on	modern	Linux	systems.	However,	on
your	Linux	system	you	may	find	it	in	the	/bin	directory.	The	which	bash	command	can	help	here	by	providing	the
directory	and	filename	to	use	for	the	Bash	shell:

$	which	bash
/usr/bin/bash
$

A	long	listing	reveals	that	the	bash	file	(the	Bash	shell)	is	an	executable	program	via	the	trailing	asterisk	(*)	on	the
file's	name:

$	ls	-lF	/usr/bin/bash
-rwxr-xr-x.	1	root	root	1219248	Nov		8	11:30	/usr/bin/bash*
$

NOTE
Typically	on	modern	Linux	systems,	the	/bin	directory	is	symbolically	linked	to	the	/usr/bin/
directory,	which	is	why	the	user	christine	has	/bin/bash	listed	as	their	default	shell	program,	but
the	Bash	shell	program	actually	resides	in	the	/usr/bin/	directory.	Symbolic	(soft)	links	were
covered	in	Chapter	3,	“Basic	Bash	Shell	Commands.”

Several	other	shell	programs	are	on	this	particular	Linux	system.	They	include	tcsh,	which	is	based	on	the	original	C
shell:

$	which	tcsh
/usr/bin/tcsh
$	ls	-lF	/usr/bin/tcsh
-rwxr-xr-x.	1	root	root	465200	May	14		2019	/usr/bin/tcsh*
$

Another	shell	on	this	system	is	zsh,	which	is	a	more	elaborate	version	of	the	Bash	shell.	It	also	has	a	few	tcsh	features
as	well	as	other	elements:

$	which	zsh
/usr/bin/zsh
$	ls	-lF	/usr/bin/zsh
-rwxr-xr-x.	1	root	root	879872	May	11		2019	/usr/bin/zsh*
$

TIP
If	you	don't	find	some	of	these	shells	on	your	Linux	system,	you	may	be	able	to	install	them.
Chapter	9,	“Installing	Software,”	can	help	you	accomplish	this	task.

A	soft	link	(see	Chapter	3)	of	the	C	shell	points	to	the	tcsh	shell:

$	which	csh
/usr/bin/csh
$	ls	-lF	/usr/bin/csh
lrwxrwxrwx.	1	root	root	4	May	14		2019	/usr/bin/csh	->	tcsh*
$

On	Debian-based	Linux	systems,	such	as	Ubuntu,	you	often	find	dash	,	which	is	a	version	of	the	Ash	shell:

$	which	dash
/usr/bin/dash
$	ls	-lF	/usr/bin/dash
-rwxr-xr-x	1	root	root	129816	Jul	18		2019	/usr/bin/dash*
$

NOTE
A	brief	description	of	various	shells	was	included	in	Chapter	1,	“Starting	with	Linux	Shells.”
You	may	be	interested	in	learning	even	more	about	shells	other	than	the	GNU	Bash	shell.
Additional	alternative	shell	information	is	in	Chapter	23,	“Working	with	Alternative	Shells.”

On	most	Linux	systems,	you'll	find	the	various	installed	shells	that	can	be	used	as	the	user's	default	shell	within	the
/etc/shells	file,	as	shown	here:

$	cat	/etc/shells
/bin/sh
/bin/bash
/usr/bin/sh
/usr/bin/bash
/bin/csh
/bin/tcsh
/usr/bin/csh
/usr/bin/tcsh
/usr/bin/zsh
/bin/zsh
$

NOTE
On	many	Linux	distributions,	you'll	find	that	it	appears	as	if	a	shell	file	exists	in	two	places	—
/bin	and	/usr/bin	.	This	is	because	on	modern	Linux	systems,	these	two	directories	are	often
symbolically	linked	together,	with	/bin	pointing	to	/usr/bin	.	And	you	can	use	either	directory	to
access	the	shell.	Symbolic	links,	also	called	soft	links,	were	covered	in	Chapter	3.

A	user	can	set	any	of	these	different	shell	programs	on	this	system	as	their	shell.	However,	due	to	its	popularity,	it	is
rare	to	use	any	other	shell	instead	of	Bash	as	an	account's	default	interactive	shell.	The	default	interactive	shell,	also
called	a	login	shell,	starts	whenever	a	user	logs	into	a	virtual	console	terminal	or	starts	a	terminal	emulator	in	the
GUI.

Another	shell,	sh	,	is	the	default	system	shell.	The	default	system	shell	is	used	for	system	shell	scripts,	such	as	those
needed	at	startup.

Often,	you	see	a	distribution	with	its	default	system	shell	(sh)	pointing	to	the	Bash	shell	using	a	soft	link.	An	example
of	this	is	shown	here	on	a	CentOS	distribution:

$	which	sh
/usr/bin/sh
$	ls	-l	/usr/bin/sh
lrwxrwxrwx.	1	root	root	4	Nov		8	11:30	/usr/bin/sh	->	bash
$

However,	be	aware	that	on	some	distributions,	the	default	system	shell	is	linked	differently,	such	as	on	this	Ubuntu
distribution:

$	which	sh
/usr/bin/sh
$	ls	-l	/usr/bin/sh
lrwxrwxrwx	1	root	root	4	Mar	10	18:43	/usr/bin/sh	->	dash
$

In	this	case,	the	default	system	shell,	/usr/bin/sh	,	points	to	the	Dash	shell,	instead	of	the	Bash	shell.

TIP
For	Bash	shell	scripts,	these	two	different	shells,	default	interactive	shell	and	default	system
shell,	can	cause	problems.	Be	sure	to	read	about	the	important	syntax	needed	for	a	Bash	shell
script's	first	line	in	Chapter	11,	“Basic	Script	Building,”	to	avoid	these	issues.

You	are	not	forced	to	stick	with	your	default	interactive	shell.	You	can	start	any	shell	available	on	your	distribution
simply	by	typing	its	name.	However,	there's	no	fanfare	or	message	displayed	to	indicate	what	shell	you	are	currently
using.	But	help	is	available	from	the	$0	variable.	The	command	echo	$0	will	display	the	name	of	your	current	shell,
providing	the	needed	reference.

NOTE
The	echo	$0	command	shows	the	current	shell	in	use	only	when	issued	at	a	shell	prompt.	If	used
in	a	shell	script,	it	will	display	the	script's	name	instead.	This	is	covered	in	Chapter	14,
“Handling	User	Input.”

With	our	handy	$0	variable,	we'll	display	the	shell	we	are	currently	using,	start	the	Dash	shell	by	typing	the
command	dash,	and	show	the	new	shell's	name	via	echo	$0	again:

$	echo	$0
-bash
$
$	dash
$
$	echo	$0
dash
$

NOTE
In	the	previous	example,	notice	the	dash	(-)	in	front	of	the	bash	response	from	the	first	echo	$0
command.	This	indicates	that	this	shell	is	the	user's	login	shell.

The	$	prompt	is	a	CLI	prompt	for	the	Dash	shell.	You	can	leave	the	Dash	shell	program	(and	the	Bash	shell	for	that
matter)	by	typing	the	command	exit	:

$	echo	$0
dash
$	exit
$	echo	$0
-bash
$

Jumping	back	and	forth	through	the	various	shells	seems	simple,	but	there	is	more	to	the	action	happening	behind
the	scenes.	To	understand	this	process,	the	next	section	explores	the	relationship	between	a	login	shell	program	and
a	newly	started	shell	program.

Exploring	Parent	and	Child	Shell	Relationships
The	default	interactive	shell	(login	shell)	that	starts	when	a	user	logs	into	a	virtual	console	terminal	or	starts	a
terminal	emulator	in	the	GUI	is	a	parent	shell.	As	you	have	read	so	far	in	this	book,	a	parent	shell	process	provides	a
CLI	prompt	and	waits	for	commands	to	be	entered.

When	the	bash	command	(or	other	shell	program	name)	is	entered	at	the	CLI	prompt,	a	new	shell	program	is
created.	This	is	a	child	shell.	A	child	shell	also	has	a	CLI	prompt	and	waits	for	commands	to	be	entered.

Because	you	do	not	see	any	relevant	messages	when	you	type	bash	and	spawn	a	child	shell,	another	command	can
help	bring	clarity.	The	ps	command	was	covered	in	Chapter	4,	“More	Bash	Shell	Commands.”	Using	this	with	the	-f
option	before	and	after	entering	a	child	shell	is	useful:

$	ps	-f
UID								PID		PPID		C	STIME	TTY										TIME	CMD
christi+		6160		6156		0	11:01	pts/1				00:00:00	-bash
christi+		7141		6160		0	12:51	pts/1				00:00:00	ps	-f
$
$	bash
$
$	ps	-f
UID								PID		PPID		C	STIME	TTY										TIME	CMD

christi+		6160		6156		0	11:01	pts/1				00:00:00	-bash
christi+		7142		6160		0	12:52	pts/1				00:00:00	bash
christi+		7164		7142		0	12:52	pts/1				00:00:00	ps	-f
$

The	first	use	of	ps	-f	shows	two	processes.	One	process	has	a	process	ID	of	6160	(second	column)	and	is	running	the
Bash	shell	program	(last	column).	The	second	process	(process	ID	7141)	is	the	actual	ps	-f	command	running.

NOTE
A	process	is	a	running	program.	The	Bash	shell	is	a	program,	and	when	it	runs,	it	is	a	process.
A	running	shell	is	simply	one	type	of	process.	Therefore,	when	reading	about	running	a	Bash
shell,	you	often	see	the	word	“shell”	and	the	word	“process”	used	interchangeably.

In	the	previous	example,	after	the	command	bash	is	entered,	a	child	shell	is	created.	The	second	ps	-f	is	executed
from	within	the	child	shell.	From	this	display,	you	can	see	that	two	Bash	shell	programs	are	running.	The	first	Bash
shell	program,	the	parent	shell	process,	has	the	original	process	ID	(PID)	of	6160.	The	second	Bash	shell	program,
the	child	shell	process,	has	a	PID	of	7142.	Note	that	the	child	shell	has	a	parent	process	ID	(PPID)	of	6160,	denoting
that	the	parent	shell	process	is	its	parent.	Figure	5-1	diagrams	this	relationship.

FIGURE	5-1	Parent	and	child	Bash	shell	processes

When	a	child	shell	process	is	spawned,	only	some	of	the	parent's	environment	is	copied	to	the	child's	shell
environment.	This	can	cause	problems	with	items	such	as	variables.	How	to	prevent	such	problems	is	covered	in
Chapter	6,	“Using	Linux	Environment	Variables.”

A	child	shell	is	also	called	a	subshell.	A	subshell	can	be	created	from	a	parent	shell,	and	a	subshell	can	be	created
from	another	subshell:

$	ps	-f
UID								PID		PPID		C	STIME	TTY										TIME	CMD
christi+		7650		7649		0	16:01	pts/0				00:00:00	-bash
christi+		7686		7650		0	16:02	pts/0				00:00:00	ps	-f
$
$	bash
$	bash
$	bash
$
$	ps	--forest
		PID	TTY										TIME	CMD
	7650	pts/0				00:00:00	bash
	7687	pts/0				00:00:00		_	bash
	7709	pts/0				00:00:00						_	bash
	7731	pts/0				00:00:00										_	bash
	7753	pts/0				00:00:00														_	ps
$

In	the	preceding	example,	the	bash	command	was	entered	three	times.	Effectively,	this	created	three	subshells.	The
ps	--forest	command	shows	the	nesting	of	these	subshells.	Figure	5-2	also	shows	this	subshell	nesting.

The	ps	-f	command	can	be	useful	in	subshell	nesting,	because	it	displays	who	is	whose	parent	via	the	PPID	column:

$	ps	-f
UID								PID		PPID		C	STIME	TTY										TIME	CMD
christi+		7650		7649		0	16:01	pts/0				00:00:00	-bash
christi+		7687		7650		0	16:02	pts/0				00:00:00	bash
christi+		7709		7687		0	16:02	pts/0				00:00:00	bash
christi+		7731		7709		0	16:02	pts/0				00:00:00	bash
christi+		7781		7731		0	16:04	pts/0				00:00:00	ps	-f

$

The	Bash	shell	program	can	use	command-line	options	to	modify	the	shell's	start.	Table	5-1	lists	a	few	of	these
available	switches	to	use	with	the	bash	command.

FIGURE	5-2	Subshell	nesting

TABLE	5-1	The	bash	Command-Line	Options

Option Description

-c	string Reads	commands	from	string	and	processes	them

-i Starts	an	interactive	shell,	allowing	input	from	the	user

-l Acts	as	if	invoked	as	a	login	shell

-r Starts	a	restricted	shell,	limiting	the	user	to	the	default	directory

-s Reads	commands	from	the	standard	input

You	can	find	more	help	on	the	bash	command	and	even	more	command-line	parameters	by	typing	man	bash	.	The
bash	--help	command	provides	additional	assistance	as	well.

TIP
If	you'd	like	to	see	the	version	of	the	Bash	shell,	just	type	bash	--version	at	the	command	line.
This	won't	create	a	subshell,	but	instead	displays	the	current	version	of	your	system's	GNU
Bash	shell	program.

You	can	gracefully	exit	out	of	each	subshell	by	entering	the	exit	command:

$	ps	-f
UID								PID		PPID		C	STIME	TTY										TIME	CMD
christi+		7650		7649		0	16:01	pts/0				00:00:00	-bash
christi+		7687		7650		0	16:02	pts/0				00:00:00	bash
christi+		7709		7687		0	16:02	pts/0				00:00:00	bash
christi+		7731		7709		0	16:02	pts/0				00:00:00	bash
christi+		8080		7731		0	16:35	pts/0				00:00:00	ps	-f
$
$	exit
exit
$
$	ps	--forest
		PID	TTY										TIME	CMD
	7650	pts/0				00:00:00	bash
	7687	pts/0				00:00:00		_	bash
	7709	pts/0				00:00:00						_	bash
	8081	pts/0				00:00:00										_	ps
$
$	exit
exit
$	exit
exit
$
$	ps	--forest
		PID	TTY										TIME	CMD
	7650	pts/0				00:00:00	bash
	8082	pts/0				00:00:00		_	ps
$

Not	only	does	the	exit	command	allow	you	to	leave	child	subshells,	but	you	can	log	out	of	your	current	virtual
console	terminal	or	terminal	emulation	software	as	well.	Just	type	exit	in	the	parent	shell,	and	you	gracefully	exit
the	CLI.

Also,	a	subshell	is	sometimes	created	when	you	run	a	shell	script.	You	learn	more	about	that	topic	in	Chapter	11.
Next	we'll	cover	how	a	subshell	is	spawned	using	a	process	list.

Looking	at	process	lists
On	a	single	line,	you	can	designate	a	list	of	commands	to	be	run	one	after	another.	This	is	done	by	entering	a
command	list	using	a	semicolon	(;)	between	the	commands:

$	pwd	;	ls	test*	;	cd	/etc	;	pwd	;	cd	;	pwd	;	ls	my*
/home/christine
test_file		test_one		test_two
/etc
/home/christine
my_file		my_scrapt		my_script		my_scrypt
$

In	the	preceding	example,	the	commands	all	executed	one	after	another	with	no	problems.	However,	while	using
commands	in	this	manner	is	called	a	list,	it	is	not	a	process	list.	For	a	command	list	to	be	considered	a	process	list,
the	commands	must	be	encased	in	parentheses:

$	(pwd	;	ls	test*	;	cd	/etc	;	pwd	;	cd	;	pwd	;	ls	my*)
/home/christine
test_file		test_one		test_two
/etc
/home/christine
my_file		my_scrapt		my_script		my_scrypt
$

Though	the	parentheses	addition	may	not	appear	to	be	a	big	difference,	they	do	cause	a	very	different	effect.	Adding
parentheses	and	turning	the	command	list	into	a	process	list	created	a	subshell	to	execute	the	commands.

NOTE
A	process	list	is	a	command	grouping	type.	Another	command	grouping	type	puts	the
commands	between	curly	brackets	and	ends	the	command	list	with	a	semicolon	(;).	The	syntax
is	as	follows:	{	command;	}	.	Using	curly	brackets	for	command	grouping	does	not	create	a
subshell	as	a	process	list	does.

To	indicate	if	a	subshell	was	spawned,	a	command	using	an	environment	variable	is	needed	here.	(Environment
variables	are	covered	in	detail	in	Chapter	6).	The	command	needed	is	echo	$BASH_SUBSHELL	.	If	it	returns	0,	then
there	is	no	subshell.	If	it	returns	1	or	more,	a	subshell	was	created.

First,	the	example	using	just	a	command	list	is	executed	with	the	echo	$BASH_SUBSHELL	tacked	onto	the	end:

$	pwd	;	ls	test*	;	cd	/etc	;	pwd	;	cd	;	pwd	;	ls	my*	;	echo	$BASH_SUBSHELL
/home/christine
test_file		test_one		test_two
/etc
/home/christine
my_file		my_scrapt		my_script		my_scrypt
0
$

At	the	very	end	of	the	commands'	output,	you	can	see	the	number	zero	(0)	is	displayed.	This	indicates	a	subshell	was
not	created	to	execute	these	commands.

The	results	are	different	using	a	process	list.	The	list	is	executed	with	echo	$BASH_SUBSHELL	tacked	onto	the	end:

$	(pwd	;	ls	test*	;	cd	/etc	;	pwd	;	cd	;	pwd	;	ls	my*	;	echo	$BASH_SUBSHELL)
/home/christine
test_file		test_one		test_two
/etc
/home/christine
my_file		my_scrapt		my_script		my_scrypt
1
$

In	this	case,	the	number	one	(1)	displayed	at	the	output's	end.	This	indicates	a	subshell	was	indeed	created	and	used
for	executing	these	commands.

Thus,	a	process	list	is	a	command	grouping	enclosed	with	parentheses,	which	creates	a	subshell	to	execute	the
command(s).	You	can	even	create	a	grandchild	subshell	by	embedding	parentheses	within	a	process	list:

$	(pwd	;	echo	$BASH_SUBSHELL)
/home/christine
1
$	(pwd	;	(echo	$BASH_SUBSHELL))
/home/christine
2
$

Notice	in	the	first	process	list,	the	number	one	(1)	is	displayed,	indicating	a	child	subshell	as	you	would	expect.
However,	in	the	example's	second	process	list,	additional	parentheses	were	included	around	the	echo
$BASH_SUBSHELL	command.	These	additional	parentheses	caused	a	grandchild	subshell	to	be	created	for	the
command's	execution.	Thus,	a	number	two	(2)	was	displayed,	indicating	a	subshell	within	a	subshell.

Subshells	are	often	used	for	multiprocessing	in	shell	scripts.	However,	entering	a	subshell	is	an	expensive	method.
(In	this	situation,	expensive	means	that	more	resources,	such	as	memory	and	processing	power,	are	consumed.)	It
can	also	significantly	slow	down	completion	of	the	task.	Subshell	issues	exist	also	for	an	interactive	CLI	shell	session,
which	is	not	truly	multiprocessing,	because	the	terminal	gets	tied	up	with	the	subshell's	I/O.

Creatively	using	subshells
At	the	interactive	shell	CLI,	you	have	more	productive	ways	to	use	subshells.	Process	lists,	co-processes,	and	pipes
(covered	in	Chapter	11)	all	use	subshells.	Each	can	be	used	effectively	within	the	interactive	shell.

One	productive	subshell	method	in	the	interactive	shell	uses	background	mode.	Before	we	discuss	how	to	use
background	mode	and	subshells	together,	you	need	to	understand	background	mode.

Investigating	background	mode
Running	a	command	in	background	mode	allows	the	command	to	be	processed	and	frees	up	your	CLI	for	other	use.
A	classic	command	to	demonstrate	background	mode	is	the	sleep	command.

The	sleep	command	accepts	as	a	parameter	the	number	of	seconds	you	want	the	process	to	wait	(sleep).	This
command	is	often	used	to	introduce	pauses	in	shell	scripts.	The	command	sleep	10	causes	the	session	to	pause	for
10	seconds	and	then	return	a	shell	CLI	prompt:

$	sleep	10
$

To	put	a	command	into	background	mode,	the	&	character	is	tacked	onto	its	end.	Putting	the	sleep	command	into
background	mode	allows	a	little	investigation	with	the	ps	command:

$	sleep	3000&
[1]	2542
$
$	ps	-f
UID								PID		PPID		C	STIME	TTY										TIME	CMD
christi+		2356		2352		0	13:27	pts/0				00:00:00	-bash
christi+		2542		2356		0	13:44	pts/0				00:00:00	sleep	3000
christi+		2543		2356		0	13:44	pts/0				00:00:00	ps	-f
$

The	sleep	command	was	told	to	sleep	for	3000	seconds	(50	minutes)	in	the	background	(&).	When	it	was	put	into	the
background,	two	informational	items	were	displayed	before	the	shell	CLI	prompt	was	returned.	The	first
informational	item	is	the	background	job's	number	(1)	displayed	in	brackets.	The	second	item	is	the	background
job's	process	ID	(2542).

The	ps	command	was	used	to	display	the	various	processes.	Notice	that	the	sleep	3000	command	is	listed.	Also	note
that	its	PID	in	the	second	column	is	the	same	PID	displayed	when	the	command	went	into	the	background,	2542.

In	addition	to	the	ps	command,	you	can	use	the	jobs	command	to	display	background	job	information.	The	jobs
command	displays	your	processes	(jobs)	currently	running	in	background	mode:

$	jobs
[1]+		Running																	sleep	3000	&
$

The	jobs	command	shows	the	job	number	(1)	in	brackets.	It	also	displays	the	job's	current	status	(Running)	as	well	as
the	command	itself	(sleep	3000	&).

You	can	see	even	more	information	by	using	the	-l	(lowercase	L)	parameter	on	the	jobs	command.	The	-l
parameter	displays	the	command's	PID	in	addition	to	the	other	information:

$	jobs	-l
[1]+		2542	Running																	sleep	3000	&
$

TIP
When	you	have	more	than	one	background	process	running,	there	is	some	additional	helpful
information	to	show	which	background	job	was	started	last.	The	most	recently	started	job	has
a	plus	sign	(+)	next	to	its	job	number	in	the	jobs	command's	display.	And	the	second	newest
process	will	have	a	minus	sign	(-)	to	provide	you	with	additional	information.

When	the	background	job	is	finished,	its	completion	status	is	displayed	the	next	time	you	press	the	Enter	key	at	the
command	line:

$
[1]+		Done																				sleep	3000
$

Background	mode	is	very	handy.	And	it	provides	a	method	for	creating	useful	subshells	at	the	CLI.

Putting	process	lists	into	the	background
By	placing	process	lists	into	the	background,	you	can	do	large	amounts	of	multiprocessing	within	a	subshell.	A	side
benefit	is	that	your	terminal	is	not	tied	up	with	the	subshell's	I/O.

As	stated	earlier,	a	process	list	is	a	command	or	series	of	commands	executed	within	a	subshell.	Using	a	process	list
including	sleep	commands	and	displaying	the	BASH_SUBSHELL	variable	operates	as	you	would	expect:

$	(sleep	2	;	echo	$BASH_SUBSHELL	;	sleep	2)
1
$

In	the	preceding	example,	a	two-second	pause	occurs,	the	number	one	(1)	is	displayed	indicating	a	single	subshell
level	(child	shell),	and	then	another	two-second	pause	occurs	before	the	prompt	returns.	Nothing	too	dramatic	here.

Putting	the	same	process	list	into	background	mode	can	cause	a	slightly	different	effect	with	command	output:

$	(sleep	2	;	echo	$BASH_SUBSHELL	;	sleep	2)&
[1]	2553
$	1
	
[1]+		Done																				(sleep	2;	echo	$BASH_SUBSHELL;	sleep	2)
$

Putting	the	process	list	into	the	background	causes	a	job	number	and	process	ID	to	appear,	and	the	prompt	returns.
However,	the	odd	event	is	that	the	displayed	number	one	(1),	indicating	a	single-level	subshell,	is	displayed	next	to
the	prompt!	Don't	let	this	confuse	you.	Simply	press	the	Enter	key,	and	you	get	another	prompt	back.

Using	a	process	list	in	background	mode	is	one	creative	method	for	using	subshells	at	the	CLI.	This	allows	you	to	be
more	productive	with	fewer	keystrokes.

Of	course,	the	process	list	of	sleep	and	echo	commands	are	just	for	example	purposes.	Creating	backup	files	with	tar
(see	Chapter	4)	is	a	more	practical	example	of	using	background	process	lists	effectively:

$	(tar	-cf	Doc.tar	Documents	;	tar	-cf	Music.tar	Music)&
[1]	2567
$
$	ls	*.tar
Doc.tar		Music.tar
[1]+		Done																				(tar	-cf	Doc.tar	Documents;
	tar	-cf	Music.tar	Music)
$

Putting	a	process	list	in	background	mode	is	not	the	only	way	to	use	subshells	creatively	at	the	CLI.	Co-processing	is
another	method.

Looking	at	co-processing
Co-processing	does	two	things	at	the	same	time.	It	spawns	a	subshell	in	background	mode	and	it	executes	a
command	within	that	subshell.

To	perform	co-processing,	the	coproc	command	is	used	along	with	the	command	to	be	executed	in	the	subshell:

$	coproc	sleep	10
[1]	2689
$

Co-processing	performs	almost	identically	to	putting	a	command	in	background	mode,	except	for	the	fact	that	it
creates	a	subshell.	You'll	notice	that	when	the	coproc	command	and	its	parameters	were	entered,	a	background	job
was	started.	The	background	job	number	(1)	and	process	ID	(2689)	were	displayed	on	the	screen.

The	jobs	command	allows	you	to	display	the	co-processing	status:

$	jobs
[1]+		Running																	coproc	COPROC	sleep	10	&
$

From	the	preceding	example,	you	can	see	that	the	background	command	executing	in	the	subshell	is	coproc	COPROC
sleep	10	.	COPROC	is	a	name	given	to	the	process	by	the	coproc	command.	You	can	set	the	name	yourself	by	using
extended	syntax	for	the	command:

$	coproc	My_Job	{	sleep	10;	}
[1]	2706
$
$	jobs
[1]+		Running																	coproc	My_Job	{	sleep	10;	}	&
$

By	using	the	extended	syntax,	the	co-processing	name	was	set	to	My_Job	.	Be	careful	here,	because	the	extended
syntax	is	a	little	tricky.	Make	sure	you	place	a	space	after	the	first	curly	bracket	({)	and	before	the	start	of	your
command.	Also,	the	command	must	end	with	a	semicolon	(;).	And	you	must	put	a	space	after	the	semicolon	and
before	the	closing	curly	bracket	(}).

NOTE
Co-processing	allows	you	to	get	very	fancy	and	send/receive	information	to	the	process
running	in	the	subshell.	The	only	time	you	need	to	name	a	co-process	is	when	you	have
multiple	co-processes	running	and	you	need	to	communicate	with	them	all.	Otherwise,	just	let
the	coproc	command	set	the	name	to	the	default,	COPROC.

You	can	be	really	clever	and	combine	co-processing	with	process	lists,	creating	nested	subshells.	Just	type	your
process	list	and	put	the	command	coproc	in	front	of	it:

$	coproc	(sleep	10;	sleep	2)
[1]	2750
$
$	jobs
[1]+		Running																	coproc	COPROC	(sleep	10;	sleep	2)	&
$
$	ps	--forest
		PID	TTY										TIME	CMD
	2367	pts/0				00:00:00	bash
	2750	pts/0				00:00:00		_	bash
	2751	pts/0				00:00:00		|			_	sleep
	2752	pts/0				00:00:00		_	ps
$

Just	remember	that	spawning	a	subshell	can	be	expensive	and	slow.	Creating	nested	subshells	is	even	more	so!

Using	subshells	can	provide	flexibility	as	well	as	convenience.	Understanding	their	behavior	is	important	in	order	to

reach	these	goals.	Command	actions	are	also	important	to	understand.	In	the	next	section,	the	behavior	differences
between	built-in	and	external	commands	are	explored.

Understanding	External	and	Built-In	Commands
While	learning	about	the	GNU	Bash	shell,	you	likely	have	heard	the	term	built-in	command.	It	is	important	to
understand	both	shell	built-in	and	non–built-in	(external)	commands.	Built-in	commands	and	non–built-in
commands	operate	very	differently.

Looking	at	external	commands
An	external	command,	sometimes	called	a	filesystem	command,	is	a	program	that	exists	outside	of	the	Bash	shell.
In	other	words,	it	is	not	built	into	the	shell	program.	An	external	command	program	is	typically	located	in	/bin	,
/usr/bin	,	/sbin	,	or	/usr/sbin	directories.

The	ps	command	is	an	external	command.	You	can	find	its	filename	by	using	both	the	which	and	the	type
commands:

$	which	ps
/usr/bin/ps
$
$	type	ps
ps	is	/usr/bin/ps
$
$	ls	-l	/usr/bin/ps
-rwxr-xr-x.	1	root	root	142216	May	11		2019	/usr/bin/ps
$

Whenever	an	external	command	is	executed,	a	child	process	is	created.	This	action	is	termed	forking.	Conveniently,
the	external	command	ps	displays	its	current	parent	as	well	as	its	own	forked	child	processes:

$	ps	-f
UID								PID		PPID		C	STIME	TTY										TIME	CMD
christi+		2367		2363		0	10:47	pts/0				00:00:00	-bash
christi+		4242		2367		0	13:48	pts/0				00:00:00	ps	-f
$

Because	it	is	an	external	command,	when	the	ps	command	executes,	a	child	process	is	created.	In	this	case,	the	ps
command's	PID	is	4242	and	the	parent	PID	is	2367	.	The	Bash	shell	process,	which	in	this	case	is	the	parent	process,
has	a	PID	of	2367	.	Figure	5-3	illustrates	the	forking	that	occurs	when	an	external	command	is	executed.

FIGURE	5-3	External	command	forking

Whenever	a	process	must	fork,	it	takes	time	and	effort	to	set	up	the	new	child	process's	environment.	Thus,	external
commands	can	be	a	little	expensive.

NOTE
If	you	fork	a	child	process	or	create	a	subshell,	you	can	still	communicate	with	it	via	signaling,
which	is	extremely	helpful	in	both	the	command	line	and	in	writing	shell	scripts.	Signaling
allows	process	communication	via	signals.	Signals	and	signaling	are	covered	in	Chapter	16,
“Script	Control.”

When	using	a	built-in	command,	no	forking	is	required.	Therefore,	built-in	commands	are	less	expensive.

Looking	at	built-in	commands

Built-in	commands	are	different	in	that	they	do	not	need	a	child	process	to	execute.	They	were	compiled	into	the
shell,	and	thus	are	part	of	the	shell's	toolkit.	No	external	program	file	exists	to	run	them.

Both	the	cd	and	exit	commands	are	built	into	the	Bash	shell.	You	can	tell	a	command	is	built-in	by	using	the	type
command:

$	type	cd
cd	is	a	shell	builtin
$
$	type	exit
exit	is	a	shell	builtin
$

Because	they	do	not	need	to	fork	a	child	process	to	execute	or	open	a	program	file,	built-in	commands	are	faster	and
more	efficient.	A	list	of	GNU	Bash	shell	built-in	commands	is	provided	in	Appendix	A.

Be	aware	that	some	commands	have	multiple	flavors.	For	example,	both	echo	and	pwd	have	a	built-in	command
flavor	as	well	as	an	external	command	flavor.	These	flavors	are	slightly	different.	To	see	multiple	flavors	for
commands,	use	the	-a	option	on	the	type	command:

$	type	-a	echo
echo	is	a	shell	builtin
echo	is	/usr/bin/echo
$
$	which	echo
/usr/bin/echo
$
$	type	-a	pwd
pwd	is	a	shell	builtin
pwd	is	/usr/bin/pwd
$
$	which	pwd
/usr/bin/pwd
$

Using	the	type	-a	command	shows	both	types	(built-in	and	external)	for	each	of	the	two	commands.	Note	that	the
which	command	shows	only	the	external	command	file.

TIP
To	use	the	external	command	for	a	command	that	has	multiple	flavors,	directly	reference	the
file.	For	example,	to	use	the	pwd	external	command,	type	/usr/bin/pwd.

Using	the	history	command
The	Bash	shell	keeps	track	of	the	most	recent	commands	you	have	used.	You	can	recall	these	commands	and	even
reuse	them.	A	helpful	built-in	command	that	lets	you	explore	and	manage	these	previously	issued	commands	is	the
history	command.

To	see	a	list	of	recently	used	commands,	type	the	history	command	with	no	options:

$	history
				1		ps	-f
				2		pwd
				3		ls
				4		coproc	(sleep	10;	sleep	2)
				5		jobs
				6		ps	--forest
				7		ls
				8		ps	-f
				9		pwd
			10		ls	-l	/usr/bin/ps
			11		history
			12		cd	/etc
			13		pwd
			14		ls
			15		cd
			16		type	-a	pwd
			17		which	pwd
			18		type	-a	echo
			19		which	echo
			20		ls
[...]
$

In	this	example,	the	listing	is	snipped	and	only	the	first	20	commands	are	shown.	Typically,	the	last	1,000
commands	are	kept	in	history.	That's	a	lot	of	commands!

TIP
You	can	set	the	number	of	commands	to	keep	in	the	Bash	history.	To	do	so,	you	need	to	modify
an	environment	variable	called	HISTSIZE	(see	Chapter	6).

You	can	recall	and	reuse	the	last	command	in	your	history	list.	This	can	save	time	and	typing.	To	recall	and	reuse
your	last	command,	type	!!	and	press	the	Enter	key:

$	ps	--forest
		PID	TTY										TIME	CMD
	2367	pts/0				00:00:00	bash
	5240	pts/0				00:00:00		_	ps
$
$!!
ps	--forest
		PID	TTY										TIME	CMD
	2367	pts/0				00:00:00	bash
	5241	pts/0				00:00:00		_	ps
$

When	!!	was	entered,	the	Bash	shell	first	displayed	the	command	it	was	recalling	from	the	shell's	history.	And	after
the	command	was	displayed,	it	was	executed.

Command	history	is	kept	in	the	hidden	.bash_history	file,	which	is	located	in	each	user's	home	directory:

$	pwd
/home/christine
$
$	ls	.bash_history
.bash_history
$

Be	aware	that	during	your	CLI	session,	the	bash	command	history	is	stored	in	memory.	It	is	only	written	out	into	the
history	file	when	the	shell	is	exited:

$	history
				1		ps	-f
				2		pwd
[...]
			38		exit
			39		history
			40		ps	--forest
			41		ps	--forest
			42		pwd
			43		ls	.bash_history
			44		history
$
$	cat	.bash_history
ps	-f
pwd
[...]
ls
history
exit
$

Notice	that	when	the	history	command	is	run,	the	last	commands	displayed	do	not	match	final	commands	in	the
.bash_history	file.	There	were	six	additional	commands	issued,	which	are	not	recorded	in	the	history	file.

You	can	force	the	command	history	to	be	written	to	the	.bash_history	file	without	leaving	a	shell	session.	In	order	to
impose	this	write,	use	the	-a	option	on	the	history	command:

$	history	-a
$
$	history
				1		ps	-f
				2		pwd
[...]
			38		exit
			39		history
			40		ps	--forest
			41		ps	--forest
			42		pwd
			43		ls	.bash_history
			44		history
			45		cat	.bash_history
			46		history	-a
			47		history
$
$	cat	.bash_history
ps	-f
pwd
[...]

exit
history
ps	--forest
ps	--forest
pwd
ls	.bash_history
history
cat	.bash_history
history	-a
$
	

Notice	that	contents	from	both	the	history	command	and	the	.bash_history	file	match,	except	for	the	very	last
command	listed	(the	history	command),	because	it	came	after	the	history	-a	command	was	issued.

NOTE
If	you	have	multiple	terminal	sessions	open,	you	can	still	append	.bash_history	in	each	open
session	using	the	history	-a	command.	However,	the	histories	are	not	automatically	updated
for	your	other	open	terminal	sessions.	This	is	because	the	.bash_history	file	is	read-only	when	a
terminal	session	is	first	started.	To	force	the	.bash_history	file	to	be	reread	and	a	terminal
session's	history	in	memory	to	be	updated,	use	the	history	-n	command.

You	can	recall	any	command	from	the	history	list.	Just	enter	an	exclamation	point	and	the	command's	number	from
the	history	list:

$	history
				1		ps	-f
				2		pwd
[...]
			39		history
			40		cat	.bash_history
			41		ps	--forest
			42		pwd
			43		ps	-f
			44		history
			45		cat	.bash_history
			46		history	-a
			47		history
			48		cat	.bash_history
			49		history
$
$!42
pwd
/home/christine
$

Command	number	42	was	pulled	from	the	history	list.	Notice	that	similar	to	executing	the	last	command	in	history,
the	Bash	shell	first	displays	the	command	it	is	recalling	from	the	shell's	history.	After	the	command	is	displayed,	it	is
executed.

TIP
If	for	some	reason	you	need	to	clear	out	command	history,	it's	simple	to	do.	Just	type	history	-c
and	the	contents	of	the	current	history	are	wiped.	Next	enter	history	-a	to	also	clear	out	the
.bash_history	file.

Using	Bash	shell	command	history	can	be	a	great	timesaver.	You	can	do	even	more	with	the	built-in	history
command.	Be	sure	to	view	the	Bash	manual	pages	for	history	by	typing	man	history	.

Using	command	aliases
The	alias	command	is	another	useful	built-in	shell	command.	A	command	alias	allows	you	to	create	an	alias	name
for	common	commands	(along	with	their	parameters)	to	help	keep	your	typing	to	a	minimum.

Most	likely,	your	Linux	distribution	has	already	set	some	common	command	aliases	for	you.	To	see	a	list	of	the
active	aliases,	use	the	alias	command	along	with	the	-p	parameter:

$	alias	-p
[...]
alias	l='ls	-CF'
alias	la='ls	-A'
alias	ll='ls	-alF'
alias	ls='ls	--color=auto'
$

Notice	that,	on	this	Ubuntu	Linux	distribution,	an	alias	is	used	to	override	the	standard	ls	command.	It

automatically	provides	the	--color=auto	parameter,	which	will	cause	the	ls	command	to	use	color	coding	(for
example,	directories	may	be	shown	in	blue),	if	the	terminal	supports	colorization.	The	LS_COLORS	environment
variable	controls	the	color	codes	used	(environment	variables	are	covered	in	Chapter	6).

TIP
When	jumping	between	various	distributions,	be	cautious	using	color	coding	to	help	you
determine	which	listed	name	is	a	directory	and	which	is	a	file.	Because	color	codes	are	not
standardized,	it's	best	to	use	the	ls	-F	command	to	see	the	file's	type	code	instead.

You	can	create	your	own	aliases	using	the	alias	command:

$	alias	li='ls	-i'
$
$	li
34665652	Desktop										1415018	NetworkManager.conf
	1414976	Doc.tar									50350618	OldDocuments
34665653	Documents								1414981	Pictures
51693739	Downloads							16789591	Public
	1415016	hlink_test_one			1415019	really_ridiculously_long_file_name
	1415021	log_file									1415020	slink_test_file
51693757	Music												1415551	Templates
	1414978	Music.tar								1415523	test_file
	1415525	my_file										1415016	test_one
	1415524	my_scrapt								1415017	test_two
	1415519	my_script							16789592	Videos
	1415015	my_scrypt
$

After	you	define	an	alias	value,	you	can	use	it	at	any	time	in	your	shell,	including	in	shell	scripts.	Be	aware	that
because	command	aliases	are	built-in	commands,	an	alias	is	valid	only	for	the	shell	process	in	which	it	is	defined:

$	alias	li='ls	-i'
$
$	bash
$	li
bash:	li:	command	not	found...
$
$	exit
exit
$
$	li
34665652	Desktop										1415018	NetworkManager.conf
	1414976	Doc.tar									50350618	OldDocuments
[...]
1415524	my_scrapt								1415017	test_two
	1415519	my_script							16789592	Videos
	1415015	my_scrypt
$

TIP
If	needed,	you	can	turn	off	an	alias	by	typing	unalias	alias-name	at	the	command	line.	Keep	in
mind,	if	the	alias	wasn't	set	by	you,	it	will	be	turned	back	on	the	next	time	you	log	into	the
system.	You	can	modify	your	environment	files	to	permanently	disable	an	alias.	Environment
files	are	covered	in	Chapter	6.

Fortunately,	you	can	make	an	alias	value	permanent	across	subshells.	The	next	chapter	covers	how	to	do	that,	along
with	environment	variables.

Summary
This	chapter	discussed	the	complicated	interactive	program,	the	GNU	Bash	shell.	We	covered	understanding	the
shell	process	and	its	relationships,	including	how	subshells	are	spawned	and	their	relationship	to	the	parent	shell.
We	also	explored	commands	that	create	child	processes	and	commands	that	don't.

The	default	interactive	shell	is	normally	started	whenever	a	user	logs	into	a	terminal.	The	shell	that	the	system	starts
depends	on	a	user	ID	configuration.	Typically,	it	is	/usr/bin/bash	.	The	default	system	shell,	/usr/bin/sh	,	is	used	for
system	shell	scripts,	such	as	those	needed	at	startup.

A	subshell	or	child	shell	can	be	spawned	using	the	bash	command.	They	are	also	created	when	a	process	list	or	the
coproc	command	is	used.	Using	subshells	at	the	command	line	can	allow	for	creative	and	productive	use	of	the	CLI.
Subshells	can	be	nested,	spawning	grandchild	shells	and	great-grandchild	shells.	Creating	a	subshell	is	an	expensive
process	because	a	new	environment	for	the	shell	must	be	created	as	well.

Finally,	we	looked	at	two	different	types	of	shell	commands:	built-in	and	external	commands.	External	commands

create	a	child	process	with	a	new	environment,	but	a	built-in	command	does	not.	This	causes	external	commands	to
be	more	expensive	to	use.	Because	a	new	environment	is	not	needed,	built-in	commands	are	more	efficient	and	not
affected	by	any	environment	changes.

Shells,	subshells,	processes,	and	forked	processes	are	all	affected	by	environment	variables.	How	the	variables	affect
and	can	be	used	within	these	different	contexts	is	explored	in	the	next	chapter.

CHAPTER	6
Using	Linux	Environment	Variables
IN	THIS	CHAPTER

Looking	at	environment	variables

Creating	your	own	local	variables

Removing	variables

Exploring	default	shell	environment	variables

Setting	the	PATH	environment	variable

Locating	environment	files

Using	variable	arrays

Linux	environment	variables	help	define	your	Linux	shell	experience.	Many	programs	and	scripts	use	environment
variables	to	obtain	system	information	and	store	temporary	data	as	well	as	configuration	information.	Environment
variables	are	set	in	lots	of	places	on	the	Linux	system,	and	it's	helpful	to	know	their	locations.

This	chapter	walks	you	through	the	world	of	Linux	environment	variables,	showing	where	they	are,	how	to	use	them,
and	even	how	to	create	your	own.	The	chapter	concludes	with	how	to	use	variable	arrays.

Exploring	Environment	Variables
The	Bash	shell	uses	a	feature	called	environment	variables	to	store	information	about	the	shell	session	and	the
working	environment	(thus	the	name	environment	variables).	This	feature	also	allows	you	to	store	data	in	memory
that	can	be	easily	accessed	by	any	program	or	script	running	from	the	shell.	It	is	a	handy	way	to	store	needed
persistent	data.

There	are	two	environment	variable	types	in	the	Bash	shell:

Global	variables

Local	variables

This	section	describes	each	type	of	environment	variable	and	shows	how	to	view	and	use	them.

NOTE
Even	though	the	Bash	shell	uses	specific	environment	variables	that	are	consistent,	different
Linux	distributions	often	add	their	own	environment	variables.	The	environment	variable
examples	you	see	in	this	chapter	may	differ	slightly	from	what's	available	on	your	specific
distribution.	If	you	run	into	an	environment	variable	not	covered	here,	check	your	Linux
distribution's	documentation.

Looking	at	global	environment	variables
Global	environment	variables	are	visible	from	the	shell	session	and	from	any	spawned	child	subshells.	Local
variables	are	available	only	in	the	shell	that	creates	them.	This	fact	makes	global	environment	variables	useful	in
applications	that	create	child	subshells,	which	require	parent	shell	information.

The	Linux	system	sets	several	global	environment	variables	when	you	start	your	Bash	session.	(For	more	details
about	what	variables	are	started	at	that	time,	see	the	“Locating	System	Environment	Variables”	section	later	in	this
chapter.)	The	system	environment	variables	almost	always	use	all	capital	letters	to	differentiate	them	from	user-
defined	variables.

To	view	global	environment	variables,	use	the	env	or	the	printenv	command:

$	printenv
[...]
USER=christine
[...]
PWD=/home/christine
HOME=/home/christine
[...]
TERM=xterm
SHELL=/bin/bash
[...]
HISTSIZE=1000
[...]
$

So	many	global	environment	variables	get	set	for	the	Bash	shell	that	the	display	had	to	be	snipped.	Not	only	are
many	set	during	the	login	process,	but	how	you	log	in	can	affect	which	ones	are	set	as	well.

To	display	an	individual	environment	variable's	value,	you	can	use	the	printenv	command,	but	not	the	env
command:

$	printenv	HOME
/home/christine
$
$	env	HOME
env:	'HOME':	No	such	file	or	directory
$

You	can	also	use	the	echo	command	to	display	a	variable's	value.	When	referencing	an	environment	variable	in	this
case,	you	must	place	a	dollar	sign	($)	before	the	environment	variable	name:

$	echo	$HOME
/home/christine
$

Using	the	dollar	sign	along	with	the	variable	name	does	more	than	just	display	its	current	definition	when	used	with
the	echo	command.	The	dollar	sign	before	a	variable	name	allows	the	variable	to	be	passed	as	a	parameter	to	various
other	commands:

$	ls	$HOME
Desktop									Music						NetworkManager.conf																	Templates
Doc.tar									Music.tar		OldDocuments																								test_file
Documents							my_file				Pictures																												test_one
Downloads							my_scrapt		Public																														test_two
hlink_test_one		my_script		really_ridiculously_long_file_name		Videos
log_file								my_scrypt		slink_test_file
$

As	mentioned	earlier,	global	environment	variables	are	also	available	to	any	process's	subshells:

$	bash
$	ps	-f
UID								PID		PPID		C	STIME	TTY										TIME	CMD
christi+		2770		2766		0	11:19	pts/0				00:00:00	-bash
christi+		2981		2770		4	11:37	pts/0				00:00:00	bash
christi+		3003		2981		0	11:37	pts/0				00:00:00	ps	-f
$
$	echo	$HOME
/home/christine
$	exit
exit
$

In	this	example,	after	spawning	a	subshell	using	the	bash	command,	the	HOME	environment	variable's	current	value	is
shown.	It	is	set	to	the	exact	same	value,	/home/christine	,	as	it	was	in	the	parent	shell.

Looking	at	local	environment	variables
Local	environment	variables,	as	their	name	implies,	can	be	seen	only	in	the	local	process	in	which	they	are	defined.
Even	though	they	are	local,	they	are	just	as	important	as	global	environment	variables.	In	fact,	the	Linux	system	also
defines	standard	local	environment	variables	for	you	by	default.	However,	you	can	also	define	your	own	local
variables.	These,	as	you	would	assume,	are	called	user-defined	local	variables.

Trying	to	see	the	local	variables	list	is	a	little	tricky	at	the	CLI.	Unfortunately,	there	isn't	a	command	that	displays
only	these	variables.	The	set	command	displays	all	variables	defined	for	a	specific	process,	including	both	local	and
global	environment	variables	as	well	as	user-defined	variables:

$	set
BASH=/bin/bash
[...]
HOME=/home/christine
[...]
PWD=/home/christine
[...]
SHELL=/bin/bash
[...]
TERM=xterm
[...]
USER=christine
[...]
colors=/home/christine/.dircolors
my_variable='Hello	World'
[...]
_command	()
{
[...]
$

All	the	global	environment	variables	displayed	using	the	env	or	printenv	command	appear	in	the	set	command's
output.	The	additional	environment	variables	are	the	local	environment	and	user-defined	variables.	Also	included	in

the	set	command's	output	are	local	shell	functions,	such	as	the	_command	function	listed	in	the	previous	display.	Shell
functions	are	covered	in	Chapter	17,	“Creating	Functions.”

NOTE
The	differences	between	the	commands	env	,	printenv	,	and	set	are	subtle.	The	set	command
displays	global	and	local	environment	variables,	user-defined	variables,	and	local	functions.	It
also	sorts	the	display	alphabetically.	The	env	and	printenv	are	different	from	set	in	that	they	do
not	sort	the	variables,	nor	do	they	include	local	environment	variables,	local	user-defined
variables,	or	local	shell	functions.	Used	in	this	context,	env	and	printenv	produce	duplicate
listings.	However,	the	env	command	has	additional	functionality	that	printenv	does	not	have,
making	it	the	slightly	more	powerful	command.

Setting	User-Defined	Variables
You	can	set	your	own	variables	directly	from	the	Bash	shell.	This	section	shows	you	how	to	create	your	own	variables
and	reference	them	from	an	interactive	shell	or	shell	script	program.

Setting	local	user-defined	variables
After	you	start	a	Bash	shell	(or	spawn	a	shell	script),	you're	allowed	to	create	local	user-defined	variables	that	are
visible	within	your	shell	process.	You	can	assign	either	a	numeric	or	a	string	value	to	an	environment	variable	by
assigning	the	variable	to	a	value	using	the	equal	sign:

$	my_variable=Hello
$	echo	$my_variable
Hello
$

That	was	simple!	Now,	any	time	you	need	to	reference	the	my_variable	user-defined	variable's	value,	just	reference	it
by	the	name	$my_variable.

If	you	need	to	assign	a	string	value	that	contains	spaces,	you	must	use	a	single	or	double	quotation	mark	to	delineate
the	beginning	and	the	end	of	the	string:

$	my_variable=Hello	World
bash:	World:	command	not	found...
$
$	my_variable="Hello	World"
$	echo	$my_variable
Hello	World
$

Without	the	quotation	marks,	the	Bash	shell	assumes	that	the	next	word	(World)	is	another	command	to	process.
Notice	that	for	the	local	variable	you	defined,	you	used	lowercase	letters,	whereas	the	system	environment	variables
you've	seen	so	far	have	all	used	uppercase	letters.

TIP
The	standard	Bash	shell	convention	is	for	all	environment	variables	to	use	uppercase	letters.	If
you	are	creating	a	local	variable	for	yourself	and	your	own	shell	scripts,	use	lowercase	letters.
Variables	are	case	sensitive.	By	keeping	your	user-defined	local	variables	lowercase,	you	avoid
the	potential	disaster	of	redefining	a	system	environment	variable.

It's	extremely	important	that	you	not	use	spaces	between	the	variable	name,	the	equal	sign,	and	the	value.	If	you	put
any	spaces	in	the	assignment,	the	Bash	shell	interprets	the	value	as	a	separate	command:

$	my_variable	=	"Hello	World"
bash:	my_variable:	command	not	found...
$

After	you	set	a	local	variable,	it's	available	for	use	anywhere	within	your	shell	process.	However,	if	you	spawn
another	shell,	it's	not	available	in	the	child	shell:

$	my_variable="Hello	World"
$
$	bash
$	echo	$my_variable
	
$	exit
exit
$	echo	$my_variable
Hello	World
$

In	this	example,	a	child	shell	was	spawned	via	the	bash	command.	The	user-defined	my_variable	was	not	available	in
the	child	shell.	This	is	demonstrated	by	the	blank	line	returned	after	the	echo	$my_variable	command.	After	the
child	shell	was	exited	and	returned	to	the	original	shell,	the	local	variable	was	available.

Similarly,	if	you	set	a	local	variable	in	a	child	process,	after	you	leave	the	child	process,	the	local	variable	is	no	longer
available:

$	echo	$my_child_variable
	
$	bash
$	my_child_variable="Hello	Little	World"
$	echo	$my_child_variable
Hello	Little	World
$	exit
exit
$	echo	$my_child_variable
	
$

The	local	variable	set	within	the	child	shell	doesn't	exist	after	a	return	to	the	parent	shell.	You	can	change	this
behavior	by	turning	your	local	user-defined	variable	into	a	global	variable.

Setting	global	environment	variables
Global	environment	variables	are	visible	from	any	child	processes	created	by	the	parent	process	that	sets	the
variable.	The	method	used	to	create	a	global	environment	variable	is	to	first	create	a	local	variable	and	then	export	it
to	the	global	environment.

This	is	done	by	using	the	export	command	and	the	variable	name	(minus	the	dollar	sign):

$	my_variable="I	am	Global	now"
$
$	export	my_variable
$
$	echo	$my_variable
I	am	Global	now
$	bash
$	echo	$my_variable
I	am	Global	now
$	exit
exit
$	echo	$my_variable
I	am	Global	now
$

After	defining	and	exporting	the	local	variable	my_variable	,	a	child	shell	was	started	by	the	bash	command.	The
child	shell	was	able	to	properly	display	the	my_variable	variable's	value.	The	variable	kept	its	value,	because	the
export	command	made	it	global.

TIP
To	keep	typing	to	a	minimum,	you	can	set	the	variable	and	export	it	all	in	one	command.	Using
the	previous	example,	you	would	type	export	my_variable="I	am	Global	Now"	and	press	Enter	at	the
command	line.

Changing	a	global	environment	variable	within	a	child	shell	does	not	affect	the	variable's	value	in	the	parent	shell:

$	export	my_variable="I	am	Global	now"
$	echo	$my_variable
I	am	Global	now
$
$	bash
$	echo	$my_variable
I	am	Global	now
$	my_variable="Null"
$	echo	$my_variable
Null
$	exit
exit
$
$	echo	$my_variable
I	am	Global	now
$

After	defining	and	exporting	the	variable	my_variable	,	a	subshell	was	started	by	the	bash	command.	The	subshell
properly	displayed	the	value	of	the	my_variable	global	environment	variable.	The	variable's	value	was	then	changed
by	the	child	shell.	However,	the	variable's	value	was	modified	only	within	the	child	shell,	and	not	in	the	parent's	shell
environment.

A	child	shell	cannot	even	use	the	export	command	to	change	the	parent	shell's	global	variable's	value:

$	echo	$my_variable
I	am	Global	now
$
$	bash
$	export	my_variable="Null"
$	echo	$my_variable
Null
$	exit
exit
$
$	echo	$my_variable
I	am	Global	now
$

Even	though	the	child	shell	redefined	and	exported	the	variable	my_variable	,	the	parent	shell's	my_variable	variable
kept	its	original	value.

Removing	Environment	Variables
Of	course,	if	you	can	create	a	new	environment	variable,	it	makes	sense	that	you	can	also	remove	an	existing
environment	variable.	You	can	do	this	with	the	unset	command.	When	referencing	the	environment	variable	in	the
unset	command,	remember	not	to	use	the	dollar	sign:

$	my_variable="I	am	going	to	be	removed"
$	echo	$my_variable
I	am	going	to	be	removed
$
$	unset	my_variable
$	echo	$my_variable
	
$

TIP
It	can	be	confusing	to	remember	when	to	use	and	when	not	to	use	the	dollar	sign	with
environment	variables.	Just	remember	this:	If	you	are	doing	anything	with	the	variable,	use
the	dollar	sign.	If	you	are	doing	anything	to	the	variable,	don’t	use	the	dollar	sign.	The
exception	to	this	rule	is	using	printenv	to	display	a	variable's	value.

When	dealing	with	global	environment	variables,	things	get	a	little	tricky.	If	you're	in	a	child	process	and	unset	a
global	environment	variable,	it	applies	only	to	the	child	process.	The	global	environment	variable	is	still	available	in
the	parent	process:

$	export	my_variable="I	am	Global	now"
$	echo	$my_variable
I	am	Global	now
$
$	bash
$	echo	$my_variable
I	am	Global	now
$	unset	my_variable
$	echo	$my_variable
	
$	exit
exit
$	echo	$my_variable
I	am	Global	now
$

Just	as	with	modifying	a	variable,	you	cannot	unset	it	in	a	child	shell	and	have	the	variable	be	unset	in	the	parent's
shell.

Uncovering	Default	Shell	Environment	Variables
The	Bash	shell	uses	specific	environment	variables	by	default	to	define	the	system	environment.	You	can	always
count	on	these	variables	being	set	or	available	to	be	set	on	your	Linux	system.	Because	the	Bash	shell	is	a	derivative
of	the	original	Unix	Bourne	shell,	it	also	includes	environment	variables	originally	defined	in	that	shell.

Table	6-1	shows	the	environment	variables	that	the	Bash	shell	provides	that	are	compatible	with	the	original	Unix
Bourne	shell.

TABLE	6-1	The	Bash	Shell	Bourne	Variables

Variable Description

CDPATH A	colon-separated	list	of	directories	used	as	a	search	path	for	the	cd	command

HOME The	current	user's	home	directory

IFS A	list	of	characters	that	separate	fields	used	by	the	shell	to	split	text	strings

MAIL The	filename	for	the	current	user's	mailbox	(the	Bash	shell	checks	this	file	for	new	mail)

MAILPATH A	colon-separated	list	of	multiple	filenames	for	the	current	user's	mailbox	(the	Bash	shell	checks	each
file	in	this	list	for	new	mail)

OPTARG The	value	of	the	last	option	argument	processed	by	the	getopt	command

OPTIND The	index	value	of	the	last	option	argument	processed	by	the	getopt	command

PATH A	colon-separated	list	of	directories	where	the	shell	looks	for	commands

PS1 The	primary	shell	command-line	interface's	prompt	string

PS2 The	secondary	shell	command-line	interface's	prompt	string

Besides	the	default	Bourne	environment	variables,	the	Bash	shell	also	provides	several	variables	of	its	own,	as	shown
in	Table	6-2.

TABLE	6-2	The	Bash	Shell	Environment	Variables

Variable Description

BASH The	full	pathname	to	execute	the	current	instance	of	the	Bash	shell

BASH_ALIASES An	associative	array	of	currently	set	aliases

BASH_ARGC A	variable	array	that	contains	the	number	of	parameters	being	passed	to	a	subroutine	or
shell	script

BASH_ARCV A	variable	array	that	contains	the	parameters	being	passed	to	a	subroutine	or	shell	script

BASH_ARCV0 A	variable	that	contains	the	name	of	either	the	shell	or,	if	used	within	a	script,	the	shell
script's	name

BASH_CMDS An	associative	array	of	locations	of	commands	the	shell	has	executed

BASH_COMMAND The	shell	command	currently	being	or	about	to	be	executed

BASH_COMPAT A	value	designating	the	shell's	compatibility	level

BASH_ENV When	set,	each	Bash	script	attempts	to	execute	a	startup	file	defined	by	this	variable	before
running.

BASH_EXECUTION_STRING The	command(s)	passed	using	the	bash	command's	-c	option

BASH_LINENO A	variable	array	containing	the	source	code	line	number	of	the	currently	executing	shell
function

BASH_LOADABLE_PATH A	colon-separated	list	of	directories	where	the	shell	looks	for	dynamically	loadable	built-
ins

BASH_REMATCH A	read-only	variable	array	containing	patterns	and	their	sub-patterns	for	positive	matches
using	the	regular	expression	comparison	operator,	=~

BASH_SOURCE A	variable	array	containing	the	source	code	filename	of	the	currently	executing	shell
function

BASH_SUBSHELL The	current	nesting	level	of	a	subshell	environment	(the	initial	value	is	0)

BASH_VERSINFO A	variable	array	that	contains	the	individual	major	and	minor	version	numbers	of	the
current	instance	of	the	Bash	shell

BASH_VERSION The	version	number	of	the	current	instance	of	the	Bash	shell

BASH_XTRACEFD If	set	to	a	valid	file	descriptor	(0,1,2),	trace	output	generated	from	the	'set	-x'	debugging
option	can	be	redirected.	This	is	often	used	to	separate	trace	output	into	a	file.

BASHOPTS A	list	of	Bash	shell	options	that	are	currently	enabled

BASHPID Process	ID	of	the	current	Bash	process

CHILD_MAX A	setting	that	controls	the	number	of	exited	child	status	values	for	the	shell	to	track

COLUMNS Contains	the	terminal	width	of	the	terminal	used	for	the	current	instance	of	the	Bash	shell

COMP_CWORD An	index	into	the	variable	COMP_WORDS	,	which	contains	the	current	cursor	position

COMP_LINE The	current	command	line

COMP_POINT The	index	of	the	current	cursor	position	relative	to	the	beginning	of	the	current	command

COMP_KEY The	final	key	used	to	invoke	the	current	completion	of	a	shell	function

COMP_TYPE An	integer	value	representing	the	type	of	completion	attempted	that	caused	a	completion
shell	function	to	be	invoked

COMP_WORDBREAKS The	Readline	library	word	separator	characters	for	performing	word	completion

COMP_WORDS An	array	variable	that	contains	the	individual	words	on	the	current	command	line

COMPREPLY An	array	variable	that	contains	the	possible	completion	codes	generated	by	a	shell	function

COPROC An	array	variable	that	holds	an	unnamed	coprocess's	I/O	file	descriptors

DIRSTACK An	array	variable	that	contains	the	current	contents	of	the	directory	stack

EMACS Indicates	the	emacs	shell	buffer	is	executing	and	line	editing	is	disabled,	when	set	to	't'

EPOCHREALTIME Contains	the	number	of	seconds	since	the	Unix	Epoch	(00:00:00	UTC	on	1	January	1970)
with	micro-seconds	included

EPOCHSECONDS Contains	the	number	of	seconds	since	the	Unix	Epoch	(00:00:00	UTC	on	1	January	1970)
without	micro-seconds

ENV When	set,	executes	the	startup	file	defined	before	a	Bash	shell	script	runs	(it	is	used	only
when	the	Bash	shell	has	been	invoked	in	POSIX	mode)

EUID The	numeric	effective	user	ID	of	the	current	user

EXECIGNORE A	colon-separated	list	of	filters	that	determine	executable	files	to	ignore	(such	as	shared
library	files),	when	employing	PATH	in	a	search

FCEDIT The	default	editor	used	by	the	fc	command

FIGNORE A	colon-separated	list	of	suffixes	to	ignore	when	performing	filename	completion

FUNCNAME The	name	of	the	currently	executing	shell	function

FUNCNEST Sets	the	maximum	allowed	function	nesting	level,	when	set	to	a	number	greater	than	0	(if
it	is	exceeded,	the	current	command	aborts)

GLOBIGNORE A	colon-separated	list	of	patterns	defining	the	set	of	filenames	to	be	ignored	by	filename
expansion

GROUPS A	variable	array	containing	the	list	of	groups	of	which	the	current	user	is	a	member

histchars Up	to	three	characters,	which	control	history	expansion

HISTCMD The	history	number	of	the	current	command

HISTCONTROL Controls	what	commands	are	entered	in	the	shell	history	list

HISTFILE The	name	of	the	file	in	which	to	save	the	shell	history	list	(.bash_history	by	default)

HISTFILESIZE The	maximum	number	of	lines	to	save	in	the	history	file

HISTIGNORE A	colon-separated	list	of	patterns	used	to	decide	which	commands	are	ignored	for	the
history	file

HISTSIZE The	maximum	number	of	commands	stored	in	the	history	file

HISTTIMEFORMAT Used	as	a	formatting	string	to	print	each	command's	time	stamp	in	Bash	history,	if	set	and
not	null

HOSTFILE Contains	the	name	of	the	file	that	should	be	read	when	the	shell	needs	to	complete	a
hostname

HOSTNAME The	name	of	the	current	host

HOSTTYPE A	string	describing	the	machine	the	Bash	shell	is	running	on

IGNOREEOF The	number	of	consecutive	EOF	characters	the	shell	must	receive	before	exiting	(if	this
value	doesn't	exist,	the	default	is	1)

INPUTRC The	name	of	the	Readline	initialization	file	(the	default	is	.inputrc)

INSIDE_EMACS Set	only	when	process	is	running	in	an	Emacs	editor	shell	buffer	and	can	disable	line
editing	(disablement	of	line	editing	also	depends	on	the	value	in	the	TERM	variable)

LANG The	locale	category	for	the	shell

LC_ALL Overrides	the	LANG	variable,	defining	a	locale	category

LC_COLLATE Sets	the	collation	order	used	when	sorting	string	values

LC_CTYPE Determines	the	interpretation	of	characters	used	in	filename	expansion	and	pattern
matching

LC_MESSAGES Determines	the	locale	setting	used	when	interpreting	double-quoted	strings	preceded	by	a
dollar	sign

LC_NUMERIC Determines	the	locale	setting	used	when	formatting	numbers

LC_TIME Determines	the	locale	setting	used	when	formatting	data	and	time

LINENO The	line	number	in	a	script	currently	executing

LINES Defines	the	number	of	lines	available	on	the	terminal

MACHTYPE A	string	defining	the	system	type	in	cpu-company-system	format

MAILCHECK How	often	(in	seconds)	the	shell	should	check	for	new	mail	(the	default	is	60)

MAPFILE An	array	variable	that	holds	read-in	text	from	the	mapfile	command	when	no	array
variable	name	is	given

OLDPWD The	previous	working	directory	used	in	the	shell

OPTERR If	set	to	1,	the	Bash	shell	displays	errors	generated	by	the	getopts	command.

OSTYPE A	string	defining	the	operating	system	the	shell	is	running	on

PIPESTATUS A	variable	array	containing	a	list	of	exit	status	values	from	the	processes	in	the	foreground
process

POSIXLY_CORRECT If	set,	Bash	starts	in	POSIX	mode.

PPID The	process	ID	(PID)	of	the	Bash	shell's	parent	process

PROMPT_COMMAND If	set,	the	command	to	execute	before	displaying	the	primary	prompt

PROMPT_DIRTRIM An	integer	used	to	indicate	the	number	of	trailing	directory	names	to	display	when	using
the	\w	and	\W	prompt	string	escapes	(the	directory	names	removed	are	replaced	with	one
set	of	ellipses)

PS0 If	set,	contents	are	displayed	by	the	interactive	shell	after	the	command	is	entered	but
before	command	is	executed.

PS3 The	prompt	to	use	for	the	select	command

PS4 The	prompt	displayed	before	the	command	line	is	echoed	if	the	Bash	-x	parameter	is	used

PWD The	current	working	directory

RANDOM Returns	a	random	number	between	0	and	32767	(assigning	a	value	to	this	variable	seeds
the	pseudo-random	number	generator)

READLINE_LINE Readline	buffer	contents	when	using	bind	-x	command

READLINE_POINT Readline	buffer	content	insertion	point's	current	position	when	using	bind	-x	command

REPLY The	default	variable	for	the	read	command

SECONDS The	number	of	seconds	since	the	shell	was	started	(assigning	a	value	resets	the	timer	to	the
value)

SHELL The	full	pathname	to	the	Bash	shell

SHELLOPTS A	colon-separated	list	of	enabled	Bash	shell	options

SHLVL Indicates	the	shell	level,	incremented	by	one	each	time	a	new	Bash	shell	is	started

TIMEFORMAT A	format	specifying	how	the	shell	displays	time	values

TMOUT The	value	of	how	long	(in	seconds)	the	select	and	read	commands	should	wait	for	input
(the	default	of	0	indicates	to	wait	indefinitely)

TMPDIR Directory	name	where	the	Bash	shell	creates	temporary	files	for	its	use

UID The	numeric	real	user	ID	of	the	current	user

You	may	notice	that	not	all	default	environment	variables	are	shown	when	the	set	command	is	used.	When	not	in
use,	a	default	environment	variable	is	not	required	to	contain	a	value.

NOTE
Whether	or	not	a	default	environment	variable	is	in	use	on	your	system	sometimes	depends	on
the	version	of	the	Bash	shell	running.	For	example,	EPOCHREALTIME	is	only	available	on	Bash	shell
version	5	and	above.	You	can	view	your	Bash	shell's	version	number	by	typing	bash	--version
and	pressing	Enter	at	the	CLI.

Setting	the	PATH	Environment	Variable
When	you	enter	an	external	command	(see	Chapter	5,	“Understanding	the	Shell”)	in	the	shell	CLI,	the	shell	must
search	the	system	to	find	the	program.	The	PATH	environment	variable	defines	the	directories	it	searches	looking	for
commands	and	programs.	On	this	Ubuntu	Linux	system,	the	PATH	environment	variable	looks	like	this:

$	echo	$PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:
/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
$

The	directories	in	the	PATH	are	separated	by	colons.	And	this	shows	that	there	are	nine	directories	where	the	shell
looks	for	commands	and	programs.

If	a	command's	or	program's	location	is	not	included	in	the	PATH	variable,	the	shell	cannot	find	it	without	an	absolute
directory	reference.	If	the	shell	cannot	find	the	command	or	program,	it	produces	an	error	message:

$	myprog
myprog:	command	not	found
$

The	problem	is	that	sometimes	applications	place	their	executable	programs	in	directories	that	aren't	in	the	PATH
environment	variable.	The	trick	is	to	ensure	your	PATH	environment	variable	includes	all	the	directories	where	your
applications	reside.

NOTE
Some	script	builders	use	the	env	command	as	the	first	line	in	a	Bash	shell	script	(covered	in
Chapter	11,	“Basic	Script	Building”)	as	in	the	following:	#!/usr/bin/env	bash	.	The	advantage	of
this	method	is	that	the	env	utility	searches	for	the	bash	shell	program	within	the	$PATH
directories,	making	the	script	more	portable	to	other	Linux	distributions.

You	can	add	new	search	directories	to	the	existing	PATH	environment	variable	without	having	to	rebuild	it	from
scratch.	The	individual	directories	listed	in	the	PATH	are	separated	by	colons.	All	you	need	to	do	is	reference	the
original	PATH	value,	add	a	colon	(:),	and	type	in	the	new	directory	using	an	absolute	directory	reference.	On	a	CentOS
Linux	system,	it	looks	something	like	this:

$	ls	/home/christine/Scripts/
myprog
$	echo	$PATH
/home/christine/.local/bin:/home/christine/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin
$
$	PATH=$PATH:/home/christine/Scripts
$
$	myprog
The	factorial	of	5	is	120
$

By	adding	the	directory	to	the	PATH	environment	variable,	you	can	now	execute	your	program	from	anywhere	in	the
virtual	directory	structure:

$	cd	/etc
$	myprog
The	factorial	of	5	is	120
$

TIP
If	you	want	your	program's	location	to	be	available	to	subshells,	be	sure	to	export	your
modified	PATH	environment	variable.

Changes	to	the	PATH	variable	last	only	until	you	exit	the	system	or	the	system	reboots.	The	changes	are	not
persistent.	In	the	next	section,	you	see	how	you	can	make	changes	to	environment	variables	permanent.

Locating	System	Environment	Variables
The	Linux	system	uses	environment	variables	for	many	purposes.	You	know	now	how	to	modify	system
environment	variables	and	create	your	own	variables.	The	trick	is	in	how	these	environment	variables	are	made
persistent.

When	you	start	a	Bash	shell	by	logging	into	the	Linux	system,	by	default	Bash	checks	several	files	for	commands.
These	files	are	called	startup	files	or	environment	files.	Which	startup	files	Bash	processes	depends	on	the	method
you	use	to	start	the	Bash	shell.	You	can	start	a	Bash	shell	in	three	ways:

As	a	default	login	shell	at	login	time

As	an	interactive	shell	that	is	started	by	spawning	a	subshell

As	a	noninteractive	shell	to	run	a	script

The	following	sections	describe	the	startup	files	the	Bash	shell	executes	in	each	of	these	startup	methods.

Understanding	the	login	shell	process
When	you	log	into	the	Linux	system,	the	Bash	shell	starts	as	a	login	shell.	The	login	shell	typically	looks	for	five
different	startup	files	to	process	commands	from:

/etc/profile

$HOME/.bash_profile

$HOME/.bashrc

$HOME/.bash_login

$HOME/.profile

The	/etc/profile	file	is	the	main	default	startup	file	for	the	Bash	shell	on	the	system.	All	users	on	the	system	execute
this	startup	file	when	they	log	in.

NOTE
Be	aware	that	some	Linux	distributions	use	pluggable	authentication	modules	(PAM).	In	this
case,	before	the	Bash	shell	is	started,	PAM	files	are	processed,	including	ones	that	may	contain
environment	variables.	PAM	file	examples	include	the	/etc/environment	file	and	the
$HOME/.pam_environment	file.	Find	more	information	about	PAM	at	www.linux-pam.org.

The	other	four	startup	files	are	specific	for	each	user,	located	in	the	home	($HOME)	directory,	and	can	be	customized
for	an	individual	user's	requirements.	Let's	look	more	closely	at	these	files.

Viewing	the	/etc/profile	file
The	/etc/profile	file	is	the	main	default	startup	file	for	the	Bash	shell.	Whenever	you	log	into	the	Linux	system,
Bash	executes	the	commands	in	the	/etc/profile	startup	file	first.	Different	Linux	distributions	place	different
commands	in	this	file.	On	this	Ubuntu	Linux	system,	the	file	looks	like	this:

$	cat	/etc/profile
#	/etc/profile:	system-wide	.profile	file	for	the	Bourne	shell	(sh(1))
#	and	Bourne	compatible	shells	(bash(1),	ksh(1),	ash(1),	...).
	
if	["${PS1-}"];	then
		if	["${BASH-}"]	&&	"$BASH"	!=	"/bin/sh"];	then
				#	The	file	bash.bashrc	already	sets	the	default	PS1.
				#	PS1='\h:\w\$	'
				if	[-f	/etc/bash.bashrc];	then
						.	/etc/bash.bashrc
				fi
		else
				if	["`id	-u`"	-eq	0];	then
						PS1='#	'
				else
						PS1='$	'
				fi
		fi
fi
	
if	[-d	/etc/profile.d];	then
		for	i	in	/etc/profile.d/*.sh;	do
				if	[-r	$i];	then
						.	$i
				fi
		done
		unset	i
fi
$

Most	of	the	commands	and	syntax	you	see	in	this	file	are	covered	in	more	detail	in	Chapter	12,	“Using	Structure
Commands,”	and	later	chapters.	Each	distribution's	/etc/profile	file	has	different	settings	and	commands.	For
example,	notice	that	a	file	is	mentioned	in	this	Ubuntu	distribution's	/etc/profile	file,	called	/etc/bash.bashrc	.	It
contains	system	environment	variables.

However,	in	this	next	CentOS	distribution's	/etc/profile	file	listed,	no	/etc/bash.bashrc	file	is	called.	Also	note	that
it	sets	and	exports	some	system	environment	variables	(HISTSIZE	;	HOSTNAME)	within	itself:

$	cat	/etc/profile
#	/etc/profile
	
#	System	wide	environment	and	startup	programs,	for	login	setup
#	Functions	and	aliases	go	in	/etc/bashrc
	
#	It's	NOT	a	good	idea	to	change	this	file	unless	you	know	what	you
#	are	doing.	It's	much	better	to	create	a	custom.sh	shell	script	in
#	/etc/profile.d/	to	make	custom	changes	to	your	environment,	as	this
#	will	prevent	the	need	for	merging	in	future	updates.
	
pathmunge	()	{
				case	":${PATH}:"	in
								:"$1":)
												;;

								*)
												if	["$2"	=	"after"]	;	then
																PATH=$PATH:$1
												else
																PATH=$1:$PATH
												fi
				esac
}
	
	
if	[-x	/usr/bin/id];	then
				if	[-z	"$EUID"];	then
								#	ksh	workaround
								EUID=`id	-u`
								UID=`id	-ru`
				fi
				USER="`id	-un`"
				LOGNAME=$USER
				MAIL="/var/spool/mail/$USER"
fi
	
#	Path	manipulation
if	["$EUID"	=	"0"];	then
				pathmunge	/usr/sbin
				pathmunge	/usr/local/sbin
else
				pathmunge	/usr/local/sbin	after
				pathmunge	/usr/sbin	after
fi
	
HOSTNAME=`/usr/bin/hostname	2>/dev/null`
HISTSIZE=1000
if	["$HISTCONTROL"	=	"ignorespace"]	;	then
				export	HISTCONTROL=ignoreboth
else
				export	HISTCONTROL=ignoredups
fi
	
export	PATH	USER	LOGNAME	MAIL	HOSTNAME	HISTSIZE	HISTCONTROL
	
#	By	default,	we	want	umask	to	get	set.	This	sets	it	for	login	shell
#	Current	threshold	for	system	reserved	uid/gids	is	200
#	You	could	check	uidgid	reservation	validity	in
#	/usr/share/doc/setup-*/uidgid	file
if	[$UID	-gt	199]	&&	"`id	-gn`"	=	"`id	-un`"];	then
				umask	002
else
				umask	022
fi
	
for	i	in	/etc/profile.d/*.sh	/etc/profile.d/sh.local	;	do
				if	[-r	"$i"];	then
								if	["${-#*i}"	!=	"$-"];	then
												.	"$i"
								else
												.	"$i">/dev/null
								fi
				fi
done
	
unset	i
unset	-f	pathmunge
	
if	[-n	"${BASH_VERSION-}"]	;	then
								if	[-f	/etc/bashrc]	;	then
																#	Bash	login	shells	run	only	/etc/profile
																#	Bash	non-login	shells	run	only	/etc/bashrc
																#	Check	for	double	sourcing	is	done	in	/etc/bashrc.
																.	/etc/bashrc
							fi
fi
$

Both	distributions'	/etc/profile	files	use	a	certain	feature.	It	is	a	for	statement	that	iterates	through	any	files
located	in	the	/etc/profile.d	directory.	(for	statements	are	discussed	in	detail	in	Chapter	13,	“More	Structured
Commands.”)	This	provides	a	place	for	the	Linux	system	to	place	application-specific	and/or	administrator-
customized	startup	files	that	are	executed	by	the	shell	when	you	log	in.	On	this	Ubuntu	Linux	system,	the	following
files	are	in	the	/etc/profile.d	directory:

$	ls	/etc/profile.d
01-locale-fix.sh		bash_completion.sh					gawk.csh		Z97-byobu.sh
apps-bin-path.sh		cedilla-portuguese.sh		gawk.sh
$

You	can	see	that	this	CentOS	system	has	quite	a	few	more	files	in	/etc/profile.d	:

$	ls	/etc/profile.d
bash_completion.sh		colorxzgrep.csh		flatpak.sh		less.csh							vim.sh
colorgrep.csh							colorxzgrep.sh			gawk.csh				less.sh								vte.sh
colorgrep.sh								colorzgrep.csh			gawk.sh					PackageKit.sh		which2.csh
colorls.csh									colorzgrep.sh				lang.csh				sh.local							which2.sh
colorls.sh										csh.local								lang.sh					vim.csh
$

Notice	that	several	files	are	related	to	specific	applications	on	the	system.	Most	applications	create	two	startup	files
—	one	for	the	Bash	shell	(using	the	.sh	extension)	and	one	for	the	C	shell	(using	the	.csh	extension).

Viewing	the	$HOME	startup	files
The	remaining	startup	files	are	all	used	for	the	same	function	—	to	provide	a	user-specific	startup	file	for	defining
user-specific	environment	variables.	Most	Linux	distributions	use	only	one	or	two	of	these	four	startup	files:

$HOME/.bash_profile

$HOME/.bashrc

$HOME/.bash_login

$HOME/.profile

Notice	that	all	four	files	start	with	a	dot,	making	them	hidden	files	(they	don't	appear	in	a	normal	ls	command
listing).	Because	they	are	in	the	user's	$HOME	directory,	each	user	can	edit	the	files	and	add	their	own	environment
variables	that	are	active	for	every	Bash	shell	session	they	start.

NOTE
Environment	files	are	one	area	where	Linux	distributions	vary	greatly.	Not	every	$HOME	file
listed	in	this	section	exists	for	every	user.	For	example,	some	users	may	have	only	the
$HOME/.bash_profile	file.	This	is	normal.

The	first	file	found	in	the	following	ordered	list	is	run,	and	the	rest	are	ignored:

$HOME/.bash_profile
$HOME/.bash_login
$HOME/.profile

Notice	that	$HOME/.bashrc	is	not	in	this	list.	This	is	because	it	is	typically	run	from	one	of	the	other	files.

TIP
Remember	that	$HOME	represents	a	user's	home	directory.	Also,	the	tilde	(~)	is	used	to	represent
a	user's	home	directory.

This	CentOS	Linux	system	contains	the	following	in	the	.bash_profile	file:

$	cat	$HOME/.bash_profile
#	.bash_profile
	
#	Get	the	aliases	and	functions
if	[-f	~/.bashrc];	then
								.	~/.bashrc
fi
	
#	User	specific	environment	and	startup	programs
$

The	.bash_profile	startup	file	first	checks	to	see	if	the	startup	file,	.bashrc	,	is	present	in	the	$	HOME	directory.	If	it's
there,	the	startup	file	executes	the	commands	in	it.

Understanding	the	interactive	shell	process
If	you	start	a	Bash	shell	without	logging	into	a	system	(if	you	just	type	bash	at	a	CLI	prompt,	for	example),	you	start
what's	called	an	interactive	shell.	The	interactive	shell,	like	the	login	shell,	provides	a	CLI	prompt	for	you	to	enter
commands.

If	Bash	is	started	as	an	interactive	shell,	it	doesn't	process	the	/etc/profile	file.	Instead,	it	checks	only	for	the
.bashrc	file	in	the	user's	$	HOME	directory.

On	this	Linux	CentOS	distribution,	the	file	looks	like	this:

$	cat	$HOME/.bashrc
#	.bashrc
	
#	Source	global	definitions
if	[-f	/etc/bashrc];	then

								.	/etc/bashrc
fi
	
#	User	specific	environment
PATH="$HOME/.local/bin:$HOME/bin:$PATH"
export	PATH
#	Uncomment	the	following	line	if	you	don't	like	systemctl's	auto-paging	feature:
#	export	SYSTEMD_PAGER=
	
#	User	specific	aliases	and	functions
$

The	.bashrc	file	does	two	things.	First,	it	checks	for	a	common	bashrc	file	in	the	/etc	directory.	Second,	it	provides	a
place	for	the	user	to	enter	personal	command	aliases	(discussed	in	Chapter	5)	and	script	functions	(described	in
Chapter	17).

Understanding	the	noninteractive	shell	process
The	last	type	of	shell	is	a	noninteractive	subshell.	This	is	the	shell	where	the	system	can	start	to	execute	a	shell
script.	This	is	different	in	that	there	isn't	a	CLI	prompt	to	worry	about.	However,	you	may	want	to	run	specific
startup	commands	each	time	you	start	a	script	on	your	system.

TIP
Scripts	can	be	executed	in	different	ways.	Only	some	execution	methods	start	a	subshell.	You'll
learn	about	the	different	shell	execution	methods	in	Chapter	11.

To	accommodate	that	situation,	the	Bash	shell	provides	the	BASH_ENV	environment	variable.	When	the	shell	starts	a
noninteractive	subshell	process,	it	checks	this	environment	variable	for	the	startup	file	name	to	execute.	If	one	is
present,	the	shell	executes	the	file's	commands,	which	typically	include	variables	set	for	the	shell	scripts.

On	this	CentOS	Linux	distribution,	this	environment	value	is	not	set	by	default.	When	a	variable	is	not	set,	the
printenv	command	simply	returns	the	CLI	prompt:

$	printenv	BASH_ENV
$

On	this	Ubuntu	distribution,	the	BASH_ENV	variable	isn't	set	either.	Remember	that,	when	a	variable	is	not	set,	the
echo	command	displays	a	blank	line	and	returns	the	CLI	prompt:

$	echo	$BASH_ENV
	
$

So	if	the	BASH_ENV	variable	isn't	set,	how	do	the	shell	scripts	get	their	environment	variables?	Remember	that	some
shell	script	execution	methods	start	a	subshell,	also	called	a	child	shell	(see	Chapter	5).	A	child	shell	inherits	its
parent	shell's	exported	variables.

For	example,	if	the	parent	shell	was	a	login	shell	and	had	variables	set	and	exported	in	the	/etc/profile	file,
/etc/profile.d/*.sh	files,	and	the	$HOME/.bashrc	file,	the	child	shell	for	the	script	inherits	these	exported	variables.

TIP
Any	variables	set,	but	not	exported,	by	the	parent	shell	are	local	variables.	Local	variables	are
not	inherited	by	a	subshell.

For	scripts	that	do	not	start	a	subshell,	the	variables	are	already	available	in	the	current	shell.	Thus,	even	if	BASH_ENV
is	not	set,	both	the	current	shell's	local	and	global	variables	are	present	to	be	used.

Making	environment	variables	persistent
Now	that	you	know	your	way	around	the	various	shell	process	types	and	their	various	environment	files,	locating	the
permanent	environment	variables	is	much	easier.	You	can	also	set	your	own	permanent	global	or	local	variables
using	these	files.

For	global	environment	variables	(those	variables	needed	by	all	the	users	on	a	Linux	system),	it	may	be	tempting	to
put	new	or	modified	variable	settings	in	/etc/profile	,	but	this	is	a	bad	idea.	The	file	could	be	changed	when	your
distribution	is	upgraded,	and	you	would	lose	all	the	customized	variable	settings.

It	is	a	better	idea	to	create	a	file	ending	with	.sh	in	the	/etc/profile.d/	directory.	In	that	file,	place	all	your	new	or
modified	global	environment	variable	settings.

On	most	distributions,	the	best	place	to	store	an	individual	user's	persistent	Bash	shell	variables	is	in	the
$HOME/.bashrc	file.	This	is	true	for	all	shell	process	types.	However,	if	the	BASH_ENV	variable	is	set,	keep	in	mind	that
unless	it	points	to	$HOME/.bashrc	,	you	may	need	to	store	a	user's	variables	for	noninteractive	shell	types	elsewhere.

NOTE
User	environment	variables	for	graphical	interface	elements,	such	as	the	GUI	client,	may	need
to	be	set	in	different	configuration	files	than	where	Bash	shell	environment	variables	are	set.

Recall	from	Chapter	5	that	the	command	alias	settings	are	also	not	persistent.	You	can	also	store	your	personal
alias	settings	in	the	$HOME/.bashrc	startup	file	to	make	them	permanent.

Learning	about	Variable	Arrays
A	really	cool	feature	of	environment	variables	is	that	they	can	be	used	as	arrays.	An	array	is	a	variable	that	can	hold
multiple	values.	Values	can	be	referenced	either	individually	or	as	a	whole	for	the	entire	array.

To	set	multiple	values	for	an	environment	variable,	just	list	them	in	parentheses,	with	values	separated	by	spaces:

$	mytest=(zero	one	two	three	four)
$

Not	much	excitement	there.	If	you	try	to	display	the	array	as	a	normal	environment	variable,	you'll	be	disappointed:

$	echo	$mytest
zero
$

Only	the	first	value	in	the	array	appears.	To	reference	an	individual	array	element,	you	must	use	a	numerical	index
value,	which	represents	its	place	in	the	array.	The	numeric	value	is	enclosed	in	square	brackets,	and	everything	after
the	dollar	sign	is	encased	by	curly	brackets:

$	echo	${mytest[2]}
two
$

TIP
Environment	variable	arrays	start	with	an	index	value	of	0.	This	can	be	confusing.

To	display	an	entire	array	variable,	you	use	the	asterisk	wildcard	character	as	the	index	value:

$	echo	${mytest[*]}
zero	one	two	three	four
$

You	can	also	change	the	value	of	an	individual	index	position:

$	mytest[2]=seven
$	echo	${mytest[2]}
seven
$

You	can	even	use	the	unset	command	to	remove	an	individual	value	within	the	array,	but	be	careful,	because	this
gets	tricky.	Consider	this	example:

$	unset	mytest[2]
$	echo	${mytest[*]}
zero	one	three	four
$
$	echo	${mytest[2]}
	
$	echo	${mytest[3]}
three
$

This	example	uses	the	unset	command	to	remove	the	value	at	index	value	2.	When	you	display	the	array,	it	appears
that	the	other	index	values	just	dropped	down	one.	However,	if	you	specifically	display	the	data	at	index	value	2,	you
see	that	that	location	is	empty.

You	can	remove	the	entire	array	just	by	using	the	array	name	in	the	unset	command:

$	unset	mytest
$	echo	${mytest[*]}
	
$

Sometimes	variable	arrays	just	complicate	matters,	so	they're	often	not	used	in	shell	script	programming.	They're
not	very	portable	to	other	shell	environments,	which	is	a	downside	if	you	do	lots	of	shell	programming	for	different
shells.	Some	Bash	system	environment	variables	use	arrays	(such	as	BASH_VERSINFO),	but	overall	you	probably	won't
run	into	them	very	often.

Summary
This	chapter	examined	the	world	of	Linux	environment	variables.	Global	environment	variables	can	be	accessed
from	any	child	shell	spawned	by	the	parent	shell	in	which	they're	defined.	Local	environment	variables	can	be
accessed	only	from	the	process	in	which	they're	defined.

The	Linux	system	uses	both	global	and	local	environment	variables	to	store	information	about	the	system
environment.	You	can	access	this	information	from	the	shell	command-line	interface,	as	well	as	within	shell	scripts.
The	Bash	shell	uses	the	system	environment	variables	defined	in	the	original	Unix	Bourne	shell,	as	well	as	lots	of
new	environment	variables.	The	PATH	environment	variable	defines	the	search	pattern	the	Bash	shell	takes	to	find	an
executable	command.	You	can	modify	the	PATH	environment	variable	to	add	your	own	directories.

You	can	also	create	global	and	local	environment	variables	for	your	own	use.	After	you	create	an	environment
variable,	it's	accessible	for	the	entire	duration	of	your	shell	session.

The	Bash	shell	executes	several	startup	files	when	it	starts	up.	These	startup	files	can	contain	environment	variable
definitions	to	set	standard	environment	variables	for	each	Bash	session.	When	you	log	into	the	Linux	system,	the
Bash	shell	accesses	the	/etc/profile	startup	file	and	local	startup	files	for	each	user.	Users	can	customize	these	files
to	include	environment	variables	and	startup	scripts	for	their	own	use.

Finally,	we	discussed	the	use	of	environment	variable	arrays.	These	environment	variables	can	contain	multiple
values	in	a	single	variable.	You	can	access	the	values	either	individually	by	referencing	an	index	value	or	as	a	whole
by	referencing	the	entire	environment	variable	array	name.

The	next	chapter	dives	into	the	world	of	Linux	file	permissions.	This	is	possibly	the	most	difficult	topic	for	novice
Linux	users.	However,	to	write	good	shell	scripts,	you	need	to	understand	how	file	permissions	work	and	be	able	to
use	them	on	your	Linux	system.

CHAPTER	7
Understanding	Linux	File	Permissions
IN	THIS	CHAPTER

Understanding	Linux	security

Decoding	the	permissions

Working	with	Linux	groups

No	system	is	complete	without	some	form	of	security.	A	mechanism	must	be	available	to	protect	files	from
unauthorized	viewing	or	modification.	The	Linux	system	follows	the	Unix	method	of	file	permissions,	allowing
individual	users	and	groups	access	to	files	based	on	a	set	of	security	settings	for	each	file	and	directory.	This	chapter
discusses	how	to	use	the	Linux	file	security	system	to	protect	data	when	necessary	and	share	data	when	desired.

Exploring	Linux	Security
The	core	of	the	Linux	security	system	is	the	user	account.	Each	individual	who	accesses	a	Linux	system	should	have
a	unique	user	account	assigned.	What	permissions	users	have	to	objects	on	the	system	depends	on	the	user	account
they	log	in	with.

User	permissions	are	tracked	using	a	user	ID	(often	called	a	UID),	which	is	assigned	to	an	account	when	it's	created.
The	UID	is	a	numerical	value,	unique	for	each	user.	However,	you	don't	log	into	a	Linux	system	using	your	UID.
Instead,	you	use	a	login	name.	The	login	name	is	an	alphanumeric	text	string	of	eight	characters	or	fewer	that	the
user	uses	to	log	into	the	system	(along	with	an	associated	password).

The	Linux	system	uses	special	files	and	utilities	to	track	and	manage	user	accounts	on	the	system.	Before	we	can
discuss	file	permissions,	we	need	to	examine	how	Linux	handles	user	accounts.	This	section	describes	the	files	and
utilities	required	for	user	accounts	so	that	you	can	understand	how	to	use	them	when	working	with	file	permissions.

The	/etc/passwd	file
The	Linux	system	uses	a	special	file	to	match	the	login	name	to	a	corresponding	UID	value.	This	file	is	the
/etc/passwd	file.	The	/etc/passwd	file	contains	several	pieces	of	information	about	the	user.	Here's	what	a	typical
/etc/passwd	file	looks	like	on	a	Linux	system:

	$	cat	/etc/passwd
	root:x:0:0:root:/root:/bin/bash
	bin:x:1:1:bin:/bin:/sbin/nologin
	daemon:x:2:2:daemon:/sbin:/sbin/nologin
	adm:x:3:4:adm:/var/adm:/sbin/nologin
	lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
	sync:x:5:0:sync:/sbin:/bin/sync
	shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
	halt:x:7:0:halt:/sbin:/sbin/halt
	...
	rich:x:500:500:Rich	Blum:/home/rich:/bin/bash
	mama:x:501:501:Mama:/home/mama:/bin/bash
	katie:x:502:502:katie:/home/katie:/bin/bash
	jessica:x:503:503:Jessica:/home/jessica:/bin/bash
	mysql:x:27:27:MySQL	Server:/var/lib/mysql:/bin/bash
	$

The	list	can	be	very	long,	so	we've	truncated	the	file	from	our	system.	The	root	user	account	is	the	administrator	for
the	Linux	system	and	is	always	assigned	UID	0.	As	you	can	see,	the	Linux	system	creates	lots	of	user	accounts	for
various	functions	that	aren't	actual	users.	These	are	called	system	accounts.	A	system	account	is	a	special	account
that	services	running	on	the	system	use	to	gain	access	to	resources	on	the	system.	All	services	that	run	in
background	mode	need	to	be	logged	into	the	Linux	system	under	a	system	user	account.

Before	security	became	a	big	issue,	these	services	often	just	logged	in	using	the	root	user	account.	Unfortunately,	if
an	unauthorized	person	broke	into	one	of	these	services,	they	instantly	gained	access	to	the	system	as	the	root	user.
To	prevent	this,	now	just	about	every	service	that	runs	in	the	background	on	a	Linux	server	has	its	own	user	account
to	log	in	with.	This	way,	if	a	troublemaker	does	compromise	a	service,	they	still	can't	necessarily	get	access	to	the
whole	system.

Linux	reserves	UIDs	below	500	for	system	accounts.	Some	services	even	require	specific	UIDs	to	work	properly.
When	you	create	accounts	for	normal	users,	most	Linux	systems	assign	the	first	available	UID	starting	at	500
(although	this	is	not	necessarily	true	for	all	Linux	distributions,	such	as	Ubuntu,	which	starts	at	1000).

You	probably	noticed	that	the	/etc/passwd	file	contains	lots	more	than	just	the	login	name	and	UID	for	the	user.	The
fields	of	the	/etc/passwd	file	contain	the	following	information:

The	login	username

The	password	for	the	user

The	numerical	UID	of	the	user	account

The	numerical	group	ID	(GID)	of	the	user's	primary	group

A	text	description	of	the	user	account	(called	the	comment	field)

The	location	of	the	$HOME	directory	for	the	user

The	default	shell	for	the	user

The	password	field	in	the	/etc/passwd	file	is	set	to	an	x.	This	doesn't	mean	that	all	the	user	accounts	have	the	same
password.	In	the	old	days	of	Linux,	the	/etc/passwd	file	contained	an	encrypted	version	of	the	user's	password.
However,	since	lots	of	programs	need	to	access	the	/etc/passwd	file	for	user	information,	this	became	somewhat	of	a
security	problem.	With	the	advent	of	software	that	could	easily	decrypt	encrypted	passwords,	the	bad	folks	had	a
field	day	trying	to	break	user	passwords	stored	in	the	/etc/passwd	file.	Linux	developers	needed	to	rethink	that
policy.

Now,	most	Linux	systems	hold	user	passwords	in	a	separate	file	(called	the	shadow	file,	located	at	/etc/shadow).
Only	special	programs	(such	as	the	login	program)	are	allowed	access	to	this	file.

As	you	can	see,	the	/etc/passwd	file	is	a	standard	text	file.	You	can	use	any	text	editor	to	manually	perform	user
management	functions	(such	as	adding,	modifying,	or	removing	user	accounts)	directly	in	the	/etc/passwd	file.
However,	this	is	an	extremely	dangerous	practice.	If	the	/etc/passwd	file	becomes	corrupted,	the	system	won't	be
able	to	read	it,	and	it	will	prevent	anyone	(even	the	root	user)	from	logging	in.	Instead,	it's	safer	to	use	the	standard
Linux	user	management	utilities	to	perform	all	user	management	functions.

The	/etc/shadow	file
The	/etc/shadow	file	provides	more	control	over	how	the	Linux	system	manages	passwords.	Only	the	root	user	has
access	to	the	/etc/shadow	file,	making	it	more	secure	than	the	/etc/passwd	file.

The	/etc/shadow	file	contains	one	record	for	each	user	account	on	the	system.	A	record	looks	like	this:

	rich:1.FfcK0ns$f1UgiyHQ25wrB/hykCn020:11627:0:99999:7:::

Each	/etc/shadow	file	record	includes	nine	fields:

The	login	name	corresponding	to	the	login	name	in	the	/etc/passwd	file

The	encrypted	password

The	day	the	password	was	last	changed,	depicted	as	the	number	of	days	since	January	1,	1970

The	minimum	number	of	days	before	the	password	can	be	changed

The	number	of	days	before	the	password	must	be	changed

The	number	of	days	before	password	expiration	that	the	user	is	warned	to	change	the	password

The	number	of	days	after	a	password	expires	before	the	account	will	be	disabled

The	date	(stored	as	the	number	of	days	since	January	1,	1970)	since	the	user	account	was	disabled

A	field	reserved	for	future	use

Using	the	shadow	password	system,	the	Linux	system	has	much	finer	control	over	user	passwords.	It	can	control
how	often	a	user	must	change	their	password	and	when	to	disable	the	account	if	the	password	hasn't	been	changed.

Adding	a	new	user
The	primary	tool	used	to	add	new	users	to	your	Linux	system	is	useradd	.	This	command	provides	an	easy	way	to
create	a	new	user	account	and	set	up	the	user's	$HOME	directory	structure	all	at	once.	The	useradd	command	uses	a
combination	of	system	default	values	and	command-line	parameters	to	define	a	user	account.	To	see	the	system
default	values	used	on	your	Linux	distribution,	enter	the	useradd	command	with	the	-D	parameter:

	#	useradd	-D
	GROUP=100
	HOME=/home
	INACTIVE=-1
	EXPIRE=
	SHELL=/bin/bash
	SKEL=/etc/skel
	CREATE_MAIL_SPOOL=yes
	#

NOTE
The	default	values	for	the	useradd	command	are	set	using	the	/etc/default/useradd	file.	Also,
further	security	settings	are	defined	in	the	/etc/login.defs	file.	You	can	tweak	these	files	to
change	the	default	security	behavior	on	your	Linux	system.

The	-D	parameter	shows	what	defaults	the	useradd	command	uses	if	you	don't	specify	them	in	the	command	line

when	creating	a	new	user	account.	This	example	shows	the	following	default	values:

The	new	user	will	be	added	to	a	common	group	with	group	ID	100.

The	new	user	will	have	a	HOME	account	created	in	the	directory	/home/	loginname.

The	account	will	not	be	disabled	when	the	password	expires.

The	new	account	will	not	be	set	to	expire	at	a	set	date.

The	new	account	will	use	the	bash	shell	as	the	default	shell.

The	system	will	copy	the	contents	of	the	/etc/skel	directory	to	the	user's	$HOME	directory.

The	system	will	create	a	file	in	the	mail	directory	for	the	user	account	to	receive	mail.

The	useradd	command	allows	an	administrator	to	create	a	default	$HOME	directory	configuration	and	then	uses	that
as	a	template	to	create	the	new	user's	$HOME	directory.	This	allows	you	to	place	default	files	for	the	system	in	every
new	user's	$HOME	directory	automatically.	In	the	Ubuntu	Linux	system,	the	/etc/skel	directory	has	the	following
files:

$	ls	-al	/etc/skel
total	32
drwxr-xr-x			2	root	root		4096	2010-04-29	08:26	.
drwxr-xr-x	135	root	root	12288	2010-09-23	18:49	..
-rw-r--r--			1	root	root			220	2010-04-18	21:51	.bash_logout
-rw-r--r--			1	root	root		3103	2010-04-18	21:51	.bashrc
-rw-r--r--			1	root	root			179	2010-03-26	08:31	examples.desktop
-rw-r--r--			1	root	root			675	2010-04-18	21:51	.profile
$

You	should	recognize	these	files	from	Chapter	6,	“Using	Linux	Environment	Variables.”	These	are	the	standard
startup	files	for	the	Bash	shell	environment.	The	system	automatically	copies	these	default	files	into	every	user's
$HOME	directory	you	create.

You	can	test	this	by	creating	a	new	user	account	using	the	default	system	parameters	and	then	looking	at	the	$HOME
directory	for	the	new	user:

#	useradd	-m	test
#	ls	-al	/home/test
total	24
drwxr-xr-x	2	test	test	4096	2010-09-23	19:01	.
drwxr-xr-x	4	root	root	4096	2010-09-23	19:01	..
-rw-r--r--	1	test	test		220	2010-04-18	21:51	.bash_logout
-rw-r--r--	1	test	test	3103	2010-04-18	21:51	.bashrc
-rw-r--r--	1	test	test		179	2010-03-26	08:31	examples.desktop
-rw-r--r--	1	test	test		675	2010-04-18	21:51	.profile
#

For	many	Linux	distributions	the	useradd	command	doesn't	create	a	$HOME	directory	by	default,	but	the	–m
command-line	option	tells	it	to	create	the	$HOME	directory.	You	can	change	that	behavior	within	the	/etc/login.defs
file.	As	you	can	see	in	the	example,	the	useradd	command	created	the	new	$HOME	directory,	using	the	files	contained
in	the	/etc/skel	directory.

NOTE
To	run	the	user	account	administration	commands	in	this	chapter,	you	need	to	either	be	logged
in	as	the	special	root	user	account	or	use	the	sudo	command	to	run	the	commands	as	the	root
user	account.

If	you	want	to	override	a	default	value	or	behavior	when	creating	a	new	user,	you	can	do	that	with	command-line
parameters.	These	are	shown	in	Table	7-1.

TABLE	7-1	The	useradd	Command-Line	Parameters

Parameter Description

-c	comment Add	text	to	the	new	user's	comment	field.

-d	home_dir Specify	a	different	name	for	the	home	directory	other	than	the	login	name.

-e
expire_date

Specify	a	date,	in	YYYY-MM-DD	format,	when	the	account	will	expire.

-f
inactive_days

Specify	the	number	of	days	after	a	password	expires	when	the	account	will	be	disabled.	A	value	of	0
disables	the	account	as	soon	as	the	password	expires;	a	value	of	-1	disables	this	feature.

-g
initial_group

Specify	the	group	name	or	GID	of	the	user's	login	group.

-G	group	.	.
.

Specify	one	or	more	supplementary	groups	the	user	belongs	to.

-k Copy	the	/etc/skel	directory	contents	into	the	user's	$HOME	directory	(must	use	-m	as	well).

-m Create	the	user's	$HOME	directory.

-M Don't	create	a	user's	$HOME	directory	(used	if	the	default	setting	is	to	create	one).

-n Create	a	new	group	using	the	same	name	as	the	user's	login	name.

-r Create	a	system	account.

-p	passwd Specify	a	default	password	for	the	user	account.

-s	shell Specify	the	default	login	shell.

-u	uid Specify	a	unique	UID	for	the	account.

As	you	can	see,	you	can	override	all	the	system	default	values	when	creating	a	new	user	account	just	by	using
command-line	parameters.	However,	if	you	find	yourself	having	to	override	a	value	all	the	time,	it's	easier	to	just
change	the	system	default	value.

You	can	change	the	system	default	new	user	values	by	using	the	-D	parameter,	along	with	a	parameter	representing
the	value	you	need	to	change.	These	parameters	are	shown	in	Table	7-2.

TABLE	7-2	The	useradd	Change	Default	Values	Parameters

Parameter Description

-b	default_home Change	the	location	where	users'	home	directories	are	created.

-e	expiration_date Change	the	expiration	date	on	new	accounts.

-f	inactive Change	the	number	of	days	after	a	password	has	expired	before	the	account	is	disabled.

-g	group Change	the	default	group	name	or	GID	used.

-s	shell Change	the	default	login	shell.

Changing	the	default	values	is	a	snap:

	#	useradd	-D	-s	/bin/tsch
	#	useradd	-D
	GROUP=100
	HOME=/home
	INACTIVE=-1
	EXPIRE=
	SHELL=/bin/tsch
	SKEL=/etc/skel
	CREATE_MAIL_SPOOL=yes
	#

Now,	the	useradd	command	will	use	the	tsch	shell	as	the	default	login	shell	for	all	new	user	accounts	you	create.

Removing	a	user
If	you	want	to	remove	a	user	from	the	system,	the	userdel	command	is	what	you	need.	By	default,	the	userdel
command	removes	only	the	user	information	from	the	/etc/passwd	and	/etc/shadow	files.	It	doesn't	remove	any	files
the	account	owns	on	the	system.

If	you	use	the	-r	parameter,	userdel	will	remove	the	user's	$HOME	directory,	along	with	the	user's	mail	directory.
However,	there	may	still	be	other	files	owned	by	the	deleted	user	account	on	the	system.	This	can	be	a	problem	in
some	environments.

Here's	an	example	of	using	the	userdel	command	to	remove	an	existing	user	account:

	#	userdel	-r	test
	#	ls	-al	/home/test
	ls:	cannot	access	/home/test:	No	such	file	or	directory
	#

After	using	the	-r	parameter,	the	user's	old	/home/test	directory	no	longer	exists.

CAUTION
Be	careful	when	using	the	-r	parameter	in	an	environment	with	lots	of	users.	You	never	know
if	a	user	had	important	files	stored	in	their	$HOME	directory	that	are	used	by	someone	else	or
another	program.	Always	check	before	removing	a	user's	$HOME	directory!

Modifying	a	user
Linux	provides	a	few	utilities	for	modifying	the	information	for	existing	user	accounts.	Table	7-3	shows	these
utilities.

TABLE	7-3	User	Account	Modification	Utilities

Command Description

usermod Edits	user	account	fields,	and	specifies	primary	and	secondary	group	membership

passwd Changes	the	password	for	an	existing	user

chpasswd Reads	a	file	of	login	name	and	password	pairs,	and	updates	the	passwords

chage Changes	the	password's	expiration	date

chfn Changes	the	user	account's	comment	information

chsh Changes	the	user	account's	default	shell

Each	utility	provides	a	specific	function	for	changing	information	about	user	accounts.	The	following	sections
describe	each	of	these	utilities.

usermod
The	usermod	command	is	the	most	robust	of	the	user	account	modification	utilities.	It	provides	options	for	changing
most	of	the	fields	in	the	/etc/passwd	file.	To	do	that,	you	just	need	to	use	the	command-line	parameter	that
corresponds	to	the	value	you	want	to	change.	The	parameters	are	mostly	the	same	as	the	useradd	parameters	(such
as	-c	to	change	the	comment	field,	-e	to	change	the	expiration	date,	and	-g	to	change	the	default	login	group).
However,	a	few	additional	parameters	might	come	in	handy:

-l	to	change	the	login	name	of	the	user	account

-L	to	lock	the	account	so	the	user	can't	log	in

-p	to	change	the	password	for	the	account

-U	to	unlock	the	account	so	that	the	user	can	log	in

The	-L	parameter	is	especially	handy.	Use	it	to	lock	an	account	so	that	a	user	can't	log	in	without	having	to	remove
the	account	and	the	user's	data.	To	return	the	account	to	normal,	just	use	the	-U	parameter.

passwd	and	chpasswd
A	quick	way	to	change	just	the	password	for	a	user	is	the	passwd	command:

	#	passwd	test
	Changing	password	for	user	test.
	New	UNIX	password:
	Retype	new	UNIX	password:
	passwd:	all	authentication	tokens	updated	successfully.
	#

If	you	just	use	the	passwd	command	by	itself,	it	will	change	your	own	password.	Any	user	in	the	system	can	change
their	own	password,	but	only	the	root	user	can	change	someone	else's	password.

The	-e	option	is	a	handy	way	to	force	a	user	to	change	the	password	on	the	next	login.	This	allows	you	to	set	the
user's	password	to	a	simple	value	and	then	force	them	to	change	it	to	something	harder	that	they	can	remember.

If	you	ever	need	to	do	a	mass	password	change	for	lots	of	users	on	the	system,	the	chpasswd	command	can	be	a
lifesaver.	The	chpasswd	command	reads	a	list	of	login	name	and	password	pairs	(colon-separated)	from	the	standard
input,	automatically	encrypts	the	password,	and	sets	it	for	the	user	account.	You	can	also	use	the	redirection
command	to	redirect	a	file	of	username:password	pairs	into	the	command:

#	chpasswd	<	users.txt
#

chsh,	chfn,	and	chage
The	chsh	,	chfn	,	and	chage	utilities	are	used	for	specific	account	modification	functions.	The	chsh	command	allows
you	to	quickly	change	the	default	login	shell	for	a	user.	You	must	use	the	full	pathname	for	the	shell	and	not	just	the
shell	name:

	#		chsh	-s	/bin/csh	test
	Changing	shell	for	test.
	Shell	changed.
	#

The	chfn	command	provides	a	standard	method	for	storing	information	in	the	comments	field	in	the	/etc/passwd
file.	Instead	of	just	inserting	random	text,	such	as	names	or	nicknames,	or	even	just	leaving	the	comment	field
blank,	the	chfn	command	uses	specific	information	used	in	the	Unix	finger	command	to	store	information	in	the
comment	field.	The	finger	command	allows	you	to	easily	find	information	about	people	on	your	Linux	system:

	#	finger	rich
	Login:	rich																													Name:	Rich	Blum
	Directory:	/home/rich																			Shell:	/bin/bash
	On	since	Thu	Sep	20	18:03	(EDT)	on	pts/0	from	192.168.1.2
	No	mail.
	No	Plan.
	#

NOTE
Because	of	security	concerns,	most	Linux	distributions	don't	install	the	finger	command	by
default.	Be	aware	that	installing	it	may	open	your	system	to	attack	vulnerabilities.

If	you	use	the	chfn	command	with	no	parameters,	it	queries	you	for	the	appropriate	values	to	enter	in	the	comment
field:

	#	chfn	test
	Changing	finger	information	for	test.
	Name	[]:	Ima	Test
	Office	[]:	Director	of	Technology
	Office	Phone	[]:	(123)555-1234
	Home	Phone	[]:	(123)555-9876
	
	Finger	information	changed.
	#	finger	test
	Login:	test																													Name:	Ima	Test
	Directory:	/home/test																			Shell:	/bin/csh
	Office:	Director	of	Technology										Office	Phone:	(123)555-1234
	Home	Phone:	(123)555-9876
	Never	logged	in.
	No	mail.
	No	Plan.
	#

If	you	now	check	the	entry	in	the	/etc/passwd	file,	it	looks	like	this:

	#	grep	test	/etc/passwd
	test:x:504:504:Ima	Test,Director	of	Technology,(123)555-
	1234,(123)555-9876:/home/test:/bin/csh
	#

All	of	the	finger	information	is	neatly	stored	away	in	the	/etc/passwd	file	entry.

Finally,	the	chage	command	helps	you	manage	the	password	aging	process	for	user	accounts.	There	are	several
parameters	to	set	individual	values,	as	shown	in	Table	7-4.

TABLE	7-4	The	chage	Command	Parameters

Parameter Description

-d Set	the	number	of	days	since	the	password	was	last	changed.

-E Set	the	date	the	password	will	expire.

-I Set	the	number	of	days	of	inactivity	after	the	password	expires	to	lock	the	account.

-m Set	the	minimum	number	of	days	between	password	changes.

-M Set	the	maximum	number	of	days	the	password	is	valid.

-W Set	the	number	of	days	before	the	password	expires	that	a	warning	message	appears.

The	chage	date	values	can	be	expressed	using	one	of	two	methods:

A	date	in	YYYY-MM-DD	format

A	numerical	value	representing	the	number	of	days	since	January	1,	1970

One	neat	feature	of	the	chage	command	is	that	it	allows	you	to	set	an	expiration	date	for	an	account.	Using	this
feature,	you	can	create	temporary	user	accounts	that	automatically	expire	on	a	set	date,	without	your	having	to
remember	to	delete	them!	Expired	accounts	are	similar	to	locked	accounts.	The	account	still	exists,	but	the	user	can't
log	in	with	it.

Using	Linux	Groups

User	accounts	are	great	for	controlling	security	for	individual	users,	but	they	aren't	so	good	at	allowing	groups	of
users	to	share	resources.	To	accomplish	this,	the	Linux	system	uses	another	security	concept,	called	groups.

Group	permissions	allow	multiple	users	to	share	a	common	set	of	permissions	for	an	object	on	the	system,	such	as	a
file,	directory,	or	device	(more	on	that	later	in	the	“Decoding	File	Permissions”	section).

Linux	distributions	differ	somewhat	on	how	they	handle	default	group	memberships.	Some	Linux	distributions
create	just	one	group	that	contains	all	the	user	accounts	as	members.	You	need	to	be	careful	if	your	Linux
distribution	does	this,	because	your	files	may	be	readable	by	all	other	users	on	the	system.	Other	distributions	create
a	separate	user	account	for	each	user	to	provide	a	little	more	security.

Each	group	has	a	unique	GID,	which,	like	UIDs,	is	a	unique	numerical	value	on	the	system.	Along	with	the	GID,	each
group	has	a	unique	group	name.	There	are	a	few	group	utilities	you	can	use	to	create	and	manage	your	own	groups
on	the	Linux	system.	This	section	discusses	how	group	information	is	stored	and	how	to	use	the	group	utilities	to
create	new	groups	and	modify	existing	groups.

The	/etc/group	file
Just	like	user	accounts,	group	information	is	stored	in	a	file	on	the	system.	The	/etc/group	file	contains	information
about	each	group	used	on	the	system.	Here	are	a	few	examples	from	a	typical	/etc/group	file	on	a	Linux	system:

	root:x:0:root
	bin:x:1:root,bin,daemon
	daemon:x:2:root,bin,daemon
	sys:x:3:root,bin,adm
	adm:x:4:root,adm,daemon
	rich:x:500:
	mama:x:501:
	katie:x:502:
	jessica:x:503:
	mysql:x:27:
	test:x:504:

Like	UIDs,	GIDs	are	assigned	using	a	special	format.	Groups	used	for	system	accounts	are	assigned	GIDs	below	500,
and	user	groups	are	assigned	GIDs	starting	at	500.	The	/etc/group	file	uses	four	fields:

The	group	name

The	group	password

The	GID

The	list	of	user	accounts	that	belong	to	the	group

The	group	password	allows	a	non-group	member	to	temporarily	become	a	member	of	the	group	by	using	the
password.	This	feature	is	not	used	all	that	commonly,	but	it	does	exist.

Since	the	/etc/group	file	is	a	standard	text	file,	you	can	manually	edit	the	file	to	add	and	modify	group	memberships.
However,	be	careful	that	you	don't	make	any	typos	or	you	could	corrupt	the	file	and	cause	problems	for	your	system.
Instead,	it's	safer	to	use	the	usermod	command	(discussed	earlier	in	the	“Exploring	Linux	Security”	section)	to	add	a
user	account	to	a	group.	Before	you	can	add	users	to	different	groups,	you	must	create	the	groups.

NOTE
The	list	of	user	accounts	is	somewhat	misleading.	You'll	notice	that	there	are	several	groups	in
the	list	that	don't	have	any	users	listed.	This	isn't	because	they	don't	have	any	members.	When
a	user	account	uses	a	group	as	the	primary	group	in	the	/etc/passwd	file,	the	user	account
doesn't	appear	in	the	/etc/group	file	as	a	member.	This	has	caused	confusion	for	more	than	one
system	administrator	over	the	years!

Creating	new	groups
The	groupadd	command	allows	you	to	create	new	groups	on	your	system:

	#	/usr/sbin/groupadd	shared
	#	tail	/etc/group
	haldaemon:x:68:
	xfs:x:43:
	gdm:x:42:
	rich:x:500:
	mama:x:501:
	katie:x:502:
	jessica:x:503:
	mysql:x:27:
	test:x:504:
	shared:x:505:
	#

When	you	create	a	new	group,	no	users	are	assigned	to	it	by	default.	The	groupadd	command	doesn't	provide	an
option	for	adding	user	accounts	to	the	group.	Instead,	to	add	new	users,	use	the	usermod	command:

	#	/usr/sbin/usermod	-G	shared	rich
	#	/usr/sbin/usermod	-G	shared	test
	#	tail	/etc/group
	haldaemon:x:68:
	xfs:x:43:
	gdm:x:42:
	rich:x:500:
	mama:x:501:
	katie:x:502:
	jessica:x:503:
	mysql:x:27:
	test:x:504:
	shared:x:505:rich,	test
	#

The	shared	group	now	has	two	members,	test	and	rich.	The	-G	parameter	in	usermod	appends	the	new	group	to	the
list	of	groups	for	the	user	account.

NOTE
If	you	change	the	user	groups	for	an	account	that	is	currently	logged	into	the	system,	the	user
will	have	to	log	out,	then	back	in	for	the	group	changes	to	take	effect.

CAUTION
Be	careful	when	assigning	groups	for	user	accounts.	If	you	use	the	-g	parameter,	the	group
name	you	specify	replaces	the	primary	group	assigned	to	the	user	account	in	the	/etc/passwd
file.	The	-G	parameter	adds	the	group	to	the	list	of	groups	the	user	belongs	to,	keeping	the
primary	group	intact.

Modifying	groups
As	you	can	see	from	the	/etc/group	file,	there	isn't	too	much	information	about	a	group	for	you	to	modify.	The
groupmod	command	allows	you	to	change	the	GID	(using	the	-g	parameter)	or	the	group	name	(using	the	-n
parameter)	of	an	existing	group:

	#	groupmod	-n	sharing	shared
	#	tail	/etc/group
	haldaemon:x:68:
	xfs:x:43:
	gdm:x:42:
	rich:x:500:
	mama:x:501:
	katie:x:502:
	jessica:x:503:
	mysql:x:27:
	test:x:504:
	sharing:x:505:test,rich
	#

When	changing	the	name	of	a	group,	the	GID	and	group	members	remain	the	same	and	only	the	group	name
changes.	Because	all	security	permissions	are	based	on	the	GID,	you	can	change	the	name	of	a	group	as	often	as	you
wish	without	adversely	affecting	file	security.

Decoding	File	Permissions
Now	that	you	know	about	users	and	groups,	it's	time	to	decode	the	cryptic	file	permissions	you've	seen	when	using
the	ls	command.	This	section	describes	how	to	decipher	the	permissions	and	where	they	come	from.

Using	file	permission	symbols
As	you'll	recall	from	Chapter	3,	“Basic	Bash	Shell	Commands,”	the	ls	command	allows	you	to	see	the	file
permissions	for	files,	directories,	and	devices	on	the	Linux	system:

	$	ls	-l
	total	68
	-rw-rw-r--	1	rich	rich			50	2010-09-13	07:49	file1.gz
	-rw-rw-r--	1	rich	rich			23	2010-09-13	07:50	file2
	-rw-rw-r--	1	rich	rich			48	2010-09-13	07:56	file3
	-rw-rw-r--	1	rich	rich			34	2010-09-13	08:59	file4
	-rwxrwxr-x	1	rich	rich	4882	2010-09-18	13:58	myprog
	-rw-rw-r--	1	rich	rich		237	2010-09-18	13:58	myprog.c
	drwxrwxr-x	2	rich	rich	4096	2010-09-03	15:12	test1
	drwxrwxr-x	2	rich	rich	4096	2010-09-03	15:12	test2
	$

The	first	field	in	the	output	listing	is	a	code	that	describes	the	permissions	for	the	files	and	directories.	The	first
character	in	the	field	defines	the	type	of	the	object:

-	for	files

d	for	directories

l	for	links

c	for	character	devices

b	for	block	devices

p	for	named	pipes

s	for	network	sockets

After	that,	there	are	three	sets	of	three	characters.	Each	set	of	three	characters	defines	an	access	permission	triplet:

r	for	read	permission	for	the	object

w	for	write	permission	for	the	object

x	for	execute	permission	for	the	object

If	a	permission	is	denied,	a	dash	appears	in	the	location.	The	three	sets	relate	to	the	three	levels	of	security	for	the
object:

The	owner	of	the	object

The	group	that	owns	the	object

Everyone	else	on	the	system

This	is	broken	down	in	Figure	7-1.

FIGURE	7-1	The	Linux	file	permissions

The	easiest	way	to	discuss	this	is	to	take	an	example	and	decode	the	file	permissions	one	by	one:

	-rwxrwxr-x	1	rich	rich	4882	2010-09-18	13:58	myprog

The	file	myprog	has	the	following	sets	of	permissions:

rwx	for	the	file	owner	(set	to	the	login	name	rich)

rwx	for	the	file	group	owner	(set	to	the	group	name	rich)

r-x	for	everyone	else	on	the	system

These	permissions	indicate	that	the	user	login	name	rich	can	read,	write,	and	execute	the	file	(considered	full
permissions).	Likewise,	members	in	the	group	rich	can	also	read,	write,	and	execute	the	file.	However,	anyone	else
not	in	the	rich	group	can	only	read	and	execute	the	file;	the	w	is	replaced	with	a	dash,	indicating	that	write
permissions	are	not	assigned	to	this	security	level.

Default	file	permissions
You	may	be	wondering	about	where	these	file	permissions	come	from.	The	answer	is	umask.	The	umask	command
sets	the	default	permissions	for	any	file	or	directory	you	create:

	$	touch	newfile
	$	ls	-al	newfile
	-rw-r--r--				1	rich					rich												0	Sep	20	19:16	newfile

	$

The	touch	command	created	the	file	using	the	default	permissions	assigned	to	my	user	account.	The	umask	command
shows	and	sets	the	default	permissions:

	$	umask
	0022
	$

Unfortunately,	the	umask	command	setting	isn't	overtly	clear,	and	trying	to	understand	exactly	how	it	works	makes
things	even	muddier.	The	first	digit	represents	a	special	security	feature	assigned	to	the	file.	We'll	talk	more	about
that	later	on	in	this	chapter	in	the	“Sharing	Files”	section.

The	next	three	digits	represent	the	octal	values	of	the	umask	for	a	file	or	directory.	To	understand	how	umask	works,
you	first	need	to	understand	octal	mode	security	settings.

Octal	mode	security	settings	take	the	three	rwx	permission	values	and	convert	them	into	a	3-bit	binary	value,
represented	by	a	single	octal	value.	In	the	binary	representation,	each	position	is	a	binary	bit.	Thus,	if	the	read
permission	is	the	only	permission	set,	the	value	becomes	r--	,	relating	to	a	binary	value	of	100,	indicating	the	octal
value	of	4.	Table	7-5	shows	the	possible	combinations	you'll	run	into.

TABLE	7-5	Linux	File	Permission	Codes

Permissions Binary Octal Description

--- 000 0 No	permissions

--x 001 1 Execute-only	permission

-w- 010 2 Write-only	permission

-wx 011 3 Write	and	execute	permissions

r-- 100 4 Read-only	permission

r-x 101 5 Read	and	execute	permissions

rw- 110 6 Read	and	write	permissions

rwx 111 7 Read,	write,	and	execute	permissions

Octal	mode	takes	the	octal	permissions	and	lists	three	of	them	in	order	for	the	three	security	levels	(user,	group,	and
everyone).	Thus,	the	octal	mode	value	664	represents	read	and	write	permissions	for	the	user	and	group	but	read-
only	permission	for	everyone	else.

Now	that	you	know	about	octal	mode	permissions,	the	umask	value	becomes	even	more	confusing.	The	octal	mode
shown	for	the	default	umask	on	my	Linux	system	is	0022,	but	the	file	I	created	had	an	octal	mode	permission	of
644.	How	did	that	happen?

The	umask	value	is	just	that,	a	mask.	It	masks	out	the	permissions	you	don't	want	to	give	to	the	security	level.	Now
we	have	to	dive	into	some	octal	arithmetic	to	figure	out	the	rest	of	the	story.

The	umask	value	is	subtracted	from	the	full	permission	set	for	an	object.	The	full	permission	for	a	file	is	mode	666
(read/write	permission	for	all),	but	for	a	directory	it's	777	(read/write/execute	permission	for	all).

Thus,	in	the	example,	the	file	starts	out	with	permissions	666,	and	the	umask	of	022	is	applied,	leaving	a	file
permission	of	644.

The	umask	value	is	normally	set	in	the	/etc/profile	startup	file	(see	Chapter	6).	You	can	specify	a	different	default
umask	setting	using	the	umask	command:

	$	umask	026
	$	touch	newfile2
	$	ls	-l	newfile2
	-rw-r-----				1	rich					rich												0	Sep	20	19:46	newfile2
	$

When	we	set	the	umask	value	to	026,	the	default	file	permissions	became	640,	so	the	new	file	is	now	restricted	to
read-only	for	the	group	members,	and	everyone	else	on	the	system	has	no	permissions	to	the	file.

The	umask	value	also	applies	to	making	new	directories:

	$	mkdir	newdir
	$	ls	-l
	drwxr-x--x				2	rich					rich									4096	Sep	20	20:11	newdir/
	$

Because	the	default	permissions	for	a	directory	are	777,	the	resulting	permissions	from	the	umask	are	different	from
those	of	a	new	file.	The	026	umask	value	is	subtracted	from	777,	leaving	the	751	directory	permission	setting.

Changing	Security	Settings
If	you've	already	created	a	file	or	directory	and	need	to	change	the	security	settings	on	it,	a	few	different	utilities	for
this	purpose	are	available	in	Linux.	This	section	shows	you	how	to	change	the	existing	permissions,	the	default
owner,	and	the	default	group	settings	for	a	file	or	directory.

Changing	permissions
The	chmod	command	allows	you	to	change	the	security	settings	for	files	and	directories.	The	format	of	the	chmod
command	is

	chmod	options	mode	file

The	mode	parameter	allows	you	to	set	the	security	settings	using	either	octal	or	symbolic	mode.	The	octal	mode
settings	are	pretty	straightforward;	just	use	the	standard	three-digit	octal	code	you	want	the	file	to	have:

	$	chmod	760	newfile
	$	ls	-l	newfile
	-rwxrw----				1	rich					rich												0	Sep	20	19:16	newfile
$

The	octal	file	permissions	are	automatically	applied	to	the	file	indicated.	The	symbolic	mode	permissions	are	not	so
easy	to	implement.

Instead	of	using	the	normal	string	of	three	sets	of	three	characters,	the	chmod	command	takes	a	different	approach.
The	following	is	the	format	for	specifying	a	permission	in	symbolic	mode:

	[ugoa...][[+-=][rwxXstugo...]

Makes	perfectly	good	sense,	doesn't	it?	The	first	group	of	characters	defines	to	whom	the	new	permissions	apply:

u	for	the	user

g	for	the	group

o	for	others	(everyone	else)

a	for	all	of	the	above

Next,	a	symbol	is	used	to	indicate	whether	you	want	to	add	the	permission	to	the	existing	permissions	(+),	subtract
the	permission	from	the	existing	permissions	(−),	or	set	the	permissions	to	the	value	(=).

Finally,	the	third	symbol	is	the	permission	used	for	the	setting.	You	may	notice	that	there	are	more	than	the	normal
rwx	values	here.	The	additional	settings	are	as	follows:

X	to	assign	execute	permissions	only	if	the	object	is	a	directory	or	if	it	already	had	execute	permissions

s	to	set	the	SUID	or	SGID	on	execution

t	to	set	the	sticky	bit

u	to	set	the	permissions	to	the	owner's	permissions

g	to	set	the	permissions	to	the	group's	permissions

o	to	set	the	permissions	to	the	others’	permissions

Using	these	permissions	looks	like	this:

	$	chmod	o+r	newfile
	$	ls	-l	newfile
	-rwxrw-r--				1	rich					rich												0	Sep	20	19:16	newfile
$

The	o+r	entry	adds	the	read	permission	to	whatever	permissions	the	everyone	security	level	already	had.

	$	chmod	u-x	newfile
	$	ls	-l	newfile
	-rw-rw-r--				1	rich					rich												0	Sep	20	19:16	newfile
	$

The	u-x	entry	removes	the	execute	permission	that	the	user	already	had.	Note	that	the	settings	for	the	ls	command
indicate	if	a	file	has	execution	permissions	by	adding	an	asterisk	to	the	filename.

The	options	parameters	provide	a	few	additional	features	to	augment	the	behavior	of	the	chmod	command.	The	-R
parameter	performs	the	file	and	directory	changes	recursively.	You	can	use	wildcard	characters	for	the	filename
specified,	changing	the	permissions	on	multiple	files	with	just	one	command.

Changing	ownership
Sometimes	you	need	to	change	the	owner	of	a	file,	such	as	when	someone	leaves	an	organization	or	a	developer
creates	an	application	that	needs	to	be	owned	by	a	system	account	when	it's	in	production.	Linux	provides	two
commands	for	doing	that.	The	chown	command	makes	it	easy	to	change	the	owner	of	a	file,	and	the	chgrp	command
allows	you	to	change	the	default	group	of	a	file.

The	format	of	the	chown	command	is

	chown	options	owner[.group]	file

You	can	specify	either	the	login	name	or	the	numeric	UID	for	the	new	owner	of	the	file:

	#	chown	dan	newfile
	#	ls	-l	newfile
	-rw-rw-r--				1	dan						rich												0	Sep	20	19:16	newfile

#

Simple.	The	chown	command	also	allows	you	to	change	both	the	user	and	group	of	a	file:

	#	chown	dan.shared	newfile
	#	ls	-l	newfile
	-rw-rw-r--				1	dan						shared													0	Sep	20	19:16	newfile
#

If	you	really	want	to	get	tricky,	you	can	just	change	the	default	group	for	a	file:

	#	chown	.rich	newfile
	#	ls	-l	newfile
	-rw-rw-r--				1	dan						rich												0	Sep	20	19:16	newfile
#

Finally,	if	your	Linux	system	uses	individual	group	names	that	match	user	login	names,	you	can	change	both	with
just	one	entry:

	#	chown	test.	newfile
	#	ls	-l	newfile
	-rw-rw-r--				1	test				test													0	Sep	20	19:16	newfile
#

The	chown	command	uses	a	few	different	options	parameters.	The	-R	parameter	allows	you	to	make	changes
recursively	through	subdirectories	and	files,	using	a	wildcard	character.	The	-h	parameter	also	changes	the
ownership	of	any	files	that	are	symbolically	linked	to	the	file.

NOTE
Only	the	root	user	can	change	the	owner	of	a	file.	Any	user	can	change	the	default	group	of	a
file,	but	the	user	must	be	a	member	of	the	groups	the	file	is	changed	from	and	to.

The	chgrp	command	provides	an	easy	way	to	change	just	the	default	group	for	a	file	or	directory:

	$	chgrp	shared	newfile
	$	ls	-l	newfile
	-rw-rw-r--				1	rich					shared										0	Sep	20	19:16	newfile
$

Now	any	member	in	the	shared	group	can	write	to	the	file.	This	is	one	way	to	share	files	on	a	Linux	system.
However,	sharing	files	among	a	group	of	people	on	the	system	can	get	tricky.	The	next	section	discusses	how	to	do
this.

Sharing	Files
As	you've	probably	already	figured	out,	creating	groups	is	the	way	to	share	access	to	files	on	the	Linux	system.
However,	for	a	complete	file-sharing	environment,	things	are	more	complicated.

As	you've	already	seen	in	the	“Decoding	File	Permissions”	section,	when	you	create	a	new	file,	Linux	assigns	the	file
permissions	of	the	new	file	using	your	default	UID	and	GID.	To	allow	others	access	to	the	file,	you	need	to	either
change	the	security	permissions	for	the	everyone	security	group	or	assign	the	file	a	different	default	group	that
contains	other	users.

This	can	be	a	pain	in	a	large	environment	if	you	want	to	create	and	share	documents	among	several	people.
Fortunately,	there's	a	simple	solution	for	this	problem.

Linux	stores	three	additional	bits	of	information	for	each	file	and	directory:

The	set	user	ID	(SUID):	When	a	file	is	executed	by	a	user,	the	program	runs	under	the	permissions	of	the	file
owner.

The	set	group	ID	(SGID):	For	a	file,	the	program	runs	under	the	permissions	of	the	file	group.	For	a
directory,	new	files	created	in	the	directory	use	the	directory	group	as	the	default	group.

The	sticky	bit:	When	applied	to	a	directory,	only	file	owners	can	delete	or	rename	the	files	in	the	directory.

The	SGID	bit	is	important	for	sharing	files.	By	enabling	the	SGID	bit,	you	can	force	all	new	files	created	in	a	shared
directory	to	be	owned	by	the	directory's	group	and	now	the	individual	user's	group.

The	SGID	is	set	using	the	chmod	command.	It's	added	to	the	beginning	of	the	standard	three-digit	octal	value
(making	a	four-digit	octal	value),	or	you	can	use	the	symbol	s	in	symbolic	mode.

If	you're	using	octal	mode,	you'll	need	to	know	the	arrangement	of	the	bits,	shown	in	Table	7-6.

TABLE	7-6	The	chmod	SUID,	SGID,	and	Sticky	Bit	Octal	Values

Binary Octal Description

000 0 All	bits	are	cleared.

001 1 The	sticky	bit	is	set.

010 2 The	SGID	bit	is	set.

011 3 The	SGID	and	sticky	bits	are	set.

100 4 The	SUID	bit	is	set.

101 5 The	SUID	and	sticky	bits	are	set.

110 6 The	SUID	and	SGID	bits	are	set.

111 7 All	bits	are	set.

So,	to	create	a	shared	directory	that	always	sets	the	directory	group	for	all	new	files,	all	you	need	to	do	is	set	the
SGID	bit	for	the	directory:

	$	mkdir	testdir
	$	ls	-l
	drwxrwxr-x				2	rich					rich									4096	Sep	20	23:12	testdir/
	$	chgrp	shared	testdir
	$	chmod	g+s	testdir
	$	ls	-l
	drwxrwsr-x				2	rich					shared							4096	Sep	20	23:12	testdir/
	$	umask	002
	$	cd	testdir
	$	touch	testfile
	$	ls	-l
	total	0
	-rw-rw-r--				1	rich					shared										0	Sep	20	23:13	testfile
	$

The	first	step	is	to	create	a	directory	that	you	want	to	share	using	the	mkdir	command.	Next,	the	chgrp	command	is
used	to	change	the	default	group	for	the	directory	to	a	group	that	contains	the	members	who	need	to	share	files.
Finally,	the	SGID	bit	is	set	for	the	directory	to	ensure	that	any	files	created	in	the	directory	use	the	shared	group
name	as	the	default	group.

For	this	environment	to	work	properly,	all	of	the	group	members	need	to	have	their	umask	values	set	to	make	files
writable	by	group	members.	In	the	preceding	example,	the	umask	is	changed	to	002	so	that	the	files	are	writable	by
the	group.

After	all	that's	done,	any	member	of	the	group	can	go	to	the	shared	directory	and	create	a	new	file.	As	expected,	the
new	file	uses	the	default	group	of	the	directory,	not	the	user	account's	default	group.	Now	any	user	in	the	shared
group	can	access	this	file.

Access	Control	Lists
The	basic	Linux	method	of	permissions	has	one	drawback	in	that	it's	somewhat	limited.	You	can	assign	permissions
for	a	file	or	directory	only	to	a	single	group	or	user	account.	In	a	complex	business	environment	with	different
groups	of	people	needing	different	permissions	to	files	and	directories,	that	doesn't	work.

Linux	developers	have	devised	a	more	advanced	method	of	file	and	directory	security	called	an	access	control	list
(ACL).	The	ACL	allows	you	to	specify	a	list	of	multiple	user	or	groups,	and	the	permissions	that	are	assigned	to
them.	Just	like	the	basic	security	method,	ACL	permissions	use	the	same	read,	write,	and	execute	permission	bits
but	can	now	be	assigned	to	multiple	users	and	groups.

To	use	the	ACL	feature	in	Linux,	you	use	the	setfacl	and	getfacl	commands.	The	getfacl	command	allows	you	to
view	the	ACLs	assigned	to	a	file	or	directory:

$	touch	test
$	ls	-l
total	0
-rw-r-----	1	rich	rich	0	Apr	19	17:33	test
$	getfacl	test
#	file:	test
#	owner:	rich
#	group:	rich
user::rw-
group::r--
other::---
$

If	you've	only	assigned	basic	security	permissions	to	the	file,	those	still	appear	in	the	getfacl	output,	as	shown	in
this	example.

To	assign	permissions	for	additional	users	or	groups,	you	use	the	setfacl	command:

setfacl	[options]	rule	filenames

The	setfacl	command	allows	you	to	modify	the	permissions	assigned	to	a	file	or	directory	using	the	-m	option,	or
remove	specific	permissions	using	the	-x	option.	You	define	the	rule	with	three	formats:

u[ser]:uid:perms
g[roup]:gid:perms
o[ther]::perms

To	assign	permissions	for	additional	user	accounts,	use	the	user	format;	for	additional	groups,	use	the	group	format;
and	for	others,	use	the	other	format.	For	the	uid	or	gid	values,	you	can	use	either	the	numerical	user	ID	or	group	ID,
or	the	names.	Here's	an	example:

$	setfacl	-m	g:sales:rw	test
$	ls	-l							
total	0
-rw-rw----+	1	rich	rich	0	Apr	19	17:33	test
$

This	example	adds	read	and	write	permissions	for	the	sales	group	to	the	test	file.	Notice	that	there's	no	output	from
the	setfacl	command.	When	you	list	the	file,	only	the	standard	owner,	group,	and	other	permissions	are	shown,	but
note	that	there's	a	plus	sign	(+)	added	to	the	permissions	list.	This	indicates	that	the	file	has	additional	ACLs	applied
to	it.	To	view	the	additional	ACLs,	use	the	getfacl	command	again:

$	getfacl	test
#	file:	test
#	owner:	rich
#	group:	rich
user::rw-
group::r--
group:sales:rw-
mask::rw-
other::---
$

The	getfacl	output	now	shows	that	there	are	permissions	assigned	to	two	groups.	The	default	file	group	(rich)	is
assigned	read	permissions,	but	now	the	sales	group	has	read	and	write	permissions	to	the	file.	To	remove	the
permissions,	use	the	-x	option:

$	setfacl	-x	g:sales	test
$	getfacl	test
#	file:	test
#	owner:	rich
#	group:	rich
user::rw-
group::r--
mask::r--
other::---
	
$

Linux	also	allows	you	to	set	a	default	ACL	on	a	directory	that	is	automatically	inherited	by	any	file	created	in	the
directory.	This	feature	is	called	inheritance.

To	create	a	default	ACL	on	a	directory,	start	the	rule	with	d:	followed	by	the	normal	rule	definition.	That	looks	like
this:

$	sudo	setfacl	-m	d:g:sales:rw	/sales

This	example	assigns	the	read	and	write	permissions	to	the	sales	group	for	the	/sales	directory.	Now	all	files
created	in	that	folder	will	automatically	be	assigned	read	and	write	permissions	for	the	sales	group.

Summary
This	chapter	discussed	the	command-line	commands	you	need	to	know	to	manage	the	Linux	security	on	your
system.	Linux	uses	a	system	of	user	IDs	and	group	IDs	to	protect	access	to	files,	directories,	and	devices.	Linux
stores	information	about	user	accounts	in	the	/etc/passwd	file	and	information	about	groups	in	the	/etc/group	file.
Each	user	is	assigned	a	unique	numeric	user	ID,	along	with	a	text	login	name	to	identify	the	user	in	the	system.
Groups	are	also	assigned	unique	numerical	group	IDs,	and	text	group	names.	A	group	can	contain	one	or	more	users
allowed	shared	access	to	system	resources.

Several	commands	are	available	for	managing	user	accounts	and	groups.	The	useradd	command	allows	you	to	create
new	user	accounts,	and	the	groupadd	command	allows	you	to	create	new	group	accounts.	To	modify	an	existing	user
account,	use	the	usermod	command.	Similarly,	the	groupmod	command	is	used	to	modify	group	account	information.

Linux	uses	a	complicated	system	of	bits	to	determine	access	permissions	for	files	and	directories.	Each	file	contains
three	security	levels	of	protection:	the	file's	owner,	a	default	group	that	has	access	to	the	file,	and	a	level	for	everyone
else	on	the	system.	Each	security	level	is	defined	by	three	access	bits:	read,	write,	and	execute.	The	combination	of
three	bits	is	often	referred	to	by	the	symbols	rwx	,	for	read,	write,	and	execute.	If	a	permission	is	denied,	its	symbol	is
replaced	with	a	dash	(such	as	r--	for	read-only	permission).

The	symbolic	permissions	are	often	referred	to	as	octal	values,	with	the	three	bits	combined	into	one	octal	value	and
three	octal	values	representing	the	three	security	levels.	The	umask	command	is	used	to	set	the	default	security
settings	for	files	and	directories	created	on	the	system.	The	system	administrator	normally	sets	a	default	umask

value	in	the	/etc/profile	file,	but	you	can	use	the	umask	command	to	change	your	umask	value	at	any	time.

The	chmod	command	is	used	to	change	security	settings	for	files	and	directories.	Only	the	file's	owner	can	change
permissions	for	a	file	or	directory.	However,	the	root	user	can	change	the	security	settings	for	any	file	or	directory	on
the	system.	The	chown	and	chgrp	commands	can	be	used	to	change	the	default	owner	and	group	of	the	file.

The	chapter	also	discussed	how	to	use	the	set	GID	bit	to	create	a	shared	directory.	The	SGID	bit	forces	any	new	files
or	directories	created	in	a	directory	to	use	the	default	group	name	of	the	parent	directory,	not	that	of	the	user	who
created	them.	This	provides	an	easy	way	to	share	files	between	users	on	the	system.

Finally,	the	chapter	provided	a	primer	on	using	the	Linux	ACL	feature	to	assign	more	detailed	and	advanced
permissions	to	files	and	directories.	The	getfacl	and	setfacl	commands	provide	access	to	this	feature.

Now	that	you're	up	to	speed	with	file	permissions,	it's	time	to	take	a	closer	look	at	how	to	work	with	the	actual
filesystem	in	Linux.	The	next	chapter	shows	you	how	to	create	new	partitions	in	Linux	from	the	command	line	and
then	how	to	format	the	new	partitions	so	that	they	can	be	used	in	the	Linux	virtual	directory.

CHAPTER	8
Managing	Filesystems
IN	THIS	CHAPTER

Understanding	filesystem	basics

Exploring	journaling	and	volume-managing	filesystems

Managing	filesystems

Investigating	the	logical	volume	layout

Using	the	Linux	Logical	Volume	Manager

When	you're	working	with	your	Linux	system,	one	of	the	decisions	you'll	need	to	make	is	what	filesystem	to	use	for
the	storage	devices.	Most	Linux	distributions	provide	a	default	filesystem	for	you	at	installation	time,	and	most
beginning	Linux	users	just	use	it	without	giving	the	topic	another	thought.

Although	using	the	default	filesystem	isn't	necessarily	a	bad	thing,	sometimes	it	helps	to	know	the	other	options
available	to	you.	This	chapter	discusses	the	different	filesystem	options	you	have	available	in	the	Linux	world	and
shows	you	how	to	create	and	manage	them	from	the	Linux	command	line.

Exploring	Linux	Filesystems
Chapter	3,	“Basic	Bash	Shell	Commands,”	discussed	how	Linux	uses	a	filesystem	to	store	files	and	folders	on	a
storage	device.	The	filesystem	provides	a	way	for	Linux	to	bridge	the	gap	between	the	ones	and	zeroes	stored	in	the
hard	drive	and	the	files	and	folders	you	work	with	in	your	applications.

Linux	supports	several	types	of	filesystems	to	manage	files	and	folders.	Each	filesystem	implements	the	virtual
directory	structure	on	storage	devices	using	slightly	different	features.	This	section	walks	you	through	the	strengths
and	weaknesses	of	common	filesystems	used	in	the	Linux	environment	as	well	as	some	history	regarding	them.

Exploring	the	Linux	filesystem	evolution
The	original	Linux	system	used	a	simple	filesystem	that	mimicked	the	functionality	of	the	Unix	filesystem.	This
section	discusses	its	improvements	through	time.

Looking	at	the	ext	filesystem
The	original	filesystem	introduced	with	the	Linux	operating	system	was	called	the	extended	filesystem	(or	just	ext
for	short).	It	provided	a	basic	Unix-like	filesystem	for	Linux,	using	virtual	directories	to	handle	physical	devices	and
storing	data	in	fixed-length	blocks	on	the	physical	devices.

The	ext	filesystem	used	a	system	called	inodes	to	track	information	about	the	files	stored	in	the	virtual	directory.	The
inode	system	created	a	separate	table	on	each	physical	device,	called	the	inode	table,	to	store	file	information.	Each
stored	file	in	the	virtual	directory	had	an	entry	in	the	inode	table.	The	extended	part	of	the	name	comes	from	the
additional	data	that	it	tracked	on	each	file,	which	consisted	of	these	items:

The	filename

The	file	size

The	owner	of	the	file

The	group	the	file	belongs	to

Access	permissions	for	the	file

Pointers	to	each	disk	block	that	contains	data	from	the	file

Linux	referenced	each	inode	in	the	inode	table	using	a	unique	number	(called	the	inode	number),	assigned	by	the
filesystem	as	data	files	were	created.	The	filesystem	used	the	inode	number	to	identify	the	file	rather	than	having	to
use	the	full	filename	and	path.

Looking	at	the	ext2	filesystem
The	original	ext	filesystem	had	quite	a	few	limitations,	such	as	restraining	files	to	only	2	GB	in	size.	Not	too	long
after	Linux	was	first	introduced,	the	ext	filesystem	was	upgraded	to	create	the	second	extended	filesystem,	called
ext2.

The	ext2	filesystem	maintained	the	same	ext	filesystem	structure	but	expanded	its	abilities:

Created,	modified,	and	last	accessed	time	values	for	files	were	added	to	the	inode	table.

The	maximum	file	size	allowed	was	increased	to	2	TB,	and	then	later	to	32	TB.

Disk	blocks	were	allocated	in	groups	when	a	file	was	saved.

The	ext2	filesystem	too	had	limitations.	If	something	happened	to	the	system	between	a	file	being	stored	and	the

inode	table	being	updated,	a	potential	result	was	losing	the	file's	data	location	on	the	disk.	The	ext2	filesystem	was
notorious	for	experiencing	these	corruptions	due	to	system	crashes	and	power	outages.	And	it	wasn't	long	before
developers	were	exploring	a	different	avenue	of	Linux	filesystems.

Digging	into	journaling	filesystems
Journaling	filesystems	provide	a	new	level	of	safety	to	the	Linux	system.	Instead	of	writing	data	directly	to	the
storage	device	and	then	updating	the	inode	table,	journaling	filesystems	write	file	changes	into	a	temporary	file
(called	the	journal)	first.	After	data	is	successfully	written	to	the	storage	device	and	the	inode	table,	the	journal	entry
is	deleted.

If	the	system	should	crash	or	suffer	a	power	outage	before	the	data	can	be	written	to	the	storage	device,	the
journaling	filesystem	reads	through	the	journal	file	and	processes	any	uncommitted	data.

Linux	commonly	uses	three	different	methods	of	journaling,	each	with	different	levels	of	protection.	These	are
shown	in	Table	8-1.

TABLE	8-1	Journaling	Filesystem	Methods

Method Description

Data
mode

Both	inode	and	file	data	are	journaled.	Low	risk	of	losing	data,	but	poor	performance

Ordered
mode

Only	inode	data	is	written	to	the	journal,	but	not	removed	until	file	data	is	successfully	written.	Good
compromise	between	performance	and	safety

Writeback
mode

Only	inode	data	is	written	to	the	journal;	no	control	over	when	the	file	data	is	written.	Higher	risk	of
losing	data	but	still	better	than	not	using	journaling

The	data	mode	journaling	method	is	by	far	the	safest	for	protecting	data,	but	it	is	also	the	slowest.	All	the	data
written	to	a	storage	device	must	be	written	twice,	once	to	the	journal	and	again	to	the	actual	storage	device.	This	can
cause	poor	performance,	especially	for	systems	that	do	lots	of	data	writing.

Over	the	years,	a	few	different	journaling	filesystems	have	appeared	in	Linux.	The	following	sections	briefly	describe
the	popular	Linux	journaling	filesystems	available.

Looking	at	the	ext3	filesystem
The	ext3	filesystem	is	a	descendant	of	ext2	that	supports	files	up	to	2	TB,	with	a	total	file	system	size	of	32	TB.	By
default,	it	uses	the	ordered	mode	method	of	journaling,	but	the	other	modes	are	available	via	command-line	options.
It	doesn't	provide	any	recovery	from	accidental	file	deletion	or	allow	data	compression	by	default.

Looking	at	the	ext4	filesystem
A	still	popular	descendant	of	ext3,	the	ext4	filesystem	supports	files	up	to	16	tebibytes	(TiB),	with	a	total	file	system
size	of	1	exbibyte	(EiB).	By	default,	it	uses	the	ordered	mode	method	of	journaling,	but	the	other	modes	are	available
via	command-line	options.	It	supports	encryption,	compression,	and	unlimited	subdirectories	within	a	single
directory.	Old	ext2	and	ext3	filesystems	can	be	mounted	as	if	they	were	ext4	to	improve	their	performance.

Looking	at	the	JFS	filesystem
Possibly	one	of	the	oldest	journaling	filesystems	around,	the	Journaled	File	System	(JFS)	was	developed	by	IBM	in
1990	for	its	AIX	(Advanced	Interactive	Executive)	flavor	of	Unix.	However,	it	wasn't	until	its	second	version	that	it
was	ported	to	the	Linux	environment.

NOTE
The	official	IBM	name	of	the	second	version	of	the	JFS	filesystem	is	JFS2,	but	most	Linux
systems	refer	to	it	as	just	JFS.

The	JFS	filesystem	uses	the	ordered	journaling	method,	storing	only	the	inode	table	data	in	the	journal	and	not
removing	it	until	the	actual	file	data	is	written	to	the	storage	device.

Looking	at	ReiserFS
In	2001,	Hans	Reiser	created	the	first	journaling	filesystem	for	Linux,	called	ReiserFS,	which	provides	features	now
found	in	both	ext3	and	ext4.	Linux	has	dropped	support	for	the	most	recent	version,	Reiser4.

Looking	at	XFS
The	X	File	System	(XFS)	was	created	by	Silicon	Graphics	for	their	(now	defunct)	advanced	graphical	workstations.
The	filesystem	provided	some	advanced	high-performance	features	that	make	it	still	popular	in	Linux.

The	XFS	filesystem	uses	the	writeback	mode	of	journaling,	which	provides	high	performance	but	does	introduce	an
amount	of	risk	because	the	actual	data	isn't	stored	in	the	journal	file.

Understanding	the	volume-managing	filesystems
With	journaling,	you	must	choose	between	safety	and	performance.	Although	data	mode	journaling	provides	the
highest	safety,	performance	suffers	because	both	inode	and	data	are	journaled.	With	writeback	mode	journaling,
performance	is	acceptable	but	safety	is	compromised.

For	filesystems,	an	alternative	to	journaling	is	a	technique	called	copy-on-write	(COW).	COW	offers	both	safety	and
performance	via	snapshots.	For	modifying	data,	a	clone	or	writable	snapshot	is	used.	Instead	of	writing	modified
data	over	current	data,	the	modified	data	is	put	in	a	new	filesystem	location.

NOTE
A	true	COW	system	modifies	the	old	data	only	when	the	data	modification	is	completed.	If	old
data	is	never	overwritten,	the	proper	term	to	call	this	action	is	a	redirect-on-write	(ROW).
However,	typically	ROWs	are	simply	called	COWs.

Though	disk	sizes	have	grown	significantly	over	the	years,	the	need	for	more	space	is	constant.	Storage	pools,	which
are	created	from	one	or	more	disks	or	disk	partitions,	provide	the	ability	to	create	what	appears	to	be	a	single	disk,
called	a	volume.	Using	these	storage	pools	allows	volumes	to	be	grown	as	needed,	providing	flexibility	and	a	lot	less
downtime.

Filesystems	with	COW,	snapshot,	and	volume-management	features	are	gaining	in	popularity.	Two	of	the	most
popular,	Btrfs	and	ZFS,	are	briefly	reviewed	in	the	following	sections	as	well	as	a	newcomer,	Stratis.

Looking	at	the	ZFS	filesystem
The	ZFS	filesystem	was	initially	released	in	2005	by	Sun	Microsystems	for	the	OpenSolaris	operating	system.	It
began	being	ported	to	Linux	in	2008	and	was	finally	available	for	Linux	production	use	in	2012.

ZFS	is	a	stable	filesystem	that	competes	well	against	Resier4,	Btrfs,	and	ext4.	It	boasts	data	integrity	verification
along	with	automatic	repair,	provides	a	maximum	file	size	of	16	exabytes,	and	has	a	256	quadrillion	Zettabytes
maximum	storage	size.	That's	one	large	filesystem!

Unfortunately,	its	biggest	detractor	is	that	ZFS	does	not	have	a	GNU	General	Public	License	(GPL)	and	thus	cannot
be	included	in	the	Linux	kernel.	Fortunately,	most	Linux	distributions	provide	a	way	for	it	to	be	installed.

Looking	at	the	Btrfs	filesystem
The	Btrfs	filesystem	(typically	pronounced	butter-fs)	is	also	called	the	B-tree	filesystem.	Oracle	started	development
on	Btrfs	in	2007.	It	was	based	on	many	of	Reiser4's	features	but	offered	improvements	in	reliability.	Over	time,
additional	developers	joined	in	and	helped	Btrfs	quickly	rise	toward	the	top	of	the	popular	filesystems	list.	This
popularity	is	due	to	stability	and	ease	of	use,	as	well	as	the	ability	to	dynamically	resize	a	mounted	filesystem.

While	the	openSUSE	Linux	distribution	established	Btrfs	as	its	default	filesystem,	in	2017	Red	Hat	deprecated	it,
meaning	that	it	would	no	longer	support	the	filesystem	(as	of	RHEL	version	8	and	beyond).	Unfortunately,	for	those
organizations	who	are	married	to	RHEL,	it	means	that	Btrfs	is	not	the	filesystem	of	choice.

Looking	at	the	Stratis	filesystem
When	Red	Hat	deprecated	Btrfs,	the	decision	was	made	to	create	a	new	filesystem,	Stratis.	But	you	cannot
accurately	call	Stratis	a	filesystem	using	the	standard	definition.	Instead,	it	provides	more	of	a	management
perspective.	The	storage	pools	it	maintains	are	made	up	of	one	or	more	XFS	filesystems.	And	it	also	offers	COW
functionality	like	the	more	traditional	volume-management	filesystems,	such	as	ZFS	and	Btrfs.	The	terms	“ease	of
use”	and	“advanced	storage	features”	are	often	used	to	describe	it,	but	at	this	point,	it's	too	early	to	tell	how	close	to
those	concepts	Stratis	performs.

NOTE
XFS	in	recent	years	has	been	improving	its	COW	offerings.	For	example,	it	now	has	an
always_cow	mode,	which	causes	XFS	to	not	overwrite	original	data	when	it	is	modified.

Stratis	was	first	offered	for	inspection	in	Fedora	29	(released	in	2018),	and	it	is	considered	to	be	a	technological
preview	feature	in	RHEL	v8.	This	means	that	Stratis	is	not	yet	intended	for	use	in	a	production	environment.	You've
been	warned.

Working	with	Filesystems
Linux	provides	a	few	utilities	that	make	it	easier	to	work	with	filesystems	from	the	command	line.	You	can	add	new
filesystems	or	change	existing	filesystems	from	the	comfort	of	your	own	keyboard.	This	section	walks	you	through
the	commands	for	managing	filesystems	from	a	command-line	environment.

Creating	partitions
To	start	out,	you	need	to	create	a	partition	on	the	storage	device	to	contain	the	filesystem.	The	partition	can	be	an
entire	disk	or	a	subset	of	a	disk	that	will	contain	a	portion	of	the	virtual	directory.

Several	utilities	are	available	that	can	help	you	organize	and	manage	partitions.	The	three	CLI	programs	we'll	focus
on	in	this	section	are:

fdisk

gdisk

GNU	parted

Sometimes,	the	hardest	part	of	creating	a	new	disk	partition	is	trying	to	find	the	physical	disk	on	your	Linux	system.
Linux	uses	a	standard	format	for	assigning	device	names	to	hard	drives,	and	you	need	to	be	familiar	with	the	format
before	partitioning	a	drive:

SATA	drives	and	SCSI	drives:	Linux	uses	/dev/sd	x,	where	x	is	a	letter	based	on	the	order	in	which	the	drive	is
detected	(a	for	the	first	drive,	b	for	the	second,	and	so	on)

SSD	NVMe	drives:	The	device	name	format	is	/dev/nvme	N	n	#,	where	N	is	a	number	based	on	the	order	in	which
the	drive	is	detected,	starting	at	0	.	And	the	#	is	the	number	assigned	to	the	drive's	namespace	structure,	starting
at	1	.

IDE	drives:	Linux	uses	/dev/hd	x,	where	x	is	a	letter	based	on	the	order	in	which	the	drive	is	detected	(a	for	the
first	drive,	b	for	the	second,	and	so	on).

Once	you	have	the	correct	drive	name,	you	can	consider	which	partitioning	tool	to	use.	The	following	sections	take	a
look	at	three	choices.

Looking	at	the	fdisk	utility
The	fdisk	utility	is	an	older	but	powerful	tool	for	creating	and	managing	partitions	on	any	drive.	However,	fdisk
handles	only	disks	up	to	2	TB	in	size.	If	you	have	a	disk	larger	than	that,	you	can	use	either	the	gdisk	or	the	GNU
parted	utility	instead.

TIP
If	this	is	the	first	time	you're	partitioning	the	storage	device,	fdisk	gives	you	a	warning	that	a
partition	table	is	not	on	the	device.

The	fdisk	command	is	an	interactive	program	that	allows	you	to	enter	commands	to	walk	through	the	steps	of
partitioning	a	hard	drive.	To	start	the	fdisk	utility,	you	need	to	specify	the	device	name	of	the	storage	device	you
want	to	partition,	and	you	need	to	have	super	user	privileges	(be	logged	in	as	the	root	user	or	use	the	sudo
command).

#	whoami
root
#	fdisk	/dev/sda
	
Welcome	to	fdisk	(util-linux	2.32.1).
Changes	will	remain	in	memory	only,	until	you	decide	to	write	them.
Be	careful	before	using	the	write	command.
	
	
Command	(m	for	help):

The	fdisk	program	uses	its	own	command	line	that	allows	you	to	submit	commands	to	work	with	the	drive
partitions.	Table	8-2	shows	the	common	commands	you	have	available	with	which	to	work.

TABLE	8-2	Common	fdisk	Commands

Command Description

a Toggle	a	bootable	flag.

b Edit	bad	disk	label.

c Toggle	the	DOS	compatibility	flag.

d Delete	a	partition.

g Create	a	new	empty	GPT	partition	table.

G Create	an	IRIX	(SGI)	partition	table.

l List	known	partition	types.

m Print	this	menu.

n Add	a	new	partition.

o Create	a	new	empty	DOS	partition	table.

p Print	the	partition	table.

q Quit	without	saving	changes.

s Create	a	new	empty	Sun	disk	label.

t Change	a	partition's	system	ID.

u Change	display/entry	units.

v Verify	the	partition	table.

w Write	table	to	disk	and	exit.

x Extra	functionality	(experts	only).

The	p	command	displays	the	current	partition	scheme	on	the	selected	drive:

Command	(m	for	help):	p
Disk	/dev/sda:	20	GiB,	21474836480	bytes,	41943040	sectors
Units:	sectors	of	1	*	512	=	512	bytes
Sector	size	(logical/physical):	512	bytes	/	512	bytes
I/O	size	(minimum/optimal):	512	bytes	/	512	bytes
Disklabel	type:	dos
Disk	identifier:	0x8a136eb4
	
Device					Boot			Start						End		Sectors	Size	Id	Type
/dev/sda1		*							2048		2099199		2097152			1G	83	Linux
/dev/sda2							2099200	41943039	39843840		19G	8e	Linux	LVM
	
Command	(m	for	help):

In	this	example,	the	/dev/sda	drive	is	sectioned	into	two	partitions,	sda1	and	sda2	.	The	first	partition	is	allocated
about	1	GB	of	space	(shown	in	the	Size	column),	while	the	second	is	allocated	a	little	over	19	GB	of	space.

The	fdisk	command	is	somewhat	rudimentary	in	that	it	doesn't	allow	you	to	alter	the	size	of	an	existing	partition;	all
you	can	do	is	delete	the	existing	partition	and	rebuild	it	from	scratch.

TIP
Some	distributions	and	older	distribution	versions	do	not	automatically	inform	your	Linux
system	of	a	new	partition	after	it	is	made.	In	this	case,	you	need	to	use	either	the	partprobe	or
the	hdparm	command	(see	their	man	pages),	or	reboot	your	system	so	that	it	reads	the	updated
partition	table.

If	you	make	any	changes	to	the	drive	partitions,	you	must	exit	using	the	w	command	to	write	the	changes	to	the
drive.	To	quit	without	making	any	modifications,	use	the	q	command:

Command	(m	for	help):	q
#

The	following	example	makes	a	new	partition	on	the	/dev/sdb	drive	to	use	in	the	“Creating	a	Filesystem”	section
later	in	this	chapter:

$	sudo	fdisk	/dev/sdb
[sudo]	password	for	christine:
[...]
Command	(m	for	help):	n
Partition	type
			p			primary	(0	primary,	0	extended,	4	free)
			e			extended	(container	for	logical	partitions)
Select	(default	p):	p
Partition	number	(1-4,	default	1):	1

First	sector	(2048-4194303,	default	2048):
Last	sector,	+sectors	or	+size{K,M,G,T,P}	(2048-4194303,	default	4194303):
	
Created	a	new	partition	1	of	type	'Linux'	and	of	size	2	GiB.
	
Command	(m	for	help):	w
The	partition	table	has	been	altered.
Calling	ioctl()	to	re-read	partition	table.
Syncing	disks.
	
$

Now	a	new	disk	partition,	/dev/sdb1	,	is	ready	for	formatting.	Be	aware	when	creating	a	new	disk	partition	with
fdisk	,	you	don't	have	to	type	in	any	information.	Instead,	just	press	Enter	to	accept	the	displayed	defaults.

Working	with	gdisk
If	you're	working	with	drives	that	use	the	GUID	Partition	Table	(GPT)	indexing	method,	you	can	use	the	gdisk
program:

$	sudo	gdisk	/dev/sda
[sudo]	password	for	christine:
GPT	fdisk	(gdisk)	version	1.0.3
	
Partition	table	scan:
		MBR:	MBR	only
		BSD:	not	present
		APM:	not	present
		GPT:	not	present

Found	invalid	GPT	and	valid	MBR;	converting	MBR	to	GPT	format
in	memory.	THIS	OPERATION	IS	POTENTIALLY	DESTRUCTIVE!	Exit	by
typing	'q'	if	you	don't	want	to	convert	your	MBR	partitions
to	GPT	format!

[...]
Command	(?	for	help):	q
$

The	gdisk	program	identifies	the	type	of	formatting	used	on	the	drive.	If	the	drive	doesn't	currently	use	the	GPT
method,	gdisk	offers	you	the	option	to	convert	it	to	a	GPT	drive.

WARNING
Be	careful	with	converting	the	drive	method	specified	for	your	drive.	The	method	you	select
must	be	compatible	with	the	system	firmware	(BIOS	or	UEFI).	If	not,	your	drive	will	not	be
able	to	boot.

The	gdisk	program	also	uses	its	own	command	prompt,	allowing	you	to	enter	commands	to	manipulate	the	drive
layout,	as	shown	in	Table	8-3.

TABLE	8-3	Common	gdisk	Commands

Command Description

b Back	up	GPT	data	to	a	file.

c Change	a	partition's	name.

d Delete	a	partition.

i Show	detailed	information	on	a	partition.

l List	known	partition	types.

n Add	a	new	partition.

o Create	a	new	empty	GUID	partition	table	(GPT).

p Print	the	partition	table.

q Quit	without	saving	changes.

r Recovery	and	transformation	options	(experts	only).

s Sort	partitions.

t Change	a	partition's	type	code.

v Verify	disk.

w Write	table	to	disk	and	exit.

x Extra	functionality	(experts	only).

? Print	this	menu.

You'll	notice	that	many	of	the	gdisk	commands	are	similar	to	those	in	the	fdisk	program,	making	it	easier	to	switch
between	the	two	programs.

The	GNU	parted	command
The	GNU	parted	program	provides	yet	another	command-line	interface	for	working	with	drive	partitions.	Unlike	the
fdisk	and	gdisk	programs,	the	commands	within	this	utility	are	more	word-like:

$	sudo	parted
GNU	Parted	3.2
Using	/dev/sda
Welcome	to	GNU	Parted!	Type	'help'	to	view	a	list	of	commands.
(parted)	print
Model:	ATA	VBOX	HARDDISK	(scsi)
Disk	/dev/sda:	21.5GB
Sector	size	(logical/physical):	512B/512B
Partition	Table:	msdos
Disk	Flags:
	
Number		Start			End					Size				Type					File	system		Flags
	1						1049kB		1075MB		1074MB		primary		ext4									boot
	2						1075MB		21.5GB		20.4GB		primary															lvm
	
(parted)	quit
$

One	of	the	selling	features	of	the	parted	program	is	that	it	allows	you	to	modify	existing	partition	sizes,	so	you	can
easily	shrink	or	grow	partitions	on	the	drive.

Creating	a	filesystem
Before	you	can	store	data	on	the	partition,	you	must	format	it	with	a	filesystem	so	that	Linux	can	use	it.	Each
filesystem	type	uses	its	own	command-line	program	to	format	partitions.	Table	8-4	lists	the	utilities	used	for	the
filesystems	discussed	in	this	chapter.

TABLE	8-4	Command-Line	Programs	to	Create	Filesystems

Utility Purpose

mkefs Creates	an	ext	filesystem.

mke2fs Creates	an	ext2	filesystem.

mkfs.ext3 Creates	an	ext3	filesystem.

mkfs.ext4 Creates	an	ext4	filesystem.

mkreiserfs Creates	a	ReiserFS	filesystem.

jfs_mkfs Creates	a	JFS	filesystem.

mkfs.xfs Creates	an	XFS	filesystem.

mkfs.zfs Creates	a	ZFS	filesystem.

mkfs.btrfs Creates	a	Btrfs	filesystem.

Not	all	filesystem	utilities	are	installed	by	default.	To	determine	whether	you	have	a	particular	filesystem	utility,	use
the	type	command:

$	type	mkfs.ext4
mkfs.ext4	is	/usr/sbin/mkfs.ext4
$
$	type	mkfs.btrfs
-bash:	type:	mkfs.btrfs:	not	found
$

The	preceding	example	shows	that	the	mkfs.ext4	utility	is	available.	However,	the	Btrfs	utility	is	not.

TIP
Check	if	the	Linux	distribution	you	are	using	supports	the	filesystem	you	wish	to	create.	If	it	is
supported,	and	its	filesystem	utilities	are	not	currently	furnished,	you	can	install	the	needed
software	and	utilities.	See	Chapter	9,	“Installing	Software,”	for	more	details.

All	the	filesystem	commands	allow	you	to	create	a	default	filesystem	with	just	the	simple	command	with	no	options,
but	you'll	need	to	have	super	user	privileges:

$	sudo	mkfs.ext4	/dev/sdb1
[sudo]	password	for	christine:
mke2fs	1.44.6	(5-Mar-2019)
Creating	filesystem	with	524032	4k	blocks	and	131072	inodes
[...]
Creating	journal	(8192	blocks):	done
Writing	superblocks	and	filesystem	accounting	information:	done
$

The	new	filesystem	uses	the	ext4	filesystem	type,	which	is	a	journaling	filesystem	in	Linux.	Notice	that	part	of	the
creation	process	was	to	create	the	new	journal.

TIP
Each	filesystem	utility	command	has	lots	of	command-line	options	that	allow	you	to	customize
just	how	the	filesystem	is	created	in	the	partition.	To	see	all	the	command-line	options
available,	use	the	man	command	(see	Chapter	3)	to	display	the	manual	pages	for	the	filesystem
command	you	wish	to	use.

After	you	create	the	filesystem	for	a	partition,	the	next	step	is	to	mount	it	on	a	virtual	directory	mount	point	so	that
you	can	store	data	there.	You	can	mount	the	new	filesystem	anywhere	in	your	virtual	directory	where	you	need	the
extra	space.

$	mkdir	/home/christine/part
$
$	sudo	mount	-t	ext4	/dev/sdb1	/home/christine/part
[sudo]	password	for	christine:
$
$	lsblk	-f	/dev/sdb
NAME			FSTYPE	LABEL	UUID						MOUNTPOINT
sdb
⌙sdb1	ext4									a8d1d[...]		/home/christine/part
$

The	mkdir	command	(Chapter	3)	creates	the	mount	point	in	the	virtual	directory,	and	the	mount	command	adds	the
new	hard	drive	partition	to	the	mount	point.	The	-t	option	on	the	mount	command	indicates	what	filesystem	type,
ext4	,	you	are	mounting.	And	the	lsblk	-f	command	allows	you	to	see	the	newly	formatted	and	mounted	partition.

WARNING
This	method	of	mounting	a	filesystem	only	temporarily	mounts	the	filesystem.	When	you
reboot	your	Linux	system,	the	filesystem	doesn't	automatically	mount.	To	force	Linux	to
automatically	mount	the	new	filesystem	at	boot	time,	add	the	new	filesystem	to	the	/etc/fstab
file.

Now	that	the	filesystem	is	mounted	within	the	virtual	directory	system,	it	can	start	to	be	used	on	a	regular	basis.
Unfortunately,	with	regular	use	comes	the	potential	for	serious	problems,	such	as	filesystem	corruption.	The	next
section	looks	at	how	to	deal	with	these	issues.

Checking	and	repairing	a	filesystem
Even	with	modern	filesystems,	things	can	go	wrong	if	power	is	unexpectedly	lost	or	if	a	wayward	application	locks
up	the	system	while	file	access	is	in	progress.	Fortunately,	some	command-line	tools	are	available	to	help	you
attempt	to	restore	the	filesystem	back	to	order.

Each	filesystem	has	its	own	recovery	command	for	interacting	with	the	filesystem.	That	has	the	potential	of	getting
ugly,	because	more	and	more	filesystems	are	available	in	the	Linux	environment,	making	for	lots	of	individual
commands	you	have	to	know.	Fortunately,	a	common	front-end	program	can	determine	the	filesystem	on	the
storage	device	and	use	the	appropriate	filesystem	recovery	command	based	on	the	filesystem	being	recovered.

The	fsck	command	is	used	to	check	and	repair	most	Linux	filesystem	types,	including	ones	discussed	earlier	in	this
chapter.	The	format	of	the	command	is

fsck	options	filesystem

You	can	list	multiple	filesystem	entries	on	the	command	line	to	check.	Filesystems	are	referenced	using	several
methods,	such	as	the	device	name	or	its	mount	point	in	the	virtual	directory.	However,	the	device	must	be
unmounted	before	you	use	fsck	on	it.

TIP
Although	journaling	filesystems	users	do	need	the	fsck	command,	it	is	arguable	as	to	whether
filesystems	that	employ	COW	do.	In	fact,	the	ZFS	filesystem	does	not	even	have	an	interface	to
the	fsck	utility.	The	fsck.xfs	and	fsck.btrfs	commands	are	nothing	but	stubs,	and	do	nothing.
For	COW	filesystems,	check	the	man	pages	for	their	individual	filesystem	repair	tool(s),	if	you
need	advanced	repair	options.

The	fsck	command	uses	the	/etc/fstab	file	to	automatically	determine	the	filesystem	on	a	storage	device	that's
normally	mounted	on	the	system.	If	the	storage	device	isn't	normally	mounted	(e.g.,	if	you	just	created	a	filesystem
on	a	new	storage	device),	you	need	to	use	the	-t	command-line	option	to	specify	the	filesystem	type.	Table	8-5	lists
the	other	commonly	used	command-line	options	available.

TABLE	8-5	The	fsck	Commonly	Used	Command-Line	Options

Option Description

-a Automatically	repairs	the	filesystem	if	errors	are	detected.

-A Checks	all	the	filesystems	listed	in	the	/etc/fstab	file.

-N Doesn't	run	the	check;	only	displays	what	checks	would	be	performed.

-r Prompts	to	fix	if	errors	found.

-R Skips	the	root	filesystem	if	using	the	-A	option.

-t Specifies	the	filesystem	type	to	check.

-V Produces	verbose	output	during	the	checks.

-y Automatically	repairs	the	filesystem	if	errors	detected.

You	may	notice	that	some	of	the	command-line	options	are	redundant.	That's	part	of	the	problem	of	trying	to
implement	a	common	front	end	for	multiple	commands.	Some	of	the	individual	filesystem	repair	commands	have
additional	options	that	can	be	used.

TIP
You	run	the	fsck	command	only	on	unmounted	filesystems.	For	most	filesystems,	just	unmount
the	filesystem	to	check	it,	and	then	remount	it	when	you're	finished.	However,	because	the	root
filesystem	contains	all	the	core	Linux	commands	and	log	files,	you	can't	unmount	it	on	a
running	system.

This	is	a	time	when	having	a	Linux	Live	CD,	DVD,	or	USB	comes	in	handy!	Just	boot	your
system	with	the	Linux	Live	media,	and	then	run	the	fsck	command	on	the	root	filesystem.

This	chapter	has	showed	you	how	to	handle	filesystems	contained	in	physical	storage	devices.	Linux	also	provides	a
few	ways	to	create	logical	storage	devices	for	filesystems.	The	next	section	examines	how	you	can	use	a	logical
storage	device	for	your	filesystems.

Managing	Logical	Volumes
Data	has	a	habit	of	increasing.	If	you	create	your	filesystems	using	standard	partitions	on	hard	drives,	trying	to	add
space	to	an	existing	filesystem	can	be	somewhat	of	a	painful	experience.	If	no	more	space	is	available	on	that	hard
drive,	you're	stuck	having	to	get	a	larger	hard	drive	and	manually	moving	the	existing	filesystem	to	the	new	drive.

What	would	come	in	handy	is	a	way	to	dynamically	add	more	space	to	an	existing	filesystem	by	just	adding	a
partition	from	another	hard	drive	to	the	existing	filesystem.	The	Linux	Logical	Volume	Management	or	Manager
(LVM)	allows	you	to	do	just	that.	It	provides	an	easy	way	for	you	to	manipulate	disk	space	on	a	Linux	system	without
having	to	rebuild	entire	filesystems.	This	section	covers	logical	volumes	and	various	terms,	and	offers	practical	steps
for	setting	them	up.

Exploring	LVM	layout
LVM	allows	multiple	partitions	to	be	grouped	together	and	used	as	a	single	partition	for	formatting,	mounting	on
the	Linux	virtual	directory	structure,	storing	data,	and	so	on.	You	can	also	add	partitions	to	a	logical	volume	as	your
data	needs	grow.

LVM	has	three	primary	parts,	covered	in	the	next	few	sections.	Each	part	plays	an	important	role	in	creating	and
maintaining	logical	volumes.

Physical	volume
A	physical	volume	(PV)	is	created	using	the	LVM's	pvcreate	command.	This	utility	designates	an	unused	disk
partition	(or	whole	drive)	to	be	used	by	LVM.	The	LVM	structures,	a	volume	label,	and	metadata	are	added	to	the
partition	during	this	process.

Volume	group
A	volume	group	(VG)	is	created	using	the	LVM's	vgcreate	command,	which	adds	PVs	to	a	storage	pool.	This	storage
pool	is	used	in	turn	to	build	various	logical	volumes.

You	can	have	multiple	volume	groups.	When	you	use	the	command	to	add	a	PV(s)	to	a	VG,	volume	group	metadata
is	added	to	the	PV	during	this	process.

A	disk's	partition,	designated	as	a	PV,	can	only	belong	to	a	single	VG.	However,	a	disk's	other	partitions,	also
designated	as	PVs,	can	belong	to	other	VGs.

Logical	volume
A	logical	volume	(LV)	is	created	using	the	LVM's	lvcreate	command.	This	is	the	final	object	in	logical	volume
creation.	An	LV	consists	of	storage	space	chunks	from	a	VG	pool.	It	can	be	formatted	with	a	filesystem,	mounted,
and	used	just	like	a	typical	disk	partition.

While	you	can	have	multiple	VGs,	each	LV	is	created	from	only	one	designated	VG.	However,	you	can	have	multiple
LVs	sharing	a	single	VG.	You	can	resize	(grow	or	reduce)	an	LV	using	the	appropriate	LVM	commands.	This	feature
adds	a	great	deal	of	flexibility	to	your	data	storage	management.

There	are	many	ways	to	divide	up	and	manage	your	data	storage	media	using	LVM.	Next,	we'll	dive	into	the	details
of	creating	and	managing	these	volumes.

Understanding	the	LVM	in	Linux
The	lvm	utility	is	an	interactive	utility	for	creating	and	managing	LVs.	If	not	installed,	you	can	install	it	via	the	lvm2
package	(see	Chapter	9).	You	do	not	need	to	enter	the	lvm	utility	to	access	the	various	LVM	tools.	Instead,	you	can
access	the	tools	directly	at	the	CLI,	as	covered	in	this	section.

NOTE
The	2	in	lvm2	or	LVM2	refers	to	version	2	of	LVM.	It	adds	some	additional	features	and	an
improved	design	over	LVM	version	1	(lvm1).	We're	using	LVM2	in	this	chapter.

To	set	up	a	logical	volume	for	the	first	time:

1.	 Create	physical	volumes.

2.	 Create	a	volume	group.

3.	 Create	a	logical	volume.

4.	 Format	the	logical	volume.

5.	 Mount	the	logical	volume.

Important	considerations	are	involved	in	the	first	three	steps	of	setting	up	your	logical	volume.	Each	decision	you
make	in	the	early	steps	will	determine	how	flexible	and	easy	it	is	to	manage	your	LVs.

Create	the	PVs
Before	designating	drives	as	PVs,	ensure	that	they	are	partitioned	and	currently	unused.	You	designate	the	partitions
as	a	PV	using	the	pvcreate	command	along	with	super	user	privileges:

$	lsblk
NAME								MAJ:MIN	RM		SIZE	RO	TYPE	MOUNTPOINT
[...]
sdb											8:16			0				2G		0	disk
⌙sdb1									8:17			0				2G		0	part
sdc											8:32			0				1G		0	disk
⌙sdc1									8:33			0	1023M		0	part
sdd											8:48			0				1G		0	disk
⌙sdd1									8:49			0	1023M		0	part
sde											8:64			0				1G		0	disk
⌙sde1									8:65			0	1023M		0	part
sr0											11:0			1	1024M		0	rom
$
$	sudo	pvcreate	/dev/sdc1	/dev/sdd1	/dev/sde1
[sudo]	password	for	christine:
		Physical	volume	"/dev/sdc1"	successfully	created.
		Physical	volume	"/dev/sdd1"	successfully	created.
		Physical	volume	"/dev/sde1"	successfully	created.
$

It's	wise	to	set	up	more	than	one	PV.	The	whole	point	of	LVM	is	having	additional	storage	media	to	add	on	the	fly	to
your	LVs.	Once	you	have	PVs	set	up,	create	a	VG.

Create	a	VG
Any	PV	can	be	added	to	a	volume	group.	The	command	to	use	is	vgcreate.

TIP
You	can	designate	more	than	one	PV	during	the	VG	creation	process.	If	you	need	to	add	PVs	to
a	VG	at	a	later	time,	use	the	vgextend	command.

Common	practice	names	the	first	VG	vg00	,	and	the	next	one	vg01	,	and	so	on.	However,	it's	your	choice	what	to
name	your	volume	group.	Because	many	distributions	set	up	LVM	during	installation	for	the	virtual	directory
structure's	root	(/),	it's	a	good	idea	to	check	for	any	current	VGs	on	your	system	using	the	vgdisplay	command:

$	sudo	vgdisplay
		---	Volume	group	---
		VG	Name															cl
		System	ID
		Format																lvm2
[...]
$

Notice	in	the	preceding	example	that	a	VG	named	c1	is	already	set	up.	Thus,	we're	safe	to	use	the	vg00	name	for	our
first	volume	group:

$	sudo	vgcreate	vg00	/dev/sdc1	/dev/sdd1
		Volume	group	"vg00"	successfully	created
$

In	the	preceding	example,	only	two	of	our	PVs	were	used	to	create	VG	vg00	:	/dev/sdc1	and	/dev/sdd1	.	Now	that	our
VG	storage	pool	contains	at	least	one	PV,	we	can	create	an	LV.

Create	an	LV
To	create	a	logical	volume,	use	the	lvcreate	command.	The	resulting	storage	volume's	size	is	set	using	the	-L	option,
which	uses	space	from	the	designated	VG	storage	pool:

$	sudo	lvcreate	-L	1g	-v	vg00
[sudo]	password	for	christine:
		Archiving	volume	group	"vg00"	metadata	(seqno	1).
		Creating	logical	volume	lvol0
[...]
		Logical	volume	"lvol0"	created.
$

Notice	that	the	first	LV	from	this	VG's	default	name	is	lvol0	.	Its	full	device	pathname	is	/dev/vg00/lvol0.

NOTE
If	for	some	reason	a	VG	does	not	have	enough	partition	space	to	give	to	the	LV	for	the
designated	size,	the	lvcreate	command	will	not	make	the	LV.	Instead,	you	will	receive	an
insufficient	free	space	error	message.

Once	the	LV	is	created,	use	the	lvdisplay	command	to	show	its	information.	Notice	that	the	full	pathname	is	used	to
designate	the	logical	volume	to	the	command:

$	sudo	lvdisplay	/dev/vg00/lvol0
[sudo]	password	for	christine:
		---	Logical	volume	---
		LV	Path																/dev/vg00/lvol0
		LV	Name																lvol0
		VG	Name																vg00
[...]
		LV	Size																1.00	GiB
[...]
$

Besides	the	lvdisplay	command,	you	can	use	the	lvs	and	the	lvscan	commands	to	display	information	on	all	your
systems'	LVs.	It's	nice	to	have	options.

Using	the	Linux	LVM
Once	your	LV	is	created,	treat	it	as	if	it	is	a	regular	partition.	Of	course,	it	is	different	in	that	you	can	grow	or	shrink
this	partition	on	the	fly	as	needed.	But	before	you	can	do	any	of	that,	you'll	need	to	attach	your	LV	to	the	virtual
directory	structure.

Format	and	mount	an	LV
With	your	LV,	there	is	nothing	special	you	have	to	do	in	order	to	make	a	filesystem	on	it	and	then	mount	it	to	the
virtual	directory	structure:

$	sudo	mkfs.ext4	/dev/vg00/lvol0
[sudo]	password	for	christine:
[...]
Writing	inode	tables:	done
Creating	journal	(8192	blocks):	done
Writing	superblocks	and	filesystem	accounting	information:	done
	
$	mkdir	my_LV
$	sudo	mount	-t	ext4	/dev/vg00/lvol0	my_LV
$	ls	my_LV
lost+found
$

Now	that	all	the	various	LVM	parts	are	created	and	the	LV	is	attached	to	your	virtual	directory	structure,	you	can	use
it	as	needed.	Keep	in	mind	that	you'll	want	to	add	a	record	to	the	/etc/fstab	file	so	that	your	new	LV	is	mounted
automatically	when	the	system	boots.

Growing	or	shrinking	your	VGs	and	LVs
The	time	comes	when	you	need	to	increase	a	VG's	or	LV's	size.	It	may	be	due	to	increasing	data	on	the	volume,	or	it
could	be	a	new	application	being	installed.	However,	you	may	want	to	shrink	a	VG	or	LV.	If	you	don't	have	access	to
a	fancy	graphical	interface	for	handling	these	activities	on	your	Linux	LVM	environment,	all	is	not	lost.	Table	8-6
lists	the	common	commands	that	are	available	to	accomplish	these	tasks.

TABLE	8-6	The	Growing	and	Shrinking	LVM	Commands

Command Function

vgextend Adds	physical	volumes	to	a	volume	group.

vgreduce Removes	physical	volumes	from	a	volume	group.

lvextend Increases	the	size	of	a	logical	volume.

lvreduce Decreases	the	size	of	a	logical	volume.

Using	these	command-line	programs,	you	have	more	control	over	your	Linux	LVM	environment.	Be	sure	to	consult
their	man	pages	for	additional	details.

TIP
To	see	all	the	various	LVM	commands	available,	type	lvm	help	at	the	CLI	and	press	Enter.

Using	the	various	command-line	programs	we	covered,	you	have	full	control	over	your	Linux	LVM	environment.
And	you	gain	the	added	flexibility	LVM	provides.

Summary
Working	with	storage	devices	in	Linux	requires	that	you	know	a	bit	about	filesystems.	Knowing	how	to	create	and
work	with	filesystems	from	the	command	line	can	come	in	handy	as	you	work	on	Linux	systems.	This	chapter
discussed	how	to	handle	filesystems	from	the	Linux	command	line.

Before	you	can	install	a	filesystem	on	a	storage	device,	you	must	first	prepare	the	drive.	The	fdisk	,	gdisk	,	and
parted	commands	are	used	to	partition	storage	devices	to	get	them	ready	for	the	filesystem.	When	you	partition	the
storage	device,	you	must	define	what	type	of	filesystem	will	be	used	on	it.

After	you	partition	a	storage	device,	you	can	use	one	of	several	filesystems	for	the	partition.	Popular	Linux
filesystems	include	journaling	or	volume-managing	features,	making	them	less	prone	to	errors	and	problems.

One	limiting	factor	in	creating	filesystems	directly	on	a	storage	device	partition	is	that	you	can't	easily	change	the
size	of	the	filesystem	if	you	run	out	of	disk	space.	However,	Linux	supports	logical	volume	management,	a	method	of
creating	virtual	partitions	across	multiple	storage	devices,	which	allows	you	to	easily	expand	an	existing	filesystem
without	having	to	completely	rebuild	it.

Now	that	you've	seen	the	core	Linux	command-line	commands,	it's	close	to	the	time	to	start	creating	some	shell
script	programs.	However,	before	you	start	coding,	we	need	to	discuss	another	element:	installing	software.	If	you
plan	to	write	shell	scripts,	you	need	an	environment	in	which	to	create	your	masterpieces.	The	next	chapter
discusses	how	to	install	and	manage	software	packages	from	the	command	line	in	different	Linux	environments.

CHAPTER	9
Installing	Software
IN	THIS	CHAPTER

Installing	software

Using	Debian	packages

Working	with	Red	Hat	packages

Exploring	application	containers

Revisiting	tarballs

In	the	old	days	of	Linux,	installing	software	could	be	a	painful	experience.	Fortunately,	the	Linux	developers	have
made	life	a	little	easier	for	us	by	bundling	software	into	prebuilt	packages	that	are	much	easier	to	install.	However,
there's	still	a	little	work	on	our	part	to	get	the	software	packages	installed,	especially	if	you	want	to	do	so	from	the
command	line.	This	chapter	takes	a	look	at	the	various	package	management	systems	available	in	Linux	and	the
command-line	tools	used	for	software	installation,	management,	and	removal.

Exploring	Package	Management
Before	diving	into	the	world	of	Linux	software	package	management,	this	chapter	goes	through	a	few	of	the	basics.
Each	of	the	major	Linux	distributions	utilizes	some	form	of	package	management	system	to	control	installing
software	applications	and	libraries.	A	package	management	system	uses	a	database	that	keeps	track	of	the
following:

What	software	packages	are	installed	on	the	Linux	system

What	files	have	been	installed	for	each	package

Versions	of	each	of	the	software	packages	installed

Software	packages	are	stored	on	servers,	called	repositories,	and	are	accessed	across	the	Internet	via	package
management	system	utilities	running	on	your	local	Linux	system.	You	can	use	these	utilities	to	search	for	new
software	packages	or	even	updates	to	software	packages	already	installed	on	the	system.

A	software	package	will	often	have	dependencies,	or	other	packages	that	must	be	installed	first	for	the	software	to
run	properly.	The	package	management	system	utilities	will	detect	these	dependencies	and	offer	to	install	any
additionally	needed	software	packages	before	installing	the	desired	package.

The	downside	to	a	package	management	system	is	that	there	isn't	a	single	standard	utility.	Whereas	all	the	Bash
shell	commands	discussed	so	far	in	this	book	will	work	no	matter	which	Linux	distribution	you	use,	this	is	not	true
with	software	package	management.

The	package	management	system	utilities	and	their	associated	commands	are	vastly	different	between	the	various
Linux	distributions.	The	two	primary	package	management	system	base	utilities	commonly	used	in	the	Linux	world
are	dpkg	and	rpm.

Debian-based	distributions	such	as	Ubuntu	and	Linux	Mint	use,	at	the	base	of	their	package	management	system
utilities,	the	dpkg	command.	This	command	interacts	directly	with	the	package	management	system	on	the	Linux
system	and	is	used	for	installing,	managing,	and	removing	software	packages.

The	Red	Hat–based	distributions,	such	as	Fedora,	CentOS,	and	openSUSE,	use	the	rpm	command	at	the	base	of	their
package	management	system.	Similar	to	the	dpkg	command,	the	rpm	command	can	list	installed	packages,	install
new	packages,	and	remove	existing	software.

Note	that	these	two	commands	are	the	core	of	their	respective	package	management	system,	not	the	entire	package
management	system	itself.	Many	Linux	distributions	that	use	the	dpkg	or	rpm	methods	have	built	additional	specialty
package	management	system	utilities	upon	these	base	commands	to	make	your	life	much	easier.	The	following
sections	walk	through	various	package	management	system	utility	commands	you'll	run	into	in	the	popular	Linux
distributions.

Inspecting	the	Debian-Based	Systems
The	dpkg	command	is	at	the	core	of	the	Debian-based	family	of	package	management	system	tools.	It	provides
options	to	install,	update,	and	remove	DEB	package	files	on	your	Linux	system.

The	dpkg	command	assumes	you	have	the	DEB	package	file	either	downloaded	onto	your	local	Linux	system	or
available	as	a	URL.	More	often	than	not,	that	isn't	the	case.	Usually	you'll	want	to	install	an	application	package
from	the	repository	for	your	Linux	distribution.	To	do	that,	you'll	use	the	Advanced	Package	Tool	(APT)	suite	of
tools:

apt-cache

apt-get

apt

The	apt	command	is	essentially	a	front	end	for	both	the	apt-cache	and	apt-get	commands.	The	nice	thing	about
APT	is	that	you	don't	need	to	remember	which	tool	to	use	when—it	covers	everything	you	need	to	do	with	package
management.	The	basic	format	for	the	apt	command	is

apt	[options]	command

The	command	defines	the	action	for	apt	to	take.	If	needed,	you	can	specify	one	or	more	options	to	fine-tune	what
happens.	This	section	looks	at	how	to	use	the	APT	command-line	tool	to	work	with	the	software	packages	on	your
Linux	system.

Managing	packages	with	apt
A	common	task	faced	by	Linux	system	administrators	is	to	determine	what	packages	are	already	installed	on	the
system.	The	apt	list	command	displays	all	the	packages	available	in	the	repository,	but	by	adding	the	--installed
option	you	can	limit	the	output	to	only	those	packages	already	installed	on	your	system:

$	apt	--installed	list
Listing...	Done
accountsservice/focal,now	0.6.55-0ubuntu11	amd64	[installed,automatic]
acl/focal,now	2.2.53-6	amd64	[installed,automatic]
acpi-support/focal,now	0.143	amd64	[installed,automatic]
acpid/focal,now	1:2.0.32-1ubuntu1	amd64	[installed,automatic]
adduser/focal,focal,now	3.118ubuntu2	all	[installed,automatic]
adwaita-icon-theme/focal,focal,now	3.36.0-1ubuntu1	all	[installed,automatic]
aisleriot/focal,now	1:3.22.9-1	amd64	[installed,automatic]
alsa-base/focal,focal,now	1.0.25+dfsg-0ubuntu5	all	[installed,automatic]
alsa-topology-conf/focal,focal,now	1.2.2-1	all	[installed,automatic]
alsa-ucm-conf/focal,focal,now	1.2.2-1	all	[installed,automatic]
...
$

As	you	can	guess,	the	list	of	installed	packages	will	be	very	long,	so	we've	abbreviated	the	output	to	show	just	a
sample	of	what	the	output	looks	like.	Next	to	the	package	name	is	additional	information	about	the	package,	such	as
the	version	name,	and	whether	the	package	is	installed	and	flagged	for	automatic	upgrades.

If	you	already	know	the	packages	on	your	system	and	want	to	quickly	display	detailed	information	about	a	particular
package,	use	the	show	command:

apt	show	package_name

Here's	an	example	of	displaying	the	details	of	the	package	zsh	:

$	apt	show	zsh
Package:	zsh
Version:	5.8-3ubuntu1
Priority:	optional
Section:	shells
Origin:	Ubuntu
Maintainer:	Ubuntu	Developers	<ubuntu-devel-discuss@lists.ubuntu.com>
Original-Maintainer:	Debian	Zsh	Maintainers	<pkg-zsh-devel@lists.alioth.debian.org>
Bugs:	https://bugs.launchpad.net/ubuntu/+filebug
Installed-Size:	2,390	kB
Depends:	zsh-common	(=	5.8-3ubuntu1),	libc6	(>=	2.29),	libcap2	(>=	1:2.10),	libtinfo6	(>=	6)
Recommends:	libgdbm6	(>=	1.16),	libncursesw6	(>=	6),	libpcre3
Suggests:	zsh-doc
Homepage:	https://www.zsh.org/
Download-Size:	707	kB
APT-Sources:	http://us.archive.ubuntu.com/ubuntu	focal/main	amd64	Packages
Description:	shell	with	lots	of	features
	Zsh	is	a	UNIX	command	interpreter	(shell)	usable	as	an
	interactive	login	shell	and	as	a	shell	script	command
	processor.	Of	the	standard	shells,	zsh	most	closely	resembles
	ksh	but	includes	many	enhancements.	Zsh	has	command-line	editing,
	built-in	spelling	correction,	programmable	command	completion,
	shell	functions	(with	autoloading),	a	history	mechanism,	and	a
	host	of	other	features.
	
$

NOTE
The	apt	show	command	does	not	indicate	that	the	package	is	installed	on	the	system.	It	shows
only	detailed	package	information	from	the	software	repository.

One	detail	you	cannot	get	with	apt	is	a	listing	of	all	the	files	associated	with	a	particular	software	package.	To	get	this
list,	you	will	need	to	go	to	the	dpkg	command	itself:

dpkg	-L	package_name

Here's	an	example	of	using	dpkg	to	list	all	the	files	installed	as	part	of	the	acl	package:

$	dpkg	-L	acl
/.
/bin
/bin/chacl
/bin/getfacl
/bin/setfacl
/usr
/usr/share
/usr/share/doc
/usr/share/doc/acl
/usr/share/doc/acl/copyright
/usr/share/man
/usr/share/man/man1
/usr/share/man/man1/chacl.1.gz
/usr/share/man/man1/getfacl.1.gz
/usr/share/man/man1/setfacl.1.gz
/usr/share/man/man5
/usr/share/man/man5/acl.5.gz
/usr/share/doc/acl/changelog.Debian.gz
$

You	can	also	do	the	reverse	—	find	what	package	a	particular	file	belongs	to:

dpkg	--search	absolute_file_name

Note	that	you	need	to	use	an	absolute	file	reference	for	this	to	work:

$	dpkg	--search	/bin/getfacl
acl:	/bin/getfacl
$

The	output	shows	the	getfacl	file	was	installed	as	part	of	the	acl	package.

Installing	software	packages	with	apt
Now	that	you	know	more	about	listing	software	package	information	on	your	system,	this	section	walks	you	through
a	software	package	installation.	First,	you'll	want	to	determine	the	package	name	to	install.	How	do	you	find	a
particular	software	package?	Use	apt	with	the	search	command:

apt	search	package_name

The	beauty	of	the	search	command	is	that	you	do	not	need	to	insert	wildcards	around	package_name.	Wildcards
are	implied.	By	default,	the	search	command	displays	packages	that	contain	the	search	term	in	either	the	package
name	or	the	package	description,	which	can	be	misleading	at	times.	If	you	want	to	limit	the	output	to	only	package
names,	include	the	--names-only	option:

$	apt	--names-only	search	zsh
Sorting...	Done
Full	Text	Search...	Done
fizsh/focal,focal	1.0.9-1	all
		Friendly	Interactive	ZSHell
	
zsh/focal	5.8-3ubuntu1	amd64
		shell	with	lots	of	features
	
zsh-antigen/focal,focal	2.2.3-2	all
		manage	your	zsh	plugins
	
zsh-autosuggestions/focal,focal	0.6.4-1	all
		Fish-like	fast/unobtrusive	autosuggestions	for	zsh
	
zsh-common/focal,focal	5.8-3ubuntu1	all
		architecture	independent	files	for	Zsh
	
zsh-dev/focal	5.8-3ubuntu1	amd64
		shell	with	lots	of	features	(development	files)
	
zsh-doc/focal,focal	5.8-3ubuntu1	all
		zsh	documentation	-	info/HTML	format
	
zsh-static/focal	5.8-3ubuntu1	amd64
		shell	with	lots	of	features	(static	link)
	
zsh-syntax-highlighting/focal,focal	0.6.0-3	all
		Fish	shell	like	syntax	highlighting	for	zsh
	
zsh-theme-powerlevel9k/focal,focal	0.6.7-2	all
		powerlevel9k	is	a	theme	for	zsh	which	uses	powerline	fonts
	
zshdb/focal,focal	1.1.2-1	all
		debugger	for	Z-Shell	scripts
	
$

Once	you	find	the	package	you'd	like	to	install,	installing	it	using	apt	is	as	easy	as	this:

apt	install	package_name

The	output	will	show	basic	information	about	the	package	and	ask	if	you	want	to	proceed	with	the	installation:

$	sudo	apt	install	zsh
[sudo]	password	for	rich:	
Reading	package	lists...	Done
Building	dependency	tree							
Reading	state	information...	Done
The	following	additional	packages	will	be	installed:
		zsh-common
Suggested	packages:
		zsh-doc
The	following	NEW	packages	will	be	installed:
		zsh	zsh-common
0	upgraded,	2	newly	installed,	0	to	remove	and	56	not	upgraded.
Need	to	get	4,450	kB	of	archives.
After	this	operation,	18.0	MB	of	additional	disk	space	will	be	used.
Do	you	want	to	continue?	[Y/n]	y
Get:1	http://us.archive.ubuntu.com/ubuntu	focal/main	amd64	zsh-common	all	5.8-3ubuntu1	[3,744	kB]
Get:2	http://us.archive.ubuntu.com/ubuntu	focal/main	amd64	zsh	amd64	5.8-3ubuntu1	[707	kB]
Fetched	4,450	kB	in	4s	(1,039	kB/s)
Selecting	previously	unselected	package	zsh-common.
(Reading	database	...	179515	files	and	directories	currently	installed.)
Preparing	to	unpack	.../zsh-common_5.8-3ubuntu1_all.deb	...
Unpacking	zsh-common	(5.8-3ubuntu1)	...
Selecting	previously	unselected	package	zsh.
Preparing	to	unpack	.../zsh_5.8-3ubuntu1_amd64.deb	...
Unpacking	zsh	(5.8-3ubuntu1)	...
Setting	up	zsh-common	(5.8-3ubuntu1)	...
Setting	up	zsh	(5.8-3ubuntu1)	...
Processing	triggers	for	man-db	(2.9.1-1)	...
$

NOTE
Before	the	apt	command	in	the	preceding	listing,	the	sudo	command	is	used.	The	sudo	command
allows	you	to	run	a	command	as	the	root	user.	You	can	use	the	sudo	command	to	run
administrative	tasks,	such	as	installing	software.

To	check	if	the	installation	processed	properly,	just	use	the	list	command	with	the	--installed	option	again.	You
should	see	the	package	appear,	indicating	that	it	is	installed.

Notice	that	when	installing	the	requested	package,	apt	asked	to	install	other	packages	as	well.	This	is	because	apt
automatically	resolves	any	necessary	package	dependencies	for	us	and	installs	the	needed	additional	library	and
software	packages.	This	is	a	wonderful	feature	included	in	many	package	management	systems.

Upgrading	software	with	apt
While	apt	helps	protect	you	from	problems	installing	software,	trying	to	coordinate	a	multiple-package	update	with
dependencies	can	get	tricky.	To	safely	upgrade	all	the	software	packages	on	a	system	with	any	new	versions	in	the
repository,	use	the	upgrade	command:

apt	upgrade

Notice	that	this	command	doesn't	take	any	software	package	names	as	an	argument.	That's	because	the	upgrade
option	will	upgrade	all	the	installed	packages	to	the	most	recent	version	available	in	the	repository,	which	is	safer	for
system	stabilization.

Here's	a	sample	output	from	running	the	apt	upgrade	command:

$
$	sudo	apt	upgrade
Reading	package	lists...	Done
Building	dependency	tree							
Reading	state	information...	Done
Calculating	upgrade...	Done
The	following	NEW	packages	will	be	installed:
		binutils	binutils-common	binutils-x86-64-linux-gnu	build-essential	dpkg-dev
		fakeroot	g++	g++-9	gcc	gcc-9	libalgorithm-diff-perl
		libalgorithm-diff-xs-perl	libalgorithm-merge-perl	libasan5	libatomic1
		libbinutils	libc-dev-bin	libc6-dev	libcrypt-dev	libctf-nobfd0	libctf0
		libfakeroot	libgcc-9-dev	libitm1	liblsan0	libquadmath0	libstdc++-9-dev
		libtsan0	libubsan1	linux-libc-dev	make	manpages-dev
The	following	packages	will	be	upgraded:
		chromium-codecs-ffmpeg-extra	eog	file-roller	fonts-opensymbol	gedit
		gedit-common	gir1.2-gnomedesktop-3.0	glib-networking	glib-networking-common
		glib-networking-services	gnome-control-center	gnome-control-center-data
		gnome-control-center-faces	gnome-desktop3-data	gnome-initial-setup
		libgnome-desktop-3-19	libjuh-java	libjurt-java	libnautilus-extension1a
		libnetplan0	libreoffice-base-core	libreoffice-calc	libreoffice-common
		libreoffice-core	libreoffice-draw	libreoffice-gnome	libreoffice-gtk3

		libreoffice-help-common	libreoffice-help-en-us	libreoffice-impress
		libreoffice-math	libreoffice-ogltrans	libreoffice-pdfimport
		libreoffice-style-breeze	libreoffice-style-colibre
		libreoffice-style-elementary	libreoffice-style-tango	libreoffice-writer
		libridl-java	libuno-cppu3	libuno-cppuhelpergcc3-3	libuno-purpenvhelpergcc3-3
		libuno-sal3	libuno-salhelpergcc3-3	libunoloader-java	nautilus	nautilus-data
		netplan.io	python3-distupgrade	python3-uno	thermald	ubuntu-drivers-common
		ubuntu-release-upgrader-core	ubuntu-release-upgrader-gtk	uno-libs-private
		ure
56	upgraded,	32	newly	installed,	0	to	remove	and	0	not	upgraded.
Need	to	get	133	MB	of	archives.
After	this	operation,	143	MB	of	additional	disk	space	will	be	used.
Do	you	want	to	continue?	[Y/n]

In	the	output,	notice	that	apt	lists	the	packages	that	will	be	upgraded,	but	also	any	new	packages	that	are	required	to
be	installed	because	of	upgrades.

The	upgrade	command	won't	remove	any	packages	as	part	of	the	upgrade	process.	If	a	package	needs	to	be	removed
as	part	of	an	upgrade,	use	the	command

apt	full-upgrade

Although	this	may	seem	like	an	odd	thing,	sometimes	it's	required	to	remove	packages	to	keep	things	synchronized
between	distribution	upgrades.

NOTE
Obviously,	running	apt	's	upgrade	option	is	something	you	should	do	on	a	regular	basis	to	keep
your	system	up	to	date.	However,	it	is	especially	important	to	run	it	after	a	fresh	distribution
installation.	Usually	there	are	lots	of	security	patches	and	updates	that	have	been	released
since	the	last	full	release	of	a	distribution.

Uninstalling	software	with	apt
Getting	rid	of	software	packages	with	apt	is	as	easy	as	installing	and	upgrading	them.	The	only	real	choice	you	have
to	make	is	whether	or	not	to	keep	the	software's	data	and	configuration	files	around	afterward.

To	remove	a	software	package,	but	not	the	data	and	configuration	files,	use	apt	's	remove	command.	To	remove	a
software	package	and	the	related	data	and	configuration	files,	use	the	purge	option:

	
$	sudo	apt	purge	zsh
Reading	package	lists...	Done
Building	dependency	tree							
Reading	state	information...	Done
The	following	package	was	automatically	installed	and	is	no	longer	required:
		zsh-common
Use	'sudo	apt	autoremove'	to	remove	it.
The	following	packages	will	be	REMOVED:
		zsh*
0	upgraded,	0	newly	installed,	1	to	remove	and	56	not	upgraded.
After	this	operation,	2,390	kB	disk	space	will	be	freed.
Do	you	want	to	continue?	[Y/n]	y
(Reading	database	...	180985	files	and	directories	currently	installed.)
Removing	zsh	(5.8-3ubuntu1)	...
Processing	triggers	for	man-db	(2.9.1-1)	...
(Reading	database	...	180928	files	and	directories	currently	installed.)
Purging	configuration	files	for	zsh	(5.8-3ubuntu1)	...
$

Notice,	though,	as	part	of	the	purge	output	apt	warns	us	that	the	zsh-common	package	that	was	installed	as	a
dependency	wasn't	removed	automatically,	just	in	case	it	might	be	required	for	some	other	package.	If	you're	sure
the	dependency	package	isn't	required	by	anything	else,	you	can	remove	it	using	the	autoremove	command:

$	sudo	apt	autoremove
Reading	package	lists...	Done
Building	dependency	tree							
Reading	state	information...	Done
The	following	packages	will	be	REMOVED:
		zsh-common
0	upgraded,	0	newly	installed,	1	to	remove	and	56	not	upgraded.
After	this	operation,	15.6	MB	disk	space	will	be	freed.
Do	you	want	to	continue?	[Y/n]	y
(Reading	database	...	180928	files	and	directories	currently	installed.)
Removing	zsh-common	(5.8-3ubuntu1)	...
Processing	triggers	for	man-db	(2.9.1-1)	...
$

The	autoremove	command	will	check	for	all	packages	that	are	marked	as	dependencies	and	no	longer	required.

The	apt	repositories

The	default	software	repository	locations	for	apt	are	set	up	for	you	when	you	install	your	Linux	distribution.	The
repository	locations	are	stored	in	the	file	/etc/apt/sources.list.

In	many	cases,	you	will	never	need	to	add/remove	a	software	repository,	so	you	won't	need	to	touch	this	file.
However,	apt	will	only	pull	software	from	these	repositories.	Also,	when	searching	for	software	to	install	or	update,
apt	will	only	check	these	repositories.	If	you	need	to	include	some	additional	software	repositories	for	your	package
management	system,	this	is	the	place	to	do	it.

TIP
The	Linux	distribution	developers	work	hard	to	make	sure	package	versions	added	to	the
repositories	don't	conflict	with	one	another.	Usually	it's	safest	to	upgrade	or	install	a	software
package	from	the	repository.	Even	if	a	newer	version	is	available	elsewhere,	you	may	want	to
hold	off	installing	it	until	that	version	is	available	in	your	Linux	distribution's	repository.

The	following	is	an	example	of	a	sources.list	file	from	an	Ubuntu	system:

$	cat	/etc/apt/sources.list
#deb	cdrom:[Ubuntu	20.04	LTS	_Focal	Fossa_	-	Release	amd64	(20200423)]/	focal	main	restricted
	
#	See	http://help.ubuntu.com/community/UpgradeNotes	for	how	to	upgrade	to
#	newer	versions	of	the	distribution.
deb	http://us.archive.ubuntu.com/ubuntu/	focal	main	restricted
#	deb-src	http://us.archive.ubuntu.com/ubuntu/	focal	main	restricted
	
##	Major	bug	fix	updates	produced	after	the	final	release	of	the
##	distribution.
deb	http://us.archive.ubuntu.com/ubuntu/	focal-updates	main	restricted
#	deb-src	http://us.archive.ubuntu.com/ubuntu/	focal-updates	main	restricted
	
##	N.B.	software	from	this	repository	is	ENTIRELY	UNSUPPORTED	by	the	Ubuntu
##	team.	Also,	please	note	that	software	in	universe	WILL	NOT	receive	any
##	review	or	updates	from	the	Ubuntu	security	team.
deb	http://us.archive.ubuntu.com/ubuntu/	focal	universe
#	deb-src	http://us.archive.ubuntu.com/ubuntu/	focal	universe
deb	http://us.archive.ubuntu.com/ubuntu/	focal-updates	universe
#	deb-src	http://us.archive.ubuntu.com/ubuntu/	focal-updates	universe
	
##	N.B.	software	from	this	repository	is	ENTIRELY	UNSUPPORTED	by	the	Ubuntu	
##	team,	and	may	not	be	under	a	free	licence.	Please	satisfy	yourself	as	to	
##	your	rights	to	use	the	software.	Also,	please	note	that	software	in	
##	multiverse	WILL	NOT	receive	any	review	or	updates	from	the	Ubuntu
##	security	team.
deb	http://us.archive.ubuntu.com/ubuntu/	focal	multiverse
#	deb-src	http://us.archive.ubuntu.com/ubuntu/	focal	multiverse
deb	http://us.archive.ubuntu.com/ubuntu/	focal-updates	multiverse
#	deb-src	http://us.archive.ubuntu.com/ubuntu/	focal-updates	multiverse
	
##	N.B.	software	from	this	repository	may	not	have	been	tested	as
##	extensively	as	that	contained	in	the	main	release,	although	it	includes
##	newer	versions	of	some	applications	which	may	provide	useful	features.
##	Also,	please	note	that	software	in	backports	WILL	NOT	receive	any	review
##	or	updates	from	the	Ubuntu	security	team.
deb	http://us.archive.ubuntu.com/ubuntu/	focal-backports	main	restricted	universe	multiverse
#	deb-src	http://us.archive.ubuntu.com/ubuntu/	focal-backports	main	restricted	universe	multiverse
	
##	Uncomment	the	following	two	lines	to	add	software	from	Canonical's
##	'partner'	repository.
##	This	software	is	not	part	of	Ubuntu,	but	is	offered	by	Canonical	and	the
##	respective	vendors	as	a	service	to	Ubuntu	users.
#	deb	http://archive.canonical.com/ubuntu	focal	partner
#	deb-src	http://archive.canonical.com/ubuntu	focal	partner
	
deb	http://security.ubuntu.com/ubuntu	focal-security	main	restricted
#	deb-src	http://security.ubuntu.com/ubuntu	focal-security	main	restricted
deb	http://security.ubuntu.com/ubuntu	focal-security	universe
#	deb-src	http://security.ubuntu.com/ubuntu	focal-security	universe
deb	http://security.ubuntu.com/ubuntu	focal-security	multiverse
#	deb-src	http://security.ubuntu.com/ubuntu	focal-security	multiverse
	
#	This	system	was	installed	using	small	removable	media
#	(e.g.	netinst,	live	or	single	CD).	The	matching	"deb	cdrom"
#	entries	were	disabled	at	the	end	of	the	installation	process.
#	For	information	about	how	to	configure	apt	package	sources,
#	see	the	sources.list(5)	manual.
$

First,	notice	that	the	file	is	full	of	helpful	comments	and	warnings.	The	repository	sources	specified	use	the	following
structure:

deb	(or	deb-src)	address		distribution_name		package_type_list

The	deb	or	deb-src	value	indicates	the	software	package	type.	The	deb	value	indicates	it	is	a	source	of	compiled
programs,	whereas	the	deb-src	value	indicates	it	is	a	source	of	source	code.

The	address	entry	is	the	software	repository's	web	address.	The	distribution_name	entry	is	the	name	of	this
particular	software	repository's	distribution	version.	In	the	example,	the	distribution	name	is	focal	.	This	does	not
necessarily	mean	that	the	distribution	you	are	running	is	Ubuntu's	Focal	Fossa;	it	just	means	the	Linux	distribution
is	using	the	Ubuntu	Focal	Fossa	software	repositories.	For	example,	in	Linux	Mint's	sources.list	file,	you	will	see	a
mix	of	Linux	Mint	and	Ubuntu	software	repositories.

Finally,	the	package_type_list	entry	may	be	more	than	one	word	and	indicates	what	type	of	packages	the	repository
has	in	it.	For	example,	you	may	see	values	such	as	main	,	restricted	,	universe	,	or	partner.

When	you	need	to	add	a	software	repository	to	your	sources	file,	you	can	try	to	wing	it	yourself,	but	that	more	than
likely	will	cause	problems.	Often,	software	repository	sites	or	various	package	developer	sites	will	have	an	exact	line
of	text	that	you	can	copy	from	their	website	and	paste	into	your	sources.list	file.	It's	best	to	choose	the	safer	route
and	just	copy/paste.

The	front-end	interface,	apt	,	provides	intelligent	command-line	options	for	working	with	the	Debian-based	dpkg
utility.	Now	it's	time	to	take	a	look	at	the	Red	Hat–based	distributions'	rpm	utility	and	its	various	front-end
interfaces.

The	Red	Hat–Based	Systems
Like	the	Debian-based	distributions,	the	Red	Hat–based	systems	have	several	different	front-end	tools	available.
The	common	ones	are:

yum	:	Used	in	Red	Hat,	CentOS,	and	Fedora

zypper	:	Used	in	openSUSE

dnf	:	An	updated	version	of	yum	with	some	additional	features

These	front	ends	are	all	based	on	the	rpm	command-line	tool.	The	following	section	discusses	how	to	manage
software	packages	using	these	various	rpm	-based	tools.	The	focus	will	be	on	dnf	,	but	the	other	packages	use	similar
commands	and	formats.

Listing	installed	packages
To	find	out	what	is	currently	installed	on	your	system,	at	the	shell	prompt	type	the	following	command:

dnf	list	installed

The	information	will	probably	whiz	by	you	on	the	display	screen,	so	it's	best	to	redirect	the	installed	software	listing
into	a	file.	You	can	then	use	the	more	or	less	command	(or	a	GUI	editor)	to	look	at	the	list	in	a	controlled	manner.

dnf	list	installed>	installed_software

To	find	out	detailed	information	for	a	particular	software	package,	dnf	really	shines.	Not	only	will	it	give	you	a	very
verbose	description	of	the	package,	but	with	another	simple	command,	you	can	see	whether	the	package	is	installed:

$	dnf	list	xterm
Last	metadata	expiration	check:	0:05:17	ago	on	Sat	16	May	2020	12:10:24	PM	EDT.
Available	Packages
xterm.x86_64																									351-1.fc31																										updates
	
$	dnf	list	installed	xterm
Error:	No	matching	Packages	to	list
	
$	dnf	list	installed	bash
Installed	Packages
Bash.x86_64																											5.0.11-1.fc31																						@updates
$

Finally,	if	you	need	to	find	out	what	software	package	provides	a	particular	file	on	your	filesystem,	the	versatile	dnf
can	do	that,	too!	Just	enter	the	command

dnf	provides	file_name

Here's	an	example	of	trying	to	find	what	software	provided	the	file	/usr/bin/gzip	:

$	dnf	provides	/usr/bin/gzip
Last	metadata	expiration	check:	0:12:06	ago	on	Sat	16	May	2020	12:10:24	PM	EDT.
gzip-1.10-1.fc31.x86_64	:	The	GNU	data	compression	program
Repo								:	@System
Matched	from:
Filename				:	/usr/bin/gzip
	
gzip-1.10-1.fc31.x86_64	:	The	GNU	data	compression	program
Repo								:	fedora
Matched	from:
Filename				:	/usr/bin/gzip
	
$

dnf	checked	two	separate	repositories:	the	local	system	and	the	default	fedora	repository.

Installing	software	with	dnf
Installation	of	a	software	package	using	dnf	is	incredibly	easy.	The	following	is	the	basic	command	for	installing	a
software	package,	all	its	needed	libraries,	and	package	dependencies	from	a	repository:

dnf	install	package_name

Here's	an	example	of	installing	the	zsh	package,	which	provides	an	alternative	command-line	shell:

$	sudo	dnf	install	zsh
[sudo]	password	for	rich:	
Last	metadata	expiration	check:	0:19:45	ago	on	Sat	16	May	2020	12:05:01	PM	EDT.
Dependencies	resolved.
==
	Package							Architecture					Version																	Repository									Size
==
Installing:
	zsh											x86_64											5.7.1-6.fc31												updates											2.9	M
	
Transaction	Summary
==
Install		1	Package
	
Total	download	size:	2.9	M
Installed	size:	7.4	M
Is	this	ok	[y/N]:	
Downloading	Packages:
zsh-5.7.1-6.fc31.x86_64.rpm																					1.5	MB/s	|	2.9	MB					00:01				
--
Total																																											1.0	MB/s	|	2.9	MB					00:02					
Running	transaction	check
Transaction	check	succeeded.
Running	transaction	test
Transaction	test	succeeded.
Running	transaction
		Preparing								:																																																								1/1	
		Installing							:	zsh-5.7.1-6.fc31.x86_64																																1/1	
		Running	scriptlet:	zsh-5.7.1-6.fc31.x86_64																																1/1	
		Verifying								:	zsh-5.7.1-6.fc31.x86_64																																1/1	
	
Installed:
		zsh-5.7.1-6.fc31.x86_64																																																							
	
Complete!
$

NOTE
Before	the	dnf	command	in	the	preceding	listing,	the	sudo	command	is	used.	This	command
allows	you	to	switch	to	the	root	user	to	run	the	command.	You	should	only	switch	to	root	user
temporarily	in	order	to	run	administrative	tasks,	such	as	installing	and	updating	software.

You	can	begin	to	see	that	one	of	dnf	's	strengths	is	that	it	uses	very	logical	and	user-friendly	commands.

Upgrading	software	with	dnf
In	most	Linux	distributions,	when	you're	working	away	in	the	GUI,	you	get	those	nice	little	notification	icons	telling
you	a	software	upgrade	to	a	new	version	is	needed.	Here	at	the	command	line,	it	takes	a	little	more	work.

To	see	the	list	of	all	the	available	upgrades	for	your	installed	packages,	type	the	following	command:

dnf	list	upgrades

It's	always	nice	to	get	no	response	to	this	command	because	it	means	you	have	nothing	to	upgrade!	However,	if	you
do	discover	that	a	particular	software	package	needs	upgrading,	then	type	in	the	following	command:

dnf	upgrade	package_name

If	you'd	like	to	upgrade	all	the	packages	listed	in	the	upgrade	list,	just	enter	the	following	command:

dnf	upgrade

NOTE
One	nice	extra	feature	in	dnf	is	the	upgrade-minimal	command.	It	upgrades	a	package	to	the	latest
bug	fix	or	security	patch	version	instead	of	the	latest	and	greatest	version.

Uninstalling	software	with	dnf
The	dnf	tool	also	provides	an	easy	way	to	uninstall	software	you	no	longer	want	on	your	system:

dnf	remove	package_name

Unfortunately,	as	of	this	writing	there	isn't	an	option	or	command	to	remove	the	application	files	but	keep	any
configuration	or	data	files.

While	life	is	considerably	easier	with	package	management	system	packages,	it's	not	always	problem	free.
Occasionally	things	do	go	wrong.	Fortunately,	there's	help.

Dealing	with	broken	dependencies
Sometimes	as	multiple	software	packages	get	loaded,	a	software	dependency	for	one	package	can	get	overwritten	by
the	installation	of	another	package.	This	is	called	a	broken	dependency.

If	this	should	happen	on	your	system,	first	try	the	following	command:

dnf	clean	all

Then	try	to	use	the	upgrade	option	in	the	dnf	command.	Sometimes,	just	cleaning	up	any	misplaced	files	can	help.

If	that	doesn't	solve	the	problem,	try	the	following	command:

dnf	repoquery	--deplist	package_name

This	command	displays	all	the	package's	library	dependencies	and	what	software	package	provides	them.	Once	you
know	the	libraries	required	for	a	package,	you	can	then	install	them.	Here's	an	example	of	determining	the
dependencies	for	the	xterm	package:

#	dnf	repoquery	--deplist	xterm	
	
#

NOTE
The	yum	tool's	upgrade	command	includes	support	for	the	--skip-broken	option	that	skips	over
broken	packages	but	tries	to	continue	upgrading	other	packages.	The	dnf	tool	does	this
automatically.

RPM	repositories
Just	like	the	apt	systems,	dnf	has	its	software	repositories	set	up	at	installation.	For	most	purposes,	these
preinstalled	repositories	will	work	just	fine	for	your	needs.	But	if	and	when	the	time	comes	that	you	need	to	install
software	from	a	different	repository,	here	are	some	things	you	will	need	to	know.

TIP
A	wise	system	administrator	sticks	with	approved	repositories.	An	approved	repository	is	one
that	is	sanctioned	by	the	distribution's	official	site.	If	you	start	adding	unapproved
repositories,	you	lose	the	guarantee	of	stability.	And	you	will	be	heading	into	broken
dependencies	territory.

To	see	what	repositories	you	are	currently	pulling	software	from,	type	the	following	command:

dnf	repolist

If	you	don't	find	a	repository	you	need	software	from,	then	you	will	need	to	do	a	little	configuration	file	editing.
There	are	two	places	where	the	dnf	repository	definitions	can	be	located:

In	the	/etc/dnf/dnf.conf	configuration	file

As	separate	files	in	the	/etc/yum.repos.d	directory

Good	repository	sites	such	as	rpmfusion.org	will	lay	out	all	the	steps	necessary	to	use	them.	Sometimes	these
repository	sites	will	offer	an	RPM	file	that	you	can	download	and	install.	The	installation	of	the	RPM	file	will	do	all
the	repository	setup	work	for	you.	Now	that's	convenient!

Managing	Software	Using	Containers
Although	package	management	systems	have	certainly	made	software	installation	in	the	Linux	world	much	easier,
they	do	have	their	drawbacks.	To	start	with,	as	you've	already	seen	in	this	chapter,	there	are	multiple	competing
package	management	systems.	So	for	application	developers	to	distribute	an	application	that	can	be	installed	in	all
Linux	distributions,	they	must	create	multiple	versions	to	distribute.

But	there's	even	more	complexity	than	that.	Every	application	has	some	type	of	library	functions	that	it	depends	on

to	run.	When	developers	create	a	Linux	application,	they	must	take	into	consideration	what	library	files	are	available
in	most	Linux	distributions,	and	not	only	that,	but	also	what	versions	of	the	library	files.	Although	package
management	systems	can	track	dependencies,	as	you	can	guess,	this	can	quickly	turn	into	a	nightmare	for	software
developers	trying	to	get	their	applications	working	in	most	Linux	distributions.

With	cloud	computing	came	a	new	paradigm	in	how	applications	can	be	packaged:	application	containers.	An
application	container	creates	an	environment	where	all	the	files	required	for	an	application	to	run	are	bundled
together,	including	runtime	library	files.	The	developer	can	then	release	the	application	container	as	a	single
package	and	be	guaranteed	that	it'll	run	just	fine	on	any	Linux	system.

Though	still	relatively	new,	several	competing	application	container	standards	are	starting	to	emerge.	The	following
sections	take	a	look	at	two	of	the	more	popular	ones:	snap	and	flatpak.

Using	snap	containers
Canonical,	the	creators	of	the	Ubuntu	Linux	distribution,	have	developed	an	application	container	format	called
snap.	The	snap	packaging	system	bundles	all	the	files	required	for	an	application	into	a	single	snap	distribution	file.
The	snapd	application	runs	in	the	background,	and	you	use	the	snap	command-line	tool	to	query	the	snap	database
to	display	installed	snap	packages,	as	well	as	to	install,	upgrade,	and	remove	snap	packages.

To	check	whether	snap	is	running	on	your	system,	use	the	snap	version	command:

$	snap	version
snap				2.44.3+20.04
snapd			2.44.3+20.04
series		16
ubuntu		20.04
kernel		5.4.0-31-generic
$

If	snap	is	running,	you	can	see	a	list	of	the	currently	installed	snap	applications	by	using	the	snap	list	command:

$	snap	list
Name														Version																			Rev			Tracking									Publisher					Notes
core																16-2.44.3														9066			latest/stable				canonical✓				core
core18														20200427																1754		latest/stable				canonical✓				base
gimp																2.10.18																		273		latest/stable				snapcrafters		-
gnome-3-28-1804					3.28.0-16-g27c9498.27c9		116		latest/stable				canonical✓				-
gnome-3-34-1804					0+git.3009fc7													33		latest/stable/...		canonical✓			-
gtk-common-themes			0.1-36-gc75f853									1506		latest/stable/...		canonical✓					-
gtk2-common-themes		0.1																								9		latest/stable				canonical✓		-
snap-store										3.36.0-74-ga164ec9							433		latest/stable/...		canonical✓				-
snapd															2.44.3																		7264		latest/stable				canonical✓				snapd
$

To	search	the	snap	repository	for	new	applications,	use	the	snap	find	command:

$	snap	find	solitaire
Name																				Version		Publisher				Notes		Summary
solitaire															1.0						1bsyl								-						usual	Solitaire	card	game,
	as	known	as	Patience	or	Klondike
kmahjongg															20.04.1		kde✓									-						Mahjong	Solitaire
kshisen																	19.08.0		kde✓									-						Shisen-Sho	Mahjongg-like	TileGame
kpat																				20.04.0		kde✓									-						Solitaire	card	game
freecell-solitaire						1.0						1bsyl								-						FreeCell	Solitaire,	card	game
open-solitaire-classic		0.9.2				metasmug					-						Open-source	implementation	of	the
classic	solitaire	game
spider-solitaire								1.0						1bsyl								-						Spider	Solitaire	card	game
solvitaire														master			popey								-						solitaire	(klondike	&	spider)	in	your	terminal
gnome-mahjongg										3.34.0			ken-vandine		-						Match	tiles	and	clear	the	board
	
$

To	view	more	information	about	a	snap	application	(snap	for	short),	use	the	snap	info	command:

$	snap	info	solitaire
name:						solitaire
summary:			usual	Solitaire	card	game,	as	known	as	Patience	or	Klondike
publisher:	Sylvain	Becker	(1bsyl)
store-url:	https://snapcraft.io/solitaire
contact:			sylvain.becker@gmail.com
license:			Proprietary
description:	|
		This	is	the	usual	Solitaire	card	game.	Also	known	as	Patience	or	Klondike.
snap-id:	0rnkesZh4jFy9oovDTvL661qVTW4iDdE
channels:
		latest/stable:				1.0	2017-05-17	(2)	11MB	-
		latest/candidate:	1.0	2017-05-17	(2)	11MB	-
		latest/beta:						1.0	2017-05-17	(2)	11MB	-
		latest/edge:						1.0	2017-05-17	(2)	11MB	-
$

To	install	a	new	snap,	use	the	snap	install	command:

$	sudo	snap	install	solitaire
[sudo]	password	for	rich:	

solitaire	1.0	from	Sylvain	Becker	(1bsyl)	installed
$

Notice	that	you	must	have	root	user	privileges	to	install	snap.	In	Ubuntu,	that	means	using	the	sudo	command.

NOTE
When	you	install	a	snap,	the	snapd	program	mounts	it	as	a	drive.	You	can	see	the	new	snap
mount	by	using	the	mount	command.

If	you	need	to	remove	a	snap,	just	use	the	snap	remove	command:

$	sudo	snap	remove	solitaire
solitaire	removed
$

As	the	snap	is	removed,	you'll	see	some	messages	about	the	progress	of	the	removal.

NOTE
Instead	of	removing	a	snap,	you	can	just	disable	it	without	removing	it.	Just	use	the	snap	disable
command.	To	reenable	the	snap,	use	the	snap	enable	command.

Using	flatpak	containers
The	flatpak	application	container	format	was	created	as	an	independent	open	source	project	with	no	direct	ties	to
any	specific	Linux	distribution.	That	said,	battle	lines	have	already	been	drawn,	with	Red	Hat,	CentOS,	and	Fedora
oriented	toward	using	flatpak	instead	of	Canonical's	snap	container	format.

If	you're	using	a	Linux	distribution	that	supports	flatpak,	you	can	list	the	installed	application	containers	using	the
flatpak	list	command:

$	flatpak	list
Name												Application	ID																Version							Branch			Installation
Platform								org.fedoraproject.Platform																		f32						system
$

To	find	an	application	in	the	flatpak	repository,	you	use	the	flatpak	search	command:

$	flatpak	search	solitaire
Name									Description							Application	ID					Version							Branch							Remotes
Aisleriot	Solitaire									org.gnome.Aisleriot				stable							fedora
GNOME	Mahjongg														org.gnome.Mahjongg					3.32.0							stable							fedora
$

We	edited	out	some	of	the	information	in	the	output	to	help	simplify	things.	When	working	with	a	container	you
must	use	its	Application	ID	value	and	not	its	name.	To	install	the	application,	use	the	flatpak	install	command:

$	sudo	flatpak	install	org.gnome.Aisleriot
Looking	for	matches...
Found	similar	ref(s)	for	'org.gnome.Aisleriot'	in	remote	'fedora'	(system).
Use	this	remote?	[Y/n]:	y
	
org.gnome.Aisleriot	permissions:
				ipc						pulseaudio						wayland						x11						dri						file	access	[1]					dbus	
access	[2]
	
				[1]	xdg-run/dconf,	~/.config/dconf:ro
				[2]	ca.desrt.dconf,	org.gnome.GConf
	
	
								ID																											Arch						Branch		Remote									Download
	1.	[✓]	org.gnome.Aisleriot										x86_64				stable		fedora									8.4MB	/	8.4MB
	
Installation	complete.
$

To	check	if	the	installation	went	well,	you	can	use	the	flatpak	list	command	again:

$	flatpak	list
Name																	Application	ID												Version			Branch							Installation
Platform												org.fedoraproject.Platform											f32											system
Aisleriot	Solitaire	org.gnome.Aisleriot																		stable								system
$

And	finally,	to	remove	an	application	container,	use	the	flatpak	uninstall	command:

$	sudo	flatpak	uninstall	org.gnome.Aisleriot
	
	

								ID																									Arch										Branch
	1.	[-]	org.gnome.Aisleriot								x86_64								stable
	
Uninstall	complete.
$

Using	application	containers	is	similar	to	using	package	management	systems,	but	what	goes	on	behind	the	scenes	is
fundamentally	different.	However,	the	end	result	is	that	you	have	an	application	installed	on	your	Linux	system	that
can	be	easily	maintained	and	upgraded.

Installing	from	Source	Code
Before	package	management	systems	and	application	containers,	open	source	application	developers	had	to
distribute	their	software	as	source	code	and	allow	users	to	compile	the	applications	on	their	own	systems.	Source
code	packages	were	commonly	released	as	tarballs.	Chapter	4,	“More	Bash	Shell	Commands,”	discussed	tarball
packages — how	to	create	them	using	the	tar	command-line	command	and	how	to	unpack	them.
If	you	develop	or	work	with	open	source	software	source	code	much,	there's	a	good	chance	you	will	still	find	software
packed	up	as	a	tarball.	This	section	walks	you	through	the	process	of	unpacking	and	installing	a	tarball	software
package.

For	this	example,	the	software	package	sysstat	will	be	used.	The	sysstat	utility	is	a	very	nice	software	package	that
provides	a	variety	of	system	monitoring	tools.

First,	you	will	need	to	download	the	sysstat	tarball	to	your	Linux	system.	While	you	can	often	find	the	sysstat
package	available	on	different	Linux	sites,	it's	usually	best	to	go	straight	to	the	source	of	the	program.	In	this	case,
it's	the	website	sebastien.godard.pagesperso-orange.fr.

When	you	click	the	Download	link,	you'll	go	to	the	page	that	contains	the	files	for	downloading.	The	current	version
as	of	this	writing	is	12.3.3,	and	the	distribution	filename	is	sysstat-12.3.3.tar.xz.

Click	the	link	to	download	the	file	to	your	Linux	system.	Once	you	have	downloaded	the	file,	you	can	unpack	it.

To	unpack	a	software	tarball,	use	the	standard	tar	command:

$	tar	-Jxvf	sysstat-12.3.3.tar.xz
sysstat-12.3.3/
sysstat-12.3.3/pcp_stats.h
sysstat-12.3.3/rd_sensors.h
sysstat-12.3.3/xml/
sysstat-12.3.3/xml/sysstat.xsd
sysstat-12.3.3/xml/sysstat-3.9.dtd
sysstat-12.3.3/sa.h
sysstat-12.3.3/man/
sysstat-12.3.3/man/sadf.in
sysstat-12.3.3/man/mpstat.1
...
sysstat-12.3.3/pcp_stats.c
sysstat-12.3.3/pr_stats.h
sysstat-12.3.3/rd_stats.c
sysstat-12.3.3/pr_stats.c
sysstat-12.3.3/.travis.yml
sysstat-12.3.3/configure
$

Now	that	the	tarball	is	unpacked	and	the	files	have	neatly	put	themselves	into	a	directory	called	sysstat-12.3.3	,	you
can	dive	down	into	that	directory	and	continue.

First,	use	the	cd	command	to	get	into	the	new	directory	and	then	list	the	contents	of	the	directory:

$	cd	sysstat-12.3.3
$	ls
activity.c				images													pr_stats.h				sar.c
BUG_REPORT				INSTALL												raw_stats.c			sa_wrap.c
build									ioconf.c											raw_stats.h			svg_stats.c
CHANGES							ioconf.h											rd_sensors.c		svg_stats.h
cifsiostat.c		iostat.c											rd_sensors.h		sysconfig.in
cifsiostat.h		iostat.h											rd_stats.c				sysstat-12.3.3.lsm
common.c						json_stats.c							rd_stats.h				sysstat-12.3.3.spec
common.h						json_stats.h							README.md					sysstat.in
configure					Makefile.in								rndr_stats.c		sysstat.ioconf
configure.in		man																rndr_stats.h		sysstat.service.in
contrib							mpstat.c											sa1.in								sysstat.sysconfig.in
COPYING							mpstat.h											sa2.in								systest.c
count.c							nls																sa_common.c			systest.h
count.h							pcp_def_metrics.c		sa_conv.c					tapestat.c
CREDITS							pcp_def_metrics.h		sa_conv.h					tapestat.h
cron										pcp_stats.c								sadc.c								tests
do_test							pcp_stats.h								sadf.c								version.in
FAQ.md								pidstat.c										sadf.h								xml
format.c						pidstat.h										sadf_misc.c			xml:stats.c
iconfig							pr_stats.c									sa.h										xml:stats.h
$	

In	the	directory	listing,	you	should	typically	see	a	README	or	an	INSTALL	file.	It	is	very	important	to	read	this	file.	In

the	file	will	be	the	instructions	you	will	need	to	finish	the	software's	installation.

Following	the	advice	contained	in	the	INSTALL	file,	the	next	step	is	to	run	the	configure	utility	for	your	system.	This
checks	your	Linux	system	to	ensure	it	has	the	proper	library	dependencies,	in	addition	to	the	proper	compiler	to
compile	the	source	code:

$./configure
.
Check	programs:
.
checking	for	gcc...	gcc
checking	whether	the	C	compiler	works...	yes
checking	for	C	compiler	default	output	file	name...	a.out
checking	for	suffix	of	executables...	
checking	whether	we	are	cross	compiling...	no
checking	for	suffix	of	object	files...	o
checking	whether	we	are	using	the	GNU	C	compiler...	yes
checking	whether	gcc	accepts	-g...	yes
...
config.status:	creating	man/cifsiostat.1
config.status:	creating	tests/variables
config.status:	creating	Makefile
	
			Sysstat	version:									12.3.3
			Installation	prefix:												/usr/local
			rc	directory:												/etc
			Init	directory:										/etc/init.d
			Systemd	unit	dir:															/lib/systemd/system
			Configuration	file:													/etc/sysconfig/sysstat
			Man	pages	directory:												${datarootdir}/man
			Compiler:																	gcc
			Compiler	flags:										-g	-O2
	
$

If	anything	does	go	wrong,	the	configure	step	will	display	an	error	message	explaining	what's	missing.

NOTE
Most	Linux	utility	programs	are	written	using	the	C	or	C++	programming	language.	To	compile
them	on	your	system,	you	will	need	the	gcc	package	installed,	as	well	as	the	make	package.	Most
Linux	desktop	distributions	don't	install	these	by	default.	If	the	configure	program	shows	an
error	that	these	parts	are	missing,	consult	your	specific	Linux	distribution	docs	on	what
packages	you	need	to	install.

The	next	stage	is	to	build	the	various	binary	files	using	the	make	command.	The	make	command	compiles	the	source
code	and	then	the	linker	to	create	the	final	executable	files	for	the	package.	As	with	the	configure	command,	the
make	command	produces	lots	of	output	as	it	goes	through	the	steps	of	compiling	and	linking	all	the	source	code	files:

$	make
gcc	-o	sadc.o	-c	-g	-O2	-Wall	-Wstrict-prototypes	-pipe	-O2
		-DSA_DIR=\"/var/log/sa\"	-DSADC_PATH=\"/usr/local/lib/sa/sadc\"			
		-DHAVE_SYS_SYSMACROS_H	-DHAVE_LINUX_SCHED_H	-DHAVE_SYS_PARAM_H	sadc.c
gcc	-o	act_sadc.o	-c	-g	-O2	-Wall	-Wstrict-prototypes	-pipe	-O2	-DSOURCE_SADC		
		-DSA_DIR=\"/var/log/sa\"	-DSADC_PATH=\"/usr/local/lib/sa/sadc\"			
		-DHAVE_SYS_SYSMACROS_H	-DHAVE_LINUX_SCHED_H	-DHAVE_SYS_PARAM_H	activity.c
gcc	-o	sa_wrap.o	-c	-g	-O2	-Wall	-Wstrict-prototypes	-pipe	-O2	-DSOURCE_SADC		
		-DSA_DIR=\"/var/log/sa\"	-DSADC_PATH=\"/usr/local/lib/sa/sadc\"			
		-DHAVE_SYS_SYSMACROS_H	-DHAVE_LINUX_SCHED_H	-DHAVE_SYS_PARAM_H	sa_wrap.c
gcc	-o	sa_common_sadc.o	-c	-g	-O2	-Wall	-Wstrict-prototypes	-pipe	-O2	-DSOURCE_SADC		
		-DSA_DIR=\"/var/log/sa\"	-DSADC_PATH=\"/usr/local/lib/sa/sadc\"			
-DHAVE_SYS_SYSMACROS_H	-DHAVE_LINUX_SCHED_H	-DHAVE_SYS_PARAM_H	sa_common.c
...
$

When	make	is	finished,	you'll	have	the	actual	sysstat	software	program	available	in	the	directory!	However,	it's
somewhat	inconvenient	to	have	to	run	it	from	that	directory.	Instead,	you'll	want	to	install	it	in	a	common	location
on	your	Linux	system.	To	do	that,	you'll	need	to	log	in	as	the	root	user	account	(or	use	the	sudo	command	if	your
Linux	distribution	prefers),	and	then	use	the	install	option	of	the	make	command:

#	make	install
mkdir	-p	/usr/local/share/man/man1
mkdir	-p	/usr/local/share/man/man5
mkdir	-p	/usr/local/share/man/man8
rm	-f	/usr/local/share/man/man8/sa1.8*
install	-m	644	-g	man	man/sa1.8	/usr/local/share/man/man8
rm	-f	/usr/local/share/man/man8/sa2.8*
install	-m	644	-g	man	man/sa2.8	/usr/local/share/man/man8
rm	-f	/usr/local/share/man/man8/sadc.8*
...
install	-m	644	-g	man	man/sadc.8	/usr/local/share/man/man8

install	-m	644	FAQ	/usr/local/share/doc/sysstat-12.3.3
install	-m	644	*.lsm	/usr/local/share/doc/sysstat-12.3.3
#

Now	the	sysstat	package	is	installed	on	the	system!	Though	not	quite	as	easy	as	installing	a	software	package	via	a
package	management	system,	installing	software	using	tarballs	is	not	that	difficult.

Summary
This	chapter	discussed	how	to	work	with	a	software	package	management	system	to	install,	update,	or	remove
software	from	the	command	line.	Most	of	the	Linux	distributions	use	fancy	GUI	tools	for	software	package
management,	but	you	can	also	perform	package	management	from	the	command	line.

The	Debian-based	Linux	distributions	use	the	dpkg	utility	to	interface	with	the	package	management	system	from
the	command	line,	and	the	apt-cache	and	apt-get	utilities	to	interface	with	a	common	repository	to	easily	download
and	install	new	software.	A	front	end	to	these	utilities	is	apt	.	It	provides	simple	command-line	options	for	working
with	software	packages	in	the	dpkg	format.

The	Red	Hat–based	Linux	distributions	are	based	on	the	rpm	utility	but	use	different	front-end	tools	at	the	command
line.	Red	Hat,	CentOS,	and	Fedora	use	dnf	for	installing	and	managing	software	packages.	The	openSUSE
distribution	uses	zypper	for	managing	software.

Application	containers	are	a	relatively	new	player	in	software	package	management.	An	application	container
bundles	all	the	files	necessary	for	an	application	to	run	in	one	installable	package.	This	means	the	application
doesn't	rely	on	any	external	dependencies	such	as	library	files,	and	the	container	bundle	can	be	installed	in	any
Linux	distribution	and	run.	Currently	the	two	most	popular	container	packages	are	snap,	common	in	the	Ubuntu
Linux	distribution,	and	flatpak,	used	in	Red	Hat	Linux	environments.

The	chapter	closed	with	a	discussion	on	how	to	install	software	packages	that	are	only	distributed	in	source	code
tarballs.	The	tar	command	allows	you	to	unpack	the	source	code	files	from	the	tarball,	and	then	configure	and	make
allow	you	to	build	the	final	executable	program	from	the	source	code.

The	next	chapter	takes	a	look	at	the	various	editors	available	in	Linux	distributions.	As	you	get	ready	to	start
working	on	shell	scripts,	it	will	come	in	handy	to	know	what	editors	are	available	to	use.

CHAPTER	10
Working	with	Editors
IN	THIS	CHAPTER

Working	with	the	vim	editor

Exploring	nano

Understanding	Emacs

Getting	comfortable	with	KWrite

Looking	at	Kate

Using	the	GNOME	editor

Before	you	start	your	shell	scripting	career,	it's	wise	to	gain	proficiency	using	at	least	one	text	editor	in	Linux.	Using
features	such	as	searching,	cutting,	and	pasting	allows	you	to	develop	your	shell	scripts	more	quickly.

You	have	the	choice	of	several	editors.	Many	individuals	find	a	particular	editor	whose	functionality	they	love	and
use	that	one	exclusively.	This	chapter	provides	a	brief	sampling	of	a	few	of	the	text	editors	you	can	employ	in	the
Linux	world.

Visiting	the	vim	Editor
The	vi	editor	was	one	of	the	early	editors	used	on	Unix	systems.	It	uses	the	console	graphics	mode	to	emulate	a	text-
editing	window,	allowing	you	to	see	the	lines	of	your	file;	move	around	within	the	file;	and	insert,	edit,	and	replace
text.

Although	it	is	quite	possibly	the	most	complicated	editor	in	the	world	(at	least	in	the	opinion	of	those	who	don’t	like
it),	vi	provides	many	features	that	have	made	it	a	staple	for	programmers	and	system	administrators	for	decades.

When	the	GNU	Project	ported	the	vi	editor	to	the	open	source	world,	they	chose	to	make	some	improvements	to	it.
Because	it	extended	the	original	vi	editor	found	in	the	Unix	world,	the	developers	also	renamed	it	“vi	improved”	or
vim.

This	section	walks	you	through	the	basics	of	using	the	vim	editor	to	edit	your	text	shell	script	files.

Checking	your	vim	package
Before	you	begin	your	exploration	of	the	vim	editor,	it's	a	good	idea	to	understand	what	vim	package	your	Linux
system	has	installed.	On	some	distributions,	you	will	have	the	full	vim	package	installed	and	an	alias	for	the	vi
command,	as	shown	on	this	CentOS	distribution:

$	alias	vi
alias	vi='vim'
$
$	which	vim
/usr/bin/vim
$
$	ls	-l	/usr/bin/vim
-rwxr-xr-x.	1	root	root	3522560	Nov	11	14:08	/usr/bin/vim
$

Notice	that	the	program	file's	long	listing	does	not	show	any	linked	files	(see	Chapter	3,	“Basic	Bash	Shell
Commands,”	for	more	information	on	linked	files).	If	the	vim	program	is	linked,	it	may	be	linked	to	a	less	than	full-
featured	editor.	Thus,	it's	a	good	idea	to	check	for	linked	files.

On	other	distributions,	you	will	find	various	flavors	of	the	vim	editor.	Notice	on	this	Ubuntu	distribution	that	not
only	is	there	no	alias	for	the	vi	command,	but	the	/usr/bin/vi	program	file	belongs	to	a	series	of	file	links:

$	alias	vi
-bash:	alias:	vi:	not	found
$
$	which	vi
/usr/bin/vi
$
$	ls	-l	/usr/bin/vi
lrwxrwxrwx	1	root	root	20	Apr	23	14:33	/usr/bin/vi	->
	/etc/alternatives/vi
$
$	ls	-l	/etc/alternatives/vi
lrwxrwxrwx	1	root	root	17	Apr	23	14:33	/etc/alternatives/vi	->
	/usr/bin/vim.tiny
$
$	readlink	-f	/usr/bin/vi
/usr/bin/vim.tiny
$

Thus,	when	the	vi	command	is	entered,	the	/usr/bin/vim.tiny	program	is	executed.	The	vim.tiny	program	provides
only	a	few	vim	editor	features.	If	you	are	serious	about	trying	out	the	vim	editor	and	are	using	a	distribution	that
uses	a	vim	alternative,	such	as	vim.tiny	,	consider	installing	the	basic	vim	package	for	more	vim	features.

NOTE
Notice	in	the	preceding	example	that,	instead	of	having	to	use	the	ls	-l	command	multiple
times	to	find	a	series	of	linked	files'	final	object,	you	can	use	the	readlink	-f	command.	It
immediately	produces	the	linked	file	series'	final	object.

Software	package	management	was	covered	in	detail	in	Chapter	9,	“Installing	Software.”	Installing	the	basic	vim
package	on	this	Ubuntu	distribution	is	fairly	straightforward:

$	sudo	apt	install	vim
[sudo]	password	for	christine:
[...]
The	following	additional	packages	will	be	installed:
		vim-runtime
Suggested	packages:
		ctags	vim-doc	vim-scripts
The	following	NEW	packages	will	be	installed:
		vim	vim-runtime
[...]
Do	you	want	to	continue?	[Y/n]	Y
[...]
Setting	up	vim	(2:8.1.2269-1ubuntu5)	...
[...]
Processing	triggers	for	man-db	(2.9.1-1)	...
$	
$	readlink	-f	/usr/bin/vi
/usr/bin/vim.basic
$

The	basic	vim	editor	is	now	installed	on	this	Ubuntu	distribution,	and	the	/usr/bin/vi	program	file's	link	was
automatically	changed	to	point	to	/usr/bin/vim.basic	.	Thus,	when	the	vi	command	is	entered	on	this	Ubuntu
system,	the	basic	vim	editor	is	used	instead	of	tiny	vim.

Exploring	vim	basics
The	vim	editor	works	with	data	in	a	memory	buffer.	To	start	the	vim	editor,	just	type	the	vim	command	(or	vi	if
there's	an	alias	or	linked	file)	and	the	name	of	the	file	you	want	to	edit:

$	vi	myprog.c

If	you	start	vim	without	a	filename,	or	if	the	file	doesn't	exist,	vim	opens	a	new	buffer	area	for	editing.	If	you	specify
an	existing	file	on	the	command	line,	vim	reads	the	entire	file's	contents	into	a	buffer	area,	where	it	is	ready	for
editing,	as	shown	in	Figure	10-1.

FIGURE	10-1	The	vim	main	window

The	vim	editor	detects	the	terminal	type	for	the	session	(see	Chapter	2,	“Getting	to	the	Shell”)	and	uses	a	full-screen
mode	to	consume	the	entire	console	window	for	the	editor	area.

The	initial	vim	edit	window	shows	the	contents	of	the	file	(if	there	are	any)	along	with	a	message	line	at	the	bottom
of	the	window.	If	the	file	contents	don't	take	up	the	entire	screen,	vim	places	a	tilde	(~)	on	lines	that	are	not	part	of
the	file	(as	shown	in	Figure	10-1).

The	message	line	at	the	bottom	indicates	information	about	the	edited	file,	depending	on	the	file's	status,	and	the
default	settings	in	your	vim	installation.	If	the	file	is	new,	the	message	[New	File]	appears.

The	vim	editor	has	three	modes	of	operation:

Command	mode

Ex	mode

Insert	mode

When	you	first	open	a	file	(or	start	a	new	file)	for	editing,	the	vim	editor	enters	command	mode	(sometimes	called
normal	mode).	In	command	mode,	the	vim	editor	interprets	keystrokes	as	commands	(more	on	those	later).

In	insert	mode,	vim	places	the	letter,	number,	or	symbol	of	the	keys	you	type	at	the	current	cursor	location	in	the
buffer.	To	enter	insert	mode,	enter	i	.	To	get	out	of	insert	mode	and	go	back	into	command	mode,	press	the	Esc	key
on	your	keyboard.

In	command	mode,	you	can	move	the	cursor	around	the	text	area	by	using	the	arrow	keys	(as	long	as	your	terminal
type	is	detected	properly	by	vim).	If	you	happen	to	be	on	an	unusual	terminal	connection	that	doesn't	have	the	arrow
keys	defined,	all	hope	is	not	lost.	The	vim	editor	include	commands	for	moving	the	cursor:

h	to	move	left	one	character

j	to	move	down	one	line	(the	next	line	in	the	text)

k	to	move	up	one	line	(the	previous	line	in	the	text)

l	to	move	right	one	character

Moving	around	within	large	text	files	line	by	line	can	get	tedious.	Fortunately,	vim	provides	a	few	commands	to	help
speed	things	along:

Press	PageDown	(or	Ctrl+F)	to	move	forward	one	screen	of	data.

Press	PageUp	(or	Ctrl+B)	to	move	backward	one	screen	of	data.

Enter	G	to	move	to	the	last	line	in	the	buffer.

Enter	num	G	to	move	to	the	line	number	num	in	the	buffer.

Enter	gg	to	move	to	the	first	line	in	the	buffer.

The	vim	editor	has	a	special	feature	within	command	mode	called	Ex	mode.	This	mode	provides	an	interactive
command	line	where	you	can	enter	additional	commands	to	control	the	actions	in	vim.	To	get	to	Ex	mode,	press	the
colon	key	(:)	in	command	mode.	The	cursor	moves	to	the	message	line,	and	a	colon	(:)	appears,	waiting	for	you	to
enter	a	command.

Within	the	Ex	mode	are	several	commands	for	saving	the	buffer	to	the	file	and	exiting	vim:

q	to	quit	if	no	changes	have	been	made	to	the	buffer	data

q!	to	quit	and	discard	any	changes	made	to	the	buffer	data

w	filename	to	save	the	file	under	a	different	filename

wq	to	save	the	buffer	data	to	the	file	and	quit

After	seeing	just	a	few	basic	vim	commands,	you	might	understand	why	some	people	loathe	the	vim	editor.	To	use
vim	to	its	fullest,	you	must	know	plenty	of	obscure	commands.	However,	after	you	get	a	few	of	the	basic	vim
commands	down,	you	can	quickly	edit	files	directly	from	the	command	line,	no	matter	what	type	of	environment
you're	in.	Due	to	its	enormous	functionality	and	despite	its	steep	learning	curve,	the	vim	editor	maintains	its
popularity.	It	is	still	considered	one	of	the	top	10	text	editors.

Editing	data
While	in	command	mode,	the	vim	editor	provides	several	commands	for	editing	the	data	in	the	buffer.	Table	10-1
lists	some	common	editing	commands	for	vim.

TABLE	10-1	vim	Editing	Commands

Command Description

x Deletes	the	character	at	the	current	cursor	position.

dd Deletes	the	line	at	the	current	cursor	position.

dw Deletes	the	word	at	the	current	cursor	position.

d$ Deletes	to	the	end	of	the	line	from	the	current	cursor	position.

J Deletes	the	line	break	at	the	end	of	the	line	at	the	current	cursor	position	(joins	lines).

u Undoes	the	previous	edit	command.

a Appends	data	after	the	current	cursor	position.

A Appends	data	to	the	end	of	the	line	at	the	current	cursor	position.

r	char Replaces	a	single	character	at	the	current	cursor	position	with	char.

R	text Overwrites	the	data	at	the	current	cursor	position	with	text	,	until	you	press	Esc.

Some	of	the	editing	commands	also	allow	you	to	use	a	numeric	modifier	to	indicate	how	many	times	to	perform	the
command.	For	example,	the	command	2x	deletes	two	characters,	starting	from	the	current	cursor	position,	and	the
command	5dd	deletes	five	lines,	starting	at	the	line	from	the	current	cursor	position.

NOTE
Be	careful	when	trying	to	use	the	keyboard	Backspace	or	Delete	key	while	in	the	vim	editor's
command	mode.	The	vim	editor	usually	recognizes	the	Delete	key	only	as	the	functionality	of
the	x	command,	deleting	the	character	at	the	current	cursor	location.	Usually,	the	vim	editor
doesn't	recognize	the	Backspace	key	in	command	mode	as	a	deleting	action,	but	instead	as	a
method	to	move	the	cursor	back	one	space.

Copying	and	pasting
A	standard	editor	feature	is	the	ability	to	cut	or	copy	data	and	paste	it	elsewhere	in	the	document.	The	vim	editor
provides	a	way	to	do	this.

Cutting	and	pasting	is	relatively	easy.	You've	already	seen	the	commands	in	Table	10-1	that	can	remove	data	from
the	buffer.	However,	when	vim	removes	data,	it	actually	keeps	it	stored	in	a	separate	area.	While	in	command	mode,
that	data	is	retrievable	by	using	the	p	command.

For	example,	use	the	dd	command	to	delete	a	line	of	text,	move	the	cursor	to	the	buffer	location	where	you	want	to
place	it,	and	then	use	the	p	command.	The	p	command	inserts	the	text	after	the	line	at	the	current	cursor	position.
You	can	do	this	with	any	command	that	removes	text	while	in	command	mode.

Copying	text	is	a	little	bit	trickier.	The	copy	command	in	vim	is	y	(for	yank).	You	can	use	the	same	second	character
with	y	as	with	the	d	command	(yw	to	yank	a	word,	y$	to	yank	to	the	end	of	a	line).	After	you	yank	the	text,	move	the

cursor	to	the	location	where	you	want	to	place	the	text	and	use	the	p	command.	The	yanked	text	now	appears	at	that
location.

Yanking	is	tricky	in	that	you	can't	see	what	happened	because	you're	not	affecting	the	text	that	you	yank.	You	never
know	for	sure	what	you	yanked	until	you	paste	it	somewhere.	But	there's	another	feature	in	vim	that	helps	you	out
with	yanking.

While	in	command	mode,	the	visual	mode	highlights	text	as	you	move	the	cursor.	You	use	visual	mode	to	select	text
to	yank	for	pasting.	To	enter	visual	mode,	move	the	cursor	to	the	location	where	you	want	to	start	yanking,	and	press
v	.	Notice	that	the	text	at	the	cursor	position	is	now	highlighted.	Next,	move	the	cursor	to	cover	the	text	you	want	to
yank	(you	can	even	move	down	lines	to	yank	more	than	one	line	of	text).	As	you	move	the	cursor,	vim	highlights	the
text	in	the	yank	area.	After	you've	covered	the	text	you	want	to	copy,	enter	y	to	activate	the	yank	command.	Now	that
you	have	the	text	in	the	register,	just	move	the	cursor	to	where	you	want	to	paste	and	use	the	p	command.

Searching	and	substituting
You	can	easily	search	for	data	in	the	buffer	using	the	vim	search	command.	To	enter	a	search	string,	press	the
forward	slash	(/)	key.	The	cursor	goes	to	the	message	line,	and	vim	displays	a	forward	slash.	Enter	the	text	you	want
to	find,	and	press	the	Enter	key.	The	vim	editor	responds	with	one	of	three	actions:

If	the	word	appears	after	the	current	cursor	location,	it	jumps	to	the	first	location	where	the	text	appears.

If	the	word	doesn't	appear	after	the	current	cursor	location,	it	wraps	around	the	end	of	the	file	to	the	first
location	in	the	file	where	the	text	appears	(and	indicates	this	with	a	message).

It	produces	an	error	message	stating	that	the	text	was	not	found	in	the	file.

If	the	word	appears,	to	continue	searching	for	the	same	word,	press	the	forward	slash	character	and	then	press	the
Enter	key,	or	you	can	use	n	,	which	stands	for	next.

NOTE
Are	you	more	familiar	with	writing	scripts	and	programs	on	a	Microsoft	Windows	platform
with	an	integrated	development	environment	(IDE)?	If	so,	Microsoft's	Visual	Studio	Code	is
available	on	Linux.	(We'll	wait	a	minute	for	you	to	reread	that	last	sentence.)	Yes,	Microsoft
offers	Visual	Studio	for	Linux.	Find	information	for	installing	it	on	your	particular	Linux
distribution	at	code.visualstudio.com/docs/setup/linux.	If	desired,	you	can	add	the	VSCodeVim
plugin	to	Visual	Studio,	and	have	all	the	vim	commands	at	your	fingertips.

The	substitute	command,	performed	within	Ex	mode,	allows	you	to	quickly	replace	(substitute)	one	word	for
another	in	the	text.	To	get	to	the	substitute	command,	you	must	be	in	command-line	mode.	The	format	for	the
substitute	command	is	:s/	old	/	new	/	.	The	vim	editor	jumps	to	the	first	occurrence	of	the	text	old	and	replaces	it
with	the	text	new	.	You	can	make	a	few	modifications	to	the	substitute	command	to	replace	more	than	one	occurrence
of	the	text:

:s/	old	/	new	/g	to	replace	all	occurrences	of	old	in	a	line

:	n	,	ms	/	old	/	new	/g	to	replace	all	occurrences	of	old	between	line	numbers	n	and	m

:%s/	old	/	new	/g	to	replace	all	occurrences	of	old	in	the	entire	file

:%s/	old	/	new	/gc	to	replace	all	occurrences	of	old	in	the	entire	file,	but	prompt	for	each	occurrence

As	you	can	see,	for	a	console	mode	text	editor,	vim	contains	quite	a	few	advanced	features.	Because	nearly	every
Linux	distribution	includes	it,	it's	a	good	idea	to	at	least	know	the	basics	of	the	vim	editor	so	that	you	can	always	edit
scripts,	no	matter	where	you	are	or	what	you	have	available.

Navigating	the	nano	Editor
In	contrast	to	vim,	which	is	a	complicated	editor	with	powerful	features,	nano	is	a	simple	editor.	For	individuals	who
need	a	simple	console	mode	text	editor	that	is	easy	to	navigate,	nano	is	the	tool	to	use.	It's	also	a	great	text	editor	for
those	who	are	just	starting	on	their	Linux	command-line	adventure.

The	nano	text	editor	is	a	clone	of	the	Unix	systems'	Pico	editor.	Although	Pico	also	is	a	light	and	simple	text	editor,	it
is	not	licensed	under	the	GPL.	Not	only	is	the	nano	text	editor	licensed	under	the	GPL,	it	is	also	part	of	the	GNU
project.

The	nano	text	editor	is	installed	on	most	Linux	distributions	by	default.	Everything	about	the	nano	text	editor	is
easy.	To	open	a	file	at	the	command	line	with	nano,	enter

$	nano	myprog.c

If	you	start	nano	without	a	filename,	or	if	the	file	doesn't	exist,	nano	simply	opens	a	new	buffer	area	for	editing.	If
you	specify	an	existing	file	on	the	command	line,	nano	reads	the	entire	contents	of	the	file	into	a	buffer	area,	where	it
is	ready	for	editing,	as	shown	in	Figure	10-2.

FIGURE	10-2	The	nano	editor	window

Notice	that	at	the	bottom	of	the	nano	editor	window,	various	commands	with	brief	descriptions	are	shown.	These
commands	are	the	nano	control	commands.	The	caret	(^)	symbol	shown	represents	the	Ctrl	key.	Therefore,	^X
stands	for	the	keyboard	sequence	Ctrl+X.

TIP
Though	the	nano	control	commands	list	capital	letters	in	the	keyboard	sequences,	you	can	use
either	lowercase	or	uppercase	characters	for	control	commands.

Having	most	of	the	basic	commands	listed	right	in	front	of	you	is	great	—	no	need	to	memorize	what	control
command	does	what.	Table	10-2	presents	the	various	nano	control	commands.

TABLE	10-2	nano	Control	Commands

Command Description

Ctrl+C Displays	the	cursor's	position	within	the	text	editing	buffer.

Ctrl+G Displays	nano's	main	help	window.

Ctrl+J Justifies	the	current	text	paragraph.

Ctrl+K Cuts	the	text	line	and	stores	it	in	cut	buffer.

Ctrl+O Writes	out	the	current	text	editing	buffer	to	a	file.

Ctrl+R Reads	a	file	into	the	current	text	editing	buffer.

Ctrl+T Starts	the	available	spell	checker.

Ctrl+U Pastes	text	stored	in	cut	buffer	and	places	in	current	line.

Ctrl+V Scrolls	text	editing	buffer	to	next	page.

Ctrl+W Searches	for	word	or	phrases	within	text	editing	buffer.

Ctrl+X Closes	the	current	text	editing	buffer,	exits	nano,	and	returns	to	the	shell.

Ctrl+Y Scrolls	text	editing	buffer	to	previous	page.

The	control	commands	listed	in	Table	10-2	are	really	all	you	need.	However,	if	you	desire	more	powerful	control

features	than	those	listed,	nano	has	them.	To	see	more	control	commands,	press	Ctrl+G	in	the	nano	text	editor	to
display	its	main	help	window	containing	additional	control	commands.

NOTE
Some	of	these	additional	commands	available	in	nano	are	called	Meta-key	sequences.	In	the
nano	documentation,	they	are	denoted	by	the	letter	M.	For	example,	you'll	find	the	key
sequence	to	undo	the	last	task	denoted	as	M-U	in	the	nano	help	system.	But	don't	press	the	M
key	to	accomplish	this.	Instead,	M	represents	either	the	Esc,	Alt,	or	Meta	key,	depending	on
your	keyboard's	configuration.	Thus,	you	might	press	the	Alt+U	key	combination	to	undo	the
last	task	within	nano.

Even	more	features	are	available	through	command-line	options	to	control	the	nano	editor.	Creating	a	backup	file
before	editing	is	one	nice	selection.	Type	man	nano	to	see	these	additional	command-line	options	for	starting	nano.

The	vim	and	nano	text	editors	offer	a	choice	between	powerful	and	simple	console	mode	text	editors.	However,
neither	offers	the	ability	to	use	graphical	features	for	editing.	Some	text	editors	can	operate	in	both	worlds,	as
explored	in	the	next	section.

Exploring	the	Emacs	Editor
The	Emacs	editor	was	an	extremely	popular	editor	for	Digital	Equipment	Corporation	(DEC)	computers	in	the	late
1970s.	Developers	liked	it	so	much	that	they	ported	it	to	the	Unix	environment,	and	then	to	the	Linux	environment,
where	its	official	name	is	GNU	Emacs.	Though	currently	not	as	popular	as	vim,	it	still	has	its	place	in	the	world.

The	Emacs	editor	started	out	life	as	a	console	editor,	much	like	vim,	but	was	migrated	to	the	graphical	world.	The
original	console	mode	editor	is	still	available,	but	it	can	use	a	graphical	window	to	allow	editing	text	in	a	graphical
environment.	Typically,	when	you	start	the	Emacs	editor	from	a	command	line,	if	the	editor	determines	you	have	an
available	graphical	session,	it	starts	in	graphical	mode.	If	you	don't,	it	starts	in	console	mode.

This	section	describes	both	the	console	mode	and	graphical	mode	Emacs	editors	so	that	you'll	know	how	to	use
either	one	if	you	want	(or	need)	to.

Checking	your	Emacs	package
Many	distributions	do	not	come	with	the	Emacs	editor	installed	by	default.	You	can	check	your	Red	Hat–based
distribution	by	using	the	which	and/or	dnf	list	(use	yum	list	on	older	versions	of	Red	Hat-based	distributions)
command,	as	shown	on	this	CentOS	distribution:

$	which	emacs
/usr/bin/which:	no	emacs	in	(/home/christine/.local/bin:
/home/christine/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:
/usr/sbin)
$
$	dnf	list	emacs
[...]
Available	Packages
emacs.x86_64[...]
$

The	emacs	editor	package	is	not	currently	installed	on	this	CentOS	distribution.	However,	it	is	available	to	be
installed.	(For	a	more	thorough	discussion	on	displaying	installed	software,	see	Chapter	9.)

For	a	Debian-based	distribution,	check	for	the	Emacs	editor	package	by	using	the	which	and/or	apt	show	command,
as	shown	on	this	Ubuntu	distribution:

$	which	emacs
$
$	apt	show	emacs
Package:	emacs
[...]
Description:	GNU	Emacs	editor	(metapackage)
	GNU	Emacs	is	the	extensible	self-documenting	text	editor.
	This	is	a	metapackage	that	will	always	depend	on	the	latest
	recommended	Emacs	variant	(currently	emacs-gtk).
	
$

The	which	command	operates	a	little	differently	here.	When	it	does	not	find	the	installed	command,	it	simply	returns
the	Bash	shell	prompt.	The	emacs	editor	package	for	this	Ubuntu	distribution	is	available	to	be	installed.	The
following	shows	the	Emacs	editor	being	installed	on	Ubuntu:

$	sudo	apt	install	emacs
[sudo]	password	for	christine:
Reading	package	lists...	Done
[...]
Do	you	want	to	continue?	[Y/n]	Y

[...]
$
$	which	emacs
/usr/bin/emacs
$

Now	when	the	which	command	is	used,	it	points	to	the	emacs	program	file.	The	Emacs	editor	is	ready	for	use	on	this
Ubuntu	distribution.

For	the	CentOS	distribution,	install	the	Emacs	editor	using	the	dnf	install	or	yum	install	command:

$	sudo	yum	install	emacs
[sudo]	password	for	christine:
[...]
Dependencies	resolved.
[...]
Is	this	ok	[y/N]:	Y
Downloading	Packages:
[...]
Complete!
$
$	which	emacs
/usr/bin/emacs
$

With	the	Emacs	editor	successfully	installed	on	your	Linux	distribution,	you	can	begin	to	explore	its	different
features,	starting	with	using	it	on	the	console.

Using	Emacs	on	the	console
The	console	mode	version	of	Emacs	is	another	editor	that	uses	lots	of	key	commands	to	perform	editing	functions.
The	Emacs	editor	uses	key	combinations	involving	the	Ctrl	key	and	the	Meta	key.	In	most	terminal	emulator
packages,	the	Meta	key	is	mapped	to	the	Alt	key.

The	official	Emacs	documents	abbreviate	the	Ctrl	key	as	C-	and	the	Meta	key	as	M-.	Thus,	the	Ctrl+X	key
combination	is	shown	in	the	document	as	C-x.	This	chapter	section	uses	the	Emacs'	documentation	format.

Exploring	the	basics	of	Emacs
To	edit	a	file	using	Emacs,	from	the	command	line,	enter

$	emacs	myprog.c

The	Emacs	console	mode	window	appears	and	loads	the	file	into	the	active	buffer,	as	shown	in	Figure	10-3.

FIGURE	10-3	Editing	a	file	using	the	Emacs	editor	in	console	mode

You'll	notice	that	the	top	of	the	console	mode	window	shows	a	typical	menu	bar.	Unfortunately,	you	can't	use	the
menu	bar	in	console	mode,	only	in	graphical	mode.

NOTE
If	you	run	Emacs	in	a	graphical	desktop	environment,	some	commands	in	this	section	work
differently	than	described.	To	use	Emac's	console	mode	in	a	graphical	desktop	environment,
use	the	emacs	-	nw	command.	If	you	want	to	use	Emacs's	graphical	features,	see	the	section
“Using	Emacs	in	a	GUI.”

Unlike	the	vim	editor,	where	you	move	into	and	out	of	insert	mode	and	switch	between	entering	commands	and
inserting	text,	the	Emacs	editor	has	only	one	mode.	If	you	type	a	printable	character,	Emacs	inserts	it	at	the	current
cursor	position.	If	you	type	a	command,	Emacs	executes	the	command.

To	move	the	cursor	around	the	buffer	area,	you	can	use	the	arrow	keys	and	the	PageUp	and	PageDown	keys,
assuming	that	Emacs	detected	your	terminal	emulator	correctly.	If	not,	these	commands	move	the	cursor	around:

C-p	moves	up	one	line	(the	previous	line	in	the	text).

C-b	moves	left	(back)	one	character.

C-f	moves	right	(forward)	one	character.

C-n	moves	down	one	line	(the	next	line	in	the	text).

The	following	commands	make	longer	jumps	within	the	text:

M-f	moves	right	(forward)	to	the	next	word.

M-b	moves	left	(backward)	to	the	previous	word.

C-a	moves	to	the	beginning	of	the	current	line.

C-e	moves	to	the	end	of	the	current	line.

M-a	moves	to	the	beginning	of	the	current	sentence.

M-e	moves	to	the	end	of	the	current	sentence.

M-v	moves	back	one	screen	of	data.

C-v	moves	forward	one	screen	of	data.

M-<	moves	to	the	first	line	of	the	text.

M->	moves	to	the	last	line	of	the	text.

You	should	know	these	commands	for	saving	the	editor	buffer	back	into	the	file	and	exiting	Emacs:

C-x	C-s	saves	the	current	buffer	contents	to	the	file.

C-z	exits	Emacs	but	keeps	it	running	in	your	session	so	you	can	come	back	to	it.

C-x	C-c	exits	Emacs	and	stops	the	program.

You'll	notice	that	two	of	these	features	require	two	key	combinations.	The	C-x	command	is	called	the	extend
command.	This	provides	yet	another	whole	set	of	commands	to	work	with.

Editing	data
The	Emacs	editor	is	pretty	robust	about	inserting	and	deleting	text	in	the	buffer.	To	insert	text,	just	move	the	cursor
to	the	location	where	you	want	to	insert	the	text	and	start	typing.

To	delete	text,	Emacs	uses	the	Backspace	key	to	delete	the	character	before	the	current	cursor	position	and	the
Delete	key	to	delete	the	character	at	the	current	cursor	location.

The	Emacs	editor	also	has	commands	for	cutting	text.	The	Emacs	documentation	calls	this	killing	text,	but	we'll	stick
with	the	friendlier	cutting	terminology.

The	difference	between	deleting	text	and	cutting	text	is	that	when	you	cut	text,	Emacs	places	it	in	a	temporary	area
where	you	can	retrieve	it	(see	the	next	section,	“Copying	and	Pasting”).	Deleted	text	is	gone	forever.

These	commands	are	for	cutting	text	in	the	buffer:

M-Backspace	cuts	the	word	before	the	current	cursor	position.

M-d	cuts	the	word	after	the	current	cursor	position.

C-k	cuts	from	the	current	cursor	position	to	the	end	of	the	line.

M-k	cuts	from	the	current	cursor	position	to	the	end	of	the	sentence.

TIP
If	you	happen	to	make	a	mistake	when	cutting	text,	the	C-/	command	undoes	the	cut	command
and	returns	the	data	to	the	state	it	was	in	before	you	cut	it.

The	Emacs	editor	also	includes	a	fancy	way	of	mass-cutting	text.	Just	move	the	cursor	to	the	start	of	the	area	you
want	to	cut,	and	press	either	the	C-@	or	C-spacebar	keys.	Then	move	the	cursor	to	the	end	of	the	area	you	want	to
cut,	and	enter	C-w	.	All	the	text	between	the	two	locations	is	cut.

Copying	and	pasting
You've	seen	how	to	cut	data	from	the	Emacs	buffer	area;	now	it's	time	to	see	how	to	paste	it	somewhere	else.
Unfortunately,	if	you	use	the	vim	editor,	this	process	may	confuse	you	when	you	use	the	Emacs	editor.

In	an	unfortunate	coincidence,	pasting	data	in	Emacs	is	called	yanking.	In	the	vim	editor,	copying	is	called	yanking,
which	is	what	makes	this	a	difficult	thing	to	remember	if	you	happen	to	use	both	editors.

After	you	cut	data	using	one	of	the	cut	commands,	move	the	cursor	to	the	location	where	you	want	to	paste	the	data,
and	use	the	C-y	command.	This	yanks	the	text	out	of	the	temporary	area	and	pastes	it	at	the	current	cursor	position.
The	C-y	command	yanks	the	text	from	the	last	cut	command.	If	you've	performed	multiple	cut	commands,	you	can
cycle	through	them	using	the	M-y	command.

To	copy	text,	just	yank	it	back	into	the	same	location	you	cut	it	from	and	then	move	to	the	new	location	and	use	the
C-y	command	again.	You	can	yank	text	back	as	many	times	as	you	desire.

Searching	and	replacing
Searching	for	text	in	the	Emacs	editor	is	done	by	using	the	C-s	and	C-r	commands.	The	C-s	command	performs	a
forward	search	in	the	buffer	area	from	the	current	cursor	position	to	the	end	of	the	buffer,	whereas	the	C-r
command	performs	a	backward	search	in	the	buffer	area	from	the	current	cursor	position	to	the	start	of	the	buffer.

When	you	enter	either	the	C-s	or	the	C-r	command,	a	prompt	appears	in	the	bottom	line,	querying	you	for	the	text	to
search.	You	can	perform	two	types	of	searches	in	Emacs.

In	an	incremental	search,	the	Emacs	editor	performs	the	text	search	in	real-time	mode	as	you	type	the	word.	When
you	type	the	first	letter,	it	highlights	all	the	occurrences	of	that	letter	in	the	buffer.	When	you	type	the	second	letter,
it	highlights	all	the	occurrences	of	the	two-letter	combination	in	the	text	and	so	on	until	you	complete	the	text	you're
searching	for.

In	a	non-incremental	search,	press	the	Enter	key	after	the	C-s	or	C-r	command.	This	locks	the	search	query	into	the
bottom	line	area	and	allows	you	to	type	the	search	text	in	full	before	searching.

To	replace	an	existing	text	string	with	a	new	text	string,	you	must	use	the	M-x	command.	This	command	requires	a
text	command,	along	with	parameters.

The	text	command	is	replace-string	.	After	typing	the	command,	press	the	Enter	key,	and	Emacs	queries	you	for
the	existing	text	string.	After	entering	that,	press	the	Enter	key	again	and	Emacs	queries	you	for	the	new
replacement	text	string.

Using	buffers	in	Emacs
The	Emacs	editor	allows	you	to	edit	multiple	files	at	the	same	time	by	having	multiple	buffer	areas.	You	can	load
files	into	a	buffer	and	switch	between	buffers	while	editing.

To	load	a	new	file	into	a	buffer	while	you're	in	Emacs,	use	the	C-x	C-f	commands.	This	is	the	Emacs	find-file	mode,
called	Dired.	It	takes	you	to	the	bottom	line	in	the	window	and	allows	you	to	enter	the	name	of	the	file	you	want	to
start	to	edit.	If	you	don't	know	the	name	or	location	of	the	file,	just	press	the	Enter	key.	This	brings	up	a	file	browser
in	the	edit	window,	as	shown	in	Figure	10-4.

FIGURE	10-4	The	Emacs	file	browser

From	here,	you	can	browse	to	the	file	you	want	to	edit.	To	traverse	up	a	directory	level,	go	to	the	double	dot	entry
and	press	the	Enter	key.	To	traverse	down	a	directory,	go	to	the	directory	entry	and	press	Enter.	When	you've	found
the	file	you	want	to	edit,	press	Enter	and	Emacs	loads	it	into	a	new	buffer	area.

TIP
When	you	start	the	file	browser	in	the	edit	window,	you	may	decide	you	don't	want	to	open	a
file.	In	this	case,	enter	q	to	quit	the	file	browser	window.

You	can	list	the	active	buffer	areas	by	entering	the	C-x	C-b	extended	command	combination.	The	Emacs	editor	splits
the	editor	window	and	displays	a	list	of	buffers	in	the	bottom	window.	Emacs	provides	two	buffers	in	addition	to
your	main	editing	buffer:

A	scratch	area	called	scratch

A	message	area	called	Messages

The	scratch	area	allows	you	to	enter	LISP	programming	commands	as	well	as	enter	notes	to	yourself.	The	messages
area	shows	messages	generated	by	Emacs	while	operating.	If	any	errors	occur	while	using	Emacs,	they	appear	in	the
messages	area.

You	can	switch	to	a	different	buffer	area	in	the	window	in	two	ways:

Use	C-x	C-b	to	open	the	buffer	listing	window.	Use	C-x	b	and	then	type	*Buffer	List*	to	switch	to	that
window.	Use	the	arrow	keys	to	move	the	cursor	to	the	buffer	area	you	want	and	press	the	Enter	key.

Use	C-x	b	to	type	in	the	name	of	the	buffer	area	you	want	to	switch	to.

When	you	select	the	option	to	switch	to	the	buffer	listing	window,	Emacs	opens	the	buffer	area	in	a	new	window
area.	The	Emacs	editor	allows	you	to	have	multiple	windows	open	in	a	single	session.	The	following	section
discusses	how	to	manage	multiple	windows	in	Emacs.

Using	windows	in	console	mode	Emacs
The	console	mode	Emacs	editor	was	developed	many	years	before	the	idea	of	graphical	windows	appeared.
However,	it	was	advanced	for	its	time	in	that	it	could	support	multiple	editing	windows	within	the	main	Emacs
window.

You	can	split	the	Emacs	editing	window	into	multiple	windows	by	using	one	of	two	commands:

C-x	2	splits	the	window	horizontally	into	two	windows.

C-x	3	splits	the	window	vertically	into	two	windows.

To	move	from	one	window	to	another,	use	the	C-x	o	command.	Notice	that	when	you	create	a	new	window,	Emacs
uses	the	buffer	area	from	the	original	window	in	the	new	window.	After	you	move	into	the	new	window,	you	can	use
the	C-x	C-f	command	to	load	a	new	file	or	use	one	of	the	commands	to	switch	to	a	different	buffer	area	in	the	new
window.

To	close	a	window,	move	to	it	and	use	the	C-x	0	(that's	a	zero)	command.	If	you	want	to	close	all	the	windows	except
the	one	you're	in,	use	the	C-x	1	(that's	a	numerical	one)	command.

Using	Emacs	in	a	GUI
If	you	use	Emacs	from	a	GUI	environment	(such	as	in	the	GNOME	Shell	desktop),	it	starts	in	graphical	mode,	as
shown	in	Figure	10-5.

FIGURE	10-5	The	Emacs	graphical	window

If	you've	already	used	Emacs	in	console	mode,	you	should	be	fairly	familiar	with	the	graphical	mode.	All	the	key
commands	are	available	as	menu	bar	items.	The	Emacs	menu	bar	contains	the	following	items:

File	allows	you	to	open	files	in	the	window,	create	new	windows,	close	windows,	save	buffers,	and	print	buffers.

Edit	allows	you	to	cut	and	copy	selected	text	to	the	clipboard,	paste	clipboard	data	to	the	current	cursor
position,	search	for	text,	and	replace	text.

Options	provides	settings	for	many	more	Emacs	features,	such	as	highlighting,	word	wrap,	cursor	type,	and
setting	fonts.

Buffers	lists	the	current	buffers	available	and	allows	you	to	easily	switch	between	buffer	areas.

Tools	provides	access	to	the	advanced	features	in	Emacs,	such	as	the	command-line	interface	access,	spell
checking,	comparing	text	between	files	(called	diff),	sending	an	email	message,	calendar,	and	the	calculator.

C	allows	advanced	settings	for	highlighting	C	program	syntax,	compiling,	running,	and	debugging	the	code.

Help	provides	the	Emacs	manual	online	for	access	to	help	on	specific	Emacs	functions.

The	graphical	Emacs	window	is	an	example	of	an	older	console	application	that	made	the	migration	to	the	graphical
world.	Now	that	many	Linux	distributions	provide	graphical	desktops	(even	on	servers	that	don't	need	them),
graphical	editors	are	becoming	more	commonplace.	Popular	Linux	desktop	environments	(such	as	KDE	Plasma	and
GNOME	Shell)	have	also	provided	graphical	text	editors	specifically	for	their	environments,	which	are	covered	in	the

rest	of	this	chapter.

Exploring	the	KDE	Family	of	Editors
If	you're	using	a	Linux	distribution	that	uses	the	KDE	Plasma	desktop	environment,	you	have	a	couple	of	options
when	it	comes	to	text	editors.	The	KDE	project	officially	supports	two	popular	text	editors:

KWrite:	A	single-screen	text-editing	package

Kate:	A	full-featured,	multiwindow	text-editing	package

Both	of	these	editors	are	graphical	text	editors	that	contain	many	advanced	features.	The	Kate	editor	also	provides
extra	niceties	not	often	found	in	standard	text	editors.	This	section	describes	each	of	the	editors	and	shows	some	of
the	features	you	can	use	to	help	with	your	shell	script	editing.

Looking	at	the	KWrite	editor
The	basic	editor	for	the	KDE	Plasma	environment	is	KWrite.	It	provides	simple	word	processing–style	text	editing,
along	with	support	for	code	syntax	highlighting	and	editing.	The	default	KWrite	editing	window	is	shown	in	Figure
10-6.

FIGURE	10-6	The	default	KWrite	window	editing	a	shell	script	program

You	can't	tell	from	Figure	10-6,	but	the	KWrite	editor	recognizes	several	types	of	programming	languages	and	uses
color	coding	to	distinguish	constants,	functions,	and	comments.	The	KWrite	editing	window	provides	full	cut	and
paste	capabilities,	using	the	mouse	and	the	arrow	keys.	As	with	a	word	processor,	you	can	highlight	and	cut	(or	copy)
text	anywhere	in	the	buffer	area	and	paste	it	at	any	other	place.

TIP
Typically,	KWrite	is	no	longer	installed	by	default	on	the	KDE	desktop	environment.	However,
you	can	easily	install	it	(see	Chapter	9)	on	Plasma	or	other	desktop	environments,	where
available.	The	package	name	is	kwrite.

To	edit	a	file	using	KWrite,	you	can	either	select	KWrite	from	the	KDE	menu	system	on	your	desktop	(some	Linux
distributions	even	create	a	Panel	icon	for	it)	or	start	it	from	the	command-line	prompt:

$	kwrite	factorial.sh

The	kwrite	command	has	several	command-line	parameters	you	can	use	to	customize	how	it	starts.	Here	are	few	of
the	more	practical	ones:

--stdin	causes	KWrite	to	read	data	from	the	standard	input	device	instead	of	a	file.

--encoding	specifies	a	character	encoding	type	to	use	for	the	file.

--line	specifies	a	line	number	in	the	file	to	start	at	in	the	editor	window.

--column	specifies	a	column	number	in	the	file	to	start	at	in	the	editor	window.

The	KWrite	editor	provides	both	a	menu	bar	and	a	toolbar	at	the	top	of	the	edit	window,	allowing	you	to	select
features	and	change	the	configuration	settings	of	the	KWrite	editor.

The	menu	bar	contains	these	items:

File	loads,	saves,	prints,	and	exports	text	from	files.

Edit	manipulates	text	in	the	buffer	area.

View	manages	how	the	text	appears	in	the	editor	window.

Bookmarks	handle	pointers	to	return	to	specific	locations	in	the	text;	this	option	may	need	to	be	enabled	in
the	configurations.

Tools	contains	specialized	features	to	manipulate	the	text.

Settings	configures	the	way	the	editor	handles	text.

Help	gives	you	information	about	the	editor	and	commands.

The	Edit	menu	bar	item	provides	commands	for	all	your	text-editing	needs.	Instead	of	having	to	remember	cryptic
key	commands	(which	by	the	way,	KWrite	also	supports),	you	can	just	select	items	in	the	Edit	menu	bar,	as	shown	in
Table	10-3.

TABLE	10-3	The	KWrite	Edit	Menu	Items

Item Description

Undo Reverses	the	last	action	or	operation.

Redo Reverses	the	last	undo	action.

Cut Deletes	the	selected	text	and	places	it	in	the	clipboard.

Copy Copies	the	selected	text	to	the	clipboard.

Paste Inserts	the	current	contents	of	the	clipboard	at	the	current	cursor	position.

Clipboard
History

Displays	portions	of	text	recently	copied	to	the	clipboard	from	which	you	can	select	to	paste.

Copy	As
HTML

Copies	the	selected	text	as	HTML.

Select	All Selects	all	text	in	the	editor.

Deselect Deselects	any	text	that	is	currently	selected.

Block
Selection
Mode

Toggles	on/off	block	selection	mode	which	allows	vertical	text	selection.

Input
Modes

Toggles	between	a	normal	and	a	vi-like	editing	mode.

Overwrite
Mode

Toggles	insert	mode	to	overwrite	mode,	replacing	text	with	new	typed	text	instead	of	just	inserting	the
new	text.

Find Produces	the	Find	Text	dialog	box,	which	allows	you	to	customize	a	text	search.

Find
Variants

Provides	a	submenu	of	various	text	searches	—	Find	Next,	Find	Previous,	Find	Selected,	and	Find
Selected	Backwards.

Replace Produces	the	Replace	With	dialog	box,	which	allows	you	to	customize	a	text	search	and	replace.

Go	To Provides	a	submenu	of	various	Go	To	choices	—	Move	To	Matching	Bracket,	Select	To	Matching
Bracket,	Move	To	Previous	Modified	Line,	Move	To	Next	Modified	Line,	Go	To	Line.

The	Find	feature	has	two	modes.	Normal	mode	performs	simple	text	searches	and	power	searches.	Replace	mode
lets	you	do	advanced	searching	and	replacing	if	necessary.	You	toggle	between	the	two	modes	using	the	icon	on	the
lower-right	side	of	the	window,	as	shown	in	Figure	10-7.

FIGURE	10-7	The	KWrite	Find	section

The	Find	power	mode	allows	you	to	search	not	only	with	words,	but	with	a	regular	expression	(discussed	in	Chapter
20,	“Regular	Expressions”)	for	the	search.	You	can	use	some	other	options	to	customize	the	search	as	well,
indicating,	for	example,	whether	or	not	to	perform	a	case-sensitive	search	or	to	look	only	for	whole	words	instead	of
finding	the	text	within	words.

The	Tools	menu	bar	item	provides	several	handy	features	for	working	with	the	text	in	the	buffer	area.	Table	10-4
describes	the	tools	available	in	KWrite.

TABLE	10-4	The	KWrite	Tools

Tool Description

Read	Only	Mode Locks	the	text	so	that	no	changes	can	be	made	while	in	the	editor.

Mode Sets	the	file	type	arrangement	for	the	text	from	a	submenu	selection.

Highlighting Selects	the	text	highlighting	plan	from	a	submenu	selection.

Indentation Sets	the	indentation	style	for	the	text	from	a	submenu	selection.

Encoding Chooses	the	character	set	encoding	used	by	the	text.

End	of	Line Switches	the	End	of	Line	characters	between	Unix,	Windows/DOS,	and	Macintosh.

Add	Byte	Order
Mark

Toggles	on/off	setting	a	byte	order	mark	(BOM)	at	the	start	of	the	text.

Scripts Selects	scripted	actions	from	a	submenu	for	quickly	accomplishing	such	items	as	editing.

Invoke	Code
Completion

Displays	a	tooltip	suggesting	the	code	text	to	use	at	the	cursor's	location;	autocompletion	using
the	tip	is	selected	by	pressing	Enter.

Word	Completion Performs	autocompletion	of	the	current	typed	text	from	a	submenu	selection.

Spelling Starts	and/or	controls	the	spell-check	program	for	the	text.

Clean
Indentation

Returns	all	paragraph	indentation	to	the	original	settings.

Align Forces	the	current	line	or	the	selected	lines	to	return	to	the	default	indentation	settings.

Toggle	Comment Turns	the	text	line	into	a	comment	line	using	syntax	based	on	the	current	mode	selected.

Uppercase Sets	the	selected	text,	or	the	character	at	the	current	cursor	position,	to	uppercase.

Lowercase Sets	the	selected	text,	or	the	character	at	the	current	cursor	position,	to	lowercase.

Capitalize Capitalizes	the	first	letter	of	the	selected	text	or	the	word	at	the	current	cursor	position.

Join	Lines Combines	the	selected	lines,	or	the	line	at	the	current	cursor	position	and	the	next	line,	into	one
line.

Apply	Word
Wrap

Enables	word	wrapping	in	the	text.	If	a	line	extends	past	the	editor	window	edge,	the	line
continues	on	the	next	line.

There	are	lots	of	tools	for	this	simple	text	editor!	The	Mode	and	Indentation	tools	are	particularly	nice	to	help	you
along	if	you	are	writing	a	script	or	program.	The	Mode's	Script	submenu	is	displayed	in	Figure	10-8.

FIGURE	10-8	The	KWrite	Tool	Mode	Script	submenu

The	Settings	menu	includes	the	Configure	Editor	dialog	box,	shown	in	Figure	10-9.

The	Configuration	dialog	box	uses	icons	on	the	left	side	for	you	to	select	the	feature	in	KWrite	to	configure.	When
you	select	an	icon,	the	right	side	of	the	dialog	box	shows	the	configuration	settings	for	the	feature.

The	Appearance	feature	allows	you	to	set	several	features	that	control	how	the	text	appears	in	the	text	editor
window.	You	can	enable	word	wrap,	line	count	(great	for	programmers),	and	word	count	from	here.	With	the	Fonts
&	Colors	feature,	you	can	customize	the	complete	color	scheme	for	the	editor,	determining	what	colors	to	make	each
category	of	text	in	the	program	code.	There	are	also	several	customizations	you	can	choose,	such	as	encoding	and
mode,	so	you	don't	have	to	set	them	via	the	menu	system	each	time	you	open	a	file.

FIGURE	10-9	The	KWrite	Configure	Editor	dialog	box

Looking	at	the	Kate	editor
The	Kate	editor	is	the	flagship	editor	for	the	KDE	Project.	It	uses	the	same	core	text	editor	as	the	KWrite	application
(so	most	of	those	features	are	the	same),	but	it	incorporates	lots	of	other	features	into	a	single	package,	including	a
multiple	document	interface	(MDI).

TIP
If	you	find	that	the	Kate	editor	has	not	been	installed	with	your	KDE	desktop	environment,	you
can	easily	install	it	(see	Chapter	9).	The	package	name	that	contains	Kate	is	kate	or	kdesdk	.

When	you	start	the	Kate	editor	from	the	Plasma	menu	system,	you	see	the	main	Kate	editor	window,	shown	in
Figure	10-10.

You'll	notice	the	window	looks	very	similar	to	the	KWrite	editing	window	shown	previously	in	Figure	10-6.	However,
there	are	differences.	For	example,	the	left	side	frame	shows	the	Documents	icon.	Clicking	this	icon	opens	a	new
interface	called	the	Documents	List,	shown	in	Figure	10-11,	which	allows	switching	between	open	documents,
creating	new	documents,	and	exploring	other	files	to	open.

FIGURE	10-10	The	main	Kate	editing	window

FIGURE	10-11	The	Kate	Documents	List

Kate	also	supports	several	external	plugin	applications,	which	can	be	activated	in	the	Plugin	Manager	window,
shown	in	Figure	10-12.	You	reach	this	feature	by	choosing	Settings	➪	Configure	➪	Kate	➪	Plugins.	In	this	window,
you	can	select	various	plugins	to	make	your	shell	scripting	environment	more	productive.

FIGURE	10-12	The	Kate	Plugin	Manager

One	great	feature	of	the	Kate	editor	is	the	built-in	terminal	plugin	(Terminal	tool	view),	which	provides	a	terminal
window,	shown	in	Figure	10-13.	The	terminal	icon	at	the	bottom	text	editor's	window	starts	the	built-in	terminal
emulator	in	Kate	(using	the	KDE	Konsole	terminal	emulator	is	covered	in	Chapter	2,	“Getting	to	the	Shell”).

TIP
If	you	don't	see	the	terminal	icon	at	the	bottom	of	the	Kate	window,	most	likely	you	have	not
activated	the	Terminal	tool	view	plugin.	Once	you	have	reached	the	Plugin	Manager	window
(described	earlier)	and	have	selected	the	Terminal	tool	view	plugin,	be	sure	to	click	the	Apply
icon	to	activate	this	feature.

This	terminal	emulator	feature	horizontally	splits	the	current	editing	window,	creating	a	new	window	with	Konsole
running	in	it.	You	can	now	enter	command-line	commands,	start	programs,	or	check	on	system	settings	without
having	to	leave	the	editor!	To	close	the	terminal	window,	just	type	exit	at	the	command	prompt.

FIGURE	10-13	The	Kate	built-in	terminal	window

As	you	can	tell	from	the	terminal	feature,	Kate	also	supports	multiple	windows.	The	Window	menu	bar	item	(View)
provides	options	to	perform	these	tasks,	such	as	the	following:

Create	a	new	Kate	window	using	the	current	session.

Split	the	current	window	vertically	to	create	a	new	window.

Split	the	current	window	horizontally	to	create	a	new	window.

Close	the	current	window.

The	View	menu	also	allows	you	to	control	the	editor	window's	functionality	such	as	displaying	various	tools,
changing	the	font	size,	and	showing	nonprintable	characters.	Kate	is	rich	in	features.

NOTE
The	Kate	editor	handles	files	in	sessions.	You	can	have	multiple	files	open	in	a	session,	and	you
can	have	multiple	sessions	saved	through	the	Sessions	menu.	When	you	start	Kate,	you	can
recall	saved	sessions.	This	allows	you	to	easily	manage	files	from	multiple	projects	by	using
separate	workspaces	for	each	project.

To	set	the	configuration	settings	in	Kate,	select	Settings	➪	Configure	Kate.	The	Configuration	dialog	box,	shown	in
Figure	10-14,	appears.	The	Application	settings	area	allows	you	to	configure	settings	for	the	Kate	items,	such	as
controlling	sessions	(shown	in	Figure	10-14),	the	documents	list,	and	the	filesystem	browser.

FIGURE	10-14	The	Kate	configuration	dialog	box

Kate	and	Kwrite	work	well	side	by	side.	Kate	is	a	rich	MDI	editor	that	acts	as	an	IDE,	making	it	useful	for	creating
and	editing	shell	scripts.	KWrite,	on	the	other	hand,	launches	quickly	while	providing	nearly	as	much	power	as	Kate
so	that	you	can	make	fast	fixes	to	your	scripts.	Both	editors	have	their	place	in	the	world.

Exploring	the	GNOME	Editor
If	you're	working	on	a	Linux	system	with	the	GNOME	Shell	desktop	environment,	there's	a	graphical	text	editor	that
you	can	use	as	well.	The	gedit	text	editor	is	a	basic	text	editor,	with	a	few	advanced	features	thrown	in	just	for	fun.
This	section	walks	you	through	the	features	of	gedit	and	demonstrates	how	to	use	it	for	your	shell	script
programming.

Starting	gedit
In	the	GNOME	Shell	desktop	environment,	accessing	gedit	is	fairly	straightforward.	Click	the	Activities	icon	in	the
upper-right	corner	of	the	desktop	window.	When	the	search	bar	appears,	click	within	the	bar	to	access	it,	type	gedit
or	text	editor,	and	then	click	Text	Editor.

TIP
If	gedit	is	not	installed	by	default	on	your	desktop	environment,	you	can	easily	install	it	(see
Chapter	9).	The	package	name	is	gedit	.	You	should	install	the	gedit	plugins	as	well,	because
they	provide	powerful	and	advanced	features.	Their	package	name,	as	you	might	have	already
guessed,	is	gedit-plugins.

If	desired,	you	can	start	gedit	from	the	command-line	prompt	in	a	GUI	terminal	emulator:

$	gedit	factorial.sh	myprog.c

When	you	start	gedit	with	multiple	files,	it	loads	all	the	files	into	separate	buffers	and	displays	each	one	as	a	tabbed
window	within	the	main	editor	window,	as	shown	in	Figure	10-15.

FIGURE	10-15	The	gedit	main	editor	window

In	Figure	10-15,	the	left	frame	in	the	gedit	main	editor	window	shows	the	documents	you're	currently	editing.	The
right	side	shows	the	tabbed	window	that	contains	the	buffer	text	of	the	second	file.	If	you	hover	your	mouse	pointer
over	each	tab,	a	dialog	box	appears,	showing	the	full	pathname	of	the	file,	the	MIME	type,	and	the	character	set
encoding	it	uses.

TIP
You	can	quickly	jump	between	the	gedit	tabs	by	clicking	on	the	tab.	If	you	prefer	shortcut	keys,
pressing	Ctrl+Alt+PageDown	will	put	you	into	the	tab	buffer	on	the	right.	Pressing
Ctrl+Alt+PageUp	will	take	you	to	the	left.

Understanding	basic	gedit	features
Modern	versions	of	gedit	don't	use	a	menu	bar.	Instead,	they	use	a	menu	system	accessible	through	a	collapsed
menu	icon	(also	called	a	hamburger	button)	in	the	title	bar	that	allows	you	to	control	files,	manage	your	editing
session,	configure	settings,	and	so	on,	as	shown	in	Figure	10-16.

FIGURE	10-16	The	gedit	menu	system

These	menu	items	available	are:

New	Window	opens	a	new	editing	window	instead	of	a	tab.

Save	As	saves	the	current	buffered	file	to	a	new	filename.

Save	All	saves	all	the	tabs'	contents	to	disk.

Find	opens	the	Find	Text	dialog	box,	which	allows	you	to	customize	a	text	search,	and	highlights	the	found	text.

Find	and	Replace	displays	the	Find/Replace	pop-up	window,	which	allows	you	to	customize	a	text	search	and
replace.

Clear	Highlight	removes	the	highlighting	of	found	text.

Go	to	Line	opens	the	Go	to	Line	dialog	box,	which	moves	the	cursor	to	the	entered	line	number	of	the	text.

View	opens	a	submenu	allowing	the	selection	of	displaying	a	Documents	List/File	Manager	(Side	Panel),
Embedded	Terminal	(Bottom	Panel),	and	syntax	highlighting	(Highlight	Mode).

Tools	displays	a	submenu	allowing	the	activation	of	a	spell	checker	(Check	Spelling),	changing	the	spell
checker's	language	(Set	Language),	highlights	of	misspellings	(Highlight	Misspelled	Words),	displaying	text
stats	(Document	Statistics),	and	selecting	a	particular	date	and	time	format	for	insertion	(Insert	Date	And	Time)

Preferences	opens	a	pop-up	window	providing	customization	of	the	gedit	editor's	operation,	including	such
choices	as	displaying	the	line	numbers,	tab	stops,	text	fonts	and	colors,	and	activated	gedit	plugins.

Keyboard	Shortcuts	displays	a	brief	list	of	available	gedit	keyboard	shortcuts.

Help	provides	access	to	the	full	gedit	manual.

About	Text	Editor	shows	information	concerning	the	gedit	version,	description,	website,	and	so	on.

One	item	not	on	the	menu	is	a	basic	save	feature	that	lets	you	save	the	text	in	the	current	tab	buffer	with	its	original
filename.	That's	because	gedit	conveniently	provides	a	Save	icon	on	the	title	bar	(see	Figure	10-16).	Just	a	click	on
the	icon	and	the	file	is	saved.	If	you	prefer	to	use	the	keyboard	instead,	the	Ctrl+S	shortcut	provides	the	same
function.

NOTE
Your	Linux	desktop	environment	may	have	an	older	or	newer	version	of	gedit	than	the	one
shown	in	these	figures.	In	this	case,	your	gedit	text	editor	could	have	diverse	options	or	even
the	same	options,	but	they	are	available	in	slightly	different	menu	locations.	Consult	your
distribution's	gedit	Help	menu	for	more	assistance.

The	Side	Panel	in	gedit	provides	functionality	similar	to	the	Documents	List	in	Kate.	Access	this	feature	by	clicking
the	menu	hamburger	icon	and	then	choosing	View.	When	the	View	submenu	appears,	click	the	box	next	to	Side
Panel.	These	actions	result	in	something	similar	to	Figure	10-17.

FIGURE	10-17	The	gedit	Side	Panel

The	gedit	Side	Panel	provides	quick	switching	between	open	documents.	You	can	also	switch	to	a	file	manager	by
clicking	Documents	and	selecting	File	Browser,	as	shown	in	Figure	10-18.

Within	the	File	Browser	pane,	you	can	look	through	various	folders	and	find	other	files	to	edit.	If	desired,	switch
back	to	Documents	by	clicking	File	Browser	and	selecting	Documents.

FIGURE	10-18	The	gedit	Side	Panel's	file	manager

TIP
Instead	of	using	the	mouse	and	the	gedit	menu	system,	quickly	open	or	close	the	Side	Panel	by
pressing	the	F9	key.

The	File	Browser	is	a	gedit	plugin.	If	for	some	reason	you	cannot	reach	the	File	Browser	from	the	Side	Panel,	it	may
not	be	enabled	or	possibly	not	installed.	You	can	always	open	files	using	the	Ctrl+O	keyboard	shortcut,	but	the	File
Browser	is	a	useful	plugin.	We	cover	more	about	the	managing	gedit	plugins	next.

Managing	plugins
The	Plugins	tab	within	the	gedit	Preferences	window	(shown	in	Figure	10-19)	provides	control	over	the	plugins	used
in	gedit.	Plugins	are	separate	programs	that	can	interface	with	gedit	to	provide	additional	functionality.

FIGURE	10-19	The	gedit	Plugins	tab

Typically	only	basic	gedit	plugins	are	installed	by	default.	Table	10-5	describes	the	basic	plugins	that	are	currently
available	in	the	GNOME	desktop's	gedit	application.

If	desired,	you	can	get	additional	useful	features,	such	as	an	embedded	terminal,	by	installing	the	plugins
metapackage	(see	Chapter	9),	as	shown	here	on	Ubuntu:

$	sudo	apt	install	gedit-plugins
[sudo]	password	for	christine:
[...]
0	upgraded,	29	newly	installed,	0	to	remove	and	77	not	upgraded.
Need	to	get	2,558	kB	of	archives.
After	this	operation,	13.6	MB	of	additional	disk	space	will	be	used.
Do	you	want	to	continue?	[Y/n]	Y
[...]
Setting	up	gedit-plugins	(3.36.2-1)	...
$

Once	you	have	the	additional	plugins	installed	on	your	system,	you'll	see	many	additional	choices	on	the	Plugins	tab
within	the	gedit	Preferences	window,	as	shown	in	Figure	10-20.

TABLE	10-5	The	GNOME	Desktop	gedit	Plugins

Plugin Description

Document
Statistics

Reports	the	number	of	words,	lines,	characters,	and	non-space	characters.

External	Tools Provides	a	shell	environment	in	the	editor	to	execute	commands	and	scripts.

File	Browser
Panel

Provides	a	simple	file	browser	to	make	selecting	files	for	editing	easier.

Insert
Date/Time

Inserts	the	current	date	and	time	in	several	formats	at	the	current	cursor	position.

Modelines Provides	Emacs,	Kate,	and	vim-style	message	lines	at	the	bottom	of	the	editor	window.

Python
Console

Provides	an	interactive	console	at	the	bottom	of	the	editor	window	for	entering	commands	using
the	Python	programming	language.

Quick
Highlight

Highlights	all	the	matching	text	of	a	selection.

Quick	Open Opens	files	directly	in	the	gedit	edit	window.

Snippets Allows	you	to	store	often-used	pieces	of	text	for	easy	retrieval	anywhere	in	the	text.

Sort Quickly	sorts	the	entire	file	or	selected	text.

Spell	Checker Provides	dictionary	spell	checking	for	the	text	file.

FIGURE	10-20	The	gedit	Plugins	tab	after	installation

Plugins	that	are	enabled	show	a	check	mark	in	the	check	box	next	to	their	name.	Enabling	a	plugin	does	not	start	it.
If	you	want	to	use,	for	example,	the	Embedded	Terminal,	you	must	enable	it	in	the	Preferences	tab	first.	After	that,
you	can	access	the	plugin	by	clicking	the	menu	hamburger	icon	and	choosing	View,	and	when	the	View	submenu
appears,	clicking	the	box	next	to	Bottom	Panel	to	open	the	Embedded	Terminal,	as	shown	in	Figure	10-21.

FIGURE	10-21	The	gedit	Embedded	Terminal	plugin

This	chapter	has	covered	just	a	few	of	the	text	editors	available	on	Linux.	If	you	find	that	the	text	editors	described
here	don't	meet	your	needs,	you	have	options.	Many	more	Linux	editors	are	available,	such	as	Geany,	Sublime	Text,
Atom,	Visual	Studio	Code,	and	Brackets,	to	name	a	few.	All	these	editors	can	help	you	as	you	begin	your	Bash	shell
script	writing	journey.

Summary
When	it	comes	to	creating	shell	scripts,	you	need	some	type	of	text	editor.	Several	popular	text	editors	are	available
for	the	Linux	environment.	The	most	popular	editor	in	the	Unix	world,	vi,	has	been	ported	to	the	Linux	world	as	the
vim	editor.	The	vim	editor	provides	simple	text	editing	from	the	console,	using	a	rudimentary	full-screen	graphical
mode.	The	vim	editor	provides	many	advanced	editor	features,	such	as	text	searching	and	replacement.

Another	editor	that	has	been	ported	from	the	Unix	world	to	Linux	is	the	nano	text	editor.	The	vim	editor	can	be
rather	complex,	but	the	nano	editor	offers	simplicity.	The	nano	editor	allows	quick	text	editing	in	console	mode.

Another	popular	Unix	editor	—	Emacs	—	has	also	made	its	way	to	the	Linux	world.	The	Linux	version	of	Emacs	has
both	a	console	and	a	graphical	mode,	making	it	the	bridge	between	the	old	world	and	the	new.	The	Emacs	editor
provides	multiple	buffer	areas,	allowing	you	to	edit	multiple	files	simultaneously.

The	KDE	Project	created	two	editors	for	use	in	the	KDE	Plasma	desktop.	The	KWrite	editor	is	a	simple	editor	that
provides	basic	text-editing	features,	along	with	a	few	advanced	features,	such	as	syntax	highlighting	for
programming	code	and	line	numbering.	The	Kate	editor	provides	more	advanced	features	for	programmers.	One
great	feature	in	Kate	is	a	built-in	terminal	window.	You	can	open	a	command-line	interface	session	directly	in	the
Kate	editor	without	having	to	open	a	separate	terminal	emulator	window.	The	Kate	editor	also	allows	you	to	open
multiple	files,	providing	different	windows	for	each	opened	file.

The	GNOME	Project	also	provides	a	graphical	text	editor	for	programmers.	The	gedit	editor	provides	some
advanced	features	such	as	code	syntax	highlighting	and	line	numbering,	but	it	was	designed	to	be	a	bare-bones
editor.	To	spruce	up	the	gedit	editor,	developers	created	plugins,	which	expand	the	features	available	in	gedit.
Plugins	include	a	spell-checker,	a	terminal	emulator,	and	a	file	browser.

This	wraps	up	the	background	chapters	on	working	with	the	command	line	in	Linux.	The	next	part	of	the	book	dives
into	the	shell	scripting	world.	The	next	chapter	starts	off	by	showing	you	how	to	create	a	shell	script	file	and	how	to
run	it	on	your	Linux	system.	It	also	shows	you	the	basics	of	shell	scripts,	allowing	you	to	create	simple	programs	by
stringing	multiple	commands	together	into	a	script	you	can	run.

Part	II
Shell	Scripting	Basics
IN	THIS	PART

Chapter	11	Basic	Script	Building

Chapter	12	Using	Structured	Commands

Chapter	13	More	Structured	Commands

Chapter	14	Handling	User	Input

Chapter	15	Presenting	Data

Chapter	16	Script	Control

CHAPTER	11
Basic	Script	Building
IN	THIS	CHAPTER

Using	multiple	commands

Creating	a	script	file

Displaying	messages

Using	variables

Redirecting	input	and	output

Pipes

Performing	math

Exiting	the	script

Now	that	we've	covered	the	basics	of	the	Linux	system	and	the	command	line,	it's	time	to	start	coding.	This	chapter
discusses	the	basics	of	writing	shell	scripts.	You'll	need	to	know	these	basic	concepts	before	you	can	start	writing
your	own	shell	script	masterpieces.

Using	Multiple	Commands
So	far	you've	seen	how	to	use	the	command-line	interface	(CLI)	prompt	of	the	shell	to	enter	commands	and	view	the
command	results.	The	key	to	shell	scripts	is	the	ability	to	enter	multiple	commands	and	process	the	results	from
each	command,	even	possibly	passing	the	results	of	one	command	to	another.	The	shell	allows	you	to	chain
commands	together	into	a	single	step.

If	you	want	to	run	two	commands	together,	you	can	enter	them	on	the	same	prompt	line,	separated	with	a
semicolon:

$	date	;	who
Mon	Jun	01	15:36:09	EST	2020
Christine	tty2								2020-06-01	15:26
Samantha	tty3									2020-06-01	15:26
Timothy		tty1									2020-06-01	15:26
user					tty7									2020-06-01	14:03	(:0)
user					pts/0								2020-06-01	15:21	(:0.0)
	
$

Congratulations,	you	just	wrote	a	shell	script!	This	simple	script	uses	just	two	Bash	shell	commands.	The	date
command	runs	first,	displaying	the	current	date	and	time,	followed	by	the	output	of	the	who	command,	showing	who
is	currently	logged	on	to	the	system.	Using	this	technique,	you	can	string	together	as	many	commands	as	you	wish,
up	to	the	maximum	command-line	character	count	of	255	characters.

Although	using	this	technique	is	fine	for	small	scripts,	it	has	a	major	drawback	in	that	you	have	to	enter	the	entire
command	at	the	command	prompt	every	time	you	want	to	run	it.	Instead	of	having	to	manually	enter	the	commands
on	a	command	line,	you	can	combine	them	into	a	simple	text	file.	When	you	need	to	run	the	commands,	just	simply
run	the	text	file.

Creating	a	Script	File
To	place	shell	commands	in	a	text	file,	first	you'll	need	to	use	a	text	editor	(see	Chapter	10,	“Working	with	Editors”)
to	create	a	file,	and	then	enter	the	commands	into	the	file.

When	creating	a	shell	script	file,	you	should	specify	the	shell	you	are	using	in	the	first	line	of	the	file.	The	format	for
this	is

#!/bin/bash

In	a	normal	shell	script	line,	the	pound	sign	(#)	is	used	as	a	comment	line.	A	comment	line	in	a	shell	script	isn't
processed	by	the	shell.	However,	the	first	line	of	a	shell	script	file	is	a	special	case,	and	the	pound	sign	followed	by
the	exclamation	point	tells	the	shell	what	shell	to	run	the	script	under	(yes,	you	can	be	using	a	Bash	shell	and	run
your	script	using	another	shell).

After	indicating	the	shell,	commands	are	entered	onto	each	line	of	the	file,	followed	by	a	carriage	return.	As
mentioned,	comments	can	be	added	by	using	the	pound	sign.	An	example	looks	like	this:

#!/bin/bash
#	This	script	displays	the	date	and	who's	logged	on
date
who

And	that's	all	there	is	to	it.	You	can	use	the	semicolon	and	put	both	commands	on	the	same	line	if	you	want	to,	but	in

a	shell	script,	you	can	list	commands	on	separate	lines.	The	shell	will	process	commands	in	the	order	in	which	they
appear	in	the	file.

Also	notice	that	another	line	was	included	that	starts	with	the	pound	symbol	and	adds	a	comment.	Lines	that	start
with	the	pound	symbol	(other	than	the	first	#!	line)	aren't	interpreted	by	the	shell.	This	is	a	great	way	to	leave
comments	for	yourself	about	what's	happening	in	the	script	so	that	when	you	come	back	to	it	two	years	later	you	can
easily	remember	what	you	did.

Save	this	script	in	a	file	called	test1	,	and	you	are	almost	ready.	There	are	still	a	couple	of	things	to	do	before	you	can
run	your	new	shell	script	file.

If	you	try	running	the	file	now,	you'll	be	somewhat	disappointed	to	see	this:

$	test1
bash:	test1:	command	not	found
$

The	first	hurdle	to	jump	is	getting	the	Bash	shell	to	find	your	script	file.	If	you	remember	from	Chapter	6,	“Using
Linux	Environment	Variables,”	the	shell	uses	an	environment	variable	called	PATH	to	find	commands.	A	quick	look	at
the	PATH	environment	variable	demonstrates	our	problem:

$	echo	$PATH
/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/bin:/usr/bin
:/bin:/usr/local/sbin:/usr/sbin:/sbin:/home/user/bin	$

The	PATH	environment	variable	is	set	to	look	for	commands	only	in	a	handful	of	directories.	To	get	the	shell	to	find
the	test1	script,	we	need	to	do	one	of	two	things:

Add	the	directory	where	our	shell	script	file	is	located	to	the	PATH	environment	variable.

Use	an	absolute	or	relative	file	path	to	reference	our	shell	script	file	in	the	prompt.

TIP
Some	Linux	distributions	add	the	$HOME/bin	directory	to	the	PATH	environment	variable.	This
creates	a	place	in	every	user's	$HOME	directory	to	place	files	where	the	shell	can	find	them	to
execute.

For	this	example,	we'll	use	the	second	method	to	tell	the	shell	exactly	where	the	script	file	is	located.	Remember	that
to	reference	a	file	in	the	current	directory,	you	can	use	the	single	dot	operator	in	the	shell:

$./test1
bash:	./test1:	Permission	denied
$

Now	the	shell	found	the	shell	script	file	just	fine,	but	there's	another	problem.	The	shell	indicated	that	you	don't
have	permission	to	execute	the	file.	A	quick	look	at	the	file	permissions	should	show	what's	going	on	here:

$	ls	-l	test1
-rw-r--r--				1	user					user											73	Jun	02	15:36	test1
$

When	the	new	test1	file	was	created,	the	umask	value	determined	the	default	permission	settings	for	the	new	file.
Because	the	umask	variable	is	set	to	022	(see	Chapter	7,	“Understanding	Linux	File	Permissions”),	the	system	created
the	file	with	only	read/write	permissions	for	the	file's	owner.

The	next	step	is	to	give	the	file	owner	permission	to	execute	the	file,	using	the	chmod	command	(see	Chapter	7):

$	chmod	u+x	test1
$./test1
Mon	Jun	01	15:38:19	EST	2020
Christine	tty2								2020-06-01	15:26
Samantha	tty3									2020-06-01	15:26
Timothy		tty1									2020-06-01	15:26
user					tty7									2020-06-01	14:03	(:0)
user					pts/0								2020-06-01	15:21	(:0.0)	$

Success!	Now	all	the	pieces	are	in	the	right	places	to	execute	the	new	shell	script	file.

Displaying	Messages
Most	shell	commands	produce	their	own	output,	which	is	displayed	on	the	console	monitor	where	the	script	is
running.	Many	times,	however,	you	will	want	to	add	your	own	text	messages	to	help	the	script	user	know	what	is
happening	within	the	script.	You	can	do	this	with	the	echo	command.	The	echo	command	can	display	a	simple	text
string	if	you	add	the	string	following	the	command:

$	echo	This	is	a	test
This	is	a	test
$

Notice	that	by	default	you	don't	need	to	use	quotes	to	delineate	the	string	you're	displaying.	However,	sometimes

this	can	get	tricky	if	you	are	using	quotes	within	your	string:

$	echo	Let's	see	if	this'll	work
Lets	see	if	thisll	work
$

The	echo	command	uses	either	double	or	single	quotes	to	delineate	text	strings.	If	you	use	them	within	your	string,
you	need	to	use	one	type	of	quote	within	the	text	and	the	other	type	to	delineate	the	string:

$	echo	"This	is	a	test	to	see	if	you're	paying	attention"
This	is	a	test	to	see	if	you're	paying	attention
$	echo	'Rich	says	"scripting	is	easy".'
Rich	says	"scripting	is	easy".
$

Now	all	of	the	quotation	marks	appear	properly	in	the	output.

You	can	add	echo	statements	anywhere	in	your	shell	scripts	where	you	need	to	display	additional	information:

$	cat	test1
#!/bin/bash
#	This	script	displays	the	date	and	who's	logged	on
echo		The	time	and	date	are:
date
echo	"Let's	see	who's	logged	into	the	system:"
who
$

When	you	run	this	script,	it	produces	the	following	output:

$./test1
The	time	and	date	are:
Mon	Jun	01	15:41:13	EST	2020
Let's	see	who's	logged	into	the	system:
Christine	tty2									2020-06-01	15:26
Samantha	tty3									2020-06-01	15:26
Timothy		tty1									2020-06-01	15:26
user					tty7									2020-06-01	14:03	(:0)
user					pts/0								2020-06-01	15:21	(:0.0)
$

That's	nice,	but	what	if	you	want	to	echo	a	text	string	on	the	same	line	as	a	command	output?	You	can	use	the	-n
parameter	for	the	echo	statement	to	do	that.	Just	change	the	first	echo	statement	line	to	this:

echo	-n	"The	time	and	date	are:	"

You'll	need	to	use	quotes	around	the	string	to	ensure	that	there's	a	space	at	the	end	of	the	echoed	string.	The
command	output	begins	exactly	where	the	string	output	stops.	The	output	will	now	look	like	this:

$./test1
The	time	and	date	are:	Mon	Jun	01	15:42:23	EST	2020
Let's	see	who's	logged	into	the	system:
Christine	tty2									2020-06-01	15:26
Samantha	tty3									2020-02-01	15:26
Timothy		tty1									2020-06-01	15:26
user					tty7									2020-06-01	14:03	(:0)
user					pts/0								2020-06-01	15:21	(:0.0)
$

Perfect!	The	echo	command	is	a	crucial	piece	of	shell	scripts	that	interact	with	users.	You'll	find	yourself	using	it	in
many	situations,	especially	when	you	want	to	display	the	values	of	script	variables.	Let's	look	at	that	next.

Using	Variables
Just	running	individual	commands	from	the	shell	script	is	useful,	but	doing	so	has	its	limitations.	Often	you'll	want
to	incorporate	other	data	in	your	shell	commands	to	process	information.	You	can	do	this	by	using	variables.
Variables	allow	you	to	temporarily	store	information	within	the	shell	script	for	use	with	other	commands	in	the
script.	This	section	shows	how	to	use	variables	in	your	shell	scripts.

Environment	variables
You've	already	seen	one	type	of	Linux	variable	in	action.	Chapter	6	described	the	environment	variables	available	in
the	Linux	system.	You	can	access	these	values	from	your	shell	scripts	as	well.

The	shell	maintains	environment	variables	that	track	specific	system	information,	such	as	the	name	of	the	system,
the	name	of	the	user	logged	into	the	system,	the	user's	system	ID	(called	UID),	the	default	home	directory	of	the
user,	and	the	search	path	used	by	the	shell	to	find	programs.	You	can	display	a	complete	list	of	active	environment
variables	available	by	using	the	set	command:

$	set
BASH=/bin/bash
...
HOME=/home/Samantha
HOSTNAME=localhost.localdomain
HOSTTYPE=i386

IFS=$'	\t\n'
IMSETTINGS_INTEGRATE_DESKTOP=yes
IMSETTINGS_MODULE=none
LANG=en_US.utf8
LESSOPEN='|/usr/bin/lesspipe.sh	%s'
LINES=24
LOGNAME=Samantha
...

You	can	tap	into	these	environment	variables	from	within	your	scripts	by	using	the	environment	variable's	name
preceded	by	a	dollar	sign.	This	is	demonstrated	in	the	following	script:

$	cat	test2
#!/bin/bash
#	display	user	information	from	the	system.
echo	"User	info	for	userid:	$USER"
echo	UID:	$UID
echo	HOME:	$HOME
$

The	$USER	,	$UID	,	and	$HOME	environment	variables	are	used	to	display	the	pertinent	information	about	the	logged-in
user.	The	output	should	look	something	like	this:

$chmod	u+x	test2
$./test2
User	info	for	userid:	Samantha
UID:	1001
HOME:	/home/Samantha
$	$

Notice	that	the	environment	variables	in	the	echo	commands	are	replaced	by	their	current	values	when	the	script	is
run.	Also	notice	that	we	were	able	to	place	the	$USER	system	variable	within	the	double	quotation	marks	in	the	first
string	and	that	the	shell	script	was	still	able	to	figure	out	what	we	meant.	There	is	a	drawback	to	using	this	method,
however.	Look	at	what	happens	in	this	example:

$	echo	"The	cost	of	the	item	is	$15"
The	cost	of	the	item	is	5

That	is	obviously	not	what	was	intended.	Whenever	the	script	sees	a	dollar	sign	within	quotes,	it	assumes	you're
referencing	a	variable.	In	this	example	the	script	attempted	to	display	the	variable	$1	(which	was	not	defined),	and
then	the	number	5	.	To	display	an	actual	dollar	sign,	you	must	precede	it	with	a	backslash	character:

$	echo	"The	cost	of	the	item	is	\$15"
The	cost	of	the	item	is	$15

That's	better.	The	backslash	allowed	the	shell	script	to	interpret	the	dollar	sign	as	an	actual	dollar	sign,	and	not	a
variable.	The	next	section	shows	how	to	create	your	own	variables	in	your	scripts.

NOTE
You	may	also	see	variables	referenced	using	the	format	${variable}	.	The	extra	braces	around
the	variable	name	are	often	used	to	help	identify	the	variable	name	from	the	dollar	sign.

User	variables
In	addition	to	the	environment	variables,	a	shell	script	allows	you	to	set	and	use	your	own	variables	within	the
script.	Setting	variables	allows	you	to	temporarily	store	data	and	use	it	throughout	the	script,	making	the	shell	script
more	like	a	real	computer	program.

User	variables	can	be	any	text	string	of	up	to	20	letters,	digits,	or	underscore	characters.	User	variables	are	case
sensitive,	so	the	variable	Var1	is	different	from	the	variable	var1.	This	little	rule	often	gets	novice	script	programmers
in	trouble.

Values	are	assigned	to	user	variables	using	an	equal	sign.	No	spaces	can	appear	between	the	variable,	the	equal	sign,
and	the	value	(another	trouble	spot	for	novices).	Here	are	a	few	examples	of	assigning	values	to	user	variables:

var1=10
var2=-57
var3=testing
var4="still	more	testing"

The	shell	script	stores	all	variable	values	as	text	strings;	it's	up	to	the	individual	commands	in	the	shell	to	determine
the	data	type	used	for	the	variable	value.	Variables	defined	within	the	shell	script	maintain	their	values	throughout
the	life	of	the	shell	script	but	are	deleted	when	the	shell	script	completes.

Just	like	system	variables,	user	variables	can	be	referenced	using	the	dollar	sign:

$	cat	test3
#!/bin/bash
#	testing	variables
days=10

guest="Katie"
echo	"$guest	checked	in	$days	days	ago"
days=5
guest="Jessica"
echo	"$guest	checked	in	$days	days	ago"
$

Running	the	script	produces	the	following	output:

$	chmod	u+x	test3
$./test3
Katie	checked	in	10	days	ago
Jessica	checked	in	5	days	ago
$

Each	time	the	variable	is	referenced,	it	produces	the	value	currently	assigned	to	it.	It's	important	to	remember	that
when	referencing	a	variable	value	you	use	the	dollar	sign,	but	when	referencing	the	variable	to	assign	a	value	to	it,
you	do	not	use	the	dollar	sign.	Here's	an	example	of	what	we	mean:

$	cat	test4
#!/bin/bash
#	assigning	a	variable	value	to	another	variable
	
value1=10
value2=$value1
echo	The	resulting	value	is	$value2
$

When	you	use	the	value	of	the	value1	variable	in	the	assignment	statement,	you	must	still	use	the	dollar	sign.	This
code	produces	the	following	output:

$	chmod	u+x	test4
$./test4
The	resulting	value	is	10
$

If	you	forget	the	dollar	sign,	and	make	the	value2	assignment	line	look	like

value2=value1

you	get	the	following	output:

$./test4
The	resulting	value	is	value1
$

Without	the	dollar	sign,	the	shell	interprets	the	variable	name	as	a	normal	text	string,	which	is	most	likely	not	what
you	wanted.

Command	substitution
One	of	the	most	useful	features	of	shell	scripts	is	the	ability	to	extract	information	from	the	output	of	a	command
and	assign	it	to	a	variable.	Once	you	assign	the	output	to	a	variable,	you	can	use	that	value	anywhere	in	your	script.
This	comes	in	handy	when	you're	processing	data	in	your	scripts.

There	are	two	ways	to	assign	the	output	of	a	command	to	a	variable:

The	backtick	character

The	$()	format

Be	careful	with	the	backtick	character	—	it	is	not	the	normal	single	quotation	mark	character	you	are	used	to	using
for	strings.	Because	it	is	not	used	very	often	outside	of	shell	scripts,	you	may	not	even	know	where	to	find	it	on	your
keyboard.	You	should	become	familiar	with	it,	because	it's	a	crucial	component	of	many	shell	scripts.	Hint:	On	a	U.S.
keyboard,	it	is	usually	on	the	same	key	as	the	tilde	symbol	(~).

Command	substitution	allows	you	to	assign	the	output	of	a	shell	command	to	a	variable.	Though	this	doesn't	seem
like	much,	it	is	a	major	building	block	in	script	programming.

You	must	either	surround	the	entire	command-line	command	with	the	backtick	characters:

testing=`date`

or	use	the	$()	format:

testing=$(date)

The	shell	runs	the	command	within	the	command	substitution	characters	and	assigns	the	output	to	the	variable
testing	.	Notice	that	there	aren't	any	spaces	between	the	assignment	equal	sign	and	the	command	substitution
character.	Here's	an	example	of	creating	a	variable	using	the	output	from	a	normal	shell	command:

$	cat	test5
#!/bin/bash
testing=$(date)
echo	"The	date	and	time	are:	"	$testing
$

The	variable	testing	receives	the	output	from	the	date	command,	and	it	is	used	in	the	echo	statement	to	display	it.
Running	the	shell	script	produces	the	following	output:

$	chmod	u+x	test5
$./test5
The	date	and	time	are:		Mon	Jun	01	15:45:25	EDT	2020
$

That's	not	all	that	exciting	in	this	example	(you	could	just	as	easily	put	the	command	in	the	echo	statement),	but
once	you	capture	the	command	output	in	a	variable,	you	can	do	anything	with	it.

Here's	a	popular	example	of	how	command	substitution	is	employed	to	capture	the	current	date	and	use	it	to	create
a	unique	filename	in	a	script:

#!/bin/bash
#	copy	the	/usr/bin	directory	listing	to	a	log	file
today=$(date	+%y%m%d)
ls	/usr/bin	-al>	log.$today

The	today	variable	is	assigned	the	output	of	a	formatted	date	command.	This	is	a	common	technique	used	to	extract
date	information	for	log	filenames.	The	+%y%m%d	format	instructs	the	date	command	to	display	the	date	as	a	two-digit
year,	month,	and	day:

$	date	+%y%m%d
200601
$

The	script	assigns	the	value	to	a	variable,	which	is	then	used	as	part	of	a	filename.	The	file	itself	contains	the
redirected	output	(discussed	later	in	the	“Redirecting	Input	and	Output”	section)	of	a	directory	listing.	After	running
the	script,	you	should	see	a	new	file	in	your	directory:

-rw-r--r--				1	user					user										769	Jun	01	16:15	log.200601

The	log	file	appears	in	the	directory	using	the	value	of	the	$today	variable	as	part	of	the	filename.	The	contents	of	the
log	file	are	the	directory	listing	from	the	/usr/bin	directory.	If	the	script	is	run	the	next	day,	the	log	filename	will	be
log.200602	,	thus	creating	a	new	file	for	the	new	day.

WARNING
Command	substitution	creates	what's	called	a	subshell	to	run	the	enclosed	command.	A
subshell	is	a	separate	child	shell	generated	from	the	shell	that's	running	the	script.	Because	of
that,	any	variables	that	you	create	in	the	script	won't	be	available	to	commands	running	in	the
subshell.

Subshells	are	also	created	if	you	run	a	command	from	the	command	prompt	using	the	./	path,
but	they	aren't	created	if	you	just	run	the	command	without	a	path.	However,	if	you	use	a	built-
in	shell	command,	that	doesn't	generate	a	subshell.	Be	careful	when	running	scripts	from	the
command	prompt!

Redirecting	Input	and	Output
There	are	times	when	you'd	like	to	save	the	output	from	a	command	instead	of	just	having	it	displayed	on	the
monitor.	The	Bash	shell	provides	a	few	different	operators	that	allow	you	to	redirect	the	output	of	a	command	to	an
alternative	location	(such	as	a	file).	Redirection	can	be	used	for	input	as	well	as	output,	redirecting	a	file	to	a
command	for	input.	This	section	describes	what	you	need	to	do	to	use	redirection	in	your	shell	scripts.

Output	redirection
The	most	basic	type	of	redirection	is	sending	output	from	a	command	to	a	file.	The	Bash	shell	uses	the	greater-than
symbol	(>)	for	this:

command>	outputfile

Anything	that	would	appear	on	the	monitor	from	the	command	instead	is	stored	in	the	output	file	specified:

$	date>	test6
$	ls	-l	test6
-rw-r--r--				1	user					user											29	Jun	01	16:56	test6
$	cat	test6
Mon	Jun	01	16:56:58	EDT	2020
$

The	redirect	operator	created	the	file	test6	(using	the	default	umask	settings)	and	redirected	the	output	from	the	date
command	to	the	test6	file.	If	the	output	file	already	exists,	the	redirect	operator	overwrites	the	existing	file	with	the
new	file	data:

$	who>	test6
$	cat	test6
rich					pts/0				Jun	01	16:55

$

Now	the	contents	of	the	test6	file	contain	the	output	from	the	who	command.

Sometimes,	instead	of	overwriting	the	file's	contents,	you	may	need	to	append	output	from	a	command	to	an
existing	file	—	for	example,	if	you're	creating	a	log	file	to	document	an	action	on	the	system.	In	this	situation,	you
can	use	the	double	greater-than	symbol	(>>)	to	append	data:

$	date>>	test6
$	cat	test6
rich					pts/0				Jun	01	16:55
Mon	Jun	01	17:02:14	EDT	2020
$

The	test6	file	still	contains	the	original	data	from	the	who	command	processed	earlier	—	plus	now	it	contains	the
new	output	from	the	date	command.

Input	redirection
Input	redirection	is	the	opposite	of	output	redirection.	Instead	of	taking	the	output	of	a	command	and	redirecting	it
to	a	file,	input	redirection	takes	the	content	of	a	file	and	redirects	it	to	a	command.

The	input	redirection	symbol	is	the	less-than	symbol	(<):

command	<	inputfile

The	easy	way	to	remember	this	is	that	the	command	is	always	listed	first	in	the	command	line,	and	the	redirection
symbol	“points”	to	the	way	the	data	is	flowing.	The	less-than	symbol	indicates	that	the	data	is	flowing	from	the	input
file	to	the	command.

Here's	an	example	of	using	input	redirection	with	the	wc	command:

$	wc	<	test6
						2						11						60
$

The	wc	command	provides	a	count	of	text	in	the	data.	By	default,	it	produces	three	values:

The	number	of	lines	in	the	text

The	number	of	words	in	the	text

The	number	of	bytes	in	the	text

By	redirecting	a	text	file	to	the	wc	command,	you	can	get	a	quick	count	of	the	lines,	words,	and	bytes	in	the	file.	The
example	shows	that	there	are	2	lines,	11	words,	and	60	bytes	in	the	test6	file.

There's	another	method	of	input	redirection,	called	inline	input	redirection.	This	method	allows	you	to	specify	the
data	for	input	redirection	on	the	command	line	instead	of	in	a	file.	This	may	seem	somewhat	odd	at	first,	but	there
are	a	few	applications	for	this	process	(such	as	those	shown	in	the	“Performing	Math”	section	later).

The	inline	input	redirection	symbol	is	the	double	less-than	symbol	(<<).	Besides	this	symbol,	you	must	specify	a	text
marker	that	delineates	the	beginning	and	end	of	the	data	used	for	input.	You	can	use	any	string	value	for	the	text
marker,	but	it	must	be	the	same	at	the	beginning	of	the	data	and	the	end	of	the	data:

command	<<	marker
data
marker

When	using	inline	input	redirection	on	the	command	line,	the	shell	will	prompt	for	data	using	the	secondary
prompt,	defined	in	the	PS2	environment	variable	(see	Chapter	6).	Here's	how	this	looks	when	you	use	it:

$	wc	<<	EOF
>	test	string	1
>	test	string	2
>	test	string	3
>	EOF
						3							9						42
$

The	secondary	prompt	continues	to	prompt	for	more	data	until	you	enter	the	string	value	for	the	text	marker.	The	wc
command	performs	the	line,	word,	and	byte	counts	of	the	data	supplied	by	the	inline	input	redirection.

Employing	Pipes
There	are	times	when	you	need	to	send	the	output	of	one	command	to	the	input	of	another	command.	This	is
possible	using	redirection,	but	somewhat	clunky:

$	rpm	-qa>	rpm.list	
$	sort	<	rpm.list	
abattis-cantarell-fonts-0.0.25-1.el7.noarch
abrt-2.1.11-52.el7.centos.x86_64
abrt-addon-ccpp-2.1.11-52.el7.centos.x86_64
abrt-addon-kerneloops-2.1.11-52.el7.centos.x86_64
abrt-addon-pstoreoops-2.1.11-52.el7.centos.x86_64
abrt-addon-python-2.1.11-52.el7.centos.x86_64

abrt-addon-vmcore-2.1.11-52.el7.centos.x86_64
abrt-addon-xorg-2.1.11-52.el7.centos.x86_64
abrt-cli-2.1.11-52.el7.centos.x86_64
abrt-console-notification-2.1.11-52.el7.centos.x86_64	
...

The	rpm	command	manages	the	software	packages	installed	on	systems	using	the	Red	Hat	Package	Management
system	(RPM),	such	as	the	CentOS	system	as	shown.	When	used	with	the	-qa	parameters,	it	produces	a	list	of	the
existing	packages	installed,	but	not	necessarily	in	any	specific	order.	If	you're	looking	for	a	specific	package,	or	group
of	packages,	it	can	be	difficult	to	find	it	using	the	output	of	the	rpm	command.

Using	the	standard	output	redirection,	the	output	was	redirected	from	the	rpm	command	to	a	file	called	rpm.list	.
After	the	command	finished,	the	rpm.list	file	contained	a	list	of	all	the	installed	software	packages	on	this	system.
Next,	input	redirection	was	used	to	send	the	contents	of	the	rpm.list	file	to	the	sort	command	to	sort	the	package
names	alphabetically.

That	was	useful,	but	again,	a	somewhat	clunky	way	of	producing	the	information.	Instead	of	redirecting	the	output
of	a	command	to	a	file,	you	can	redirect	the	output	to	another	command.	This	process	is	called	piping.

Like	the	command	substitution	backtick	(`),	the	symbol	for	piping	is	not	used	often	outside	of	shell	scripting.	The
symbol	is	two	vertical	lines,	one	above	the	other.	However,	the	pipe	symbol	often	looks	like	a	single	vertical	line	in
print	(|).	On	a	U.S.	keyboard,	it	is	usually	on	the	same	key	as	the	backslash	(\).	The	pipe	is	put	between	the
commands	to	redirect	the	output	from	one	to	the	other:

command1	|	command2

Don't	think	of	piping	as	running	two	commands	back	to	back.	The	Linux	system	actually	runs	both	commands	at	the
same	time,	linking	them	together	internally	in	the	system.	As	the	first	command	produces	output,	it's	sent
immediately	to	the	second	command.	No	intermediate	files	or	buffer	areas	are	used	to	transfer	the	data.

Now,	using	piping	you	can	easily	pipe	the	output	of	the	rpm	command	directly	to	the	sort	command	to	produce	your
results:

$	rpm	-qa	|	sort
abattis-cantarell-fonts-0.0.25-1.el7.noarch
abrt-2.1.11-52.el7.centos.x86_64
abrt-addon-ccpp-2.1.11-52.el7.centos.x86_64
abrt-addon-kerneloops-2.1.11-52.el7.centos.x86_64
abrt-addon-pstoreoops-2.1.11-52.el7.centos.x86_64
abrt-addon-python-2.1.11-52.el7.centos.x86_64
abrt-addon-vmcore-2.1.11-52.el7.centos.x86_64
abrt-addon-xorg-2.1.11-52.el7.centos.x86_64
abrt-cli-2.1.11-52.el7.centos.x86_64
abrt-console-notification-2.1.11-52.el7.centos.x86_64
...

Unless	you're	a	(very)	quick	reader,	you	probably	couldn't	keep	up	with	the	output	generated	by	this	command.
Because	the	piping	feature	operates	in	real	time,	as	soon	as	the	rpm	command	produces	data,	the	sort	command	gets
busy	sorting	it.	By	the	time	the	rpm	command	finishes	outputting	data,	the	sort	command	already	has	the	data
sorted	and	starts	displaying	it	on	the	monitor.

There's	no	limit	to	the	number	of	pipes	you	can	use	in	a	command.	You	can	continue	piping	the	output	of	commands
to	other	commands	to	refine	your	operation.

In	this	case,	because	the	output	of	the	sort	command	zooms	by	so	quickly,	you	can	use	one	of	the	text	paging
commands	(such	as	less	or	more)	to	force	the	output	to	stop	at	every	screen	of	data:

$	rpm	-qa	|	sort	|	more

This	command	sequence	runs	the	rpm	command,	pipes	the	output	to	the	sort	command,	and	then	pipes	that	output
to	the	more	command	to	display	the	data,	stopping	after	every	screen	of	information.	This	now	lets	you	pause	and
read	what's	on	the	display	before	continuing,	as	shown	in	Figure	11-1.

To	get	even	fancier,	you	can	use	redirection	along	with	piping	to	save	your	output	to	a	file:

$	rpm	-qa	|	sort>	rpm.list	
$	more	rpm.list	
abrt-1.1.14-1.fc14.i686	
abrt-addon-ccpp-1.1.14-1.fc14.i686	
abrt-addon-kerneloops-1.1.14-1.fc14.i686	
abrt-addon-python-1.1.14-1.fc14.i686	
abrt-desktop-1.1.14-1.fc14.i686	
abrt-gui-1.1.14-1.fc14.i686	
abrt-libs-1.1.14-1.fc14.i686	
abrt-plugin-bugzilla-1.1.14-1.fc14.i686	
abrt-plugin-logger-1.1.14-1.fc14.i686	
abrt-plugin-runapp-1.1.14-1.fc14.i686	
acl-2.2.49-8.fc14.i686	
...

FIGURE	11-1	Using	piping	to	send	data	to	the	more	command

As	expected,	the	data	in	the	rpm.list	file	is	now	sorted!

By	far	one	of	the	most	popular	uses	is	piping	the	results	of	commands	that	produce	long	output	to	the	more
command.	This	is	especially	common	with	the	ls	command,	as	shown	in	Figure	11-2.

The	ls	-l	command	produces	a	long	listing	of	all	the	files	in	the	directory.	For	directories	with	lots	of	files,	this	can
be	quite	a	listing.	By	piping	the	output	to	the	more	command,	you	force	the	output	to	stop	at	the	end	of	every	screen
of	data.

Performing	Math
Another	feature	crucial	to	any	programming	language	is	the	ability	to	manipulate	numbers.	Unfortunately,	for	shell
scripts	this	process	is	a	bit	awkward.	You	have	two	ways	to	perform	mathematical	operations	in	your	shell	scripts.

FIGURE	11-2	Using	the	more	command	with	the	ls	command

The	expr	command
Originally,	the	Bourne	shell	provided	a	special	command	that	was	used	for	processing	mathematical	equations.	The
expr	command	allowed	the	processing	of	equations	from	the	command	line,	but	it	is	extremely	clunky:

$	expr	1	+	5
6

The	expr	command	recognizes	a	few	different	mathematical	and	string	operators,	shown	in	Table	11-1.

The	standard	operators	work	fine	in	the	expr	command,	but	the	problem	occurs	when	using	them	from	a	script	or
the	command	line.	Many	of	the	expr	command	operators	have	other	meanings	in	the	shell	(such	as	the	asterisk).
Using	them	in	the	expr	command	produces	odd	results:

$	expr	5	*	2
expr:	syntax	error
$

TABLE	11-1	The	expr	Command	Operators

Operator Description

ARG1	|	ARG2 Return	ARG1	if	neither	argument	is	null	or	0;	otherwise,	return	ARG2	.

ARG1	&	ARG2 Return	ARG1	if	neither	argument	is	null	or	0;	otherwise,	return	0.

ARG1	<	ARG2 Return	1	if	ARG1	is	less	than	ARG2	;	otherwise,	return	0.

ARG1	<=	ARG2 Return	1	if	ARG1	is	less	than	or	equal	to	ARG2	;	otherwise,	return	0.

ARG1	=	ARG2 Return	1	if	ARG1	is	equal	to	ARG2	;	otherwise,	return	0.

ARG1	!=	ARG2 Return	1	if	ARG1	is	not	equal	to	ARG2	;	otherwise,	return	0.

ARG1	>=	ARG2 Return	1	if	ARG1	is	greater	than	or	equal	to	ARG2	;	otherwise,	return	0.

ARG1	>	ARG2 Return	1	if	ARG1	is	greater	than	ARG2	;	otherwise,	return	0.

ARG1	+	ARG2 Return	the	arithmetic	sum	of	ARG1	and	ARG2	.

ARG1	-	ARG2 Return	the	arithmetic	difference	of	ARG1	and	ARG2	.

ARG1	*	ARG2 Return	the	arithmetic	product	of	ARG1	and	ARG2	.

ARG1	/	ARG2 Return	the	arithmetic	quotient	of	ARG1	divided	by	ARG2	.

ARG1	%	ARG2 Return	the	arithmetic	remainder	of	ARG1	divided	by	ARG2	.

STRING	:	REGEXP Return	the	pattern	match	if	REGEXP	matches	a	pattern	in	STRING	.

match	STRING	REGEXP Return	the	pattern	match	if	REGEXP	matches	a	pattern	in	STRING	.

substr	STRING	POS	LENGTH Return	the	substring	LENGTH	characters	in	length,	starting	at	position	POS	(starting	at	1).

index	STRING	CHARS Return	position	in	STRING	where	CHARS	is	found;	otherwise,	return	0.

length	STRING Return	the	numeric	length	of	the	string	STRING	.

+	TOKEN Interpret	TOKEN	as	a	string,	even	if	it's	a	keyword.

(EXPRESSION) Return	the	value	of	EXPRESSION	.

To	solve	this	problem,	you	need	to	use	the	shell	escape	character	(the	backslash)	to	identify	any	characters	that	may
be	misinterpreted	by	the	shell	before	being	passed	to	the	expr	command:

$	expr	5	*	2
10
$

Now	that's	really	starting	to	get	ugly!	Using	the	expr	command	in	a	shell	script	is	equally	cumbersome:

$	cat	test6
#!/bin/bash
#	An	example	of	using	the	expr	command
var1=10
var2=20
var3=$(expr	$var2	/	$var1)
echo	The	result	is	$var3

To	assign	the	result	of	a	mathematical	equation	to	a	variable,	you	have	to	use	command	substitution	to	extract	the
output	from	the	expr	command:

$	chmod	u+x	test6
$./test6
The	result	is	2
$

Fortunately,	the	Bash	shell	has	an	improvement	for	processing	mathematical	operators,	as	you	will	see	in	the	next
section.

Using	brackets
The	Bash	shell	includes	the	expr	command	to	stay	compatible	with	the	Bourne	shell;	however,	it	also	provides	a
much	easier	way	of	performing	mathematical	equations.	In	Bash,	when	assigning	a	mathematical	value	to	a	variable,
you	can	enclose	the	mathematical	equation	using	a	dollar	sign	and	square	brackets	($[operation]):

$	var1=$[1	+	5]
$	echo	$var1
6
$	var2=$[$var1	*	2]
$	echo	$var2
12
$

Using	brackets	makes	shell	math	much	easier	than	with	the	expr	command.	The	same	technique	also	works	in	shell
scripts:

$	cat	test7
#!/bin/bash

var1=100
var2=50
var3=45
var4=$[$var1	*	($var2	-	$var3)]
echo	The	final	result	is	$var4
$

Running	this	script	produces	the	following	output:

$	chmod	u+x	test7
$./test7
The	final	result	is	500
$

Also,	notice	that	when	using	the	square	brackets	method	for	calculating	equations	you	don't	need	to	worry	about	the
multiplication	symbol,	or	any	other	characters,	being	misinterpreted	by	the	shell.	The	shell	knows	that	it's	not	a
wildcard	character	because	it	is	within	the	square	brackets.

There's	one	major	limitation	to	performing	math	in	the	Bash	shell	script.	Take	a	look	at	this	example:

$	cat	test8
#!/bin/bash
var1=100
var2=45
var3=$[$var1	/	$var2]
echo	The	final	result	is	$var3
$

Now	run	it	and	see	what	happens:

$	chmod	u+x	test8
$./test8
The	final	result	is	2
$

The	Bash	shell	mathematical	operators	support	only	integer	arithmetic.	This	is	a	huge	limitation	if	you're	trying	to
do	any	sort	of	real-world	mathematical	calculations.

NOTE
The	z	shell	(zsh)	provides	full	floating-point	arithmetic	operations.	If	you	require	floating-
point	calculations	in	your	shell	scripts,	you	might	consider	checking	out	the	z	shell	(discussed
in	Chapter	23,	“Working	with	Alternative	Shells”).

A	floating-point	solution
There	are	several	solutions	for	overcoming	the	Bash	integer	limitation.	The	most	popular	solution	uses	the	built-in
Bash	calculator,	called	bc.

The	basics	of	bc
The	Bash	calculator	is	actually	a	programming	language	that	allows	you	to	enter	floating-point	expressions	at	a
command	line	and	then	interprets	the	expressions,	calculates	them,	and	returns	the	result.	The	Bash	calculator
recognizes	the	following:

Numbers	(both	integer	and	floating	point)

Variables	(both	simple	variables	and	arrays)

Comments	(lines	starting	with	a	pound	sign	or	the	C	language	/*	*/	pair)

Expressions

Programming	statements	(such	as	if-then	statements)

Functions

You	can	access	the	Bash	calculator	from	the	shell	prompt	using	the	bc	command:

$	bc
bc	1.06.95
Copyright	1991-1994,	1997,	1998,	2000,	2004,	2006	Free	Software	Foundation,	Inc.
This	is	free	software	with	ABSOLUTELY	NO	WARRANTY.
For	details	type	'warranty'.
12	*	5.4
64.8
3.156	*	(3	+	5)
25.248
quit
$

The	example	starts	out	by	entering	the	expression	12	*	5.4	.	The	Bash	calculator	returns	the	answer.	Each
subsequent	expression	entered	into	the	calculator	is	evaluated,	and	the	result	is	displayed.	To	exit	the	Bash

calculator,	you	must	enter	quit	.

The	floating-point	arithmetic	is	controlled	by	a	built-in	variable	called	scale.	You	must	set	this	value	to	the	desired
number	of	decimal	places	you	want	in	your	answers	or	you	won't	get	what	you	were	looking	for:

$	bc	-q
3.44	/	5
0
scale=4
3.44	/	5
.6880
quit
$

The	default	value	for	the	scale	variable	is	0.	Before	the	scale	value	is	set,	the	Bash	calculator	provides	the	answer	to
zero	decimal	places.	After	you	set	the	scale	variable	value	to	4,	the	Bash	calculator	displays	the	answer	to	four
decimal	places.	The	-q	command-line	parameter	suppresses	the	lengthy	welcome	banner	from	the	Bash	calculator.

In	addition	to	normal	numbers,	the	Bash	calculator	understands	variables:

$	bc	-q
var1=10
var1	*	4
40
var2	=	var1	/	5
print	var2
2
quit
$

Once	a	variable	value	is	defined,	you	can	use	the	variable	throughout	the	Bash	calculator	session.	The	print
statement	allows	you	to	print	variables	and	numbers.

Using	bc	in	scripts
Now	you	may	be	wondering	how	the	Bash	calculator	is	going	to	help	you	with	floating-point	arithmetic	in	your	shell
scripts.	Do	you	remember	your	friend	the	backtick	character?	Yes,	you	can	use	the	command	substitution	character
to	run	a	bc	command	and	assign	the	output	to	a	variable!	The	basic	format	to	use	is	this:

variable=$(echo	"options;	expression"	|	bc)

The	first	portion,	options	,	allows	you	to	set	variables.	If	you	need	to	set	more	than	one	variable,	separate	them	using
the	semicolon.	The	expression	parameter	defines	the	mathematical	expression	to	evaluate	using	bc	.	Here's	a	quick
example	of	doing	this	in	a	script:

$	cat	test9
#!/bin/bash
var1=$(echo	"	scale=4;	3.44	/	5"	|	bc)
echo	The	answer	is	$var1
$

This	example	sets	the	scale	variable	to	four	decimal	places	and	then	specifies	a	specific	calculation	for	the
expression.	Running	this	script	produces	the	following	output:

$	chmod	u+x	test9
$./test9
The	answer	is	.6880
$

Now	that's	fancy!	You	aren't	limited	to	just	using	numbers	for	the	expression	value.	You	can	also	use	variables
defined	in	the	shell	script:

$	cat	test10
#!/bin/bash
var1=100
var2=45
var3=$(echo	"scale=4;	$var1	/	$var2"	|	bc)
echo	The	answer	for	this	is	$var3
$

The	script	defines	two	variables,	which	are	used	within	the	expression	sent	to	the	bc	command.	Remember	to	use
the	dollar	sign	to	signify	the	value	for	the	variables	and	not	the	variables	themselves.	The	output	of	this	script	is	as
follows:

$./test10
The	answer	for	this	is	2.2222
$

And	of	course,	once	a	value	is	assigned	to	a	variable,	that	variable	can	be	used	in	yet	another	calculation:

$	cat	test11
#!/bin/bash
var1=20
var2=3.14159
var3=$(echo	"scale=4;	$var1	*	$var1"	|	bc)
var4=$(echo	"scale=4;	$var3	*	$var2"	|	bc)

echo	The	final	result	is	$var4
$

This	method	works	fine	for	short	calculations,	but	sometimes	you	need	to	get	more	involved	with	your	numbers.	If
you	have	more	than	just	a	couple	of	calculations,	it	gets	confusing	trying	to	list	multiple	expressions	on	the	same
command	line.

There's	a	solution	to	this	problem.	The	bc	command	recognizes	input	redirection,	allowing	you	to	redirect	a	file	to
the	bc	command	for	processing.	However,	this	also	can	get	confusing,	since	you'd	need	to	store	your	expressions	in	a
file.

The	best	method	is	to	use	inline	input	redirection,	which	allows	you	to	redirect	data	directly	from	the	command	line.
In	the	shell	script,	you	assign	the	output	to	a	variable:

variable=$(bc	<<	EOF
options
statements
expressions
EOF
)

The	EOF	text	string	indicates	the	beginning	and	end	of	the	inline	redirection	data.	Remember	that	the	command
substitution	characters	are	still	needed	to	assign	the	output	of	the	bc	command	to	the	variable.

Now	you	can	place	all	of	the	individual	Bash	calculator	elements	on	separate	lines	in	the	script	file.	Here's	an
example	of	using	this	technique	in	a	script:

$	cat	test12
#!/bin/bash
	
var1=10.46
var2=43.67
var3=33.2
var4=71
	
var5=$(bc	<<	EOF
scale	=	4
a1	=	($var1	*	$var2)
b1	=	($var3	*	$var4)
a1	+	b1
EOF
)
	
echo	The	final	answer	for	this	mess	is	$var5
$

Placing	each	option	and	expression	on	a	separate	line	in	your	script	makes	things	cleaner	and	easier	to	read	and
follow.	The	EOF	string	indicates	the	start	and	end	of	the	data	to	redirect	to	the	bc	command.	Of	course,	you	need	to
use	the	command	substitution	characters	to	indicate	the	command	to	assign	to	the	variable.

You'll	also	notice	in	this	example	that	you	can	assign	variables	within	the	Bash	calculator.	It's	important	to
remember	that	any	variables	created	within	the	Bash	calculator	are	valid	only	within	the	Bash	calculator	and	can't	be
used	in	the	shell	script.

Exiting	the	Script
So	far	in	our	sample	scripts,	we	terminated	things	pretty	abruptly.	When	we	were	done	with	our	last	command,	we
just	ended	the	script.	There's	a	more	elegant	way	of	completing	things	available	to	us.

Every	command	that	runs	in	the	shell	uses	an	exit	status	to	indicate	to	the	shell	that	it's	done	processing.	The	exit
status	is	an	integer	value	between	0	and	255	that's	passed	by	the	command	to	the	shell	when	the	command	finishes
running.	You	can	capture	this	value	and	use	it	in	your	scripts.

Checking	the	exit	status
Linux	provides	the	$?	special	variable	that	holds	the	exit	status	value	from	the	last	command	that	executed.	You
must	view	or	use	the	$?	variable	immediately	after	the	command	you	want	to	check.	It	changes	values	to	the	exit
status	of	the	last	command	executed	by	the	shell:

$	date
Mon	Jun	01	16:01:30	EDT	2020
$	echo	$?
0
$

By	convention,	the	exit	status	of	a	command	that	successfully	completes	is	0.	If	a	command	completes	with	an	error,
then	a	positive	integer	value	is	placed	in	the	exit	status:

$	asdfg
-bash:	asdfg:	command	not	found
$	echo	$?
127
$

The	invalid	command	returns	an	exit	status	of	127.	There's	not	much	of	a	standard	convention	to	Linux	error	exit
status	codes.	However,	there	are	a	few	guidelines	you	can	use,	as	shown	in	Table	11-2.

TABLE	11-2	Linux	Exit	Status	Codes

Code Description

0 Successful	completion	of	the	command

1 General	unknown	error

2 Misuse	of	shell	command

126 The	command	can't	execute

127 Command	not	found

128 Invalid	exit	argument

128+x Fatal	error	with	Linux	signal	x

130 Command	terminated	with	Ctrl+C

255 Exit	status	out	of	range

An	exit	status	value	of	126	indicates	that	the	user	didn't	have	the	proper	permissions	set	to	execute	the	command:

$./myprog.c
-bash:	./myprog.c:	Permission	denied
$	echo	$?
126
$

Another	common	error	you'll	encounter	occurs	if	you	supply	an	invalid	parameter	to	a	command:

$	date	%t
date:	invalid	date	'%t'
$	echo	$?
1
$

This	generates	the	general	exit	status	code	of	1,	indicating	that	an	unknown	error	occurred	in	the	command.

The	exit	command
By	default,	your	shell	script	will	exit	with	the	exit	status	of	the	last	command	in	your	script:

$./test6
The	result	is	2
$	echo	$?
0
$

You	can	change	that	to	return	your	own	exit	status	code.	The	exit	command	allows	you	to	specify	an	exit	status
when	your	script	ends:

$	cat	test13
#!/bin/bash
#	testing	the	exit	status
var1=10
var2=30
var3=$[$var1	+	var2]
echo	The	answer	is	$var3
exit	5
$

When	you	check	the	exit	status	of	the	script,	you'll	get	the	value	used	as	the	parameter	of	the	exit	command:

$	chmod	u+x	test13
$./test13
The	answer	is	40
$	echo	$?
5
$

You	can	also	use	variables	in	the	exit	command	parameter:

$	cat	test14
#!/bin/bash
#	testing	the	exit	status
var1=10
var2=30
var3=$[$var1	+	var2]
exit	$var3
$

When	you	run	this	command,	it	produces	the	following	exit	status:

$	chmod	u+x	test14
$./test14

$	echo	$?
40
$

You	should	be	careful	with	this	feature,	however	—	the	exit	status	codes	can	only	go	up	to	255.	Watch	what	happens
in	this	example:

$	cat	test14b
#!/bin/bash
#	testing	the	exit	status
var1=10
var2=30
var3=$[$var1	*	var2]
echo	The	value	is	$var3
exit	$var3
$

Now	when	you	run	it,	you	get	the	following:

$./test14b
The	value	is	300
$	echo	$?
44
$

The	exit	status	code	is	reduced	to	fit	in	the	0	to	255	range.	The	shell	does	this	by	using	modulo	arithmetic.	The
modulo	of	a	value	is	the	remainder	after	a	division.	The	resulting	number	is	the	remainder	of	the	specified	number
divided	by	256.	In	the	case	of	300	(the	result	value),	the	remainder	is	44,	which	is	what	appears	as	the	exit	status
code.

In	the	next	chapter,	you'll	see	how	you	can	use	the	if-then	statement	to	check	the	error	status	returned	by	a
command	to	see	whether	or	not	the	command	was	successful.

Working	through	a	Practical	Example
Now	that	you	have	the	basics	of	shell	scripting,	we	can	try	putting	them	together	to	create	a	useful	script.	For	this
example,	we'll	work	on	creating	a	shell	script	to	calculate	the	number	of	days	between	two	dates.	For	our	example,
we'll	allow	the	user	to	specify	the	dates	in	any	format	that's	recognized	by	the	Linux	date	command.

First,	we'll	store	the	two	specified	dates	in	variables:

$date1="Jan	1,	2020"
$date2="May	1,	2020"

Performing	date	arithmetic	is	hard;	you	have	to	know	which	months	have	28,	30,	or	31	days,	and	you	need	to	know
what	years	are	leap	years.	However,	we	can	get	some	help	from	the	date	command.

The	date	command	allows	us	to	specify	a	specific	date	using	the	-d	option	(in	any	format),	and	then	output	the	date
in	any	other	format	that	we	define.	To	do	our	calculations,	we'll	make	use	of	a	Linux	feature	called	the	epoch	time.
The	epoch	time	specifies	the	time	as	an	integer	value	of	the	number	of	seconds	since	midnight,	January	1,	1970	(it's
an	old	Unix	standard).	Thus,	to	get	the	epoch	time	for	January	1,	2020,	you'd	do	this:

$date	-d	"Jan	1,	2020"	+%s
1577854800
$

We'll	use	that	method	to	get	the	epoch	time	for	both	dates,	and	then	just	subtract	the	two	values	to	get	the	number	of
seconds	between	the	two	dates.	From	there,	we	can	divide	that	value	by	the	number	of	seconds	in	a	day	(60	seconds
per	minute,	60	minutes	per	hour,	and	24	hours	per	day)	to	get	the	difference	between	the	two	dates	in	days.

We'll	use	the	command	substitution	feature	to	capture	the	output	of	the	date	command	in	a	variable:

$time1=$(date	-d	"$date1"	+%s)

Once	we	have	the	epoch	times	for	both	dates,	it's	just	a	matter	of	using	our	new	friend	the	expr	command	to
calculate	the	differences	(we	could	use	the	bc	utility,	but	since	we're	working	with	integer	values	expr	will	work	just
fine	for	us).

So,	putting	that	all	together	gives	us	this	script:

$	cat	mydate.sh
#!/bin/bash
#	calculate	the	number	of	days	between	two	dates
date1="Jan	1,	2020"
date2="May	1,	2020"
	
time1=$(date	-d	"$date1"	+%s)
time2=$(date	-d	"$date2"	+%s)
	
diff=$(expr	$time2	-	$time1)
secondsinday=$(expr	24	*	60	*	60)
days=$(expr	$diff	/	$secondsinday)
	
echo	"The	difference	between	$date2	and	$date1	is	$days	days"
$

Then	it's	just	a	matter	of	assigning	the	correct	permissions	and	running	the	script:

$	chmod	u+x	mydate.sh
$./mydate.sh
The	difference	between	May	1,	2020	and	Jan	1,	2020	is	120	days
$

Now	you	can	plug	any	dates	into	the	variables	(using	just	about	any	date	format	you	need)	and	you	should	get	the
proper	results!

Summary
The	Bash	shell	script	allows	you	to	string	commands	together	into	a	script.	The	most	basic	way	to	create	a	script	is	to
separate	multiple	commands	on	the	command	line	using	a	semicolon.	The	shell	executes	each	command	in	order,
displaying	the	output	of	each	command	on	the	monitor.

You	can	also	create	a	shell	script	file,	placing	multiple	commands	in	the	file	for	the	shell	to	execute	in	order.	The
shell	script	file	must	define	the	shell	used	to	run	the	script.	This	is	done	in	the	first	line	of	the	script	file,	using	the	#!
symbol,	followed	by	the	full	path	of	the	shell.

Within	the	shell	script	you	can	reference	environment	variable	values	by	using	a	dollar	sign	in	front	of	the	variable.
You	can	also	define	your	own	variables	for	use	within	the	script,	and	assign	values	and	even	the	output	of	a
command	by	using	the	backtick	character	or	the	$()	format.	The	variable	value	can	be	used	within	the	script	by
placing	a	dollar	sign	in	front	of	the	variable	name.

The	Bash	shell	allows	you	to	redirect	both	the	input	and	output	of	a	command	from	the	standard	behavior.	You	can
redirect	the	output	of	any	command	from	the	monitor	display	to	a	file	by	using	the	greater-than	symbol,	followed	by
the	name	of	the	file	to	capture	the	output.	You	can	append	output	data	to	an	existing	file	by	using	two	greater-than
symbols.	The	less-than	symbol	is	used	to	redirect	input	to	a	command.	You	can	redirect	input	from	a	file	to	a
command.

The	Linux	pipe	command	(the	broken	bar	symbol)	allows	you	to	redirect	the	output	of	a	command	directly	to	the
input	of	another	command.	The	Linux	system	runs	both	commands	at	the	same	time,	sending	the	output	of	the	first
command	to	the	input	of	the	second	command	without	using	any	redirect	files.

The	Bash	shell	provides	a	couple	of	ways	for	you	to	perform	mathematical	operations	in	your	shell	scripts.	The	expr
command	is	a	simple	way	to	perform	integer	math.	In	the	Bash	shell,	you	can	also	perform	basic	math	calculations
by	enclosing	equations	in	square	brackets,	preceded	by	a	dollar	sign.	To	perform	floating-point	arithmetic,	you	need
to	use	the	bc	calculator	command,	redirecting	input	from	inline	data	and	storing	the	output	in	a	user	variable.

Finally,	we	discussed	how	to	use	the	exit	status	in	your	shell	script.	Every	command	that	runs	in	the	shell	produces
an	exit	status.	The	exit	status	is	an	integer	value	between	0	and	255	that	indicates	whether	or	not	the	command
completed	successfully,	and	if	not,	what	the	reason	may	have	been.	An	exit	status	of	0	indicates	that	the	command
completed	successfully.	You	can	use	the	exit	command	in	your	shell	script	to	declare	a	specific	exit	status	upon	the
completion	of	your	script.

So	far	in	your	shell	scripts,	things	have	proceeded	in	an	orderly	fashion	from	one	command	to	the	next.	In	the	next
chapter,	you'll	see	how	you	can	use	some	logic	flow	control	to	alter	which	commands	are	executed	within	the	script.

CHAPTER	12
Using	Structured	Commands
IN	THIS	CHAPTER

Working	with	the	if-then	statement

Nesting	if	s

Understanding	the	test	command

Testing	compound	conditions

Using	double	brackets	and	parentheses

Looking	at	case

In	Chapter	11,	“Basic	Script	Building,”	the	shell	processed	each	individual	command	in	the	order	in	which	it
appeared	within	a	shell	script.	Although	this	works	out	fine	for	sequential	operations,	many	programs	require	some
sort	of	logic	flow	control	between	the	commands	in	the	script.

There	is	a	whole	command	class	that	allows	the	shell	to	skip	over	script	sections	based	on	tested	conditions	and	alter
the	operation	flow.	These	commands	are	generally	referred	to	as	structured	commands.

Quite	a	few	structured	commands	are	available	in	the	Bash	shell,	so	we'll	break	them	up	into	different	chapters.	In
this	chapter,	we	look	at	if	-	then	and	case	statements.

Working	with	the	if-then	Statement
The	most	basic	type	of	structured	command	is	the	if-then	statement.	The	if-then	statement	has	the	following
format:

if	command
then
				commands
fi

If	you're	using	if-then	statements	in	other	programming	languages,	this	format	may	be	somewhat	confusing.	In
other	programming	languages,	the	object	after	the	if	statement	is	an	equation	that	is	evaluated	for	a	TRUE	or	FALSE
value.	That's	not	how	the	Bash	shell	if	statement	works.

The	Bash	shell	if	statement	runs	the	command	defined	on	the	if	line.	If	the	exit	status	of	the	command	(see	Chapter
11)	is	zero	(the	command	completed	successfully),	the	commands	listed	under	the	then	section	are	executed.	If	the
exit	status	of	the	command	is	anything	else,	the	then	commands	aren't	executed,	and	the	Bash	shell	moves	on	to	the
next	command	in	the	script.	The	fi	statement	sets	the	if-then	statement's	end.

Here's	a	simple	example	to	demonstrate	this	concept:

$	cat	test1.sh
#!/bin/bash
#	testing	the	if	statement
if	pwd
then
					echo	"It	worked"
fi
$

This	script	uses	the	pwd	command	on	the	if	line.	If	the	command	completes	successfully,	the	echo	statement	should
display	the	text	string.	When	we	run	this	script	from	the	command	line,	we	get	these	results:

$./test1.sh
/home/christine/scripts
It	worked
$

The	shell	executed	the	pwd	command	listed	on	the	if	line.	Because	the	exit	status	was	zero,	it	also	executed	the	echo
statement	listed	in	the	then	section.

Here's	another	example:

$	cat	test2.sh
#!/bin/bash
#	testing	an	incorrect	command
if	IamNotaCommand
then
					echo	"It	worked"
fi
echo	"We	are	outside	the	if	statement"
$
$./test2.sh
./test2.sh:	line	3:	IamNotaCommand:	command	not	found

We	are	outside	the	if	statement
$

In	this	example,	we	deliberately	used	a	nonexistent	command,	IamNotaCommand	,	in	the	if	statement	line.	Because
this	is	an	incorrect	command,	it	produces	an	exit	status	that's	non-zero.	Thus,	the	Bash	shell	skips	the	echo
statement	in	the	then	section.	Also	notice	that	the	error	message	generated	from	running	the	command	in	the	if
statement	still	appears	in	the	script's	output.	There	may	be	times	when	you	don't	want	an	error	statement	to	appear.
Chapter	15,	“Presenting	Data,”	discusses	how	this	can	be	avoided.

NOTE
You	might	see	an	alternative	form	of	the	if-then	statement	used	in	some	scripts:

				if	command;	then
							commands
				fi

By	putting	a	semicolon	(;)	at	the	end	of	the	command	to	evaluate,	you	can	include	the	then
statement	on	the	same	line,	which	looks	closer	to	how	if-then	statements	are	handled	in	some
other	programming	languages.

You	are	not	limited	to	just	one	command	in	the	then	section.	You	can	list	commands	just	as	you	do	in	the	rest	of	the
shell	script.	The	Bash	shell	treats	the	commands	as	a	block,	executing	all	of	them	when	the	command	in	the	if
statement	line	returns	a	zero	exit	status	or	skipping	all	of	them	when	the	command	returns	a	non-zero	exit	status:

$	cat	test3.sh
#!/bin/bash
#	testing	multiple	commands	in	the	then	block
#
testuser=christine
#
if	grep	$testuser	/etc/passwd
then
					echo	"This	is	my	first	command	in	the	then	block."
					echo	"This	is	my	second	command	in	the	then	block."
					echo	"I	can	even	put	in	other	commands	besides	echo:"
					ls	/home/$testuser/*.sh
fi
echo	"We	are	outside	the	if	statement"
$

The	if	statement	line	uses	the	grep	comment	to	search	the	/etc/passwd	file	to	see	if	a	specific	username	is	currently
used	on	the	system.	If	there's	a	user	with	that	logon	name,	the	script	displays	some	text	and	then	lists	the	Bash
scripts	in	the	user's	$HOME	directory:

$./test3.sh
christine:x:1001:1001::/home/christine:/bin/bash
This	is	my	first	command	in	the	then	block.
This	is	my	second	command	in	the	then	block.
I	can	even	put	in	other	commands	besides	echo:
/home/christine/factorial.sh
We	are	outside	the	if	statement
$

However,	if	you	set	the	testuser	variable	to	a	user	that	doesn't	exist	on	the	system,	nothing	within	the	then	code
block	executes:

$	cat	test3.sh
#!/bin/bash
#	testing	multiple	commands	in	the	then	block
#
testuser=NoSuchUser
#
if	grep	$testuser	/etc/passwd
then
					echo	"This	is	my	first	command	in	the	then	block."
					echo	"This	is	my	second	command	in	the	then	block."
					echo	"I	can	even	put	in	other	commands	besides	echo:"
					ls	/home/$testuser/*.sh
fi
echo	"We	are	outside	the	if	statement"
$
$./test3.sh
We	are	outside	the	if	statement
$

It's	not	all	that	exciting.	It	would	be	nice	if	we	could	display	a	little	message	saying	that	the	username	wasn't	found
on	the	system.	Well,	we	can,	using	another	feature	of	the	if-then	statement.

Exploring	the	if-then-else	Statement

In	the	if-then	statement,	you	have	only	one	option	for	whether	a	command	is	successful.	If	the	command	returns	a
non-zero	exit	status	code,	the	Bash	shell	just	moves	on	to	the	next	command	in	the	script.	In	this	situation,	it	would
be	nice	to	be	able	to	execute	an	alternate	set	of	commands.	That's	exactly	what	the	if-then-else	statement	is	for.

The	if-then-else	statement	provides	another	group	of	commands	in	the	statement:

if	command
then
			commands
else
			commands
fi

When	the	command	in	the	if	statement	line	returns	with	a	zero	exit	status	code,	the	commands	listed	in	the	then
section	are	executed,	just	as	in	a	normal	if-then	statement.	When	the	command	in	the	if	statement	line	returns	a
non-zero	exit	status	code,	the	Bash	shell	executes	the	commands	in	the	else	section.

Now	you	can	copy	and	modify	the	test	script	to	include	an	else	section:

$	cp	test3.sh	test4.sh
$
$	nano	test4.sh
$
$	cat	test4.sh
#!/bin/bash
#	testing	the	else	section
#
testuser=NoSuchUser
#
if	grep	$testuser	/etc/passwd
then
					echo	"The	script	files	in	the	home	directory	of	$testuser	are:"
					ls	/home/$testuser/*.sh
					echo
else
					echo	"The	user	$testuser	does	not	exist	on	this	system."
					echo
fi
echo	"We	are	outside	the	if	statement"
$
$./test4.sh
The	user	NoSuchUser	does	not	exist	on	this	system.
	
We	are	outside	the	if	statement
$

That's	more	user-friendly.	Just	like	the	then	section,	the	else	section	can	contain	multiple	commands.	The	fi
statement	delineates	the	end	of	the	else	section.

Nesting	ifs
Sometimes,	you	must	check	for	several	situations	in	your	script	code.	For	these	situations,	you	can	nest	the	if-then
statements.

To	check	if	a	logon	name	is	not	in	the	/etc/passwd	file	and	yet	a	directory	for	that	user	still	exists,	use	a	nested	if-
then	statement.	In	this	case,	the	nested	if-then	statement	is	within	the	primary	if-then-else	statement's	else	code
block:

$	cat	test5.sh
#!/bin/bash
#	testing	nested	ifs
#
testuser=NoSuchUser
#
if	grep	$testuser	/etc/passwd
then
					echo	"The	user	$testuser	account	exists	on	this	system."
					echo
else
					echo	"The	user	$testuser	does	not	exist	on	this	system."
					if		ls	-d	/home/$testuser/
					then
										echo	"However,	$testuser	has	a	directory."
					fi
fi
echo	"We	are	outside	the	nested	if	statements."
	
$	ls	-d	/home/NoSuchUser/
/home/NoSuchUser/
$
$./test5.sh
The	user	NoSuchUser	does	not	exist	on	this	system.
/home/NoSuchUser/
However,	NoSuchUser	has	a	directory.
We	are	outside	the	nested	if	statements.

$

The	script	correctly	finds	that	although	the	login	name	has	been	removed	from	the	/etc/passwd	file,	the	user's
directory	is	still	on	the	system.	The	problem	with	using	this	manner	of	nested	if-then	statements	in	a	script	is	that
the	code	can	get	hard	to	read,	and	the	logic	flow	becomes	difficult	to	follow.

NOTE
The	ls	command	has	some	additional	useful	command	options	(and	option	combinations)	we
use	in	this	chapter:

-d	shows	only	the	directory	information,	not	the	directory's	contents.

-sh	displays	the	file's	size	in	a	human-readable	format.

-g	shows	the	file's	long	listing	minus	the	owner	name.

-o	displays	the	file's	long	listing	minus	the	group	name.

The	ls	command	was	first	covered	in	Chapter	3,	“Basic	Bash	Shell	Commands.”

Instead	of	having	to	write	separate	if-then	statements,	you	can	use	an	alternative	version	of	the	else	section	called
elif	.	The	elif	continues	an	else	section	with	another	if-then	statement:

if	command1
then
			commands
elif	command2
then
				more	commands
fi

The	elif	statement	line	provides	another	command	to	evaluate,	similar	to	the	original	if	statement	line.	If	the	exit
status	code	from	the	elif	command	is	zero,	Bash	executes	the	commands	in	the	second	then	statement	section.
Using	this	method	of	nesting	provides	cleaner	code	with	an	easier-to-follow	logic	flow:

$	cat	test5.sh
#!/bin/bash
#	testing	nested	ifs	-	using	elif
#
testuser=NoSuchUser
#
if	grep	$testuser	/etc/passwd
then
					echo	"The	user	$testuser	account	exists	on	this	system."
					echo
elif	ls	-d	/home/$testuser/
					then
										echo	"The	user	$testuser	has	a	directory,"
										echo	"even	though	$testuser	doesn't	have	an	account."
fi
echo	"We	are	outside	the	nested	if	statements."
$	
$./test5.sh
/home/NoSuchUser/
The	user	NoSuchUser	has	a	directory,
even	though	NoSuchUser	doesn't	have	an	account.
We	are	outside	the	nested	if	statements.
$

The	problem	with	this	script	is	that	if	the	account	is	gone	as	well	as	the	directory,	you	get	no	notifications	of	these
facts.	You	can	fix	this	problem,	and	even	take	the	script	a	step	further	by	having	it	check	for	both	a	nonexistent	user
with	a	directory	and	a	nonexistent	user	without	a	directory.	You	accomplish	this	by	adding	an	else	statement	within
the	nested	elif	:

$	cat	test5.sh
#!/bin/bash
#	testing	nested	ifs	-	using	elif	and	else
#
testuser=NoSuchUser
#
if	grep	$testuser	/etc/passwd
then
					echo	"The	user	$testuser	account	exists	on	this	system."
					echo
elif	ls	-d	/home/$testuser/
					then
										echo	"The	user	$testuser	has	a	directory,"
										echo	"even	though	$testuser	doesn't	have	an	account."
					else
										echo	"The	user	$testuser	does	not	exist	on	this	system,"
										echo	"and	no	directory	exists	for	the	$testuser."
fi

echo	"We	are	outside	the	nested	if	statements."

$
$./test5.sh
/home/NoSuchUser/
The	user	NoSuchUser	has	a	directory,
even	though	NoSuchUser	doesn't	have	an	account.
We	are	outside	the	nested	if	statements.
$

$	sudo	rmdir	/home/NoSuchUser/
[sudo]	password	for	christine:
$
$./test5.sh
ls:	cannot	access	'/home/NoSuchUser/':	No	such	file	or	directory
The	user	NoSuchUser	does	not	exist	on	this	system,
and	no	directory	exists	for	the	NoSuchUser.
We	are	outside	the	nested	if	statements.
$

Before	the	/home/NoSuchUser	directory	was	removed	and	the	test	script	executed	the	elif	statement,	a	zero	exit
status	was	returned.	Thus,	the	statements	within	the	elif	's	then	code	block	were	executed.	After	the
/home/NoSuchUser	directory	was	removed,	a	non-zero	exit	status	was	returned	for	the	elif	statement.	This	caused
the	statements	in	the	else	block	within	the	elif	block	to	be	executed.

NOTE
Keep	in	mind	that,	with	an	elif	statement,	any	else	statements	immediately	following	it	are
only	for	that	elif	code	block.	They	are	not	part	of	a	preceding	if-then	statement	code	block.

You	can	continue	to	string	elif	statements	together,	creating	one	huge	if-then-elif	conglomeration:

if	command1
then
				command	set	1
elif	command2
then
			command	set	2
elif	command3
then
			command	set	3
elif	command4
then
			command	set	4
fi

Each	block	of	commands	is	executed	depending	on	which	command	returns	the	zero	exit	status	code.	Remember
that	the	Bash	shell	executes	the	if	statements	in	order,	and	only	the	first	one	that	returns	a	zero	exit	status	results	in
the	then	section	being	executed.

Even	though	the	code	looks	cleaner	with	elif	statements,	it	still	can	be	confusing	to	follow	the	script's	logic.	Later	in
the	“Considering	the	case	Command”	section,	you'll	see	how	to	use	the	case	command	instead	of	having	to	nest	lots
of	if-then	statements.

Trying	the	test	Command
So	far,	all	you've	seen	in	the	if	statement	line	are	normal	shell	commands.	You	might	be	wondering	if	the	Bash	if-
then	statement	has	the	ability	to	evaluate	any	condition	other	than	a	command's	exit	status	code.

The	answer	is	no,	it	can't.	However,	a	neat	utility	available	in	the	Bash	shell	helps	you	evaluate	other	things	using	the
if-then	statement.

The	test	command	provides	a	way	to	test	different	conditions	in	an	if-then	statement.	If	the	condition	listed	in	the
test	command	evaluates	to	TRUE	,	the	test	command	exits	with	a	zero	exit	status	code.	This	makes	the	if-then
statement	behave	in	much	the	same	way	that	if-then	statements	work	in	other	programming	languages.	If	the
condition	is	false,	the	test	command	exits	with	a	non-zero	exit	status	code,	which	causes	the	if-then	statement	to
exit.

The	format	of	the	test	command	is	pretty	simple:

test	condition

The	condition	is	a	series	of	parameters	and	values	that	the	test	command	evaluates.	When	used	in	an	if-then
statement,	the	test	command	looks	like	this:

if	test	condition
then
			commands
fi

If	you	leave	out	the	condition	portion	of	the	test	command	statement,	it	exits	with	a	non-zero	exit	status	code
(false)	and	triggers	any	else	block	statements:

$	cat	test6.sh
#!/bin/bash
#	testing	the	test	command
#
if	test
then
					echo	"No	expression	returns	a	True"
else
					echo	"No	expression	returns	a	False"
fi
$
$./test6.sh
No	expression	returns	a	False
$

When	you	add	in	a	condition,	it	is	tested	by	the	test	command.	For	example,	using	the	test	command,	you	can
determine	whether	a	variable	has	content.	A	simple	condition	expression	is	needed	to	determine	whether	a	variable
has	content:

$	cat	test6.sh
#!/bin/bash
#	testing	if	a	variable	has	content
#
my_variable="Full"
#
if	test	$my_variable
then
					echo	"The	my_variable	variable	has	content	and	returns	a	True."
					echo	"The	my_variable	variable	content	is:	$my_variable"
else
					echo	"The	my_variable	variable	doesn't	have	content,"
					echo	"and	returns	a	False."
fi
$
$./test6.sh
The	my_variable	variable	has	content	and	returns	a	True.
The	my_variable	variable	content	is:	Full
$

The	variable	my_variable	contains	content	(Full),	so	when	the	test	command	checks	the	condition,	the	exit	status
returns	a	zero.	This	triggers	the	statements	in	the	then	code	block.

As	you	would	suspect,	the	opposite	occurs	when	the	variable	does	not	contain	content:

$	cat	test6.sh
#!/bin/bash
#	testing	if	a	variable	has	content
#
my_variable=""
#
if	test	$my_variable
then
					echo	"The	my_variable	variable	has	content	and	returns	a	True."
					echo	"The	my_variable	variable	content	is:	$my_variable"
else
					echo	"The	my_variable	variable	doesn't	have	content,"
					echo	"and	returns	a	False."
fi
$
$./test6.sh
The	my_variable	variable	doesn't	have	content,
and	returns	a	False.
$

The	Bash	shell	provides	an	alternative	way	of	testing	a	condition	without	declaring	the	test	command	in	an	if-then
statement:

if	[condition]
then
			commands
fi

The	square	brackets	define	the	test	condition.	Be	careful:	you	must	have	a	space	after	the	first	bracket	and	a	space
before	the	last	bracket,	or	you'll	get	an	error	message.

The	test	command	and	test	conditions	can	evaluate	three	classes	of	conditions:

Numeric	comparisons

String	comparisons

File	comparisons

The	next	sections	describe	how	to	use	each	of	these	test	classes	in	your	if-then	statements.

Using	numeric	comparisons
The	most	common	test	evaluation	method	is	to	perform	a	comparison	of	two	numeric	values.	Table	12-1	shows	the
list	of	condition	parameters	used	for	testing	two	values.

TABLE	12-1	The	test	Numeric	Comparisons

Comparison Description

n1	-eq	n2 Checks	if	n1	is	equal	to	n2.

n1	-ge	n2 Checks	if	n1	is	greater	than	or	equal	to	n2.

n1	-gt	n2 Checks	if	n1	is	greater	than	n2.

n1	-le	n2 Checks	if	n1	is	less	than	or	equal	to	n2.

n1	-lt	n2 Checks	if	n1	is	less	than	n2.

n1	-ne	n2 Checks	if	n1	is	not	equal	to	n2.

The	numeric	test	conditions	can	be	used	to	evaluate	both	numbers	and	variables.	Here's	an	example	of	doing	that:

$	cat	numeric_test.sh
#!/bin/bash
#	Using	numeric	test	evaluations
#
value1=10
value2=11
#
if	[$value1	-gt	5]
then
					echo	"The	test	value	$value1	is	greater	than	5."
fi
#
if	[$value1	-eq	$value2]
then
					echo	"The	values	are	equal."
else
					echo	"The	values	are	different."
fi
$

The	first	test	condition:

if	[$value1	-gt	5]

tests	if	the	value	of	the	variable	value1	is	greater	than	5.	The	second	test	condition:

if	[$value1	-eq	$value2]

tests	if	the	value	of	the	variable	value1	is	equal	to	the	value	of	the	variable	value2	.	Both	numeric	test	conditions
evaluate	as	expected:

$./numeric_test.sh
The	test	value	10	is	greater	than	5
The	values	are	different
$

WARNING
For	test	conditions,	the	only	numbers	the	Bash	shell	can	handle	are	integers.	Although	you	can
use	floating-point	values	for	commands,	such	as	echo	,	they	will	not	work	properly	in	test
conditions.

Using	string	comparisons
Test	conditions	also	allow	you	to	perform	comparisons	on	string	values.	Performing	comparisons	on	strings	can	get
tricky,	as	you'll	see.	Table	12-2	shows	the	comparison	functions	you	can	use	to	evaluate	two	string	values.

TABLE	12-2	The	test	String	Comparisons

Comparison Description

str1	=	str2 Checks	if	str1	is	the	same	as	string	str2.

str1	!=	str2 Checks	if	str1	is	not	the	same	as	str2.

str1	<	str2 Checks	if	str1	is	less	than	str2.

str1	>	str2 Checks	if	str1	is	greater	than	str2.

-n	str1 Checks	if	str1	has	a	length	greater	than	zero.

-z	str1 Checks	if	str1	has	a	length	of	zero.

The	following	sections	describe	the	different	string	comparisons	available.

Looking	at	string	equality
The	equal	and	not	equal	conditions	are	fairly	self-explanatory	with	strings.	It's	pretty	easy	to	know	whether	two
string	values	are	the	same	or	not:

$	cat	string_test.sh
#!/bin/bash
#	Using	string	test	evaluations
#
testuser=christine
#
if	[$testuser	=	christine]
then
					echo	"The	testuser	variable	contains:	christine"
else
					echo	"The	testuser	variable	contains:	$testuser"
fi
$
$./string_test.sh
The	testuser	variable	contains:	christine
$

Also,	using	the	not	equals	string	comparison	allows	you	to	determine	whether	or	not	two	strings	have	the	same
value:

$	cat	string_not_test.sh
#!/bin/bash
#	Using	string	test	not	equal	evaluations
#
testuser=rich
#
if	[$testuser	!=	christine]
then
					echo	"The	testuser	variable	does	NOT	contain:	christine"
else
					echo	"The	testuser	variable	contains:	christine"
fi
$
$./string_not_test.sh
The	testuser	variable	does	NOT	contain:	christine
$

Keep	in	mind	that	the	test	comparison	takes	all	punctuation	and	capitalization	into	account	when	comparing	strings
for	equality.

Looking	at	string	order
Trying	to	determine	if	one	string	is	less	than	or	greater	than	another	is	where	things	start	getting	tricky.	Two
problems	often	plague	shell	programmers	when	they're	trying	to	use	the	greater-than	or	less-than	features	of	test
conditions:

The	greater-than	and	less-than	symbols	must	be	escaped,	or	the	shell	uses	them	as	redirection	symbols,	with
the	string	values	as	filenames.

The	greater-than	and	less-than	order	is	not	the	same	as	that	used	with	the	sort	command.

The	first	item	can	result	in	a	huge	problem	that	often	goes	undetected	when	programming	your	scripts.	Here's	an
example	of	what	sometimes	happens	to	novice	shell	script	programmers:

$	cat	bad_string_comparison.sh
#!/bin/bash
#	Misusing	string	comparisons
#
string1=soccer
string2=zorbfootball
#
if	[$string1>	$string2]
then
					echo	"$string1	is	greater	than	$string2"
else
					echo	"$string1	is	less	than	$string2"
fi
$
$./bad_string_comparison.sh
soccer	is	greater	than	zorbfootball
$
$	ls	z*
zorbfootball
$

By	just	using	the	greater-than	symbol	itself	in	the	script,	no	errors	are	generated,	but	the	results	are	wrong.	The
script	interpreted	the	greater-than	symbol	as	an	output	redirection	(see	Chapter	15).	Thus,	it	created	a	file	called
zorbfootball	.	Because	the	redirection	completed	successfully,	the	test	condition	returns	a	zero	exit	status	code,

which	the	if	statement	evaluates	as	though	things	completed	successfully!

To	fix	this	problem,	you	need	to	properly	escape	the	greater-than	symbol	using	the	backslash	(\):

$	cat	good_string_comparison.sh
#!/bin/bash
#	Properly	using	string	comparisons
#
string1=soccer
string2=zorbfootball
#
if	[$string1	\>	$string2]
then
					echo	"$string1	is	greater	than	$string2"
else
					echo	"$string1	is	less	than	$string2"
fi
$
$	rm	-i	zorbfootball
rm:	remove	regular	empty	file	'zorbfootball'?	y
$
$./good_string_comparison.sh
soccer	is	less	than	zorbfootball
$
$	ls	z*
ls:	cannot	access	'z*':	No	such	file	or	directory
$

Now	that	answer	is	more	along	the	lines	of	what	you	would	expect	from	the	string	comparison.

NOTE
The	string	soccer	is	less	than	the	string	zorbfootball	,	because	test	comparisons	use	each
character's	Unicode	numeric	value.	Lowercase	s	equates	to	115,	whereas	z	is	122.	Thus,	s	is	less
than	z	,	and	therefore,	soccer	is	less	than	zorbfootball.

The	second	issue	is	a	little	more	subtle,	and	you	may	not	even	run	across	it	unless	you	are	working	with	uppercase
and	lowercase	letters.	The	sort	command	handles	uppercase	letters	opposite	to	the	way	the	test	conditions	consider
them:

$	cat	SportsFile.txt
Soccer
soccer
$
$	sort	SportsFile.txt
soccer
Soccer
$
$	cat	sort_order_comparison.sh
#!/bin/bash
#	Testing	string	sort	order
#
string1=Soccer
string2=soccer
#
if	[$string1	\>	$string2]
then
					echo	"$string1	is	greater	than	$string2"
else
					echo	"$string1	is	less	than	$string2"
fi
$
$
$./sort_order_comparison.sh
Soccer	is	less	than	soccer
$

Capitalized	letters	are	treated	as	less	than	lowercase	letters	in	test	comparisons.	However,	the	sort	command	does
the	opposite.	When	you	put	the	same	strings	in	a	file	and	use	the	sort	command,	the	lowercase	letters	appear	first.
This	is	due	to	different	ordering	techniques.

Test	comparisons	use	standard	Unicode	ordering,	using	each	character's	Unicode	numeric	value	to	determine	the
sort	order.	The	sort	command	uses	the	sorting	order	defined	for	the	system	locale	language	settings.	For	the	English
language,	the	locale	settings	specify	that	lowercase	letters	appear	before	uppercase	letters	in	sorted	order.

NOTE
The	test	command	and	test	expressions	use	the	standard	mathematical	comparison	symbols
for	string	comparisons	and	text	codes	for	numerical	comparisons.	This	is	a	subtle	feature	that
many	programmers	manage	to	get	reversed.	If	you	use	the	mathematical	comparison	symbols
for	numeric	values,	the	shell	interprets	them	as	string	values	and	may	not	produce	the	correct
results.

Looking	at	string	size
The	-n	and	-z	comparisons	are	handy	when	you're	trying	to	evaluate	whether	a	variable	contains	data:

$	cat	variable_content_eval.sh
#!/bin/bash
#	Testing	string	length
#
string1=Soccer
string2=''
#
if	[-n	$string1]
then
					echo	"The	string	'$string1'	is	NOT	empty"
else
					echo	"The	string	'$string1'	IS	empty"
fi
#
if	[-z	$string2]
then
					echo	"The	string	'$string2'	IS	empty"
else
					echo	"The	string	'$string2'	is	NOT	empty"
fi
#
if	[-z	$string3]
then
					echo	"The	string	'$string3'	IS	empty"
else
					echo	"The	string	'$string3'	is	NOT	empty"
fi
$
$./variable_content_eval.sh
The	string	'Soccer'	is	NOT	empty
The	string	''	IS	empty
The	string	''	IS	empty
$

This	example	creates	two	string	variables.	The	string1	variable	contains	a	string,	and	the	string2	variable	is	created
as	an	empty	string.	The	following	comparisons	are	made:

if	[-n	$string1]

The	preceding	code	determines	whether	the	string1	variable	is	non-zero	in	length,	which	it	is,	so	its	then	section	is
processed.

if	[-z	$string2]

This	preceding	code	determines	whether	the	string2	variable	is	zero	in	length,	which	it	is,	so	its	then	section	is
processed.

if	[-z	$string3]

The	preceding	code	determines	whether	the	string3	variable	is	zero	in	length.	This	variable	was	never	defined	in	the
shell	script,	so	it	indicates	that	the	string	length	is	still	zero,	even	though	it	wasn't	defined.

WARNING
Empty	and	uninitialized	variables	can	have	catastrophic	effects	on	your	shell	script	tests.	If
you're	not	sure	of	the	contents	of	a	variable,	it's	always	best	to	test	if	the	variable	contains	a
value	using	-n	or	-z	before	using	it	in	a	numeric	or	string	comparison.

Using	file	comparisons
The	last	category	of	test	comparisons	includes	quite	possibly	the	most	powerful	and	most	used	comparisons	in	shell
scripting.	This	category	allows	you	to	test	the	status	of	files	and	directories	on	the	Linux	filesystem.	Table	12-3	lists
these	comparisons.

TABLE	12-3	The	test	File	Comparisons

Comparison Description

-d	file Checks	if	file	exists	and	is	a	directory.

-e	file Checks	if	file	exists.

-f	file Checks	if	file	exists	and	is	a	file.

-r	file Checks	if	file	exists	and	is	readable.

-s	file Checks	if	file	exists	and	is	not	empty.

-w	file Checks	if	file	exists	and	is	writable.

-x	file Checks	if	file	exists	and	is	executable.

-O	file Checks	if	file	exists	and	is	owned	by	the	current	user.

-G	file Checks	if	file	exists	and	the	default	group	is	the	same	as	the	current	user.

file1	-nt	file2 Checks	if	file1	is	newer	than	file2.

file1	-ot	file2 Checks	if	file1	is	older	than	file2.

These	conditions	give	you	the	ability	to	check	filesystem	files	within	shell	scripts.	They	are	often	used	in	scripts	that
access	files.	Because	they're	used	so	often,	let's	look	at	each	of	these	individually.

Checking	directories
The	-d	test	checks	to	see	if	a	specified	directory	exists	on	the	system.	This	is	usually	a	good	thing	to	do	if	you're
trying	to	write	a	file	to	a	directory	or	before	you	try	to	change	to	a	directory	location:

$	cat	jump_point.sh
#!/bin/bash
#	Look	before	you	leap
#
jump_directory=/home/Torfa
#
if	[-d	$jump_directory]
then
					echo	"The	$jump_directory	directory	exists."
					cd	$jump_directory
					ls
else
					echo	"The	$jump_directory	directory	does	NOT	exist."
fi
$
$./jump_point.sh
The	/home/Torfa	directory	does	NOT	exist.
$

The	-d	test	condition	checks	to	see	if	the	jump_directory	variable's	directory	exists.	If	it	does,	it	proceeds	to	use	the
cd	command	to	change	to	the	current	directory	and	performs	a	directory	listing.	If	it	does	not,	the	script	emits	a
warning	message	and	exits	the	script.

Checking	whether	an	object	exists
The	-e	comparison	allows	you	to	check	if	either	a	file	or	directory	object	exists	before	you	attempt	to	use	it	in	your
script:

$	cat	update_file.sh
#!/bin/bash
#	Check	if	either	a	directory	or	file	exists
#
location=$HOME
file_name="sentinel"
#
if	[-d	$location]
then
					echo	"OK	on	the	$location	directory"
					echo	"Now	checking	on	the	file,	$file_name..."
					if	[-e	$location/$file_name]
					then
										echo	"OK	on	the	file,	$file_name."
										echo	"Updating	file's	contents."
										date>>	$location/$file_name
					#
					else
										echo	"File,	$location/$file_name,	does	NOT	exist."
										echo	"Nothing	to	update."
					fi
#
else
					echo	"Directory,	$location,	does	NOT	exist."
					echo	"Nothing	to	update."
fi

$
$./update_file.sh
OK	on	the	/home/christine	directory
Now	checking	on	the	file,	sentinel...
File,	/home/christine/sentinel,	does	NOT	exist.
Nothing	to	update.
$	
$	touch	/home/christine/sentinel
$
$./update_file.sh
OK	on	the	/home/christine	directory
Now	checking	on	the	file,	sentinel...
OK	on	the	file,	sentinel.
Updating	file's	contents.
$

The	first	check	uses	the	-e	comparison	to	determine	whether	the	user	has	a	$HOME	directory.	If	so,	the	next	-e
comparison	checks	to	determine	whether	the	sentinel	file	exists	in	the	$HOME	directory.	If	the	file	doesn't	exist,	the
shell	script	notes	that	the	file	is	missing	and	that	there	is	nothing	to	update.

To	ensure	that	the	update	will	work,	the	sentinel	file	was	created	and	the	shell	script	was	run	a	second	time.	This
time	when	the	conditions	are	tested,	both	the	$HOME	and	the	sentinel	file	are	found,	and	the	current	date	and	time	is
appended	to	the	file.

Checking	for	a	file
The	-e	comparison	works	for	both	files	and	directories.	To	ensure	that	the	object	specified	is	a	file	and	not	a
directory,	you	must	use	the	-f	comparison:

$	cat	dir-or-file.sh
#!/bin/bash
#	Check	if	object	exists	and	is	a	directory	or	a	file
#
object_name=$HOME
echo
echo	"The	object	being	checked:	$object_name"
echo
#
if	[-e	$object_name]
then
					echo	"The	object,	$object_name,	does	exist,"
					#
					if	[-f	$object_name]
					then
										echo	"and	$object_name	is	a	file."
					#
					else
										echo	"and	$object_name	is	a	directory."
					fi
#
else
					echo	"The	object,	$object_name,	does	NOT	exist."
fi
$
$./dir-or-file.sh
	
The	object	being	checked:	/home/christine
	
The	object,	/home/christine,	does	exist,
and	/home/christine	is	a	directory.
$

First,	this	script	uses	the	-e	comparison	to	test	whether	$HOME	exists.	If	it	does,	it	uses	-f	to	test	whether	it's	a	file.	If
it	isn't	a	file	(which	of	course	it	isn't),	a	message	is	displayed	stating	that	it	is	a	directory.

A	slight	modification	to	the	variable	object_name	,	replacing	the	directory	$HOME	with	a	file,	$HOME/sentinel	,	causes	a
different	outcome:

$	nano	dir-or-file.sh
$
$	cat	dir-or-file.sh
#!/bin/bash
#	Check	if	object	exists	and	is	a	directory	or	a	file
#
object_name=$HOME/sentinel
echo
echo	"The	object	being	checked:	$object_name"
echo
#
if	[-e	$object_name]
then
					echo	"The	object,	$object_name,	does	exist,"
					#
					if	[-f	$object_name]
					then
										echo	"and	$object_name	is	a	file."

					#
					else
										echo	"and	$object_name	is	a	directory."
					fi
#
else
					echo	"The	object,	$object_name,	does	NOT	exist."
fi
$
$./dir-or-file.sh
	
The	object	being	checked:	/home/christine/sentinel
	
The	object,	/home/christine/sentinel,	does	exist,
and	/home/christine/sentinel	is	a	file.
$

Now	when	the	script	is	run,	the	-f	test	on	$HOME/sentinel	exits	with	a	zero	status,	triggering	the	then	statement,
which	in	turn	outputs	the	message	and	/home/christine/sentinel	is	a	file.

Checking	for	read	access
Before	trying	to	read	data	from	a	file,	it's	usually	a	good	idea	to	test	whether	you	can	read	from	the	file	first.	You	do
this	with	the	-r	comparison:

$	cat	can-I-read-it.sh
#!/bin/bash
#	Check	if	you	can	read	a	file
#
pwfile=/etc/shadow
echo
echo	"Checking	if	you	can	read	$pwfile..."
#
#	Check	if	file	exists	and	is	a	file.
#
if	[-f	$pwfile]
then
					#	File	does	exist.	Check	if	can	read	it.
					#
					if	[-r	$pwfile]
					then
										echo	"Displaying	end	of	file..."
										tail	$pwfile
					#
					else
										echo	"Sorry,	read	access	to	$pwfile	is	denied."
					fi
#
else
					echo	"Sorry,	the	$pwfile	file	does	not	exist."
fi
$
$./can-I-read-it.sh
	
Checking	if	you	can	read	/etc/shadow...
Sorry,	read	access	to	/etc/shadow	is	denied.
$

The	/etc/shadow	file	contains	the	encrypted	passwords	for	system	users,	so	it's	not	readable	by	normal	users	on	the
system.	The	-r	comparison	determined	that	read	access	to	the	file	wasn't	allowed,	so	the	test	command	failed	and
the	Bash	shell	executed	the	else	section	of	the	if-then	statement.

Checking	for	empty	files
You	should	use	-s	comparison	to	check	whether	a	file	is	empty,	especially	if	you	don't	want	to	remove	a	non-empty
file.	Be	careful	because	when	the	-s	comparison	succeeds,	it	indicates	that	a	file	has	data	in	it:

$	cat	is-it-empty.sh
#!/bin/bash
#	Check	if	a	file	is	empty
#
file_name=$HOME/sentinel
echo
echo	"Checking	if	$file_name	file	is	empty..."
echo
#
#	Check	if	file	exists	and	is	a	file.
#
if	[-f	$file_name]
then
					#	File	does	exist.	Check	if	it	is	empty.
					#
					if	[-s	$file_name]
					then
										echo	"The	$file_name	file	exists	and	has	data	in	it."
										echo	"Will	not	remove	this	file."

					#
					else
										echo	"The	$file_name	file	exits,	but	is	empty."
										echo	"Deleting	empty	file..."
										rm	$file_name
					fi
#
else
					echo	"The	$file_name	file	does	not	exist."
fi
$
$	ls	-sh	$HOME/sentinel
4.0K	/home/christine/sentinel
$

$./is-it-empty.sh
	
Checking	if	/home/christine/sentinel	file	is	empty...
	
The	/home/christine/sentinel	file	exists	and	has	data	in	it.
Will	not	remove	this	file.
$

First,	the	-f	comparison	tests	whether	the	file	exists.	If	it	does	exist,	the	-s	comparison	is	triggered	to	determine
whether	the	file	is	empty.	An	empty	file	will	be	deleted.	You	can	see	from	the	ls	-sh	command	that	the	sentinel	file
is	not	empty	(4.0	K),	and	therefore	the	script	does	not	delete	it.

Checking	whether	you	can	write	to	a	file
The	-w	comparison	determines	whether	you	have	permission	to	write	to	a	file.	The	can-I-write-to-it.sh	script	is
simply	an	update	of	the	can-I-read-it.sh	script.	Now	instead	of	checking	if	you	can	read	the	item_name	file,	this
script	checks	to	see	whether	you	have	permission	to	write	to	the	file:

$	cat	can-I-write-to-it.sh
#!/bin/bash
#	Check	if	a	file	is	writable
#
item_name=$HOME/sentinel
echo
echo	"Checking	if	you	can	write	to	$item_name..."
#
#	Check	if	file	exists	and	is	a	file.
#
if	[-f	$item_name]
then
					#	File	does	exist.	Check	if	can	write	to	it.
					#
					if	[-w	$item_name]
					then
										echo	"Writing	current	time	to	$item_name"
										date	+%H%M>>	$item_name
					#
					else
										echo	"Sorry,	write	access	to	$item_name	is	denied."
					fi
#
else
					echo	"Sorry,	the	$item_name	does	not	exist"
					echo	"or	is	not	a	file."
fi
$
$	ls	-o	$HOME/sentinel
-rw-rw-r--	1	christine	32	May	25	17:08	/home/christine/sentinel
$
$./can-I-write-to-it.sh
	
Checking	if	you	can	write	to	/home/christine/sentinel...
Writing	current	time	to	/home/christine/sentinel
$

The	item_name	variable	is	set	to	$HOME/sentinel	,	and	this	file	allows	user	write	access	(see	Chapter	7,
“Understanding	Linux	File	Permissions,”	for	more	information	on	file	permissions).	Thus,	when	the	script	is	run,
the	-w	test	expression	returns	a	non-zero	exit	status	and	the	then	code	block	is	executed,	which	writes	a	time	stamp
into	the	sentinel	file.

When	the	sentinel	file	user's	write	access	is	removed	via	chmod	,	the	-w	test	expression	returns	a	non-zero	status,	and
a	time	stamp	is	not	written	to	the	file:

$	chmod	u-w	$HOME/sentinel
$
$	ls	-o	$HOME/sentinel
-r--rw-r--	1	christine	37	May	29	12:07	/home/christine/sentinel
$
$./can-I-write-to-it.sh
	

Checking	if	you	can	write	to	/home/christine/sentinel...
Sorry,	write	access	to	/home/christine/sentinel	is	denied.
$

The	chmod	command	could	be	used	again	to	grant	the	write	permission	back	for	the	user.	This	would	make	the	write
test	expression	return	a	zero	exit	status	and	allow	a	write	attempt	to	the	file.

Checking	whether	you	can	run	a	file
The	-x	comparison	is	a	handy	way	to	determine	whether	you	have	execute	permission	for	a	specific	file.	Although
this	may	not	be	needed	for	most	commands,	if	you	run	lots	of	scripts	from	your	shell	scripts,	it	could	be	useful:

$	cat	can-I-run-it.sh
#!/bin/bash
#	Check	if	you	can	run	a	file
#
item_name=$HOME/scripts/can-I-write-to-it.sh
echo
echo	"Checking	if	you	can	run	$item_name..."
#
#	Check	if	file	is	executable.
#
if	[-x	$item_name]
then
					echo	"You	can	run	$item_name."
					echo	"Running	$item_name..."
					$item_name
#
else
					echo	"Sorry,	you	cannot	run	$item_name."
#
fi
$
$./can-I-run-it.sh
	
Checking	if	you	can	run	/home/christine/scripts/can-I-write-to-it.sh...
You	can	run	/home/christine/scripts/can-I-write-to-it.sh.
Running	/home/christine/scripts/can-I-write-to-it.sh...
[...]
$
$	chmod	u-x	can-I-write-to-it.sh
$
$./can-I-run-it.sh
	
Checking	if	you	can	run	/home/christine/scripts/can-I-write-to-it.sh...
Sorry,	you	cannot	run	/home/christine/scripts/can-I-write-to-it.sh.
$

This	example	shell	script	uses	the	-x	comparison	to	test	whether	you	have	permission	to	execute	the	can-I-write-
to-it.sh	script.	If	so,	it	runs	the	script.	After	successfully	running	the	can-I-write-to-it.sh	script	the	first	time,	the
permissions	were	changed.	This	time,	the	-x	comparison	failed,	because	the	execute	permission	had	been	removed
for	the	can-I-write-to-it.sh	script.

Checking	ownership
The	-O	comparison	allows	you	to	easily	test	whether	you're	the	owner	of	a	file:

$	cat	do-I-own-it.sh
#!/bin/bash
#	Check	if	you	own	a	file
#
if	[-O	/etc/passwd]
then
					echo	"You	are	the	owner	of	the	/etc/passwd	file."
#
else
					echo	"Sorry,	you	are	NOT	/etc/passwd	file's	owner."
#
fi
$
$	whoami
christine
$
$	ls	-o	/etc/passwd
-rw-r--r--	1	root	2842	Apr	23	15:25	/etc/passwd
$
$./do-I-own-it.sh
Sorry,	you	are	NOT	/etc/passwd	file's	owner.
$

The	script	uses	the	-O	comparison	to	test	whether	the	user	running	the	script	is	the	owner	of	the	/etc/passwd	file.
The	script	is	run	under	a	user	account	other	than	root	,	so	the	test	fails.

Checking	default	group	membership
The	-G	comparison	checks	the	group	of	a	file,	and	it	succeeds	if	it	matches	the	default	group	for	the	user.	This	can	be

somewhat	confusing	because	the	-G	comparison	checks	only	the	script	user's	default	group	and	not	all	the	groups	to
which	the	user	belongs.	Here's	an	example:

$	cat	check_default_group.sh
#!/bin/bash
#	Compare	file	and	script	user's	default	groups
#
if	[-G	$HOME/TestGroupFile]
then
					echo	"You	are	in	the	same	default	group	as"
					echo	"the	$HOME/TestGroupFile	file's	group."
#
else
					echo	"Sorry,	your	default	group	and	$HOME/TestGroupFile"
					echo	"file's	group	are	different."
#
fi
$
$	touch	$HOME/TestGroupFile
$
$	ls	-g	$HOME/TestGroupFile
-rw-rw-r--	1	christine	0	May	29	13:58	/home/christine/TestGroupFile
$
$./check_default_group.sh
You	are	in	the	same	default	group	as
the	/home/christine/TestGroupFile	file's	group.
$
$	groups
christine	adm	cdrom	sudo	dip	plugdev	lpadmin	lxd	sambashare
$
$	chgrp	adm	$HOME/TestGroupFile
$
$	ls	-g	$HOME/TestGroupFile
-rw-rw-r--	1	adm	0	May	29	13:58	/home/christine/TestGroupFile
$
$./check_default_group.sh
Sorry,	your	default	group	and	/home/christine/TestGroupFile
file's	group	are	different.
$

The	first	time	the	script	is	run,	the	$HOME/TestGroupFile	file	is	in	the	christine	group	and	the	-G	comparison
succeeds.	Next,	the	group	is	changed	to	the	adm	group,	of	which	the	user	is	also	a	member.	However,	the	-G
comparison	failed,	because	it	compares	only	the	user's	default	group,	not	any	additional	group	memberships.

Checking	file	date
The	last	set	of	comparisons	deal	with	comparing	the	creation	times	of	two	files.	This	comes	in	handy	when	writing
scripts	to	install	software.	Sometimes,	you	don't	want	to	install	a	file	that	is	older	than	a	file	already	installed	on	the
system.

The	-nt	comparison	determines	whether	a	file	is	newer	than	another	file.	If	a	file	is	newer,	it	has	a	more	recent	file
creation	time.	The	-ot	comparison	determines	whether	a	file	is	older	than	another	file.	If	the	file	is	older,	it	has	an
older	file	creation	time:

$	cat	check_file_dates.sh
#!/bin/bash
#	Compare	two	file's	creation	dates/times
#
if	[$HOME/Downloads/games.rpm	-nt	$HOME/software/games.rpm]
then
					echo	"The	$HOME/Downloads/games.rpm	file	is	newer"
					echo	"than	the	$HOME/software/games.rpm	file."
#
else
					echo	"The	$HOME/Downloads/games.rpm	file	is	older"
					echo	"than	the	$HOME/software/games.rpm	file."
#
fi
$
$./check_file_dates.sh
The	/home/christine/Downloads/games.rpm	file	is	newer
than	the	/home/christine/software/games.rpm	file.
$

Neither	of	these	comparisons	in	the	script	checks	whether	the	files	exist	first.	That's	a	problem.	Try	this	test:

$	rm	$HOME/Downloads/games.rpm
$
$./check_file_dates.sh
The	/home/christine/Downloads/games.rpm	file	is	older
than	the	/home/christine/software/games.rpm	file.
$

This	little	example	demonstrates	that	if	one	of	the	files	doesn't	exist,	the	-nt	comparison	returns	incorrect
information.	It's	imperative	to	ensure	that	the	files	exist	before	trying	to	use	them	in	the	-nt	or	-ot	comparison.

Considering	Compound	Testing
The	if-then	statement	allows	you	to	use	Boolean	logic	to	combine	tests.	You	can	use	these	two	Boolean	operators:

[condition1]	&&	[condition2]

[condition1]	||	[condition2]

The	first	Boolean	operation	uses	the	AND	Boolean	operator	to	combine	two	conditions.	Both	conditions	must	be	met
for	the	then	section	to	execute.

NOTE
Boolean	logic	is	a	method	that	reduces	potential	returned	values	to	either	TRUE	or	FALSE.

The	second	Boolean	operation	uses	the	OR	Boolean	operator	to	combine	two	conditions.	If	either	condition	evaluates
to	a	TRUE	condition,	the	then	section	is	executed.

The	following	shows	the	AND	Boolean	operator	in	use:

$	cat	AndBoolean.sh
#!/bin/bash
#	Testing	an	AND	Boolean	compound	condition
#
if	[-d	$HOME]	&&	[-w	$HOME/newfile]
then
					echo	"The	file	exists	and	you	can	write	to	it."
#
else
					echo	"You	cannot	write	to	the	file."
#
fi
$
$	ls	-l	$HOME/newfile
ls:	cannot	access	'/home/christine/newfile':	No	such	file	or	directory
$
$./AndBoolean.sh
You	cannot	write	to	the	file.
$
$	touch	$HOME/newfile
$
$./AndBoolean.sh
The	file	exists	and	you	can	write	to	it.
$

Using	the	AND	Boolean	operator,	both	of	the	comparisons	must	be	met.	The	first	comparison	checks	to	see	if	the
$HOME	directory	exists	for	the	user.	The	second	comparison	checks	to	see	if	there's	a	file	called	newfile	in	the	user's
$HOME	directory	and	if	the	user	has	write	permissions	for	the	file.	If	either	of	these	comparisons	fails,	the	if
statement	fails	and	the	shell	executes	the	else	section.	If	both	of	the	comparisons	succeed,	the	if	statement
succeeds,	and	the	shell	executes	the	then	section.

Working	with	Advanced	if-then	Features
Three	additions	to	the	Bash	shell	provide	advanced	features	that	you	can	use	in	if-then	statements:

Single	parentheses	for	running	the	command	in	a	subshell

Double	parentheses	for	mathematical	expressions

Double	square	brackets	for	advanced	string	handling	functions

The	following	sections	describe	each	of	these	features	in	more	detail.

Using	single	parentheses
Single	parentheses	allow	you	to	use	subshells	in	your	if	statement	comparisons.	Subshells	were	covered	in	Chapter
5,	“Understanding	the	Shell.”	This	is	the	format	of	the	single	parentheses	test	command:

(command)

Before	the	Bash	shell	executes	the	command,	it	creates	a	subshell	in	which	to	run	the	command.	If	the	command
completes	its	task	successfully,	the	exit	status	(covered	in	Chapter	11)	is	set	to	zero,	and	the	commands	listed	under
the	then	section	are	executed.	If	the	exit	status	of	the	command	is	anything	else,	the	then	commands	aren't	executed.
Here's	a	script	to	test	using	subshells:

$	cat	SingleParentheses.sh
#!/bin/bash
#	Testing	a	single	parentheses	condition
#
echo	$BASH_SUBSHELL
#

if	(echo	$BASH_SUBSHELL)
then
					echo	"The	subshell	command	operated	successfully."
#
else
					echo	"The	subshell	command	was	NOT	successful."
#
fi
$
$./SingleParentheses.sh
0
1
The	subshell	command	operated	successfully.
$

When	the	script	runs	the	echo	$BASH_SUBSHELL	command	the	first	time	(prior	to	the	if	statement),	it	completes	the
operation	within	the	current	shell.	The	command	displays	a	0	,	indicating	there	is	no	subshell	in	use.	(The
$BASH_SUBSHELL	environment	variable	was	covered	in	Chapter	5.)	Within	the	if	statement,	the	script	performs	the
command	in	a	subshell	and	the	echo	$BASH_SUBSHELL	command	shows	a	1	,	indicating	a	subshell	was	used.	This
subshell	operation	completes	successfully,	triggering	the	then	command.

WARNING
While	you	can	use	process	lists	(covered	in	Chapter	5)	within	the	if	test	statement,	unexpected
results	may	occur.	If	all	the	process	list's	commands	fail	except	the	last	command,	the	subshell
will	set	the	exit	status	to	zero,	and	the	commands	listed	under	the	then	section	will	run.

Modifying	the	script	slightly,	here's	an	example	of	an	unsuccessful	command	run	in	a	subshell:

$	cat	SingleParentheses.sh
#!/bin/bash
#	Testing	a	single	parentheses	condition
#
#echo	$BASH_SUBSHELL
#
if	(cat	/etc/PASSWORD)
then
					echo	"The	subshell	command	operated	successfully."
#
else
					echo	"The	subshell	command	was	NOT	successful."
#
fi
$
$./SingleParentheses.sh
cat:	/etc/PASSWORD:	No	such	file	or	directory
The	subshell	command	was	NOT	successful.
$

Because	the	subshell	command	contained	an	incorrect	filename	in	its	operation,	the	exit	status	was	not	set	to	zero.
Thus,	the	else	command	was	triggered	instead	of	the	then	command.

Using	double	parentheses
The	double	parentheses	command	allows	you	to	incorporate	advanced	mathematical	formulas	in	your	comparisons.
The	test	command	allows	for	only	simple	arithmetic	operations	in	the	comparison.	The	double	parentheses
command	provides	more	mathematical	symbols,	which	programmers	who	have	used	other	programming	languages
may	be	familiar	with	using.	Here's	the	format	of	the	double	parentheses	command:

((expression))

The	expression	term	can	be	any	mathematical	assignment	or	comparison	expression.	Besides	the	standard
mathematical	operators	that	the	test	command	uses,	the	additional	operators	shown	in	Table	12-4	are	available	for
use	in	the	double	parentheses	command.

TABLE	12-4	The	Double	Parentheses	Command	Symbols

Symbol Description

val	++ Post-increment

val	-- Post-decrement

++	val Pre-increment

--	val Pre-decrement

! Logical	negation

~ Bitwise	negation

** Exponentiation

<< Left	bitwise	shift

>> Right	bitwise	shift

& Bitwise	Boolean	AND

| Bitwise	Boolean	OR

&& Logical	AND

|| Logical	OR

You	can	use	the	double	parentheses	command	in	an	if	statement,	as	well	as	in	a	normal	command	in	the	script	for
assigning	values:

$	cat	DoubleParentheses.sh
#!/bin/bash
#	Testing	a	double	parentheses	command
#
val1=10
#
if	(($val1	**	2>	90))
then
					((val2	=	$val1	**	2))
					echo	"The	square	of	$val1	is	$val2,"
					echo	"which	is	greater	than	90."
#
fi
$
$./DoubleParentheses.sh
The	square	of	10	is	100,
which	is	greater	than	90.
$

Notice	that	you	don't	need	to	escape	the	greater-than	symbol	in	the	expression	within	the	double	parentheses.	This
is	yet	another	advanced	feature	besides	the	double	parentheses	command.

Using	double	brackets
The	double	bracket	command	provides	advanced	features	for	string	comparisons.	Here's	the	double	bracket
command	format:

[[expression]]

The	double	bracketed	expression	uses	the	standard	string	comparison	used	in	the	test	evaluations.	However,	it
provides	an	additional	feature	that	the	test	evaluations	don't	—	pattern	matching.

NOTE
Double	brackets	work	fine	in	the	Bash	shell.	Be	aware,	however,	that	not	all	shells	support
double	brackets.

In	pattern	matching,	you	can	define	a	regular	expression	(discussed	in	detail	in	Chapter	20,	“Regular	Expressions”)
that's	matched	against	the	string	value:

$	cat	DoubleBrackets.sh
#!/bin/bash
#	Using	double	brackets	for	pattern	matching
#
#
if	[[$BASH_VERSION	==	5.*]]
then
					echo	"You	are	using	the	Bash	Shell	version	5	series."
fi
$
$./DoubleBrackets.sh
You	are	using	the	Bash	Shell	version	5	series.

$

Notice	in	the	preceding	script	that	double	equal	signs	(==)	are	used.	These	double	equal	signs	designate	the	string	to
the	right	(5.*)	as	a	pattern,	and	pattern	matching	rules	are	applied.	The	double	bracket	command	matches	the
$BASH_VERSION	environment	variable	to	see	whether	it	starts	with	a	5.	string.	If	so,	the	comparison	succeeds,	and	the
shell	executes	the	then	section	commands.

Considering	the	case	Command
Often,	you'll	find	yourself	trying	to	evaluate	a	variable's	value,	looking	for	a	specific	value	within	a	set	of	possible
values.	In	this	scenario,	you	end	up	having	to	write	a	lengthy	if-then-else	statement,	like	this:

$	cat	LongIf.sh
#!/bin/bash
#	Using	a	tedious	and	long	if	statement
#
if	[$USER	==	"rich"]
then
					echo	"Welcome	$USER"
					echo	"Please	enjoy	your	visit."
elif	[$USER	==	"barbara"]
then
					echo	"Hi	there,	$USER"
					echo	"We're	glad	you	could	join	us."
elif	[$USER	==	"christine"]
then
					echo	"Welcome	$USER"
					echo	"Please	enjoy	your	visit."
elif	[$USER	==	"tim"]
then
					echo	"Hi	there,	$USER"
					echo	"We're	glad	you	could	join	us."
elif	[$USER	=	"testing"]
then
					echo	"Please	log	out	when	done	with	test."
else
					echo	"Sorry,	you	are	not	allowed	here."
fi
$
$./LongIf.sh
Welcome	christine
Please	enjoy	your	visit.
$

The	elif	statements	continue	the	if-then	checking,	looking	for	a	specific	value	for	the	single	comparison	variable.

Instead	of	having	to	write	all	the	elif	statements	to	continue	checking	the	same	variable	value,	you	can	use	the	case
command.	The	case	command	checks	multiple	values	of	a	single	variable	in	a	list-oriented	format:

case	variable	in
pattern1	|	pattern2)	commands1;;
pattern3)	commands2;;
*)	default	commands;;
esac

The	case	command	compares	the	variable	specified	against	the	different	patterns.	If	the	variable	matches	the
pattern,	the	shell	executes	the	commands	specified	for	the	pattern.	You	can	list	more	than	one	pattern	on	a	line,
using	the	bar	operator	to	separate	the	patterns.	The	asterisk	symbol	is	the	catch-all	for	values	that	don't	match	any
of	the	listed	patterns.	Here's	an	example	of	converting	the	if-then-else	program	to	using	the	case	command:

$	cat	ShortCase.sh
#!/bin/bash
#	Using	a	short	case	statement
#
case	$USER	in
rich	|	christine)
					echo	"Welcome	$USER"
					echo	"Please	enjoy	your	visit.";;
barbara	|	tim)
					echo	"Hi	there,	$USER"
					echo	"We're	glad	you	could	join	us.";;
testing)
					echo	"Please	log	out	when	done	with	test.";;
*)
					echo	"Sorry,	you	are	not	allowed	here."
esac
$
$./ShortCase.sh
Welcome	christine
Please	enjoy	your	visit.
$

The	case	command	provides	a	much	cleaner	way	of	specifying	the	various	options	for	each	possible	variable	value.

Working	through	a	Practical	Example
In	this	section,	we'll	describe	a	script	that	puts	the	structure	commands	we've	covered	in	this	chapter	to	a	practical
use	—	determining	what	package	managers	are	available	on	the	current	system.	It	also	takes	a	guess	on	which	Linux
distribution	the	current	system	is	based,	using	the	installed	package	managers	as	a	guide.

For	its	analysis,	the	script	first	checks	for	standard	Red	Hat–based	package	managers	(rpm,	dnf	,	and	flatpak).	It
uses	the	which	command	for	each	package	manager	and	uses	single	parentheses	in	the	if	condition	statement.	If	the
package	manager	is	found,	a	special	Boolean	variable	for	that	particular	manager	is	set	to	TRUE	(1),	and	if	not	found,
it	is	set	to	FALSE	(0),	as	shown	snipped	here:

$	cat	PackageMgrCheck.sh
#!/bin/bash
	[...]
if	(which	rpm	&>	/dev/null)
then
					item_rpm=1
					echo	"You	have	the	basic	rpm	utility."
#
else
					item_rpm=0
#
fi
[...]
if	(which	flatpak	&>	/dev/null)
then
					item_flatpak=1
					echo	"You	have	the	flatpak	application	container."
#
else
					item_flatpak=0
#
fi
[...]
$	

There	is	special	handling	for	dnf	and	yum	(covered	in	Chapter	9,	“Installing	Software”)	in	case	you	are	running	the
script	on	an	older	Red	Hat–based	distro	that	doesn't	yet	have	the	dnf	utility.	Notice	that	an	elif	statement	is
employed	to	check	for	yum	if	dnf	is	not	found:

$	cat	PackageMgrCheck.sh
[...]
if	(which	dnf	&>	/dev/null)
then
					item_dnfyum=1
					echo	"You	have	the	dnf	package	manager."
#
elif	(which	yum	&>	/dev/null)
then
					item_dnfyum=1
					echo	"You	have	the	yum	package	manager."
else
					item_dnfyum=0
#
fi
[...]
$	

NOTE
Output	redirection	is	used	after	the	which	command	within	the	single	parentheses.	Building	off
what	was	covered	in	Chapter	10,	“Working	with	Editors,”	regular	(standard)	output	and	any
error	messages	from	the	which	command	are	redirected	via	the	&>	symbols.	They	go	to	/dev/null	,
which	is	humorously	called	the	black	hole,	because	things	put	into	it	never	come	out.	This
action	cleans	up	the	script's	output	significantly	but	does	not	adversely	affect	its	integrity.
Error	redirection	is	covered	more	thoroughly	in	Chapter	15.

After	the	script	finishes	its	package	manager	analysis	of	the	system,	it	calculates	a	score	(redhatscore).	This	score	is
used	later	to	make	a	hypothesis	concerning	this	system's	distribution	base:

$	cat	PackageMgrCheck.sh
[...]
redhatscore=$[$item_rpm	+	$item_dnfyum	+	$item_flatpak]
[...]
$	

When	the	Red	Hat	package	manager	audit	is	completed,	a	Debian	analysis	starts.	It	is	very	similar	to	the	Red	Hat
assessment,	except	it	covers	Debian	package	managers	(dpkg	,	apt	,	snap),	and	determines	a	Debian	score,	shown
snipped	here:

$	cat	PackageMgrCheck.sh
[...]
if	(which	dpkg	&>	/dev/null)
then
					item_dpkg=1
					echo	"You	have	the	basic	dpkg	utility."
#
else
					item_dpkg=0
#
fi
[...]
debianscore=$[$item_dpkg	+	$item_aptaptget	+	$item_snap]
[...]
$	

The	two	scores,	redhatscore	and	debianscore	,	are	compared,	and	a	distribution	determination	is	declared:

$	cat	PackageMgrCheck.sh
[...]
if	[$debianscore	-gt	$redhatscore]
then
			echo	"Most	likely	your	Linux	distribution	is	Debian-based."
			#
elif	[$redhatscore	-gt	$debianscore]
then
			echo	"Most	likely	your	Linux	distribution	is	Red	Hat-based."
else
			echo	"Unable	to	determine	Linux	distribution	base."
fi
[...]
$	

Here	is	the	entire	script	for	your	perusal.	As	you	read	through,	think	of	different	ways	to	accomplish	these	tasks
using	modified	if	-	then	statements	or	even	case	structures.	Getting	your	creative	juices	flowing	is	all	part	of
learning:

$	cat	PackageMgrCheck.sh
#!/bin/bash
#	Checks	system	for	popular	package	managers
#
####################	User	Introduction	######################
echo	"##"
echo
echo	"					This	script	checks	your	Linux	system	for	popular"
echo	"package	managers	and	application	containers,	lists"
echo	"what's	available,	and	makes	an	educated	guess	on	your"
echo	"distribution's	base	distro	(Red	Hat	or	Debian)."
echo
echo	"###"
#
#####################	Red	Hat	Checks	#######################
#
echo
echo	"Checking	for	Red	Hat-based	package	managers	&"
echo	"application	containers..."
#####
if	(which	rpm	&>	/dev/null)
then
					item_rpm=1
					echo	"You	have	the	basic	rpm	utility."
#
else
					item_rpm=0
#
fi
####
if	(which	dnf	&>	/dev/null)
then
					item_dnfyum=1
					echo	"You	have	the	dnf	package	manager."
#
elif	(which	yum	&>	/dev/null)
then
					item_dnfyum=1
					echo	"You	have	the	yum	package	manager."
else
					item_dnfyum=0
#
fi
####
if	(which	flatpak	&>	/dev/null)
then
					item_flatpak=1
					echo	"You	have	the	flatpak	application	container."
#
else

					item_flatpak=0
#
fi
####
redhatscore=$[$item_rpm	+	$item_dnfyum	+	$item_flatpak]
#
#####################	Debian	Checks	#######################
#
echo
echo	"Checking	for	Debian-based	package	managers	&"
echo	"application	containers..."
#####
if	(which	dpkg	&>	/dev/null)
then
					item_dpkg=1
					echo	"You	have	the	basic	dpkg	utility."
#
else
					item_dpkg=0
#
fi
####
if	(which	apt	&>	/dev/null)
then
					item_aptaptget=1
					echo	"You	have	the	apt	package	manager."
#
elif	(which	apt-get	&>	/dev/null)
then
					item_aptaptget=1
					echo	"You	have	the	apt-get/apt-cache	package	manager."
#
else
					item_aptaptget=0
fi
####
if	(which	snap	&>	/dev/null)
then
					item_snap=1
					echo	"You	have	the	snap	application	container."
#
else
					item_snap=0
#
fi
####
#
debianscore=$[$item_dpkg	+	$item_aptaptget	+	$item_snap]
#
#
#####################	Determine	Distro	#######################
#
echo
if	[$debianscore	-gt	$redhatscore]
then
			echo	"Most	likely	your	Linux	distribution	is	Debian-based."
			#
elif	[$redhatscore	-gt	$debianscore]
then
			echo	"Most	likely	your	Linux	distribution	is	Red	Hat-based."
else
			echo	"Unable	to	determine	Linux	distribution	base."
fi
#
echo
#
###
#
exit
$

Here's	the	script	in	action	on	an	Ubuntu	system:

$./PackageMgrCheck.sh
##
	
					This	script	checks	your	Linux	system	for	popular
package	managers	and	application	containers,	lists
what's	available,	and	makes	an	educated	guess	on	your
distribution's	base	distro	(Red	Hat	or	Debian).
	
###
	
Checking	for	Red	Hat-based	package	managers	&
application	containers...
	
Checking	for	Debian-based	package	managers	&

application	containers...
You	have	the	basic	dpkg	utility.
You	have	the	apt	package	manager.
You	have	the	snap	application	container.
	
Most	likely	your	Linux	distribution	is	Debian-based.
	
$

Hopefully	you	are	thinking	of	your	own	ways	to	accomplish	this	script's	tasks	differently	using	the	topics	covered	in
this	chapter.	And	possibly	you	have	some	ideas	for	additional	scripts.

Summary
Structured	commands	allow	you	to	alter	the	normal	flow	of	shell	script	execution.	The	most	basic	structured
command	is	the	if-then	statement.	This	statement	provides	a	command	evaluation	and	performs	other	commands
based	on	the	evaluated	command's	output.

You	can	expand	the	if-then	statement	to	include	a	set	of	commands	the	Bash	shell	executes	if	the	specified
command	fails	as	well.	The	if-then-else	statement	executes	commands	only	if	the	command	being	evaluated
returns	a	non-zero	exit	status	code.

You	can	also	link	if-then-else	statements	together,	using	the	elif	statement.	The	elif	is	equivalent	to	using	an
else	if	statement,	providing	for	additional	checking	of	whether	the	original	command	that	was	evaluated	failed.

In	most	scripts,	instead	of	evaluating	a	command,	you'll	want	to	evaluate	a	condition,	such	as	a	numeric	value,	the
contents	of	a	string,	or	the	status	of	a	file	or	directory.	The	test	command	provides	an	easy	way	for	you	to	evaluate
all	these	conditions.	If	the	condition	evaluates	to	a	TRUE	condition,	the	test	command	produces	a	zero	exit	status
code	for	the	if-then	statement.	If	the	condition	evaluates	to	a	FALSE	condition,	the	test	command	produces	a	non-
zero	exit	status	code	for	the	if-then	statement.

The	square	bracket	is	a	special	Bash	command	that	is	a	synonym	for	the	test	command.	You	can	enclose	a	test
condition	in	square	brackets	in	the	if-then	statement	to	test	for	numeric,	string,	and	file	conditions.

The	double	parentheses	command	provides	advanced	mathematical	evaluations	using	additional	operators.	The
double	square	bracket	command	allows	you	to	perform	advanced	string	pattern-matching	evaluations.

Finally,	we	discussed	the	case	command,	which	is	a	shorthand	way	of	performing	multiple	if-then-else	commands,
checking	the	value	of	a	single	variable	against	a	list	of	values.

The	next	chapter	continues	the	discussion	of	structured	commands	by	examining	the	shell	looping	commands.	The
for	and	while	commands	let	you	create	loops	that	iterate	through	commands	for	a	given	period	of	time.

CHAPTER	13
More	Structured	Commands
IN	THIS	CHAPTER

Looping	with	the	for	statement

Iterating	with	the	until	statement

Using	the	while	statement

Combining	loops

Redirecting	loop	output

In	the	previous	chapter,	you	saw	how	to	manipulate	the	flow	of	a	shell	script	program	by	checking	the	output	of
commands	and	the	values	of	variables.	In	this	chapter,	we	continue	to	look	at	structured	commands	that	control	the
flow	of	your	shell	scripts.	You'll	see	how	you	can	perform	repeating	processes,	commands	that	can	loop	through	a	set
of	commands	until	an	indicated	condition	has	been	met.	This	chapter	discusses	and	demonstrates	the	for	,	while	,
and	until	Bash	shell	looping	commands.

Looking	at	the	for	Command
Iterating	through	a	series	of	commands	is	a	common	programming	practice.	Often,	you	need	to	repeat	a	set	of
commands	until	a	specific	condition	has	been	met,	such	as	processing	all	the	files	in	a	directory,	all	the	users	on	a
system,	or	all	the	lines	in	a	text	file.

The	Bash	shell	provides	the	for	command	to	allow	you	to	create	a	loop	that	iterates	through	a	series	of	values.	Each
iteration	performs	a	defined	set	of	commands	using	one	of	the	values	in	the	series.	Here's	the	basic	format	of	the
Bash	shell	for	command:

	for	var	in	list
	do
				commands
	done

You	supply	the	series	of	values	used	in	the	iterations	in	the	list	parameter.	You	can	specify	the	values	in	the	list	in
several	ways.

In	each	iteration,	the	variable	var	contains	the	current	value	in	the	list.	The	first	iteration	uses	the	first	item	in	the
list,	the	second	iteration	the	second	item,	and	so	on,	until	all	the	items	in	the	list	have	been	used.

The	commands	entered	between	the	do	and	done	statements	can	be	one	or	more	standard	Bash	shell	commands.
Within	the	commands,	the	$var	variable	contains	the	current	list	item	value	for	the	iteration.

NOTE
If	you	prefer,	you	can	include	the	do	statement	on	the	same	line	as	the	for	statement,	but	you
must	separate	it	from	the	list	items	using	a	semicolon:	for	var	in	list;	do.

We	mentioned	that	there	are	several	ways	to	specify	the	values	in	the	list.	The	following	sections	show	the	various
ways.

Reading	values	in	a	list
The	most	basic	use	of	the	for	command	is	to	iterate	through	a	list	of	values	defined	within	the	for	command	itself:

	$	cat	test1
	#!/bin/bash
	#	basic	for	command
	
	for	test	in	Alabama	Alaska	Arizona	Arkansas	California	Colorado
	do
				echo	The	next	state	is	$test
	done
	$./test1
	The	next	state	is	Alabama
	The	next	state	is	Alaska
	The	next	state	is	Arizona
	The	next	state	is	Arkansas
	The	next	state	is	California
	The	next	state	is	Colorado
	$

Each	time	the	for	command	iterates	through	the	list	of	values	provided,	it	assigns	the	$test	variable	the	next	value
in	the	list.	The	$test	variable	can	be	used	just	like	any	other	script	variable	within	the	for	command	statements.

After	the	last	iteration,	the	$test	variable	remains	valid	throughout	the	remainder	of	the	shell	script.	It	retains	the
last	iteration	value	(unless	you	change	its	value):

	$	cat	test1b
	#!/bin/bash
	#	testing	the	for	variable	after	the	looping
	
	for	test	in	Alabama	Alaska	Arizona	Arkansas	California	Colorado
	do
				echo	"The	next	state	is	$test"
	done
	echo	"The	last	state	we	visited	was	$test"
	test=Connecticut
	echo	"Wait,	now	we're	visiting	$test"
	$./test1b
	The	next	state	is	Alabama
	The	next	state	is	Alaska
	The	next	state	is	Arizona
	The	next	state	is	Arkansas
	The	next	state	is	California
	The	next	state	is	Colorado
	The	last	state	we	visited	was	Colorado
	Wait,	now	we're	visiting	Connecticut
	$

The	$test	variable	retained	its	value	and	allowed	us	to	change	the	value	and	use	it	outside	of	the	for	command	loop,
as	any	other	variable	would.

Reading	complex	values	in	a	list
Things	aren't	always	as	easy	as	they	seem	with	the	for	loop.	There	are	times	when	you	run	into	data	that	causes
problems.	Here's	a	classic	example	of	what	can	cause	problems	for	shell	script	programmers:

	$	cat	badtest1
	#!/bin/bash
	#	another	example	of	how	not	to	use	the	for	command
	
	for	test	in	I	don't	know	if	this'll	work
	do
				echo	"word:$test"
	done
	$./badtest1
	word:I
	word:dont	know	if	thisll
	word:work
	$

Ouch,	that	hurts.	The	shell	saw	the	single	quotation	marks	within	the	list	values	and	attempted	to	use	them	to	define
a	single	data	value,	and	it	really	messed	things	up	in	the	process.

You	have	two	ways	to	solve	this	problem:

Use	the	escape	character	(the	backslash)	to	escape	the	single	quotation	mark.

Use	double	quotation	marks	to	define	the	values	that	use	single	quotation	marks.

Neither	solution	is	all	that	fantastic,	but	each	one	helps	solve	the	problem:

	$	cat	test2
	#!/bin/bash
	#	solutions	to	the	quote	problem
	
	for	test	in	I	don\'t	know	if	"this'll"	work
	do
				echo	"word:$test"
	done
	$./test2
	word:I
	word:don't
	word:know
	word:if
	word:this'll
	word:work
	$

In	the	first	problem	value,	you	added	the	backslash	character	to	escape	the	single	quotation	mark	in	the	don't	value.
In	the	second	problem	value,	you	enclosed	the	this'll	value	in	double	quotation	marks.	Both	methods	worked	fine
to	distinguish	the	value.

Another	problem	you	may	run	into	is	multiword	values.	Remember	that	the	for	loop	assumes	that	each	value	is
separated	with	a	space.	If	you	have	data	values	that	contain	spaces,	you	run	into	yet	another	problem:

	$	cat	badtest2
	#!/bin/bash
	#	another	example	of	how	not	to	use	the	for	command
	
	for	test	in	Nevada	New	Hampshire	New	Mexico	New	York	North	Carolina

	do
				echo	"Now	going	to	$test"
	done
	$./badtest2
	Now	going	to	Nevada
	Now	going	to	New
	Now	going	to	Hampshire
	Now	going	to	New
	Now	going	to	Mexico
	Now	going	to	New
	Now	going	to	York
	Now	going	to	North
	Now	going	to	Carolina
	$

Oops,	that's	not	exactly	what	we	wanted.	The	for	command	separates	each	value	from	the	others	in	the	list	with	a
space.	If	there	are	spaces	in	the	individual	data	values,	you	must	accommodate	them	using	double	quotation	marks:

	$	cat	test3
	#!/bin/bash
	#	an	example	of	how	to	properly	define	values
	
	for	test	in	Nevada	"New	Hampshire"	"New	Mexico"	"New	York"
	do
				echo	"Now	going	to	$test"
	done
	$./test3
	Now	going	to	Nevada
	Now	going	to	New	Hampshire
	Now	going	to	New	Mexico
	Now	going	to	New	York
	$

Now	the	for	command	can	properly	distinguish	between	the	different	values.	Also,	notice	that	when	you	use	double
quotation	marks	around	a	value,	the	shell	doesn't	include	the	quotation	marks	as	part	of	the	value.

Reading	a	list	from	a	variable
Often	what	happens	in	a	shell	script	is	that	you	accumulate	a	list	of	values	stored	in	a	variable	and	then	need	to
iterate	through	the	list.	You	can	do	this	using	the	for	command	as	well:

	$	cat	test4
	#!/bin/bash
	#	using	a	variable	to	hold	the	list
	
	list="Alabama	Alaska	Arizona	Arkansas	Colorado"
	list=$list"	Connecticut"
	
	for	state	in	$list
	do
				echo	"Have	you	ever	visited	$state?"
	done
	$./test4
	Have	you	ever	visited	Alabama?
	Have	you	ever	visited	Alaska?
	Have	you	ever	visited	Arizona?
	Have	you	ever	visited	Arkansas?
	Have	you	ever	visited	Colorado?
	Have	you	ever	visited	Connecticut?
	$

The	$list	variable	contains	the	standard	text	list	of	values	to	use	for	the	iterations.	Notice	that	the	code	also	uses
another	assignment	statement	to	add	(or	concatenate)	an	item	to	the	existing	list	contained	in	the	$list	variable.
This	is	a	common	method	for	adding	text	to	the	end	of	an	existing	text	string	stored	in	a	variable.

Reading	values	from	a	command
Another	way	to	generate	values	for	inclusion	in	the	list	is	to	use	the	output	of	a	command.	You	use	command
substitution	to	execute	any	command	that	produces	output	and	then	use	the	output	of	the	command	in	the	for
command:

	$	cat	test5
	#!/bin/bash
	#	reading	values	from	a	file
	
	file="states.txt"
	
	for	state	in	$(cat	$file)
	do
				echo	"Visit	beautiful	$state"
	done
	$	cat	states.txt
	Alabama
	Alaska
	Arizona

	Arkansas
	Colorado
	Connecticut
	Delaware
	Florida
	Georgia
	$./test5
	Visit	beautiful	Alabama
	Visit	beautiful	Alaska
	Visit	beautiful	Arizona
	Visit	beautiful	Arkansas
	Visit	beautiful	Colorado
	Visit	beautiful	Connecticut
	Visit	beautiful	Delaware
	Visit	beautiful	Florida
	Visit	beautiful	Georgia
	$

This	example	uses	the	cat	command	in	the	command	substitution	to	display	the	contents	of	the	file	states.txt	.
Notice	that	the	states.txt	file	includes	each	state	on	a	separate	line,	not	separated	by	spaces.	The	for	command	still
iterates	through	the	output	of	the	cat	command	one	line	at	a	time,	assuming	that	each	state	is	on	a	separate	line.
However,	this	doesn't	solve	the	problem	of	having	spaces	in	data.	If	you	list	a	state	with	a	space	in	it,	the	for
command	still	takes	each	word	as	a	separate	value.	There's	a	reason	for	this,	which	we	look	at	in	the	next	section.

NOTE
The	test5	code	example	assigned	the	filename	to	the	variable	using	just	the	filename	without	a
path.	This	requires	that	the	file	be	in	the	same	directory	as	the	script.	If	this	isn't	the	case,	you
need	to	use	a	full	pathname	(either	absolute	or	relative)	to	reference	the	file	location.

Changing	the	field	separator
The	cause	of	this	problem	is	the	special	environment	variable	IFS	,	the	internal	field	separator.	The	IFS
environment	variable	defines	a	list	of	characters	the	Bash	shell	uses	as	field	separators.	By	default,	the	Bash	shell
considers	the	following	characters	as	field	separators:

A	space

A	tab

A	newline

If	the	Bash	shell	sees	any	of	these	characters	in	the	data,	it	assumes	that	you're	starting	a	new	data	field	in	the	list.
When	working	with	data	that	can	contain	spaces	(such	as	filenames),	this	can	be	annoying,	as	you	saw	in	the
previous	script	example.

To	solve	this	problem,	you	can	temporarily	change	the	IFS	environment	variable	values	in	your	shell	script	to	restrict
the	characters	the	Bash	shell	recognizes	as	field	separators.	For	example,	if	you	want	to	change	the	IFS	value	to
recognize	only	the	newline	character,	you	need	to	do	this:

IFS=$'\n'

Adding	this	statement	to	your	script	tells	the	Bash	shell	to	ignore	spaces	and	tabs	in	data	values.	Applying	this
technique	to	the	previous	script	yields	the	following:

$	cat	test5b
	#!/bin/bash
	#	reading	values	from	a	file
	
	file="states.txt"
	
	IFS=$'\n'
	for	state	in	$(cat	$file)
	do
				echo	"Visit	beautiful	$state"
	done
	$./test5b
	Visit	beautiful	Alabama
	Visit	beautiful	Alaska
	Visit	beautiful	Arizona
	Visit	beautiful	Arkansas
	Visit	beautiful	Colorado
	Visit	beautiful	Connecticut
	Visit	beautiful	Delaware
	Visit	beautiful	Florida
	Visit	beautiful	Georgia
	Visit	beautiful	New	York
	Visit	beautiful	New	Hampshire
	Visit	beautiful	North	Carolina
	$

Now	the	shell	script	can	use	values	in	the	list	that	contain	spaces.

WARNING
When	working	on	long	scripts,	you	may	change	the	IFS	value	in	one	place	and	then	forget	about
it	and	assume	the	default	value	elsewhere	in	the	script.	A	safe	practice	to	get	into	is	to	save	the
original	IFS	value	before	changing	it	and	then	restore	it	when	you're	finished.

This	technique	can	be	coded	like	this:

	IFS.OLD=$IFS
	IFS=$'\n'
	<use	the	new	IFS	value	in	code>
	IFS=$IFS.OLD

This	ensures	that	the	IFS	value	is	returned	to	the	default	value	for	future	operations	within	the
script.

Other	excellent	applications	of	the	IFS	environment	variable	are	possible.	Suppose	you	want	to	iterate	through
values	in	a	file	that	are	separated	by	a	colon	(such	as	in	the	/etc/passwd	file).	You	just	need	to	set	the	IFS	value	to	a
colon:

	IFS=:

If	you	want	to	specify	more	than	one	IFS	character,	just	string	them	together	on	the	assignment	line:

	IFS=$'\n':;"

This	assignment	uses	the	newline,	colon,	semicolon,	and	double	quotation	mark	characters	as	field	separators.
There's	no	limit	to	how	you	can	parse	your	data	using	the	IFS	characters.

Reading	a	directory	using	wildcards
Finally,	you	can	use	the	for	command	to	automatically	iterate	through	a	directory	of	files.	To	do	this,	you	must	use	a
wildcard	character	in	the	file	or	pathname.	This	forces	the	shell	to	use	file	globbing.	File	globbing	is	the	process	of
producing	filenames	or	pathnames	that	match	a	specified	wildcard	character.

This	feature	is	great	for	processing	files	in	a	directory	when	you	don't	know	all	the	filenames:

	$	cat	test6
	#!/bin/bash
	#	iterate	through	all	the	files	in	a	directory
	
	for	file	in	/home/rich/test/*
	do
	
				if	[-d	"$file"]
				then
							echo	"$file	is	a	directory"
				elif	[-f	"$file"]
				then
							echo	"$file	is	a	file"
				fi
	done
	$./test6
	/home/rich/test/dir1	is	a	directory
	/home/rich/test/myprog.c	is	a	file
	/home/rich/test/myprog	is	a	file
	/home/rich/test/myscript	is	a	file
	/home/rich/test/newdir	is	a	directory
	/home/rich/test/newfile	is	a	file
	/home/rich/test/newfile2	is	a	file
	/home/rich/test/testdir	is	a	directory
	/home/rich/test/testing	is	a	file
	/home/rich/test/testprog	is	a	file
	/home/rich/test/testprog.c	is	a	file
	$

The	for	command	iterates	through	the	results	of	the	/home/rich/test/*	listing.	The	code	tests	each	entry	using	the
test	command	(using	the	square	bracket	method)	to	see	if	it's	a	directory,	using	the	-d	parameter,	or	a	file,	using	the
-f	parameter	(see	Chapter	11,	“Basic	Script	Building”).

Notice	in	this	example	that	we	did	something	different	in	the	if	statement	tests:

	if	[-d	"$file"]

In	Linux,	it's	perfectly	legal	to	have	directory	and	filenames	that	contain	spaces.	To	accommodate	that,	you	should
enclose	the	$file	variable	in	double	quotation	marks.	If	you	don't,	you'll	get	an	error	if	you	run	into	a	directory	or
filename	that	contains	spaces:

	./test6:	line	6:	[:	too	many	arguments
	./test6:	line	9:	[:	too	many	arguments

The	Bash	shell	interprets	the	additional	words	as	arguments	within	the	test	command,	causing	an	error.

You	can	also	combine	both	the	directory	search	method	and	the	list	method	in	the	same	for	statement	by	listing	a
series	of	directory	wildcards	in	the	for	command:

	$	cat	test7
	#!/bin/bash
	#	iterating	through	multiple	directories
	
	for	file	in	/home/rich/.b*	/home/rich/badtest
	do
				if	[-d	"$file"]
				then
							echo	"$file	is	a	directory"
				elif	[-f	"$file"]
				then
							echo	"$file	is	a	file"
				else
						echo	"$file	doesn't	exist"
				fi
	done
	$./test7
	/home/rich/.backup.timestamp	is	a	file
	/home/rich/.bash_history	is	a	file
	/home/rich/.bash_logout	is	a	file
	/home/rich/.bash_profile	is	a	file
	/home/rich/.bashrc	is	a	file
	/home/rich/badtest	doesn't	exist
	$

The	for	statement	first	uses	file	globbing	to	iterate	through	the	list	of	files	that	result	from	the	wildcard	character;
then	it	iterates	through	the	next	file	in	the	list.	You	can	combine	any	number	of	wildcard	entries	in	the	list	to	iterate
through.

WARNING
Notice	that	you	can	enter	anything	in	the	list	data.	Even	if	the	file	or	directory	doesn't	exist,	the
for	statement	attempts	to	process	whatever	you	place	in	the	list.	This	can	be	a	problem	when
you're	working	with	files	and	directories.	You	have	no	way	of	knowing	if	you're	trying	to	iterate
through	a	nonexistent	directory.	It's	always	a	good	idea	to	test	each	file	or	directory	before
trying	to	process	it.

Trying	the	C-Style	for	Command
If	you've	done	any	programming	using	the	C	programming	language,	you're	probably	surprised	by	the	way	the	Bash
shell	uses	the	for	command.	In	the	C	language,	a	for	loop	normally	defines	a	variable,	which	it	then	alters
automatically	during	each	iteration.	Typically,	programmers	use	this	variable	as	a	counter	and	either	increment	or
decrement	the	counter	by	1	in	each	iteration.	The	Bash	for	command	can	also	provide	this	functionality.	This	section
shows	you	how	to	use	a	C-style	for	command	in	a	Bash	shell	script.

The	C	language	for	command
The	C	language	for	command	has	a	method	for	specifying	a	variable,	a	condition	that	must	remain	true	for	the
iterations	to	continue,	and	a	method	for	altering	the	variable	for	each	iteration.	When	the	specified	condition
becomes	false,	the	for	loop	stops.	The	condition	equation	is	defined	using	standard	mathematical	symbols.	For
example,	consider	the	following	C	language	code:

	for	(i	=	0;	i	<	10;	i++)
	{
				printf("The	next	number	is	%d\n",	i);
	}

This	code	produces	a	simple	iteration	loop,	where	the	variable	i	is	used	as	a	counter.	The	first	section	assigns	a
default	value	to	the	variable.	The	middle	section	defines	the	condition	under	which	the	loop	will	iterate.	When	the
defined	condition	becomes	false,	the	for	loop	stops	iterations.	The	last	section	defines	the	iteration	process.	After
each	iteration,	the	expression	defined	in	the	last	section	is	executed.	In	this	example,	the	i	variable	is	incremented
by	1	after	each	iteration.

The	Bash	shell	also	supports	a	version	of	the	for	loop	that	looks	similar	to	the	C-style	for	loop,	although	it	does	have
some	subtle	differences,	including	a	couple	of	things	that	will	confuse	shell	script	programmers.	Here's	the	basic
format	of	the	C-style	Bash	for	loop:

	for	((variable	assignment	;	condition	;	iteration	process))

The	format	of	the	C-style	for	loop	can	be	confusing	for	Bash	shell	script	programmers,	because	it	uses	C-style
variable	references	instead	of	the	shell-style	variable	references.	Here's	what	a	C-style	for	command	looks	like:

	for	((a	=	1;	a	<	10;	a++))

Notice	that	there	are	a	couple	of	things	that	don't	follow	the	standard	Bash	shell	for	method:

The	assignment	of	the	variable	value	can	contain	spaces.

The	variable	in	the	condition	isn't	preceded	with	a	dollar	sign.

The	equation	for	the	iteration	process	doesn't	use	the	expr	command	format.

The	shell	developers	created	this	format	to	more	closely	resemble	the	C-style	for	command.	Although	this	is	great
for	C	programmers,	it	can	throw	even	expert	shell	programmers	into	a	tizzy.	Be	careful	when	using	the	C-style	for
loop	in	your	scripts.

Here's	an	example	of	using	the	C-style	for	command	in	a	Bash	shell	program:

	$	cat	test8
	#!/bin/bash
	#	testing	the	C-style	for	loop
	
	for	((i=1;	i	<=	10;	i++))
	do
				echo	"The	next	number	is	$i"
	done
	$./test8
	The	next	number	is	1
	The	next	number	is	2
	The	next	number	is	3
	The	next	number	is	4
	The	next	number	is	5
	The	next	number	is	6
	The	next	number	is	7
	The	next	number	is	8
	The	next	number	is	9
	The	next	number	is	10
	$

The	for	loop	iterates	through	the	commands	using	the	variable	defined	in	the	for	loop	(the	letter	i	in	this	example).
In	each	iteration,	the	$i	variable	contains	the	value	assigned	in	the	for	loop.	After	each	iteration,	the	loop	iteration
process	is	applied	to	the	variable,	which	in	this	example	increments	the	variable	by	1.

Using	multiple	variables
The	C-style	for	command	also	allows	you	to	use	multiple	variables	for	the	iteration.	The	loop	handles	each	variable
separately,	allowing	you	to	define	a	different	iteration	process	for	each	variable.	Although	you	can	have	multiple
variables,	you	can	define	only	one	condition	in	the	for	loop:

	$	cat	test9
	#!/bin/bash
	#	multiple	variables
	
	for	((a=1,	b=10;	a	<=	10;	a++,	b--))
	do
				echo	"$a	-	$b"
	done
	$./test9
	1	-	10
	2	-	9
	3	-	8
	4	-	7
	5	-	6
	6	-	5
	7	-	4
	8	-	3
	9	-	2
	10	-	1
	$

The	a	and	b	variables	are	each	initialized	with	different	values	and	different	iteration	processes	are	defined.	While
the	loop	increases	the	a	variable,	it	decreases	the	b	variable	for	each	iteration.

Exploring	the	while	Command
The	while	command	is	somewhat	of	a	cross	between	the	if-then	statement	and	the	for	loop.	The	while	command
allows	you	to	define	a	command	to	test	and	then	loop	through	a	set	of	commands	for	as	long	as	the	defined	test
command	returns	a	zero	exit	status.	It	tests	the	test	command	at	the	start	of	each	iteration.	When	the	test	command
returns	a	non-zero	exit	status,	the	while	command	stops	executing	the	set	of	commands.

Basic	while	format
Here's	the	format	of	the	while	command:

	while	test	command
	do
		other	commands
	done

The	test	command	defined	in	the	while	command	is	the	exact	same	format	as	in	if-then	statements	(see	Chapter	11).
As	in	the	if-then	statement,	you	can	use	any	normal	Bash	shell	command,	or	you	can	use	the	test	command	to	test
for	conditions,	such	as	variable	values.

The	key	to	the	while	command	is	that	the	exit	status	of	the	test	command	specified	must	change,	based	on	the
commands	run	during	the	loop.	If	the	exit	status	never	changes,	the	while	loop	will	get	stuck	in	an	infinite	loop.

The	most	common	use	of	the	test	command	is	to	use	brackets	to	check	a	value	of	a	shell	variable	that's	used	in	the
loop	commands:

	$	cat	test10
	#!/bin/bash
	#	while	command	test
	
	var1=10
	while	[$var1	-gt	0]
	do
				echo	$var1
				var1=$[$var1	-	1]
	done
	$./test10
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	$

The	while	command	defines	the	test	condition	to	check	for	each	iteration:

	while	[$var1	-gt	0]
	

As	long	as	the	test	condition	is	true,	the	while	command	continues	to	loop	through	the	commands	defined.	Within
the	commands,	the	variable	used	in	the	test	condition	must	be	modified,	or	you'll	have	an	infinite	loop.	In	this
example,	we	use	shell	arithmetic	to	decrease	the	variable	value	by	1:

	var1=$[$var1	-	1]

The	while	loop	stops	when	the	test	condition	is	no	longer	true.

Using	multiple	test	commands
The	while	command	allows	you	to	define	multiple	test	commands	on	the	while	statement	line.	Only	the	exit	status	of
the	last	test	command	is	used	to	determine	when	the	loop	stops.	This	can	cause	some	interesting	results	if	you're	not
careful.	Here's	an	example	of	what	we	mean:

$	cat	test11
	#!/bin/bash
	#	testing	a	multicommand	while	loop
	
	var1=10
	
	while	echo	$var1
							[$var1	-ge	0]
	do
				echo	"This	is	inside	the	loop"
				var1=$[$var1	-	1]
	done
	$./test11
	10
	This	is	inside	the	loop
	9
	This	is	inside	the	loop
	8
	This	is	inside	the	loop
	7
	This	is	inside	the	loop
	6
	This	is	inside	the	loop
	5
	This	is	inside	the	loop
	4
	This	is	inside	the	loop
	3
	This	is	inside	the	loop
	2
	This	is	inside	the	loop
	1
	This	is	inside	the	loop
	0

	This	is	inside	the	loop
	-1
	$

Pay	close	attention	to	what	happened	in	this	example.	Two	test	commands	were	defined	in	the	while	statement:

	while	echo	$var1
							[$var1	-ge	0]

The	first	test	simply	displays	the	current	value	of	the	var1	variable.	The	second	test	uses	brackets	to	determine	the
value	of	the	var1	variable.	Inside	the	loop,	an	echo	statement	displays	a	simple	message,	indicating	that	the	loop	was
processed.	Notice	when	you	run	the	example	how	the	output	ends:

	This	is	inside	the	loop
	-1
	$
	

The	while	loop	executed	the	echo	statement	when	the	var1	variable	was	equal	to	0	and	then	decreased	the	var1
variable	value.	The	test	commands	were	then	executed	for	the	next	iteration.	The	echo	test	command	was	executed,
displaying	the	value	of	the	var1	variable,	which	is	now	less	than	0.	It's	not	until	the	shell	executes	the	test	command
that	the	while	loop	terminates.

This	demonstrates	that	in	a	multicommand	while	statement,	all	the	test	commands	are	executed	in	each	iteration,
including	the	last	iteration	when	the	last	test	command	fails.	Be	careful	of	this.	Another	thing	to	be	careful	of	is	how
you	specify	the	multiple	test	commands.	Note	that	each	test	command	is	on	a	separate	line!

Using	the	until	Command
The	until	command	works	in	exactly	the	opposite	way	from	the	while	command.	The	until	command	requires	that
you	specify	a	test	command	that	normally	produces	a	non-zero	exit	status.	As	long	as	the	exit	status	of	the	test
command	is	non-zero,	the	Bash	shell	executes	the	commands	listed	in	the	loop.	When	the	test	command	returns	a
zero	exit	status,	the	loop	stops.

As	you	would	expect,	the	format	of	the	until	command	is

	until	test	commands
	do
				other	commands
	done

Similar	to	the	while	command,	you	can	have	more	than	one	test	command	in	the	until	command	statement.	Only
the	exit	status	of	the	last	command	determines	if	the	Bash	shell	executes	the	other	commands	defined.

The	following	is	an	example	of	using	the	until	command:

	$	cat	test12
	#!/bin/bash
	#	using	the	until	command
	
	var1=100
	
	until	[$var1	-eq	0]
	do
				echo	$var1
				var1=$[$var1	-	25]
	done
	$./test12
	100
	75
	50
	25
	$

This	example	tests	the	var1	variable	to	determine	when	the	until	loop	should	stop.	As	soon	as	the	value	of	the
variable	is	equal	to	0,	the	until	command	stops	the	loop.	The	same	caution	we	warned	you	about	for	the	while
command	applies	when	you	use	multiple	test	commands	with	the	until	command:

	$	cat	test13
	#!/bin/bash
	#	using	the	until	command
	
	var1=100
	
	until	echo	$var1
							[$var1	-eq	0]
	do
				echo	Inside	the	loop:	$var1
				var1=$[$var1	-	25]
	done
	$./test13
	100
	Inside	the	loop:	100
	75
	Inside	the	loop:	75

	50
	Inside	the	loop:	50
	25
	Inside	the	loop:	25
	0
	$

The	shell	executes	the	test	commands	specified	and	stops	only	when	the	last	command	is	true.

Nesting	Loops
A	loop	statement	can	use	any	other	type	of	command	within	the	loop,	including	other	loop	commands.	This	is	called
a	nested	loop.	Care	should	be	taken	when	using	nested	loops,	because	you're	performing	an	iteration	within	an
iteration,	which	multiplies	the	number	of	times	commands	are	being	run.	If	you	don't	pay	close	attention	to	this,	it
can	cause	problems	in	your	scripts.

Here's	a	simple	example	of	nesting	a	for	loop	inside	another	for	loop:

	$	cat	test14
	#!/bin/bash
	#	nesting	for	loops
	
	for	((a	=	1;	a	<=	3;	a++))
	do
				echo	"Starting	loop	$a:"
				for	((b	=	1;	b	<=	3;	b++))
				do
							echo	"			Inside	loop:	$b"
				done
	done
	$./test14
	Starting	loop	1:
				Inside	loop:	1
				Inside	loop:	2
				Inside	loop:	3
	Starting	loop	2:
				Inside	loop:	1
				Inside	loop:	2
				Inside	loop:	3
	Starting	loop	3:
				Inside	loop:	1
				Inside	loop:	2
				Inside	loop:	3
	$

The	nested	loop	(also	called	the	inner	loop)	iterates	through	its	values	for	each	iteration	of	the	outer	loop.	Notice
that	there's	no	difference	between	the	do	and	done	commands	for	the	two	loops.	The	Bash	shell	knows	when	the	first
done	command	is	executed	that	it	refers	to	the	inner	loop	and	not	the	outer	loop.

The	same	applies	when	you	mix	loop	commands,	such	as	placing	a	for	loop	inside	a	while	loop:

	$	cat	test15
	#!/bin/bash
	#	placing	a	for	loop	inside	a	while	loop
	
	var1=5
	
	while	[$var1	-ge	0]
	do
				echo	"Outer	loop:	$var1"
				for	((var2	=	1;	$var2	<	3;	var2++))
				do
							var3=$[$var1	*	$var2]
							echo	"		Inner	loop:	$var1	*	$var2	=	$var3"
				done
				var1=$[$var1	-	1]
	done
	$./test15
	Outer	loop:	5
			Inner	loop:	5	*	1	=	5
			Inner	loop:	5	*	2	=	10
	Outer	loop:	4
			Inner	loop:	4	*	1	=	4
			Inner	loop:	4	*	2	=	8
	Outer	loop:	3
			Inner	loop:	3	*	1	=	3
			Inner	loop:	3	*	2	=	6
	Outer	loop:	2
			Inner	loop:	2	*	1	=	2
			Inner	loop:	2	*	2	=	4
	Outer	loop:	1
			Inner	loop:	1	*	1	=	1
			Inner	loop:	1	*	2	=	2
	Outer	loop:	0
			Inner	loop:	0	*	1	=	0
			Inner	loop:	0	*	2	=	0

	$

Again,	the	shell	distinguished	between	the	do	and	done	commands	of	the	inner	for	loop	from	the	same	commands	in
the	outer	while	loop.

If	you	really	want	to	test	your	brain,	you	can	even	combine	until	and	while	loops:

	$	cat	test16
	#!/bin/bash
	#	using	until	and	while	loops
	
	var1=3
	
	until	[$var1	-eq	0]
	do
				echo	"Outer	loop:	$var1"
				var2=1
				while	[$var2	-lt	5]
				do
							var3=$(echo	"scale=4;	$var1	/	$var2"	|	bc)
							echo	"			Inner	loop:	$var1	/	$var2	=	$var3"
							var2=$[$var2	+	1]
				done
				var1=$[$var1	-	1]
	done
	$./test16
	Outer	loop:	3
				Inner	loop:	3	/	1	=	3.0000
				Inner	loop:	3	/	2	=	1.5000
				Inner	loop:	3	/	3	=	1.0000
				Inner	loop:	3	/	4	=	.7500
	Outer	loop:	2
				Inner	loop:	2	/	1	=	2.0000
				Inner	loop:	2	/	2	=	1.0000
				Inner	loop:	2	/	3	=	.6666
				Inner	loop:	2	/	4	=	.5000
	Outer	loop:	1
				Inner	loop:	1	/	1	=	1.0000
				Inner	loop:	1	/	2	=	.5000
				Inner	loop:	1	/	3	=	.3333
				Inner	loop:	1	/	4	=	.2500
	$

The	outer	until	loop	starts	with	a	value	of	3	and	continues	until	the	value	equals	0.	The	inner	while	loop	starts	with
a	value	of	1	and	continues	as	long	as	the	value	is	less	than	5.	Each	loop	must	change	the	value	used	in	the	test
condition,	or	the	loop	will	get	stuck	infinitely.

Looping	on	File	Data
Often,	you	must	iterate	through	items	stored	inside	a	file.	This	requires	combining	two	of	the	techniques	covered:

Using	nested	loops

Changing	the	IFS	environment	variable

By	changing	the	IFS	environment	variable,	you	can	force	the	for	command	to	handle	each	line	in	the	file	as	a
separate	item	for	processing,	even	if	the	data	contains	spaces.	After	you've	extracted	an	individual	line	in	the	file,
you	may	have	to	loop	again	to	extract	data	contained	within	it.

The	classic	example	of	this	is	processing	data	in	the	/etc/passwd	file.	This	requires	that	you	iterate	through	the
/etc/passwd	file	line	by	line	and	then	change	the	IFS	variable	value	to	a	colon	so	that	you	can	separate	the	individual
components	in	each	line.

The	following	is	an	example	of	doing	just	that:

	#!/bin/bash
	#	changing	the	IFS	value
	
	IFS.OLD=$IFS
	IFS=$'\n'
	for	entry	in	$(cat	/etc/passwd)
	do
				echo	"Values	in	$entry	–"
				IFS=:
				for	value	in	$entry
				do
							echo	"			$value"
				done
	done
	$

This	script	uses	two	different	IFS	values	to	parse	the	data.	The	first	IFS	value	parses	the	individual	lines	in	the
/etc/passwd	file.	The	inner	for	loop	next	changes	the	IFS	value	to	the	colon,	which	allows	you	to	parse	the	individual
values	within	the	/etc/passwd	lines.

When	you	run	this	script,	you	get	output	something	like	this:

	Values	in	rich:x:501:501:Rich	Blum:/home/rich:/bin/bash	-
				rich
				x
				501
				501
				Rich	Blum
				/home/rich
				/bin/bash
	Values	in	katie:x:502:502:Katie	Blum:/home/katie:/bin/bash	-
				katie
				x
				502
				502
				Katie	Blum
				/home/katie
				/bin/bash

The	inner	loop	parses	each	individual	value	in	the	/etc/passwd	entry.	This	is	also	a	great	way	to	process	comma-
separated	data,	a	common	way	to	import	spreadsheet	data.

Controlling	the	Loop
You	might	be	tempted	to	think	that	after	you	start	a	loop,	you're	stuck	until	the	loop	finishes	all	its	iterations.	This	is
not	true.	A	couple	of	commands	help	us	control	what	happens	inside	a	loop:

The	break	command

The	continue	command

Each	command	has	a	different	use	in	controlling	the	operation	of	a	loop.	The	following	sections	describe	how	you
can	use	these	commands	to	control	the	operation	of	your	loops.

The	break	command
The	break	command	is	a	simple	way	to	escape	a	loop	in	progress.	You	can	use	the	break	command	to	exit	any	type	of
loop,	including	while	and	until	loops.

You	can	use	the	break	command	in	several	situations.	This	section	shows	each	of	these	methods.

Breaking	out	of	a	single	loop
When	the	shell	executes	a	break	command,	it	attempts	to	break	out	of	the	loop	that's	currently	processing:

	$	cat	test17
	#!/bin/bash
	#	breaking	out	of	a	for	loop
	
	for	var1	in	1	2	3	4	5	6	7	8	9	10
	do
				if	[$var1	-eq	5]
				then
							break
				fi
				echo	"Iteration	number:	$var1"
	done
	echo	"The	for	loop	is	completed"
	$./test17
	Iteration	number:	1
	Iteration	number:	2
	Iteration	number:	3
	Iteration	number:	4
	The	for	loop	is	completed
	$

The	for	loop	should	normally	have	iterated	through	all	the	values	specified	in	the	list.	However,	when	the	if-then
condition	was	satisfied,	the	shell	executed	the	break	command,	which	stopped	the	for	loop.

This	technique	also	works	for	while	and	until	loops:

	$	cat	test18
	#!/bin/bash
	#	breaking	out	of	a	while	loop
	
	var1=1
	
	while	[$var1	-lt	10]
	do
				if	[$var1	-eq	5]
				then
							break
				fi
				echo	"Iteration:	$var1"
				var1=$[$var1	+	1]
	done
	echo	"The	while	loop	is	completed"
	$./test18

	Iteration:	1
	Iteration:	2
	Iteration:	3
	Iteration:	4
	The	while	loop	is	completed
	$

The	while	loop	terminated	when	the	if-then	condition	was	met,	executing	the	break	command.

Breaking	out	of	an	inner	loop
When	you're	working	with	multiple	loops,	the	break	command	automatically	terminates	the	innermost	loop	you're
in:

	$	cat	test19
	#!/bin/bash
	#	breaking	out	of	an	inner	loop
	
	for	((a	=	1;	a	<	4;	a++))
	do
				echo	"Outer	loop:	$a"
				for	((b	=	1;	b	<	100;	b++))
				do
							if	[$b	-eq	5]
							then
										break
							fi
							echo	"			Inner	loop:	$b"
				done
	done
	$./test19
	Outer	loop:	1
				Inner	loop:	1
				Inner	loop:	2
				Inner	loop:	3
				Inner	loop:	4
	Outer	loop:	2
				Inner	loop:	1
				Inner	loop:	2
				Inner	loop:	3
				Inner	loop:	4
	Outer	loop:	3
				Inner	loop:	1
				Inner	loop:	2
				Inner	loop:	3
				Inner	loop:	4
	$

The	for	statement	in	the	inner	loop	specifies	to	iterate	until	the	b	variable	is	equal	to	100.	However,	the	if-then
statement	in	the	inner	loop	specifies	that	when	the	b	variable	value	is	equal	to	5,	the	break	command	is	executed.
Notice	that	even	though	the	inner	loop	is	terminated	with	the	break	command,	the	outer	loop	continues	working	as
specified.

Breaking	out	of	an	outer	loop
There	may	be	times	when	you're	in	an	inner	loop	but	need	to	stop	the	outer	loop.	The	break	command	includes	a
single	command-line	parameter	value:

	break	n

where	n	indicates	the	level	of	the	loop	to	break	out	of.	By	default,	n	is	1,	indicating	to	break	out	of	the	current	loop.	If
you	set	n	to	a	value	of	2,	the	break	command	stops	the	next	level	of	the	outer	loop:

	$	cat	test20
	#!/bin/bash
	#	breaking	out	of	an	outer	loop
	
	for	((a	=	1;	a	<	4;	a++))
	do
				echo	"Outer	loop:	$a"
				for	((b	=	1;	b	<	100;	b++))
				do
							if	[$b	-gt	4]
							then
										break	2
							fi
							echo	"			Inner	loop:	$b"
				done
	done
	$./test20
	Outer	loop:	1
				Inner	loop:	1
				Inner	loop:	2
				Inner	loop:	3
				Inner	loop:	4
	$

Now	when	the	shell	executes	the	break	command,	the	outer	loop	stops.

The	continue	command
The	continue	command	is	a	way	to	prematurely	stop	processing	commands	inside	of	a	loop	but	not	terminate	the
loop	completely.	This	allows	you	to	set	conditions	within	a	loop	where	the	shell	won't	execute	commands.	Here's	a
simple	example	of	using	the	continue	command	in	a	for	loop:

	$	cat	test21
	#!/bin/bash
	#	using	the	continue	command
	
	for	((var1	=	1;	var1	<	15;	var1++))
	do
				if	[$var1	-gt	5]	&&	[$var1	-lt	10]
				then
							continue
				fi
				echo	"Iteration	number:	$var1"
	done
	$./test21
	Iteration	number:	1
	Iteration	number:	2
	Iteration	number:	3
	Iteration	number:	4
	Iteration	number:	5
	Iteration	number:	10
	Iteration	number:	11
	Iteration	number:	12
	Iteration	number:	13
	Iteration	number:	14
	$

When	the	conditions	of	the	if-then	statement	are	met	(the	value	is	greater	than	5	and	less	than	10),	the	shell
executes	the	continue	command,	which	skips	the	rest	of	the	commands	in	the	loop	but	keeps	the	loop	going.	When
the	if-then	condition	is	no	longer	met,	things	return	to	normal.

You	can	use	the	continue	command	in	while	and	until	loops,	but	be	extremely	careful	with	what	you're	doing.
Remember	that	when	the	shell	executes	the	continue	command,	it	skips	the	remaining	commands.	If	you're
incrementing	your	test	condition	variable	in	one	of	those	conditions,	bad	things	happen:

	$	cat	badtest3
	#!/bin/bash
	#	improperly	using	the	continue	command	in	a	while	loop
	
	var1=0
	
	while	echo	"while	iteration:	$var1"
							[$var1	-lt	15]
	do
				if	[$var1	-gt	5]	&&	[$var1	-lt	10]
				then
							continue
				fi
				echo	"			Inside	iteration	number:	$var1"
				var1=$[$var1	+	1]
	done
	$./badtest3	|	more
	while	iteration:	0
				Inside	iteration	number:	0
	while	iteration:	1
				Inside	iteration	number:	1
	while	iteration:	2
				Inside	iteration	number:	2
	while	iteration:	3
				Inside	iteration	number:	3
	while	iteration:	4
				Inside	iteration	number:	4
	while	iteration:	5
				Inside	iteration	number:	5
	while	iteration:	6
	while	iteration:	6
	while	iteration:	6
	while	iteration:	6
	while	iteration:	6
	while	iteration:	6
	while	iteration:	6
	while	iteration:	6
	while	iteration:	6
	while	iteration:	6
	while	iteration:	6
	$

You'll	want	to	make	sure	you	redirect	the	output	of	this	script	to	the	more	command	so	that	you	can	stop	things.
Everything	seems	to	be	going	just	fine	until	the	if-then	condition	is	met	and	the	shell	executes	the	continue

command.	When	the	shell	executes	the	continue	command,	it	skips	the	remaining	commands	in	the	while	loop.
Unfortunately,	that's	where	the	$var1	counter	variable	that	is	tested	in	the	while	test	command	is	incremented.	That
means	that	the	variable	isn't	incremented,	as	you	can	see	from	the	continually	displaying	output.

As	with	the	break	command,	the	continue	command	allows	you	to	specify	what	level	of	loop	to	continue	with	a
command-line	parameter:

	continue	n

where	n	defines	the	loop	level	to	continue.	Here's	an	example	of	continuing	an	outer	for	loop:

	$	cat	test22
	#!/bin/bash
	#	continuing	an	outer	loop
	
	for	((a	=	1;	a	<=	5;	a++))
	do
				echo	"Iteration	$a:"
				for	((b	=	1;	b	<	3;	b++))
				do
							if	[$a	-gt	2]	&&	[$a	-lt	4]
							then
										continue	2
							fi
							var3=$[$a	*	$b]
							echo	"			The	result	of	$a	*	$b	is	$var3"
				done
	done
	$./test22
	Iteration	1:
				The	result	of	1	*	1	is	1
				The	result	of	1	*	2	is	2
	Iteration	2:
				The	result	of	2	*	1	is	2
				The	result	of	2	*	2	is	4
	Iteration	3:
	Iteration	4:
				The	result	of	4	*	1	is	4
				The	result	of	4	*	2	is	8
	Iteration	5:
				The	result	of	5	*	1	is	5
				The	result	of	5	*	2	is	10
	$

The	if-then	statement

	if	[$a	-gt	2]	&&	[$a	-lt	4]
	then
				continue	2
	fi
	

uses	the	continue	command	to	stop	processing	the	commands	inside	the	loop	but	continue	the	outer	loop.	Notice	in
the	script	output	that	the	iteration	for	the	value	3	doesn't	process	any	inner	loop	statements	because	the	continue
command	stopped	the	processing,	but	it	continues	with	the	outer	loop	processing.

Processing	the	Output	of	a	Loop
Finally,	you	can	either	pipe	or	redirect	the	output	of	a	loop	within	your	shell	script.	You	do	this	by	adding	the
processing	command	to	the	end	of	the	done	command:

	for	file	in	/home/rich/*
		do
				if	[-d	"$file"]
				then
							echo	"$file	is	a	directory"
				elif
							echo	"$file	is	a	file"
				fi
	done>	output.txt

Instead	of	displaying	the	results	on	the	monitor,	the	shell	redirects	the	results	of	the	for	command	to	the	file
output.txt.

Consider	the	following	example	of	redirecting	the	output	of	a	for	command	to	a	file:

	$	cat	test23
	#!/bin/bash
	#	redirecting	the	for	output	to	a	file
	
	for	((a	=	1;	a	<	10;	a++))
	do
				echo	"The	number	is	$a"
	done>	test23.txt
	echo	"The	command	is	finished."
	$./test23

	The	command	is	finished.
	$	cat	test23.txt
	The	number	is	1
	The	number	is	2
	The	number	is	3
	The	number	is	4
	The	number	is	5
	The	number	is	6
	The	number	is	7
	The	number	is	8
	The	number	is	9
	$

The	shell	creates	the	file	test23.txt	and	redirects	the	output	of	the	for	command	only	to	the	file.	The	shell	displays
the	echo	statement	after	the	for	command	as	usual.

The	same	technique	also	works	for	piping	the	output	of	a	loop	to	another	command:

	$	cat	test24
	#!/bin/bash
	#	piping	a	loop	to	another	command
	
	for	state	in	"North	Dakota"	Connecticut	Illinois	Alabama	Tennessee
	do
				echo	"$state	is	the	next	place	to	go"
	done	|	sort
	echo	"This	completes	our	travels"
	$./test24
	Alabama	is	the	next	place	to	go
	Connecticut	is	the	next	place	to	go
	Illinois	is	the	next	place	to	go
	North	Dakota	is	the	next	place	to	go
	Tennessee	is	the	next	place	to	go
	This	completes	our	travels
	$

The	state	values	aren't	listed	in	any	particular	order	in	the	for	command	list.	The	output	of	the	for	command	is
piped	to	the	sort	command,	which	changes	the	order	of	the	for	command	output.	Running	the	script	indeed	shows
that	the	output	was	properly	sorted	within	the	script.

Working	through	a	Few	Practical	Examples
Now	that	you've	seen	how	to	use	the	different	ways	to	create	loops	in	shell	scripts,	let's	look	at	some	practical
examples	of	how	to	use	them.	Looping	is	a	common	way	to	iterate	through	data	on	the	system,	whether	it's	files	in
folders	or	data	contained	in	a	file.	Here	are	a	couple	of	examples	that	demonstrate	using	simple	loops	to	work	with
data.

Finding	executable	files
When	you	run	a	program	from	the	command	line,	the	Linux	system	searches	a	series	of	folders	looking	for	that	file.
Those	folders	are	defined	in	the	PATH	environment	variable.	If	you	want	to	find	out	what	executable	files	are	available
on	your	system	for	you	to	use,	just	scan	all	the	folders	in	the	PATH	environment	variable.	That	may	take	some	time	to
do	manually,	but	it's	a	breeze	working	out	a	small	shell	script	to	do	that.

The	first	step	is	to	create	a	for	loop	to	iterate	through	the	folders	stored	in	the	PATH	environment	variable.	When	you
do	that,	don't	forget	to	set	the	IFS	separator	character:

IFS=:
for	folder	in	$PATH
do

Now	that	you	have	the	individual	folders	in	the	$folder	variable,	you	can	use	another	for	loop	to	iterate	through	all
the	files	inside	that	particular	folder:

for	file	in	$folder/*
do

The	last	step	is	to	check	whether	the	individual	files	have	the	executable	permission	set,	which	you	can	do	using	the
if-then	test	feature:

if	[-x	$file]
then
			echo	"			$file"
fi

And	there	you	have	it!	Putting	all	the	pieces	together	into	a	script	looks	like	this:

$	cat	test25
#!/bin/bash
#	finding	files	in	the	PATH
	
IFS=:
for	folder	in	$PATH
do

			echo	"$folder:"
			for	file	in	$folder/*
			do
						if	[-x	$file]
						then
									echo	"			$file"
						fi
			done
done
$

When	you	run	the	code,	you	get	a	listing	of	the	executable	files	that	you	can	use	from	the	command	line:

$./test25	|	more
/usr/local/bin:
/usr/bin:
			/usr/bin/Mail
			/usr/bin/Thunar
			/usr/bin/X
			/usr/bin/Xorg
			/usr/bin/[
			/usr/bin/a2p
			/usr/bin/abiword
			/usr/bin/ac
			/usr/bin/activation-client
			/usr/bin/addr2line
...

The	output	shows	all	the	executable	files	found	in	all	the	folders	defined	in	the	PATH	environment	variable,	which	is
quite	a	few!

Creating	multiple	user	accounts
The	goal	of	shell	scripts	is	to	make	life	easier	for	the	system	administrator.	If	you	happen	to	work	in	an	environment
with	lots	of	users,	one	of	the	most	boring	tasks	can	be	creating	new	user	accounts.	Fortunately,	you	can	use	the	while
loop	to	make	your	job	a	little	easier.

Instead	of	having	to	manually	enter	useradd	commands	for	every	new	user	account	you	need	to	create,	you	can	place
the	new	user	accounts	in	a	text	file	and	create	a	simple	shell	script	to	do	that	work	for	you.	The	format	of	the	text	file
we'll	use	looks	like	this:

loginname,	name

The	first	entry	is	the	login	name	you	want	to	use	for	the	new	user	account.	The	second	entry	is	the	full	name	of	the
user.	The	two	values	are	separated	by	a	comma,	making	this	a	comma-separated	values	(CSV)	file	format.	This	is	a
very	common	file	format	used	in	spreadsheets,	so	you	can	easily	create	the	user	account	list	in	a	spreadsheet
program	and	save	it	in	CSV	format	for	your	shell	script	to	read	and	process.

To	read	the	file	data,	we're	going	to	use	a	little	shell	scripting	trick.	We'll	set	the	IFS	separator	character	to	a	comma
as	the	test	part	of	the	while	statement.	Then	to	read	the	individual	lines,	we'll	use	the	read	command.	That	looks	like
this:

while	IFS=','	read	–r	userid	name	

The	read	command	does	the	work	of	moving	on	to	the	next	line	of	text	in	the	CSV	text	file,	so	we	don't	need	another
loop	to	do	that.	The	while	command	exits	when	the	read	command	returns	a	FALSE	value,	which	happens	when	it
runs	out	of	lines	to	read	in	the	file.	Tricky!

To	feed	the	data	from	the	file	into	the	while	command,	you	just	use	a	redirection	symbol	at	the	end	of	the	while
command.

Putting	everything	together	results	in	this	script:

$	cat	test26
#!/bin/bash
#	process	new	user	accounts
	
input="users.csv"
while	IFS=','	read	-r	loginname	name
do
		echo	"adding	$loginname"
		useradd	-c	"$name"	-m	$loginname
done	<	"$input"
$

The	$input	variable	points	to	the	data	file	and	is	used	as	the	redirect	data	for	the	while	command.	The	users.csv	file
looks	like	this:

$	cat	users.csv
rich,Richard	Blum
christine,Christine	Bresnahan
barbara,Barbara	Blum
tim,Timothy	Bresnahan
$

To	run	the	program,	you	must	be	the	root	user	account,	because	the	useradd	command	requires	root	privileges:

#	./test26
adding	rich
adding	christine
adding	barbara
adding	tim
#	

Then,	by	taking	a	quick	look	at	the	/etc/passwd	file,	you	can	see	that	the	accounts	have	been	created:

#	tail	/etc/passwd
rich:x:1001:1001:Richard	Blum:/home/rich:/bin/bash
christine:x:1002:1002:Christine	Bresnahan:/home/christine:/bin/bash
barbara:x:1003:1003:Barbara	Blum:/home/barbara:/bin/bash
tim:x:1004:1004:Timothy	Bresnahan:/home/tim:/bin/bash
#

Congratulations,	you've	saved	yourself	lots	of	time	in	adding	user	accounts!

Summary
Looping	is	an	integral	part	of	programming.	The	Bash	shell	provides	three	looping	commands	that	you	can	use	in
your	scripts.

The	for	command	allows	you	to	iterate	through	a	list	of	values	—	supplied	within	the	command	line,	contained	in	a
variable,	or	obtained	by	using	file	globbing	—	to	extract	file	and	directory	names	from	a	wildcard	character.

The	while	command	provides	a	method	to	loop	based	on	the	condition	of	a	command,	using	either	ordinary
commands	or	the	test	command,	which	allows	you	to	test	conditions	of	variables.	As	long	as	the	command	(or
condition)	produces	a	zero	exit	status,	the	while	loop	continues	to	iterate	through	the	specified	set	of	commands.

The	until	command	also	provides	a	method	to	iterate	through	commands,	but	it	bases	its	iterations	on	a	command
(or	condition)	producing	a	non-zero	exit	status.	This	feature	allows	you	to	set	a	condition	that	must	be	met	before
the	iteration	stops.

You	can	combine	loops	in	shell	scripts,	producing	multiple	layers	of	loops.	The	Bash	shell	provides	the	continue	and
break	commands,	which	allow	you	to	alter	the	flow	of	the	normal	loop	process	based	on	different	values	within	the
loop.

The	Bash	shell	also	allows	you	to	use	standard	command	redirection	and	piping	to	alter	the	output	of	a	loop.	You	can
use	redirection	to	redirect	the	output	of	a	loop	to	a	file	or	piping	to	redirect	the	output	of	a	loop	to	another
command.	This	provides	a	wealth	of	features	with	which	you	can	control	your	shell	script	execution.

The	next	chapter	explores	how	to	interact	with	your	shell	script	user.	Often,	shell	scripts	aren't	completely	self-
contained.	They	require	some	sort	of	external	data	that	must	be	supplied	at	the	time	you	run	them.	The	next	chapter
discusses	different	methods	with	which	you	can	provide	real-time	data	to	your	shell	scripts	for	processing.

CHAPTER	14
Handling	User	Input
IN	THIS	CHAPTER

Passing	parameters

Tracking	parameters

Being	shifty

Working	with	options

Standardizing	options

Getting	user	input

So	far	you've	seen	how	to	write	scripts	that	interact	with	data,	variables,	and	files	on	the	Linux	system.	Sometimes,
you	need	to	write	a	script	that	has	to	interact	with	the	person	running	the	script.	The	Bash	shell	provides	a	few
different	methods	for	retrieving	data	from	people,	including	command-line	parameters	(data	values	added	after	the
command),	command-line	options	(single-letter	values	that	modify	the	behavior	of	the	command),	and	the
capability	to	read	input	directly	from	the	keyboard.	This	chapter	discusses	how	to	incorporate	these	various	methods
into	your	Bash	shell	scripts	to	obtain	data	from	the	person	running	your	script.

Passing	Parameters
The	most	basic	method	of	passing	data	to	your	shell	script	is	to	use	command-line	parameters.	Command-line
parameters	allow	you	to	add	data	values	to	the	command	line	when	you	execute	the	script:

$./addem	10	30

This	example	passes	two	command-line	parameters	(10	and	30)	to	the	script	addem	.	The	script	handles	the
command-line	parameters	using	special	variables.	The	following	sections	describe	how	to	use	command-line
parameters	in	your	Bash	shell	scripts.

Reading	parameters
The	Bash	shell	assigns	special	variables,	called	positional	parameters,	to	all	of	the	command-line	parameters
entered.	This	includes	the	name	of	the	script	the	shell	is	executing.	The	positional	parameter	variables	are	standard
numbers,	with	$0	being	the	script's	name,	$1	being	the	first	parameter,	$2	being	the	second	parameter,	and	so	on,	up
to	$9	for	the	ninth	parameter.

Here's	a	simple	example	of	using	one	command-line	parameter	in	a	shell	script:

$	cat	positional1.sh
#!/bin/bash
#	Using	one	command-line	parameter
#
factorial=1
for	((number	=	1;	number	<=	$1;	number++))
do
					factorial=$[$factorial	*	$number]
done
echo	The	factorial	of	$1	is	$factorial
exit
$	
$./positional1.sh	5
The	factorial	of	5	is	120
$

You	can	use	the	$1	variable	just	like	any	other	variable	in	the	shell	script.	The	shell	script	automatically	assigns	the
value	from	the	command-line	parameter	to	the	variable,	so	you	don't	need	to	do	anything	special.

If	you	want	to	enter	more	command-line	parameters	for	your	script,	each	parameter	must	be	separated	by	a	space
on	the	command	line.	And	the	shell	assigns	each	parameter	to	the	appropriate	variable:

$	cat	positional2.sh
#!/bin/bash
#	Using	two	command-line	parameters
#
product=$[$1	*	$2]
echo	The	first	parameter	is	$1.
echo	The	second	parameter	is	$2.
echo	The	product	value	is	$product.
exit
$
$./positional2.sh	2	5
The	first	parameter	is	2.
The	second	parameter	is	5.
The	product	value	is	10.

$

In	the	preceding	example,	the	command-line	parameters	used	were	both	numerical	values.	You	can	also	use	text
strings	as	parameters:

$	cat	stringparam.sh
#!/bin/bash
#	Using	one	command-line	string	parameter
#
echo	Hello	$1,	glad	to	meet	you.
exit
$
$./stringparam.sh	world
Hello	world,	glad	to	meet	you.
$

The	shell	passes	the	string	value	entered	into	the	command	line	to	the	script.	However,	you'll	have	a	problem	if	you
try	to	do	this	with	a	text	string	that	contains	spaces:

$./stringparam.sh	big	world
Hello	big,	glad	to	meet	you.
$

Remember	that	the	parameters	are	separated	by	spaces,	so	the	shell	interpreted	the	space	as	just	separating	the	two
values.	To	include	a	space	as	a	parameter	value,	you	must	use	quotation	marks	(either	single	or	double	quotation
marks):

$./stringparam.sh	'big	world'
Hello	big	world,	glad	to	meet	you.
$
$./stringparam.sh	"big	world"
Hello	big	world,	glad	to	meet	you.
$

NOTE
The	quotation	marks	used	when	you	pass	text	strings	as	parameters	are	not	part	of	the	data.
They	just	delineate	the	beginning	and	the	end	of	the	data.

If	your	script	needs	more	than	nine	command-line	parameters,	you	can	continue,	but	the	variable	names	change
slightly.	After	the	ninth	variable,	you	must	use	braces	around	the	variable	number,	such	as	${10}	.	Here's	an	example
of	doing	that:

$	cat	positional10.sh
#!/bin/bash
#	Handling	lots	of	command-line	parameters
#
product=$[${10}	*	${11}]
echo	The	tenth	parameter	is	${10}.
echo	The	eleventh	parameter	is	${11}.
echo	The	product	value	is	$product.
exit
$
$./positional10.sh	1	2	3	4	5	6	7	8	9	10	11	12
The	tenth	parameter	is	10.
The	eleventh	parameter	is	11.
The	product	value	is	110.
$

This	technique	allows	you	to	add	as	many	command-line	parameters	to	your	scripts	as	you	could	possibly	need.

Reading	the	script	name
You	can	use	the	$0	parameter	to	determine	the	script	name	the	shell	started	from	the	command	line.	This	can	come
in	handy	if	you're	writing	a	utility	that	has	multiple	functions	or	that	produces	log	messages.

$	cat	positional0.sh
#!/bin/bash
#	Handling	the	$0	command-line	parameter
#
echo	This	script	name	is	$0.
exit
$
$	bash	positional0.sh
This	script	name	is	positional0.sh.
$

However,	there	is	a	potential	problem.	When	using	a	different	command	to	run	the	shell	script,	the	command
becomes	entangled	with	the	script	name	in	the	$0	parameter:

$./positional0.sh
This	script	name	is	./positional0.sh.
$

An	additional	issue	occurs	when	the	actual	string	passed	is	the	full	script	path,	and	not	just	the	script's	name.	In	this
case,	the	$0	variable	gets	set	to	the	full	script	path	and	name:

$	$HOME/scripts/positional0.sh
This	script	name	is	/home/christine/scripts/positional0.sh.
$

If	you	want	to	write	a	script	that	only	uses	the	script's	name,	you'll	have	to	do	a	little	work	in	order	to	strip	off
whatever	path	is	used	to	run	the	script	or	any	entangled	commands.	Fortunately,	there's	a	handy	little	command
available	that	does	just	that.	The	basename	command	returns	just	the	script's	name	without	the	path:

$	cat	posbasename.sh
#!/bin/bash
#	Using	basename	with	the	$0	command-line	parameter
#
name=$(basename	$0)
#
echo	This	script	name	is	$name.
exit
$
$./posbasename.sh
This	script	name	is	posbasename.sh.
$

Now	that's	much	better.	You	can	use	this	technique	to	write	a	script	that	produces	log	messages	identifying	when	it
ran:

$	cat	checksystem.sh
#!/bin/bash
#	Using	the	$0	command-line	parameter	in	messages
#
scriptname=$(basename	$0)
#
echo	The	$scriptname	ran	at	$(date)>>	$HOME/scripttrack.log
exit
$
$./checksystem.sh
$	cat	$HOME/scripttrack.log
The	checksystem.sh	ran	at	Thu	04	Jun	2020	10:01:53	AM	EDT
$

Having	a	script	that	identifies	itself	is	useful	for	tracking	down	script	problems,	auditing	the	system,	and	producing
log	messages.

Testing	parameters
Be	careful	when	using	command-line	parameters	in	your	shell	scripts.	If	the	script	is	run	without	the	needed
parameters,	bad	things	can	happen:

$./positional1.sh
./positional1.sh:	line	5:	((:	number	<=	:	syntax	error:	
operand	expected	(error	token	is	"<=	")
The	factorial	of	is	1
$

When	the	script	assumes	there	is	data	in	a	parameter	variable	and	no	data	is	present,	most	likely	you'll	get	an	error
message	from	your	script.	This	is	a	poor	way	to	write	scripts.	Always	check	your	parameters	to	make	sure	the	data	is
there	before	using	it:

$	cat	checkpositional1.sh
#!/bin/bash
#	Using	one	command-line	parameter
#
if	[-n	"$1"]
then
					factorial=1
					for	((number	=	1;	number	<=	$1;	number++))
					do
										factorial=$[$factorial	*	$number]
					done
					echo	The	factorial	of	$1	is	$factorial
else
					echo	"You	did	not	provide	a	parameter."
fi
exit
$
$./checkpositional1.sh
You	did	not	provide	a	parameter.
$
$./checkpositional1.sh	3
The	factorial	of	3	is	6
$

In	this	example,	the	-n	test	evaluation	was	used	to	check	for	data	in	the	$1	command-line	parameter.	In	the	next
section,	you'll	learn	another	way	to	check	command-line	parameters.

Using	Special	Parameter	Variables
A	few	special	Bash	shell	variables	track	command-line	parameters.	This	section	describes	what	they	are	and	how	to
use	them.

Counting	parameters
As	you	saw	in	the	last	section,	you	should	verify	command-line	parameters	before	using	them	in	your	script.	For
scripts	that	use	multiple	command-line	parameters,	this	checking	can	get	tedious.

Instead	of	testing	each	parameter,	you	can	count	how	many	parameters	were	entered	on	the	command	line.	The
Bash	shell	provides	a	special	variable	for	this	purpose.

The	$#	variable	contains	the	number	of	command-line	parameters	included	when	the	script	was	run.	You	can	use
this	special	variable	anywhere	in	the	script,	just	like	a	normal	variable:

$	cat	countparameters.sh
#!/bin/bash
#	Counting	command-line	parameters
#
if	[$#	-eq	1]
then
					fragment="parameter	was"
else
					fragment="parameters	were"
fi
echo	$#	$fragment	supplied.
exit
$
$./countparameters.sh
0	parameters	were	supplied.
$
$./countparameters.sh	Hello
1	parameter	was	supplied.
$
$./countparameters.sh	Hello	World
2	parameters	were	supplied.
$
	
$./countparameters.sh	"Hello	World"
1	parameter	was	supplied.
$

Now	you	have	the	ability	to	test	the	number	of	parameters	present	before	trying	to	use	them:

$	cat	addem.sh
#!/bin/bash
#	Adding	command-line	parameters
#
if	[$#	-ne	2]
then
					echo	Usage:	$(basename	$0)	parameter1	parameter2
else
					total=$[$1	+	$2]
					echo	$1	+	$2	is	$total
fi
exit
$
$./addem.sh
Usage:	addem.sh	parameter1	parameter2
$
$./addem.sh	17
Usage:	addem.sh	parameter1	parameter2
$
$./addem.sh	17	25
17	+	25	is	42
$

The	if-then	statement	uses	the	-ne	evaluation	to	perform	a	numeric	test	of	the	command-line	parameters	supplied.
If	the	correct	number	of	parameters	isn't	present,	an	error	message	displays	showing	the	correct	usage	of	the	script.

This	variable	also	provides	a	cool	way	of	grabbing	the	last	parameter	on	the	command	line	without	having	to	know
how	many	parameters	were	used.	However,	you	need	to	use	a	little	trick	to	get	there.

If	you	think	this	through,	you	might	think	that	because	the	$#	variable	contains	the	value	of	the	number	of
parameters,	using	the	variable	${$#}	would	represent	the	last	command-line	parameter	variable.	Try	that	and	see
what	happens:

$	cat	badlastparamtest.sh
#!/bin/bash
#	Testing	grabbing	the	last	parameter
#
echo	The	number	of	parameters	is	$#
echo	The	last	parameter	is	${$#}
exit

$
$./badlastparamtest.sh	one	two	three	four
The	number	of	parameters	is	4
The	last	parameter	is	2648
$

Obviously,	something	went	wrong.	It	turns	out	that	you	can't	use	the	dollar	sign	within	the	braces.	Instead,	you	must
replace	the	dollar	sign	with	an	exclamation	mark.	Odd,	but	it	works:

$	cat	goodlastparamtest.sh
#!/bin/bash
#	Testing	grabbing	the	last	parameter
#
echo	The	number	of	parameters	is	$#
echo	The	last	parameter	is	${!#}
exit
$
$./goodlastparamtest.sh	one	two	three	four
The	number	of	parameters	is	4
The	last	parameter	is	four
$
$./goodlastparamtest.sh
The	number	of	parameters	is	0
The	last	parameter	is	./goodlastparamtest.sh
$

Perfect.	It's	important	to	notice	that,	when	there	weren't	any	parameters	on	the	command	line,	the	$#	value	was	0,
but	the	${!#}	variable	returns	the	script	name	used	on	the	command	line.

Grabbing	all	the	data
In	some	situations	you	want	to	grab	all	the	parameters	provided	on	the	command	line.	Instead	of	having	to	mess
with	using	the	$#	variable	to	determine	how	many	parameters	are	on	the	command	line	and	having	to	loop	through
them	all,	you	can	use	a	couple	of	other	special	variables.

The	$*	and	$@	variables	provide	easy	access	to	all	your	parameters.	Both	of	these	variables	include	all	the	command-
line	parameters	within	a	single	variable.

The	$*	variable	takes	all	the	parameters	supplied	on	the	command	line	as	a	single	word.	The	word	contains	each	of
the	values	as	they	appear	on	the	command	line.	Basically,	instead	of	treating	the	parameters	as	multiple	objects,	the
$*	variable	treats	them	all	as	one	parameter.

The	$@	variable,	on	the	other	hand,	takes	all	the	parameters	supplied	on	the	command	line	as	separate	words	in	the
same	string.	It	allows	you	to	iterate	through	the	values,	separating	out	each	parameter	supplied.	This	is	most	often
accomplished	using	a	for	loop.

It	can	easily	get	confusing	trying	to	figure	out	how	these	two	variables	operate.	Let's	look	at	the	difference	between
the	two:

$	cat	grabbingallparams.sh
#!/bin/bash
#	Testing	different	methods	for	grabbing	all	the	parameters
#
echo
echo	"Using	the	\$*	method:	$*"
echo
echo	"Using	the	\$@	method:	$@"
echo
exit
$
$./grabbingallparams.sh	alpha	beta	charlie	delta
	
Using	the	$*	method:	alpha	beta	charlie	delta
	
Using	the	$@	method:	alpha	beta	charlie	delta
	
$

Notice	that	on	the	surface,	both	variables	produce	the	same	output,	showing	all	the	command-line	parameters
provided	at	once.	The	following	example	demonstrates	where	the	differences	are:

$	cat	grabdisplayallparams.sh
#!/bin/bash
#	Exploring	different	methods	for	grabbing	all	the	parameters
#
echo
echo	"Using	the	\$*	method:	$*"
count=1
for	param	in	"$*"
do
					echo	"\$*	Parameter	#$count	=	$param"
					count=$[$count	+	1]
done
#
echo

echo	"Using	the	\$@	method:	$@"
count=1
for	param	in	"$@"
do
					echo	"\$@	Parameter	#$count	=	$param"
					count=$[$count	+	1]
done
echo
exit
$
$./grabdisplayallparams.sh	alpha	beta	charlie	delta
	
Using	the	$*	method:	alpha	beta	charlie	delta
$*	Parameter	#1	=	alpha	beta	charlie	delta
	
Using	the	$@	method:	alpha	beta	charlie	delta
$@	Parameter	#1	=	alpha
$@	Parameter	#2	=	beta
$@	Parameter	#3	=	charlie
$@	Parameter	#4	=	delta
	
$

Now	we're	getting	somewhere.	By	using	the	for	command	to	iterate	through	the	special	variables,	you	can	see	how
they	each	treat	the	command-line	parameters	differently.	The	$*	variable	treated	all	the	parameters	as	a	single
parameter,	whereas	the	$@	variable	treated	each	parameter	separately.	This	is	a	great	way	to	iterate	through
command-line	parameters.

Being	Shifty
Another	tool	you	have	in	your	Bash	shell	tool	belt	is	the	shift	command.	The	Bash	shell	provides	the	shift
command	to	help	you	manipulate	command-line	parameters.	The	shift	command	literally	shifts	the	command-line
parameters	in	their	relative	positions.

When	you	use	the	shift	command,	it	moves	each	parameter	variable	one	position	to	the	left	by	default.	Thus,	the
value	for	variable	$3	is	moved	to	$2	,	the	value	for	variable	$2	is	moved	to	$1	,	and	the	value	for	variable	$1	is
discarded	(note	that	the	value	for	variable	$0	,	the	program	name,	remains	unchanged).

This	is	another	great	way	to	iterate	through	command-line	parameters.	You	can	just	operate	on	the	first	parameter,
shift	the	parameters	over,	and	then	operate	on	the	first	parameter	again.

Here's	a	short	demonstration	of	how	this	works:

$	cat	shiftparams.sh
#!/bin/bash
#	Shifting	through	the	parameters
#
echo
echo	"Using	the	shift	method:"
count=1
while	[-n	"$1"]
do
					echo	"Parameter	#$count	=	$1"
					count=$[$count	+	1]
					shift
done
echo
exit
$
$./shiftparams.sh	alpha	bravo	charlie	delta
	
Using	the	shift	method:
Parameter	#1	=	alpha
Parameter	#2	=	bravo
Parameter	#3	=	charlie
Parameter	#4	=	delta
	
$

The	script	performs	a	while	loop,	testing	the	length	of	the	first	parameter's	value.	When	the	first	parameter's	length
is	0,	the	loop	ends.	After	testing	the	first	parameter,	the	shift	command	is	used	to	shift	all	the	parameters	one
position.

NOTE
Be	careful	when	working	with	the	shift	command.	When	a	parameter	is	shifted	out,	its	value	is
lost	and	can't	be	recovered.

Alternatively,	you	can	perform	a	multiple	location	shift	by	providing	a	parameter	to	the	shift	command.	Just
provide	the	number	of	places	you	want	to	shift:

$	cat	bigshiftparams.sh
#!/bin/bash
#	Shifting	multiple	positions	through	the	parameters
#
echo
echo	"The	original	parameters:	$*"
echo	"Now	shifting	2..."
shift	2
echo	"Here's	the	new	first	parameter:	$1"
echo
exit
$
$./bigshiftparams.sh	alpha	bravo	charlie	delta
	
The	original	parameters:	alpha	bravo	charlie	delta
Now	shifting	2...
Here's	the	new	first	parameter:	charlie
	
$

By	using	values	in	the	shift	command,	you	can	easily	skip	over	parameters	you	don't	need	in	certain	situations.

Working	with	Options
If	you've	been	following	along	in	the	book,	you've	seen	several	Bash	commands	that	provide	both	parameters	and
options.	Options	are	single	letters	preceded	by	a	dash	that	alter	the	behavior	of	a	command.	This	section	shows	three
methods	for	working	with	options	in	your	shell	scripts.

Finding	your	options
On	the	surface,	there's	nothing	all	that	special	about	command-line	options.	They	appear	on	the	command	line
immediately	after	the	script	name,	just	the	same	as	command-line	parameters.	In	fact,	if	you	want,	you	can	process
command-line	options	the	same	way	you	process	command-line	parameters.

Processing	simple	options
In	the	shiftparams.sh	script	earlier,	you	saw	how	to	use	the	shift	command	to	work	your	way	down	the	command-
line	parameters	provided	with	the	script	program.	You	can	use	the	same	technique	to	process	command-line
options.

As	you	extract	each	individual	parameter,	use	the	case	statement	(see	Chapter	12,	“Using	Structured	Commands”)	to
determine	when	a	parameter	is	formatted	as	an	option:

$	cat	extractoptions.sh
#!/bin/bash
#	Extract	command-line	options
#
echo
while	[-n	"$1"]
do
					case	"$1"	in
										-a)	echo	"Found	the	-a	option"	;;
										-b)	echo	"Found	the	-b	option"	;;
										-c)	echo	"Found	the	-c	option"	;;
										*)	echo	"$1	is	not	an	option"	;;
					esac
					shift
done
echo
exit
$
$./extractoptions.sh	-a	-b	-c	-d
	
Found	the	-a	option
Found	the	-b	option
Found	the	-c	option
-d	is	not	an	option
	
$

The	case	statement	checks	each	parameter	for	valid	options.	When	one	is	found,	the	appropriate	commands	are	run
in	the	case	statement.

This	method	works,	no	matter	in	what	order	the	options	are	presented	on	the	command	line:

$./extractoptions.sh	-d	-c	-a
	
-d	is	not	an	option
Found	the	-c	option
Found	the	-a	option
	
$

The	case	statement	processes	each	option	as	it	finds	it	in	the	command-line	parameters.	If	any	other	parameters	are

included	on	the	command	line,	you	can	include	commands	in	the	catch-all	part	of	the	case	statement	to	process
them.

Separating	options	from	parameters
Often	you'll	run	into	situations	where	you'll	want	to	use	both	options	and	parameters	for	a	shell	script.	The	standard
way	to	do	this	in	Linux	is	to	separate	the	two	with	a	special	character	code	that	tells	the	script	when	the	options	are
finished	and	when	the	normal	parameters	start.

For	Linux,	this	special	character	is	the	double	dash	(--).	The	shell	uses	the	double	dash	to	indicate	the	end	of	the
option	list.	After	seeing	the	double	dash,	your	script	can	safely	process	the	remaining	command-line	parameters	as
parameters	and	not	options.

To	check	for	the	double	dash,	simply	add	another	entry	in	the	case	statement:

$	cat	extractoptionsparams.sh
#!/bin/bash
#	Extract	command-line	options	and	parameters
#
echo
while	[-n	"$1"]
do
					case	"$1"	in
										-a)	echo	"Found	the	-a	option"	;;
										-b)	echo	"Found	the	-b	option"	;;
										-c)	echo	"Found	the	-c	option"	;;
										--)	shift
														break;;
										*)	echo	"$1	is	not	an	option"	;;
					esac
					shift
done
#
echo
count=1
for	param	in	$@
do
					echo	"Parameter	#$count:	$param"
					count=$[$count	+	1]
done
echo
exit
$

This	script	uses	the	break	command	to	break	out	of	the	while	loop	when	it	encounters	the	double	dash.	Because
we're	breaking	out	prematurely,	we	need	to	ensure	that	we	stick	in	another	shift	command	to	get	the	double	dash
out	of	the	parameter	variables.

For	the	first	test,	try	running	the	script	using	a	normal	set	of	options	and	parameters:

$./extractoptionsparams.sh	-a	-b	-c	test1	test2	test3
	
Found	the	-a	option
Found	the	-b	option
Found	the	-c	option
test1	is	not	an	option
test2	is	not	an	option
test3	is	not	an	option
	
$

The	results	show	that	the	script	assumed	that	all	the	command-line	parameters	were	options	when	it	processed
them.	Next,	try	the	same	thing,	only	this	time	using	the	double	dash	to	separate	the	options	from	the	parameters	on
the	command	line:

$./extractoptionsparams.sh	-a	-b	-c	--	test1	test2	test3
	
Found	the	-a	option
Found	the	-b	option
Found	the	-c	option
	
Parameter	#1:	test1
Parameter	#2:	test2
Parameter	#3:	test3
	
$

When	the	script	reaches	the	double	dash,	it	stops	processing	options	and	assumes	that	any	remaining	parameters
are	command-line	parameters.

Processing	options	with	values
Some	options	require	an	additional	parameter	value.	In	these	situations,	the	command	line	looks	something	like
this:

$./testing.sh	-a	test1	-b	-c	-d	test2

Your	script	must	be	able	to	detect	when	your	command-line	option	requires	an	additional	parameter	and	be	able	to
process	it	appropriately.	Here's	an	example	of	how	to	do	that:

$	cat	extractoptionsvalues.sh
#!/bin/bash
#	Extract	command-line	options	and	values
#
echo
while	[-n	"$1"]
do
					case	"$1"	in
										-a)	echo	"Found	the	-a	option"	;;
										-b)	param=$2
														echo	"Found	the	-b	option	with	parameter	value	$param"
														shift;;
										-c)	echo	"Found	the	-c	option"	;;
										--)	shift
														break;;
										*)	echo	"$1	is	not	an	option"	;;
					esac
					shift
done
#
echo
count=1
for	param	in	$@
do
					echo	"Parameter	#$count:	$param"
					count=$[$count	+	1]
done
exit
$
$./extractoptionsvalues.sh	-a	-b	BValue	-d
	
Found	the	-a	option
Found	the	-b	option	with	parameter	value	BValue
-d	is	not	an	option
$

In	this	example,	the	case	statement	defines	three	options	that	it	processes.	The	-b	option	also	requires	an	additional
parameter	value.	Because	the	parameter	being	processed	is	$1	,	you	know	that	the	additional	parameter	value	is
located	in	$2	(because	all	the	parameters	are	shifted	after	they	are	processed).	Just	extract	the	parameter	value	from
the	$2	variable.	Of	course,	because	we	used	two	parameter	spots	for	this	option,	you	also	need	to	run	the	shift
command	to	shift	one	additional	position.

Just	as	with	the	basic	feature,	this	process	works	no	matter	what	order	you	place	the	options	in	(just	remember	to
include	the	appropriate	option	parameter	with	each	option):

$./extractoptionsvalues.sh	-c	-d	-b	BValue	-a
	
Found	the	-c	option
-d	is	not	an	option
Found	the	-b	option	with	parameter	value	BValue
Found	the	-a	option
$

Now	you	have	the	basic	ability	to	process	command-line	options	in	your	shell	scripts,	but	there	are	limitations.	For
example,	this	doesn't	work	if	you	try	to	combine	multiple	options	in	one	parameter:

$./extractoptionsvalues.sh	-ac
	
-ac	is	not	an	option
$

It	is	a	common	practice	in	Linux	to	combine	options,	and	if	your	script	is	going	to	be	user-friendly,	you'll	want	to
offer	this	feature	for	your	users	as	well.	Fortunately,	there's	another	method	for	processing	options	that	can	help
you.

Using	the	getopt	command
The	getopt	command	is	a	great	tool	to	have	handy	when	processing	command-line	options	and	parameters.	It
reorganizes	the	command-line	parameters	to	make	parsing	them	in	your	script	easier.

Looking	at	the	command	format
The	getopt	command	can	take	a	list	of	command-line	options	and	parameters,	in	any	form,	and	automatically	turn
them	into	the	proper	format.	It	uses	the	following	command	format:

getopt	optstring	parameters

The	optstring	is	the	key	to	the	process.	It	defines	the	valid	option	letters	that	can	be	used	in	the	command	line.	It
also	defines	which	option	letters	require	a	parameter	value.

First,	list	each	command-line	option	letter	you're	going	to	use	in	your	script	in	the	optstring.	Then	place	a	colon
after	each	option	letter	that	requires	a	parameter	value.	The	getopt	command	parses	the	supplied	parameters	based
on	the	optstring	you	define.

WARNING
A	more	advanced	version	of	the	getopt	command,	called	getopts	(notice	it	is	plural),	is	available.
The	getopts	command	is	covered	later	in	this	chapter.	Because	of	their	nearly	identical	spelling,
it's	easy	to	get	these	two	commands	confused.	Be	careful!

Here's	a	simple	example	of	how	getopt	works:

$	getopt	ab:cd	-a	-b	BValue	-cd	test1	test2
	-a	-b	BValue	-c	-d	--	test1	test2
$

The	optstring	defines	four	valid	option	letters:	a	,	b	,	c	,	and	d	.	A	colon	(:)	is	placed	after	the	letter	b	in	order	to
require	option	b	to	have	a	parameter	value.	When	the	getopt	command	runs,	it	examines	the	provided	parameter	list
(-a	-b	BValue	-cd	test2	test3)	and	parses	it	based	on	the	supplied	optstring.	Notice	that	it	automatically
separated	the	-cd	options	into	two	options	and	inserted	the	double	dash	to	separate	the	additional	parameters	on
the	line.

If	you	specify	a	parameter	option	not	in	the	optstring,	by	default	the	getopt	command	produces	an	error	message:

$	getopt	ab:cd	-a	-b	BValue	-cde	test1	test2
getopt:	invalid	option	--	'e'
	-a	-b	BValue	-c	-d	--	test1	test2
$

If	you	prefer	to	just	ignore	the	error	messages,	use	getopt	with	the	-q	option:

$	getopt	-q	ab:cd	-a	-b	BValue	-cde	test1	test2
	-a	-b	'BValue'	-c	-d	--	'test1'	'test2'
$

Note	that	the	getopt	command	options	must	be	listed	before	the	optstring.	Now	you	should	be	ready	to	use	this
command	in	your	scripts	to	process	command-line	options.

Using	getopt	in	your	scripts
You	can	use	the	getopt	command	in	your	scripts	to	format	any	command-line	options	or	parameters	entered	for
your	script.	It's	a	little	tricky,	however,	to	use.

The	trick	is	to	replace	the	existing	command-line	options	and	parameters	with	the	formatted	version	produced	by
the	getopt	command.	The	way	to	do	that	is	to	use	the	set	command.

You	saw	the	set	command	back	in	Chapter	6,	“Using	Linux	Environment	Variables.”	The	set	command	works	with
the	different	variables	in	the	shell.

One	of	the	set	command	options	is	the	double	dash	(--).	The	double	dash	instructs	set	to	replace	the	command-line
parameter	variables	with	the	values	on	the	set	command's	command	line.

The	trick	then	is	to	feed	the	original	script's	command-line	parameters	to	the	getopt	command	and	then	feed	the
output	of	the	getopt	command	to	the	set	command	to	replace	the	original	command-line	parameters	with	the	nicely
formatted	ones	from	getopt	.	It	looks	something	like	this:

set	--	$(getopt	-q	ab:cd	"$@")

Now	the	values	of	the	original	command-line	parameter	variables	are	replaced	with	the	output	from	the	getopt
command,	which	formats	the	command-line	parameters	for	us.

Using	this	technique,	we	can	now	write	scripts	that	handle	our	command-line	parameters	for	us:

$	cat	extractwithgetopt.sh
#!/bin/bash
#	Extract	command-line	options	and	values	with	getopt
#
set	--	$(getopt	-q	ab:cd	"$@")
#
echo
while	[-n	"$1"]
do
					case	"$1"	in
										-a)	echo	"Found	the	-a	option"	;;
										-b)	param=$2
														echo	"Found	the	-b	option	with	parameter	value	$param"
														shift;;
										-c)	echo	"Found	the	-c	option"	;;
										--)	shift
														break;;
										*)	echo	"$1	is	not	an	option"	;;
					esac

					shift
done
#
echo
count=1
for	param	in	$@
do
					echo	"Parameter	#$count:	$param"
					count=$[$count	+	1]
done
exit
$

You'll	notice	that	this	is	basically	the	same	script	as	in	extractoptionsvalues.sh	.	The	only	thing	that	changed	is	the
addition	of	the	getopt	command	to	help	format	our	command-line	parameters.

Now	when	you	run	the	script	with	complex	options,	things	work	much	better:

$./extractwithgetopt.sh	-ac
	
Found	the	-a	option
Found	the	-c	option
$

And	of	course,	all	the	original	features	work	just	fine	as	well:

$./extractwithgetopt.sh	-c	-d	-b	BValue	-a	test1	test2
	
Found	the	-c	option
-d	is	not	an	option
Found	the	-b	option	with	parameter	value	'BValue'
Found	the	-a	option
	
Parameter	#1:	'test1'
Parameter	#2:	'test2'
$

Now	things	are	looking	pretty	fancy.	However,	there's	still	one	small	bug	that	lurks	in	the	getopt	command.	Check
out	this	example:

$./extractwithgetopt.sh	-c	-d	-b	BValue	-a	"test1	test2"	test3
	
Found	the	-c	option
-d	is	not	an	option
Found	the	-b	option	with	parameter	value	'BValue'
Found	the	-a	option
	
Parameter	#1:	'test1
Parameter	#2:	test2'
Parameter	#3:	'test3'
$

The	getopt	command	isn't	good	at	dealing	with	parameter	values	with	spaces	and	quotation	marks.	It	interpreted
the	space	as	the	parameter	separator,	instead	of	following	the	double	quotation	marks	and	combining	the	two	values
into	one	parameter.	Fortunately,	this	problem	has	another	solution.

Advancing	to	getopts
The	getopts	command	(notice	that	it	is	plural)	is	built	into	the	Bash	shell.	It	looks	much	like	its	getopt	cousin	but
has	some	expanded	features.

Unlike	getopt	,	which	produces	one	output	for	all	the	processed	options	and	parameters	found	in	the	command	line,
the	getopts	command	works	on	the	existing	shell	parameter	variables	sequentially.

It	processes	the	parameters	it	detects	in	the	command	line	one	at	a	time	each	time	it's	called.	When	it	runs	out	of
parameters,	it	exits	with	an	exit	status	greater	than	zero.	This	makes	it	great	for	using	in	loops	to	parse	all	the
parameters	on	the	command	line.

Here's	the	format	of	the	getopts	command:

getopts	optstring	variable

The	optstring	value	is	similar	to	the	one	used	in	the	getopt	command.	Valid	option	letters	are	listed	in	the
optstring,	along	with	a	colon	if	the	option	letter	requires	a	parameter	value.	To	suppress	error	messages,	start	the
optstring	with	a	colon.	The	getopts	command	places	the	current	parameter	in	the	variable	defined	in	the
command	line.

The	getopts	command	uses	two	environment	variables.	The	OPTARG	environment	variable	contains	the	value	to	be
used	if	an	option	requires	a	parameter	value.	The	OPTIND	environment	variable	contains	the	value	of	the	current
location	within	the	parameter	list	where	getopts	left	off.	This	allows	you	to	continue	processing	other	command-line
parameters	after	finishing	the	options.

Let's	look	at	a	simple	example	that	uses	the	getopts	command:

$	cat	extractwithgetopts.sh
#!/bin/bash

#	Extract	command-line	options	and	values	with	getopts
#
echo
while	getopts	:ab:c	opt
do
					case	"$opt"	in
										a)	echo	"Found	the	-a	option"	;;
										b)	echo	"Found	the	-b	option	with	parameter	value	$OPTARG";;
										c)	echo	"Found	the	-c	option"	;;
										*)	echo	"Unknown	option:	$opt"	;;
					esac
done
exit
$
$./extractwithgetopts.sh	-ab	BValue	-c
	
Found	the	-a	option
Found	the	-b	option	with	parameter	value	BValue
Found	the	-c	option
$

The	while	statement	defines	the	getopts	command,	specifying	what	command-line	options	for	which	to	look,	along
with	the	variable	name	(opt)	to	store	them	in	for	each	iteration.

You'll	notice	something	different	about	the	case	statement	in	this	example.	When	the	getopts	command	parses	the
command-line	options,	it	strips	off	the	leading	dash,	so	you	don't	need	leading	dashes	in	the	case	definitions.

The	getopts	command	offers	several	nice	features.	For	starters,	you	can	include	spaces	in	your	parameter	values:

$./extractwithgetopts.sh	-b	"BValue1	BValue2"	-a
	
Found	the	-b	option	with	parameter	value	BValue1	BValue2
Found	the	-a	option
$

Another	nice	feature	is	that	you	can	run	the	option	letter	and	the	parameter	value	together	without	a	space:

$./extractwithgetopts.sh	-abBValue
	
Found	the	-a	option
Found	the	-b	option	with	parameter	value	BValue
$

The	getopts	command	correctly	parsed	the	BValue	value	from	the	-b	option.	In	addition,	the	getopts	command
bundles	any	undefined	option	it	finds	in	the	command	line	into	a	single	output,	the	question	mark:

$./extractwithgetopts.sh	-d
	
Unknown	option:	?
$
$./extractwithgetopts.sh	-ade
	
Found	the	-a	option
Unknown	option:	?
Unknown	option:	?
$

Any	option	letter	not	defined	in	the	optstring	value	is	sent	to	your	code	as	a	question	mark.

The	getopts	command	knows	when	to	stop	processing	options	and	leave	the	parameters	for	you	to	process.	As
getopts	processes	each	option,	it	increments	the	OPTIND	environment	variable	by	1.	When	you've	reached	the	end	of
the	getopts	processing,	you	can	use	the	OPTIND	value	with	the	shift	command	to	move	to	the	parameters:

$	cat	extractoptsparamswithgetopts.sh
#!/bin/bash
#	Extract	command-line	options	and	parameters	with	getopts
#
echo
while	getopts	:ab:cd	opt
do
					case	"$opt"	in
										a)	echo	"Found	the	-a	option"	;;
										b)	echo	"Found	the	-b	option	with	parameter	value	$OPTARG";;
										c)	echo	"Found	the	-c	option"	;;
										d)	echo	"Found	the	-d	option"	;;
										*)	echo	"Unknown	option:	$opt"	;;
					esac
done
#
shift	$[$OPTIND	-	1]
#
echo
count=1
for	param	in	"$@"
do
					echo	"Parameter	$count:	$param"
					count=$[$count	+	1]

done
exit
$
$./extractoptsparamswithgetopts.sh	-db	BValue	test1	test2
	
Found	the	-d	option
Found	the	-b	option	with	parameter	value	BValue
	
Parameter	1:	test1
Parameter	2:	test2
$

Now	you	have	a	full-featured	command-line	option	and	parameter	processing	utility	you	can	use	in	all	your	shell
scripts!

Standardizing	Options
When	you	create	your	shell	script,	obviously	you're	in	control	of	what	happens.	It's	completely	up	to	you	as	to	which
letter	options	you	select	to	use	and	how	you	select	to	use	them.

However,	a	few	letter	options	have	achieved	a	somewhat	standard	meaning	in	the	Linux	world.	If	you	leverage	these
options	in	a	shell	script,	your	scripts	will	be	more	user-friendly.

Table	14-1	shows	some	of	the	common	meanings	for	command-line	options	used	in	Linux.

You'll	probably	recognize	most	of	these	option	meanings	just	from	working	with	the	various	bash	commands
throughout	the	book.	Using	the	same	meaning	for	your	options	helps	users	interact	with	your	script	without	having
to	worry	about	determining	what	options	to	use	when.

TABLE	14-1	Common	Linux	Command-Line	Options

Option Description

-a Shows	all	objects.

-c Produces	a	count.

-d Specifies	a	directory.

-e Expands	an	object.

-f Specifies	a	file	to	read	data	from.

-h Displays	a	help	message	for	the	command.

-i Ignores	text	case.

-l Produces	a	long	format	version	of	the	output.

-n Uses	a	non-interactive	(batch)	mode.

-o Specifies	a	file	to	which	all	output	is	redirected.

-q Runs	in	quiet	mode.

-r Processes	directories	and	files	recursively.

-s Runs	in	silent	mode.

-v Produces	verbose	output.

-x Excludes	an	object.

-y Answers	yes	to	all	questions.

Getting	User	Input
Although	providing	command-line	options	and	parameters	is	a	great	way	to	get	data	from	your	script	users,
sometimes	your	script	needs	to	be	more	interactive.	You	may	need	to	ask	a	question	while	the	script	is	running,	and
wait	for	a	response	from	the	person	running	your	script.	The	Bash	shell	provides	the	read	command	just	for	this
purpose.

Reading	basics
The	read	command	accepts	input	either	from	standard	input	(such	as	from	the	keyboard)	or	from	another	file
descriptor.	After	receiving	the	input,	the	read	command	places	the	data	into	a	variable.	Here's	the	read	command	at
its	simplest:

$	cat	askname.sh
#!/bin/bash
#	Using	the	read	command
#
echo	-n	"Enter	your	name:	"
read	name
echo	"Hello	$name,	welcome	to	my	script."
exit

$
$./askname.sh
Enter	your	name:	Richard	Blum
Hello	Richard	Blum,	welcome	to	my	script.
$

That's	pretty	simple.	Notice	that	the	echo	command	that	produced	the	prompt	uses	the	-n	option.	This	suppresses
the	newline	character	at	the	end	of	the	string,	allowing	the	script	user	to	enter	data	immediately	after	the	string,
instead	of	on	the	next	line.	This	gives	your	scripts	a	more	form-like	appearance.

In	fact,	the	read	command	includes	the	-p	option,	which	allows	you	to	specify	a	prompt	directly	in	the	read
command	line:

$	cat	askage.sh
#!/bin/bash
#	Using	the	read	command	with	the	-p	option
#
read	-p	"Please	enter	your	age:	"	age
days=$[$age	*	365]
echo	"That	means	you	are	over	$days	days	old!"
exit
$
$./askage.sh
Please	enter	your	age:	30
That	means	you	are	over	10950	days	old!
$

You'll	notice	in	the	first	example	that	when	a	name	was	entered,	the	read	command	assigned	both	the	first	name	and
last	name	to	the	same	variable.	The	read	command	assigns	all	data	entered	at	the	prompt	to	a	single	variable,	or	you
can	specify	multiple	variables.	Each	data	value	entered	is	assigned	to	the	next	variable	in	the	list.	If	the	list	of
variables	runs	out	before	the	data	does,	the	remaining	data	is	assigned	to	the	last	variable:

$	cat	askfirstlastname.sh
#!/bin/bash
#	Using	the	read	command	for	multiple	variables
#
read	-p	"Enter	your	first	and	last	name:	"	first	last
echo	"Checking	data	for	$last,	$first..."
exit
$
$./askfirstlastname.sh
Enter	your	first	and	last	name:	Richard	Blum
Checking	data	for	Blum,	Richard...
$

You	can	also	specify	no	variables	on	the	read	command	line.	If	you	do	that,	the	read	command	places	any	data	it
receives	in	the	special	environment	variable	REPLY	:

$	cat	asknamereply.sh
#!/bin/bash
#	Using	the	read	command	with	REPLY	variable
#
read	-p	"Enter	your	name:	"
echo
echo	"Hello	$REPLY,	welcome	to	my	script."
exit
$
$./asknamereply.sh
Enter	your	name:	Christine	Bresnahan
	
Hello	Christine	Bresnahan,	welcome	to	my	script.
$

The	REPLY	environment	variable	contains	all	the	data	entered	in	the	input,	and	it	can	be	used	in	the	shell	script	like
any	other	variable.

Timing	Out
Be	careful	when	using	the	read	command.	Your	script	may	get	stuck	waiting	for	the	script	user	to	enter	data.	If	the
script	must	go	on	regardless	of	whether	any	data	was	entered,	you	can	use	the	-t	option	to	specify	a	timer.	The	-t
option	specifies	the	number	of	seconds	for	the	read	command	to	wait	for	input.	When	the	timer	expires,	the	read
command	returns	a	non-zero	exit	status:

$	cat	asknametimed.sh
#!/bin/bash
#	Using	the	read	command	with	a	timer
#
if	read	-t	5	-p	"Enter	your	name:	"	name
then
					echo	"Hello	$name,	welcome	to	my	script."
else
					echo
					echo	"Sorry,	no	longer	waiting	for	name."
fi
exit

$
$./asknametimed.sh
Enter	your	name:	Christine
Hello	Christine,	welcome	to	my	script.
$
$./asknametimed.sh
Enter	your	name:
Sorry,	no	longer	waiting	for	name.
$

Because	the	read	command	exits	with	a	non-zero	exit	status	if	the	timer	expires,	it's	easy	to	use	the	standard
structured	statements,	such	as	an	if-then	statement	or	a	while	loop,	to	track	what	happened.	In	this	example,	when
the	timer	expires,	the	if	statement	fails,	and	the	shell	executes	the	commands	in	the	else	section.

Instead	of	timing	the	input,	you	can	also	set	the	read	command	to	count	the	input	characters.	When	a	preset	number
of	characters	has	been	entered,	the	script	automatically	continues	(the	user	does	not	have	to	press	the	Enter	key),
assigning	the	entered	data	to	the	variable:

$	cat	continueornot.sh
#!/bin/bash
#	Using	the	read	command	for	one	character
#
read	-n	1	-p	"Do	you	want	to	continue	[Y/N]?	"	answer
#
case	$answer	in
Y	|	y)	echo
							echo	"Okay.	Continue	on...";;
N	|	n)	echo
							echo	"Okay.	Goodbye"
							exit;;
esac
echo	"This	is	the	end	of	the	script."
exit
$
$./continueornot.sh
Do	you	want	to	continue	[Y/N]?	Y
Okay.	Continue	on...
This	is	the	end	of	the	script.
$
$./continueornot.sh
Do	you	want	to	continue	[Y/N]?	n
Okay.	Goodbye
$

This	example	uses	the	-n	option	with	the	value	of	1	,	instructing	the	read	command	to	accept	only	a	single	character
before	continuing.	As	soon	as	you	press	the	single	character	to	answer,	the	read	command	accepts	the	input	and
passes	it	to	the	variable.	You	don't	need	to	press	the	Enter	key.

Reading	with	no	display
Sometimes	you	need	input	from	the	script	user,	but	you	don't	want	that	input	to	display	on	the	monitor.	The	classic
example	is	when	entering	passwords,	but	there	are	plenty	of	other	types	of	data	that	you	need	to	hide.

The	-s	option	prevents	the	data	entered	in	the	read	command	from	being	displayed	on	the	monitor;	actually,	the
data	is	displayed,	but	the	read	command	sets	the	text	color	to	the	same	as	the	background	color.	Here's	an	example
of	using	the	-s	option	in	a	script:

$	cat	askpassword.sh
#!/bin/bash
#	Hiding	input	data
#
read	-s	-p	"Enter	your	password:	"	pass
echo
echo	"Your	password	is	$pass"
exit
$
$./askpassword.sh
Enter	your	password:
Your	password	is	Day31Bright-Test
$

The	data	typed	at	the	input	prompt	doesn't	appear	on	the	monitor	but	is	assigned	to	the	variable	for	use	in	the	script.

Reading	from	a	file
Finally,	you	can	also	use	the	read	command	to	read	data	stored	in	a	file	on	the	Linux	system.	Each	call	to	the	read
command	reads	a	single	line	of	text	from	the	file.	When	no	more	lines	are	left	in	the	file,	the	read	command	exits
with	a	non-zero	exit	status.

The	tricky	part	is	getting	the	data	from	the	file	to	the	read	command.	The	most	common	method	is	to	pipe	(|)	the
result	of	the	cat	command	of	the	file	directly	to	a	while	command	that	contains	the	read	command.	Here's	an
example:

$	cat	readfile.sh

#!/bin/bash
#	Using	the	read	command	to	read	a	file
#
count=1
cat	$HOME/scripts/test.txt	|	while	read	line
do
					echo	"Line	$count:	$line"
					count=$[$count	+	1]
done
echo	"Finished	processing	the	file."
exit
$
$	cat	$HOME/scripts/test.txt
The	quick	brown	dog	jumps	over	the	lazy	fox.
This	is	a	test.	This	is	only	a	test.
O	Romeo,	Romeo!	Wherefore	art	thou	Romeo?
$
$./readfile.sh
Line	1:	The	quick	brown	dog	jumps	over	the	lazy	fox.
Line	2:	This	is	a	test.	This	is	only	a	test.
Line	3:	O	Romeo,	Romeo!	Wherefore	art	thou	Romeo?
Finished	processing	the	file.
$

The	while	command	loop	continues	processing	lines	of	the	file	with	the	read	command,	until	the	read	command
exits	with	a	non-zero	exit	status.

Working	through	a	Practical	Example
In	this	section	is	a	practical	script	that	handles	user	input	from	what	we've	covered	in	this	chapter,	and	employs	the
ping	or	ping6	command	to	test	connectivity	to	other	local	systems.	The	ping	(or	ping6)	command	is	a	quick	way	to
determine	if	a	system	is	up	and	operating	on	the	network.	It's	a	useful	command	and	is	often	employed	as	a	first
check.	If	you	have	only	one	system	to	check,	just	use	the	command	directly.	But	if	you	have	two	or	three	or	possibly
even	hundreds	of	systems	to	check,	a	shell	script	can	help.

This	example	script	has	two	methods	to	select	the	systems	to	check	—	through	command-line	options	or	via	a	file.
Here's	the	script	in	action	on	an	Ubuntu	system	using	the	command-line	options:

$./CheckSystems.sh	-t	IPv4	192.168.1.102	192.168.1.104
	
Checking	system	at	192.168.1.102...
[...]
---	192.168.1.102	ping	statistics	---
3	packets	transmitted,	3	received,	0%	packet	loss,[...]
	
Checking	system	at	192.168.1.104...
[...]
---	192.168.1.104	ping	statistics	---
3	packets	transmitted,	0	received,	+3	errors,	100%	packet	loss,[...]
	
$

If	the	IP	address	parameters	are	accidentally	not	included,	the	script	produces	a	message	for	the	user	and	exits:

$./CheckSystems.sh	-t	IPv4
	
IP	Address(es)	parameters	are	missing.
	
Exiting	script...
$

In	this	example,	the	script	asks	for	a	filename	(filled	with	IP	addresses),	which	is	provided	by	the	user,	when	no
command-line	options	are	entered:

$	cat	/home/christine/scripts/addresses.txt
192.168.1.102
IPv4
192.168.1.103
IPv4
192.168.1.104
IPv4
$
$./CheckSystems.sh
	
Please	enter	the	file	name	with	an	absolute	directory	reference...
	
Enter	name	of	file:	/home/christine/scripts/addresses.txt
/home/christine/scripts/addresses.txt	is	a	file,	is	readable,	
and	is	not	empty.
	
Checking	system	at	192.168.1.102...
[...]
---	192.168.1.102	ping	statistics	---
3	packets	transmitted,	3	received,	0%	packet	loss,[...]
	

Checking	system	at	192.168.1.103...
[...]
Checking	system	at	192.168.1.104...
[...]
Finished	processing	the	file.	All	systems	checked.
$

And	here	is	the	script.	Notice	that	getopts	is	used	to	grab	the	provided	command-line	option,	value,	and
parameter(s).	But	if	none	are	entered,	the	script	instead	asks	the	user	for	the	file's	name,	which	contains	the	systems'
IP	addresses	and	types.	The	file	is	processed	using	the	read	command:

$	cat	CheckSystems.sh
#!/bin/bash
#	Check	systems	on	local	network	allowing	for	
#	a	variety	of	input	methods.
#
#
###########	Determine	Input	Method	###################
#

#	Check	for	command-line	options	here	using	getopts.
#	If	none,	then	go	on	to	File	Input	Method
#
while	getopts	t:	opt
do
					case	"$opt"	in
										t)	#	Found	the	-t	option
													if	[$OPTARG	=	"IPv4"]
													then
																		pingcommand=$(which	ping)
													#
													elif	[$OPTARG	=	"IPv6"]
													then
																		pingcommand=$(which	ping6)
													#
													else
																		echo	"Usage:	-t	IPv4	or	-t	IPv6"
																		echo	"Exiting	script..."
																		exit
													fi
													;;
										*)	echo	"Usage:	-t	IPv4	or	-t	IPv6"
													echo	"Exiting	script..."
													exit;;
					esac
					#
					shift	$[$OPTIND	-	1]
					#
					if	[$#	-eq	0]
					then
										echo
										echo	"IP	Address(es)	parameters	are	missing."
										echo
										echo	"Exiting	script..."
										exit
					fi
					#
					for	ipaddress	in	"$@"
					do
										echo
										echo	"Checking	system	at	$ipaddress..."
										echo
										$pingcommand	-q	-c	3	$ipaddress
										echo
					done
					exit
done
#
###########	File	Input	Method	###################
#
echo
echo	"Please	enter	the	file	name	with	an	absolute	directory	reference..."
echo
choice=0
while	[$choice	-eq	0]
do
					read	-t	60	-p	"Enter	name	of	file:	"	filename
					if	[-z	$filename]
					then
										quitanswer=""
										read	-t	10	-n	1	-p	"Quit	script	[Y/n]?	"	quitanswer
										#
										case	$quitanswer	in
										Y	|	y)	echo
																	echo	"Quitting	script..."
																	exit;;
										N	|	n)	echo

																	echo	"Please	answer	question:	"
																	choice=0;;
										*)					echo
																	echo	"No	response.	Quitting	script..."
																	exit;;
										esac
					else
										choice=1
					fi
done
#
if	[-s	$filename]	&&	[-r	$filename]
					then
										echo	"$filename	is	a	file,	is	readable,	and	is	not	empty."
										echo
										cat	$filename	|	while	read	line
										do
															ipaddress=$line
															read	line
															iptype=$line
															if	[$iptype	=	"IPv4"]
															then
																				pingcommand=$(which	ping)
															else
																				pingcommand=$(which	ping6)
															fi
															echo	"Checking	system	at	$ipaddress..."
															$pingcommand	-q	-c	3	$ipaddress
															echo
										done
										echo	"Finished	processing	the	file.	All	systems	checked."
					else
										echo
										echo	"$filename	is	either	not	a	file,	is	empty,	or	is"
										echo	"not	readable	by	you.	Exiting	script..."
fi
#
####################	Exit	Script	#####################
#
exit
$

You	may	notice	some	repeated	code	within	this	script.	It	would	be	nice	to	use	functions	in	order	to	eliminate	the
repeated	code,	but	we'll	have	to	wait	until	Chapter	17,	“Creating	Functions,”	which	covers	that	topic.	Another	script
improvement	to	consider	is	checking	for	correct	formatting	of	the	user-provided	file	(ensuring	the	file	line	under	an
IP	address	has	either	IPv4	or	IPv6).	Also,	this	script	doesn't	have	a	help	option	(-h),	which	is	another	nice	addition
you	can	make.	What	are	some	additional	user	input	improvements	you	thought	about	when	reading	through	this
script?

Summary
This	chapter	showed	three	methods	for	retrieving	data	from	the	script	user.	Command-line	parameters	allow	users
to	enter	data	directly	on	the	command	line	when	they	run	the	script.	The	script	uses	positional	parameters	to
retrieve	the	command-line	parameters	and	assign	them	to	variables.

The	shift	command	allows	you	to	manipulate	the	command-line	parameters	by	rotating	them	within	the	positional
parameters.	This	command	allows	you	to	easily	iterate	through	the	parameters	without	knowing	how	many
parameters	are	available.

You	can	use	three	special	variables	when	working	with	command-line	parameters.	The	shell	sets	the	$#	variable	to
the	number	of	parameters	entered	on	the	command	line.	The	$*	variable	contains	all	the	parameters	as	a	single
string,	and	the	$@	variable	contains	all	the	parameters	as	separate	words.	These	variables	come	in	handy	when	you're
trying	to	process	long	parameter	lists.

Besides	parameters,	your	script	users	can	use	command-line	options	to	pass	information	to	your	script.	Command-
line	options	are	single	letters	preceded	by	a	dash.	Different	options	can	be	assigned	to	alter	the	behavior	of	your
script.

The	Bash	shell	provides	three	ways	to	handle	command-line	options.	You	can	iterate	through	the	options	using	the
positional	parameter	variables,	processing	each	option	as	it	appears	on	the	command	line.	Use	the	getopt	command
to	convert	command-line	options	and	parameters	into	a	standard	format	that	you	can	process	in	your	script.	Or	you
can	use	the	getopts	command,	which	provides	more	advanced	processing	of	the	command-line	parameters.

An	interactive	method	to	obtain	data	from	your	script	users	is	the	read	command.	The	read	command	allows	your
scripts	to	query	users	for	information	and	wait.	The	read	command	places	any	data	entered	by	the	script	user	into
one	or	more	variables,	which	you	can	use	within	the	script.

Several	options	are	available	for	the	read	command	that	allow	you	to	customize	the	data	input	into	your	script,	such
as	using	hidden	data	entry,	applying	timed	data	entry,	and	requesting	a	specific	number	of	input	characters.

In	the	next	chapter,	we	look	further	into	how	Bash	shell	scripts	output	data.	So	far,	you've	seen	how	to	display	data
on	the	monitor	and	redirect	it	to	a	file.	Next,	we	explore	a	few	other	options	that	you	have	available,	not	only	to

direct	data	to	specific	locations	but	also	to	direct	specific	types	of	data	to	specific	locations.	This	will	help	make	your
shell	scripts	look	professional!

CHAPTER	15
Presenting	Data
IN	THIS	CHAPTER

Understanding	Input	and	Output

Redirecting	Output	in	Scripts

Redirecting	Input	in	Scripts

Creating	Your	Own	Redirection

Listing	Open	File	Descriptors

Suppressing	Command	Output

Using	Temporary	Files

Logging	Messages

So	far	the	scripts	shown	in	this	book	display	information	either	by	echoing	data	to	the	monitor	or	by	redirecting	data
to	a	file.	Chapter	11,	“Basic	Script	Building,”	demonstrated	how	to	redirect	the	output	of	a	command	to	a	file.	This
chapter	expands	on	that	topic	by	showing	you	how	you	can	redirect	the	output	of	your	script	to	different	locations	on
your	Linux	system.

Understanding	Input	and	Output
So	far,	you've	seen	two	methods	for	displaying	the	output	from	your	scripts:

Displaying	output	on	the	monitor	screen

Redirecting	output	to	a	file

Both	methods	produced	an	all-or-nothing	approach	to	data	output.	There	are	times,	however,	when	it	would	be	nice
to	display	some	data	on	the	monitor	and	other	data	in	a	file.	For	these	instances,	it	comes	in	handy	to	know	how
Linux	handles	input	and	output	so	that	you	can	get	your	script	output	to	the	right	place.

The	following	sections	describe	how	to	use	the	standard	Linux	input	and	output	system	to	your	advantage,	to	help
direct	script	output	to	specific	locations.

Standard	file	descriptors
The	Linux	system	handles	every	object	as	a	file.	This	includes	the	input	and	output	process.	Linux	identifies	each	file
object	using	a	file	descriptor.	The	file	descriptor	is	a	non-negative	integer	that	uniquely	identifies	open	files	in	a
session.	Each	process	is	allowed	to	have	up	to	nine	open	file	descriptors	at	a	time.	The	Bash	shell	reserves	the	first
three	file	descriptors	(0,	1,	and	2)	for	special	purposes.	These	are	shown	in	Table	15-1.

TABLE	15-1	Linux	Standard	File	Descriptors

File	Descriptor Abbreviation Description

0 STDIN Standard	input

1 STDOUT Standard	output

2 STDERR Standard	error

These	three	special	file	descriptors	handle	the	input	and	output	from	your	script.	The	shell	uses	them	to	direct	the
default	input	and	output	in	the	shell	to	the	appropriate	location,	which	by	default	is	usually	your	monitor.	The
following	sections	describe	each	of	these	standard	file	descriptors	in	greater	detail.

STDIN
The	STDIN	file	descriptor	references	the	standard	input	to	the	shell.	For	a	terminal	interface,	the	standard	input	is	the
keyboard.	The	shell	receives	input	from	the	keyboard	on	the	STDIN	file	descriptor	and	processes	each	character	as
you	type	it.

When	you	use	the	input	redirect	symbol	(<),	Linux	replaces	the	standard	input	file	descriptor	with	the	file
referenced	by	the	redirection.	It	reads	the	file	and	retrieves	data	just	as	if	it	were	typed	on	the	keyboard.

Many	Bash	commands	accept	input	from	STDIN	,	especially	if	no	files	are	specified	on	the	command	line.	Here's	an
example	of	using	the	cat	command	with	data	entered	from	STDIN	:

$	cat
this	is	a	test
this	is	a	test
this	is	a	second	test.
this	is	a	second	test.

When	you	enter	the	cat	command	on	the	command	line	by	itself,	it	accepts	input	from	STDIN	.	As	you	enter	each	line,
the	cat	command	echoes	the	line	to	the	display.

However,	you	can	also	use	the	STDIN	redirect	symbol	to	force	the	cat	command	to	accept	input	from	another	file
other	than	STDIN	:

$	cat	<	testfile
This	is	the	first	line.
This	is	the	second	line.
This	is	the	third	line.
$

Now	the	cat	command	uses	the	lines	that	are	contained	in	the	testfile	file	as	the	input.	You	can	use	this	technique
to	input	data	to	any	shell	command	that	accepts	data	from	STDIN.

STDOUT
The	STDOUT	file	descriptor	references	the	standard	output	for	the	shell.	On	a	terminal	interface,	the	standard	output
is	the	terminal	monitor.	All	output	from	the	shell	(including	programs	and	scripts	you	run	in	the	shell)	is	directed	to
the	standard	output,	which	is	the	monitor.

Most	Bash	commands	direct	their	output	to	the	STDOUT	file	descriptor	by	default.	As	shown	in	Chapter	11,	you	can
change	that	using	output	redirection:

$	ls	-l>	test2
$	cat	test2
total	20
-rw-rw-r--	1	rich	rich	53	2020-06-20	11:30	test
-rw-rw-r--	1	rich	rich		0	2020-06-20	11:32	test2
-rw-rw-r--	1	rich	rich	73	2020-06-20	11:23	testfile
$

With	the	output	redirection	symbol,	all	the	output	that	normally	would	go	to	the	monitor	is	instead	redirected	to	the
designated	redirection	file	by	the	shell.

You	can	also	append	data	to	a	file.	You	do	this	using	the	>>	symbol:

$	who>>	test2
$	cat	test2
total	20
-rw-rw-r--	1	rich	rich	53	2020-06-20	11:30	test
-rw-rw-r--	1	rich	rich		0	2020-06-20	11:32	test2
-rw-rw-r--	1	rich	rich	73	2020-06-20	11:23	testfile
rich					pts/0								2020-06-20	15:34	(192.168.1.2)
$

The	output	generated	by	the	who	command	is	appended	to	the	data	already	in	the	test2	file.

However,	if	you	use	the	standard	output	redirection	for	your	scripts,	you	can	run	into	a	problem.	Here's	an	example
of	what	can	happen	in	your	script:

$	ls	-al	badfile>	test3
ls:	cannot	access	badfile:	No	such	file	or	directory
$	cat	test3
$

When	a	command	produces	an	error	message,	the	shell	doesn't	redirect	the	error	message	to	the	output	redirection
file.	The	shell	created	the	output	redirection	file,	but	the	error	message	appeared	on	the	monitor	screen,	not	in	the
file.	Notice	that	there	isn't	an	error	when	trying	to	display	the	contents	of	the	test3	file.	The	test3	file	was	created
just	fine,	but	it's	empty.

The	shell	handles	error	messages	separately	from	the	normal	output.	If	you're	creating	a	shell	script	that	runs	in
background	mode,	often	you	must	rely	on	the	output	messages	being	sent	to	a	log	file.	Using	this	technique,	if	any
error	messages	occur,	they	don't	appear	in	the	log	file.	You	need	to	do	something	different.

STDERR
The	shell	handles	error	messages	using	the	special	STDERR	file	descriptor.	The	STDERR	file	descriptor	references	the
standard	error	output	for	the	shell.	This	is	the	location	where	the	shell	sends	error	messages	generated	by	the	shell
or	programs	and	scripts	running	in	the	shell.

By	default,	the	STDERR	file	descriptor	points	to	the	same	place	as	the	STDOUT	file	descriptor	(even	though	they	are
assigned	different	file	descriptor	values).	This	means	that,	by	default,	all	error	messages	go	to	the	monitor	display.

However,	as	you	saw	in	the	example,	when	you	redirect	STDOUT	,	this	doesn't	automatically	redirect	STDERR	.	When
working	with	scripts,	you'll	often	want	to	change	that	behavior,	especially	if	you're	interested	in	logging	error
messages	to	a	log	file.

Redirecting	errors
You've	already	seen	how	to	redirect	the	STDOUT	data	by	using	the	redirection	symbol.	Redirecting	the	STDERR	data
isn't	much	different;	you	just	need	to	define	the	STDERR	file	descriptor	when	you	use	the	redirection	symbol.	You	can
do	this	in	a	couple	of	ways.

Redirecting	errors	only
As	you	saw	in	Table	15-1,	the	STDERR	file	descriptor	is	set	to	the	value	2	.	You	can	select	to	redirect	only	error
messages	by	placing	this	file	descriptor	value	immediately	before	the	redirection	symbol.	The	value	must	appear
immediately	before	the	redirection	symbol	or	it	doesn't	work:

$	ls	-al	badfile	2>	test4
$	cat	test4
ls:	cannot	access	badfile:	No	such	file	or	directory
$

Now	when	you	run	the	command,	the	error	message	doesn't	appear	on	the	monitor.	Instead,	the	output	file	contains
any	error	messages	that	are	generated	by	the	command.	Using	this	method,	the	shell	redirects	the	error	messages
only,	not	the	normal	data.	Here's	another	example	of	mixing	STDOUT	and	STDERR	messages	in	the	same	output:

$	ls	-al	test	badtest	test2	2>	test5
-rw-rw-r--	1	rich	rich	158	2020-06-20	11:32	test2
$	cat	test5
ls:	cannot	access	test:	No	such	file	or	directory
ls:	cannot	access	badtest:	No	such	file	or	directory
$

The	ls	command	tries	to	find	information	on	three	files—	test	,	badtest	,	and	test2	.	The	normal	STDOUT	output
from	the	ls	command	went	to	the	default	STDOUT	file	descriptor,	which	is	the	monitor.	Because	the	command
redirects	file	descriptor	2	output	(STDERR)	to	an	output	file,	the	shell	sent	any	error	messages	generated	directly	to
the	specified	redirection	file.

Redirecting	errors	and	data
If	you	want	to	redirect	both	errors	and	the	normal	output,	you	need	to	use	two	redirection	symbols.	You	need	to
precede	each	with	the	appropriate	file	descriptor	for	the	data	you	want	to	redirect	and	then	have	them	point	to	the
appropriate	output	file	for	holding	the	data:

$	ls	-al	test	test2	test3	badtest	2>	test6	1>	test7
$	cat	test6
ls:	cannot	access	test:	No	such	file	or	directory
ls:	cannot	access	badtest:	No	such	file	or	directory
$	cat	test7
-rw-rw-r--	1	rich	rich	158	2020-06-20	11:32	test2
-rw-rw-r--	1	rich	rich			0	2020-06-20	11:33	test3
$

The	shell	redirects	the	normal	output	of	the	ls	command	that	would	have	gone	to	STDOUT	to	the	test7	file	using	the
1>	symbol.	Any	error	messages	that	would	have	gone	to	STDERR	were	redirected	to	the	test6	file	using	the	2>	symbol.

You	can	use	this	technique	to	separate	normal	script	output	from	any	error	messages	that	occur	in	the	script.	This
allows	you	to	easily	identify	errors	without	having	to	wade	through	thousands	of	lines	of	normal	output	data.

Alternatively,	if	you	want,	you	can	redirect	both	STDERR	and	STDOUT	output	to	the	same	output	file.	The	Bash	shell
provides	a	special	redirection	symbol	just	for	this	purpose,	the	&>	symbol:

$	ls	-al	test	test2	test3	badtest	&>	test7
$	cat	test7
ls:	cannot	access	test:	No	such	file	or	directory
ls:	cannot	access	badtest:	No	such	file	or	directory
-rw-rw-r--	1	rich	rich	158	2020-06-20	11:32	test2
-rw-rw-r--	1	rich	rich			0	2020-06-20	11:33	test3
$

When	you	use	the	&>	symbol,	all	the	output	generated	by	the	command	is	sent	to	the	same	location,	both	data	and
errors.	Notice	that	one	of	the	error	messages	is	out	of	order	from	what	you'd	expect.	The	error	message	for	the
badtest	file	(the	last	file	to	be	listed)	appears	second	in	the	output	file.	The	Bash	shell	automatically	gives	error
messages	a	higher	priority	than	the	standard	output.	This	allows	you	to	view	the	error	messages	together,	rather
than	having	them	scattered	throughout	the	output	file.

Redirecting	Output	in	Scripts
You	can	use	the	STDOUT	and	STDERR	file	descriptors	in	your	scripts	to	produce	output	in	multiple	locations	simply	by
redirecting	the	appropriate	file	descriptors.	There	are	two	methods	for	redirecting	output	in	the	script:

Temporarily	redirecting	each	line

Permanently	redirecting	all	commands	in	the	script

The	following	sections	describe	how	each	of	these	methods	works.

Temporary	redirections
If	you	want	to	purposely	generate	error	messages	in	your	script,	you	can	redirect	an	individual	output	line	to	STDERR	.
You	just	need	to	use	the	output	redirection	symbol	to	redirect	the	output	to	the	STDERR	file	descriptor.	When	you
redirect	to	a	file	descriptor,	you	must	precede	the	file	descriptor	number	with	an	ampersand	(&):

	echo	"This	is	an	error	message">&2

This	line	displays	the	text	wherever	the	STDERR	file	descriptor	for	the	script	is	pointing,	instead	of	the	normal	STDOUT	.
The	following	is	an	example	of	a	script	that	uses	this	feature:

$	cat	test8
#!/bin/bash
#	testing	STDERR	messages

echo	"This	is	an	error">&2
echo	"This	is	normal	output"
$

If	you	run	the	script	as	normal,	you	don't	notice	any	difference:

$./test8
This	is	an	error
This	is	normal	output
$

Remember	that,	by	default,	Linux	directs	the	STDERR	output	to	STDOUT	.	However,	if	you	redirect	STDERR	when
running	the	script,	any	text	directed	to	STDERR	in	the	script	is	redirected:

$./test8	2>	test9
This	is	normal	output
$	cat	test9
This	is	an	error
$

Perfect!	The	text	displayed	using	STDOUT	appears	on	the	monitor,	whereas	the	echo	statement	text	sent	to	STDERR	is
redirected	to	the	output	file.

This	method	is	great	for	generating	error	messages	in	your	scripts.	If	someone	uses	your	scripts,	they	can	easily
redirect	the	error	messages	using	the	STDERR	file	descriptor,	as	shown.

Permanent	redirections
If	you	have	lots	of	data	that	you're	redirecting	in	your	script,	it	can	get	tedious	having	to	redirect	every	echo
statement.	Instead,	you	can	tell	the	shell	to	redirect	a	specific	file	descriptor	for	the	duration	of	the	script	by	using
the	exec	command:

$	cat	test10
#!/bin/bash
#	redirecting	all	output	to	a	file
exec	1>testout
	
echo	"This	is	a	test	of	redirecting	all	output"
echo	"from	a	script	to	another	file."
echo	"without	having	to	redirect	every	individual	line"
$./test10
$	cat	testout
This	is	a	test	of	redirecting	all	output
from	a	script	to	another	file.
without	having	to	redirect	every	individual	line
$

The	exec	command	starts	a	new	shell	and	redirects	the	STDOUT	file	descriptor	to	a	file.	All	output	in	the	script	that
goes	to	STDOUT	is	instead	redirected	to	the	file.

You	can	also	redirect	the	STDOUT	in	the	middle	of	a	script:

$	cat	test11
#!/bin/bash
#	redirecting	output	to	different	locations
	
exec	2>testerror
	
echo	"This	is	the	start	of	the	script"
echo	"now	redirecting	all	output	to	another	location"
	
exec	1>testout
	
echo	"This	output	should	go	to	the	testout	file"
echo	"but	this	should	go	to	the	testerror	file">&2
$
$./test11
This	is	the	start	of	the	script
now	redirecting	all	output	to	another	location
$	cat	testout
This	output	should	go	to	the	testout	file
$	cat	testerror
but	this	should	go	to	the	testerror	file
$

The	script	uses	the	exec	command	to	redirect	any	output	going	to	STDERR	to	the	file	testerror	.	Next,	the	script	uses
the	echo	statement	to	display	a	few	lines	to	STDOUT	.	After	that,	the	exec	command	is	used	again	to	redirect	STDOUT	to
the	testout	file.	Notice	that	even	when	STDOUT	is	redirected,	you	can	still	specify	the	output	from	an	echo	statement
to	go	to	STDERR	,	which	in	this	case	is	still	redirected	to	the	testerror	file.

This	feature	can	come	in	handy	when	you	want	to	redirect	the	output	of	just	parts	of	a	script	to	an	alternative
location,	such	as	an	error	log.	There's	just	one	problem	you	run	into	when	using	this.

After	you	redirect	STDOUT	or	STDERR	,	you	can't	easily	redirect	them	back	to	their	original	location.	If	you	need	to
switch	back	and	forth	with	your	redirection,	you	need	to	learn	a	trick.	The	“Creating	Your	Own	Redirection”	section
later	in	this	chapter	discusses	this	trick	and	how	to	use	it	in	your	shell	scripts.

Redirecting	Input	in	Scripts
You	can	use	the	same	technique	used	to	redirect	STDOUT	and	STDERR	in	your	scripts	to	redirect	STDIN	from	the
keyboard.	The	exec	command	allows	you	to	redirect	STDIN	from	a	file	on	the	Linux	system:

exec	0<	testfile

This	command	informs	the	shell	that	it	should	retrieve	input	from	the	file	testfile	instead	of	STDIN	.	This
redirection	applies	any	time	the	script	requests	input.	Here's	an	example	of	this	in	action:

$	cat	test12
#!/bin/bash
#	redirecting	file	input
	
exec	0<	testfile
count=1
	
while	read	line
do
			echo	"Line	#$count:	$line"
			count=$[$count	+	1]
done
$./test12
Line	#1:	This	is	the	first	line.
Line	#2:	This	is	the	second	line.
Line	#3:	This	is	the	third	line.
$

Chapter	14,	“Handling	User	Input,”	showed	you	how	to	use	the	read	command	to	read	data	entered	from	the
keyboard	by	a	user.	By	redirecting	STDIN	from	a	file,	when	the	read	command	attempts	to	read	from	STDIN	,	it
retrieves	data	from	the	file	instead	of	the	keyboard.

This	is	an	excellent	technique	to	read	data	in	files	for	processing	in	your	scripts.	A	common	task	for	Linux	system
administrators	is	to	read	data	from	log	files	for	processing.	This	is	the	easiest	way	to	accomplish	that	task.

Creating	Your	Own	Redirection
When	you	redirect	input	and	output	in	your	script,	you're	not	limited	to	the	three	default	file	descriptors.	I
mentioned	that	you	could	have	up	to	nine	open	file	descriptors	in	the	shell.	The	other	six	file	descriptors	are
numbered	from	3	through	8	and	are	available	for	you	to	use	as	either	input	or	output	redirection.	You	can	assign	any
of	these	file	descriptors	to	a	file	and	then	use	them	in	your	scripts	as	well.	This	section	shows	you	how	to	use	the
other	file	descriptors	in	your	scripts.

Creating	output	file	descriptors
You	assign	a	file	descriptor	for	output	by	using	the	exec	command.	As	with	the	standard	file	descriptors,	after	you
assign	an	alternative	file	descriptor	to	a	file	location,	that	redirection	stays	permanent	until	you	reassign	it.	Here's	a
simple	example	of	using	an	alternative	file	descriptor	in	a	script:

$	cat	test13
#!/bin/bash
#	using	an	alternative	file	descriptor
	
exec	3>test13out
	
echo	"This	should	display	on	the	monitor"
echo	"and	this	should	be	stored	in	the	file">&3
echo	"Then	this	should	be	back	on	the	monitor"
$./test13
This	should	display	on	the	monitor
Then	this	should	be	back	on	the	monitor
$	cat	test13out
and	this	should	be	stored	in	the	file
$

The	script	uses	the	exec	command	to	redirect	file	descriptor	3	to	an	alternative	file	location.	When	the	script
executes	the	echo	statements,	they	display	on	STDOUT	as	you	would	expect.	However,	the	echo	statements	that	you
redirect	to	file	descriptor	3	go	to	the	alternative	file.	This	allows	you	to	keep	normal	output	for	the	monitor	and
redirect	special	information	to	files,	such	as	log	files.

You	can	also	use	the	exec	command	to	append	data	to	an	existing	file	instead	of	creating	a	new	file:

exec	3>>test13out

Now	the	output	is	appended	to	the	test13out	file	instead	of	creating	a	new	file.

Redirecting	file	descriptors
Here's	the	trick	to	help	you	bring	back	a	redirected	file	descriptor.	You	can	assign	an	alternative	file	descriptor	to	a
standard	file	descriptor,	and	vice	versa.	This	means	that	you	can	redirect	the	original	location	of	STDOUT	to	an
alternative	file	descriptor	and	then	redirect	that	file	descriptor	back	to	STDOUT	.	This	might	sound	somewhat
complicated,	but	in	practice	it's	fairly	straightforward.	This	example	will	clear	things	up	for	you:

$	cat	test14
#!/bin/bash
#	storing	STDOUT,	then	coming	back	to	it
	
exec	3>&1
exec	1>test14out
	
echo	"This	should	store	in	the	output	file"
echo	"along	with	this	line."
	
exec	1>&3
	
echo	"Now	things	should	be	back	to	normal"
$
$./test14
Now	things	should	be	back	to	normal
$	cat	test14out
This	should	store	in	the	output	file
along	with	this	line.
$

This	example	is	a	little	crazy,	so	let's	walk	through	it	piece	by	piece.	First,	the	script	redirects	file	descriptor	3	to	the
current	location	of	file	descriptor	1,	which	is	STDOUT	.	This	means	that	any	output	sent	to	file	descriptor	3	goes	to	the
monitor.

The	second	exec	command	redirects	STDOUT	to	a	file.	The	shell	now	redirects	any	output	sent	to	STDOUT	directly	to	the
output	file.	However,	file	descriptor	3	still	points	to	the	original	location	of	STDOUT	,	which	is	the	monitor.	If	you	send
output	data	to	file	descriptor	3	at	this	point,	it	still	goes	to	the	monitor,	even	though	STDOUT	is	redirected.

After	sending	some	output	to	STDOUT	,	which	points	to	a	file,	the	script	then	redirects	STDOUT	to	the	current	location	of
file	descriptor	3,	which	is	still	set	to	the	monitor.	This	means	that	now	STDOUT	points	to	its	original	location,	the
monitor.

This	method	can	get	confusing,	but	it's	a	common	way	to	temporarily	redirect	output	in	script	files	and	then	set	the
output	back	to	the	normal	settings.

Creating	input	file	descriptors
You	can	redirect	input	file	descriptors	exactly	the	same	way	as	output	file	descriptors.	Save	the	STDIN	file	descriptor
location	to	another	file	descriptor	before	redirecting	it	to	a	file;	when	you're	finished	reading	the	file,	you	can	restore
STDIN	to	its	original	location:

$	cat	test15
#!/bin/bash
#	redirecting	input	file	descriptors
	
exec	6<&0
	
exec	0<	testfile
	
count=1
while	read	line
do
			echo	"Line	#$count:	$line"
			count=$[$count	+	1]
done
exec	0<&6
read	-p	"Are	you	done	now?	"	answer
case	$answer	in
Y|y)	echo	"Goodbye";;
N|n)	echo	"Sorry,	this	is	the	end.";;
esac
$./test15
Line	#1:	This	is	the	first	line.
Line	#2:	This	is	the	second	line.
Line	#3:	This	is	the	third	line.
Are	you	done	now?	y
Goodbye
$

In	this	example,	file	descriptor	6	is	used	to	hold	the	location	for	STDIN	.	The	script	then	redirects	STDIN	to	a	file.	All
the	input	for	the	read	command	comes	from	the	redirected	STDIN	,	which	is	now	the	input	file.

When	all	the	lines	have	been	read,	the	script	returns	STDIN	to	its	original	location	by	redirecting	it	to	file	descriptor	6.
The	script	tests	to	make	sure	that	STDIN	is	back	to	normal	by	using	another	read	command,	which	this	time	waits	for
input	from	the	keyboard.

Creating	a	read/write	file	descriptor
As	odd	as	it	may	seem,	you	can	also	open	a	single	file	descriptor	for	both	input	and	output.	You	can	then	use	the
same	file	descriptor	to	both	read	data	from	a	file	and	write	data	to	the	same	file.

You	need	to	be	especially	careful	with	this	method,	however.	As	you	read	and	write	data	to	and	from	a	file,	the	shell
maintains	an	internal	pointer,	indicating	where	it	is	in	the	file.	Any	reading	or	writing	occurs	where	the	file	pointer
last	left	off.	This	can	produce	some	interesting	results	if	you're	not	careful.	Look	at	this	example:

$	cat	test16
#!/bin/bash
#	testing	input/output	file	descriptor
	
exec	3<>	testfile
read	line	<&3
echo	"Read:	$line"
echo	"This	is	a	test	line">&3
$	cat	testfile
This	is	the	first	line.
This	is	the	second	line.
This	is	the	third	line.
$./test16
Read:	This	is	the	first	line.
$	cat	testfile
This	is	the	first	line.
This	is	a	test	line
ine.
This	is	the	third	line.
$

This	example	uses	the	exec	command	to	assign	file	descriptor	3	for	both	input	and	output	sent	to	and	from	the	file
testfile	.	Next,	it	uses	the	read	command	to	read	the	first	line	in	the	file,	using	the	assigned	file	descriptor,	and	then
it	displays	the	read	line	of	data	in	STDOUT	.	After	that,	it	uses	the	echo	statement	to	write	a	line	of	data	to	the	file
opened	with	the	same	file	descriptor.

When	you	run	the	script,	at	first	things	look	just	fine.	The	output	shows	that	the	script	read	the	first	line	in	the
testfile	file.	However,	if	you	display	the	contents	of	the	testfile	file	after	running	the	script,	you	see	that	the	data
written	to	the	file	overwrote	the	existing	data.

When	the	script	writes	data	to	the	file,	it	starts	where	the	file	pointer	is	located.	The	read	command	reads	the	first
line	of	data,	so	it	left	the	file	pointer	pointing	to	the	first	character	in	the	second	line	of	data.	When	the	echo
statement	outputs	data	to	the	file,	it	places	the	data	at	the	current	location	of	the	file	pointer,	overwriting	whatever
data	was	there.

Closing	file	descriptors
If	you	create	new	input	or	output	file	descriptors,	the	shell	automatically	closes	them	when	the	script	exits.	There	are
situations,	however,	when	you	need	to	manually	close	a	file	descriptor	before	the	end	of	the	script.

To	close	a	file	descriptor,	redirect	it	to	the	special	symbol	&-	.	This	is	how	it	looks	in	the	script:

exec	3>&-

This	statement	closes	file	descriptor	3,	preventing	it	from	being	used	any	more	in	the	script.	Here's	an	example	of
what	happens	when	you	try	to	use	a	closed	file	descriptor:

$	cat	badtest
#!/bin/bash
#	testing	closing	file	descriptors
	
exec	3>	test17file
	
echo	"This	is	a	test	line	of	data">&3
	
exec	3>&-
	
echo	"This	won't	work">&3
$./badtest
./badtest:	3:	Bad	file	descriptor
$

After	you	close	the	file	descriptor,	you	can't	write	any	data	to	it	in	your	script	or	the	shell	produces	an	error	message.

There's	yet	another	thing	to	be	careful	of	when	closing	file	descriptors.	If	you	open	the	same	output	file	later	on	in
your	script,	the	shell	replaces	the	existing	file	with	a	new	file.	This	means	that	if	you	output	any	data,	it	overwrites
the	existing	file.	Consider	the	following	example	of	this	problem:

$	cat	test17
#!/bin/bash
#	testing	closing	file	descriptors
	
exec	3>	test17file
echo	"This	is	a	test	line	of	data">&3
exec	3>&-

	
cat	test17file
	
exec	3>	test17file
echo	"This'll	be	bad">&3
$./test17
This	is	a	test	line	of	data
$	cat	test17file
This’ll	be	bad
$

After	sending	a	data	string	to	the	test17file	file	and	closing	the	file	descriptor,	the	script	uses	the	cat	command	to
display	the	contents	of	the	file.	So	far,	so	good.	Next,	the	script	reopens	the	output	file	and	sends	another	data	string
to	it.	When	you	display	the	contents	of	the	output	file,	all	you	see	is	the	second	data	string.	The	shell	overwrote	the
original	output	file.

Listing	Open	File	Descriptors
With	only	nine	file	descriptors	available	to	you,	you'd	think	that	it	wouldn't	be	hard	to	keep	things	straight.
Sometimes,	however,	it's	easy	to	get	lost	when	trying	to	keep	track	of	which	file	descriptor	is	redirected	where.	To
help	you	keep	your	sanity,	the	Bash	shell	provides	the	lsof	command.

The	lsof	command	lists	all	the	open	file	descriptors	on	the	entire	Linux	system.	This	includes	files	open	by	all	the
processes	running	in	the	background,	as	well	as	any	user	accounts	logged	in	to	the	system.

Plenty	of	command-line	parameters	and	options	are	available	to	help	filter	out	the	lsof	output.	The	most	commonly
used	are	-p	,	which	allows	you	to	specify	a	process	ID	(PID),	and	-d	,	which	allows	you	to	specify	the	file	descriptor
numbers	to	display,	separated	by	commas.

To	easily	determine	the	current	PID	of	the	process,	you	can	use	the	special	environment	variable	$$,	which	the	shell
sets	to	the	current	PID.	The	-a	option	is	used	to	perform	a	Boolean	AND	of	the	results	of	the	other	two	options,	to
produce	the	following:

$	/usr/sbin/lsof	-a	-p	$$	-d	0,1,2
COMMAND		PID	USER			FD			TYPE	DEVICE	SIZE	NODE	NAME
bash				3344	rich				0u			CHR		136,0									2	/dev/pts/0
bash				3344	rich				1u			CHR		136,0									2	/dev/pts/0
bash				3344	rich				2u			CHR		136,0									2	/dev/pts/0
$

This	shows	the	default	file	descriptors	(0,	1,	and	2)	for	the	current	process	(the	Bash	shell).	The	default	output	of
lsof	contains	several	columns	of	information,	described	in	Table	15-2.

TABLE	15-2	Default	lsof	Output

Column Description

COMMAND The	first	nine	characters	of	the	name	of	the	command	in	the	process

PID The	process	ID	of	the	process

USER The	login	name	of	the	user	who	owns	the	process

FD The	file	descriptor	number	and	access	type	(r	—	[read],	w	—	[write],	u	—	[read/write])

TYPE The	type	of	file	(CHR	—	[character],	BLK	—	[block],	DIR	—	[directory],	REG	—	[regular	file])

DEVICE The	device	numbers	(major	and	minor)	of	the	device

SIZE If	available,	the	size	of	the	file

NODE The	node	number	of	the	local	file

NAME The	name	of	the	file

The	file	type	associated	with	STDIN	,	STDOUT	,	and	STDERR	is	character	mode.	Because	the	STDIN	,	STDOUT	,	and	STDERR
file	descriptors	all	point	to	the	terminal,	the	name	of	the	output	file	is	the	device	name	of	the	terminal.	All	three
standard	files	are	available	for	both	reading	and	writing	(although	it	does	seem	odd	to	be	able	to	write	to	STDIN	and
read	from	STDOUT).

Now,	let's	look	at	the	results	of	the	lsof	command	from	inside	a	script	that's	opened	a	couple	of	alternative	file
descriptors:

$	cat	test18
#!/bin/bash
#	testing	lsof	with	file	descriptors
	
exec	3>	test18file1
exec	6>	test18file2
exec	7<	testfile
	
/usr/sbin/lsof	-a	-p	$$	-d0,1,2,3,6,7
$./test18
COMMAND		PID	USER			FD			TYPE	DEVICE	SIZE			NODE	NAME
test18		3594	rich				0u			CHR		136,0											2	/dev/pts/0

test18		3594	rich				1u			CHR		136,0											2	/dev/pts/0
test18		3594	rich				2u			CHR		136,0											2	/dev/pts/0
18		3594	rich				3w			REG		253,0				0	360712	/home/rich/test18file1
18		3594	rich				6w			REG		253,0				0	360715	/home/rich/test18file2
18		3594	rich				7r			REG		253,0			73	360717	/home/rich/testfile
$

The	script	creates	three	alternative	file	descriptors,	two	for	output	(3	and	6)	and	one	for	input	(7).	When	the	script
runs	the	lsof	command,	you	can	see	the	new	file	descriptors	in	the	output.	We	truncated	the	first	part	of	the	output
so	that	you	could	see	the	results	of	the	filename.	The	filename	shows	the	complete	pathname	for	the	files	used	in	the
file	descriptors.	It	shows	each	of	the	files	as	type	REG	,	which	indicates	that	they	are	regular	files	on	the	filesystem.

Suppressing	Command	Output
Sometimes,	you	may	not	want	to	display	any	output	from	your	script.	This	often	occurs	if	you're	running	a	script	as	a
background	process	(see	Chapter	16,	“Script	Control”).	If	any	error	messages	occur	from	the	script	while	it's	running
in	the	background,	the	shell	emails	them	to	the	owner	of	the	process.	This	can	get	tedious,	especially	if	you	run
scripts	that	generate	minor	nuisance	errors.

To	solve	that	problem,	you	can	redirect	STDERR	to	a	special	file	called	the	null	file.	The	null	file	is	pretty	much	what	it
says	it	is—a	file	that	contains	nothing.	Any	data	that	the	shell	outputs	to	the	null	file	is	not	saved,	thus	the	data	is
lost.

The	standard	location	for	the	null	file	on	Linux	systems	is	/dev/null	.	Any	data	you	redirect	to	that	location	is
thrown	away	and	doesn't	appear:

$	ls	-al>	/dev/null
$	cat	/dev/null
$

This	is	a	common	way	to	suppress	any	error	messages	without	actually	saving	them:

$	ls	-al	badfile	test16	2>	/dev/null
-rwxr--r--				1	rich					rich										135	Jun	20	19:57	test16*
$

You	can	also	use	the	/dev/null	file	for	input	redirection	as	an	input	file.	Because	the	/dev/null	file	contains	nothing,
it	is	often	used	by	programmers	to	quickly	remove	data	from	an	existing	file	without	having	to	remove	the	file	and
re-create	it:

$	cat	testfile
This	is	the	first	line.
This	is	the	second	line.
This	is	the	third	line.
$	cat	/dev/null>	testfile
$	cat	testfile
$

The	file	testfile	still	exists	on	the	system,	but	now	it	is	empty.	This	is	a	common	method	used	to	clear	out	log	files
that	must	remain	in	place	for	applications	to	operate.

Using	Temporary	Files
The	Linux	system	contains	a	special	directory	location	reserved	for	temporary	files.	Linux	uses	the	/tmp	directory	for
files	that	don't	need	to	be	kept	indefinitely.	Most	Linux	distributions	configure	the	system	to	automatically	remove
any	files	in	the	/tmp	directory	at	bootup.

Any	user	account	on	the	system	has	privileges	to	read	and	write	files	in	the	/tmp	directory.	This	feature	provides	an
easy	way	for	you	to	create	temporary	files	that	you	don't	necessarily	have	to	worry	about	cleaning	up.

There's	even	a	specific	command	to	use	for	creating	a	temporary	file.	The	mktemp	command	allows	you	to	easily
create	a	unique	temporary	file	in	the	/tmp	folder.	The	shell	creates	the	file	but	doesn't	use	your	default	umask	value
(see	Chapter	7,	“Understanding	Linux	File	Permissions”).	Instead,	it	only	assigns	read	and	write	permissions	to	the
file's	owner	and	makes	you	the	owner	of	the	file.	After	you	create	the	file,	you	have	full	access	to	read	and	write	to
and	from	it	from	your	script,	but	no	one	else	can	access	it	(other	than	the	root	user,	of	course).

Creating	a	local	temporary	file
By	default,	mktemp	creates	a	file	in	the	local	directory.	To	create	a	temporary	file	in	a	local	directory	with	the	mktemp
command,	you	just	need	to	specify	a	filename	template.	The	template	consists	of	any	text	filename,	plus	six	X's
appended	to	the	end	of	the	filename:

$	mktemp	testing.XXXXXX
$	ls	-al	testing*
-rw-------			1	rich					rich						0	Jun	20	21:30	testing.UfIi13
$

The	mktemp	command	replaces	the	six	X's	with	a	six-character	code	to	ensure	that	the	filename	is	unique	in	the
directory.	You	can	create	multiple	temporary	files	and	be	assured	that	each	one	is	unique:

$	mktemp	testing.XXXXXX

testing.1DRLuV
$	mktemp	testing.XXXXXX
testing.lVBtkW
$	mktemp	testing.XXXXXX
testing.PgqNKG
$	ls	-l	testing*
-rw-------				1	rich					rich					0	Jun	20	21:57	testing.1DRLuV
-rw-------				1	rich					rich					0	Jun	20	21:57	testing.PgqNKG
-rw-------				1	rich					rich					0	Jun	20	21:30	testing.UfIi13
-rw-------				1	rich					rich					0	Jun	20	21:57	testing.lVBtkW
$

As	you	can	see,	the	output	of	the	mktemp	command	is	the	name	of	the	file	that	it	creates.	When	you	use	the	mktemp
command	in	a	script,	you'll	want	to	save	that	filename	in	a	variable	so	that	you	can	refer	to	it	later	on	in	the	script:

$	cat	test19
#!/bin/bash
#	creating	and	using	a	temp	file
	
tempfile=$(mktemp	test19.XXXXXX)
	
exec	3>$tempfile
	
echo	"This	script	writes	to	temp	file	$tempfile"
	
echo	"This	is	the	first	line">&3
echo	"This	is	the	second	line.">&3
echo	"This	is	the	last	line.">&3
exec	3>&-
	
echo	"Done	creating	temp	file.	The	contents	are:"
cat	$tempfile
rm	-f	$tempfile	2>	/dev/null
$./test19
This	script	writes	to	temp	file	test19.vCHoya
Done	creating	temp	file.	The	contents	are:
This	is	the	first	line
This	is	the	second	line.
This	is	the	last	line.
$	ls	-al	test19*
-rwxr--r--				1	rich					rich										356	Jun	20	22:03	test19
$

The	script	uses	the	mktemp	command	to	create	a	temporary	file	and	assigns	the	filename	to	the	$tempfile	variable.	It
then	uses	the	temporary	file	as	the	output	redirection	file	for	file	descriptor	3.	After	displaying	the	temporary
filename	on	STDOUT	,	it	writes	a	few	lines	to	the	temporary	file,	and	then	it	closes	the	file	descriptor.	Finally,	it
displays	the	contents	of	the	temporary	file	and	then	uses	the	rm	command	to	remove	it.

Creating	a	temporary	file	in	/tmp
The	-t	option	forces	mktemp	to	create	the	file	in	the	temporary	directory	of	the	system.	When	you	use	this	feature,	the
mktemp	command	returns	the	full	pathname	used	to	create	the	temporary	file,	not	just	the	filename:

$	mktemp	-t	test.XXXXXX
/tmp/test.xG3374
$	ls	-al	/tmp/test*
-rw-------	1	rich	rich	0	2020-06-20	18:41	/tmp/test.xG3374
$

Because	the	mktemp	command	returns	the	full	pathname,	you	can	then	reference	the	temporary	file	from	any
directory	on	the	Linux	system,	no	matter	where	it	places	the	temporary	directory:

$	cat	test20
#!/bin/bash
#	creating	a	temp	file	in	/tmp
	
tempfile=$(mktemp	-t	tmp.XXXXXX)
	
echo	"This	is	a	test	file.">	$tempfile
echo	"This	is	the	second	line	of	the	test.">>	$tempfile
	
echo	"The	temp	file	is	located	at:	$tempfile"
cat	$tempfile
rm	-f	$tempfile
$./test20
The	temp	file	is	located	at:	/tmp/tmp.Ma3390
This	is	a	test	file.
This	is	the	second	line	of	the	test.
$

When	mktemp	creates	the	temporary	file,	it	returns	the	full	pathname	to	the	environment	variable.	You	can	then	use
that	value	in	any	command	to	reference	the	temporary	file.

Creating	a	temporary	directory
The	-d	option	tells	the	mktemp	command	to	create	a	temporary	directory	instead	of	a	file.	You	can	then	use	that

directory	for	whatever	purposes	you	need,	such	as	creating	additional	temporary	files:

$	cat	test21
#!/bin/bash
#	using	a	temporary	directory
	
tempdir=$(mktemp	-d	dir.XXXXXX)
cd	$tempdir
tempfile1=$(mktemp	temp.XXXXXX)
tempfile2=$(mktemp	temp.XXXXXX)
exec	7>	$tempfile1
exec	8>	$tempfile2
	
echo	"Sending	data	to	directory	$tempdir"
echo	"This	is	a	test	line	of	data	for	$tempfile1">&7
echo	"This	is	a	test	line	of	data	for	$tempfile2">&8
$./test21
Sending	data	to	directory	dir.ouT8S8
$	ls	-al
total	72
drwxr-xr-x				3	rich					rich									4096	Jun	21	22:20	./
drwxr-xr-x				9	rich					rich									4096	Jun	21	09:44	../
drwx------				2	rich					rich									4096	Jun	21	22:20	dir.ouT8S8/
-rwxr--r--				1	rich					rich										338	Jun	21	22:20	test21
$	cd	dir.ouT8S8
[dir.ouT8S8]$	ls	-al
total	16
drwx------				2	rich					rich									4096	Jun	21	22:20	./
drwxr-xr-x				3	rich					rich									4096	Jun	21	22:20	../
-rw-------				1	rich					rich											44	Jun	21	22:20	temp.N5F3O6
-rw-------				1	rich					rich											44	Jun	21	22:20	temp.SQslb7
[dir.ouT8S8]$	cat	temp.N5F3O6
This	is	a	test	line	of	data	for	temp.N5F3O6
[dir.ouT8S8]$	cat	temp.SQslb7
This	is	a	test	line	of	data	for	temp.SQslb7
[dir.ouT8S8]$

The	script	creates	a	directory	in	the	current	directory	and	uses	the	cd	command	to	change	to	that	directory	before
creating	two	temporary	files.	The	two	temporary	files	are	then	assigned	to	file	descriptors	and	used	to	store	output
from	the	script.

Logging	Messages
Sometimes,	it's	beneficial	to	send	output	both	to	the	monitor	and	to	a	file	for	logging.	Instead	of	having	to	redirect
output	twice,	you	can	use	the	special	tee	command.

The	tee	command	is	like	a	T-connector	for	pipes.	It	sends	data	from	STDIN	to	two	destinations	at	the	same	time.	One
destination	is	STDOUT	.	The	other	destination	is	a	filename	specified	on	the	tee	command	line:

tee	filename

Because	tee	redirects	data	from	STDIN	,	you	can	use	it	with	the	pipe	command	to	redirect	output	from	any	command:

$	date	|	tee	testfile
Sun	Jun	21	18:56:21	EDT	2020
$	cat	testfile
Sun	Jun	21	18:56:21	EDT	2020
$

The	output	appears	in	STDOUT	and	is	written	to	the	file	specified.	Be	careful;	by	default,	the	tee	command	overwrites
the	output	file	on	each	use:

$	who	|	tee	testfile
rich					pts/0								2020-06-20	18:41	(192.168.1.2)
$	cat	testfile
rich					pts/0								2020-06-20	18:41	(192.168.1.2)
$

If	you	want	to	append	data	to	the	file,	you	must	use	the	-a	option:

$	date	|	tee	-a	testfile
Sun	Jun	21	18:58:05	EDT	2020
$	cat	testfile
rich					pts/0								2020-06-201	18:41	(192.168.1.2)
Sun	Jun	21	18:58:05	EDT	2020
$

Using	this	technique,	you	can	both	save	data	in	files	and	display	the	data	on	the	monitor	for	your	users:

$	cat	test22
#!/bin/bash
#	using	the	tee	command	for	logging
	
tempfile=test22file
	
echo	"This	is	the	start	of	the	test"	|	tee	$tempfile

echo	"This	is	the	second	line	of	the	test"	|	tee	-a	$tempfile
echo	"This	is	the	end	of	the	test"	|	tee	-a	$tempfile
$./test22
This	is	the	start	of	the	test
This	is	the	second	line	of	the	test
This	is	the	end	of	the	test
$	cat	test22file
This	is	the	start	of	the	test
This	is	the	second	line	of	the	test
This	is	the	end	of	the	test
$

Now	you	can	save	a	permanent	copy	of	your	output	at	the	same	time	as	you're	displaying	it	to	your	users.

Working	through	a	Practical	Example
File	redirection	is	very	common,	both	when	reading	files	into	scripts	and	when	outputting	data	from	a	script	into	a
file.	This	example	script	does	both	of	those	things.	It	reads	a	CSV-formatted	data	file	and	outputs	SQL	INSERT
statements	to	insert	the	data	into	a	database.

The	shell	script	uses	a	command-line	parameter	to	define	the	name	of	the	CSV	file	from	which	to	read	the	data.	The
CSV	format	is	used	to	export	data	from	spreadsheets,	so	you	can	place	the	database	data	into	a	spreadsheet,	save	the
spreadsheet	in	CSV	format,	read	the	file,	and	create	INSERT	statements	to	insert	the	data	into	a	MySQL	database.

Here's	what	the	script	looks	like:

$cat	test23
#!/bin/bash
#	read	file	and	create	INSERT	statements	for	MySQL
	
outfile='members.sql'
IFS=','
while	read	lname	fname	address	city	state	zip
do
			cat>>	$outfile	<<	EOF
			INSERT	INTO	members	(lname,fname,address,city,state,zip)	VALUES	('$lname',	'$fname',	'$address',	
'$city',	'$state',	'$zip');
EOF
done	<	${1}
$

That's	a	pretty	short	script,	thanks	to	the	file	redirection	that	goes	on!	There	are	three	redirection	operations
happening	in	the	script.	The	while	loop	uses	the	read	statement	(discussed	in	Chapter	14)	to	read	text	from	the	data
file.	Notice	in	the	done	statement	the	redirection	symbol:

done	<	${1}

The	$1	represents	the	first	command-line	parameter	when	you	run	the	test23	program.	That	specifies	the	data	file
from	which	to	read	the	data.	The	read	statement	parses	the	text	using	the	IFS	character,	which	we	specify	as	a
comma.

The	other	two	redirection	operations	in	the	script	both	appear	in	the	same	statement:

cat>>	$outfile	<<	EOF

This	one	statement	has	one	output	append	redirection	(the	double	greater-than	symbol)	and	one	input	append
redirection	(the	double	less-than	symbol).	The	output	redirection	appends	the	cat	command	output	to	the	file
specified	by	the	$outfile	variable.	The	input	to	the	cat	command	is	redirected	from	the	standard	input	to	use	the
data	stored	inside	the	script.	The	EOF	symbol	marks	the	start	and	end	delimiter	of	the	data	that's	appended	to	the
file:

INSERT	INTO	members	(lname,fname,address,city,state,zip)	VALUES	('$lname',	'$fname',
	'$address',	'$city',	'$state',	'$zip');

The	text	creates	a	standard	SQL	INSERT	statement.	Notice	that	the	data	values	are	replaced	with	the	variables	for	the
data	read	from	the	read	statement.

So,	basically	the	while	loop	reads	the	data	one	line	at	a	time,	plugs	those	data	values	into	the	INSERT	statement
template,	and	then	outputs	the	result	to	the	output	file.

For	this	experiment,	we	used	this	as	the	input	data	file:

$	cat	members.csv
Blum,Richard,123	Main	St.,Chicago,IL,60601
Blum,Barbara,123	Main	St.,Chicago,IL,60601
Bresnahan,Christine,456	Oak	Ave.,Columbus,OH,43201
Bresnahan,Timothy,456	Oak	Ave.,Columbus,OH,43201
$

When	you	run	the	script,	nothing	appears	in	the	output	on	the	monitor:

$./test23	<	members.csv
$

But	when	you	look	at	the	members.sql	output	file,	you	should	see	the	output	data:

$	cat	members.sql
			INSERT	INTO	members	(lname,fname,address,city,state,zip)	VALUES	('Blum',
	'Richard',	'123	Main	St.',	'Chicago',	'IL',	'60601');
			INSERT	INTO	members	(lname,fname,address,city,state,zip)	VALUES	('Blum',
	'Barbara',	'123	Main	St.',	'Chicago',	'IL',	'60601');
			INSERT	INTO	members	(lname,fname,address,city,state,zip)	VALUES	('Bresnahan',
	'Christine',	'456	Oak	Ave.',	'Columbus',	'OH',	'43201');
			INSERT	INTO	members	(lname,fname,address,city,state,zip)	VALUES	('Bresnahan',
	'Timothy',	'456	Oak	Ave.',	'Columbus',	'OH',	'43201');
$

The	script	worked	exactly	as	expected!	Now	you	can	easily	import	the	members.sql	file	into	a	MySQL	database	table.

Summary
Understanding	how	the	Bash	shell	handles	input	and	output	can	come	in	handy	when	creating	your	scripts.	You	can
manipulate	both	how	the	script	receives	data	and	how	it	displays	data,	to	customize	your	script	for	any	environment.
You	can	redirect	the	input	of	a	script	from	the	standard	input	(STDIN)	to	any	file	on	the	system.	You	can	also	redirect
the	output	of	the	script	from	the	standard	output	(STDOUT)	to	any	file	on	the	system.

Besides	the	STDOUT	,	you	can	redirect	any	error	messages	your	script	generates	by	redirecting	the	STDERR	output.	This
is	accomplished	by	redirecting	the	file	descriptor	associated	with	the	STDERR	output,	which	is	file	descriptor	2.	You
can	redirect	STDERR	output	to	the	same	file	as	the	STDOUT	output	or	to	a	completely	separate	file.	This	enables	you	to
separate	normal	script	messages	from	any	error	messages	generated	by	the	script.

The	Bash	shell	allows	you	to	create	your	own	file	descriptors	for	use	in	your	scripts.	You	can	create	file	descriptors	3
through	8	and	assign	them	to	any	output	file	you	desire.	After	you	create	a	file	descriptor,	you	can	redirect	the
output	of	any	command	to	it,	using	the	standard	redirection	symbols.

The	bash	shell	also	allows	you	to	redirect	input	to	a	file	descriptor,	providing	an	easy	way	to	read	data	contained	in	a
file	into	your	script.	You	can	use	the	lsof	command	to	display	the	active	file	descriptors	in	your	shell.

Linux	systems	provide	a	special	file,	called	/dev/null	,	to	allow	you	to	redirect	output	that	you	don't	want.	The	Linux
system	discards	anything	redirected	to	the	/dev/null	file.	You	can	also	use	this	file	to	produce	an	empty	file	by
redirecting	the	contents	of	the	/dev/null	file	to	the	file.

The	mktemp	command	is	a	handy	feature	of	the	Bash	shell	that	allows	you	to	easily	create	temporary	files	and
directories.	Simply	specify	a	template	for	the	mktemp	command,	and	it	creates	a	unique	file	each	time	you	call	it,
based	on	the	file	template	format.	You	can	also	create	temporary	files	and	directories	in	the	/tmp	directory	on	the
Linux	system,	which	is	a	special	location	that	isn't	preserved	between	system	boots.

The	tee	command	is	a	convenient	way	to	send	output	both	to	the	standard	output	and	to	a	log	file.	This	enables	you
to	display	messages	from	your	script	on	the	monitor	and	store	them	in	a	log	file	at	the	same	time.

In	Chapter	16,	you'll	see	how	to	control	and	run	your	scripts.	Linux	provides	several	different	methods	for	running
scripts	other	than	directly	from	the	command-line	interface	prompt.	You'll	see	how	to	schedule	your	scripts	to	run	at
a	specific	time,	as	well	as	learn	how	to	pause	them	while	they're	running.

CHAPTER	16
Script	Control
IN	THIS	CHAPTER

Handling	Signals

Running	Scripts	in	Background	Mode

Running	Scripts	without	a	Hang-Up

Controlling	the	Job

Being	Nice

Running	Like	Clockwork

As	you	start	building	advanced	scripts,	you'll	probably	wonder	how	to	run	and	control	them	on	your	Linux	system.
So	far	in	this	book,	the	only	way	we've	run	scripts	is	directly	from	the	command-line	interface	in	real-time	mode.
This	isn't	the	only	way	to	execute	scripts	in	Linux.	Quite	a	few	options	are	available	for	running	your	shell	scripts.
There	are	also	options	for	controlling	your	scripts.	Various	control	methods	include	sending	signals	to	your	script,
modifying	a	script's	priority,	and	switching	the	run	mode	while	a	script	is	running.	This	chapter	examines	the
various	ways	you	can	control	your	shell	scripts.

Handling	Signals
Linux	uses	signals	to	communicate	with	processes	running	on	the	system.	Chapter	4,	“More	Bash	Shell	Commands,”
described	the	different	Linux	signals	and	how	the	Linux	system	uses	these	signals	to	stop,	start,	and	kill	processes.
You	can	control	the	operation	of	your	shell	script	by	programming	the	script	to	perform	certain	commands	when	it
receives	specific	signals.

Signaling	the	Bash	shell
There	are	more	than	30	Linux	signals	that	can	be	generated	by	the	system	and	applications.	Table	16-1	lists	the	most
common	Linux	system	signals	that	you'll	run	across	in	your	shell	script	writing.

TABLE	16-1	Linux	Signals

Signal Value Description

1 SIGHUP Hangs	up	the	process

2 SIGINT Interrupts	the	process

3 SIGQUIT Stops	the	process

9 SIGKILL Unconditionally	terminates	the	process

15 SIGTERM Terminates	the	process	if	possible

18 SIGCONT Continues	a	stopped	process

19 SIGSTOP Unconditionally	stops,	but	doesn't	terminate,	the	process

20 SIGTSTP Stops	or	pauses	the	process,	but	doesn't	terminate

By	default,	the	Bash	shell	ignores	any	SIGQUIT	(3)	and	SIGTERM	(15)	signals	it	receives	(so	an	interactive	shell
cannot	be	accidentally	terminated).	However,	the	Bash	shell	does	not	ignore	any	received	SIGHUP	(1)	and	SIGINT
(2)	signals.

If	the	Bash	shell	receives	a	SIGHUP	signal,	such	as	when	you	leave	an	interactive	shell,	it	exits.	Before	it	exits,
however,	it	passes	the	SIGHUP	signal	to	any	processes	started	by	the	shell,	including	any	running	shell	scripts.

With	a	SIGINT	signal,	the	shell	is	just	interrupted.	The	Linux	kernel	stops	giving	the	shell	processing	time	on	the
CPU.	When	this	happens,	the	shell	passes	the	SIGINT	signal	to	any	processes	started	by	the	shell	to	notify	them	of	the
situation.

As	you	probably	have	noticed,	the	shell	passes	these	signals	on	to	your	shell	script	program	for	processing.	However,
a	shell	script's	default	behavior	does	not	govern	these	signals,	which	may	have	an	adverse	effect	on	the	script's
operation.	To	avoid	this	situation,	you	can	program	your	script	to	recognize	signals	and	perform	commands	to
prepare	the	script	for	the	consequences	of	the	signal.

Generating	signals
The	Bash	shell	allows	you	to	generate	two	basic	Linux	signals	using	key	combinations	on	the	keyboard.	This	feature
comes	in	handy	if	you	need	to	stop	or	pause	a	runaway	script.

Interrupting	a	process

The	Ctrl+C	key	combination	generates	a	SIGINT	signal	and	sends	it	to	any	processes	currently	running	in	the	shell.
You	can	test	this	by	running	a	command	that	normally	takes	a	long	time	to	finish	and	pressing	the	Ctrl+C	key
combination:

$	sleep	60
^C
$

The	sleep	command	pauses	the	shell's	operation	for	the	specified	number	of	seconds	and	returns	the	shell	prompt.
The	Ctrl+C	key	combination	sends	a	SIGINT	signal,	which	simply	stops	the	current	process	running	in	the	shell.	By
pressing	the	Ctrl+C	key	combination	before	the	time	passed	(60	seconds),	you	permanently	terminated	the	sleep
command.

Pausing	a	process
Instead	of	terminating	a	process,	you	can	pause	it	in	the	middle	of	whatever	it's	doing.	Sometimes,	this	can	be	a
dangerous	thing	(for	example,	if	a	script	has	a	file	lock	open	on	a	crucial	system	file),	but	often	it	allows	you	to	peek
inside	what	a	script	is	doing	without	actually	terminating	the	process.

The	Ctrl+Z	key	combination	generates	a	SIGTSTP	signal,	stopping	any	processes	running	in	the	shell.	Stopping	a
process	is	different	than	terminating	the	process.	Stopping	the	process	leaves	the	program	in	memory	and	able	to
continue	running	from	where	it	left	off.	In	the	“Controlling	the	Job”	section	later	in	this	chapter,	you	learn	how	to
restart	a	process	that's	been	stopped.

When	you	use	the	Ctrl+Z	key	combination,	the	shell	informs	you	that	the	process	has	been	stopped:

$	sleep	60
^Z
[1]+		Stopped																	sleep	60
$

The	number	in	the	square	brackets	is	the	job	number	assigned	by	the	shell.	The	shell	refers	to	each	process	running
in	the	shell	as	a	job	and	assigns	each	job	a	unique	number	within	the	current	shell.	It	assigns	the	first	started	process
job	number	1,	the	second	job	number	2,	and	so	on.

If	you	have	a	stopped	job	assigned	to	your	shell	session,	Bash	warns	you	the	first	time	you	try	to	exit	the	shell:

$	sleep	70
^Z
[2]+		Stopped																	sleep	70
$
$	exit
logout
There	are	stopped	jobs.
$

You	can	view	the	stopped	jobs	using	the	ps	command:

$	ps	-l
F	S			UID					PID				PPID		[...]	TTY										TIME	CMD
0	S		1001				1509				1508		[...]	pts/0				00:00:00	bash
0	T		1001				1532				1509		[...]	pts/0				00:00:00	sleep
0	T		1001				1533				1509		[...]	pts/0				00:00:00	sleep
0	R		1001				1534				1509		[...]	pts/0				00:00:00	ps
$

In	the	S	column	(process	state),	the	ps	command	shows	the	stopped	job's	state	as	T	.	This	indicates	the	command	is
either	being	traced	or	is	stopped.

If	you	really	want	to	exit	the	shell	with	a	stopped	job	(or	jobs)	still	active,	just	type	the	exit	command	again.	The
shell	exits,	terminating	the	stopped	job.

Alternately,	now	that	you	know	the	PID	of	the	stopped	job(s),	you	can	use	the	kill	command	to	send	a	SIGKILL	(9)
signal	to	terminate	it:

$	kill	-9	1532
[1]-		Killed																		sleep	60
$	kill	-9	1533
[2]+		Killed																		sleep	70
$

Each	time	the	shell	produces	a	prompt,	it	also	displays	the	status	of	any	jobs	that	have	changed	states	in	the	shell.
After	you	kill	a	job,	the	shell	displays	a	message	showing	that	the	job	was	killed	while	running,	and	then	provides	the
prompt.

NOTE
On	some	Linux	systems,	when	you	kill	the	job,	you	initially	don't	get	any	response.	However,
the	next	time	you	do	something	that	produces	a	shell	prompt	(such	as	pressing	the	Enter	key),
you'll	see	a	message	indicating	that	the	job	was	killed.

Trapping	signals
Instead	of	allowing	your	script	to	leave	signals	ungoverned,	you	can	trap	them	when	they	appear	and	perform	other
commands.	The	trap	command	allows	you	to	specify	which	Linux	signals	your	shell	script	can	watch	for	and
intercept	from	the	shell.	If	the	script	receives	a	signal	listed	in	the	trap	command,	it	prevents	it	from	being
processed	by	the	shell	and	instead	handles	it	locally.

The	format	of	the	trap	command	is

trap	commands	signals

On	the	trap	command	line,	you	just	list	the	commands	you	want	the	shell	to	execute,	along	with	a	space-separated
list	of	signals	you	want	to	trap.	You	can	specify	the	signals	either	by	their	numeric	value	or	by	their	Linux	signal
name.

Here's	a	simple	example	of	using	the	trap	command	to	capture	the	SIGINT	signal	and	govern	the	script's	behavior
when	the	signal	is	sent:

$	cat	trapsignal.sh
#!/bin/bash
#Testing	signal	trapping
#
trap	"echo	'	Sorry!	I	have	trapped	Ctrl-C'"	SIGINT
#
echo	This	is	a	test	script.
#
count=1
while	[$count	-le	5]
do
					echo	"Loop	#$count"
					sleep	1
					count=$[$count	+	1]
done
#
echo	"This	is	the	end	of	test	script."
exit
$

The	trap	command	used	in	this	example	displays	a	simple	text	message	each	time	it	detects	the	SIGINT	signal.
Trapping	this	signal	makes	this	script	impervious	to	the	user	attempting	to	stop	the	program	by	using	the	Bash	shell
keyboard	Ctrl+C	command:

$./trapsignal.sh
This	is	a	test	script.
Loop	#1
Loop	#2
^C	Sorry!	I	have	trapped	Ctrl-C
Loop	#3
^C	Sorry!	I	have	trapped	Ctrl-C
Loop	#4
Loop	#5
This	is	the	end	of	test	script.
$

Each	time	the	Ctrl+C	key	combination	was	used,	the	script	executed	the	echo	statement	specified	in	the	trap
command	instead	of	not	managing	the	signal	and	allowing	the	shell	to	stop	the	script.

WARNING
If	a	command	in	your	script	is	interrupted	by	a	signal,	using	trap	with	a	specified	command	will
not	necessarily	allow	the	interrupted	command	to	continue	where	it	left	off.	To	keep	critical
operations	flowing	in	your	scripts,	use	trap	with	a	null	specification	along	with	a	list	of	the
signals	to	trap,	such	as

trap	""	SIGINT

Using	trap	in	this	way	allows	the	script	to	completely	ignore	signal	interruptions	and	continue
its	important	work.

Trapping	a	script	exit
Besides	trapping	signals	in	your	shell	script,	you	can	trap	them	when	the	shell	script	exits.	This	is	a	convenient	way
to	perform	commands	just	as	the	shell	finishes	its	job.

To	trap	the	shell	script	exiting,	just	add	the	EXIT	signal	to	the	trap	command:

$	cat	trapexit.sh
#!/bin/bash
#Testing	exit	trapping
#
trap	"echo	Goodbye..."	EXIT

#
count=1
while	[$count	-le	5]
do
					echo	"Loop	#$count"
					sleep	1
					count=$[$count	+	1]
done
#
exit
$
$./trapexit.sh
Loop	#1
Loop	#2
Loop	#3
Loop	#4
Loop	#5
Goodbye...
$

When	the	script	gets	to	the	normal	exit	point,	the	trap	is	triggered,	and	the	shell	executes	the	command	you	specify
on	the	trap	command	line.	The	EXIT	trap	also	works	if	you	prematurely	exit	the	script:

$./trapexit.sh
Loop	#1
Loop	#2
Loop	#3
^CGoodbye...
	
$

Because	the	SIGINT	signal	isn't	in	the	trap	command	list,	when	the	Ctrl+C	key	combination	is	used	to	send	that
signal	the	script	exits.	However,	before	the	script	exits,	because	the	EXIT	is	trapped,	the	shell	executes	the	trap
command.

Modifying	or	removing	a	trap
To	handle	traps	differently	in	various	sections	of	your	shell	script,	you	simply	reissue	the	trap	command	with	new
options:

$	cat	trapmod.sh
#!/bin/bash
#Modifying	a	set	trap
#
trap	"echo	'	Sorry...Ctrl-C	is	trapped.'"	SIGINT
#
count=1
while	[$count	-le	3]
do
					echo	"Loop	#$count"
					sleep	1
					count=$[$count	+	1]
done
#
trap	"echo	'	I	have	modified	the	trap!'"	SIGINT
#
count=1
while	[$count	-le	3]
do
					echo	"Second	Loop	#$count"
					sleep	1
					count=$[$count	+	1]
done
#
exit
$

After	the	signal	trap	is	modified,	the	script	manages	the	signal	or	signals	differently.	However,	if	a	signal	is	received
before	the	trap	is	modified,	the	script	processes	it	per	the	original	trap	command:

$./trapmod.sh
Loop	#1
^C	Sorry...Ctrl-C	is	trapped.
Loop	#2
Loop	#3
Second	Loop	#1
Second	Loop	#2
^C	I	have	modified	the	trap!
Second	Loop	#3
$

TIP
If	you	try	out	the	trap	command	in	your	interactive	shell	session,	you	can	view	what	signals	are
being	trapped	by	issuing	trap	-p.	If	nothing	displays,	your	shell	session	is	handling	signals	in
the	default	manner.

You	can	also	remove	a	set	trap.	Add	two	dashes	after	the	trap	command	and	a	list	of	the	signals	you	want	to	return
to	default	behavior:

$	cat	trapremoval.sh
#!/bin/bash
#Removing	a	set	trap
#
trap	"echo	'	Sorry...Ctrl-C	is	trapped.'"	SIGINT
#
count=1
while	[$count	-le	3]
do
					echo	"Loop	#$count"
					sleep	1
					count=$[$count	+	1]
done
#
trap	--	SIGINT
echo	"The	trap	is	now	removed."
#
count=1
while	[$count	-le	3]
do
					echo	"Second	Loop	#$count"
					sleep	1
					count=$[$count	+	1]
done
#
exit
$

NOTE
You	can	use	a	single	dash	instead	of	a	double	dash	after	the	trap	command	to	remove	signals
traps.	Both	the	single	and	double	dash	work	properly.

After	the	signal	trap	is	removed,	the	script	handles	the	SIGINT	signal	in	its	default	manner,	terminating	the	script.
However,	if	a	signal	is	received	before	the	trap	is	removed,	the	script	processes	it	per	the	original	trap	command:

$./trapremoval.sh
Loop	#1
Loop	#2
^C	Sorry...Ctrl-C	is	trapped.
Loop	#3
The	trap	is	now	removed.
Second	Loop	#1
Second	Loop	#2
^C
$

In	this	example,	the	first	Ctrl+C	key	combination	was	used	to	attempt	to	terminate	the	script	prematurely.	Because
the	signal	was	received	before	the	trap	was	removed,	the	script	executed	the	command	specified	in	the	trap.	After
the	script	executed	the	trap	removal,	Ctrl+C	could	prematurely	terminate	the	script.

Running	Scripts	in	Background	Mode
Sometimes,	running	a	shell	script	directly	from	the	command	line	is	inconvenient.	Some	scripts	can	take	a	long	time
to	process,	and	you	may	not	want	to	tie	up	the	command-line	interface	as	it	executes.	While	the	script	is	running,
you	can't	do	anything	else	in	your	terminal	session.	Fortunately,	there's	a	simple	solution	to	that	problem.

When	you	use	the	ps	-e	command,	you	see	a	whole	bunch	of	different	processes	running	on	the	Linux	system:

$	ps	-e
				PID	TTY										TIME	CMD
						1	?								00:00:02	systemd
						2	?								00:00:00	kthreadd
						3	?								00:00:00	rcu_gp
						4	?								00:00:00	rcu_par_gp
[...]
			2585	pts/0				00:00:00	ps
$

Obviously,	all	these	processes	are	not	running	on	your	terminal.	In	fact,	many	are	not	running	on	any	terminal	—
they	are	running	in	the	background.	In	background	mode,	a	process	runs	without	being	associated	with	a	STDIN	,
STDOUT	,	and	STDERR	on	a	terminal	session	(Chapter	15,	“Presenting	Data”).

You	can	exploit	this	feature	with	your	shell	scripts	as	well,	allowing	them	to	run	behind	the	scenes	and	not	lock	up
your	terminal	session.	The	following	sections	describe	how	to	run	your	scripts	in	background	mode	on	your	Linux
system.

Running	in	the	background
Running	a	shell	script	in	background	mode	is	a	fairly	easy	thing	to	do.	To	run	a	shell	script	in	background	mode
from	the	command-line	interface,	just	place	an	ampersand	symbol	(&)	after	the	command:

$	cat	backgroundscript.sh
#!/bin/bash
#Test	running	in	the	background
#
count=1
while	[$count	-le	5]
do
					sleep	1
					count=$[$count	+	1]
done
#
exit
$
$./backgroundscript.sh	&
[1]	2595
$

When	you	place	the	ampersand	symbol	after	a	command,	it	separates	the	command	from	the	current	shell	and	runs
it	as	a	separate	background	process	on	the	system.	The	first	thing	that	displays	is	the	line

[1]	2595

The	number	in	the	square	brackets	is	the	job	number	(1)	assigned	by	the	shell	to	the	background	process.	The	next
number	is	the	process	ID	(PID)	the	Linux	system	assigns	to	the	process.	Every	process	running	on	the	Linux	system
must	have	a	unique	PID.

As	soon	as	the	system	displays	these	items,	a	new	command-line	interface	prompt	appears.	You	are	returned	to	the
current	shell,	and	the	command	you	executed	runs	safely	in	background	mode.	At	this	point,	you	can	enter	new
commands	at	the	prompt.

When	the	background	process	finishes,	it	displays	a	message	on	the	terminal:

[1]+		Done																				./backgroundscript.sh

This	shows	the	job	number	and	the	status	of	the	job	(Done),	along	with	the	command	used	to	start	the	job	(minus	the
&).

Be	aware	that	while	the	background	process	is	running,	it	still	uses	your	terminal	monitor	for	STDOUT	and	STDERR
messages:

$	cat	backgroundoutput.sh
#!/bin/bash
#Test	running	in	the	background
#
echo	"Starting	the	script..."
count=1
while	[$count	-le	5]
do
					echo	"Loop	#$count"
					sleep	1
					count=$[$count	+	1]
done
#
echo	"Script	is	completed."
exit
$
$./backgroundoutput.sh	&
[1]	2615
$	Starting	the	script...
Loop	#1
Loop	#2
Loop	#3
Loop	#4
Loop	#5
Script	is	completed.
	
[1]+		Done																				./backgroundoutput.sh
$

You'll	notice	from	the	example	that	the	output	from	the	backgroundoutput.sh	script	displays.	The	output	intermixes
with	the	shell	prompt,	which	is	why	Starting	the	script	appears	next	to	the	$	prompt.

You	can	still	issue	commands	while	this	output	is	occurring:

$./backgroundoutput.sh	&
[1]	2719
$	Starting	the	script...
Loop	#1
Loop	#2
Loop	#3
pwd
/home/christine/scripts
$	Loop	#4
Loop	#5
Script	is	completed.
	
[1]+		Done																				./backgroundoutput.sh
$

While	the	backgroundoutput.sh	script	is	running	in	the	background,	the	command	pwd	was	entered.	The	script's
output,	the	typed	command,	and	the	command's	output	all	intermixed	with	each	other's	output	display.	This	can	be
confusing!	It	is	a	good	idea	to	redirect	STDOUT	and	STDERR	(Chapter	15)	for	scripts	you	will	be	running	in	the
background	to	avoid	this	messy	display.

Running	multiple	background	jobs
You	can	start	any	number	of	background	jobs	at	the	same	time	from	the	command-line	prompt:

$./testAscript.sh	&
[1]	2753
$	This	is	Test	Script	#1.
	
$./testBscript.sh	&
[2]	2755
$	This	is	Test	Script	#2.
	
$./testCscript.sh	&
[3]	2757
$	And...	another	Test	script.
	
$./testDscript.sh	&
[4]	2759
$	Then...there	was	one	more	Test	script.
	
$

Each	time	you	start	a	new	job,	the	Linux	system	assigns	it	a	new	job	number	and	PID.	You	can	see	that	all	the	scripts
are	running	using	the	ps	command:

$	ps
				PID	TTY										TIME	CMD
			1509	pts/0				00:00:00	bash
			2753	pts/0				00:00:00	testAscript.sh
			2754	pts/0				00:00:00	sleep
			2755	pts/0				00:00:00	testBscript.sh
			2756	pts/0				00:00:00	sleep
			2757	pts/0				00:00:00	testCscript.sh
			2758	pts/0				00:00:00	sleep
			2759	pts/0				00:00:00	testDscript.sh
			2760	pts/0				00:00:00	sleep
			2761	pts/0				00:00:00	ps
$

You	must	be	careful	when	using	background	processes	from	a	terminal	session.	Notice	in	the	output	from	the	ps
command	that	each	of	the	background	processes	is	tied	to	the	terminal	session	(pts/0)	terminal.	If	the	terminal
session	exits,	the	background	process	also	exits.

NOTE
Earlier	in	this	chapter	we	mentioned	that	when	you	attempt	to	exit	a	terminal	session,	a
warning	is	issued	if	there	are	stopped	processes.	However,	with	background	processes,	only
some	terminal	emulators	remind	you	that	a	background	job	is	running,	before	you	attempt	to
exit	the	terminal	session.

If	you	want	your	script	to	continue	running	in	background	mode	after	you	have	logged	off	the	console,	there's
something	else	you	need	to	do.	The	next	section	discusses	that	process.

Running	Scripts	without	a	Hang-up
Sometimes,	you	may	want	to	start	a	shell	script	from	a	terminal	session	and	let	the	script	run	in	background	mode
until	it	finishes,	even	if	you	exit	the	terminal	session.	You	can	do	this	by	using	the	nohup	command.

The	nohup	command	blocks	any	SIGHUP	signals	that	are	sent	to	the	process	it	is	protecting.	This	prevents	the	process
from	exiting	when	you	exit	your	terminal	session.

The	format	used	for	the	nohup	command	is	as	follows:

nohup	command

Here's	an	example	using	a	shell	script	launched	into	the	background	as	the	command:

$	nohup	./testAscript.sh	&
[1]	1828
$	nohup:	ignoring	input	and	appending	output	to	'nohup.out'
	
$

As	with	a	normal	background	process,	the	shell	assigns	the	command	a	job	number,	and	the	Linux	system	assigns	a
PID	number.	The	difference	is	that	when	you	use	the	nohup	command,	the	script	ignores	any	SIGHUP	signals	sent	by
the	terminal	session	if	you	close	the	session.

Because	the	nohup	command	disassociates	the	process	from	the	terminal,	the	process	loses	the	STDOUT	and	STDERR
output	links.	To	accommodate	any	output	generated	by	the	command,	the	nohup	command	automatically	redirects
STDOUT	and	STDERR	messages	to	a	file	called	nohup.out.

NOTE
If	possible,	the	nohup.out	file	is	created	in	your	current	working	directory.	Otherwise,	it	is
created	in	your	$HOME	directory.

The	nohup.out	file	contains	all	the	output	that	would	normally	be	sent	to	the	terminal	monitor.	After	the	process
finishes	running,	you	can	view	the	nohup.out	file	for	the	output	results:

$	cat	nohup.out
This	is	Test	Script	#1.
$

The	output	appears	in	the	nohup.out	file	just	as	if	the	process	ran	on	the	command	line.

NOTE
If	you	run	another	command	using	nohup	,	the	output	is	appended	to	the	existing	nohup.out	file.
Be	careful	when	running	multiple	commands	from	the	same	directory,	because	all	the	output
is	sent	to	the	same	nohup.out	file,	which	can	get	confusing.

With	the	use	of	nohup	,	you	can	run	scripts	in	the	background,	log	out	of	your	terminal	session	to	accomplish	other
tasks	without	stopping	the	script	process,	and	check	on	its	output	later.	There's	even	more	flexibility	to	managing
your	background	jobs,	which	is	covered	next.

Controlling	the	Job
Earlier	in	this	chapter,	you	saw	how	to	use	the	Ctrl+C	key	combination	to	stop	a	job	running	in	the	shell.	After	you
stop	a	job,	the	Linux	system	lets	you	either	kill	or	restart	it.	You	can	kill	the	process	by	using	the	kill	command.
Restarting	a	stopped	process	requires	that	you	send	it	a	SIGCONT	signal.

The	function	of	starting,	stopping,	killing,	and	resuming	jobs	is	called	job	control.	With	job	control,	you	have	full
control	over	how	processes	run	in	your	shell	environment.	This	section	describes	the	commands	used	to	view	and
control	jobs	running	in	your	shell.

Viewing	jobs
The	key	command	for	job	control	is	the	jobs	command.	The	jobs	command	allows	you	to	view	the	current	jobs	being
handled	by	the	shell.	Though	it	doesn't	contain	the	jobs	command,	the	following	script	will	help	us	demonstrate	the
command's	power:

$	cat	jobcontrol.sh
#!/bin/bash
#Testing	job	control
#
echo	"Script	Process	ID:	$$"
#
count=1
while	[$count	-le	5]
do
					echo	"Loop	#$count"
					sleep	10
					count=$[$count	+	1]
done

#
echo	"End	of	script..."
exit
$

The	script	uses	the	$	variable	to	display	the	PID	that	the	Linux	system	assigns	to	the	script;	then	it	goes	into	a	loop,
sleeping	for	10	seconds	at	a	time	for	each	iteration.

You	can	start	the	script	from	the	command-line	interface	and	then	stop	it	using	the	Ctrl+Z	key	combination:

$./jobcontrol.sh
Script	Process	ID:	1580
Loop	#1
Loop	#2
Loop	#3
^Z
[1]+		Stopped																	./jobcontrol.sh
$

Using	the	same	script,	another	job	is	started	as	a	background	process,	using	the	ampersand	symbol.	To	make	life	a
little	easier,	the	output	of	that	script	is	redirected	to	a	file	so	that	it	doesn't	appear	on	the	screen:

$./jobcontrol.sh	>	jobcontrol.out	&
[2]	1603
$

The	jobs	command	enables	you	to	view	the	jobs	assigned	to	the	shell,	as	shown	here:

$	jobs
[1]+		Stopped																	./jobcontrol.sh
[2]-		Running																	./jobcontrol.sh>	jobcontrol.out	&
$

The	jobs	command	shows	both	the	stopped	and	the	running	jobs,	along	with	their	job	numbers	and	the	commands
used	in	the	jobs.

NOTE
You	probably	noticed	the	plus	and	minus	signs	in	the	jobs	command	output.	The	job	with	the
plus	sign	is	considered	the	default	job.	It	would	be	the	job	referenced	by	any	job	control
commands,	if	a	job	number	wasn't	specified	in	the	command	line.

The	job	with	the	minus	sign	is	the	job	that	would	become	the	default	job	when	the	current
default	job	finishes	processing.	There	will	be	only	one	job	with	the	plus	sign	and	one	job	with
the	minus	sign	at	any	time,	no	matter	how	many	jobs	are	running	in	the	shell.

You	can	view	the	various	jobs'	PIDs	by	adding	the	-l	parameter	(lowercase	L)	to	the	jobs	command:

$	jobs	-l
[1]+		1580	Stopped																	./jobcontrol.sh
[2]-		1603	Running																	./jobcontrol.sh>	jobcontrol.out	&
$

The	jobs	command	uses	a	few	different	command-line	parameters,	including	the	ones	shown	in	Table	16-2.

TABLE	16-2	The	jobs	Command	Parameters

Parameter Description

-l Lists	the	PID	of	the	process	along	with	the	job	number

-n Lists	only	jobs	that	have	changed	their	status	since	the	last	notification	from	the	shell

-p Lists	only	the	PIDs	of	the	jobs

-r Lists	only	the	running	jobs

-s Lists	only	stopped	jobs

If	you	need	to	remove	stopped	jobs,	use	the	kill	command	to	send	a	SIGKILL	(9)	signal	to	the	correct	PID.	It's	a	good
idea	to	double-check	that	you've	got	an	accurate	process	number	to	avoid	stopping	processes	that	need	to	keep
running:

$	jobs	-l
[1]+		1580	Stopped												./jobcontrol.sh
$
$	kill	-9	1580
[1]+		Killed																		./jobcontrol.sh
$

It's	a	little	tedious	to	check	and	recheck	for	correct	PIDs.	So	in	the	next	section,	you	learn	how	to	use	commands	to
interact	with	the	default	process	using	no	PID	or	job	number.

Restarting	stopped	jobs

Under	Bash	job	control,	you	can	restart	any	stopped	job	as	either	a	background	process	or	a	foreground	process.	A
foreground	process	takes	over	control	of	the	terminal	you're	working	on,	so	be	careful	about	using	that	feature.

To	restart	a	job	in	background	mode,	use	the	bg	command:

$./restartjob.sh
^Z
[1]+		Stopped																	./restartjob.sh
$
$	bg
[1]+	./restartjob.sh	&
$
$	jobs
[1]+		Running																	./restartjob.sh	&
$

Because	the	job	was	the	default	job,	indicated	by	the	plus	sign,	only	the	bg	command	was	needed	to	restart	it	in
background	mode.	Notice	that	no	PID	is	listed	when	the	job	is	moved	into	background	mode.

If	you	have	additional	jobs,	you	need	to	use	the	job	number	along	with	the	bg	command	to	control	the	ones	that	are
not	the	default	job:

$	jobs
$
$./restartjob.sh
^Z
[1]+		Stopped																	./restartjob.sh
$
$./newrestartjob.sh
^Z
[2]+		Stopped																	./newrestartjob.sh
$
$	bg	2
[2]+	./newrestartjob.sh	&
$
$	jobs
[1]+		Stopped																	./restartjob.sh
[2]-		Running																	./newrestartjob.sh	&
$

The	command	bg	2	was	used	to	send	the	second	job	into	background	mode.	Notice	that	when	the	jobs	command
was	used,	it	listed	both	jobs	with	their	status,	even	though	the	default	job	is	not	currently	in	background	mode.

To	restart	a	job	in	foreground	mode,	use	the	fg	command,	along	with	the	job	number:

$	jobs
[1]+		Stopped																	./restartjob.sh
[2]-		Running																	./newrestartjob.sh	&
$
$	fg	2
./newrestartjob.sh
This	is	the	script's	end.
$

Because	the	job	is	running	in	foreground	mode,	the	command-line	prompt	does	not	appear	until	the	script	finishes.

Being	Nice
In	a	multitasking	operating	system	(which	Linux	is),	the	kernel	is	responsible	for	assigning	CPU	time	for	each
process	running	on	the	system.	The	scheduling	priority	is	the	amount	of	CPU	time	the	kernel	assigns	to	the	process
relative	to	the	other	processes.	By	default,	all	user	processes	started	from	the	shell	have	the	same	scheduling	priority
on	the	Linux	system.

The	scheduling	priority,	also	called	the	nice	value,	is	an	integer	value.	It	ranges	from	–20	(the	highest	priority)	to
+19	(the	lowest	priority).	By	default,	the	Bash	shell	starts	all	user	processes	with	a	scheduling	priority	of	0.

TIP
It's	confusing	to	remember	that	-20	(the	lowest	value)	is	the	highest	priority,	and	+19	(the
highest	value)	is	the	lowest	priority.	Just	remember	the	phrase,	“Nice	guys	finish	last.”	The
“nicer”	or	higher	you	are	in	value,	the	lower	your	chance	of	getting	the	CPU.

Sometimes,	you	want	to	change	the	scheduling	priority	of	a	shell	script	—	lowering	its	priority	so	that	it	doesn't	take
as	much	processing	power	away	from	other	running	programs	or	giving	it	a	higher	priority	so	that	it	gets	more	CPU
time.	You	can	do	this	by	using	the	nice	command.

Using	the	nice	command
The	nice	command	allows	you	to	set	the	scheduling	priority	of	a	command	as	you	start	it.	To	make	a	command	run
with	less	priority,	just	use	the	-n	command-line	option	for	nice	to	specify	a	new	priority	level:

$	nice	-n	10	./jobcontrol.sh	>	jobcontrol.out	&
[2]	16462
$
$	ps	-p	16462	-o	pid,ppid,ni,cmd
				PID				PPID		NI	CMD
		16462				1630		10	/bin/bash	./jobcontrol.sh
$

Notice	that	you	must	use	the	nice	command	on	the	same	line	as	the	command	you	are	starting.	The	output	from	the
ps	command	confirms	that	the	nice	value	(column	NI)	has	been	set	to	10.

The	nice	command	causes	the	script	to	run	at	a	lower	priority.	However,	if	you	try	to	increase	the	priority	of	one	of
your	commands,	you	might	be	in	for	a	surprise:

$	nice	-n	-5	./jobcontrol.sh	>	jobcontrol.out	&
[2]	16473
$	nice:	cannot	set	niceness:	Permission	denied
	
$	ps	-p	16473	-o	pid,ppid,ni,cmd
				PID				PPID		NI	CMD
		16473				1630			0	/bin/bash	./jobcontrol.sh
$

The	nice	command	prevents	normal	system	users	from	increasing	the	priority	of	their	commands.	Notice	that	the
job	does	run,	even	though	the	attempt	to	raise	its	priority	with	the	nice	command	failed.	Only	the	root	user	or	users
with	super	user	privileges	can	elevate	a	job's	priority.

You	don't	have	to	use	the	-n	option	with	the	nice	command.	You	can	simply	type	the	priority,	preceded	by	a	dash:

$	nice	-10	./jobcontrol.sh	>	jobcontrol.out	&
[2]	16520
$
$	ps	-p	16520	-o	pid,ppid,ni,cmd
				PID				PPID		NI	CMD
		16520				1630		10	/bin/bash	./jobcontrol.sh
$

However,	this	can	get	confusing	when	the	priority	is	a	negative	number,	because	a	double-dash	is	required.	It's	best
just	to	use	the	-n	option	to	avoid	confusion.

Using	the	renice	command
Sometimes,	you'd	like	to	change	the	priority	of	a	command	that's	already	running	on	the	system.	The	renice
command	helps	in	this	situation.	It	allows	you	to	specify	the	PID	of	a	running	process	to	change	its	priority:

$./jobcontrol.sh	>	jobcontrol.out	&
[2]	16642
$
$	ps	-p	16642	-o	pid,ppid,ni,cmd
				PID				PPID		NI	CMD
		16642				1630			0	/bin/bash	./jobcontrol.sh
$
$	renice	-n	10	-p	16642
16642	(process	ID)	old	priority	0,	new	priority	10
$
$	ps	-p	16642	-o	pid,ppid,ni,cmd
				PID				PPID		NI	CMD
		16642				1630		10	/bin/bash	./jobcontrol.sh
$

The	renice	command	automatically	updates	the	scheduling	priority	of	the	running	process.	As	with	the	nice
command,	the	renice	command	has	some	limitations	for	those	without	super	user	privileges	—	you	can	only	renice
processes	that	you	own,	and	only	to	a	lower	priority.	However,	the	root	user	account	and	those	users	with	super	user
privileges	can	use	the	renice	command	to	change	any	process	to	any	priority.

Running	like	Clockwork
When	you	start	working	with	scripts,	you	may	want	to	run	a	script	at	some	time	in	the	future	—	usually	at	a	time
when	you're	not	there.	The	Linux	system	provides	ways	to	run	a	script	at	a	preselected	future	time:	the	at	command,
the	cron	table,	and	anacron	.	Each	method	uses	a	different	technique	for	scheduling	when	and	how	often	to	run
scripts.	The	following	sections	describe	each	of	these	methods.

Scheduling	a	job	using	the	at	command
The	at	command	allows	you	to	specify	one	future	time	when	the	Linux	system	will	run	a	script.	The	at	command
submits	a	job	to	a	queue	with	directions	for	when	the	shell	should	run	the	job.

The	at	daemon,	atd	,	runs	in	the	background	and	checks	the	job	queue	for	jobs	to	run.	Many	Linux	distributions
start	this	daemon	automatically	at	boot	time,	but	some	don't	even	have	the	package	installed.	If	your	distribution
doesn't	have	it,	and	you'd	like	to	install	it	(Chapter	9,	“Installing	Software”),	the	package	name	is,	as	you	might
suppose,	at.

The	atd	daemon	checks	a	special	directory	on	the	system	(usually	/var/spool/at	or	/var/spool/cron/atjobs)	for

jobs	submitted	using	the	at	command.	By	default,	the	atd	daemon	checks	this	directory	every	60	seconds.	When	a
job	is	present,	the	atd	daemon	checks	the	time	the	job	is	set	to	be	run.	If	the	time	matches	the	current	time,	the	atd
daemon	runs	the	job.

The	following	sections	describe	how	to	use	the	at	command	to	submit	jobs	to	run	and	how	to	manage	these	jobs.

Understanding	the	at	command	format
The	basic	at	command	format	is	pretty	simple:

at	[-f	filename]	time

By	default,	the	at	command	submits	input	from	STDIN	to	the	queue.	You	can	specify	a	filename	used	to	read
commands	(your	script	file)	using	the	-f	parameter.

The	time	parameter	specifies	when	you	want	the	Linux	system	to	run	the	job.	If	you	specify	a	time	that	has	already
passed,	the	at	command	runs	the	job	at	that	time	on	the	next	day.

You	can	get	pretty	creative	with	how	you	specify	the	time.	The	at	command	recognizes	lots	of	different	time	formats:

A	standard	hour	and	minute,	such	as	10:15

An	a.m./p.m.	indicator,	such	as	10:15PM

A	specific	named	time,	such	as	now	,	noon	,	midnight	,	or	teatime	(4:00	p.m.)

In	addition	to	specifying	the	time	to	run	the	job,	you	can	include	a	specific	date,	using	a	few	different	date	formats:

A	standard	date	format,	such	as	MMDDYY,	MM/DD/YY,	or	DD.MM.YY

A	text	date,	such	as	Jul	4	or	Dec	25	,	with	or	without	the	year

A	time	increment:

Now	+	25	minutes

10:15PM	tomorrow

10:15	+	7	days

TIP
Several	different	date	and	time	formats	are	available	for	use	with	the	at	utility.	All	of	them	are
conveniently	described	in	the	/usr/share/doc/at/timespec	file.

When	you	use	the	at	command,	the	job	is	submitted	to	a	job	queue.	The	job	queue	holds	the	jobs	submitted	by	the
at	command	for	processing.	There	are	52	different	job	queues	available	for	different	priority	levels.	Job	queues	are
referenced	using	lowercase	letters,	a	through	z	,	and	uppercase	letters	A	through	Z,	with	A	queue	being	a	different
queue	than	a	queue.

NOTE
A	few	years	ago,	the	batch	command	was	another	method	that	allowed	a	script	to	be	run	at	a
later	time.	The	batch	command	was	unique	because	you	could	schedule	a	script	to	run	when	the
system	was	at	a	lower	usage	level.	Nowadays	the	batch	command	is	simply	a	script,
/usr/bin/batch	,	that	calls	the	at	command	and	submits	your	job	to	the	b	queue.

The	higher	alphabetically	the	job	queue	letter,	the	lower	the	priority	(higher	nice	value)	the	job	will	run	under.	By
default,	at	jobs	are	submitted	to	the	at	job	a	queue.	If	you	want	to	run	a	job	at	a	lower	priority,	you	can	specify	a
different	queue	letter	using	the	-q	parameter.	And	if	you	want	your	jobs	to	consume	as	little	CPU	as	possible
compared	to	other	current	processes,	you'll	want	to	put	your	job	into	the	z	(lowercase	Z)	queue.

Retrieving	job	output
When	an	at	job	runs	on	the	Linux	system,	there's	no	monitor	associated	with	the	job.	Instead,	the	Linux	system	uses
the	email	address	of	the	user	who	submitted	the	at	job	as	STDOUT	and	STDERR	.	Any	output	destined	to	STDOUT	or
STDERR	is	mailed	to	the	user	via	the	mail	system.

Here's	a	simple	example	using	the	at	command	to	schedule	a	job	to	run	on	a	CentOS	distribution:

$	cat	tryat.sh
#!/bin/bash
#	Trying	out	the	at	command
#
echo	"This	script	ran	at	$(date	+%B%d,%T)"
echo
echo	"This	script	is	using	the	$SHELL	shell."
echo
sleep	5

echo	"This	is	the	script's	end."
#
exit
$
$	at	-f	tryat.sh	now
warning:	commands	will	be	executed	using	/bin/sh
job	3	at	Thu	Jun	18	16:23:00	2020
$

The	at	command	displays	the	job	number	assigned	to	the	job	along	with	the	time	the	job	is	scheduled	to	run.	The	-f
option	tells	what	script	file	to	use,	and	the	now	time	designation	directs	at	to	run	the	script	immediately.

NOTE
Don't	let	that	warning	message	from	the	at	command	cause	you	concern.	Because	this	script
has	#!/bin/bash	as	its	first	line,	the	commands	in	this	shell	script	will	be	executed	by	the	Bash
shell.

Using	email	for	the	at	command's	output	is	inconvenient	at	best.	The	at	command	sends	email	via	the	sendmail
application.	If	your	system	does	not	use	sendmail,	you	won't	get	any	output!	Therefore,	it's	best	to	redirect	STDOUT
and	STDERR	in	your	scripts	(Chapter	15)	when	using	the	at	command,	as	the	following	example	shows:

$	cat	tryatout.sh
#!/bin/bash
#	Trying	out	the	at	command	redirecting	output
#
outfile=$HOME/scripts/tryat.out
#
echo	"This	script	ran	at	$(date	+%B%d,%T)">	$outfile
echo>>	$outfile
echo	"This	script	is	using	the	$SHELL	shell.">>	$outfile
echo>>	$outfile
sleep	5
echo	"This	is	the	script's	end.">>	$outfile
#
exit
$
$	at	-M	-f	tryatout.sh	now
warning:	commands	will	be	executed	using	/bin/sh
job	4	at	Thu	Jun	18	16:48:00	2020
$
$	cat	$HOME/scripts/tryat.out
This	script	ran	at	June18,16:48:21
	
This	script	is	using	the	/bin/bash	shell.
	
This	is	the	script's	end.
$

If	you	don't	want	to	use	email	or	redirection	with	at	,	it	is	best	to	add	the	-M	option	to	suppress	any	output	generated
by	jobs	using	the	at	command.

Listing	pending	jobs
The	atq	command	allows	you	to	view	what	jobs	are	pending	on	the	system:

$	at	-M	-f	tryatout.sh	teatime
warning:	commands	will	be	executed	using	/bin/sh
job	5	at	Fri	Jun	19	16:00:00	2020
$
$	at	-M	-f	tryatout.sh	tomorrow
warning:	commands	will	be	executed	using	/bin/sh
job	6	at	Fri	Jun	19	16:53:00	2020
$
$	at	-M	-f	tryatout.sh	20:30
warning:	commands	will	be	executed	using	/bin/sh
job	7	at	Thu	Jun	18	20:30:00	2020
$
$	at	-M	-f	tryatout.sh	now+1hour
warning:	commands	will	be	executed	using	/bin/sh
job	8	at	Thu	Jun	18	17:54:00	2020
$
$	atq
1							Thu	Jun	18	16:11:00	2020	a	christine
5							Fri	Jun	19	16:00:00	2020	a	christine
6							Fri	Jun	19	16:53:00	2020	a	christine
7							Thu	Jun	18	20:30:00	2020	a	christine
8							Thu	Jun	18	17:54:00	2020	a	christine
$

The	job	listing	from	the	atq	command	shows	the	job	number,	the	date	and	time	the	system	will	run	the	job,	and	the
job	queue	in	which	the	job	is	stored.

Removing	jobs
After	you	know	the	information	about	what	jobs	are	pending	in	the	job	queues,	you	can	use	the	atrm	command	to
remove	a	pending	job.	Just	specify	the	job	number	you	want	to	remove:

$	atq
1							Thu	Jun	18	16:11:00	2020	a	christine
5							Fri	Jun	19	16:00:00	2020	a	christine
6							Fri	Jun	19	16:53:00	2020	a	christine
7							Thu	Jun	18	20:30:00	2020	a	christine
8							Thu	Jun	18	17:54:00	2020	a	christine
$
$	atrm	5
$
$	atq
1							Thu	Jun	18	16:11:00	2020	a	christine
6							Fri	Jun	19	16:53:00	2020	a	christine
7							Thu	Jun	18	20:30:00	2020	a	christine
8							Thu	Jun	18	17:54:00	2020	a	christine
$

You	can	only	remove	jobs	that	you	submit	for	execution.	Jobs	submitted	by	others	to	at	are	off-limits	for	removal	by
you.

Scheduling	regular	scripts
Using	the	at	command	to	schedule	a	script	to	run	at	a	future	preset	time	is	great,	but	what	if	you	need	that	script	to
run	at	the	same	time	every	day	or	once	a	week	or	once	a	month?	Instead	of	having	to	continually	submit	at	jobs,	you
can	use	another	feature	of	the	Linux	system.

The	Linux	system	uses	the	cron	program	to	allow	you	to	schedule	jobs	that	need	to	run	on	a	regular	basis.	The	cron
program	runs	in	the	background	and	checks	special	tables,	called	cron	tables,	for	jobs	that	are	scheduled	to	run.

Looking	at	the	cron	table
The	cron	table	uses	a	special	format	for	allowing	you	to	specify	when	a	job	should	be	run.	The	format	for	the	cron
table	is

minutepasthour	hourofday	dayofmonth	month	dayofweek	command

The	cron	table	allows	you	to	specify	entries	as	values,	as	ranges	of	values	(such	as	1–5),	or	as	a	wildcard	character
(the	asterisk).	For	example,	if	you	want	to	run	a	command	at	10:15	every	day,	you	would	use	this	cron	table	entry:

15	10	*	*	*	command

The	wildcard	character	used	in	the	dayofmonth,	month,	and	dayofweek	fields	indicates	that	cron	will	execute	the
command	every	day	of	every	month	at	10:15.	To	specify	a	command	to	run	at	4:15	p.m.	every	Monday,	you	would	use
military	time	(1:00	p.m.	is	13	,	2:00	p.m.	is	14	,	3:00	p.m.	is	15	,	and	so	on),	as	in	the	following:

15	16	*	*	1	command

You	can	specify	the	dayofweek	entry	as	either	a	three-character	text	value	(mon	,	tue	,	wed	,	thu	,	fri	,	sat	,	sun)	or	as	a
numeric	value,	with	0	and	7	representing	Sunday	and	6	being	Saturday.

Here's	another	example.	To	execute	a	command	at	12:00	noon	on	the	first	day	of	every	month,	you	would	use	the
following	format:

00	12	1	*	*	command

The	dayofmonth	entry	specifies	a	date	value	(1	–	31)	for	the	month.

TIP
The	astute	reader	might	be	wondering	just	how	you	would	be	able	to	set	a	command	to	execute
on	the	last	day	of	every	month	because	you	can't	set	the	dayofmonth	value	to	cover	every
month's	last	day.	A	common	method	is	to	add	an	if-then	statement	that	uses	the	date	command
to	check	if	tomorrow's	date	is	the	first	day	of	the	month	(01):

00	12	28-31	*	*	if	["$(date	+%d	-d	tomorrow)"	=	01]	;	then	command	;	fi

This	line	checks	on	the	potential	last	days	of	a	month	(28-31)	at	12:00	noon	to	see	if	it	is	indeed
the	last	day	of	the	month,	and	if	so,	cron	runs	command.

Another	method	replaces	command	with	a	controlling	script	and	runs	it	on	potential	last	days
of	the	month.	The	controlling	script	contains	an	if	-	then	statement	to	check	if	tomorrow's	date
is	the	first	day	of	the	month.	When	tomorrow	is	the	1st,	the	controlling	script	issues	the
command	to	execute	the	script	that	must	run	on	the	month's	last	day.

The	command	list	must	specify	the	full	command	pathname	or	shell	script	to	run.	You	can	add	any	command-line
parameters	or	redirection	symbols	you	like,	as	a	regular	command	line:

15	10	*	*	*	/home/christine/backup.sh>	backup.out

The	cron	program	runs	the	script	using	the	user	account	that	submitted	the	job.	Thus,	you	must	have	the	proper
permissions	to	access	the	script	(or	command)	and	output	files	specified	in	the	command	listing.

Building	the	cron	table
Each	system	user	can	have	their	own	cron	table	(including	the	root	user)	for	running	scheduled	jobs.	Linux	provides
the	crontab	command	for	handling	the	cron	table.	To	list	an	existing	cron	table,	use	the	-l	parameter:

$	crontab	-l
no	crontab	for	christine
$

By	default,	each	user's	cron	table	file	doesn't	exist.	To	add	entries	to	your	cron	table,	use	the	-e	parameter.	When	you
do	that,	the	crontab	command	starts	a	text	editor	(Chapter	10,	“Working	with	Editors”)	with	the	existing	cron	table
(or	an	empty	file	if	it	doesn't	yet	exist).

Viewing	cron	directories
When	you	create	a	script	that	has	less	precise	execution	time	needs,	it	is	easier	to	use	one	of	the	preconfigured	cron
script	directories.	There	are	four	basic	directories:	hourly,	daily,	monthly,	and	weekly.

$	ls	/etc/cron.*ly
/etc/cron.daily:
0anacron		apt-compat				cracklib-runtime		logrotate		[...]
apport				bsdmainutils		dpkg														man-db					[...]
	
/etc/cron.hourly:
	
/etc/cron.monthly:
0anacron
	
/etc/cron.weekly:
0anacron		man-db		update-notifier-common
$

Thus,	if	you	have	a	script	that	needs	to	be	run	one	time	per	day,	just	copy	the	script	to	the	daily	directory	and	cron
executes	it	each	day.

Looking	at	the	anacron	program
The	only	problem	with	the	cron	program	is	that	it	assumes	that	your	Linux	system	is	operational	24	hours	a	day,	7
days	a	week.	Unless	you're	running	Linux	in	a	server	environment,	this	may	not	necessarily	be	true.

If	the	Linux	system	is	turned	off	at	the	time	a	job	is	scheduled	to	run	in	the	cron	table,	the	job	doesn't	run.	The	cron
program	doesn't	retroactively	run	missed	jobs	when	the	system	is	turned	back	on.	To	resolve	this	issue,	many	Linux
distributions	include	the	anacron	program.

If	anacron	determines	that	a	job	has	missed	a	scheduled	running,	it	runs	the	job	as	soon	as	possible.	This	means	that
if	your	Linux	system	is	turned	off	for	a	few	days,	when	it	starts	back	up	any	jobs	scheduled	to	run	during	the	time	it
was	off	are	automatically	run.	With	anacron	,	you're	guaranteed	that	a	job	is	run,	which	is	why	it	is	often	used	instead
of	cron	for	managing	scheduled	jobs.

The	anacron	program	deals	only	with	programs	located	in	the	cron	directories,	such	as	/etc/cron.monthly	.	It	uses
time	stamps	to	determine	if	the	jobs	have	been	run	at	the	proper	scheduled	intervals.	A	time	stamp	file	exists	for
each	cron	directory	and	is	located	in	/var/spool/anacron	:

$	ls	/var/spool/anacron
cron.daily		cron.monthly		cron.weekly
$
$	sudo	cat	/var/spool/anacron/cron.daily
[sudo]	password	for	christine:
20200619
$

The	anacron	program	has	its	own	table	(usually	located	at	/etc/anacrontab)	to	check	the	job	directories:

$	cat	/etc/anacrontab
#	/etc/anacrontab:	configuration	file	for	anacron
	
#	See	anacron(8)	and	anacrontab(5)	for	details.
	
SHELL=/bin/sh
PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin
HOME=/root
LOGNAME=root
	
#	These	replace	cron's	entries
1							5							cron.daily						run-parts	--report	/etc/cron.daily
7							10						cron.weekly					run-parts	--report	/etc/cron.weekly
@monthly	15					cron.monthly				run-parts	--report	/etc/cron.monthly
$

The	basic	format	of	the	anacron	table	is	slightly	different	from	that	of	the	cron	table:

period	delay	identifier	command

The	period	entry	defines	how	often	the	jobs	should	be	run,	specified	in	days.	The	anacron	program	uses	this	entry	to
check	against	the	jobs'	time	stamp	file.	The	delay	entry	specifies	how	many	minutes	after	the	system	starts	the
anacron	program	should	run	missed	scripts.

NOTE
The	anacron	utility	does	not	run	scripts	located	in	the	/etc/cron.hourly	directory.	This	is	because
the	anacron	program	does	not	deal	with	scripts	that	have	execution	time	needs	of	less	than	daily.

The	identifier	entry	is	a	unique	non-blank	character	string	—	for	example,	cron.weekly	.	It	is	used	to	uniquely
identify	the	job	in	log	messages	and	error	emails.	The	command	entry	contains	the	run-parts	program	and	a	cron
script	directory	name.	The	run-parts	program	is	responsible	for	running	any	script	in	the	directory	passed	to	it.

The	at	,	cron	,	and	anacron	utilities	all	have	their	place	in	keeping	your	scripts	running	at	their	scheduled	times.
However,	you	may	want	a	script's	execution	triggered	when	a	user	starts	a	new	Bash	shell	instead	of	at	a	particular
time	on	the	clock.	We'll	look	at	that	next.

Starting	scripts	with	a	new	shell
The	ability	to	run	a	script	every	time	a	user	starts	a	new	Bash	shell	(even	just	when	a	specific	user	starts	a	Bash	shell)
can	come	in	handy.	Sometimes,	you	want	to	set	shell	features	for	a	shell	session	or	ensure	that	a	specific	file	has
been	set.

Recall	that	the	user's	startup	files	run	when	they	log	into	the	Bash	shell	(covered	in	detail	in	Chapter	6,	“Using	Linux
Environment	Variables”).	Also,	remember	that	not	every	distribution	has	all	the	startup	files.	Essentially,	the	first
file	found	in	the	following	ordered	list	is	run	and	the	rest	are	ignored:

$HOME/.bash_profile

$HOME/.bash_login

$HOME/.profile

Therefore,	you	should	place	any	scripts	you	want	run	at	login	time	in	the	first	file	listed	for	your	distribution.

The	Bash	shell	runs	the	.bashrc	file	any	time	a	new	shell	is	started.	You	can	test	this	by	adding	a	simple	echo
statement	to	the	.bashrc	file	in	your	home	directory	and	starting	a	new	shell:

$	cat	$HOME/.bashrc
#	.bashrc
	
#	Source	global	definitions
if	[-f	/etc/bashrc];	then
								.	/etc/bashrc
fi
	
#	User	specific	environment
PATH="$HOME/.local/bin:$HOME/bin:$PATH"
export	PATH
	
#	Uncomment	the	following	line	if	you	don't	like	systemctl's	auto-paging	feature:
#	export	SYSTEMD_PAGER=
	
#	User	specific	aliases	and	functions
echo	"I'm	in	a	new	shell!"
$
$	bash
I'm	in	a	new	shell!
$
$	exit
exit
$

The	.bashrc	file	is	also	typically	run	from	one	of	the	Bash	startup	files.	Because	the	.bashrc	file	runs	both	when	you
log	into	the	Bash	shell	and	when	you	start	a	Bash	shell,	if	you	need	a	script	to	run	in	both	instances	place	your	shell
script	or	the	call	to	execute	your	script	inside	this	file.

Working	through	a	Practical	Example
In	this	section,	we'll	describe	a	script	that	puts	a	few	of	the	script	control	commands	we've	covered	in	this	chapter	to
a	practical	use	—	trapping	signals	for	a	script,	and	then	running	it	in	the	background.	This	particular	script	works
best	for	executing	small	scripts	you	already	use	that	need	protection	from	interrupting	signals	while	they	run.

For	ease	of	use,	the	controlling	script	accepts	signals	to	trap	as	script	options,	as	well	as	a	parameter	naming	the
script	to	run	by	employing	getopts	(Chapter	14,	“Handling	User	Input”).	The	script	option	to	denote	signals	is
handled	here	in	the	script:

while	getopts	S:	opt			#Signals	to	trap	listed	with	-S	option
do
					case	"$opt"	in
										S)	#	Found	the	-S	option
													signalList=""	#Set	signalList	to	null
													#
													for	arg	in	$OPTARG
													do
																		case	$arg	in
																		1)			#SIGHUP	signal	is	handled
																							signalList=$signalList"SIGHUP	"
																		;;
																		2)			#SIGINT	signal	is	handled
																							signalList=$signalList"SIGINT	"
																		;;
																		20)		#SIGTSTP	signal	is	handled
																							signalList=$signalList"SIGTSTP	"
																		;;
																		*)			#Unknown	or	unhandled	signal
																							echo	"Only	signals	1	2	and/or	20	are	allowed."
																							echo	"Exiting	script..."
																							exit
																		;;
																		esac
													done
													;;
										*)	echo	'Usage:	-S	"Signal(s)"	script-to-run-name'
													echo	'Exiting	script...'
													exit
													;;
					esac
					#
done

Notice	that	this	code	section	uses	while	and	for	loops	(Chapter	13,	“More	Structured	Commands”),	as	well	as	a	case
statement	(Chapter	12,	“Using	Structured	Commands”)	to	process	through	the	-S	option	and	its	accompanying
signal	numbers.	The	only	signals	allowed	for	trapping	with	this	script	are	SIGHUP	(1),	SIGINT	(2),	and	SIGTSTP	(20).	If
an	option	besides	-S	is	used	or	incorrect	signals	to	trap	are	listed,	“error”	messages	are	provided	to	the	script	user.

After	the	-S	option	and	its	parameters	are	processed,	the	script	determines	if	a	script	name	was	provided	using	$@
stored	in	the	$OPTIND	environment	variable:

shift	$[$OPTIND	-	1]	#Script	name	should	be	in	parameter
#
if	[-z	$@]
then
					echo
					echo	'Error:	Script	name	not	provided.'
					echo	'Usage:	-S	"Signal(s)"		script-to-run-name'
					echo	'Exiting	script...'
					exit
elif	[-O	$@]	&&	[-x	$@]
then
					scriptToRun=$@
					scriptOutput="$@.out"
else
					echo
					echo	"Error:	$@	is	either	not	owned	by	you	or	not	executable."
					echo	"Exiting..."
					exit
fi

If	the	script	name	parameter	is	provided,	a	few	additional	checks	are	done	to	ensure	that	the	script	file	is	owned	by
the	script	user	and	that	it	is	executable	via	if	-	then	and	elif	statements	(Chapter	12).	If	all	is	well,	the	script's	name
is	stored	in	another	variable,	scriptToRun	,	which	is	not	essential	but	adds	to	the	code's	clarity.	Additionally,	an
output	file	is	created	that	contains	the	script's	name	and	tacks	on	.out.

Now	that	we	have	the	script's	name	we	need	to	run	and	the	signals	to	block,	we're	ready	to	trap	signals	and	kick	off
the	script:

trap	""	$signalList		#Ignore	these	signals
#
source	$scriptToRun>	$scriptOutput	&		#Run	script	in	background
#
trap	--	$signalList		#Set	to	default	behavior
#

First	notice	we're	being	a	little	fancy	in	how	we	run	our	script.	Instead	of	using	bash	or	./	to	execute	the	file,	we're
employing	the	source	utility.	This	is	another	method	for	running	Bash	scripts	called	sourcing.	It	operates	just	like
using	bash	to	run	a	script	but	doesn't	create	a	subshell.	However,	source	does	not	deal	well	with	any	commands
listed	in	trap	besides	null	("").	That's	not	a	problem,	because	using	null	causes	the	source	executed	script	to	simply
ignore	any	signals	listed	in	the	trap	command.	Our	running	script	will	disregard	any	sent	$signalList	signals.	Once
$scriptToRun	is	kicked	off	into	the	background	to	execute,	its	output	is	saved	to	the	scriptOutput	file.

Another	item	to	notice	in	this	script	segment	is	the	second	trap	command.	Immediately	after	sending	$scriptToRun
into	the	background,	the	signal	traps	are	removed.	This	is	considered	good	form	—	trapping	signals	before	the	code
that	needs	the	traps,	and	then	removing	the	signal	traps	immediately	afterward.

Before	we	test	this	practical	script,	let's	look	at	a	script	that	was	created	specifically	to	test	this	code.	Nothing	too
exciting	here,	but	you'll	want	to	familiarize	yourself	with	the	script's	output	so	that	the	test's	output	file	will	make
sense:

$	cat	testTandR.sh
#!/bin/bash
#Test	script	to	use	with	trapandrun.sh
#
echo	"This	is	a	test	script."
#
count=1
while	[$count	-le	5]
do
					echo	"Loop	#$count"
					sleep	10
					count=$[$count	+	1]
done
#
echo	"This	is	the	end	of	test	script."
#exit
$

Now	we'll	run	the	test	and	send	the	trapped	signals	to	the	running	script	process	to	see	if	they	are	ignored	or
processed	in	a	default	manner.	First,	we'll	use	the	proper	syntax	for	specifying	to	our	script	(trapandrun.sh)	the
signals	to	ignore	(1	,	2	,	and	20)	and	the	name	of	our	script	for	it	to	execute	(testTandR.sh):

$./trapandrun.sh	-S	"1	2	20"	testTandR.sh
	
Running	the	testTandR.sh	script	in	background
while	trapping	signal(s):	SIGHUP	SIGINT	SIGTSTP
Output	of	script	sent	to:	testTandR.sh.out
	
$

Now	that	the	script	(testTandR.sh)	is	running,	we'll	use	the	ps	command	to	find	its	PID	and	the	kill	command	to
send	a	signal	to	it:

$	ps
				PID	TTY										TIME	CMD
			1637	pts/0				00:00:00	bash
			1701	pts/0				00:00:00	trapandrun.sh
			1702	pts/0				00:00:00	sleep
			1703	pts/0				00:00:00	ps
$
$	kill	-1	1701
$
$	cat	testTandR.sh.out
This	is	a	test	script.
Loop	#1
Loop	#2
$
$	ps
				PID	TTY										TIME	CMD
			1637	pts/0				00:00:00	bash
			1701	pts/0				00:00:00	trapandrun.sh
			1704	pts/0				00:00:00	sleep
			1706	pts/0				00:00:00	ps
$

You	can	tell	from	the	script's	output	file	as	well	as	the	second	ps	command	that	the	script	just	ignored	our	SIGHUP	(1)
signal	and	didn't	hang	up.	This	time,	let's	try	to	interrupt	the	script	using	the	SIGINT	(2)	signal:

$	kill	-2	1701
$
$	cat	testTandR.sh.out
This	is	a	test	script.
Loop	#1
Loop	#2
Loop	#3
$
$	ps
				PID	TTY										TIME	CMD
			1637	pts/0				00:00:00	bash
			1701	pts/0				00:00:00	trapandrun.sh
			1709	pts/0				00:00:00	sleep
			1711	pts/0				00:00:00	ps
$

The	script	ignored	this	signal	too!	So	far	it	is	running	as	we	planned.	Let's	try	sending	our	last	trapped	signal,
SIGTSTP	(20):

$	kill	-20	1701

$
$	ps
				PID	TTY										TIME	CMD
			1637	pts/0				00:00:00	bash
			1701	pts/0				00:00:00	trapandrun.sh
			1712	pts/0				00:00:00	sleep
			1714	pts/0				00:00:00	ps
$
$	cat	testTandR.sh.out
This	is	a	test	script.
Loop	#1
Loop	#2
Loop	#3
Loop	#4
Loop	#5
$
$	cat	testTandR.sh.out
This	is	a	test	script.
Loop	#1
Loop	#2
Loop	#3
Loop	#4
Loop	#5
This	is	the	end	of	test	script.
$
$	ps
				PID	TTY										TIME	CMD
			1637	pts/0				00:00:00	bash
			1718	pts/0				00:00:00	ps
$

It	worked	perfectly.	All	three	designated	signals	were	ignored,	and	the	script	ran	in	the	background	without
interruption.	Here's	the	controlling	script	in	its	entirety	for	your	perusal:

$	cat	trapandrun.sh
#!/bin/bash
#	Set	specified	signal	traps;	then	run	script	in	background
#
#######################	Check	Signals	to	Trap	#######################
#
while	getopts	S:	opt			#Signals	to	trap	listed	with	-S	option
do
					case	"$opt"	in
										S)	#	Found	the	-S	option
													signalList=""	#Set	signalList	to	null
													#
													for	arg	in	$OPTARG
													do
																		case	$arg	in
																		1)			#SIGHUP	signal	is	handled
																							signalList=$signalList"SIGHUP	"
																		;;
																		2)			#SIGINT	signal	is	handled
																							signalList=$signalList"SIGINT	"
																		;;
																		20)		#SIGTSTP	signal	is	handled
																							signalList=$signalList"SIGTSTP	"
																		;;
																		*)			#Unknown	or	unhandled	signal
																							echo	"Only	signals	1	2	and/or	20	are	allowed."
																							echo	"Exiting	script..."
																							exit
																		;;
																		esac
													done
													;;
										*)	echo	'Usage:	-S	"Signal(s)"	script-to-run-name'
													echo	'Exiting	script...'
													exit
													;;
					esac
					#
done
#
#######################	Check	Script	to	Run	#######################
#
shift	$[$OPTIND	-	1]	#Script	name	should	be	in	parameter
#
if	[-z	$@]
then
					echo
					echo	'Error:	Script	name	not	provided.'
					echo	'Usage:	-S	"Signal(s)"		script-to-run-name'
					echo	'Exiting	script...'
					exit
elif	[-O	$@]	&&	[-x	$@]
then

					scriptToRun=$@
					scriptOutput="$@.out"
else
					echo
					echo	"Error:	$@	is	either	not	owned	by	you	or	not	executable."
					echo	"Exiting..."
					exit
fi
#
#########################	Trap	and	Run	###########################
#
echo
echo	"Running	the	$scriptToRun	script	in	background"
echo	"while	trapping	signal(s):	$signalList"
echo	"Output	of	script	sent	to:	$scriptOutput"
echo
trap	""	$signalList		#Ignore	these	signals
#
source	$scriptToRun>	$scriptOutput	&		#Run	script	in	background
#
trap	--	$signalList		#Set	to	default	behavior
#
#######################	Exit	script	#######################
#
exit
$

One	item	we	hope	you	caught	in	reading	through	this	controlling	script	is	that	checking	whether	or	not	you	have
execute	permission	on	the	file	is	not	needed.	When	using	the	source	command	to	run	a	script,	just	as	with	bash	,	you
don't	need	execute	permissions	set	on	the	file.

What	improvements	did	you	consider	while	reading	through	this	script's	code?	How	about	modifying	it	so	that	the
script	user	has	the	option	of	running	the	script	in	the	future	using	the	at	utility?	You	might	consider	allowing	the
user	to	choose	between	running	the	script	at	the	default	priority	or	a	lower	one.	You	could	trap	all	the	controlling
script's	exits	so	that	all	the	exit	messages	are	consistent.	There	are	so	many	things	you	can	do	to	fine-tune	the
control	of	your	scripts!

Summary
The	Linux	system	allows	you	to	control	your	shell	scripts	by	using	signals.	The	Bash	shell	accepts	signals	and	passes
them	on	to	any	process	running	under	the	shell	process.	Linux	signals	allow	you	to	easily	kill	a	runaway	process	or
temporarily	pause	a	long-running	process.

You	can	use	the	trap	statement	in	your	scripts	to	catch	signals	and	perform	commands.	This	feature	provides	a
simple	way	to	control	whether	a	user	can	interrupt	your	script	while	it's	running.

By	default,	when	you	run	a	script	in	a	terminal	session	shell,	the	interactive	shell	is	suspended	until	the	script
completes.	You	can	cause	a	script	or	command	to	run	in	background	mode	by	adding	an	ampersand	sign	(&)	after
the	command	name.	When	you	run	a	script	or	command	in	background	mode,	the	interactive	shell	returns,	allowing
you	to	continue	entering	more	commands.

Any	background	processes	you	start	are	still	tied	to	your	terminal	session.	If	you	exit	the	terminal	session,	the
background	processes	also	exit.	To	prevent	this	from	happening,	use	the	nohup	command.	This	command	intercepts
any	signals	intended	for	the	command	that	would	stop	it	—	for	example,	when	you	exit	the	terminal	session.	This
allows	scripts	to	continue	running	in	background	mode	even	if	you	exit	the	terminal	session.

When	you	move	a	process	to	background	mode,	you	can	still	control	what	happens	to	it.	The	jobs	command	allows
you	to	view	processes	started	from	the	shell	session.	After	you	know	the	job	ID	of	a	background	process,	you	can	use
the	kill	command	to	send	Linux	signals	to	the	process	or	use	the	fg	command	to	bring	the	process	back	to	the
foreground	in	the	shell	session.	You	can	suspend	a	running	foreground	process	by	using	the	Ctrl+Z	key	combination
and	place	it	back	in	background	mode	by	using	the	bg	command.

The	nice	and	renice	commands	allow	you	to	change	the	priority	level	of	a	process.	By	giving	a	process	a	lower
priority,	you	give	other,	higher-priority	processes	more	time	from	the	CPU.	This	comes	in	handy	when	running	long
processes	that	can	take	lots	of	CPU	time.

In	addition	to	controlling	processes	while	they're	running,	you	can	determine	when	a	process	starts	on	the	system.
Instead	of	running	a	script	directly	from	the	command-line	interface	prompt,	you	can	schedule	the	process	to	run	at
an	alternative	time.	You	can	accomplish	this	in	several	different	ways.	The	at	command	enables	you	to	run	a	script
once	at	a	preset	time.	The	cron	program	provides	an	interface	that	can	run	scripts	at	a	regularly	scheduled	interval.
And	the	anacron	utility	ensures	scripts	that	need	to	run	are	executed	in	a	timely	manner.

Finally,	the	Linux	system	provides	script	files	for	you	to	use	for	scheduling	your	scripts	to	run	whenever	a	user	starts
a	new	Bash	shell.	Similarly,	the	startup	files,	such	as	.bashrc	,	are	located	in	every	user's	home	directory	to	provide	a
location	to	place	scripts	and	commands	that	run	with	a	new	shell.

In	the	next	chapter,	where	we're	introducing	the	Part	III:	Advanced	Shell	Scripting	section,	we	look	at	how	to	write
script	functions.	Script	functions	allow	you	to	write	code	blocks	once	and	then	use	them	in	multiple	locations
throughout	your	script.	This	keeps	your	code	cleaner	and	makes	script	updates	much	easier.

Part	III
Advanced	Shell	Scripting
IN	THIS	PART

Chapter	17	Creating	Functions

Chapter	18	Writing	Scripts	for	Graphical	Desktops

Chapter	19	Introducing	sed	and	gawk

Chapter	20	Regular	Expressions

Chapter	21	Advanced	sed

Chapter	22	Advanced	gawk

Chapter	23	Working	with	Alternative	Shells

CHAPTER	17
Creating	Functions
IN	THIS	CHAPTER

Exploring	basic	script	functions

Returning	a	value	from	a	function

Using	variables	in	functions

Investigating	array	variables	and	functions

Considering	function	recursion

Creating	a	library

Using	functions	on	the	command	line

Often	while	writing	shell	scripts,	you'll	find	yourself	using	the	same	code	in	multiple	locations.	If	it's	just	a	small
code	snippet,	it's	usually	not	that	big	a	deal.	However,	rewriting	large	chunks	of	code	multiple	times	in	your	shell
script	can	get	tiring.	The	Bash	shell	provides	a	way	to	help	you	out	by	supporting	user-defined	functions.	You	can
encapsulate	your	shell	script	code	into	a	function	and	use	it	as	many	times	as	you	want,	anywhere	in	your	script.
This	chapter	walks	you	through	the	process	of	creating	your	own	shell	script	functions	and	demonstrates	how	to	use
them	in	other	shell	script	applications.

Exploring	Basic	Script	Functions
As	you	start	writing	more	complex	shell	scripts,	you'll	find	yourself	reusing	parts	of	code	that	perform	specific	tasks.
Sometimes,	it's	something	simple,	such	as	displaying	a	text	message	and	retrieving	an	answer	from	the	script	users.
Other	times,	it's	a	complicated	calculation	that's	used	multiple	times	in	your	script	as	part	of	a	larger	process.

In	each	of	these	situations,	it	can	get	tiresome	writing	the	same	blocks	of	code	over	and	over	in	your	script.	It	would
be	nice	to	just	write	the	block	of	code	once	and	be	able	to	refer	to	that	block	of	code	anywhere	in	your	script	without
having	to	rewrite	it.

The	Bash	shell	provides	a	feature	allowing	you	to	do	just	that.	Functions	are	blocks	of	script	code	that	you	assign	a
name	to	and	reuse	anywhere	in	your	code.	Whenever	you	need	to	use	that	block	of	code	in	your	script,	you	simply
use	the	function	name	you	assigned	it	(referred	to	as	calling	the	function).	This	section	describes	how	to	create	and
use	functions	in	your	shell	scripts.

Creating	a	function
You	can	use	one	of	two	formats	to	create	functions	in	Bash	shell	scripts.	The	first	format	uses	the	keyword	function	,
along	with	the	function	name	you	assign	to	the	block	of	code:

function	name	{
				commands
}

The	name	attribute	defines	a	unique	name	assigned	to	the	function.	Each	function	you	define	in	your	script	must	be
assigned	a	unique	name.

The	commands	are	one	or	more	Bash	shell	commands	that	make	up	your	function.	When	you	call	the	function,	the
Bash	shell	executes	each	of	the	commands	in	the	order	in	which	they	appear	in	the	function,	just	as	in	a	normal
script.

The	second	format	for	defining	a	function	in	a	Bash	shell	script	more	closely	follows	how	functions	are	defined	in
other	programming	languages:

name()	{
commands
}

The	empty	parentheses	after	the	function	name	indicate	that	you're	defining	a	function.	The	same	naming	rules
apply	in	this	format	as	in	the	original	shell	script	function	format.

Using	functions
To	use	a	function	in	your	script,	specify	the	function	name	on	a	line,	just	as	you	would	any	other	shell	command:

$	cat	test1
#!/bin/bash
#	using	a	function	in	a	script
	
function	func1	{
			echo	"This	is	an	example	of	a	function"
}
	

count=1
while	[$count	-le	5]
do
			func1
			count=$[$count	+	1]
done
	
echo	"This	is	the	end	of	the	loop"
func1
echo	"Now	this	is	the	end	of	the	script"
$	
$./test1
This	is	an	example	of	a	function
This	is	an	example	of	a	function
This	is	an	example	of	a	function
This	is	an	example	of	a	function
This	is	an	example	of	a	function
This	is	the	end	of	the	loop
This	is	an	example	of	a	function
Now	this	is	the	end	of	the	script
$

Each	time	you	reference	the	func1	function	name,	the	Bash	shell	returns	to	the	func1	function	definition	and
executes	any	commands	you	defined	there.

The	function	definition	doesn't	have	to	be	the	first	thing	in	your	shell	script,	but	be	careful.	If	you	attempt	to	use	a
function	before	it's	defined,	you'll	get	an	error	message:

$	cat	test2
#!/bin/bash
#	using	a	function	located	in	the	middle	of	a	script
	
count=1
echo	"This	line	comes	before	the	function	definition"
	
function	func1	{
			echo	"This	is	an	example	of	a	function"
}
	
while	[$count	-le	5]
do
			func1
			count=$[$count	+	1]
done
echo	"This	is	the	end	of	the	loop"
func2
echo	"Now	this	is	the	end	of	the	script"
	
function	func2	{
			echo	"This	is	an	example	of	a	function"
}
$	
$./test2
This	line	comes	before	the	function	definition
This	is	an	example	of	a	function
This	is	an	example	of	a	function
This	is	an	example	of	a	function
This	is	an	example	of	a	function
This	is	an	example	of	a	function
This	is	the	end	of	the	loop
./test2:	func2:	command	not	found
Now	this	is	the	end	of	the	script
$

The	first	function,	func1	,	was	defined	after	a	couple	of	statements	in	the	script,	which	is	perfectly	fine.	When	the
func1	function	was	used	in	the	script,	the	shell	knew	where	to	find	it.

However,	the	script	attempted	to	use	the	func2	function	before	it	was	defined.	Because	the	func2	function	wasn't
defined,	when	the	script	reached	the	place	where	we	used	it,	it	produced	an	error	message.

You	also	need	to	be	careful	about	your	function	names.	Remember,	each	function	name	must	be	unique,	or	you'll
have	a	problem.	If	you	redefine	a	function,	the	new	definition	overrides	the	original	function	definition,	without
producing	any	error	messages:

$	cat	test3
#!/bin/bash
#	testing	using	a	duplicate	function	name
	
function	func1	{
echo	"This	is	the	first	definition	of	the	function	name"
}
	
func1
	
function	func1	{
			echo	"This	is	a	repeat	of	the	same	function	name"
}

	
func1
echo	"This	is	the	end	of	the	script"
$	
$./test3
This	is	the	first	definition	of	the	function	name
This	is	a	repeat	of	the	same	function	name
This	is	the	end	of	the	script
$

The	original	definition	of	the	func1	function	works	fine,	but	after	the	second	definition	of	the	func1	function,	any
subsequent	uses	of	the	function	utilize	the	second	definition.

Returning	a	Value	from	a	Function
The	Bash	shell	treats	functions	like	mini-scripts,	complete	with	an	exit	status	(see	Chapter	11,	“Basic	Script
Building”).	There	are	three	different	ways	you	can	generate	an	exit	status	for	your	functions.

The	default	exit	status
By	default,	the	exit	status	of	a	function	is	the	exit	status	returned	by	the	last	command	in	the	function.	After	the
function	executes,	you	use	the	standard	$?	variable	to	determine	the	exit	status	of	the	function:

$	cat	test4
#!/bin/bash
#	testing	the	exit	status	of	a	function
	
func1()	{
			echo	"trying	to	display	a	non-existent	file"
			ls	-l	badfile
}
	
echo	"testing	the	function:	"
func1
echo	"The	exit	status	is:	$?"
$	
$./test4
testing	the	function:
trying	to	display	a	non-existent	file
ls:	badfile:	No	such	file	or	directory
The	exit	status	is:	1
$

The	exit	status	of	the	function	is	1	because	the	last	command	in	the	function	failed.	However,	you	have	no	way	of
knowing	whether	or	not	any	of	the	other	commands	in	the	function	completed	successfully.	Look	at	this	example:

$	cat	test4b
#!/bin/bash
#	testing	the	exit	status	of	a	function
	
func1()	{
			ls	-l	badfile
			echo	"This	was	a	test	of	a	bad	command"
}
	
echo	"testing	the	function:"
func1
echo	"The	exit	status	is:	$?"
$	
$./test4b
testing	the	function:
ls:	badfile:	No	such	file	or	directory
This	was	a	test	of	a	bad	command
The	exit	status	is:	0
$

This	time,	because	the	function	ended	with	an	echo	statement	that	completed	successfully,	the	exit	status	of	the
function	is	0,	even	though	one	of	the	commands	in	the	function	failed.	Using	the	default	exit	status	of	a	function	can
be	a	dangerous	practice.	Fortunately,	we	have	a	couple	of	other	solutions.

Using	the	return	command
The	Bash	shell	uses	the	return	command	to	exit	a	function	with	a	specific	exit	status.	The	return	command	allows
you	to	specify	a	single	integer	value	to	define	the	function	exit	status,	providing	an	easy	way	for	you	to
programmatically	set	the	exit	status	of	your	function:

$	cat	test5
#!/bin/bash
#	using	the	return	command	in	a	function
	
function	dbl	{
			read	-p	"Enter	a	value:	"	value
			echo	"doubling	the	value"
			return	$[$value	*	2]

}
	
dbl
echo	"The	new	value	is	$?"
$

The	dbl	function	doubles	the	integer	value	contained	in	the	$value	variable	provided	by	the	user	input.	It	then
returns	the	result	using	the	return	command,	which	the	script	displays	using	the	$?	variable.

You	must	be	careful,	however,	when	using	this	technique	to	return	a	value	from	a	function.	Keep	the	following	two
tips	in	mind	to	avoid	problems:

Remember	to	retrieve	the	return	value	as	soon	as	the	function	completes.

Remember	that	an	exit	status	must	be	in	the	range	of	0	to	255.

If	you	execute	any	other	commands	before	retrieving	the	value	of	the	function	using	the	$?	variable,	the	return	value
from	the	function	is	lost.	Remember	that	the	$?	variable	returns	the	exit	status	of	the	last	executed	command.

The	second	problem	defines	a	limitation	for	using	this	return	value	technique.	Because	an	exit	status	must	be	less
than	256,	the	result	of	your	function	must	produce	an	integer	value	less	than	256.	Any	value	over	that	returns	an
error	value:

$./test5
Enter	a	value:	200
doubling	the	value
The	new	value	is	1
$

You	cannot	use	this	return	value	technique	if	you	need	to	return	either	larger	integer	values	or	a	string	value.
Instead,	you	need	to	use	another	method,	demonstrated	in	the	next	section.

Using	function	output
Just	as	you	can	capture	the	output	of	a	command	to	a	shell	variable,	you	can	also	capture	the	output	of	a	function	to
a	shell	variable.	You	can	use	this	technique	to	retrieve	any	type	of	output	from	a	function	to	assign	to	a	variable:

	result=$(dbl)

This	command	assigns	the	output	of	the	dbl	function	to	the	$result	shell	variable.	Here's	an	example	of	using	this
method	in	a	script:

$	cat	test5b
#!/bin/bash
#	using	the	echo	to	return	a	value
	
function	dbl	{
			read	-p	"Enter	a	value:	"	value
			echo	$[$value	*	2]
}
	
result=$(dbl)
echo	"The	new	value	is	$result"
$	
$./test5b
Enter	a	value:	200
The	new	value	is	400
$	
$./test5b
Enter	a	value:	1000
The	new	value	is	2000
$

The	new	function	now	uses	an	echo	statement	to	display	the	result	of	the	calculation.	The	script	just	captures	the
output	of	the	dbl	function	instead	of	looking	at	the	exit	status	for	the	answer.

There's	a	subtle	trick	that	this	example	demonstrates.	You'll	notice	that	the	db1	function	really	outputs	two
messages.	The	read	command	outputs	a	short	message	querying	the	user	for	the	value.	The	Bash	shell	script	is	smart
enough	to	not	consider	this	as	part	of	the	STDOUT	output	and	ignores	it.	If	you	had	used	an	echo	statement	to	produce
this	query	message	to	the	user,	it	would	have	been	captured	by	the	shell	variable	as	well	as	the	output	value.

NOTE
Using	this	technique,	you	can	also	return	floating-point	and	string	values,	making	this	an
extremely	versatile	method	for	returning	values	from	functions.

Using	Variables	in	Functions
You	might	have	noticed	in	the	test5	example	in	the	previous	section	that	we	used	a	variable	called	$value	within	the
function	to	hold	the	value	that	it	processed.	When	you	use	variables	in	your	functions,	you	need	to	be	somewhat

careful	about	how	you	define	and	handle	them.	This	is	a	common	cause	of	problems	in	shell	scripts.	This	section
goes	over	a	few	techniques	for	handling	variables	both	inside	and	outside	your	shell	script	functions.

Passing	parameters	to	a	function
As	mentioned	earlier	in	the	“Returning	a	Value	from	a	Function”	section,	the	Bash	shell	treats	functions	just	like
mini-scripts.	This	means	that	you	can	pass	parameters	to	a	function	just	like	a	regular	script	(see	Chapter	14,
“Handling	User	Input”).

Functions	can	use	the	standard	parameter	environment	variables	to	represent	any	parameters	passed	to	the
function	on	the	command	line.	For	example,	the	name	of	the	function	is	defined	in	the	$0	variable,	and	any
parameters	on	the	function	command	line	are	defined	using	the	variables	$1,	$2,	and	so	on.	You	can	also	use	the
special	variable	$#	to	determine	the	number	of	parameters	passed	to	the	function.

When	specifying	the	function	in	your	script,	you	must	provide	the	parameters	on	the	same	command	line	as	the
function,	like	this:

func1	$value1	10

The	function	can	then	retrieve	the	parameter	values	using	the	parameter	environment	variables.	Here's	an	example
of	using	this	method	to	pass	values	to	a	function:

$	cat	test6
#!/bin/bash
#	passing	parameters	to	a	function
	
function	addem	{
			if	[$#	-eq	0]	||	[$#	-gt	2]
			then
						echo	-1
			elif	[$#	-eq	1]
			then
						echo	$[$1	+	$1]
			else
						echo	$[$1	+	$2]
			fi
}
	
echo	-n	"Adding	10	and	15:	"
value=$(addem	10	15)
echo	$value
echo	-n	"Let's	try	adding	just	one	number:	"
value=$(addem	10)
echo	$value
echo	-n	"Now	try	adding	no	numbers:	"
value=$(addem)
echo	$value
echo	-n	"Finally,	try	adding	three	numbers:	"
value=$(addem	10	15	20)
echo	$value
$	
$./test6
Adding	10	and	15:	25
Let's	try	adding	just	one	number:	20
Now	try	adding	no	numbers:	-1
Finally,	try	adding	three	numbers:	-1
$

The	addem	function	in	the	text6	script	first	checks	the	number	of	parameters	passed	to	it	by	the	script.	If	there	aren't
any	parameters,	or	if	there	are	more	than	two	parameters,	addem	returns	a	value	of	-1	.	If	there's	just	one	parameter,
addem	adds	the	parameter	to	itself	for	the	result.	If	there	are	two	parameters,	addem	adds	them	together	for	the	result.

Because	the	function	uses	the	special	parameter	environment	variables	for	its	own	parameter	values,	it	can't	directly
access	the	script	parameter	values	from	the	command	line	of	the	script.	The	following	example	fails:

$	cat	badtest1
#!/bin/bash
#	trying	to	access	script	parameters	inside	a	function
	
function	badfunc1	{
			echo	$[$1	*	$2]
}
	
if	[$#	-eq	2]
then
			value=$(badfunc1)
			echo	"The	result	is	$value"
else
			echo	"Usage:	badtest1	a	b"
fi
$	
$./badtest1
Usage:	badtest1	a	b
$./badtest1	10	15
./badtest1:	*		:	syntax	error:	operand	expected	(error	token	is	"*	

")
The	result	is
$

Even	though	the	function	uses	the	$1	and	$2	variables,	they	aren't	the	same	$1	and	$2	variables	available	in	the	main
part	of	the	script.	Instead,	if	you	want	to	use	those	values	in	your	function,	you	have	to	manually	pass	them	when
you	call	the	function:

$	cat	test7
#!/bin/bash
#	trying	to	access	script	parameters	inside	a	function
	
function	func7	{
			echo	$[$1	*	$2]
}
	
if	[$#	-eq	2]
then
			value=$(func7	$1	$2)
			echo	"The	result	is	$value"
else
			echo	"Usage:	badtest1	a	b"
fi
$	
$./test7
Usage:	badtest1	a	b
$./test7	10	15
The	result	is	150
$

When	we	pass	the	$1	and	$2	variables	to	the	function,	they	become	available	for	the	function	to	use,	just	like	any
other	parameter.

Handling	variables	in	a	function
One	thing	that	causes	problems	for	shell	script	programmers	is	the	scope	of	a	variable.	The	scope	is	where	the
variable	is	visible.	Variables	defined	in	functions	can	have	a	different	scope	than	regular	variables—that	is,	they	can
be	hidden	from	the	rest	of	the	script.

Functions	use	two	types	of	variables:

Global

Local

The	following	sections	describe	how	to	use	both	types	of	variables	in	your	functions.

Global	variables
Global	variables	are	variables	that	are	valid	anywhere	within	the	shell	script.	If	you	define	a	global	variable	in	the
main	section	of	a	script,	you	can	retrieve	its	value	inside	a	function.	Likewise,	if	you	define	a	global	variable	inside	a
function,	you	can	retrieve	its	value	in	the	main	section	of	the	script.

By	default,	any	variables	you	define	in	the	script	are	global	variables.	Variables	defined	outside	a	function	can	be
accessed	within	the	function	just	fine:

$	cat	test8
#!/bin/bash
#	using	a	global	variable	to	pass	a	value
	
function	dbl	{
			value=$[$value	*	2]
}
	
read	-p	"Enter	a	value:	"	value
dbl
echo	"The	new	value	is:	$value"
$	
$./test8
Enter	a	value:	450
The	new	value	is:	900
$

The	$value	variable	is	defined	outside	the	function	and	assigned	a	value	outside	the	function.	When	the	dbl	function
is	called,	the	variable	and	its	value	are	still	valid	inside	the	function.	When	the	variable	is	assigned	a	new	value	inside
the	function,	that	new	value	is	still	valid	when	the	script	references	the	variable.

This	practice	can	be	dangerous,	however,	especially	if	you	intend	to	use	your	functions	in	different	shell	scripts.	It
requires	that	you	know	exactly	what	variables	are	used	in	the	function,	including	any	variables	used	to	calculate
values	not	returned	to	the	script.	Here's	an	example	of	how	things	can	go	bad:

$	cat	badtest2
#!/bin/bash
#	demonstrating	a	bad	use	of	variables
	

function	func1	{
			temp=$[$value	+	5]
			result=$[$temp	*	2]
}
	
temp=4
value=6
	
func1
echo	"The	result	is	$result"
if	[$temp	-gt	$value]
then
			echo	"temp	is	larger"
else
			echo	"temp	is	smaller"
fi
$	
$./badtest2
The	result	is	22
temp	is	larger
$

Because	the	$temp	variable	was	used	in	the	function,	its	value	is	compromised	in	the	script,	producing	a	result	that
you	may	not	have	intended.	There's	an	easy	way	to	solve	this	problem	in	your	functions,	as	shown	in	the	next
section.

Local	variables
Instead	of	using	global	variables	in	functions,	any	variables	that	the	function	uses	internally	can	be	declared	as	local
variables.	To	do	that,	just	use	the	local	keyword	in	front	of	the	variable	declaration:

local	temp

You	can	also	use	the	local	keyword	in	an	assignment	statement	while	assigning	a	value	to	the	variable:

local	temp=$[$value	+	5]

The	local	keyword	ensures	that	the	variable	is	limited	to	within	the	function.	If	a	variable	with	the	same	name
appears	outside	the	function	in	the	script,	the	shell	keeps	the	two	variable	values	separate.	That	means	you	can
easily	keep	your	function	variables	separate	from	your	script	variables	and	share	only	the	ones	you	want	to	share:

$	cat	test9
#!/bin/bash
#	demonstrating	the	local	keyword
	
function	func1	{
			local	temp=$[$value	+	5]
			result=$[$temp	*	2]
}
	
temp=4
value=6
	
func1
echo	"The	result	is	$result"
if	[$temp	-gt	$value]
then
			echo	"temp	is	larger"
else
			echo	"temp	is	smaller"
fi
$	
$./test9
The	result	is	22
temp	is	smaller
$

Now	when	you	use	the	$temp	variable	within	the	func1	function,	it	doesn't	affect	the	value	assigned	to	the	$temp
variable	in	the	main	script.

Investigating	Array	Variables	and	Functions
Chapter	5,	“Understanding	the	Shell,”	discussed	an	advanced	way	of	allowing	a	single	variable	to	hold	multiple
values	by	using	arrays.	Using	array	variable	values	with	functions	is	a	little	tricky,	and	there	are	some	special
considerations.	This	section	describes	a	technique	that	allows	you	to	do	that.

Passing	arrays	to	functions
The	art	of	passing	an	array	variable	to	a	script	function	can	be	confusing.	If	you	try	to	pass	the	array	variable	as	a
single	parameter,	it	doesn't	work:

$	cat	badtest3
#!/bin/bash
#	trying	to	pass	an	array	variable

	
function	testit	{
			echo	"The	parameters	are:	$@"
			thisarray=$1
			echo	"The	received	array	is	${thisarray[*]}"
}
	
myarray=(1	2	3	4	5)
echo	"The	original	array	is:	${myarray[*]}"
testit	$myarray
$	
$./badtest3
The	original	array	is:	1	2	3	4	5
The	parameters	are:	1
The	received	array	is	1
$

If	you	try	using	the	array	variable	as	a	function	parameter,	the	function	only	picks	up	the	first	value	of	the	array
variable.

To	solve	this	problem,	you	must	disassemble	the	array	variable	into	its	individual	values	and	use	the	values	as
function	parameters.	Inside	the	function,	you	can	reassemble	all	the	parameters	into	a	new	array	variable.	Here's	an
example	of	doing	this:

$	cat	test10
#!/bin/bash
#	array	variable	to	function	test
	
function	testit	{
			local	newarray
			newarray=(`echo	"$@"`)
			echo	"The	new	array	value	is:	${newarray[*]}"
}
	
myarray=(1	2	3	4	5)
echo	"The	original	array	is	${myarray[*]}"
testit	${myarray[*]}
$	
$./test10
The	original	array	is	1	2	3	4	5
The	new	array	value	is:	1	2	3	4	5
$

The	script	uses	the	$myarray	variable	to	hold	all	the	individual	array	values	to	place	them	all	on	the	command	line
for	the	function.	The	function	then	rebuilds	the	array	variable	from	the	command-line	parameters.	Once	inside	the
function,	the	array	can	be	used	just	like	any	other	array:

$	cat	test11
#!/bin/bash
#	adding	values	in	an	array
	
function	addarray	{
			local	sum=0
			local	newarray
			newarray=(`echo	"$@"`)
			for	value	in	${newarray[*]}
			do
						sum=$[$sum	+	$value]
			done
			echo	$sum
}
	
myarray=(1	2	3	4	5)
echo	"The	original	array	is:	${myarray[*]}"
arg1=$(echo	${myarray[*]})
result=$(addarray	$arg1)
echo	"The	result	is	$result"
$	
$./test11
The	original	array	is:	1	2	3	4	5
The	result	is	15
$

The	addarray	function	iterates	through	the	array	values,	adding	them	together.	You	can	put	any	number	of	values	in
the	myarray	array	variable,	and	the	addarray	function	adds	them.

Returning	arrays	from	functions
Passing	an	array	variable	from	a	function	back	to	the	shell	script	uses	a	similar	technique.	The	function	uses	an	echo
statement	to	output	the	individual	array	values	in	the	proper	order,	and	the	script	must	reassemble	them	into	a	new
array	variable:

$	cat	test12
#!/bin/bash
#	returning	an	array	value
	

function	arraydblr	{
			local	origarray
			local	newarray
			local	elements
			local	i
			origarray=($(echo	"$@"))
			newarray=($(echo	"$@"))
			elements=$[$#	-	1]
			for	((i	=	0;	i	<=	$elements;	i++))
			{
						newarray[$i]=$[${origarray[$i]}	*	2]
			}
			echo	${newarray[*]}
}
	
myarray=(1	2	3	4	5)
echo	"The	original	array	is:	${myarray[*]}"
arg1=$(echo	${myarray[*]})
result=($(arraydblr	$arg1))
echo	"The	new	array	is:	${result[*]}"
$	
$./test12
The	original	array	is:	1	2	3	4	5
The	new	array	is:	2	4	6	8	10

The	script	passes	the	array	value,	using	the	$arg1	variable	to	the	arraydblr	function.	The	arraydblr	function
reassembles	the	array	into	a	new	array	variable,	and	it	makes	a	copy	for	the	output	array	variable.	It	then	iterates
through	the	individual	array	variable	values,	doubles	each	value,	and	places	it	into	the	copy	of	the	array	variable	in
the	function.

The	arraydblr	function	then	uses	the	echo	statement	to	output	the	individual	values	of	the	array	variable	values.	The
script	uses	the	output	of	the	arraydblr	function	to	reassemble	a	new	array	variable	with	the	values.

Considering	Function	Recursion
One	feature	that	local	function	variables	provide	is	self-containment.	A	self-contained	function	doesn't	use	any
resources	outside	the	function,	other	than	the	variables	that	the	script	passes	to	it	in	the	command	line.

This	feature	enables	the	function	to	be	called	recursively,	which	means	that	the	function	calls	itself	to	reach	an
answer.	Usually,	a	recursive	function	has	a	base	value	that	it	eventually	iterates	down	to.	Many	advanced
mathematical	algorithms	use	recursion	to	reduce	a	complex	equation	down	one	level	repeatedly,	until	they	get	to	the
level	defined	by	the	base	value.

The	classic	example	of	a	recursive	algorithm	is	calculating	factorials.	A	factorial	of	a	number	is	the	value	of	the
preceding	numbers	multiplied	with	the	number.	Thus,	to	find	the	factorial	of	5,	you'd	perform	the	following
equation:

5!	=	1	*	2	*	3	*	4	*	5	=	120

Using	recursion,	the	equation	is	reduced	down	to	the	following	format:

x!	=	x	*	(x-1)!

or	in	English,	the	factorial	of	x	is	equal	to	x	times	the	factorial	of	x-1.	This	can	be	expressed	in	a	simple	recursive
script:

function	factorial	{
			if	[$1	-eq	1]
			then
						echo	1
			else
						local	temp=$[$1	-	1]
						local	result=`factorial	$temp`
						echo	$[$result	*	$1]
			fi
}

The	factorial	function	uses	itself	to	calculate	the	value	for	the	factorial:

$	cat	test13
#!/bin/bash
#	using	recursion
	
function	factorial	{
			if	[$1	-eq	1]
			then
						echo	1
			else
						local	temp=$[$1	-	1]
						local	result=$(factorial	$temp)
						echo	$[$result	*	$1]
			fi
}
	
read	-p	"Enter	value:	"	value

result=$(factorial	$value)
echo	"The	factorial	of	$value	is:	$result"
$	
$./test13
Enter	value:	5
The	factorial	of	5	is:	120
$

Using	the	factorial	function	is	easy.	Having	created	a	function	like	this,	you	may	want	to	use	it	in	other	scripts.	Next,
let's	look	at	how	to	do	that	efficiently.

Creating	a	Library
It's	easy	to	see	how	functions	can	help	save	typing	in	a	single	script,	but	what	if	you	just	happen	to	use	the	same
single	code	block	between	scripts?	It's	obviously	challenging	if	you	have	to	define	the	same	function	in	each	script,
only	to	use	it	one	time	in	each	script.

There's	a	solution	for	that	problem!	The	Bash	shell	allows	you	to	create	a	library	file	for	your	functions	and	then
reference	that	single	library	file	in	as	many	scripts	as	you	need	to.

The	first	step	in	the	process	is	to	create	a	common	library	file	that	contains	the	functions	you	need	in	your	scripts.
Here's	a	simple	library	file	called	myfuncs	that	defines	three	simple	functions:

$	cat	myfuncs
#	my	script	functions
	
function	addem	{
			echo	$[$1	+	$2]
}
	
function	multem	{
			echo	$[$1	*	$2]
}
	
function	divem	{
			if	[$2	-ne	0]
			then
						echo	$[$1	/	$2]
			else
						echo	-1
			fi
}
$

The	next	step	is	to	include	the	myfuncs	library	file	in	your	script	files	that	want	to	use	any	of	the	functions.	This	is
where	things	get	tricky.

The	problem	is	with	the	scope	of	shell	functions.	As	with	environment	variables,	shell	functions	are	valid	only	for	the
shell	session	in	which	you	define	them.	If	you	run	the	myfuncs	shell	script	from	your	shell	command-line	interface
prompt,	the	shell	creates	a	new	shell	and	runs	the	script	in	that	new	shell.	This	defines	the	three	functions	for	that
shell,	but	when	you	try	to	run	another	script	that	uses	those	functions,	they	aren't	available.

This	applies	to	scripts	as	well.	If	you	try	to	just	run	the	library	file	as	a	regular	script	file,	the	functions	don't	appear
in	your	script:

$	cat	badtest4
#!/bin/bash
#	using	a	library	file	the	wrong	way
./myfuncs
	
result=$(addem	10	15)
echo	"The	result	is	$result"
$	
$./badtest4
./badtest4:	addem:	command	not	found
The	result	is
$

The	key	to	using	function	libraries	is	the	source	command.	The	source	command	executes	commands	within	the
current	shell	context	instead	of	creating	a	new	shell	to	execute	them.	You	use	the	source	command	to	run	the	library
file	script	inside	your	shell	script.	Doing	so	makes	the	functions	available	to	the	script.

The	source	command	has	a	shortcut	alias,	called	the	dot	operator.	To	source	the	myfuncs	library	file	in	a	shell	script,
you	just	need	to	add	the	following	line:

.	./myfuncs

This	example	assumes	that	the	myfuncs	library	file	is	located	in	the	same	directory	as	the	shell	script.	If	not,	you	need
to	use	the	appropriate	path	to	access	the	file.	Here's	an	example	of	creating	a	script	that	uses	the	myfuncs	library	file:

$	cat	test14
#!/bin/bash
#	using	functions	defined	in	a	library	file
.	./myfuncs

	
value1=10
value2=5
result1=$(addem	$value1	$value2)
result2=$(multem	$value1	$value2)
result3=$(divem	$value1	$value2)
echo	"The	result	of	adding	them	is:	$result1"
echo	"The	result	of	multiplying	them	is:	$result2"
echo	"The	result	of	dividing	them	is:	$result3"
$	
$./test14
The	result	of	adding	them	is:	15
The	result	of	multiplying	them	is:	50
The	result	of	dividing	them	is:	2
$

The	script	successfully	uses	the	functions	defined	in	the	myfuncs	library	file.

Using	Functions	on	the	Command	Line
You	can	use	script	functions	to	create	some	pretty	complex	operations.	Sometimes,	it	would	be	nice	to	be	able	to	use
these	functions	directly	on	the	command-line	interfacet.

Just	as	you	can	use	a	script	function	as	a	command	in	a	shell	script,	you	can	also	use	a	script	function	as	a	command
in	the	command-line	interface.	This	is	a	nice	feature	because	after	you	define	the	function	in	the	shell,	you	can	use	it
from	any	directory	on	the	system;	you	don't	have	to	worry	about	a	script	being	in	your	PATH	environment	variable.
The	trick	is	to	get	the	shell	to	recognize	the	function.	You	can	do	that	in	a	couple	of	ways.

Creating	functions	on	the	command	line
Because	the	shell	interprets	commands	as	you	type	them,	you	can	define	a	function	directly	on	the	command	line.
You	can	do	that	in	two	ways.

The	first	method	defines	the	function	all	on	one	line:

$	function	divem	{	echo	$[$1	/	$2];		}
$	divem	100	5
20
$

When	you	define	the	function	on	the	command	line,	you	must	remember	to	include	a	semicolon	at	the	end	of	each
command	so	that	the	shell	knows	where	to	separate	commands:

$	function	doubleit	{	read	-p	"Enter	value:	"	value;	echo	$[
	$value	*	2];	}
$	
$	doubleit
Enter	value:	20
40
$

The	other	method	is	to	use	multiple	lines	to	define	the	function.	When	you	do	that,	the	Bash	shell	uses	the	secondary
prompt	to	ask	you	for	more	commands.	Using	this	method,	you	don't	need	to	place	a	semicolon	at	the	end	of	each
command;	just	press	the	Enter	key.

$	function	multem	{
>	echo	$[$1	*	$2]
>	}
$	multem	2	5
10
$

When	you	use	the	brace	at	the	end	of	the	function,	the	shell	knows	that	you're	finished	defining	the	function.

WARNING
Be	extremely	careful	when	creating	functions	on	the	command	line.	If	you	use	a	function	with
the	same	name	as	a	built-in	command	or	another	command,	the	function	overrides	the
original	command.

Defining	functions	in	the	.bashrc	file
The	obvious	downside	to	defining	shell	functions	directly	on	the	command	line	is	that	when	you	exit	the	shell,	your
function	disappears.	For	complex	functions,	this	can	become	a	problem.

A	much	simpler	method	is	to	define	the	function	in	a	place	where	it	is	reloaded	by	the	shell	each	time	you	start	a	new
shell.

The	best	place	to	do	that	is	the	.bashrc	file.	The	Bash	shell	looks	for	this	file	in	your	home	directory	each	time	it
starts,	whether	interactively	or	as	the	result	of	starting	a	new	shell	from	within	an	existing	shell.

Directly	defining	functions
You	can	define	the	functions	directly	in	the	.bashrc	file	in	your	home	directory.	Most	Linux	distributions	already
define	some	things	in	the	.bashrc	file,	so	be	careful	not	to	remove	those	items.	Just	add	your	functions	to	the	bottom
of	the	existing	file.	Here's	an	example	of	doing	that:

$	cat	.bashrc
#	.bashrc
	
#	Source	global	definitions
if	[-r	/etc/bashrc];	then
								.	/etc/bashrc
fi
	
function	addem	{
			echo	$[$1	+	$2]
}
$

The	function	doesn't	take	effect	until	the	next	time	you	start	a	new	Bash	shell.	After	you	do	that,	you	can	use	the
function	anywhere	on	the	system.

Sourcing	function	files
Just	as	in	a	shell	script,	you	can	use	the	source	command	(or	its	alias,	the	dot	operator)	to	add	functions	from	an
existing	library	file	to	your	.bashrc	script:

$	cat	.bashrc
#	.bashrc
	
#	Source	global	definitions
if	[-r	/etc/bashrc];	then
								.	/etc/bashrc
fi
	
.	/home/rich/libraries/myfuncs
$

Make	sure	that	you	include	the	proper	pathname	to	reference	the	library	file	for	the	Bash	shell	to	find.	The	next	time
you	start	a	shell,	all	the	functions	in	your	library	are	available	at	the	command-line	interface:

$	addem	10	5
15
$	multem	10	5
50
$	divem	10	5
2
$

Even	better,	the	shell	also	passes	any	defined	functions	to	child	shell	processes	so	that	your	functions	are
automatically	available	for	any	shell	scripts	you	run	from	your	shell	session.	You	can	test	this	by	writing	a	script	that
uses	the	functions	without	defining	or	sourcing	them:

$	cat	test15
#!/bin/bash
#	using	a	function	defined	in	the	.bashrc	file
	
value1=10
value2=5
result1=$(addem	$value1	$value2)
result2=$(multem	$value1	$value2)
result3=$(divem	$value1	$value2)
echo	"The	result	of	adding	them	is:	$result1"
echo	"The	result	of	multiplying	them	is:	$result2"
echo	"The	result	of	dividing	them	is:	$result3"
$	
$./test15
The	result	of	adding	them	is:	15
The	result	of	multiplying	them	is:	50
The	result	of	dividing	them	is:	2
$

Even	without	sourcing	the	library	file,	the	functions	worked	perfectly	in	the	shell	script.

Working	Through	a	Practical	Example
There's	much	more	to	using	functions	than	just	creating	your	own	functions	to	work	with.	In	the	open	source	world,
code	sharing	is	essential,	and	that	also	applies	to	shell	script	functions.	Quite	a	few	different	shell	script	functions
are	available	for	you	to	download	and	use	in	your	own	applications.

This	section	walks	through	downloading,	installing,	and	using	the	GNU	shtool	shell	script	function	library.	The
shtool	library	provides	some	simple	shell	script	functions	for	performing	everyday	shell	functions,	such	as	working
with	temporary	files	and	folders	or	formatting	output	to	display.

Downloading	and	installing
The	first	step	in	the	process	is	to	download	and	install	the	GNU	shtool	library	to	your	system	so	that	you	can	use	the
library	functions	in	your	own	shell	scripts.	To	do	that,	you	need	to	use	an	FTP	client	program	or	a	browser	in	a
graphical	desktop.	Use	this	URL	to	download	the	shtool	package:

ftp://ftp.gnu.org/gnu/shtool/shtool-2.0.8.tar.gz

This	downloads	the	file	shtool-2.0.8.tar.gz	to	your	download	folder.	From	there,	you	can	use	the	cp	command-line
tool	or	the	graphical	file	manager	tool	in	your	Linux	distribution	(such	as	Files	in	Ubuntu)	to	copy	the	file	to	your
home	directory.

After	you	copy	the	file	to	your	home	directory,	you	can	extract	it	using	the	tar	command:

tar	-zxvf	shtool-2.0.8.tar.gz

This	extracts	the	package	files	into	a	folder	named	shtool-2.0.8	.	Use	the	cd	command	to	change	to	the	newly
created	folder:

cd	shtool-2.0.8

Now	you're	ready	to	build	the	shell	script	library	file.

Building	the	library
The	shtool	distribution	file	must	be	configured	for	your	specific	Linux	environment.	To	do	that,	it	uses	standard
configure	and	make	commands,	commonly	used	in	the	C	programming	environment.	To	build	the	library	file,	you
just	need	to	run	two	commands:

$./configure
$	make

The	configure	command	checks	the	software	necessary	to	build	the	shtool	library	file.	As	it	finds	the	tools	it	needs,	it
modifies	the	configuration	file	with	the	proper	paths	to	the	tools.

The	make	command	runs	through	the	steps	to	build	the	shtool	library	file.	The	resulting	file	(shtool)	is	the	full	library
package	file.	You	can	test	the	library	file	using	the	make	command	as	well:

$	make	test
Running	test	suite:
echo...........ok
mdate..........ok
table..........ok
prop...........ok
move...........ok
install........ok
mkdir..........ok
mkln...........ok
mkshadow.......ok
fixperm........ok
rotate.........ok
tarball........ok
subst..........ok
platform.......ok
arx............ok
slo............ok
scpp...........ok
version........ok
path...........ok
OK:	passed:	19/19
$

The	test	mode	tests	all	the	functions	available	in	the	shtool	library.	If	all	pass,	then	you're	ready	to	install	the	library
into	a	common	location	on	your	Linux	system	so	that	all	your	scripts	can	use	it.	To	do	so,	you	can	use	the	install
option	of	the	make	command.	However,	you	need	to	be	logged	in	as	the	root	user	account	to	run	it:

#	make	install
Password:
./shtool	mkdir	-f	-p	-m	755	/usr/local
./shtool	mkdir	-f	-p	-m	755	/usr/local/bin
./shtool	mkdir	-f	-p	-m	755	/usr/local/share/man/man1
./shtool	mkdir	-f	-p	-m	755	/usr/local/share/aclocal
./shtool	mkdir	-f	-p	-m	755	/usr/local/share/shtool
...
./shtool	install	-c	-m	644	sh.version	/usr/local/share/shtool/sh.version
./shtool	install	-c	-m	644	sh.path	/usr/local/share/shtool/sh.path
#

Now	you're	ready	to	start	using	the	functions	in	your	own	shell	scripts!

The	shtool	library	functions
The	shtool	library	provides	quite	a	few	functions	that	can	come	in	handy	when	you're	working	with	shell	scripts.
Table	17.1	shows	the	functions	available	in	the	library.

TABLE	17.1	The	shtool	Library	Functions

Function Description

arx Creates	an	archive	with	extended	features

echo Displays	the	string	value	with	construct	expansion

fixperm Changes	file	permissions	inside	a	folder	tree

install Installs	a	script	or	file

mdate Displays	modification	time	of	a	file	or	directory

mkdir Creates	one	or	more	directories

mkln Creates	a	link	using	relative	paths

mkshadow Creates	a	shadow	tree

move Moves	files	with	substitution

path Works	with	program	paths

platform Displays	the	platform	identity

rop Displays	an	animated	progress	propeller

rotate Rotates	logfiles

scpp The	sharing	C	preprocessor

slo Separates	linker	options	by	library	class

subst Uses	sed	substitution	operations

table Displays	field-separated	data	in	a	table	format

tarball Creates	tar	files	from	files	and	folders

version Creates	a	version	information	file

Each	of	the	shtool	functions	has	lots	of	options	and	arguments	that	you	can	use	to	modify	how	it	works.	Here's	the
format	to	use	a	shtool	function:

shtool	[options]	[function	[options]	[args]]

Using	the	library
You	can	use	the	shtool	functions	directly	from	the	command	line	or	from	within	your	shell	scripts.	Here's	an
example	of	using	the	platform	function	inside	a	shell	script:

$	cat	test16
#!/bin/bash
	
shtool	platform
$./test16
Ubuntu	20.04	(AMD64)
$

The	platform	function	returns	the	Linux	distribution	and	the	CPU	hardware	that	the	host	system	is	using.	One	of
our	favorites	is	the	prop	function.	It	creates	a	spinning	propeller	from	alternating	the	\,	|,	/,	and	–	characters	while
something	is	processing.	That's	a	great	tool	to	help	show	your	shell	script	users	that	something	is	happening	in	the
background	while	the	script	is	running.

To	use	the	prop	function,	you	just	pipe	the	output	of	the	function	you	want	to	monitor	to	the	shtool	script:

$	ls	–al	/usr/bin	|	shtool	prop	–p	"waiting......"
waiting...
$

The	prop	function	alternates	between	the	propeller	characters	to	indicate	that	something	is	happening.	In	this	case,
it's	the	output	from	the	ls	command.	How	much	of	that	you	see	depends	on	how	fast	your	CPU	can	list	all	the	files	in
the	/usr/bin	folder!	The	–p	option	allows	you	to	customize	the	output	text	that	appears	before	the	propeller
characters.	Now	that's	getting	fancy!

Summary
Shell	script	functions	allow	you	to	place	script	code	that's	repeated	throughout	the	script	in	a	single	place.	Instead	of
having	to	rewrite	blocks	of	code,	you	can	create	a	function	containing	the	code	block	and	then	just	reference	the
function	name	in	your	script.	The	Bash	shell	jumps	to	the	function	code	block	whenever	it	sees	the	function	name
used	in	the	script.

You	can	even	create	script	functions	that	return	values.	This	allows	you	to	create	functions	that	interact	with	the
script,	returning	both	numeric	and	character	data.	Script	functions	can	return	numeric	data	by	using	the	exit	status
of	the	last	command	in	the	function	or	by	using	the	return	command.	The	return	command	lets	you
programmatically	set	the	exit	status	of	your	function	to	a	specific	value	based	on	the	results	of	the	function.

Functions	can	also	return	values	using	the	standard	echo	statement.	You	can	capture	the	output	data	using	the
backtick	character	as	you	would	any	other	shell	command.	This	enables	you	to	return	any	type	of	data	from	a
function,	including	strings	and	floating-point	numbers.

You	can	use	shell	variables	within	your	functions,	assigning	values	to	variables	and	retrieving	values	from	existing
variables.	This	allows	you	to	pass	any	type	of	data	both	into	and	out	of	a	script	function	from	the	main	script
program.	Functions	also	allow	you	to	define	local	variables,	which	are	accessible	only	from	within	the	function	code
block.	Local	variables	let	you	create	self-contained	functions,	which	don't	interfere	with	any	variables	or	processes
used	in	the	main	shell	script.

Functions	can	also	call	other	functions,	including	themselves.	When	a	function	calls	itself,	it	is	called	recursion.	A
recursive	function	often	has	a	base	value	that	is	the	terminal	value	of	the	function.	The	function	continues	to	call
itself	with	a	decreasing	parameter	value	until	the	base	value	is	reached.

If	you	use	lots	of	functions	in	your	shell	scripts,	you	can	create	library	files	of	script	functions.	The	library	files	can	be
included	in	any	shell	script	file	by	using	the	source	command,	or	its	alias,	the	dot	operator.	This	approach	is	called
sourcing	the	library	file.	The	shell	doesn't	run	the	library	file	but	makes	the	functions	available	within	the	shell	that
runs	the	script.	You	can	use	this	same	technique	to	create	functions	that	you	can	use	on	the	normal	shell	command
line.	You	can	either	define	functions	directly	on	the	command	line	or	add	them	to	your	.bashrc	file	so	that	they	are
available	for	each	new	shell	session	you	start.	This	is	a	handy	way	to	create	utilities	that	can	be	used	no	matter	what
your	PATH	environment	variable	is	set	to.

The	next	chapter	discusses	the	use	of	text	graphics	in	your	scripts.	In	this	day	of	modern	graphical	interfaces,
sometimes	a	plain-text	interface	just	doesn't	cut	it.	The	Bash	shell	provides	some	easy	ways	for	you	to	incorporate
simple	graphics	features	in	your	scripts	to	help	spice	things	up.

CHAPTER	18
Writing	Scripts	for	Graphical	Desktops
IN	THIS	CHAPTER

Creating	text	menus

Doing	Windows

Getting	graphic

Over	the	years,	shell	scripts	have	acquired	a	reputation	for	being	dull	and	boring.	This	doesn't	have	to	be	the	case,
however,	if	you	plan	on	running	your	scripts	in	a	graphical	environment.	There	are	plenty	of	ways	to	interact	with
your	script	user	that	don't	rely	on	the	read	and	echo	statements.	This	chapter	dives	into	a	few	methods	you	can	use
to	add	life	to	your	interactive	scripts	so	that	they	don't	look	so	old-fashioned.

Creating	Text	Menus
The	most	common	way	to	create	an	interactive	shell	script	is	to	utilize	a	menu.	Offering	your	users	a	choice	of
various	options	helps	guide	them	through	what	the	script	can	and	can't	do.

Menu	scripts	usually	clear	the	display	area	and	then	show	a	list	of	available	options.	The	user	can	select	an	option	by
pressing	an	associated	letter	or	number	assigned	to	each	option.	Figure	18-1	shows	the	layout	of	a	sample	menu.

The	core	of	a	shell	script	menu	is	the	case	command	(see	Chapter	12,	“Using	Structured	Commands”).	The	case
command	performs	specific	commands,	depending	on	what	character	your	user	selects	from	the	menu.

The	following	sections	walk	you	through	the	steps	you	should	follow	to	create	a	menu-based	shell	script.

Create	the	menu	layout
The	first	step	in	creating	a	menu	is,	obviously,	to	determine	what	elements	you	want	to	appear	in	the	menu	and	lay
them	out	the	way	that	you	want	them	to	appear.

FIGURE	18-1	Displaying	a	menu	from	a	shell	script

Before	creating	the	menu,	it's	usually	a	good	idea	to	clear	the	monitor	display.	Doing	so	enables	you	to	display	your
menu	in	a	clean	environment	without	distracting	text.

The	clear	command	uses	the	terminal	settings	information	of	your	terminal	session	(see	Chapter	2,	“Getting	to	the
Shell”)	to	clear	any	text	that	appears	on	the	monitor.	After	the	clear	command,	you	can	use	the	echo	command	to
display	your	menu	elements.

By	default,	the	echo	command	can	display	only	printable	text	characters.	When	you're	creating	menu	items,	it's	often
helpful	to	use	nonprintable	items,	such	as	the	tab	and	newline	characters.	To	include	these	characters	in	your	echo
command,	you	must	use	the	-e	option.	Thus,	the	command

	echo	-e	"1.\tDisplay	disk	space"

results	in	the	output	line

	1.								Display	disk	space

This	greatly	helps	in	formatting	the	layout	of	the	menu	items.	With	just	a	few	echo	commands,	you	can	create	a
reasonable-looking	menu:

				clear
				echo
				echo	-e	"\t\t\tSys	Admin	Menu\n"
				echo	-e	"\t1.	Display	disk	space"
				echo	-e	"\t2.	Display	logged	on	users"
				echo	-e	"\t3.	Display	memory	usage"
				echo	-e	"\t0.	Exit	menu\n\n"
				echo	–en	"\t\tEnter	option:	"

The	-en	option	on	the	last	line	displays	the	line	without	adding	the	newline	character	at	the	end.	This	gives	the	menu
a	more	professional	look,	because	the	cursor	stays	at	the	end	of	the	line	waiting	for	the	user's	input.

The	last	part	of	creating	the	menu	is	to	retrieve	the	input	from	the	user.	This	is	done	using	the	read	command	(see
Chapter	14,	“Handling	User	Input”).	Because	we	expect	only	single-character	input,	the	nice	thing	to	do	is	to	use	the
-n	option	in	the	read	command	to	retrieve	only	one	character.	Doing	so	allows	the	user	to	enter	a	number	without
having	to	press	the	Enter	key:

	read	-n	1	option

Next,	you	need	to	create	your	menu	functions.

Create	the	menu	functions
Shell	script	menu	options	are	easier	to	create	as	a	group	of	separate	functions.	This	approach	enables	you	to	create	a
simple,	concise	case	command	that	is	easy	to	follow.

To	do	that,	you	must	create	separate	shell	functions	for	each	of	your	menu	options.	The	first	step	in	creating	a	menu
shell	script	is	to	determine	what	functions	you	want	your	script	to	perform	and	lay	them	out	as	separate	functions	in
your	code.

It	is	common	practice	to	create	stub	functions	for	functions	that	aren't	implemented	yet.	A	stub	function	is	a
function	that	doesn't	contain	any	commands	yet	or	possibly	just	an	echo	statement	indicating	what	should	be	there
eventually:

	function	diskspace	{
				clear
				echo	"This	is	where	the	diskspace	commands	will	go"
	}

The	stub	function	enables	your	menu	to	operate	smoothly	while	you	work	on	the	individual	functions.	You	don't
have	to	code	all	the	functions	for	your	menu	to	work.	You'll	notice	that	the	function	starts	out	with	the	clear
command.	This	enables	you	to	start	the	function	on	a	clean	monitor	screen,	without	the	menu	showing.

One	thing	that	helps	out	in	the	shell	script	menu	is	to	create	the	menu	layout	itself	as	a	function:

	function	menu	{
				clear
				echo
				echo	-e	"\t\t\tSys	Admin	Menu\n"
				echo	-e	"\t1.	Display	disk	space"
				echo	-e	"\t2.	Display	logged	on	users"
				echo	-e	"\t3.	Display	memory	usage"
				echo	-e	"\t0.	Exit	program\n\n"
				echo	-en	"\t\tEnter	option:	"
				read	-n	1	option
	}

This	strategy	enables	you	to	easily	redisplay	the	menu	at	any	time	just	by	calling	the	menu	function.

Add	the	menu	logic
Now	that	you	have	your	menu	layout	and	your	functions,	you	just	need	to	create	the	programming	logic	to	put	the
two	together.	As	mentioned	earlier,	this	requires	the	case	command.

The	case	command	should	call	the	appropriate	function	according	to	the	character	selection	expected	from	the
menu.	It's	always	a	good	idea	to	use	the	default	case	command	character	(the	asterisk)	to	catch	any	incorrect	menu
entries.

The	following	code	illustrates	the	use	of	the	case	command	in	a	typical	menu:

	menu
	case	$option	in

	0)
				break	;;
	1)
				diskspace	;;
	2)
				whoseon	;;
	3)
				memusage	;;
	*)
				clear
				echo	"Sorry,	wrong	selection";;
	esac

This	code	first	uses	the	menu	function	to	clear	the	monitor	screen	and	display	the	menu.	The	read	command	in	the
menu	function	pauses	until	the	user	presses	a	character	on	the	keyboard.	After	that's	been	done,	the	case	command
takes	over.	The	case	command	calls	the	appropriate	function	based	on	the	returned	character.	After	the	function
completes,	the	case	command	exits.

Putting	it	all	together
Now	that	you've	seen	all	the	parts	that	make	up	a	shell	script	menu,	let's	put	them	together	and	see	how	they	all
interoperate.	Here's	an	example	of	a	full	menu	script:

	$	cat	menu1
	#!/bin/bash
	#	simple	script	menu
	
	function	diskspace	{
				clear
				df	-k
	}
	
	function	whoseon	{
				clear
				who
	}
	
	function	memusage	{
				clear
				cat	/proc/meminfo
	}
	
	function	menu	{
				clear
				echo
				echo	-e	"\t\t\tSys	Admin	Menu\n"
				echo	-e	"\t1.	Display	disk	space"
				echo	-e	"\t2.	Display	logged	on	users"
				echo	-e	"\t3.	Display	memory	usage"
				echo	-e	"\t0.	Exit	program\n\n"
				echo	-en	"\t\tEnter	option:	"
				read	-n	1	option
	}
	
	while	[1]
	do
				menu
				case	$option	in
				0)
							break	;;
				1)
							diskspace	;;
				2)
							whoseon	;;
				3)
							memusage	;;
				*)
							clear
							echo	"Sorry,	wrong	selection";;
				esac
				echo	-en	"\n\n\t\t\tHit	any	key	to	continue"
				read	-n	1	line
	done
	clear
	$

This	menu	creates	three	functions	to	retrieve	administrative	information	about	the	Linux	system	using	common
commands.	It	uses	a	while	loop	to	continually	loop	through	the	menu	until	the	user	selects	option	0,	which	uses	the
break	command	to	break	out	of	the	while	loop.

You	can	use	this	template	to	create	any	shell	script	menu	interface.	It	provides	a	simple	way	to	interact	with	your
users.

Using	the	select	command

You	may	have	noticed	that	half	the	challenge	of	creating	a	text	menu	is	just	creating	the	menu	layout	and	retrieving
the	answer	that	you	enter.	The	Bash	shell	provides	a	handy	little	utility	for	you	that	does	all	this	work	automatically.

The	select	command	allows	you	to	create	a	menu	from	a	single	command	line	and	then	retrieve	the	entered	answer
and	automatically	process	it.	The	format	of	the	select	command	is	as	follows:

	select	variable	in	list
	do
					commands
	done

The	list	parameter	is	a	space-separated	list	of	text	items	that	build	the	menu.	The	select	command	displays	each
item	in	the	list	as	a	numbered	option	and	then	displays	a	special	prompt,	defined	by	the	PS3	environment	variable,
for	the	selection.

Here's	a	simple	example	of	the	select	command	in	action:

	$	cat	smenu1
	#!/bin/bash
	#	using	select	in	the	menu
	
	function	diskspace	{
				clear
				df	-k
	}
	
	function	whoseon	{
				clear
				who
	}
	
	function	memusage	{
				clear
				cat	/proc/meminfo
	}
	
	PS3="Enter	option:	"
	select	option	in	"Display	disk	space"	"Display	logged	on	users"	~CA
	"Display	memory	usage"	"Exit	program"
	do
				case	$option	in
				"Exit	program")
										break	;;
				"Display	disk	space")
										diskspace	;;
				"Display	logged	on	users")
										whoseon	;;
				"Display	memory	usage")
										memusage	;;
				*)
										clear
										echo	"Sorry,	wrong	selection";;
				esac
	done
	clear
	$

The	select	statement	must	all	be	on	one	line	in	the	code	file.	That's	indicated	by	the	continuation	character	in	the
listing.	When	you	run	the	program,	it	automatically	produces	the	following	menu:

	$./smenu1
	1)	Display	disk	space							3)	Display	memory	usage
	2)	Display	logged	on	users		4)	Exit	program
	Enter	option:

When	you	use	the	select	command,	remember	that	the	result	value	stored	in	the	variable	is	the	entire	text	string
and	not	the	number	associated	with	the	menu	item.	The	text	string	values	are	what	you	need	to	compare	in	your
case	statements.

Doing	Windows
Using	text	menus	is	a	step	in	the	right	direction,	but	there's	still	so	much	missing	in	our	interactive	scripts,	especially
if	we	try	to	compare	them	to	the	graphical	Windows	world.	Fortunately	for	us,	some	resourceful	people	out	in	the
open	source	world	have	helped	us	out.

The	dialog	package	is	a	nifty	little	tool	originally	created	by	Savio	Lam	and	currently	maintained	by	Thomas	E.
Dickey.	This	package	re-creates	standard	Windows	dialogs	in	a	text	environment	using	ANSI	escape	control	codes.
You	can	easily	incorporate	these	dialogs	in	your	shell	scripts	to	interact	with	your	script	users.	This	section	describes
the	dialog	package	and	demonstrates	how	to	use	it	in	shell	scripts.

NOTE
The	dialog	package	isn't	installed	in	all	Linux	distributions	by	default.	If	it's	not	installed	by
default,	because	of	its	popularity	it's	almost	always	included	in	the	software	repository.	Check
your	specific	Linux	distribution	documentation	for	how	to	load	the	dialog	package.	For	the
Ubuntu	Linux	distribution,	the	following	is	the	command	to	install	it:

				sudo	apt-get	install	dialog

To	install	the	dialog	package	in	Red	Hat–based	systems,	such	as	CentOS,	use	the	dnf	command:

				sudo	dnf	install	dialog

The	package	installer	installs	the	dialog	package	plus	any	required	libraries	for	it	to	work	on
your	system.

The	dialog	package
The	dialog	command	uses	command-line	parameters	to	determine	what	type	of	Windows	widget	to	produce.	A
widget	is	the	dialog	package	term	for	a	type	of	Windows	element.	The	dialog	package	currently	supports	the	types	of
widgets	shown	in	Table	18.1.

TABLE	18.1	The	dialog	Widgets

Widget Description

calendar Provides	a	calendar	from	which	to	select	a	date

checklist Displays	multiple	entries	where	each	entry	can	be	turned	on	or	off

form Allows	you	to	build	a	form	with	labels	and	text	fields	to	be	filled	out

fselect Provides	a	file	selection	window	to	browse	for	a	file

gauge Displays	a	meter	showing	a	percentage	of	completion

infobox Displays	a	message	without	waiting	for	a	response

inputbox Displays	a	single	text	form	box	for	text	entry

inputmenu Provides	an	editable	menu

menu Displays	a	list	of	selections	from	which	to	choose

msgbox Displays	a	message	and	requires	the	user	to	click	an	OK	button

pause Displays	a	meter	showing	the	status	of	a	specified	pause	period

passwordbox Displays	a	single	text	box	that	hides	entered	text

passwordform Displays	a	form	with	labels	and	hidden	text	fields

radiolist Provides	a	group	of	menu	items	where	only	one	item	can	be	selected

tailbox Displays	text	from	a	file	in	a	scroll	window	using	the	tail	command

tailboxbg Same	as	tailbox	,	but	operates	in	background	mode

textbox Displays	the	contents	of	a	file	in	a	scroll	window

timebox Provides	a	window	to	select	an	hour,	minute,	and	second

yesno Provides	a	simple	message	with	Yes	and	No	buttons

As	you	can	see	from	Table	18.1,	you	can	choose	from	lots	of	different	widgets	to	give	your	scripts	a	professional	look
with	little	effort.

To	specify	a	specific	widget	on	the	command	line,	use	the	double	dash	format:

	dialog	--widget	parameters

where	widget	is	the	widget	name	as	seen	in	Table	18.1	and	parameters	defines	the	size	of	the	widget	window	and	any
text	required	for	the	widget.

Each	dialog	widget	provides	output	in	two	forms:

Using	STDERR

Using	the	exit	code	status

The	exit	code	status	of	the	dialog	command	determines	the	button	selected	by	the	user.	If	an	OK	or	Yes	button	is
selected,	the	dialog	command	returns	a	0	exit	status.	If	a	Cancel	or	No	button	is	selected,	the	dialog	command
returns	a	1	exit	status.	You	can	use	the	standard	$?	variable	to	determine	which	button	was	clicked	in	the	dialog
widget.

If	a	widget	returns	any	data,	such	as	a	menu	selection,	the	dialog	command	sends	the	data	to	STDERR	.	You	can	use

the	standard	Bash	shell	technique	of	redirecting	the	STDERR	output	to	another	file	or	file	descriptor:

	dialog	--inputbox	"Enter	your	age:"	10	20	2>age.txt

This	command	redirects	the	text	entered	in	the	text	box	to	the	age.txt	file.

The	following	sections	look	at	some	examples	of	the	more	common	dialog	widgets	you'll	use	in	your	shell	scripts.

The	msgbox	widget
The	msgbox	widget	is	the	most	common	type	of	dialog.	It	displays	a	simple	message	in	a	window	and	waits	for	the
user	to	click	an	OK	button	before	disappearing.	The	following	format	is	required	to	use	a	msgbox	widget:

	dialog	--msgbox	text	height	width

The	text	parameter	is	any	string	you	want	to	place	in	the	window.	The	dialog	command	automatically	wraps	the
text	to	fit	the	size	of	the	window	you	create,	using	the	height	and	width	parameters.	If	you	want	to	place	a	title	at	the
top	of	the	window,	you	can	also	use	the	--title	parameter,	along	with	the	text	of	the	title.	Here's	an	example	of
using	the	msgbox	widget:

	$	dialog	--title	Testing	--msgbox	"This	is	a	test"	10	20

After	you	enter	this	command,	the	message	box	appears	on	the	screen	of	the	terminal	emulator	session	you're	using.
Figure	18-2	shows	what	this	looks	like.

FIGURE	18-2	Using	the	msgbox	widget	in	the	dialog	command

If	your	terminal	emulator	supports	the	mouse,	you	can	click	the	OK	button	to	close	the	dialog.	You	can	also	use
keyboard	commands	to	simulate	a	click	—	just	press	the	Enter	key.

The	yesno	widget
The	yesno	widget	takes	the	msgbox	widget	one	step	further,	allowing	the	user	to	answer	a	yes/no	question	displayed
in	the	window.	It	produces	two	buttons	at	the	bottom	of	the	window	—	one	for	Yes	and	another	for	No.	The	user	can
switch	between	buttons	by	using	the	mouse,	the	Tab	key,	or	the	keyboard	arrow	keys.	To	select	the	button,	the	user
can	press	either	the	spacebar	or	the	Enter	key.

Here's	an	example	of	using	the	yesno	widget:

	$	dialog	--title	"Please	answer"	--yesno	"Is	this	thing	on?"	10	20
	$	echo	$?
	1
	$

This	code	produces	the	widget	shown	in	Figure	18-3.

The	exit	status	of	the	dialog	command	is	set	depending	on	which	button	the	user	selects.	If	the	No	button	is	clicked,
the	exit	status	is	1,	and	if	the	Yes	button	is	clicked,	the	exit	status	is	0.

The	inputbox	widget
The	inputbox	widget	provides	a	simple	text	box	area	for	the	user	to	enter	a	text	string.	The	dialog	command	sends
the	value	of	the	text	string	to	STDERR.	You	must	redirect	that	to	retrieve	the	answer.	Figure	18-4	shows	what	the
inputbox	widget	looks	like.

FIGURE	18-3	Using	the	yesno	widget	in	the	dialog	command

FIGURE	18-4	The	inputbox	widget

As	you	can	see	in	Figure	18-4,	the	inputbox	provides	two	buttons	—	OK	and	Cancel.	If	the	Cancel	button	is	clicked,
the	exit	status	of	the	command	is	1;	otherwise,	the	exit	status	is	0:

	$	dialog	--inputbox	"Enter	your	age:"	10	20	2>age.txt

	$	echo	$?
	0
	$	cat	age.txt
	12$

You'll	notice	that	when	you	use	the	cat	command	to	display	the	contents	of	the	text	file	there's	no	newline	character
after	the	value.	This	way,	you	can	easily	redirect	the	file	contents	to	a	variable	in	a	shell	script	to	extract	the	string
entered	by	the	user.

The	textbox	widget
The	textbox	widget	is	a	great	way	to	display	lots	of	information	in	a	window.	It	produces	a	scrollable	window
containing	the	text	from	a	file	specified	in	the	parameters:

	$	dialog	--textbox	/etc/passwd	15	45

The	contents	of	the	/etc/passwd	file	are	shown	within	the	scrollable	text	window,	as	illustrated	in	Figure	18-5.

FIGURE	18-5	The	textbox	widget

You	can	use	the	arrow	keys	to	scroll	left	and	right,	as	well	as	up	and	down	in	the	text	file.	The	bottom	line	in	the
window	shows	the	location	percentage	within	the	file	that	you're	viewing.	The	textbox	widget	contains	only	a	single
Exit	button,	which	should	be	selected	to	exit	the	widget.

The	menu	widget
The	menu	widget	allows	you	to	create	a	window	version	of	the	text	menu	we	created	earlier	in	this	chapter.	You
simply	provide	a	selection	tag	and	the	text	for	each	item:

	$	dialog	--menu	"Sys	Admin	Menu"	20	30	10	1	"Display	disk	space"
	2	"Display	users"	3	"Display	memory	usage"	4	"Exit"	2>	test.txt

The	first	parameter	defines	a	title	for	the	menu.	The	next	two	parameters	define	the	height	and	width	of	the	menu
window,	and	the	third	parameter	defines	the	number	of	menu	items	that	appear	in	the	window	at	one	time.	If	there
are	more	menu	items,	you	can	scroll	through	them	using	the	arrow	keys.

Following	those	parameters,	you	must	add	menu	item	pairs.	The	first	element	is	the	tag	used	to	select	the	menu
item.	Each	tag	should	be	unique	for	each	menu	item	and	can	be	selected	by	pressing	the	appropriate	key	on	the
keyboard.	The	second	element	is	the	text	used	in	the	menu.	Figure	18-6	demonstrates	the	menu	produced	by	the
sample	command.

FIGURE	18-6	The	menu	widget	with	menu	items

If	the	user	selects	a	menu	item	by	pressing	the	appropriate	key	for	the	tag,	that	menu	item	is	highlighted	but	not
selected.	A	selection	isn't	made	until	the	OK	button	is	selected	by	using	either	the	mouse	or	the	Enter	key.	The
dialog	command	sends	the	selected	menu	item	text	to	STDERR	,	which	you	can	redirect	as	needed.

The	fselect	widget
There	are	several	fancy	built-in	widgets	provided	by	the	dialog	command.	The	fselect	widget	is	extremely	handy
when	working	with	filenames.	Instead	of	forcing	the	user	to	type	a	filename,	you	can	allow	them	to	use	the	fselect
widget	to	browse	to	the	file	location	and	select	the	file,	as	shown	in	Figure	18-7.

FIGURE	18-7	The	fselect	widget

The	fselect	widget	format	looks	like	this:

	$	dialog	--title	"Select	a	file"	--fselect	$HOME/	10	50	2>file.txt

The	first	parameter	after	the	fselect	option	is	the	starting	folder	location	used	in	the	window.	The	fselect	widget
window	consists	of	a	directory	listing	on	the	left	side,	a	file	listing	on	the	right	side	that	shows	all	the	files	in	the
selected	directory,	and	a	simple	text	box	that	contains	the	currently	selected	file	or	directory.	You	can	manually	type
a	filename	in	the	text	box,	or	you	can	use	the	directory	and	file	listings	to	select	one	(use	the	spacebar	to	select	a	file
to	add	to	the	text	box).

The	dialog	options
In	addition	to	the	standard	widgets,	you	can	customize	lots	of	different	options	in	the	dialog	command.	You've
already	seen	the	--title	parameter	in	action.	This	parameter	allows	you	to	set	a	title	for	the	widget	that	appears	at
the	top	of	the	window.

TABLE	18.2	The	dialog	Command	Options

Option Description

--add-widget Proceeds	to	the	next	dialog	unless	the	Esc	key	has	been	pressed	or	the	Cancel	button	clicked

--aspect	ratio Specifies	the	width/height	aspect	ratio	of	the	window

--backtitle	title Specifies	a	title	to	display	on	the	background,	at	the	top	of	the	screen

--begin	x	y Specifies	the	starting	location	of	the	top-left	corner	of	the	window

--cancel-label	label Specifies	an	alternative	label	for	the	Cancel	button

--clear Clears	the	display	using	the	default	dialog	background	color

--colors Embeds	ANSI	color	codes	in	dialog	text

--cr-wrap Allows	newline	characters	in	dialog	text	and	forces	a	line	wrap

--create-rc	file Dumps	a	sample	configuration	file	to	the	specified	file

--defaultno Makes	the	default	of	a	yes/no	dialog	No

--default-item
string

Sets	the	default	item	in	a	checklist,	form,	or	menu	dialog

--exit-label	label Specifies	an	alternative	label	for	the	Exit	button

--extra-button Displays	an	extra	button	between	the	OK	and	Cancel	buttons

--extra-label	label Specifies	an	alternative	label	for	the	Extra	button

--help Displays	the	dialog	command	help	message

--help-button Displays	a	Help	button	after	the	OK	and	Cancel	buttons

--help-label	label Specifies	an	alternative	label	for	the	Help	button

--help-status Writes	the	checklist,	radiolist,	or	form	information	after	the	help	information	if	the	Help
button	was	clicked

--ignore Ignores	options	that	dialog	does	not	recognize

--input-fd	fd Specifies	a	file	descriptor	other	than	STDIN

--insecure Changes	the	password	widget	to	display	asterisks	when	typing

--item-help Adds	a	help	column	at	the	bottom	of	the	screen	for	each	tag	in	a	checklist,	radiolist,	or	menu
for	the	tag	item

--keep-window Doesn't	clear	old	widgets	from	the	screen

--max-input	size Specifies	a	maximum	string	size	for	the	input;	default	is	2048

--nocancel Suppresses	the	Cancel	button

--no-collapse Doesn't	convert	tabs	to	spaces	in	dialog	text

--no-kill Places	the	tailboxbg	dialog	in	background	and	disables	SIGHUP	for	the	process

--no-label	label Specifies	an	alternative	label	for	the	No	button

--no-shadow Doesn't	display	shadows	for	dialog	windows

--ok-label	label Specifies	an	alternative	label	for	the	OK	button

--output-fd	fd Specifies	an	output	file	descriptor	other	than	STDERR

--print-maxsize Prints	the	maximum	size	of	dialog	windows	allowed	to	the	output

--print-size Prints	the	size	of	each	dialog	window	to	the	output

--print-version Prints	the	dialog	version	to	output

--separate-output Outputs	the	result	of	a	checklist	widget	one	line	at	a	time	with	no	quoting

--separator	string Specifies	a	string	that	separates	the	output	for	each	widget

--separate-widget
string

Specifies	a	string	that	separates	the	output	for	each	widget

--shadow Draws	a	shadow	to	the	right	and	bottom	of	each	window

--single-quoted Uses	single	quoting	if	needed	for	the	checklist	output

--sleep	sec Delays	for	the	specified	number	of	seconds	after	processing	the	dialog	window

--stderr Sends	output	to	STDERR	—	the	default	behavior

--stdout Sends	output	to	STDOUT

--tab-correct Converts	tabs	to	spaces

--tab-len	n Specifies	the	number	of	spaces	a	tab	character	uses;	default	is	8

--timeout	sec Specifies	the	number	of	seconds	before	exiting	with	an	error	code	if	no	user	input

--title	title Specifies	the	title	of	the	dialog	window

--trim Removes	leading	spaces	and	newline	characters	from	dialog	text

--visit-items Modifies	the	tab	stops	in	the	dialog	window	to	include	the	list	of	items

--yes-label	label Specifies	an	alternative	label	for	the	Yes	button

Lots	of	other	options	allow	you	to	completely	customize	both	the	appearance	and	the	behavior	of	your	windows.
Table	18.2	shows	the	options	available	for	the	dialog	command.

The	--backtitle	option	is	a	handy	way	to	create	a	common	title	for	your	menu	through	the	script.	If	you	specify	it
for	each	dialog	window,	it	persists	throughout	your	application,	creating	a	professional	look	for	your	script.

As	you	can	tell	from	Table	18.2,	you	can	overwrite	any	of	the	button	labels	in	your	dialog	window.	This	feature	allows
you	to	create	just	about	any	window	situation	you	need.

Using	the	dialog	command	in	a	script
Using	the	dialog	command	in	your	scripts	is	a	snap.	Just	remember	two	things:

Check	the	exit	status	of	the	dialog	command	if	a	Cancel	or	No	button	is	available.

Redirect	STDERR	to	retrieve	the	output	value.

If	you	follow	these	two	rules,	you'll	have	a	professional-looking	interactive	script	in	no	time.	Here's	an	example	using
dialog	widgets	to	reproduce	the	system	admin	menu	created	earlier	in	the	chapter:

	$	cat	menu3
	#!/bin/bash
	#	using	dialog	to	create	a	menu
	
	temp=$(mktemp	-t	test.XXXXXX)
	temp2=$(mktemp	-t	test2.XXXXXX)
	
	function	diskspace	{
				df	-k>	$temp
				dialog	--textbox	$temp	20	60
	}
	
	function	whoseon	{
				who>	$temp
				dialog	--textbox	$temp	20	50
	}
	
	function	memusage	{
				cat	/proc/meminfo>	$temp
				dialog	--textbox	$temp	20	50
	}
	
	while	[1]
	do
	dialog	--menu	"Sys	Admin	Menu"	20	30	10	1	"Display	disk	space"	2
					"Display	users"	3	"Display	memory	usage"	0	"Exit"	2>	$temp2
	if	[$?	-eq	1]
	then
				break
	fi
	
	selection=$(cat	$temp2)
	
	case	$selection	in
	1)
				diskspace	;;
	2)
				whoseon	;;
	3)
				memusage	;;
	0)
				break	;;

	*)
				dialog	--msgbox	"Sorry,	invalid	selection"	10	30
	esac
	done
	rm	-f	$temp	2>	/dev/null
	rm	-f	$temp2	2>	/dev/null
	$

The	script	uses	the	while	loop	with	a	constant	true	value	to	create	an	endless	loop	displaying	the	menu	dialog.	This
means	that,	after	every	function,	the	script	returns	to	displaying	the	menu.

The	menu	dialog	includes	a	Cancel	button,	so	the	script	checks	the	exit	status	of	the	dialog	command	in	case	the	user
presses	the	Cancel	button	to	exit.	Because	it's	in	a	while	loop,	exiting	is	as	easy	as	using	the	break	command	to	jump
out	of	the	while	loop.

The	script	uses	the	mktemp	command	to	create	two	temporary	files	for	holding	data	for	the	dialog	commands.	The
first	one,	$temp	,	is	used	to	hold	the	output	of	the	df	,	who	,	and	meminfo	commands	so	that	they	can	be	displayed	in
the	textbox	dialog	(see	Figure	18-8).	The	second	temporary	file,	$temp2	,	is	used	to	hold	the	selection	value	from	the
main	menu	dialog.

Now	this	is	starting	to	look	like	a	real	application	that	you	can	show	off	to	people!

Getting	Graphic
If	you're	looking	for	even	more	graphics	for	your	interactive	scripts,	you	can	go	one	step	further.	Both	the	KDE	and
GNOME	desktop	environments	(see	Chapter	1,	“Starting	with	Linux	Shells”)	have	expanded	on	the	dialog	command
idea	and	include	commands	that	produce	X	Windows	graphical	widgets	for	their	respective	environments.

This	section	describes	the	kdialog	and	zenity	packages,	which	provide	graphical	window	widgets	for	the	KDE	and
GNOME	desktops,	respectively.

FIGURE	18-8	The	meminfo	command	output	displayed	using	the	textbox	dialog	option

The	KDE	environment
The	KDE	graphical	environment	includes	the	kdialog	package	by	default.	The	kdialog	package	uses	the	kdialog
command	to	generate	standard	windows,	similar	to	the	dialog-style	widgets,	within	your	KDE	desktop.	However,
instead	of	having	the	clunky	feel	to	them,	these	windows	blend	right	in	with	the	rest	of	your	KDE	application
windows.	This	allows	you	to	produce	Windows-quality	user	interfaces	directly	from	your	shell	scripts.

NOTE
Just	because	your	Linux	distribution	uses	the	KDE	desktop	doesn't	necessarily	mean	it	has	the
kdialog	package	installed	by	default.	You	may	need	to	manually	install	it	from	the	distribution
repository.

kdialog	widgets
Just	like	the	dialog	command,	the	kdialog	command	uses	command-line	options	to	specify	what	type	of	window
widget	to	use.	Here	is	the	format	of	the	kdialog	command:

	kdialog	display-options	window-options	arguments

The	display-options	options	allow	you	to	customize	the	window	widget,	such	as	add	a	title	or	change	the	colors.	The
window-options	options	are	what	allow	you	to	specify	what	type	of	window	widget	to	use.	The	available	options	are
shown	in	Table	18.3.

TABLE	18.3	kdialog	Window	Options

Option Description

--checklist	title	[tag	item
status]

A	checklist	menu,	with	status	specifying	whether	or	not	the	item	is	checked

--error	text Error	message	box

--inputbox	text	[init] Input	text	box	where	you	can	specify	the	default	value	using	the	init	value

--menu	title	[tag	item] Menu	selection	box	title	and	a	list	of	items	identified	by	a	tag

--msgbox	text Simple	message	box	with	specified	text

--password	text Password	input	text	box	that	hides	user	input

--radiolist	title	[tag	item
status]

A	radiolist	menu,	with	status	specifying	whether	or	not	the	item	is	selected

--separate-output Returns	items	on	separate	lines	for	checklist	and	radiolist	menus

--sorry	text Sorry	message	box

--textbox	file	[width]	[height] Text	box	displaying	the	contents	of	file	,	alternatively	specified	by	width	and
height

--title	title Specifies	a	title	for	the	TitleBar	area	of	the	dialog	window

--warningyesno	text Warning	message	box	with	Yes	and	No	buttons

--warningcontinuecancel	text Warning	message	box	with	Continue	and	Cancel	buttons

--warningyesnocancel	text Warning	message	box	with	Yes,	No,	and	Cancel	buttons

--yesno	text Question	box	with	Yes	and	No	buttons

--yesnocancel	text Question	box	with	Yes,	No,	and	Cancel	buttons

As	you	can	see	from	Table	18.3,	all	the	standard	window	dialog	types	are	represented.	However,	when	you	use	a
kdialog	window	widget,	it	appears	as	a	separate	window	in	the	KDE	desktop,	not	inside	the	terminal	emulator
session.

The	checklist	and	radiolist	widgets	allow	you	to	define	individual	items	in	the	lists	and	whether	they	are	selected
by	default:

$kdialog	--checklist	"Items	I	need"	1	"Toothbrush"	on	2	"Toothpaste"
		off	3	"Hairbrush"	on	4	"Deodorant"	off	5	"Slippers"	off

The	resulting	checklist	window	is	shown	in	Figure	18-9.

FIGURE	18-9	A	kdialog	checklist	dialog	window

The	items	specified	as	“on”	are	highlighted	in	the	checklist.	To	select	or	deselect	an	item	in	the	checklist,	just	click	it.
If	you	click	the	OK	button,	the	kdialog	sends	the	tag	values	to	STDOUT	:

"1"	"3"
$

When	you	press	the	Enter	key,	the	kdialog	box	appears	with	the	selections.	When	you	click	the	OK	or	Cancel	button,
the	kdialog	command	returns	each	tag	as	a	string	value	to	STDOUT	(these	are	the	"1"	and	"3"	values	you	see	in	the
output).	Your	script	must	be	able	to	parse	the	resulting	values	and	match	them	with	the	original	values.

Using	kdialog
You	can	use	the	kdialog	window	widgets	in	your	shell	scripts	similarly	to	how	you	use	the	dialog	widgets.	The	big
difference	is	that	the	kdialog	window	widgets	output	values	using	STDOUT	instead	of	STDERR.

Here's	a	script	that	converts	the	system	admin	menu	created	earlier	into	a	KDE	application:

	$	cat	menu4
	#!/bin/bash
	#	using	kdialog	to	create	a	menu
	
	temp=$(mktemp	-t	temp.XXXXXX)
	temp2=$(mktemp	-t	temp2.XXXXXX)
	
	function	diskspace	{
				df	-k>	$temp
				kdialog	--textbox	$temp	1000	10
	}
	
	function	whoseon	{
				who>	$temp
				kdialog	--textbox	$temp	500	10
	}
	
	function	memusage	{
				cat	/proc/meminfo>	$temp
				kdialog	--textbox	$temp	300	500
	}
	
	while	[1]
	do
kdialog	--menu	"Sys	Admin	Menu"	"1"	"Display	disk	space"	"2"	"Display
	users"	"3"	"Display	memory	usage"	"0"	"Exit">	$temp2
	if	[$?	-eq	1]
	then
				break
	fi
	

	selection=$(cat	$temp2)
	
	case	$selection	in
	1)
				diskspace	;;
	2)
				whoseon	;;
	3)
				memusage	;;
	0)
				break	;;
	*)
				kdialog	--msgbox	"Sorry,	invalid	selection"
	esac
	done
	$
	

The	script	using	the	kdialog	command	isn't	much	different	from	the	one	using	the	dialog	command.	The	resulting
main	menu	is	shown	in	Figure	18-10.

Now	your	simple	shell	script	looks	just	like	a	real	KDE	application!	There's	no	limit	to	what	you	can	do	with	your
interactive	scripts	now.

FIGURE	18-10	The	sys	admin	menu	script	using	kdialog

The	GNOME	environment
The	GNOME	graphical	environment	supports	two	popular	packages	that	can	generate	standard	windows:

gdialog

zenity

By	far,	zenity	is	the	most	commonly	available	package	found	in	most	GNOME	desktop	Linux	distributions	(it's
installed	by	default	in	both	Ubuntu	and	CentOS).	This	section	describes	the	features	of	zenity	and	demonstrates	how
to	use	it	in	your	shell	scripts.

zenity	Widgets
As	you	would	expect,	zenity	allows	you	to	create	different	window	widgets	by	using	command-line	options.	Table
18.4	shows	the	various	widgets	that	zenity	can	produce.

TABLE	18.4	The	zenity	Window	Widgets

Option Description

--calendar Displays	a	full	month	calendar

--entry Displays	a	text	entry	dialog	window

--error Displays	an	error	message	dialog	window

--file-selection Displays	a	full	pathname	and	filename	dialog	window

--info Displays	an	informational	dialog	window

--list Displays	a	checklist	or	radiolist	dialog	window

--notification Displays	a	notification	icon

--progress Displays	a	progress	bar	dialog	window

--question Displays	a	yes/no	question	dialog	window

--scale Displays	a	scale	dialog	window	with	a	sliding	bar	to	select	the	value	within	a	range

--text-info Displays	a	text	box	containing	text

--warning Displays	a	warning	dialog	window

The	zenity	command-line	program	works	somewhat	differently	than	the	kdialog	and	dialog	programs.	Many	of	the
widget	types	are	defined	using	additional	options	on	the	command	line,	instead	of	including	them	as	arguments	to
an	option.

The	zenity	command	does	offer	some	pretty	cool	advanced	dialog	windows.	The	--calendar	option	produces	a	full
month	calendar,	as	shown	in	Figure	18-11.

FIGURE	18-11	The	zenity	calendar	dialog	window

When	you	select	a	date	from	the	calendar,	the	zenity	command	returns	the	value	to	STDOUT	,	just	like	kdialog	:

	$	zenity	--calendar
	12/25/2011
	$

FIGURE	18-12	The	zenity	file	selection	dialog	window

Another	pretty	cool	window	in	zenity	is	the	file	selection	option,	shown	in	Figure	18-12.

You	can	use	the	dialog	window	to	browse	to	any	directory	location	on	the	system	(as	long	as	you	have	the	privileges
to	view	the	directory)	and	select	a	file.	When	you	select	a	file,	the	zenity	command	returns	the	full	file	and
pathname:

	$	zenity	--file-selection
	/home/ubuntu/menu5
	$

With	tools	like	that	at	your	disposal,	the	sky's	the	limit	with	your	shell	script	creations!

Using	zenity	in	scripts
As	you	would	expect,	zenity	performs	well	in	shell	scripts.	Unfortunately,	the	creators	of	zenity	chose	not	to	follow
the	option	convention	used	in	dialog	and	kdialog	,	so	converting	any	existing	interactive	scripts	to	zenity	may	prove
challenging.

In	converting	the	system	admin	menu	from	kdialog	to	zenity,	we	had	to	do	quite	a	bit	of	manipulation	of	the	widget
definitions:

	$cat	menu5
	#!/bin/bash
	#	using	zenity	to	create	a	menu
	
	temp=$(mktemp	-t	temp.XXXXXX)
	temp2=$(mktemp	-t	temp2.XXXXXX)
	
	function	diskspace	{
				df	-k>	$temp
				zenity	--text-info	--title	"Disk	space"	--filename=$temp
	--width	750	--height	10
	}
	
	function	whoseon	{
				who>	$temp
				zenity	--text-info	--title	"Logged	in	users"	--filename=$temp
	--width	500	--height	10
	}
	
	function	memusage	{
				cat	/proc/meminfo>	$temp
				zenity	--text-info	--title	"Memory	usage"	--filename=$temp
	--width	300	--height	500
	}
	
	while	[1]

	do
	zenity	--list	--radiolist	--title	"Sys	Admin	Menu"	--column	"Select"
--column	"Menu	Item"	FALSE	"Display	disk	space"	FALSE	"Display	users"
	FALSE	"Display	memory	usage"	FALSE	"Exit">	$temp2
	if	[$?	-eq	1]
	then
				break
	fi
	
	selection=$(cat	$temp2)
	case	$selection	in
	"Display	disk	space")
				diskspace	;;
	"Display	users")
				whoseon	;;
	"Display	memory	usage")
				memusage	;;
	Exit)
				break	;;
	*)
				zenity	--info	"Sorry,	invalid	selection"
	esac
	done
	$

Because	zenity	doesn't	support	the	menu	dialog	window,	we	used	a	radiolist	type	window	for	the	main	menu,	as
shown	in	Figure	18-13.

FIGURE	18-13	The	system	admin	menu	using	zenity

The	radiolist	uses	two	columns,	each	with	a	column	heading.	The	first	column	includes	the	radio	buttons,	and	the
second	column	is	the	item	text.	The	radiolist	also	doesn't	use	tags	for	the	items.	When	you	select	an	item,	the	full
text	of	the	item	is	returned	to	STDOUT	.	This	makes	life	a	little	more	interesting	if	you	use	the	case	command.	You
must	use	the	full	text	from	the	items	in	the	case	options.	If	there	are	any	spaces	in	the	text,	you	need	to	use
quotation	marks	around	the	text.

Using	the	zenity	package,	you	can	add	a	Windows	feel	to	your	interactive	shell	scripts	in	the	GNOME	desktop.

Working	Through	a	Practical	Example
The	one	downside	to	each	of	these	graphical	packages	is	that	there	isn't	a	way	to	create	a	window	with	multiple
entries,	such	as	combining	several	text	box	inputs	along	with	a	calendar	input,	as	you	can	do	in	a	true	graphical
environment.	That	limitation	does	make	querying	for	multiple	data	items	a	bit	clunky,	but	it's	still	manageable.	The
trick	is	to	keep	track	of	each	data	query	using	appropriately	named	variables.

The	dialog	package	does	include	a	form	feature,	but	it's	fairly	elementary.	It	only	allows	you	to	combine	several	text
boxes	into	a	single	window	to	enter	multiple	data	items.	The	format	for	the	--form	option	is

--form	text	height	width	formheight	[label	y	x	item	y	x	flen	ilen]	...

The	parameters	used	by	the	--form	option	are	as	follows:

text:	A	title	that	appears	at	the	top	of	the	form

height:	The	total	form	window	height

width:	The	total	form	window	width

formheight:	The	total	height	of	the	form	within	the	window

label:	The	label	for	the	form	field

y:	The	Y	position	of	the	label	or	item	within	the	form

x:	The	X	position	of	the	label	or	item	within	the	form

item:	A	default	value	to	assign	to	a	form	field

flen:	The	length	of	the	form	field	to	display

ilen:	The	maximum	length	of	the	data	that	can	be	entered	into	the	field

For	example,	to	create	a	form	to	enter	employee	information,	you'd	use

dialog	--form	"Enter	new	employee"	19	50	0	\
			"Last	name	"	1	1	""	1	15	30	0	\
			"First	name	"	3	1	""	3	15	30	0	\
			"Address	"	5	1	""	5	15	30	0	\
			"City	"	7	1	""	7	15	30	0	\
			"State	"	9	1	""	9	15	30	0	\
			"Zip	"	11	1	""	11	15	30	0	2>data.txt

This	code	produces	the	form	window	shown	in	Figure	18-14.

When	you	enter	data	into	the	form	fields	and	click	the	OK	button,	the	form	sends	the	data	to	the	data.txt	file.	The
data.txt	file	places	each	data	item	in	order	on	a	separate	line	in	the	file:

$	cat	data.txt
Test
Ima
123	Main	Street
Chicago
Illinois
60601
$

FIGURE	18-14	The	dialog	form	feature

Your	script	can	then	retrieve	the	form	data	from	the	file	by	reading	the	file	line	by	line.	The	head	and	tail	commands
are	an	easy	way	to	retrieve	specific	lines	in	the	file:

last=$(cat	data.txt	|	head	-1)
first=$(cat	data.txt	|	head	-2	|	tail	-1)
address=$(cat	data.txt	|	head	-3	|	tail	-1)	
city=$(cat	data.txt	|	head	-4	|	tail	-1)
state=$(cat	data.txt	|	head	-5	|	tail	-1)
zip=$(cat	data.txt	|	tail	-1)

Now	you	have	all	of	the	data	from	the	form	stored	in	variables	that	you	can	use	anywhere	in	your	script:

record="INSERT	INTO	employees	(last,	first,	address,	city,	state,	zip)	VALUES	
('$last',	'$first',	'$address',	'$city',	'$state',	'$zip');"
echo	$record>>	newrecords.txt

The	newrecords.txt	file	will	contain	the	INSERT	statements	for	each	new	form	record	so	that	you	can	easily	import
them	all	into	a	database.	You	can	then	create	a	simple	front-end	menu	for	the	scripts	and	put	everything	together:

#!/bin/bash
temp=$(mktemp	-t	record.XXXX)
	
function	newrecord	{
dialog	--form	"Enter	new	employee"	19	50	0	\
			"Last	name	"	1	1	""	1	15	30	0	\
			"First	name	"	3	1	""	3	15	30	0	\
			"Address	"	5	1	""	5	15	30	0	\
			"City	"	7	1	""	7	15	30	0	\
			"State	"	9	1	""	9	15	30	0	\
			"Zip	"	11	1	""	11	15	30	0	2>$temp
	
last=$(cat	$temp	|	head	-1)
first=$(cat	$temp	|	head	-2	|	tail	-1)
address=$(cat	$temp	|	head	-3	|	tail	-1)	
city=$(cat	$temp	|	head	-4	|	tail	-1)
state=$(cat	$temp	|	head	-5	|	tail	-1)
zip=$(cat	$temp	|	head	-6	|	tail	-1)
record="INSERT	INTO	employees	(last,	first,	address,	city,	state,	zip)	VALUES	
('$last',	'$first',	'$address',	'$city',	'$state',	'$zip');"
echo	$record>>	newrecords.txt
}
	
function	listrecords	{
dialog	--title	"New	Data"	--textbox	data.txt	20	50
}
	
while	[1]
do
dialog	--menu	"Employee	Data"	20	30	5	\
			1	"Enter	new	employee"	\
			2	"Display	records"	\
			3	"Exit"	2>$temp
	
if	[$?	-eq	1]
then
				break
fi
	
selection=$(cat	$temp)
	
case	$selection	in
1)
			newrecord	;;
2)	
			listrecords	;;
3)
				break	;;
*)
				dialog	--msgbox	"Invalid	selection"	10	30
esac
done
rm	-f	$temp	2>	/dev/null

This	script	creates	a	simple	graphical	front	end	that	allows	you	to	quickly	enter	employee	data	to	create	an	SQL	file
that	you	can	easily	import	into	a	database.

Summary
Interactive	shell	scripts	have	a	reputation	for	being	dull	and	boring.	You	can	change	that	by	using	a	few	techniques
and	tools	available	on	most	Linux	systems.	First,	you	can	create	menu	systems	for	your	interactive	scripts	by	using
the	case	command	and	shell	script	functions.

The	menu	command	allows	you	to	paint	a	menu,	using	the	standard	echo	command,	and	read	a	response	from	the
user,	using	the	read	command.	The	case	command	then	selects	the	appropriate	shell	script	function	based	on	the
value	entered.

The	dialog	program	provides	several	prebuilt	text	widgets	for	creating	Windows-like	objects	on	a	text-based
terminal	emulator.	You	can	create	dialogs	for	displaying	text,	entering	text,	and	choosing	files	and	dates	by	using	the

dialog	program.	Doing	so	brings	even	more	life	to	your	shell	script.

If	you're	running	your	shell	scripts	in	a	graphical	X	Windows	environment,	you	can	utilize	even	more	tools	in	your
interactive	scripts.	For	the	KDE	desktop,	there's	the	kdialog	program.	This	program	provides	simple	commands	to
create	window	widgets	for	all	the	basic	window	functions.	For	the	GNOME	desktop,	there	are	the	gdialog	and
zenity	programs.	Each	of	these	programs	provides	window	widgets	that	blend	into	the	GNOME	desktop	just	like	a
real	Windows	application.

The	next	chapter	dives	into	the	subject	of	editing	and	manipulating	text	data	files.	Often	the	biggest	use	of	shell
scripts	revolves	around	parsing	and	displaying	data	in	text	files	such	as	log	and	error	files.	The	Linux	environment
includes	two	very	useful	tools,	sed	and	gawk	,	for	working	with	text	data	in	your	shell	scripts.	The	next	chapter
introduces	you	to	these	tools	and	shows	the	basics	of	how	to	use	them.

CHAPTER	19
Introducing	sed	and	gawk
IN	THIS	CHAPTER

Manipulating	text

Learning	about	the	sed	editor

Looking	at	the	sed	editor	basic	commands

Getting	introduced	to	the	gawk	editor

Exploring	sed	editor	basics

By	far,	one	of	the	most	common	functions	for	which	people	use	shell	scripts	is	to	work	with	text	files.	Between
examining	log	files,	reading	configuration	files,	and	handling	data	elements,	shell	scripts	can	help	automate	the
mundane	tasks	of	manipulating	any	type	of	data	contained	in	text	files.	However,	trying	to	manipulate	the	contents
of	text	files	using	just	shell	script	commands	is	somewhat	awkward.	If	you	perform	any	type	of	data	manipulation	in
your	shell	scripts,	you	want	to	become	familiar	with	the	sed	and	gawk	tools	available	in	Linux.	These	tools	can	greatly
simplify	any	data‐handling	tasks	you	need	to	perform.

Manipulating	Text
Chapter	10,	“Working	with	Editors,”	demonstrated	how	to	edit	text	files	using	different	editor	programs	available	in
the	Linux	environment.	These	editors	enable	easy	manipulation	of	text	contained	in	a	text	file	by	using	simple
commands	or	clicks	of	the	mouse.

There	are	times,	however,	when	you'll	find	yourself	wanting	to	manipulate	text	in	a	text	file	on	the	fly,	without
having	to	pull	out	a	full‐fledged	interactive	text	editor.	In	these	situations,	it's	useful	to	have	a	simple	command‐line
editor	that	can	easily	format,	insert,	modify,	or	delete	text	elements	automatically.

The	Linux	system	provides	two	common	tools	for	doing	just	that.	We	describe	in	this	section	the	two	most	popular
command‐line	editors	used	in	the	Linux	world,	sed	and	gawk.

Getting	to	know	the	sed	editor
The	sed	editor	is	called	a	stream	editor,	as	opposed	to	a	normal	interactive	text	editor.	In	an	interactive	text	editor,
such	as	vim	,	keyboard	commands	are	used	interactively	to	insert,	delete,	or	replace	text	in	the	data.	A	stream	editor
edits	a	stream	of	data	based	on	a	set	of	rules	supplied	ahead	of	time.

The	sed	editor	can	manipulate	data	in	a	stream	based	on	commands	either	entered	into	the	command	line	or	stored
in	a	command	text	file.	The	sed	editor	operates	as	follows:

1.	 Read	one	data	line	from	the	input.

2.	 Match	that	data	with	the	supplied	editor	commands.

3.	 Change	data	in	the	stream	as	specified	in	the	commands.

4.	 Output	the	new	data	to	STDOUT	.

After	the	stream	editor	matches	and	enacts	all	the	commands	against	a	line	of	data,	it	reads	the	next	line	of	data	and
repeats	the	process.	After	the	stream	editor	processes	all	the	lines	of	data	in	the	stream,	it	terminates.

Because	the	commands	are	applied	sequentially	line	by	line,	the	sed	editor	makes	only	one	pass	through	the	data
stream	to	make	the	edits.	This	feature	makes	the	sed	editor	much	faster	than	an	interactive	editor	and	provides	the
ability	to	make	quick	changes	to	file	data.

Here's	the	format	for	using	the	sed	command:

sed	options	script	file

The	options	parameter	allows	you	to	customize	the	behavior	of	the	sed	command	and	includes	the	options	shown	in
Table	19.1.

TABLE	19.1	The	sed	Command	Options

Option Description

‐e	commands Adds	additional	sed	commands	to	run	while	processing	the	input

‐f	file Adds	the	commands	specified	in	the	file	to	the	commands	run	while	processing	the	input

‐n Doesn't	produce	output	for	each	command,	but	waits	for	the	print	(p)	command

The	script	parameter	specifies	a	single	command	to	apply	against	the	data	stream.	If	more	than	one	command	is
required,	you	must	use	either	the	‐e	option	to	specify	them	in	the	command	line	or	the	‐f	option	to	specify	them	in	a
separate	file.	Numerous	commands	are	available	for	manipulating	data.	We	examine	some	of	the	basic	commands

used	by	the	sed	editor	in	this	chapter	and	then	look	at	some	of	the	more	advanced	commands	in	Chapter	21,
“Advanced	sed	.”

Defining	an	editor	command	in	the	command	line
By	default,	the	sed	editor	applies	the	specified	commands	to	the	STDIN	input	stream.	This	allows	you	to	pipe	data
directly	to	the	sed	editor	for	processing.	Here's	a	quick	example	demonstrating	how	to	do	this:

$	echo	"This	is	a	test"	|	sed	's/test/big	test/'
This	is	a	big	test
$

This	example	uses	the	s	command	in	the	sed	editor.	The	s	command	substitutes	a	second	text	string	for	the	first	text
string	pattern	specified	between	the	forward	slashes.	In	this	example,	the	words	big	test	were	substituted	for	the
word	test.

When	you	run	this	example,	it	should	display	the	results	almost	instantaneously.	That's	the	power	of	using	the	sed
editor.	You	can	make	multiple	edits	to	data	in	about	the	same	time	it	takes	for	some	of	the	interactive	editors	just	to
start	up!

Of	course,	this	simple	test	demonstrated	an	edit	of	one	data	line.	The	same	speedy	results	occur	when	editing
complete	files	of	data,	as	shown	here:

$	cat	data1.txt
The	quick	brown	fox	jumps	over	the	lazy	dog.
The	quick	brown	fox	jumps	over	the	lazy	dog.
The	quick	brown	fox	jumps	over	the	lazy	dog.
The	quick	brown	fox	jumps	over	the	lazy	dog.
$
$	sed	's/dog/cat/'	data1.txt
The	quick	brown	fox	jumps	over	the	lazy	cat.
The	quick	brown	fox	jumps	over	the	lazy	cat.
The	quick	brown	fox	jumps	over	the	lazy	cat.
The	quick	brown	fox	jumps	over	the	lazy	cat.
$

The	sed	command	executes	and	returns	the	data	very	quickly.	As	it	processes	each	line	of	data,	the	results	are
displayed.	You'll	start	seeing	results	before	the	sed	editor	completes	processing	the	entire	file.

It's	important	to	note	that	the	sed	editor	doesn't	modify	the	data	in	the	text	file	itself;	it	only	sends	the	modified	text
to	STDOUT	.	If	you	look	at	the	text	file,	it	still	contains	the	original	data:

$	cat	data1.txt
The	quick	brown	fox	jumps	over	the	lazy	dog.
The	quick	brown	fox	jumps	over	the	lazy	dog.
The	quick	brown	fox	jumps	over	the	lazy	dog.
The	quick	brown	fox	jumps	over	the	lazy	dog.
$

Using	multiple	editor	commands	in	the	command	line
To	execute	more	than	one	command	from	the	sed	command	line,	use	the	‐e	option:

$	sed	-e	's/brown/red/;	s/dog/cat/'	data1.txt
The	quick	red	fox	jumps	over	the	lazy	cat.
The	quick	red	fox	jumps	over	the	lazy	cat.
The	quick	red	fox	jumps	over	the	lazy	cat.
The	quick	red	fox	jumps	over	the	lazy	cat.
$

Both	commands	are	applied	to	each	line	of	data	in	the	file.	The	commands	must	be	separated	with	a	semicolon	(;),
and	there	shouldn't	be	any	spaces	between	the	end	of	the	first	command	and	the	semicolon.

Instead	of	using	a	semicolon	to	separate	the	commands,	you	can	use	the	secondary	prompt	in	the	Bash	shell.	Just
enter	the	first	single	quotation	mark	to	open	the	sed	program	script	(also	called	the	sed	editor	command	list),	and
Bash	continues	to	prompt	you	for	more	commands	until	you	enter	the	closing	quotation	mark:

$	sed	-e	'
>	s/brown/green/
>	s/fox/toad/
>	s/dog/cat/'	data1.txt
The	quick	green	toad	jumps	over	the	lazy	cat.
The	quick	green	toad	jumps	over	the	lazy	cat.
The	quick	green	toad	jumps	over	the	lazy	cat.
The	quick	green	toad	jumps	over	the	lazy	cat.
$

You	must	remember	to	finish	the	command	on	the	same	line	where	the	closing	single	quotation	mark	appears.	After
the	Bash	shell	detects	the	closing	quotation	mark,	it	processes	the	command.	After	it	starts,	the	sed	command
applies	each	command	you	specified	to	each	data	line	in	the	text	file.

Reading	editor	commands	from	a	file
Finally,	if	you	have	lots	of	sed	commands	you	want	to	process,	it	is	often	easier	to	just	store	them	in	a	separate	file.

Use	the	‐f	option	to	specify	the	file	in	the	sed	command:

$	cat	script1.sed
s/brown/green/
s/fox/toad/
s/dog/cat/
$
$	sed	-f	script1.sed	data1.txt
The	quick	green	toad	jumps	over	the	lazy	cat.
The	quick	green	toad	jumps	over	the	lazy	cat.
The	quick	green	toad	jumps	over	the	lazy	cat.
The	quick	green	toad	jumps	over	the	lazy	cat.
$

In	this	case,	a	semicolon	is	not	placed	after	each	command.	The	sed	editor	knows	that	each	line	contains	a	separate
command.	As	with	entering	commands	on	the	command	line,	the	sed	editor	reads	the	commands	from	the	specified
file	and	applies	them	to	each	line	in	the	data	file.

TIP
It's	easy	to	confuse	sed	editor	script	files	with	Bash	shell	scripts	or	other	text	files.	To	eliminate
confusion,	it	is	considered	good	form	to	use	the	.sed	file	extension	on	any	sed	script	files.

We'll	look	at	some	other	sed	editor	commands	that	come	in	handy	for	manipulating	data	in	the	“Looking	at	the	sed
Editor	Basic	Commands”	section.	Before	that,	let's	quickly	look	at	the	other	Linux	data	editor.

Getting	to	know	the	gawk	program
Although	the	sed	editor	is	a	handy	tool	for	modifying	text	files	on	the	fly,	it	has	its	limitations.	Often,	a	more
advanced	tool	is	needed	for	manipulating	data	in	a	file,	one	that	provides	a	more	programming‐like	environment
allowing	the	modification	and	reorganization	of	data	in	a	file.	This	is	where	gawk	comes	in.

NOTE
The	gawk	program	is	not	installed	by	default	on	all	distributions.	If	your	Linux	distribution	does
not	have	the	gawk	program,	install	the	gawk	package	using	Chapter	9,	“Installing	Software,”	as	a
guide.

The	gawk	program	is	the	GNU	version	of	the	original	awk	program	in	Unix.	The	gawk	program	takes	stream	editing
one	step	further	than	the	sed	editor	by	providing	a	programming	language	instead	of	just	editor	commands.	Within
the	gawk	programming	language,	the	following	is	possible:

Define	variables	to	store	data.

Use	arithmetic	and	string	operators	to	operate	on	data.

Use	structured	programming	concepts,	such	as	if‐then	statements	and	loops,	to	add	logic	to	your	data
processing.

Generate	formatted	reports	by	extracting	data	elements	within	the	data	file	and	repositioning	them	in	another
order	or	format.

The	gawk	program's	report‐generating	capabilities	are	often	used	for	extracting	data	elements	from	large,	bulky	text
files	and	formatting	them	into	a	readable	report.	The	perfect	example	of	this	is	formatting	program	log	files.	Trying
to	dig	through	lines	of	errors	in	a	log	file	can	be	difficult.	The	gawk	program	allows	the	filtering	of	data	elements	you
want	to	view	from	the	log	file,	and	then	formats	them	in	a	manner	that	makes	reading	the	important	data	easier.

Visiting	the	gawk	command	format
Here's	the	basic	format	of	the	gawk	program:

gawk	options	program	file

Table	19.2	shows	a	few	options	available	with	the	gawk	program.

TABLE	19.2	The	gawk	Options

Option Description

‐F	fs Specifies	a	file	separator	for	delineating	data	fields	in	a	line

‐f	file Specifies	a	filename	to	read	the	program	from

‐v	var	=	value Defines	a	variable	and	default	value	used	in	the	gawk	program

‐L	[keyword] Specifies	the	compatibility	mode	or	warning	level	for	gawk

The	command‐line	options	provide	an	easy	way	to	customize	features	in	the	gawk	program.	We'll	look	more	closely	at

some	of	these	as	we	explore	gawk	basics.

The	power	of	gawk	is	in	the	program	script.	You	can	write	scripts	to	read	the	data	within	a	text	line	and	then
manipulate	and	display	the	data	to	create	any	type	of	output	report.

Reading	the	program	script	from	the	command	line
A	gawk	program	script	is	defined	by	opening	and	closing	braces.	You	must	place	script	commands	between	the	two
braces	({}).	If	you	incorrectly	use	a	parenthesis	instead	of	a	brace	to	enclose	your	gawk	script,	error	messages,
similar	to	the	following,	are	generated:

$	gawk	'(print	"Hello	World!")'
gawk:	cmd.	line:1:	(print	"Hello	World!")
gawk:	cmd.	line:1:		^	syntax	error
gawk:	cmd.	line:2:	(print	"Hello	World!")
gawk:	cmd.	line:2:																							^	unexpected	newline	or
	end	of	string
$

Because	the	gawk	command	line	assumes	that	the	script	is	a	single	text	string,	you	must	also	enclose	your	script	in
single	quotation	marks.	Here's	an	example	of	a	simple	gawk	program	script	specified	on	the	command	line:

$	gawk	'{print	"Hello	World!"}'
	

The	program	script	defines	a	single	command,	the	print	command.	The	print	command	does	what	it	says:	it	prints
text	to	STDOUT	.	If	you	try	running	this	command,	you'll	be	somewhat	disappointed,	because	nothing	happens	right
away.	Because	no	filename	was	defined	in	the	command	line,	the	gawk	program	retrieves	data	from	STDIN	.	When	you
run	the	program,	it	just	waits	for	text	to	come	in	via	STDIN.

If	you	type	a	line	of	text	and	press	the	Enter	key,	gawk	runs	the	text	through	the	program	script.	Just	like	the	sed
editor,	the	gawk	program	executes	the	program	script	on	each	line	of	text	available	in	the	data	stream.	Because	the
program	script	is	set	to	display	a	fixed	text	string,	no	matter	what	text	you	enter	in	the	data	stream,	you	get	the	same
text	output:

$	gawk	'{print	"Hello	World!"}'
This	is	a	test
Hello	World!
hello
Hello	World!
Goodbye
Hello	World!
This	is	another	test
Hello	World!

To	terminate	the	gawk	program,	you	must	signal	that	the	data	stream	has	ended.	The	Bash	shell	provides	a	key
combination	to	generate	an	end‐of‐file	(EOF)	character.	The	Ctrl+D	key	combination	generates	an	EOF	character	in
Bash.	Using	that	key	combination	terminates	the	gawk	program	and	returns	you	to	a	command‐line	interface
prompt.

Using	data	field	variables
One	of	the	primary	features	of	gawk	is	its	ability	to	manipulate	data	in	the	text	file.	It	does	this	by	automatically
assigning	a	variable	to	each	data	element	in	a	line.	By	default,	gawk	assigns	the	following	variables	to	each	data	field
it	detects	in	the	line	of	text:

$0	represents	the	entire	line	of	text.

$1	represents	the	first	data	field	in	the	line	of	text.

$2	represents	the	second	data	field	in	the	line	of	text.

$n	represents	the	nth	data	field	in	the	line	of	text.

Each	data	field	is	determined	in	a	text	line	by	a	field	separation	character.	When	gawk	reads	a	line	of	text,	it
delineates	each	data	field	using	the	defined	field	separation	character.	The	default	field	separation	character	in	gawk
is	any	whitespace	character	(such	as	the	tab	or	space	characters).

Here's	an	example	gawk	program	that	reads	a	text	file	and	displays	only	the	first	data	field	value:

$	cat	data2.txt
One	line	of	test	text.
Two	lines	of	test	text.
Three	lines	of	test	text.
$
$	gawk	'{print	$1}'	data2.txt
One
Two
Three
$

This	program	uses	the	$1	field	variable	to	display	only	the	first	data	field	for	each	line	of	text.

For	reading	a	file	that	uses	a	different	field	separation	character,	specify	the	character	by	using	the	‐F	option:

$	gawk	-F:	'{print	$1}'	/etc/passwd
root
daemon
bin
[...]
christine
sshd
$

This	short	program	displays	the	first	data	field	in	the	password	file	on	the	system.	Because	the	/etc/passwd	file	uses
a	colon	(:)	to	separate	the	data	fields,	to	separate	each	data	element,	we	used	the	field	separation	character	(‐F:)	in
the	gawk	options.

Using	multiple	commands	in	the	program	script
A	programming	language	wouldn't	be	very	useful	if	you	could	only	execute	one	command.	The	gawk	programming
language	allows	the	combination	of	commands	into	a	normal	program.	To	use	multiple	commands	in	the	program
script	specified	on	the	command	line,	just	place	a	semicolon	between	each	command:

$	echo	"My	name	is	Rich"	|	gawk	'{$4="Christine";	print	$0}'
My	name	is	Christine
$

The	first	command	assigns	a	value	to	the	$4	field	variable.	The	second	command	then	prints	the	entire	data	field.
Notice	from	the	output	that	the	gawk	program	replaced	the	fourth	data	field	in	the	original	text	with	the	new	value.

You	can	also	use	the	secondary	prompt	to	enter	your	program	script	commands	one	line	at	a	time:

$	gawk	'{
>	$4="Christine";
>	print	$0}'
My	name	is	Rich
My	name	is	Christine
$

After	we	opened	with	a	single	quotation	mark,	the	Bash	shell	provided	the	secondary	prompt	to	prompt	us	for	more
data.	We	added	our	commands	one	at	a	time	on	each	line	until	we	entered	the	closing	single	quotation	mark.
Because	no	filename	was	defined	in	the	command	line,	the	gawk	program	retrieves	data	from	STDIN	.	When	we	ran
the	program,	it	waited	for	text	to	come	in	via	STDIN	.	To	exit	the	program,	we	pressed	the	Ctrl+D	key	combination	to
signal	the	end	of	the	data	and	get	back	to	a	shell	prompt.

Reading	the	program	from	a	file
Like	the	sed	editor,	the	gawk	editor	allows	you	to	store	your	programs	in	a	file	and	refer	to	them	in	the	command
line:

$	cat	script2.gawk
{print	$1	"'s	home	directory	is	"	$6}
$
$	gawk	-F:	-f	script2.gawk	/etc/passwd
root's	home	directory	is	/root
daemon's	home	directory	is	/usr/sbin
bin's	home	directory	is	/bin
[...]
christine's	home	directory	is	/home/christine
sshd's	home	directory	is	/run/sshd
$

The	script2.gawk	program	script	uses	the	print	command	again	to	print	the	/etc/passwd	file's	home	directory	data
field	(field	variable	$6)	and	the	user	name	data	field	(field	variable	$1).

You	can	specify	multiple	commands	in	the	program	file.	To	do	so,	just	place	each	command	on	a	separate	line.	You
don't	need	to	use	semicolons:

$	cat	script3.gawk
{
text	=	"'s	home	directory	is	"
print	$1	text	$6
}
$
$	gawk	-F:	-f	script3.gawk	/etc/passwd
root's	home	directory	is	/root
daemon's	home	directory	is	/usr/sbin
bin's	home	directory	is	/bin
[...]
christine's	home	directory	is	/home/christine
sshd's	home	directory	is	/run/sshd
$

The	script3.gawk	program	script	defines	a	variable,	text	,	to	hold	a	text	string	used	in	the	print	command.	Notice
that	gawk	programs	don't	use	a	dollar	sign	when	referencing	a	variable's	value,	as	a	shell	script	does.

Running	scripts	before	processing	data
The	gawk	program	also	allows	you	to	specify	when	the	program	script	is	run.	By	default,	gawk	reads	a	line	of	text	from

the	input	and	then	executes	the	program	script	on	the	data	in	the	line	of	text.	Sometimes,	you	may	need	to	run	a
script	before	processing	data,	such	as	to	create	a	header	section	for	a	report.	The	BEGIN	keyword	is	used	to
accomplish	this.	It	forces	gawk	to	execute	the	program	script	specified	after	the	BEGIN	keyword,	before	gawk	reads	the
data:

$	gawk	'BEGIN	{print	"Hello	World!"}'
Hello	World!
$

This	time	the	print	command	displays	the	text	before	reading	any	data.	However,	after	it	displays	the	text,	it	quickly
exits	without	waiting	for	any	data.

The	reason	for	this	is	that	the	BEGIN	keyword	only	applies	the	specified	script	before	it	processes	any	data.	If	you
want	to	process	data	with	a	normal	program	script,	you	must	define	the	program	using	another	script	section:

$	cat	data3.txt
Line	1
Line	2
Line	3
$
$	gawk	'BEGIN	{print	"The	data3	File	Contents:"}
>	{print	$0}'	data3.txt
The	data3	File	Contents:
Line	1
Line	2
Line	3
$

Now	after	gawk	executes	the	BEGIN	script,	it	uses	the	second	script	to	process	any	file	data.	Be	careful	when	doing	this
—	both	of	the	scripts	are	still	considered	one	text	string	on	the	gawk	command	line.	You	need	to	place	your	single
quotation	marks	accordingly.

Running	scripts	after	processing	data
Like	the	BEGIN	keyword,	the	END	keyword	allows	you	to	specify	a	program	script	that	gawk	executes	after	reading	the
data:

$	gawk	'BEGIN	{print	"The	data3	File	Contents:"}
>	{print	$0}
>	END	{print	"End	of	File"}'	data3.txt
The	data3	File	Contents:
Line	1
Line	2
Line	3
End	of	File
$

When	the	gawk	program	is	finished	printing	the	file	contents,	it	executes	the	commands	in	the	END	script.	This	is	a
great	technique	to	use	to	add	footer	data	to	reports	after	all	the	normal	data	has	been	processed.

You	can	put	all	these	elements	together	into	a	nice	little	program	script	file	to	create	a	full	report	from	a	simple	data
file:

$	cat	script4.gawk
BEGIN	{
print	"The	latest	list	of	users	and	shells"
print	"UserID		\t	Shell"
print	"-------	\t	-------"
FS=":"
}
	
{
print	$1	"							\t	"		$7
}
	
END	{
print	"This	concludes	the	listing"
}
$

This	script	uses	the	BEGIN	script	to	create	a	header	section	for	the	report.	It	also	defines	a	special	variable	called	FS	.
This	is	yet	another	way	to	define	the	field	separation	character.	This	way,	you	don't	have	to	depend	on	the	script's
user	to	define	the	field	separation	character	in	the	command‐line	options.
Here's	a	somewhat	truncated	output	from	running	this	gawk	program	script:

$	gawk	-f	script4.gawk	/etc/passwd
The	latest	list	of	users	and	shells
UserID											Shell
-------										-------
root													/bin/bash
daemon											/usr/sbin/nologin
[...]
christine								/bin/bash
sshd													/usr/sbin/nologin

This	concludes	the	listing
$

As	expected,	the	BEGIN	script	created	the	header	text,	the	program	script	processed	the	information	from	the
specified	data	file	(the	/etc/passwd	file),	and	the	END	script	produced	the	footer	text.	The	\t	within	the	print
command	produces	some	nicely	formatted	tabbed	output.

This	gives	you	a	small	taste	of	the	power	available	through	using	simple	gawk	scripts.	Chapter	22,	“Advanced	gawk	,”
describes	some	more	basic	programming	principles	available	for	your	gawk	scripts,	along	with	some	even	more
advanced	programming	concepts	you	can	use	in	your	gawk	program	scripts	to	create	professional‐looking	reports
from	even	the	most	cryptic	data	files.

Looking	at	the	sed	Editor	Basic	Commands
The	key	to	successfully	using	the	sed	editor	is	to	know	its	myriad	of	commands	and	formats,	which	help	you	to
customize	your	text	editing.	This	section	describes	some	of	the	basic	commands	and	features	you	can	incorporate
into	your	script	to	start	using	the	sed	editor.

Introducing	more	substitution	options
We've	already	covered	how	to	use	the	s	command	to	substitute	new	text	for	the	text	in	a	line.	However,	a	few
additional	options	are	available	for	the	s	command	that	can	help	make	your	life	easier.

Substituting	flags
There's	a	caveat	to	how	the	s	command	replaces	matching	patterns	in	the	text	string.	Watch	what	happens	in	this
example:

$	cat	data4.txt
This	is	a	test	of	the	test	script.
This	is	the	second	test	of	the	test	script.
$
$	sed	's/test/trial/'	data4.txt
This	is	a	trial	of	the	test	script.
This	is	the	second	trial	of	the	test	script.
$

The	s	command	works	fine	in	replacing	text	in	multiple	lines,	but	by	default,	it	replaces	only	the	first	occurrence	in
each	line.	To	get	the	s	command	to	work	on	different	occurrences	of	the	text,	you	must	use	a	substitution	flag.	The
substitution	flag	is	set	after	the	substitution	command	strings:

s/pattern/replacement/flags

Four	types	of	substitution	flags	are	available:

A	number,	indicating	the	pattern	occurrence	for	which	new	text	should	be	substituted

g	,	indicating	that	new	text	should	be	substituted	for	all	occurrences	of	the	existing	text

p	,	indicating	that	the	contents	of	the	original	line	should	be	printed

w	file,	which	means	to	write	the	results	of	the	substitution	to	a	file

In	the	first	type	of	substitution,	you	can	specify	which	occurrence	of	the	matching	pattern	the	sed	editor	should
substitute	new	text	for:

$	sed	's/test/trial/2'	data4.txt
This	is	a	test	of	the	trial	script.
This	is	the	second	test	of	the	trial	script.
$

As	a	result	of	specifying	a	2	as	the	substitution	flag,	the	sed	editor	replaces	the	pattern	only	in	the	second	occurrence
in	each	line.	The	g	substitution	flag	enables	you	to	replace	every	occurrence	(global)	of	the	pattern	in	the	text:

$	sed	's/test/trial/g'	data4.txt
This	is	a	trial	of	the	trial	script.
This	is	the	second	trial	of	the	trial	script.
$

The	p	substitution	flag	prints	a	line	that	contains	a	matching	pattern	in	the	substitute	command.	This	is	most	often
used	in	conjunction	with	the	‐n	sed	option:

$	cat	data5.txt
This	is	a	test	line.
This	is	a	different	line.
$
$	sed	-n	's/test/trial/p'	data5.txt
This	is	a	trial	line.
$

The	‐n	option	suppresses	output	from	the	sed	editor.	However,	the	p	substitution	flag	outputs	any	line	that	has	been
modified.	Using	the	two	in	combination	produces	output	only	for	lines	that	have	been	modified	by	the	substitute
command.

The	w	substitution	flag	produces	the	same	output	but	stores	the	output	in	the	specified	file:

$	sed	's/test/trial/w	test.txt'	data5.txt
This	is	a	trial	line.
This	is	a	different	line.
$
$	cat	test.txt
This	is	a	trial	line.
$

The	normal	output	of	the	sed	editor	appears	in	STDOUT	,	but	only	the	lines	that	include	the	matching	pattern	are
stored	in	the	specified	output	file.

Replacing	characters
Sometimes,	you	run	across	characters	in	text	strings	that	aren't	easy	to	use	in	the	substitution	pattern.	One	popular
example	in	the	Linux	world	is	the	forward	slash	(/).

Substituting	pathnames	in	a	file	can	get	awkward.	For	example,	if	you	wanted	to	substitute	the	C	shell	for	the	Bash
shell	in	the	/etc/passwd	file,	you'd	have	to	do	this:

$	sed	's/\/bin\/bash/\/bin\/csh/'	/etc/passwd

Because	the	forward	slash	is	used	as	the	string	delimiter,	you	must	use	a	backslash	to	escape	it	if	it	appears	in	the
pattern	text.	This	often	leads	to	confusion	and	mistakes.

To	solve	this	problem,	the	sed	editor	allows	you	to	select	a	different	character	for	the	string	delimiter	in	the
substitute	command:

$	sed	's!/bin/bash!/bin/csh!'	/etc/passwd

In	this	example,	the	exclamation	point	(!)	is	used	for	the	string	delimiter,	making	the	pathnames	much	easier	to
read	and	understand.

Using	addresses
By	default,	the	commands	you	use	in	the	sed	editor	apply	to	all	lines	of	the	text	data.	If	you	want	to	apply	a
command	only	to	a	specific	line	or	a	group	of	lines,	you	must	use	line	addressing.

There	are	two	forms	of	line	addressing	in	the	sed	editor:

A	numeric	range	of	lines

A	text	pattern	that	matches	text	within	a	line

Both	forms	use	the	same	format	for	specifying	the	address:

[address]command

You	can	also	group	more	than	one	command	together	for	a	specific	address:

address	{
				command1
				command2
				command3
}

The	sed	editor	applies	each	of	the	commands	you	specify	only	to	lines	that	match	the	address	specified.	This	section
demonstrates	using	both	of	these	addressing	techniques	in	your	sed	editor	scripts.

Addressing	the	numeric	line
When	using	numeric	line	addressing,	you	reference	lines	using	their	line	position	in	the	text	stream.	The	sed	editor
assigns	the	first	line	in	the	text	stream	as	line	number	1	and	continues	sequentially	for	each	new	line.

The	address	you	specify	in	the	command	can	be	a	single	line	number	or	a	range	of	lines	specified	by	a	starting	line
number,	a	comma,	and	an	ending	line	number.	Here's	an	example	of	specifying	a	line	number	to	which	the	sed
command	will	be	applied:

$	cat	data1.txt
The	quick	brown	fox	jumps	over	the	lazy	dog.
The	quick	brown	fox	jumps	over	the	lazy	dog.
The	quick	brown	fox	jumps	over	the	lazy	dog.
The	quick	brown	fox	jumps	over	the	lazy	dog.
$
$	sed	'2s/dog/cat/'	data1.txt
The	quick	brown	fox	jumps	over	the	lazy	dog.
The	quick	brown	fox	jumps	over	the	lazy	cat.
The	quick	brown	fox	jumps	over	the	lazy	dog.
The	quick	brown	fox	jumps	over	the	lazy	dog.
$

The	sed	editor	modified	the	text	only	in	line	2	per	the	address	specified.	Here's	another	example,	this	time	using	a
range	of	line	addresses	(lines	2	through	3):

$	sed	'2,3s/dog/cat/'	data1.txt

The	quick	brown	fox	jumps	over	the	lazy	dog.
The	quick	brown	fox	jumps	over	the	lazy	cat.
The	quick	brown	fox	jumps	over	the	lazy	cat.
The	quick	brown	fox	jumps	over	the	lazy	dog.
$

If	you	want	to	apply	a	command	to	a	group	of	lines	starting	at	some	point	within	the	text	but	continuing	to	the	end
of	the	text,	you	can	use	a	dollar	sign	in	place	of	the	last	address	range	number:

$	sed	'2,$s/dog/cat/'	data1.txt
The	quick	brown	fox	jumps	over	the	lazy	dog.
The	quick	brown	fox	jumps	over	the	lazy	cat.
The	quick	brown	fox	jumps	over	the	lazy	cat.
The	quick	brown	fox	jumps	over	the	lazy	cat.
$

Because	you	may	not	know	how	many	lines	of	data	are	in	the	text,	the	dollar	sign	often	comes	in	handy.

Using	text	pattern	filters
The	other	method	of	restricting	to	which	lines	a	command	is	applied	is	a	bit	more	complicated.	The	sed	editor	allows
the	specification	of	a	text	pattern,	and	uses	it	as	a	filter	to	determine	to	which	lines	the	command	is	applied.	This	is
the	format:

/pattern/command

You	must	encapsulate	the	pattern	you	specify	in	forward	slashes.	The	sed	editor	applies	the	command	only	to	lines
that	contain	the	text	pattern	you	specify.

For	example,	if	you	want	to	change	the	default	shell	for	only	the	user	rich	,	you'd	use	the	sed	command:

$	grep	/bin/bash	/etc/passwd
root:x:0:0:root:/root:/bin/bash
christine:x:1001:1001::/home/christine:/bin/bash
rich:x:1002:1002::/home/rich:/bin/bash
$
$	sed	'/rich/s/bash/csh/'	/etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/usr/sbin/nologin
[...]
christine:x:1001:1001::/home/christine:/bin/bash
sshd:x:126:65534::/run/sshd:/usr/sbin/nologin
rich:x:1002:1002::/home/rich:/bin/csh
$

The	command	was	applied	only	to	the	line	with	the	matching	text	pattern.	Although	using	a	fixed	text	pattern	may
be	useful	for	filtering	specific	values,	as	in	the	previous	example,	it's	somewhat	limited	in	what	you	can	do	with	it.
The	sed	editor	uses	a	feature	called	regular	expressions	in	text	patterns	to	allow	you	to	create	patterns	that	get
pretty	involved.

Regular	expressions	allow	you	to	create	advanced	text	pattern–matching	formulas	to	match	all	sorts	of	data.	These
formulas	combine	a	series	of	wildcard	characters,	special	characters,	and	fixed	text	characters	to	produce	a	concise
pattern	that	can	match	just	about	any	text	situation.	Regular	expressions	are	one	of	the	trickier	parts	of	shell	script
programming,	and	Chapter	20,	“Regular	Expressions,”	covers	them	in	great	detail.

Grouping	commands
If	you	need	to	perform	more	than	one	command	on	an	individual	line,	group	the	commands	together	using	braces.
The	sed	editor	processes	each	command	listed	on	the	address	line(s):

$	sed	'2{
>	s/fox/toad/
>	s/dog/cat/
>	}'	data1.txt
The	quick	brown	fox	jumps	over	the	lazy	dog.
The	quick	brown	toad	jumps	over	the	lazy	cat.
The	quick	brown	fox	jumps	over	the	lazy	dog.
The	quick	brown	fox	jumps	over	the	lazy	dog.
$

Both	commands	are	processed	only	against	the	address.	And	of	course,	you	can	specify	an	address	range	before	the
grouped	commands:

$	sed	'3,${
>	s/brown/green/
>	s/fox/toad/
>	s/lazy/sleeping/
>	}'	data1.txt
The	quick	brown	fox	jumps	over	the	lazy	dog.
The	quick	brown	fox	jumps	over	the	lazy	dog.
The	quick	green	toad	jumps	over	the	sleeping	dog.
The	quick	green	toad	jumps	over	the	sleeping	dog.
$

The	sed	editor	applies	all	the	commands	to	all	the	lines	in	the	address	range.

Deleting	lines
The	text	substitution	command	isn't	the	only	command	available	in	the	sed	editor.	If	you	need	to	delete	specific	lines
of	text	in	a	text	stream,	you	can	use	the	delete	command.

The	delete	(d)	command	pretty	much	does	what	it	says.	It	deletes	any	text	lines	that	match	the	addressing	scheme
supplied.	Be	careful	with	the	d	command,	because	if	you	forget	to	include	an	addressing	scheme,	all	the	lines	are
deleted	from	the	stream:

$	cat	data1.txt
The	quick	brown	fox	jumps	over	the	lazy	dog.
The	quick	brown	fox	jumps	over	the	lazy	dog.
The	quick	brown	fox	jumps	over	the	lazy	dog.
The	quick	brown	fox	jumps	over	the	lazy	dog.
$
$	sed	'd'	data1.txt
$

The	d	command	is	obviously	most	helpful	when	used	in	conjunction	with	a	specified	address.	This	allows	you	to
remove	specific	lines	of	text	from	the	data	stream,	either	by	line	number:

$	cat	data6.txt
This	is	line	number	1.
This	is	line	number	2.
This	is	the	3rd	line.
This	is	the	4th	line.
$
$	sed	'3d'	data6.txt
This	is	line	number	1.
This	is	line	number	2.
This	is	the	4th	line.
$

or	by	a	specific	range	of	lines:

$	sed	'2,3d'	data6.txt
This	is	line	number	1.
This	is	the	4th	line.
$

or	by	using	the	special	end‐of‐file	character:
$	sed	'3,$d'	data6.txt
This	is	line	number	1.
This	is	line	number	2.
$

The	pattern‐matching	feature	of	the	sed	editor	also	applies	to	the	delete	(d)	command:
$	sed	'/number	1/d'	data6.txt
This	is	line	number	2.
This	is	the	3rd	line.
This	is	the	4th	line.
$

The	sed	editor	removes	the	line	containing	text	that	matches	the	pattern	you	specify.

NOTE
Remember	that	the	sed	editor	doesn't	touch	the	original	file.	Any	lines	you	delete	are	only	gone
from	the	sed	editor's	output.	The	original	file	still	contains	the	“deleted”	lines.

You	can	also	delete	a	range	of	lines	using	two	text	patterns,	but	be	careful	if	you	do	this.	The	first	pattern	you	specify
“turns	on”	the	line	deletion,	and	the	second	pattern	“turns	off”	the	line	deletion.	The	sed	editor	deletes	any	lines
between	the	two	specified	lines	(including	the	specified	lines):

$	sed	'/1/,/3/d'	data6.txt
This	is	the	4th	line.
$

In	addition,	you	must	be	careful	because	the	delete	feature	“turns	on”	whenever	the	sed	editor	detects	the	start
pattern	in	the	data	stream.	This	may	produce	an	unexpected	result:

$	cat	data7.txt
This	is	line	number	1.
This	is	line	number	2.
This	is	the	3rd	line.
This	is	the	4th	line.
This	is	line	number	1	again;	we	want	to	keep	it.
This	is	more	text	we	want	to	keep.
Last	line	in	the	file;	we	want	to	keep	it.
$
$	sed	'/1/,/3/d'	data7.txt

This	is	the	4th	line.
$

The	second	occurrence	of	a	line	with	the	number	1	in	it	triggered	the	delete	(d)	command	again,	deleting	the	rest	of
the	lines	in	the	data	stream,	because	the	stop	pattern	wasn't	recognized.	Of	course,	the	other	obvious	problem	occurs
if	you	specify	a	stop	pattern	that	never	appears	in	the	text:

$	sed	'/3/,/5/d'	data7.txt
This	is	line	number	1.
This	is	line	number	2.
$

Because	the	delete	feature	“turned	on”	at	the	first	pattern	match	but	never	found	the	end	pattern	match,	it	didn’t
“turn	off.”	And	the	entire	rest	of	the	data	stream	was	deleted.

Inserting	and	appending	text
As	you	would	expect,	like	any	other	editor,	the	sed	editor	allows	you	to	insert	and	append	text	lines	to	the	data
stream.	However,	the	difference	between	the	two	actions	can	be	confusing:

The	insert	(i)	command	adds	a	new	line	before	the	specified	line.

The	append	(a)	command	adds	a	new	line	after	the	specified	line.

What	is	confusing	about	these	two	commands	is	their	formats.	You	can't	always	use	these	commands	on	a	single
command	line.	You	sometimes	must	specify	the	line	to	insert	or	append	the	line	to	insert	on	a	separate	line.	Here's
the	format	for	doing	this:

sed	'[address]command\
new	line'

The	text	in	new	line	appears	in	the	sed	editor	output	in	the	place	you	specify.	Remember	that	when	you	use	the
insert	(i)	command,	the	text	appears	before	the	data	stream	text:

$	echo	"Test	Line	2"	|	sed	'i\Test	Line	1'
Test	Line	1
Test	Line	2
$

And	when	you	use	the	append	(a)	command,	the	text	appears	after	the	data	stream	text:

$	echo	"Test	Line	2"	|	sed	'a\Test	Line	1'
Test	Line	2
Test	Line	1
$

When	you	use	the	sed	editor	from	the	command‐line	interface	prompt,	you	get	the	secondary	prompt	to	enter	the
new	line	of	data.	You	must	complete	the	sed	editor	command	on	this	line.	After	you	enter	the	ending	single
quotation	mark,	the	Bash	shell	processes	the	command:

$	echo	"Test	Line	2"	|	sed	'i\
>	Test	Line	1'
Test	Line	1
Test	Line	2
$

This	works	well	for	adding	text	before	or	after	the	text	in	the	data	stream,	but	what	about	adding	text	inside	the	data
stream?

To	insert	or	append	data	inside	the	data	stream	lines,	you	must	use	addressing	to	tell	the	sed	editor	where	you	want
the	data	to	appear.	You	can	specify	only	a	single	line	address	when	using	these	commands.	You	can	match	either	a
numeric	line	number	or	a	text	pattern,	but	you	cannot	use	a	range	of	addresses.	This	is	logical,	because	you	can	only
insert	or	append	before	or	after	a	single	line,	and	not	a	range	of	lines.

Here's	an	example	of	inserting	a	new	line	before	line	3	in	the	data	stream:

$	cat	data6.txt
This	is	line	number	1.
This	is	line	number	2.
This	is	the	3rd	line.
This	is	the	4th	line.
$
$	sed	'3i\
>	This	is	an	inserted	line.
>	'	data6.txt
This	is	line	number	1.
This	is	line	number	2.
This	is	an	inserted	line.
This	is	the	3rd	line.
This	is	the	4th	line.
$

Here's	an	example	of	appending	a	new	line	after	line	3	in	the	data	stream:

$	sed	'3a\
>	This	is	an	appended	line.

>	'	data6.txt
This	is	line	number	1.
This	is	line	number	2.
This	is	the	3rd	line.
This	is	an	appended	line.
This	is	the	4th	line.
$

This	uses	the	same	process	as	the	insert	(i)	command;	it	just	places	the	new	text	line	after	the	specified	line	number.
If	you	have	a	multiline	data	stream	and	you	want	to	append	a	new	line	of	text	to	the	end	of	a	data	stream,	just	use
the	dollar	sign,	which	represents	the	last	line	of	data:

$	sed	'$a\
>	This	line	was	added	to	the	end	of	the	file.
>	'	data6.txt
This	is	line	number	1.
This	is	line	number	2.
This	is	the	3rd	line.
This	is	the	4th	line.
This	line	was	added	to	the	end	of	the	file.
$

The	same	idea	applies	if	you	want	to	add	a	new	line	at	the	beginning	of	the	data	stream.	Just	insert	(i)	a	new	line
before	line	number	1.

To	insert	or	append	more	than	one	line	of	text,	you	must	use	a	backslash	on	each	line	of	new	text	until	you	reach	the
last	text	line	where	you	want	to	insert	or	append	text:

$	sed	'1i\
>	This	is	an	inserted	line.\
>	This	is	another	inserted	line.
>	'	data6.txt
This	is	an	inserted	line.
This	is	another	inserted	line.
This	is	line	number	1.
This	is	line	number	2.
This	is	the	3rd	line.
This	is	the	4th	line.
$

Both	of	the	specified	lines	are	added	to	the	data	stream.

Changing	lines
The	change	(c)	command	allows	you	to	change	the	contents	of	an	entire	line	of	text	in	the	data	stream.	It	works	the
same	way	as	the	insert	and	append	commands	in	that	you	must	specify	the	new	line	separately	from	the	rest	of	the
sed	command:

$	sed	'2c\
>	This	is	a	changed	line	of	text.
>	'	data6.txt
This	is	line	number	1.
This	is	a	changed	line	of	text.
This	is	the	3rd	line.
This	is	the	4th	line.
$

In	the	preceding	example,	the	sed	editor	changes	the	text	in	line	number	2.	You	can	also	use	a	text	pattern	for	the
address:

$	sed	'/3rd	line/c\
>	This	is	a	changed	line	of	text.
>	'	data6.txt
This	is	line	number	1.
This	is	line	number	2.
This	is	a	changed	line	of	text.
This	is	the	4th	line.
$

The	text	pattern	change	(c)	command	changes	any	line	of	text	in	the	data	stream	that	it	matches.

$	cat	data8.txt
I	have	2	Infinity	Stones
I	need	4	more	Infinity	Stones
I	have	6	Infinity	Stones!
I	need	4	Infinity	Stones
I	have	6	Infinity	Stones...
I	want	1	more	Infinity	Stone
$
$	sed	'/have	6	Infinity	Stones/c\
>	Snap!	This	is	changed	line	of	text.
>	'	data8.txt
I	have	2	Infinity	Stones
I	need	4	more	Infinity	Stones
Snap!	This	is	changed	line	of	text.
I	need	4	Infinity	Stones
Snap!	This	is	changed	line	of	text.

I	want	1	more	Infinity	Stone
$

You	can	use	an	address	range	in	the	change	command,	but	the	results	may	not	be	what	you	expect:

$	cat	data6.txt
This	is	line	number	1.
This	is	line	number	2.
This	is	the	3rd	line.
This	is	the	4th	line.
$
$	sed	'2,3c\
>	This	is	a	changed	line	of	text.
>	'	data6.txt
This	is	line	number	1.
This	is	a	changed	line	of	text.
This	is	the	4th	line.
$

Instead	of	changing	both	lines	with	the	text,	the	sed	editor	uses	the	single	line	of	text	to	replace	both	lines.

Transforming	characters
The	transform	(y)	command	is	the	only	sed	editor	command	that	operates	on	a	single	character.	The	transform
command	uses	the	format

[address]y/inchars/outchars/

The	transform	command	performs	a	one‐to‐one	mapping	of	the	inchars	and	the	outchars	values.	The	first	character
in	inchars	is	converted	to	the	first	character	in	outchars.	The	second	character	in	inchars	is	converted	to	the	second
character	in	outchars.	This	mapping	continues	throughout	the	length	of	the	specified	characters.	If	the	inchars	and
outchars	are	not	the	same	length,	the	sed	editor	produces	an	error	message.

Here's	a	simple	example	of	using	the	transform	(y)	command:

$	cat	data9.txt
This	is	line	1.
This	is	line	2.
This	is	line	3.
This	is	line	4.
This	is	line	5.
This	is	line	1	again.
This	is	line	3	again.
This	is	the	last	file	line.
$
$	sed	'y/123/789/'	data9.txt
This	is	line	7.
This	is	line	8.
This	is	line	9.
This	is	line	4.
This	is	line	5.
This	is	line	7	again.
This	is	line	9	again.
This	is	the	last	file	line.
$

As	you	can	see	from	the	output,	each	instance	of	the	characters	specified	in	the	inchars	pattern	has	been	replaced	by
the	character	in	the	same	position	in	the	outchars	pattern.

The	transform	(y)	command	is	a	global	command;	that	is,	it	performs	the	transformation	on	any	character	found	in
the	text	line	automatically,	without	regard	to	the	occurrence:

$	echo	"Test	#1	of	try	#1."	|	sed	'y/123/678/'
Test	#6	of	try	#6.
$

The	sed	editor	transformed	both	instances	of	the	matching	character	1	in	the	text	line.	You	can't	limit	the
transformation	to	a	specific	occurrence	of	the	character.

Printing	revisited
The	“Introducing	more	substitution	options”	section	showed	how	to	use	the	p	flag	with	the	substitution	(s)
command	to	display	lines	that	the	sed	editor	changed.	In	addition,	three	commands	can	be	used	to	print	information
from	the	data	stream:

The	print	(p)	command	to	print	a	text	line

The	equal	sign	(=)	command	to	print	line	numbers

The	list	(l)	command	to	list	a	line

The	following	sections	look	at	these	three	printing	commands	in	the	sed	editor.

Printing	lines
Like	the	p	flag	in	the	substitution	(s)	command,	the	print	(p)	command	prints	a	line	in	the	sed	editor	output.	On	its

own,	this	command	doesn't	offer	much	excitement:

$	echo	"This	is	a	test."	|	sed	'p'
This	is	a	test.
This	is	a	test.
$

All	it	does	is	print	the	data	text	that	you	already	know	is	there.	The	most	common	use	for	the	print	command	is
printing	lines	that	contain	matching	text	from	a	text	pattern:

$	cat	data6.txt
This	is	line	number	1.
This	is	line	number	2.
This	is	the	3rd	line.
This	is	the	4th	line.
$
$	sed	-n	'/3rd	line/p'	data6.txt
This	is	the	3rd	line.
$

By	using	the	‐n	option	on	the	command	line,	you	can	suppress	all	the	other	lines	and	print	only	the	line	that	contains
the	matching	text	pattern.

You	can	also	use	this	as	a	quick	way	to	print	a	subset	of	lines	in	a	data	stream:

$	sed	-n	'2,3p'	data6.txt
This	is	line	number	2.
This	is	the	3rd	line.
$

You	can	also	use	the	print	(p)	command	when	you	need	to	see	a	line	before	it	gets	altered,	such	as	with	the
substitution	(s)	or	change	(c)	command.	You	can	create	a	script	that	displays	the	line	before	it's	changed:

$	sed	-n	'/3/{	
>	p
>	s/line/test/p
>	}'	data6.txt
This	is	the	3rd	line.
This	is	the	3rd	test.
$

This	sed	editor	command	searches	for	lines	that	contain	the	number	3	and	executes	two	commands.	First,	the	script
uses	the	p	command	to	print	the	original	version	of	the	line;	then	it	uses	the	s	command	to	substitute	text,	along
with	the	p	flag	to	print	the	resulting	text.	The	output	shows	both	the	original	line	text	and	the	new	line	text.

Printing	line	numbers
The	equal	sign	(=)	command	prints	the	current	line	number	for	the	line	within	the	data	stream.	Line	numbers	are
determined	by	using	the	newline	character	in	the	data	stream.	Each	time	a	newline	character	appears	in	the	data
stream,	the	sed	editor	assumes	that	it	terminates	a	line	of	text:

$	cat	data1.txt
The	quick	brown	fox	jumps	over	the	lazy	dog.
The	quick	brown	fox	jumps	over	the	lazy	dog.
The	quick	brown	fox	jumps	over	the	lazy	dog.
The	quick	brown	fox	jumps	over	the	lazy	dog.
$
$	sed	'='	data1.txt
1
The	quick	brown	fox	jumps	over	the	lazy	dog.
2
The	quick	brown	fox	jumps	over	the	lazy	dog.
3
The	quick	brown	fox	jumps	over	the	lazy	dog.
4
The	quick	brown	fox	jumps	over	the	lazy	dog.
$

The	sed	editor	prints	the	line	number	before	the	actual	line	of	text.	The	=	command	comes	in	handy	if	you're
searching	for	a	specific	text	pattern	in	the	data	stream:

$	cat	data7.txt
This	is	line	number	1.
This	is	line	number	2.
This	is	the	3rd	line.
This	is	the	4th	line.
This	is	line	number	1	again;	we	want	to	keep	it.
This	is	more	text	we	want	to	keep.
Last	line	in	the	file;	we	want	to	keep	it.
$
$	sed	-n	'/text/{
>	=
>	p
>	}'	data7.txt
6
This	is	more	text	we	want	to	keep.

$

By	using	the	‐n	option,	you	can	have	the	sed	editor	display	both	the	line	number	and	text	for	the	line	that	contains
the	matching	text	pattern.

Listing	lines
The	list	(l)	command	allows	you	to	print	both	the	text	and	nonprintable	characters	in	a	data	stream.	Any
nonprintable	characters	are	shown	using	either	their	octal	values,	proceeded	by	a	backslash,	or	the	standard	C‐style
nomenclature	for	common	nonprintable	characters,	such	as	\t	for	tab	characters:

$	cat	data10.txt
This				line				contains								tabs.
This	line	does	contain	tabs.
$
$	sed	-n	'l'	data10.txt
This\tline\tcontains\ttabs.$
This	line	does	contain	tabs.$
$

The	tab	character	locations	are	shown	with	the	\t	.	The	dollar	sign	at	the	end	of	each	line	indicates	the	newline
character.	If	you	have	a	data	stream	that	contains	an	escape	character,	the	list	(l)	command	displays	it	(using	the
octal	code	if	necessary):

$	cat	data11.txt
This	line	contains	an	escape	character.
$
$	sed	-n	'l'	data11.txt
This	line	contains	an	escape	character.	\a$
$

The	data11.txt	file	contains	an	escape	control	code,	which	generates	a	bell	sound.	When	the	cat	command	is	used
to	display	the	text	file,	the	escape	control	code	isn't	shown;	only	the	sound	is	generated	(if	the	computer's	sound	is
turned	on).	However,	using	the	list	command,	the	escape	control	code	used	is	displayed.

Using	files	with	sed
The	substitution	(s)	command	contains	flags	that	allow	you	to	work	with	files.	There	are	also	regular	sed	editor
commands	that	let	you	do	that	without	having	to	substitute	text.

Writing	to	a	file
The	write	(w)	command	is	used	to	write	lines	to	a	file.	Here's	the	format	for	the	write	command:

[address]w	filename

The	filename	can	be	specified	as	either	a	relative	or	absolute	pathname,	but	in	either	case,	the	person	running	the
sed	editor	must	have	write	permissions	for	the	file.	The	address	can	be	any	type	of	addressing	method	used	in	sed	,
such	as	a	single	line	number,	a	text	pattern,	or	a	range	of	line	numbers	or	text	patterns.

Here's	an	example	that	prints	only	the	first	two	lines	of	a	data	stream	to	a	text	file:

$	sed	'1,2w	test.txt'	data6.txt
This	is	line	number	1.
This	is	line	number	2.
This	is	the	3rd	line.
This	is	the	4th	line.
$
$	cat	test.txt
This	is	line	number	1.
This	is	line	number	2.
$

Of	course,	if	you	don't	want	the	lines	to	display	on	STDOUT	,	you	can	use	the	‐n	option	for	the	sed	command.

This	is	a	great	tool	to	use	if	you	need	to	create	a	data	file	from	a	master	file	on	the	basis	of	common	text	values,	such
as	those	in	a	mailing	list:

$	cat	data12.txt
Blum,	R							Browncoat
McGuiness,	A		Alliance
Bresnahan,	C		Browncoat
Harken,	C					Alliance
$
$	sed	-n	'/Browncoat/w	Browncoats.txt'	data12.txt
$
$	cat	Browncoats.txt
Blum,	R							Browncoat
Bresnahan,	C		Browncoat
$

The	sed	editor	writes	to	a	destination	file	only	the	data	lines	that	contain	the	text	pattern.

Reading	data	from	a	file

You've	already	seen	how	to	insert	data	into	and	append	text	to	a	data	stream	from	the	sed	command	line.	The	read
(r)	command	allows	you	to	insert	data	contained	in	a	separate	file.

Here's	the	format	of	the	read	command:

[address]r	filename

The	filename	parameter	specifies	either	an	absolute	or	relative	pathname	for	the	file	that	contains	the	data.	You
can't	use	a	range	of	addresses	for	the	read	(r)	command.	You	can	only	specify	a	single	line	number	or	text	pattern
address.	The	sed	editor	inserts	the	text	from	the	file	after	the	address.

$	cat	data13.txt
This	is	an	added	line.
This	is	a	second	added	line.
$
$	sed	'3r	data13.txt'	data6.txt
This	is	line	number	1.
This	is	line	number	2.
This	is	the	3rd	line.
This	is	an	added	line.
This	is	a	second	added	line.
This	is	the	4th	line.
$

The	sed	editor	inserts	into	the	data	stream	all	the	text	lines	in	the	data	file.	The	same	technique	works	when	using	a
text	pattern	address:

$	sed	'/number	2/r	data13.txt'	data6.txt
This	is	line	number	1.
This	is	line	number	2.
This	is	an	added	line.
This	is	a	second	added	line.
This	is	the	3rd	line.
This	is	the	4th	line.
$

If	you	want	to	add	text	to	the	end	of	a	data	stream,	just	use	the	dollar	sign	address	symbol:

$	sed	'$r	data13.txt'	data6.txt
This	is	line	number	1.
This	is	line	number	2.
This	is	the	3rd	line.
This	is	the	4th	line.
This	is	an	added	line.
This	is	a	second	added	line.
$

A	cool	application	of	the	read	(r)	command	is	to	use	it	in	conjunction	with	a	delete	(d)	command	to	replace	a
placeholder	in	a	file	with	data	from	another	file.	For	example,	suppose	that	you	had	a	form	stored	in	a	text	file	that
looked	like	this:

$	cat	notice.std
Would	the	following	people:
LIST
please	report	to	the	ship's	captain.
$

The	form	letter	uses	the	generic	placeholder	LIST	in	place	of	a	list	of	people.	To	insert	the	list	of	people	after	the
placeholder,	you	just	use	the	read	(r)	command.	However,	this	still	leaves	the	placeholder	text	in	the	output.	To
remove	that,	just	use	the	delete	(d)	command.	The	result	looks	like	this:

$	sed	'/LIST/{
>	r	data12.txt
>	d
>	}'	notice.std
Would	the	following	people:
Blum,	R							Browncoat
McGuiness,	A		Alliance
Bresnahan,	C		Browncoat
Harken,	C					Alliance
please	report	to	the	ship's	captain.
$

Now	the	placeholder	text	is	replaced	with	the	list	of	names	from	the	data	file.

Working	Through	a	Practical	Example
In	this	section,	we'll	describe	a	script	that	puts	both	sed	and	gawk	into	action.	Before	looking	at	the	script,	let's
describe	a	situation	where	the	script	is	useful.	First,	we	need	to	discuss	the	shebang.	In	Chapter	11,	“Basic	Script
Building,”	we	covered	the	first	line	of	a	shell	script	file:

#!/bin/bash

This	first	line	is	sometimes	referred	to	as	the	shebang	and	traditionally	looks	like	this	for	shell	scripts	in	Unix:

#!/bin/sh

Often	the	tradition	was	carried	over	to	Bash	shell	scripts	on	Linux,	which	wasn't	a	problem	in	the	past	—	most
distributions	had	/bin/sh	linked	to	the	Bash	shell	(/bin/bash).	Thus,	if	/bin/sh	was	used	as	the	shebang	in	a	shell
script,	it	was	as	if	/bin/bash	had	been	written:

$	ls	-l	/bin/sh
lrwxrwxrwx	1	root	root	4	Nov	8	2019	/bin/sh	->	bash
$

Somewhere	along	the	way	this	changed	on	some	Linux	distributions,	such	as	Ubuntu.	And	on	these	Linux	systems,
the	/bin/sh	file	is	now	linked	to	a	different	file	than	the	Bash	shell:

$	ls	-l	/bin/sh
lrwxrwxrwx	1	root	root	4	Apr	23	14:33	/bin/sh	->	dash
$

If	a	shell	script	that	has	/bin/sh	as	its	shebang	runs	on	this	system,	the	script	will	be	run	in	the	Dash	shell	instead	of
the	Bash	shell.	This	may	cause	many	of	the	shell	script	commands	to	fail.

Now	let's	look	at	our	real‐world	scenario	for	the	practical	script:	a	particular	company	uses	only	RHEL,	and	the	Bash
shell	scripts	on	their	systems	use	the	old‐fashioned	/bin/sh	shebang.	This	is	not	a	problem,	because	on	that
distribution,	the	/bin/sh	file	still	links	to	/bin/bash	.	But	now,	the	company	wants	to	bring	in	servers	that	run
Ubuntu,	and	the	shell	scripts	must	be	converted	to	use	the	/bin/bash	shebang	so	that	they	run	properly	on	these	new
servers.

How	can	this	problem	be	solved?	Do	you	spend	hours	with	a	text	editor	fixing	every	shebang	by	hand?	Could	the
new	IT	intern	be	forced	into	such	terrible	manual	labor?	This	type	of	situation	is	where	sed	and	gawk	shine,	so	we'll
put	them	to	use	for	this	problem.

First,	we'll	use	sed	to	create	a	listing	of	all	the	shell	scripts	in	a	particular	directory	that	contain	/bin/sh	as	the
shebang	in	their	first	line.	We	can	start	the	process	by	using	the	substitute	(s)	command	along	with	addressing	only
the	first	line	of	a	shell	script:

$	sed	'1s!/bin/sh!/bin/bash!'	OldScripts/testAscript.sh
#!/bin/bash
[...]
echo	"This	is	Test	Script	#1."
[...]
#
exit
$

This	provides	the	substitution,	so	the	testAScript.sh	script	does	contain	#!/bin/sh	as	its	shebang.	But	we	need	to
check	all	the	files	in	the	directory,	and	we	don't	want	to	see	the	script's	contents,	so	we'll	modify	the	command
slightly.	Using	the	‐s	option	(which	we	haven't	covered	yet	in	this	chapter)	will	tell	sed	to	treat	every	file	within	the
directory	as	an	individual	stream,	and	thus	we	can	check	the	first	line	in	each	file.	The	‐n	option	will	suppress	any
output,	so	we	don't	have	to	view	all	the	scripts'	contents:

$	sed	-sn	'1s!/bin/sh!/bin/bash!'	OldScripts/*.sh
$

Well,	that	worked,	but	it's	not	quite	what	we	want.	We	need	to	see	the	script	file's	names,	so	we	know	which	scripts
have	the	old	shebang.

We'll	introduce	another	useful	sed	command	—	F	.	This	command	tells	sed	to	print	the	current	data	file's	name	on
which	it	is	operating,	even	if	the	‐n	option	is	used.	We	only	need	to	see	the	name	one	time,	so	we'll	put	a	one	(1)	in
front	of	the	command	(otherwise	we'd	see	the	name	for	every	line	processed	in	every	file).	Now	we	get	the	listing	we
desire:

$	sed	-sn	'1F;
>	1s!/bin/sh!/bin/bash!'	OldScripts/*.sh
OldScripts/backgroundoutput.sh
OldScripts/backgroundscript.sh
[...]
OldScripts/tryat.sh
$

Now	let's	get	gawk	in	on	this	act	to	pretty	up	the	report.	By	redirecting	(|)	the	output	from	sed	into	gawk	,	we	can
make	the	information	a	little	nicer	to	view:

$	sed	-sn	'1F;
>	1s!/bin/sh!/bin/bash!'	OldScripts/*.sh	|
>	gawk	'BEGIN	{print	""
>	print	"The	following	scripts	have	/bin/sh	as	their	shebang:"
>	print	""}
>	{print	$0}
>	END	{print	"End	of	Report"}'
	
The	following	scripts	have	/bin/sh	as	their	shebang:
	
OldScripts/backgroundoutput.sh
OldScripts/backgroundscript.sh
[...]
OldScripts/tryat.sh
End	of	Report

$

Now	that	we've	produced	a	report,	we'll	verify	that	we	want	to	update	these	scripts	to	use	a	more	modern	shebang.
Once	the	decision	is	made	to	update	the	scripts,	we	can	make	the	needed	changes.	But	we'll	let	sed	do	all	the
updating	work	for	us	along	with	a	for	loop:

$	mkdir	TestScripts
$
$	for	filename	in	$(grep	-l	"bin/sh"	OldScripts/*.sh)
>	do
>	newFilename=$(basename	$filename)
>	cat	$filename	|
>	sed	'1c\#!/bin/bash'	>	TestScripts/$newFilename
>	done
$
$	grep	"/bin/bash"	TestScripts/*.sh
TestScripts/backgroundoutput.sh:#!/bin/bash
TestScripts/backgroundscript.sh:#!/bin/bash
[...]
TestScripts/tryat.sh:#!/bin/bash
$

Success!	Next	we	need	to	take	this	basic	sed	and	gawk	functionality	and	put	it	into	our	practical	script.	Here	is	the
script	in	its	entirety	for	your	perusal:

$	cat	ChangeScriptShell.sh
#!/bin/bash
#	Change	the	shebang	used	for	a	directory	of	scripts
#
##################	Function	Declarations	##########################
#
function	errorOrExit	{
								echo
								echo	$message1
								echo	$message2
								echo	"Exiting	script..."
								exit
}
#
function	modifyScripts	{
								echo
								read	-p	"Directory	name	in	which	to	store	new	scripts?	"	newScriptDir
								#
								echo	"Modifying	the	scripts	started	at	$(date	+%N)	nanoseconds"
								#
								count=0
								for	filename	in	$(grep	-l	"/bin/sh"	$scriptDir/*.sh)
								do
																newFilename=$(basename	$filename)
																cat	$filename	|
																sed	'1c\#!/bin/bash'>	$newScriptDir/$newFilename
																count=$[$count	+	1]
								done
								echo	"$count	modifications	completed	at	$(date	+%N)	nanoseconds"
}
#
#################	Check	for	Script	Directory	######################
if	[-z	$1]
then
								message1="The	name	of	the	directory	containing	scripts	to	check"
								message2="is	missing.	Please	provide	the	name	as	a	parameter."
								errorOrExit
else
								scriptDir=$1
fi
#
################	Create	Shebang	Report	############################
#
sed	-sn	'1F;
1s!/bin/sh!/bin/bash!'	$scriptDir/*.sh	|
gawk	'BEGIN	{print	""
print	"The	following	scripts	have	/bin/sh	as	their	shebang:"
print	"==="}
{print	$0}
END	{print	""
print	"End	of	Report"}'
#
##################	Change	Scripts?	#################################
#
#
echo
read	-p	"Do	you	wish	to	modify	these	scripts'	shebang?	(Y/n)?	"	answer
#
case	$answer	in
Y	|	y)
								modifyScripts
								;;

N	|	n)
								message1="No	scripts	will	be	modified."
								message2="Run	this	script	later	to	modify,	if	desired."
								errorOrExit
								;;
*)
								message1="Did	not	answer	Y	or	n."
								message2="No	scripts	will	be	modified."
								errorOrExit
								;;
esac
$

Notice	that	we	added	a	few	time	stamps	around	the	running	of	the	sed	to	modify	the	scripts.	Let's	look	at	the	script
in	action:

$	mkdir	NewScripts
$./ChangeScriptShell.sh	OldScripts
	
The	following	scripts	have	/bin/sh	as	their	shebang:
===
OldScripts/backgroundoutput.sh
OldScripts/backgroundscript.sh
[...]
OldScripts/tryat.sh
	
End	of	Report
	
Do	you	wish	to	modify	these	scripts'	shebang?	(Y/n)?	Y
	
Directory	name	in	which	to	store	new	scripts?	NewScripts
Modifying	the	scripts	started	at	168687219	nanoseconds
18	modifications	completed	at	266043476	nanoseconds
$

That	was	fast!	If	you	have	hundreds	of	old	shell	scripts	to	modify,	imagine	how	much	time	this	script	will	save	you.

A	few	improvements	to	this	script	include

Checking	to	ensure	the	new	directory	location	of	the	modified	Bash	shell	scripts	exists

Checking	to	see	if	the	file	being	saved	does	not	already	reside	in	the	directory	so	that	no	files	are	accidentally
overwritten

Allowing	the	new	directory	location	to	be	passed	as	a	parameter,	and	possibly	saving	the	report	produced	by	sed
and	gawk

What	modifications	did	you	come	up	with?

Summary
Shell	scripts	can	do	lots	of	work	on	their	own,	but	it's	often	difficult	to	manipulate	data	with	just	a	shell	script.	Linux
provides	two	handy	utilities	to	help	with	handling	text	data.	The	sed	editor	is	a	stream	editor	that	quickly	processes
data	on	the	fly	as	it	reads	it.	You	must	provide	the	sed	editor	with	a	list	of	editing	commands,	which	it	applies	to	the
data.

The	gawk	program	is	a	utility	from	the	GNU	organization	that	mimics	and	expands	on	the	functionality	of	the	Unix
awk	program.	The	g	awk	program	contains	a	built‐in	programming	language	that	you	can	use	to	write	scripts	to
handle	and	process	data.	You	can	use	the	gawk	program	to	extract	data	elements	from	large	data	files	and	output
them	in	just	about	any	format	you	desire.	This	makes	processing	large	log	files	a	snap,	as	well	as	creating	custom
reports	from	data	files.

A	crucial	element	of	using	both	the	sed	and	gawk	programs	is	knowing	how	to	use	regular	expressions.	Regular
expressions	are	key	to	creating	customized	filters	for	extracting	and	manipulating	data	in	text	files.	The	next	chapter
dives	into	the	often	misunderstood	world	of	regular	expressions,	showing	you	how	to	build	regular	expressions	for
manipulating	all	types	of	data.

CHAPTER	20
Regular	Expressions
IN	THIS	CHAPTER

Exploring	regular	expressions

Defining	BRE	patterns

Trying	out	extended	regular	expressions	The	key	to	successfully	working	with	sed	and	gawk	in	your	shell	script	is
your	comfort	using	regular	expressions.	This	is	not	always	an	easy	thing	to	do,	because	trying	to	filter	specific	data
from	a	large	batch	of	data	can	(and	often	does)	get	complicated.	This	chapter	describes	how	to	create	regular
expressions	in	both	sed	and	gawk	that	can	filter	out	just	the	data	you	need.

Exploring	Regular	Expressions
The	first	step	to	understanding	regular	expressions	is	to	define	just	exactly	what	they	are.	This	section	explains	what
a	regular	expression	is	and	describes	how	Linux	uses	regular	expressions.

A	definition
A	regular	expression	is	a	pattern	template	you	define	that	a	Linux	utility	uses	to	filter	text.	A	Linux	utility	(such	as
sed	or	gawk)	matches	the	regular	expression	pattern	against	data	as	that	data	flows	into	the	utility.	If	the	data
matches	the	pattern,	it's	accepted	for	processing.	If	the	data	doesn't	match	the	pattern,	it's	rejected.	This	is
illustrated	in	Figure	20-1.

The	regular	expression	pattern	makes	use	of	wildcard	characters	to	represent	one	or	more	characters	in	the	data
stream.	There	are	plenty	of	instances	in	Linux	where	you	can	specify	a	wildcard	character	to	represent	data	you	don't
know	about.	You've	already	seen	an	example	of	using	wildcard	characters	with	the	Linux	ls	command	for	listing	files
and	directories	(see	Chapter	3,	“Basic	Bash	Shell	Commands”).

FIGURE	20-1	Matching	data	against	a	regular	expression	pattern

The	asterisk	wildcard	character	allows	you	to	list	only	files	that	match	a	certain	criterion.	For	example:

$	ls	-al	da*
-rw-r--r--				1	rich					rich											45	Nov	26	12:42	data
-rw-r--r--				1	rich					rich											25	Dec		4	12:40	data.tst
-rw-r--r--				1	rich					rich										180	Nov	26	12:42	data1
-rw-r--r--				1	rich					rich											45	Nov	26	12:44	data2
-rw-r--r--				1	rich					rich											73	Nov	27	12:31	data3
-rw-r--r--				1	rich					rich											79	Nov	28	14:01	data4
-rw-r--r--				1	rich					rich										187	Dec		4	09:45	datatest
$

The	da*	parameter	instructs	the	ls	command	to	list	only	the	files	whose	name	starts	with	“da.”	There	can	be	any

number	of	characters	after	the	“da”	in	the	filename	(including	none).	The	ls	command	reads	the	information
regarding	all	the	files	in	the	directory	but	displays	only	the	ones	that	match	the	wildcard	character.

Regular	expression	wildcard	patterns	work	in	a	similar	way.	The	regular	expression	pattern	contains	text	and/or
special	characters	that	define	a	template	for	sed	and	gawk	to	follow	when	matching	data.	You	can	use	different
special	characters	in	a	regular	expression	to	define	a	specific	pattern	for	filtering	data.

Types	of	regular	expressions
The	biggest	problem	with	using	regular	expressions	is	that	there	isn't	just	one	set	of	them.	Several	different
applications	use	different	types	of	regular	expressions	in	the	Linux	environment.	These	include	such	diverse
applications	as	programming	languages	(Java,	Perl,	and	Python),	Linux	utilities	(such	as	sed	,	gawk	,	and	the	grep
utility),	and	mainstream	applications	(such	as	the	MySQL	and	PostgreSQL	database	servers).

A	regular	expression	is	implemented	using	a	regular	expression	engine.	A	regular	expression	engine	is	the
underlying	software	that	interprets	regular	expression	patterns	and	uses	those	patterns	to	match	text.

While	there	are	many	different	regular	expression	engines	in	the	Linux	world,	the	two	most	popular	ones	are

The	POSIX	Basic	Regular	Expression	(BRE)	engine

The	POSIX	Extended	Regular	Expression	(ERE)	engine

Most	Linux	utilities	at	a	minimum	conform	to	the	POSIX	BRE	engine	specifications,	recognizing	all	the	pattern
symbols	it	defines.	Unfortunately,	some	utilities	(such	as	sed)	conform	only	to	a	subset	of	the	BRE	engine
specifications.	This	is	due	to	speed	constraints,	because	sed	attempts	to	process	text	in	the	data	stream	as	quickly	as
possible.

The	POSIX	ERE	engine	is	often	found	in	programming	languages	that	rely	on	regular	expressions	for	text	filtering.
It	provides	advanced	pattern	symbols	as	well	as	special	symbols	for	common	patterns,	such	as	matching	digits,
words,	and	alphanumeric	characters.	Gawk	uses	the	ERE	engine	to	process	its	regular	expression	patterns.

Because	there	are	so	many	different	ways	to	implement	regular	expressions,	it's	hard	to	present	a	single,	concise
description	of	all	the	possible	regular	expressions.	The	following	sections	discuss	the	most	commonly	found	regular
expressions	and	demonstrate	how	to	use	them	in	sed	and	gawk.

Defining	BRE	Patterns
The	most	basic	BRE	pattern	is	matching	text	characters	in	a	data	stream.	This	section	demonstrates	how	you	can
define	text	in	the	regular	expression	pattern	and	what	to	expect	from	the	results.

Plain	text
Chapter	18,	“Writing	Scripts	for	Graphical	Desktops,”	demonstrated	how	to	use	standard	text	strings	in	sed	and	gawk
to	filter	data.	Here's	an	example	to	refresh	your	memory:

$	echo	"This	is	a	test"	|	sed	-n	'/test/p'
This	is	a	test
$	echo	"This	is	a	test"	|	sed	-n	'/trial/p'
$
$	echo	"This	is	a	test"	|	gawk	'/test/{print	$0}'
This	is	a	test
$	echo	"This	is	a	test"	|	gawk	'/trial/{print	$0}'
$

The	first	pattern	defines	a	single	word,	“test.”	Sed	and	gawk	scripts	each	use	their	own	version	of	the	print	command
to	print	any	lines	that	match	the	regular	expression	pattern.	Because	the	echo	statement	contains	the	word	“test”	in
the	text	string,	the	data	stream	text	matches	the	defined	regular	expression	pattern,	and	sed	displays	the	line.

The	second	pattern	again	defines	just	a	single	word,	this	time	the	word	“trial.”	Because	the	echo	statement	text	string
doesn't	contain	that	word,	the	regular	expression	pattern	doesn't	match,	so	neither	sed	nor	gawk	prints	the	line.

You	probably	already	noticed	that	the	regular	expression	doesn't	care	where	in	the	data	stream	the	pattern	occurs.	It
also	doesn't	matter	how	many	times	the	pattern	occurs.	After	the	regular	expression	can	match	the	pattern	anywhere
in	the	text	string,	it	passes	the	string	along	to	the	Linux	utility	that's	using	it.

The	key	is	matching	the	regular	expression	pattern	to	the	data	stream	text.	It's	important	to	remember	that	regular
expressions	are	extremely	picky	about	matching	patterns.	The	first	rule	to	remember	is	that	regular	expression
patterns	are	case	sensitive.	This	means	they'll	match	only	those	patterns	with	the	proper	case	of	characters:

$	echo	"This	is	a	test"	|	sed	-n	'/this/p'
$
$	echo	"This	is	a	test"	|	sed	-n	'/This/p'
This	is	a	test
$

The	first	attempt	failed	to	match	because	the	word	“this”	doesn't	appear	in	all	lowercase	in	the	text	string,	whereas
the	second	attempt,	which	uses	the	uppercase	letter	in	the	pattern,	worked	just	fine.

You	don't	have	to	limit	yourself	to	whole	words	in	the	regular	expression.	If	the	defined	text	appears	anywhere	in	the
data	stream,	the	regular	expression	matches	the	following:

$	echo	"The	books	are	expensive"	|	sed	-n	'/book/p'
The	books	are	expensive
$

Even	though	the	text	in	the	data	stream	is	“books,”	the	data	in	the	stream	contains	the	regular	expression	“book”,	so
the	regular	expression	pattern	matches	the	data.	Of	course,	if	you	try	the	opposite,	the	regular	expression	fails:

$	echo	"The	book	is	expensive"	|	sed	-n	'/books/p'
$

The	complete	regular	expression	text	didn't	appear	in	the	data	stream,	so	the	match	failed	and	sed	didn't	display	the
text.

You	also	don't	have	to	limit	yourself	to	single	text	words	in	the	regular	expression.	You	can	include	spaces	and
numbers	in	your	text	string	as	well:

$	echo	"This	is	line	number	1"	|	sed	-n	'/ber	1/p'
This	is	line	number	1
$

Spaces	are	treated	just	like	any	other	character	in	the	regular	expression:

$	echo	"This	is	line	number1"	|	sed	-n	'/ber	1/p'
$

If	you	define	a	space	in	the	regular	expression,	it	must	appear	in	the	data	stream.	You	can	even	create	a	regular
expression	pattern	that	matches	multiple	contiguous	spaces:

$	cat	data1
This	is	a	normal	line	of	text.
This	is		a	line	with	too	many	spaces.
$	sed	-n	'/		/p'	data1
This	is		a	line	with	too	many	spaces.
$	

The	line	with	two	spaces	between	words	matches	the	regular	expression	pattern.	This	is	a	great	way	to	catch	spacing
problems	in	text	files!

Special	characters
As	you	use	text	strings	in	your	regular	expression	patterns,	there's	something	you	need	to	be	aware	of.	There	are	a
few	exceptions	when	defining	text	characters	in	a	regular	expression.	Regular	expression	patterns	assign	a	special
meaning	to	a	few	characters.	If	you	try	to	use	these	characters	in	your	text	pattern,	you	won't	get	the	results	you	were
expecting.

These	special	characters	are	recognized	by	regular	expressions:

.*[]^${}\+?|()

As	the	chapter	progresses,	you'll	find	out	just	what	these	special	characters	do	in	a	regular	expression.	For	now,
however,	just	remember	that	you	can't	use	these	characters	by	themselves	in	your	text	pattern.

If	you	want	to	use	one	of	the	special	characters	as	a	text	character,	you	need	to	escape	it.	When	you	escape	the
special	characters,	you	add	a	special	character	in	front	of	it	to	indicate	to	the	regular	expression	engine	that	it	should
interpret	the	next	character	as	a	normal	text	character.	The	special	character	that	does	this	is	the	backslash	character
(\).

For	example,	if	you	want	to	search	for	a	dollar	sign	in	your	text,	just	precede	it	with	a	backslash	character:

$	cat	data2
The	cost	is	$4.00
$	sed	-n	'/\$/p'	data2
The	cost	is	$4.00
$

Because	the	backslash	is	a	special	character,	if	you	need	to	use	it	in	a	regular	expression	pattern,	you	need	to	escape
it	as	well,	producing	a	double	backslash:

$	echo	"\	is	a	special	character"	|	sed	-n	'/\\/p'
\	is	a	special	character
$	

Finally,	although	the	forward	slash	isn't	a	regular	expression	special	character,	if	you	use	it	in	your	regular
expression	pattern	in	sed	or	gawk	,	you	get	an	error:

$	echo	"3	/	2"	|	sed	-n	'///p'
sed:	-e	expression	#1,	char	2:	No	previous	regular	expression
$	

To	use	a	forward	slash,	you	need	to	escape	that	as	well:

$	echo	"3	/	2"	|	sed	-n	'/\//p'
3	/	2
$

Now	sed	can	properly	interpret	the	regular	expression	pattern,	and	all	is	well.

Anchor	characters
As	shown	in	the	“Plain	text”	section,	by	default,	when	you	specify	a	regular	expression	pattern,	if	the	pattern	appears
anywhere	in	the	data	stream,	it	matches.	You	can	use	two	special	characters	to	anchor	a	pattern	to	either	the
beginning	or	the	end	of	lines	in	the	data	stream.

Starting	at	the	beginning
The	caret	character	(^)	defines	a	pattern	that	starts	at	the	beginning	of	a	line	of	text	in	the	data	stream.	If	the	pattern
is	located	any	place	other	than	the	start	of	the	line	of	text,	the	regular	expression	pattern	fails.

To	use	the	caret	character,	you	must	place	it	before	the	pattern	specified	in	the	regular	expression:

$	echo	"The	book	store"	|	sed	-n	'/^book/p'
$
$	echo	"Books	are	great"	|	sed	-n	'/^Book/p'
Books	are	great
$

The	caret	anchor	character	checks	for	the	pattern	at	the	beginning	of	each	new	line	of	data,	as	determined	by	the
newline	character:

$	cat	data3
This	is	a	test	line.
this	is	another	test	line.
A	line	that	tests	this	feature.
Yet	more	testing	of	this
$	sed	-n	'/^this/p'	data3
this	is	another	test	line.
$

As	long	as	the	pattern	appears	at	the	start	of	a	new	line,	the	caret	anchor	catches	it.

If	you	position	the	caret	character	in	any	place	other	than	at	the	beginning	of	the	pattern,	it	acts	like	a	normal
character	and	not	as	a	special	character:

$	echo	"This	^	is	a	test"	|	sed	-n	'/s	^/p'
This	^	is	a	test
$	

Because	the	caret	character	is	listed	last	in	the	regular	expression	pattern,	sed	uses	it	as	a	normal	character	to	match
text.

NOTE
If	you	need	to	specify	a	regular	expression	pattern	using	only	the	caret	character,	you	don't
have	to	escape	it	with	a	backslash.	However,	if	you	specify	the	caret	character	first,	followed	by
additional	text	in	the	pattern,	you	need	to	use	the	escape	character	before	the	caret	character.

Looking	for	the	ending
The	opposite	of	looking	for	a	pattern	at	the	start	of	a	line	is	looking	for	it	at	the	end	of	a	line.	The	dollar	sign	($)
special	character	defines	the	end	anchor.	Add	this	special	character	after	a	text	pattern	to	indicate	that	the	line	of
data	must	end	with	the	text	pattern:

$	echo	"This	is	a	good	book"	|	sed	-n	'/book$/p'
This	is	a	good	book
$	echo	"This	book	is	good"	|	sed	-n	'/book$/p'
$

The	problem	with	an	ending	text	pattern	is	that	you	must	be	careful	what	you're	looking	for:

$	echo	"There	are	a	lot	of	good	books"	|	sed	-n	'/book$/p'
$

Making	the	word	“book”	plural	at	the	end	of	the	line	means	that	it	no	longer	matches	the	regular	expression	pattern,
even	though	“book”	is	in	the	data	stream.	The	text	pattern	must	be	the	last	thing	on	the	line	for	the	pattern	to	match.

Combining	anchors
In	some	common	situations,	you	can	combine	both	the	start	and	the	end	anchors	on	the	same	line.	In	the	first
situation,	suppose	you	want	to	look	for	a	line	of	data	containing	only	a	specific	text	pattern:

$	cat	data4
this	is	a	test	of	using	both	anchors
I	said	this	is	a	test
this	is	a	test
I'm	sure	this	is	a	test.
$	sed	-n	'/^this	is	a	test$/p'	data4
this	is	a	test
$

Sed	ignores	the	lines	that	include	other	text	besides	the	specified	text.

The	second	situation	may	seem	a	little	odd	at	first	but	is	extremely	useful.	By	combining	both	anchors	in	a	pattern
with	no	text,	you	can	filter	blank	lines	from	the	data	stream.	Consider	this	example:

$	cat	data5
This	is	one	test	line.
	
This	is	another	test	line.
$	sed	'/^$/d'	data5
This	is	one	test	line.
This	is	another	test	line.
$

The	regular	expression	pattern	that	is	defined	looks	for	lines	that	have	nothing	between	the	start	and	the	end	of	the
line.	Because	blank	lines	contain	no	text	between	the	two	newline	characters,	they	match	the	regular	expression
pattern.	Sed	uses	the	d	command	to	delete	lines	that	match	the	regular	expression	pattern,	thus	removing	all	blank
lines	from	the	text.	This	is	an	effective	way	to	remove	blank	lines	from	documents.

The	dot	character
The	dot	special	character	is	used	to	match	any	single	character	except	a	newline	character.	The	dot	character	must
match	a	character,	however;	if	there's	no	character	in	the	place	of	the	dot,	then	the	pattern	fails.

Let's	look	at	a	few	examples	of	using	the	dot	character	in	a	regular	expression	pattern:

$	cat	data6
This	is	a	test	of	a	line.
The	cat	is	sleeping.
That	is	a	very	nice	hat.
This	test	is	at	line	four.
at	ten	o'clock	we'll	go	home.
$	sed	-n	'/.at/p'	data6
The	cat	is	sleeping.
That	is	a	very	nice	hat.
This	test	is	at	line	four.
$

You	should	be	able	to	figure	out	why	the	first	line	in	the	data	file	failed	to	match,	and	why	the	second	and	third	lines
in	the	data	file	passed.	The	fourth	line	is	a	little	tricky.	Notice	that	we	matched	the	at	,	but	there's	no	character	in
front	of	it	to	match	the	dot	character.	Ah,	but	there	is!	In	regular	expressions,	spaces	count	as	characters,	so	the
space	in	front	of	the	at	matches	the	pattern.	The	fifth	line	proves	this,	by	putting	the	at	in	the	front	of	the	line,	which
fails	to	match	the	pattern.

Character	classes
The	dot	special	character	is	great	for	matching	a	character	position	against	any	character,	but	what	if	you	want	to
limit	what	characters	to	match?	This	is	called	a	character	class	in	regular	expressions.

You	can	define	a	class	of	characters	that	would	match	a	position	in	a	text	pattern.	If	one	of	the	characters	from	the
character	class	is	in	the	data	stream,	it	matches	the	pattern.

To	define	a	character	class,	you	use	square	brackets.	The	brackets	should	contain	any	character	you	want	to	include
in	the	class.	You	then	use	the	entire	class	within	a	pattern	just	like	any	other	wildcard	character.	This	takes	a	little
getting	used	to	at	first,	but	after	you	catch	on,	it	can	generate	some	pretty	amazing	results.

The	following	is	an	example	of	creating	a	character	class:

$	sed	-n	'/[ch]at/p'	data6
The	cat	is	sleeping.
That	is	a	very	nice	hat.
$

Using	the	same	data	file	as	in	the	dot	special	character	example,	we	came	up	with	a	different	result.	This	time	we
managed	to	filter	out	the	line	that	just	contained	the	word	at	.	The	only	words	that	match	this	pattern	are	“cat”	and
“hat.”	Also	notice	that	the	line	that	started	with	“at”	didn't	match	as	well.	There	must	be	a	character	in	the	character
class	that	matches	the	appropriate	position.

Character	classes	come	in	handy	if	you're	not	sure	which	case	a	character	is	in:

$	echo	"Yes"	|	sed	-n	'/[Yy]es/p'
Yes
$	echo	"yes"	|	sed	-n	'/[Yy]es/p'
yes
$

You	can	use	more	than	one	character	class	in	a	single	expression:

$	echo	"Yes"	|	sed	-n	'/[Yy][Ee][Ss]/p'
Yes
$	echo	"yEs"	|	sed	-n	'/[Yy][Ee][Ss]/p'
yEs
$	echo	"yeS"	|	sed	-n	'/[Yy][Ee][Ss]/p'
yeS

$

The	regular	expression	used	three	character	classes	to	cover	both	lower	and	upper	cases	for	all	three	character
positions.

Character	classes	don't	have	to	contain	just	letters;	you	can	use	numbers	in	them	as	well:

$	cat	data7
This	line	doesn't	contain	a	number.
This	line	has	1	number	on	it.
This	line	a	number	2	on	it.
This	line	has	a	number	4	on	it.
$	sed	-n	'/[0123]/p'	data7
This	line	has	1	number	on	it.
This	line	a	number	2	on	it.
$

The	regular	expression	pattern	matches	any	lines	that	contain	the	numbers	0,	1,	2,	or	3.	Any	other	numbers	are
ignored,	as	are	lines	without	numbers	in	them.

You	can	combine	character	classes	to	check	for	properly	formatted	numbers,	such	as	phone	numbers	and	ZIP	codes.
However,	when	you're	trying	to	match	a	specific	format,	you	must	be	careful.	Here's	an	example	of	a	ZIP	code	match
gone	wrong:

$	cat	data8
60633
46201
223001
4353
22203
$	sed	-n	'
>/[0123456789][0123456789][0123456789][0123456789][0123456789]/p
>'	data8
60633
46201
223001
22203
$

This	might	not	have	produced	the	result	you	were	thinking	of.	It	did	a	fine	job	of	filtering	out	the	number	that	was
too	short	to	be	a	ZIP	code,	because	the	last	character	class	didn't	have	a	character	to	match	against.	However,	it	still
passed	the	six-digit	number,	even	though	we	only	defined	five	character	classes.

Remember	that	the	regular	expression	pattern	can	be	found	anywhere	in	the	text	of	the	data	stream.	You	may	always
have	additional	characters	besides	the	matching	pattern	characters.	If	you	want	to	ensure	that	you	match	against
only	five	numbers,	you	need	to	delineate	them	somehow,	either	with	spaces,	or	as	in	this	example,	by	showing	that
they're	at	the	start	and	end	of	the	line:

$	sed	-n	'
>	/^[0123456789][0123456789][0123456789][0123456789][0123456789]$/p
>	'	data8
60633
46201
22203
$

Now	that's	much	better!	Later	in	this	chapter,	we'll	look	at	how	to	simplify	this	even	further.

One	extremely	popular	use	for	character	classes	is	parsing	words	that	might	be	misspelled,	such	as	data	entered
from	a	user	form.	You	can	easily	create	regular	expressions	that	can	accept	common	misspellings	in	data:

$	cat	data9
I	need	to	have	some	maintenence	done	on	my	car.
I'll	pay	that	in	a	seperate	invoice.
After	I	pay	for	the	maintenance	my	car	will	be	as	good	as	new.
$	sed	-n	'
/maint[ea]n[ae]nce/p
/sep[ea]r[ea]te/p
'	data9
I	need	to	have	some	maintenence	done	on	my	car.
I'll	pay	that	in	a	seperate	invoice.
After	I	pay	for	the	maintenance	my	car	will	be	as	good	as	new.
$

The	two	sed	print	commands	in	this	example	utilize	regular	expression	character	classes	to	help	catch	the	misspelled
words,	“maintenance”	and	“separate,”	in	the	text.	The	same	regular	expression	pattern	also	matches	the	properly
spelled	occurrence	of	“maintenance.”

Negating	character	classes
In	regular	expression	patterns,	you	can	also	reverse	the	effect	of	a	character	class.	Instead	of	looking	for	a	character
contained	in	the	class,	you	can	look	for	any	character	that's	not	in	the	class.	To	do	that,	just	place	a	caret	character	at
the	beginning	of	the	character	class	range:

$	sed	-n	'/[^ch]at/p'	data6

This	test	is	at	line	four.
$

By	negating	the	character	class,	the	regular	expression	pattern	matches	any	character	that's	neither	a	“c”	nor	an	“h”,
along	with	the	text	pattern.	Because	the	space	character	fits	this	category,	it	passed	the	pattern	match.	However,
even	with	the	negation,	the	character	class	must	still	match	a	character,	so	the	line	with	the	“at”	in	the	start	of	the
line	still	doesn't	match	the	pattern.

Using	ranges
You	may	have	noticed	when	I	showed	the	ZIP	code	example	earlier	that	it	was	somewhat	awkward	having	to	list	all
the	possible	digits	in	each	character	class.	Fortunately,	you	can	use	a	shortcut	so	you	don't	have	to	do	that.

You	can	use	a	range	of	characters	within	a	character	class	by	using	the	dash	symbol.	Just	specify	the	first	character
in	the	range,	a	dash,	and	then	the	last	character	in	the	range.	The	regular	expression	includes	any	character	that's
within	the	specified	character	range,	according	to	the	character	set	used	by	the	Linux	system	(see	Chapter	2,
“Getting	to	the	Shell”).

Now	you	can	simplify	the	ZIP	code	example	by	specifying	a	range	of	digits:

$	sed	-n	'/^[0-9][0-9][0-9][0-9][0-9]$/p'	data8
60633
46201
45902
$

That	saved	lots	of	typing!	Each	character	class	matches	any	digit	from	0	to	9.	The	pattern	fails	if	a	letter	is	present
anywhere	in	the	data:

$	echo	"a8392"	|	sed	-n	'/^[0-9][0-9][0-9][0-9][0-9]$/p'
$
$	echo	"1839a"	|	sed	-n	'/^[0-9][0-9][0-9][0-9][0-9]$/p'
$
$	echo	"18a92"	|	sed	-n	'/^[0-9][0-9][0-9][0-9][0-9]$/p'
$

The	same	technique	works	with	letters:

$	sed	-n	'/[c-h]at/p'	data6
The	cat	is	sleeping.
That	is	a	very	nice	hat.
$

The	new	pattern	“[c-h]at”	matches	words	where	the	first	letter	is	between	the	letter	“c”	and	the	letter	“h.”	In	this
case,	the	line	with	only	the	word	“at”	failed	to	match	the	pattern.

You	can	also	specify	multiple,	noncontinuous	ranges	in	a	single	character	class:

$	sed	-n	'/[a-ch-m]at/p'	data6
The	cat	is	sleeping.
That	is	a	very	nice	hat.
$

The	character	class	allows	the	ranges	“a”	through	“c”,	and	“h”	through	“m”	to	appear	before	the	at	text.	This	range
would	reject	any	letters	between	“d”	and	“g”:

$	echo	"I'm	getting	too	fat."	|	sed	-n	'/[a-ch-m]at/p'
$

This	pattern	rejected	the	“fat”	text,	as	it	wasn't	in	the	specified	range.

Special	character	classes
In	addition	to	defining	your	own	character	classes,	the	BRE	contains	special	character	classes	you	can	use	to	match
against	specific	types	of	characters.	Table	20.1	describes	the	BRE	special	characters	you	can	use.

TABLE	20.1	BRE	Special	Character	Classes

Class Description

[[:alpha:]] Matches	any	alphabetical	character,	either	upper	or	lower	case

[[:alnum:]] Matches	any	alphanumeric	character	0–9,	A–Z,	or	a–z

[[:blank:]] Matches	a	space	or	Tab	character

[[:digit:]] Matches	a	numerical	digit	from	0	through	9

[[:lower:]] Matches	any	lowercase	alphabetical	character	a–z

[[:print:]] Matches	any	printable	character

[[:punct:]] Matches	a	punctuation	character

[[:space:]] Matches	any	whitespace	character:	space,	Tab,	NL	(newline),	FF	(formfeed),	VT	(vertical	tab),	CR
(carriage	return)

[[:upper:]] Matches	any	uppercase	alphabetical	character	A–Z

You	use	the	special	character	classes	just	as	you	would	a	normal	character	class	in	your	regular	expression	patterns:

$	echo	"abc"	|	sed	-n	'/[[:digit:]]/p'
$
$	echo	"abc"	|	sed	-n	'/[[:alpha:]]/p'
abc
$	echo	"abc123"	|	sed	-n	'/[[:digit:]]/p'
abc123
$	echo	"This	is,	a	test"	|	sed	-n	'/[[:punct:]]/p'
This	is,	a	test
$	echo	"This	is	a	test"	|	sed	-n	'/[[:punct:]]/p'
$

Using	the	special	character	classes	is	an	easy	way	to	define	ranges.	Instead	of	having	to	use	a	range	[0–9],	you	can
just	use	[[:digit:]].

The	asterisk
Placing	an	asterisk	after	a	character	signifies	that	the	character	must	appear	zero	or	more	times	in	the	text	to	match
the	pattern:

$	echo	"ik"	|	sed	-n	'/ie*k/p'
ik
$	echo	"iek"	|	sed	-n	'/ie*k/p'
iek
$	echo	"ieek"	|	sed	-n	'/ie*k/p'
ieek
$	echo	"ieeek"	|	sed	-n	'/ie*k/p'
ieeek
$	echo	"ieeeek"	|	sed	-n	'/ie*k/p'
ieeeek
$

This	pattern	symbol	is	commonly	used	for	handling	words	that	have	a	common	misspelling	or	variations	in	language
spellings.	For	example,	if	you	need	to	write	a	script	that	may	be	used	in	either	American	or	British	English,	you
could	write:

$	echo	"I'm	getting	a	color	TV"	|	sed	-n	'/colou*r/p'
I'm	getting	a	color	TV
$	echo	"I'm	getting	a	colour	TV"	|	sed	-n	'/colou*r/p'
I'm	getting	a	colour	TV
$

The	u*	in	the	pattern	indicates	that	the	letter	u	may	or	may	not	appear	in	the	text	to	match	the	pattern.	Similarly,	if
you	know	of	a	word	that	is	commonly	misspelled,	you	can	accommodate	it	by	using	the	asterisk:

$	echo	"I	ate	a	potatoe	with	my	lunch."	|	sed	-n	'/potatoe*/p'
I	ate	a	potatoe	with	my	lunch.
$	echo	"I	ate	a	potato	with	my	lunch."	|	sed	-n	'/potatoe*/p'
I	ate	a	potato	with	my	lunch.
$

Placing	an	asterisk	next	to	the	possible	extra	letter	allows	you	to	accept	the	misspelled	word.

Another	handy	feature	is	combining	the	dot	special	character	with	the	asterisk	special	character.	This	combination
provides	a	pattern	to	match	any	number	of	any	characters.	It's	often	used	between	two	text	strings	that	may	or	may
not	appear	next	to	each	other	in	the	data	stream:

$	echo	"this	is	a	regular	pattern	expression"	|	sed	-n	'
>	/regular.*expression/p'
this	is	a	regular	pattern	expression
$

Using	this	pattern,	you	can	easily	search	for	multiple	words	that	may	appear	anywhere	in	a	line	of	text	in	the	data
stream.

The	asterisk	can	also	be	applied	to	a	character	class.	Doing	so	allows	you	to	specify	a	group	or	range	of	characters
that	can	appear	more	than	once	in	the	text:

$	echo	"bt"	|	sed	-n	'/b[ae]*t/p'
bt
$	echo	"bat"	|	sed	-n	'/b[ae]*t/p'
bat
$	echo	"bet"	|	sed	-n	'/b[ae]*t/p'
bet
$	echo	"btt"	|	sed	-n	'/b[ae]*t/p'
btt
$	echo	"baat"	|	sed	-n	'/b[ae]*t/p'
baat
$	echo	"baaeeet"	|	sed	-n	'/b[ae]*t/p'
baaeeet
$	echo	"baeeaeeat"	|	sed	-n	'/b[ae]*t/p'
baeeaeeat
$	echo	"baakeeet"	|	sed	-n	'/b[ae]*t/p'
$

As	long	as	the	a	and	e	characters	appear	in	any	combination	between	the	b	and	t	characters	(including	not	appearing
at	all),	the	pattern	matches.	If	any	other	character	outside	of	the	defined	character	class	appears,	the	pattern	match
fails.

Trying	Out	Extended	Regular	Expressions
The	POSIX	ERE	patterns	include	a	few	additional	symbols	that	are	used	by	some	Linux	applications	and	utilities.
Gawk	recognizes	the	ERE	patterns,	but	sed	doesn't.

CAUTION
Remember	that	the	regular	expression	engines	in	sed	and	gawk	are	different.	Gawk	can	use	most
of	the	extended	regular	expression	pattern	symbols,	and	it	can	provide	some	additional
filtering	capabilities	that	sed	doesn't	have.	However,	because	of	this,	it	is	often	slower	in
processing	data	streams.

This	section	describes	the	more	commonly	found	ERE	pattern	symbols	that	you	can	use	in	your	gawk	program
scripts.

The	question	mark
The	question	mark	is	similar	to	the	asterisk,	but	with	a	slight	twist.	The	question	mark	indicates	that	the	preceding
character	can	appear	zero	or	one	time,	but	that's	all.	It	doesn't	match	repeating	occurrences	of	the	character:

$	echo	"bt"	|	gawk	'/be?t/{print	$0}'
bt
$	echo	"bet"	|	gawk	'/be?t/{print	$0}'
bet
$	echo	"beet"	|	gawk	'/be?t/{print	$0}'
$
$	echo	"beeet"	|	gawk	'/be?t/{print	$0}'
$

If	the	e	character	doesn't	appear	in	the	text,	or	as	long	as	it	appears	only	once	in	the	text,	the	pattern	matches.

As	with	the	asterisk,	you	can	use	the	question	mark	symbol	along	with	a	character	class:

$	echo	"bt"	|	gawk	'/b[ae]?t/{print	$0}'
bt
$	echo	"bat"	|	gawk	'/b[ae]?t/{print	$0}'
bat
$	echo	"bot"	|	gawk	'/b[ae]?t/{print	$0}'
$
$	echo	"bet"	|	gawk	'/b[ae]?t/{print	$0}'
bet
$	echo	"baet"	|	gawk	'/b[ae]?t/{print	$0}'
$
$	echo	"beat"	|	gawk	'/b[ae]?t/{print	$0}'
$
$	echo	"beet"	|	gawk	'/b[ae]?t/{print	$0}'
$

If	zero	or	one	character	from	the	character	class	appears,	the	pattern	match	passes.	However,	if	both	characters
appear,	or	if	one	of	the	characters	appears	twice,	the	pattern	match	fails.

The	plus	sign
The	plus	sign	is	another	pattern	symbol	that's	similar	to	the	asterisk,	but	with	a	different	twist	than	the	question
mark.	The	plus	sign	indicates	that	the	preceding	character	can	appear	one	or	more	times	but	must	be	present	at	least
once.	The	pattern	doesn't	match	if	the	character	is	not	present:

$	echo	"beeet"	|	gawk	'/be+t/{print	$0}'
beeet
$	echo	"beet"	|	gawk	'/be+t/{print	$0}'
beet
$	echo	"bet"	|	gawk	'/be+t/{print	$0}'
bet
$	echo	"bt"	|	gawk	'/be+t/{print	$0}'
$

If	the	e	character	is	not	present,	the	pattern	match	fails.	The	plus	sign	also	works	with	character	classes,	the	same
way	the	asterisk	and	question	mark	do:

$	echo	"bt"	|	gawk	'/b[ae]+t/{print	$0}'
$
$	echo	"bat"	|	gawk	'/b[ae]+t/{print	$0}'
bat
$	echo	"bet"	|	gawk	'/b[ae]+t/{print	$0}'
bet
$	echo	"beat"	|	gawk	'/b[ae]+t/{print	$0}'

beat
$	echo	"beet"	|	gawk	'/b[ae]+t/{print	$0}'
beet
$	echo	"beeat"	|	gawk	'/b[ae]+t/{print	$0}'
beeat
$

This	time,	if	either	character	defined	in	the	character	class	appears,	the	text	matches	the	specified	pattern.

Using	braces
Curly	braces	are	available	in	ERE	to	allow	you	to	specify	a	limit	on	a	repeatable	regular	expression.	This	is	often
referred	to	as	an	interval.	You	can	express	the	interval	in	two	formats:

m	—The	regular	expression	appears	exactly	m	times.

m,n	—The	regular	expression	appears	at	least	m	times,	but	no	more	than	n	times.

This	feature	allows	you	to	fine-tune	exactly	how	many	times	you	allow	a	character	(or	character	class)	to	appear	in	a
pattern.

CAUTION
By	default,	gawk	doesn't	recognize	regular	expression	intervals.	You	must	specify	the	--re-
interval	command-line	option	for	gawk	to	recognize	regular	expression	intervals.

Here's	an	example	of	using	a	simple	interval	of	one	value:

$	echo	"bt"	|	gawk	--re-interval	'/be{1}t/{print	$0}'
$
$	echo	"bet"	|	gawk	--re-interval	'/be{1}t/{print	$0}'
bet
$	echo	"beet"	|	gawk	--re-interval	'/be{1}t/{print	$0}'
$

By	specifying	an	interval	of	1,	you	restrict	the	number	of	times	the	character	can	be	present	for	the	string	to	match
the	pattern.	If	the	character	appears	more	times,	the	pattern	match	fails.

Often,	specifying	the	lower	and	upper	limits	comes	in	handy:

$	echo	"bt"	|	gawk	--re-interval	'/be{1,2}t/{print	$0}'
$
$	echo	"bet"	|	gawk	--re-interval	'/be{1,2}t/{print	$0}'
bet
$	echo	"beet"	|	gawk	--re-interval	'/be{1,2}t/{print	$0}'
beet
$	echo	"beeet"	|	gawk	--re-interval	'/be{1,2}t/{print	$0}'
$

In	this	example,	the	e	character	can	appear	once	or	twice	for	the	pattern	match	to	pass;	otherwise,	the	pattern	match
fails.

The	interval	pattern	match	also	applies	to	character	classes:

$	echo	"bt"	|	gawk	--re-interval	'/b[ae]{1,2}t/{print	$0}'
$
$	echo	"bat"	|	gawk	--re-interval	'/b[ae]{1,2}t/{print	$0}'
bat
$	echo	"bet"	|	gawk	--re-interval	'/b[ae]{1,2}t/{print	$0}'
bet
$	echo	"beat"	|	gawk	--re-interval	'/b[ae]{1,2}t/{print	$0}'
beat
$	echo	"beet"	|	gawk	--re-interval	'/b[ae]{1,2}t/{print	$0}'
beet
$	echo	"beeat"	|	gawk	--re-interval	'/b[ae]{1,2}t/{print	$0}'
$
$	echo	"baeet"	|	gawk	--re-interval	'/b[ae]{1,2}t/{print	$0}'
$
$	echo	"baeaet"	|	gawk	--re-interval	'/b[ae]{1,2}t/{print	$0}'
$

This	regular	expression	pattern	matches	if	there	are	exactly	one	or	two	instances	of	the	letter	a	or	e	in	the	text
pattern,	but	it	fails	if	there	are	any	more	in	any	combination.

The	pipe	symbol
The	pipe	symbol	allows	you	to	specify	two	or	more	patterns	that	the	regular	expression	engine	uses	in	a	logical	OR
formula	when	examining	the	data	stream.	If	any	of	the	patterns	match	the	data	stream	text,	the	text	passes.	If	none
of	the	patterns	match,	the	data	stream	text	fails.

Here's	the	format	for	using	the	pipe	symbol:

expr1|expr2|...

Here's	an	example:

$	echo	"The	cat	is	asleep"	|	gawk	'/cat|dog/{print	$0}'
The	cat	is	asleep
$	echo	"The	dog	is	asleep"	|	gawk	'/cat|dog/{print	$0}'
The	dog	is	asleep
$	echo	"The	sheep	is	asleep"	|	gawk	'/cat|dog/{print	$0}'
$

This	example	looks	for	the	regular	expression	“cat”	or	“dog”	in	the	data	stream.	You	can't	place	any	spaces	within	the
regular	expressions	and	the	pipe	symbol,	or	they're	added	to	the	regular	expression	pattern.

The	regular	expressions	on	either	side	of	the	pipe	symbol	can	use	any	regular	expression	pattern,	including
character	classes,	to	define	the	text:

$	echo	"He	has	a	hat."	|	gawk	'/[ch]at|dog/{print	$0}'
He	has	a	hat.
$

This	example	would	match	“cat”,	“hat”,	or	“dog”	in	the	data	stream	text.

Grouping	expressions
Regular	expression	patterns	can	also	be	grouped	by	using	parentheses.	When	you	group	a	regular	expression
pattern,	the	group	is	treated	like	a	standard	character.	You	can	apply	a	special	character	to	the	group	just	as	you
would	to	a	regular	character.	For	example:

$	echo	"Sat"	|	gawk	'/Sat(urday)?/{print	$0}'
Sat
$	echo	"Saturday"	|	gawk	'/Sat(urday)?/{print	$0}'
Saturday
$

The	grouping	of	the	“urday”	ending	along	with	the	question	mark	allows	the	pattern	to	match	either	the	full	day
name	“Saturday”	or	the	abbreviated	name	“Sat.”

It's	common	to	use	grouping	along	with	the	pipe	symbol	to	create	groups	of	possible	pattern	matches:

$	echo	"cat"	|	gawk	'/(c|b)a(b|t)/{print	$0}'
cat
$	echo	"cab"	|	gawk	'/(c|b)a(b|t)/{print	$0}'
cab
$	echo	"bat"	|	gawk	'/(c|b)a(b|t)/{print	$0}'
bat
$	echo	"bab"	|	gawk	'/(c|b)a(b|t)/{print	$0}'
bab
$	echo	"tab"	|	gawk	'/(c|b)a(b|t)/{print	$0}'
$
$	echo	"tac"	|	gawk	'/(c|b)a(b|t)/{print	$0}'
$

The	pattern	(c|b)a(b|t)	matches	any	combination	of	the	letters	in	the	first	group	along	with	any	combination	of	the
letters	in	the	second	group.

Working	Through	Some	Practical	Examples
Now	that	you've	seen	the	rules	and	a	few	simple	demonstrations	of	using	regular	expression	patterns,	it's	time	to	put
that	knowledge	into	action.	The	following	sections	demonstrate	some	common	regular	expression	examples	within
shell	scripts.

Counting	directory	files
To	start	things	out,	let's	look	at	a	shell	script	that	counts	the	executable	files	that	are	present	in	the	directories
defined	in	your	PATH	environment	variable.	To	do	that,	you	need	to	parse	out	the	PATH	variable	into	separate
directory	names.	Chapter	6,	“Using	Linux	Environment	Variables,”	showed	you	how	to	display	the	PATH	environment
variable:

$	echo	$PATH
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/
local/games
$

Your	PATH	environment	variable	will	differ,	depending	on	where	the	applications	are	located	on	your	Linux	system.
The	key	is	to	recognize	that	each	directory	in	the	PATH	is	separated	by	a	colon.	To	get	a	listing	of	directories	that	you
can	use	in	a	script,	you	must	replace	each	colon	with	a	space.	You	now	recognize	that	sed	can	do	just	that	using	a
simple	regular	expression:

$	echo	$PATH	|	sed	's/:/	/g'
/usr/local/sbin	/usr/local/bin	/usr/sbin	/usr/bin	/sbin	/bin	
/usr/games	/usr/local/games
$

After	you	have	the	directories	separated	out,	you	can	use	them	in	a	standard	for	statement	(see	Chapter	13,	“More

Structured	Commands”)	to	iterate	through	each	directory:

mypath=`echo	$PATH	|	sed	's/:/	/g'`
for	directory	in	$mypath
do
...
done

After	you	have	each	directory,	you	can	use	the	ls	command	to	list	each	file	in	each	directory	and	use	another	for
statement	to	iterate	through	each	file,	incrementing	a	counter	for	each	file.

The	final	version	of	the	script	looks	like	this:

$	cat	countfiles
#!/bin/bash
#	count	number	of	files	in	your	PATH
mypath=$(echo	$PATH	|	sed	's/:/	/g')
count=0
for	directory	in	$mypath
do
			check=$(ls	$directory)
			for	item	in	$check
			do
									count=$[$count	+	1]
			done
			echo	"$directory	-	$count"
			count=0
done
$./countfiles	/usr/local/sbin	-	0
/usr/local/bin	-	2
/usr/sbin	-	213
/usr/bin	-	1427
/sbin	-	186
/bin	-	152
/usr/games	-	5
/usr/local/games	–	0
$

Now	we're	starting	to	see	some	of	the	power	behind	regular	expressions!

Validating	a	phone	number
The	previous	example	showed	how	to	incorporate	the	simple	regular	expression	along	with	sed	to	replace	characters
in	a	data	stream	to	process	data.	Often,	regular	expressions	are	used	to	validate	data	to	ensure	that	data	is	in	the
correct	format	for	a	script.

A	common	data	validation	application	checks	phone	numbers.	Often,	data	entry	forms	request	phone	numbers,	and
often	customers	fail	to	enter	a	properly	formatted	phone	number.	People	in	the	United	States	use	several	common
ways	to	display	a	phone	number:

(123)456-7890
(123)	456-7890
123-456-7890
123.456.7890

This	leaves	four	possibilities	for	how	customers	can	enter	their	phone	number	in	a	form.	The	regular	expression
must	be	robust	enough	to	handle	any	of	these	situations.

When	building	a	regular	expression,	it's	best	to	start	on	the	left	side	and	build	your	pattern	to	match	the	possible
characters	you'll	run	into.	In	this	example,	there	may	or	may	not	be	a	left	parenthesis	in	the	phone	number.	This	can
be	matched	by	using	the	pattern

^\(?

The	caret	is	used	to	indicate	the	beginning	of	the	data.	Because	the	left	parenthesis	is	a	special	character,	you	must
escape	it	to	use	it	as	a	normal	character.	The	question	mark	indicates	that	the	left	parenthesis	may	or	may	not
appear	in	the	data	to	match.

Next	is	the	three-digit	area	code.	In	the	United	States,	area	codes	start	with	the	number	2	(no	area	codes	start	with
the	digits	0	or	1)	and	can	go	to	9.	To	match	the	area	code,	you'd	use	the	following	pattern:

[2-9][0-9]{2}

This	requires	that	the	first	character	be	a	digit	between	2	and	9,	followed	by	any	two	digits.	After	the	area	code,	the
ending	right	parenthesis	may	or	may	not	appear:

\)?

After	the	area	code,	there	can	be	a	space,	no	space,	a	dash,	or	a	dot.	You	can	group	those	using	a	character	group
along	with	the	pipe	symbol:

(|	|-|\.)

The	very	first	pipe	symbol	appears	immediately	after	the	left	parenthesis	to	match	the	no	space	condition.	You	must
use	the	escape	character	for	the	dot;	otherwise,	it	is	interpreted	to	match	any	character.

Next	is	the	three-digit	phone	exchange	number.	Nothing	special	is	required	here:

[0-9]{3}

After	the	phone	exchange	number,	you	must	match	a	space,	a	dash,	or	a	dot	(this	time	you	don't	have	to	worry	about
matching	no	space	because	there	must	be	at	least	a	space	between	the	phone	exchange	number	and	the	rest	of	the
number):

(|-|\.)

Then	to	finish	things	off,	you	must	match	the	four-digit	local	phone	extension	at	the	end	of	the	string:

[0-9]{4}$

Putting	the	entire	pattern	together	results	in	this:

^\(?[2-9][0-9]{2}\)?(|	|-|\.)[0-9]{3}(|-|\.)[0-9]{4}$

You	can	use	this	regular	expression	pattern	in	gawk	to	filter	out	bad	phone	numbers.	Now	you	just	need	to	create	a
simple	script	using	the	regular	expression	in	gawk	and	filter	your	phone	list	through	the	script.	Remember	that	when
you	use	regular	expression	intervals	in	gawk	,	you	must	use	the	--re-interval	command-line	option	or	you	won't	get
the	correct	results.

Here's	the	script:

$	cat	isphone
#!/bin/bash
#	script	to	filter	out	bad	phone	numbers
gawk	--re-interval	'/^\(?[2-9][0-9]{2}\)?(|	|-|\.)
[0-9]{3}(|-|\.)[0-9]{4}/{print	$0}'
$

Although	you	can't	tell	from	this	listing,	the	gawk	command	is	on	a	single	line	in	the	shell	script.	You	can	then
redirect	phone	numbers	to	the	script	for	processing:

$	echo	"317-555-1234"	|	./isphone
317-555-1234
$	echo	"000-555-1234"	|	./isphone
$	echo	"312	555-1234"	|	./isphone
312	555-1234
$

Or	you	can	redirect	an	entire	file	of	phone	numbers	to	filter	out	the	invalid	ones:

$	cat	phonelist
000-000-0000
123-456-7890
212-555-1234
(317)555-1234
(202)	555-9876
33523
1234567890
234.123.4567
$	cat	phonelist	|	./isphone
212-555-1234
(317)555-1234
(202)	555-9876
234.123.4567
$

Only	the	valid	phone	numbers	that	match	the	regular	expression	pattern	appear.

Parsing	an	email	address
These	days,	email	has	become	a	crucial	form	of	communication.	Trying	to	validate	email	addresses	has	become	quite
a	challenge	for	script	builders	because	of	the	myriad	ways	to	create	an	email	address.	This	is	the	basic	form	of	an
email	address:

username@hostname

The	username	value	can	use	any	alphanumeric	character,	along	with	several	special	characters:

Dot

Dash

Plus	sign

Underscore

These	characters	can	appear	in	any	combination	in	a	valid	email	UserID.	The	hostname	portion	of	the	email	address
consists	of	one	or	more	domain	names	and	a	server	name.	The	server	and	domain	names	must	also	follow	strict
naming	rules,	allowing	only	alphanumeric	characters,	along	with	these	special	characters:

Dot

Underscore

The	server	and	domain	names	are	each	separated	by	a	dot,	with	the	server	name	specified	first,	any	subdomain
names	specified	next,	and	finally,	the	top-level	domain	name	without	a	trailing	dot.

At	one	time,	the	top-level	domains	were	fairly	limited,	and	regular	expression	pattern	builders	attempted	to	add
them	all	in	patterns	for	validation.	Unfortunately,	as	the	Internet	grew,	so	did	the	possible	top-level	domains.	This
technique	is	no	longer	a	viable	solution.

Let's	start	building	the	regular	expression	pattern	from	the	left	side.	We	know	that	there	can	be	multiple	valid
characters	in	the	username.	This	should	be	fairly	easy:

^([a-zA-Z0-9_\-\.\+]+)@

This	grouping	specifies	the	allowable	characters	in	the	username	and	the	plus	sign	to	indicate	that	at	least	one
character	must	be	present.	The	next	character	obviously	is	the	@	symbol—no	surprises	there.

The	hostname	pattern	uses	the	same	technique	to	match	the	server	name	and	the	subdomain	names:

([a-zA-Z0-9_\-\.]+)

This	pattern	matches	the	text

server
server.domain
server.subdomain.domain

There	are	special	rules	for	the	top-level	domain.	Top-level	domains	are	only	alphabetic	characters,	and	they	must	be
no	fewer	than	two	characters	(used	in	country	codes)	and	no	more	than	five	characters	in	length.	The	following	is
the	regular	expression	pattern	for	the	top-level	domain:

\.([a-zA-Z]{2,5})$

Putting	the	entire	pattern	together	results	in	the	following:

^([a-zA-Z0-9_\-\.\+]+)@([a-zA-Z0-9_\-\.]+)\.([a-zA-Z]{2,5})$

This	pattern	filters	out	poorly	formatted	email	addresses	from	a	data	list.	Now	you	can	create	your	script	to
implement	the	regular	expression:

$	echo	"rich@here.now"	|	./isemail
rich@here.now
$	echo	"rich@here.now."	|	./isemail
$
$	echo	"rich@here.n"	|	./isemail
$
$	echo	"rich@here-now"	|	./isemail
$
$	echo	"rich.blum@here.now"	|	./isemail
rich.blum@here.now
$	echo	"rich_blum@here.now"	|	./isemail
rich_blum@here.now
$	echo	"rich/blum@here.now"	|	./isemail
$
$	echo	"rich#blum@here.now"	|	./isemail
$
$	echo	"rich*blum@here.now"	|	./isemail
$

This	is	a	great	example	of	not	only	the	power	of	regular	expressions,	but	also	their	simplicity.	At	first	glance,	the
regular	expression	for	filtering	out	email	addresses	looks	pretty	complicated,	but	walking	through	the	patterns	one
at	a	time	makes	understanding	what's	going	on	much	easier.

Summary
If	you	manipulate	data	files	in	shell	scripts,	you	need	to	become	familiar	with	regular	expressions.	Regular
expressions	are	implemented	in	Linux	utilities,	programming	languages,	and	applications	using	regular	expression
engines.	A	host	of	different	regular	expression	engines	is	available	in	the	Linux	world.	The	two	most	popular	are	the
POSIX	Basic	Regular	Expression	(BRE)	engine	and	the	POSIX	Extended	Regular	Expression	(ERE)	engine.	Sed
conforms	mainly	to	the	BRE	engine,	whereas	gawk	utilizes	most	features	found	in	the	ERE	engine.

A	regular	expression	defines	a	pattern	template	that's	used	to	filter	text	in	a	data	stream.	The	pattern	consists	of	a
combination	of	standard	text	characters	and	special	characters.	The	special	characters	are	used	by	the	regular
expression	engine	to	match	a	series	of	one	or	more	characters,	similar	to	how	wildcard	characters	work	in	other
applications.

By	combining	characters	and	special	characters,	you	can	define	a	pattern	to	match	almost	any	type	of	data.	You	can
then	use	sed	or	gawk	to	filter	specific	data	from	a	larger	data	stream,	or	for	validating	data	received	from	data	entry
applications.

The	next	chapter	digs	deeper	into	using	sed	to	perform	advanced	text	manipulation.	Lots	of	advanced	features	are
available	in	sed	that	make	it	useful	for	handling	large	data	streams	and	filtering	out	just	what	you	need.

CHAPTER	21
Advanced	sed
IN	THIS	CHAPTER

Using	multiline	commands

Understanding	the	hold	space

Negating	a	command

Changing	the	flow

Replacing	via	a	pattern

Using	sed	in	scripts

Making	sed	utilities

Chapter	19,	“Introducing	sed	and	gawk	,”	showed	you	how	to	use	the	basics	of	the	sed	editor	to	manipulate	text	in
data	streams.	The	basic	sed	editor	commands	are	capable	of	handling	most	of	your	everyday	text-editing
requirements.	This	chapter	looks	at	the	more	advanced	features	that	the	sed	editor	has	to	offer.	These	are	features
that	you	might	not	use	as	often.	But	when	you	need	them,	it's	nice	to	know	that	they're	available	as	well	as	how	to
use	them.

Looking	at	Multiline	Commands
When	using	the	basic	sed	editor	commands,	you	may	have	noticed	a	limitation.	All	the	sed	editor	commands
perform	functions	on	a	single	line	of	data.	As	the	sed	editor	reads	a	data	stream,	it	divides	the	data	into	lines	based
on	the	presence	of	newline	characters.	The	sed	editor	handles	the	data	lines	one	at	a	time,	processing	the	defined
script	commands	on	the	data	line	and	then	moving	on	to	the	next	line	and	repeating	the	processing.

Sometimes,	you	need	to	perform	actions	on	data	that	spans	more	than	one	line.	This	is	especially	true	if	you're	trying
to	find	or	replace	a	phrase.

For	example,	if	you're	looking	for	the	phrase	Linux	System	Administrators	Group	in	your	data,	it's	quite	possible
that	the	phrase's	words	can	be	split	onto	two	lines.	If	you	processed	the	text	using	a	normal	sed	editor	command,	it
would	be	impossible	to	detect	the	split	phrase.

Fortunately,	the	designers	behind	the	sed	editor	thought	of	that	situation	and	devised	a	solution.	The	sed	editor
includes	three	special	commands	that	you	can	use	to	process	multiline	text:

N	adds	the	next	line	in	the	data	stream	to	create	a	multiline	group	for	processing.

D	deletes	a	single	line	in	a	multiline	group.

P	prints	a	single	line	in	a	multiline	group.

The	following	sections	examine	these	multiline	commands	more	closely	and	demonstrate	how	you	can	use	them	in
your	scripts.

Navigating	the	next	command
Before	you	can	examine	the	multiline	next	(N)	command,	you	first	need	to	look	at	how	the	single-line	version	of	the
next	command	works.	After	you	know	what	that	command	does,	it's	much	easier	to	understand	how	the	multiline
version	of	the	next	command	operates.

Using	the	single-line	next	command
The	single-line	next	(n)	command	tells	the	sed	editor	to	move	to	the	next	line	of	text	in	the	data	stream,	without
going	back	to	the	beginning	of	the	commands.	Remember	that	normally	the	sed	editor	processes	all	the	defined
commands	on	a	line	before	moving	to	the	next	line	of	text	in	the	data	stream.	The	single-line	next	(n)	command
alters	this	flow.

This	may	sound	somewhat	complicated,	and	sometimes	it	is.	In	this	example,	we	have	a	data	file	that	contains	five
lines,	two	of	which	are	blank.	The	goal	is	to	remove	the	first	blank	line,	which	is	after	the	header	line,	but	leave	the
second	blank	line	intact.	If	we	write	a	sed	script	to	delete	blank	lines,	both	blank	lines	are	removed,	which	is	not
what	we	wanted:

$	cat	data1.txt
Header	Line
	
Data	Line	#1
	
End	of	Data	Lines
$
$	sed	'/^$/d'	data1.txt
Header	Line

Data	Line	#1
End	of	Data	Lines
$

Because	the	line	we	want	to	remove	is	blank,	there	is	no	text	we	can	search	for	to	uniquely	identify	the	line.	The
solution	is	to	use	the	single-line	next	(n)	command.	In	this	next	example,	the	script	looks	for	a	unique	line	that
contains	the	word	Header	.	After	the	script	identifies	that	line,	the	n	command	moves	the	sed	editor	to	the	next	line	of
text,	which	is	the	blank	line.

$	sed	'/Header/{n	;	d}'	data1.txt
Header	Line
Data	Line	#1
	
End	of	Data	Lines
$

At	that	point,	the	sed	editor	continues	processing	the	command	list,	which	uses	the	d	command	to	delete	the	empty
line.	When	the	sed	editor	reaches	the	end	of	the	command	script,	it	reads	the	next	line	of	text	from	the	data	stream
and	starts	processing	commands	from	the	top	of	the	command	script.	The	sed	editor	does	not	find	another	line	with
the	word	Header	;	thus,	no	further	lines	are	deleted.

Combining	lines	of	text
Now	that	you've	seen	the	single-line	next	(n)	command,	we	can	look	at	the	multiline	version.	The	single-line	next
command	moves	the	next	line	of	text	from	the	data	stream	into	the	processing	space	(called	the	pattern	space)	of
the	sed	editor.	The	multiline	version	of	the	next	command	(which	uses	a	capital	N)	adds	the	next	line	of	text	to	the
text	already	in	the	pattern	space.

This	has	the	effect	of	combining	two	lines	of	text	from	the	data	stream	into	the	same	pattern	space.	The	lines	of	text
are	still	separated	by	a	newline	character,	but	the	sed	editor	can	now	treat	both	lines	of	text	as	one	line.

Here's	a	demonstration	of	how	the	multiline	(N)	command	operates:

$	cat	data2.txt
Header	Line
First	Data	Line
Second	Data	Line
End	of	Data	Lines
$
$	sed	'/First/{	N	;	s/\n/	/	}'	data2.txt
Header	Line
First	Data	Line	Second	Data	Line
End	of	Data	Lines
$

The	sed	editor	script	searches	for	the	line	of	text	that	contains	the	word	First	in	it.	When	it	finds	the	line,	it	uses	the
N	command	to	combine	the	next	line	with	that	line	in	the	pattern	space.	It	then	uses	the	substitution	(s)	command	to
replace	the	newline	character	(\n)	with	a	space.	The	result	is	that	the	two	lines	in	the	text	file	appear	as	one	line	in
the	sed	editor	output.

This	has	a	practical	application	if	you're	searching	for	a	text	phrase	that	may	be	split	between	two	lines	in	the	data
file.	Here's	an	example:

$	cat	data3.txt
On	Tuesday,	the	Linux	System
Admin	group	meeting	will	be	held.
All	System	Admins	should	attend.
Thank	you	for	your	cooperation.
$
$	sed	's/System	Admin/DevOps	Engineer/'	data3.txt
On	Tuesday,	the	Linux	System
Admin	group	meeting	will	be	held.
All	DevOps	Engineers	should	attend.
Thank	you	for	your	cooperation.
$

The	substitution	(s)	command	is	looking	for	the	specific	two-word	phrase	System	Admin	in	the	text	file.	In	the	single
line	where	the	phrase	appears,	everything	is	fine;	the	substitution	command	can	replace	the	text.	But	in	the	situation
where	the	phrase	is	split	between	two	lines,	the	substitution	command	doesn't	recognize	the	matching	pattern.

The	N	command	helps	solve	this	problem:

$	sed	'N	;	s/System.Admin/DevOps	Engineer/'	data3.txt
On	Tuesday,	the	Linux	DevOps	Engineer	group	meeting	will	be	held.
All	DevOps	Engineers	should	attend.
Thank	you	for	your	cooperation.
$

By	using	the	multiline	(N)	command	to	combine	the	next	line	with	the	line	where	the	first	word	is	found,	you	can
detect	when	a	line	split	occurs	in	the	phrase.

Notice	that	the	substitution	(s)	command	uses	a	wildcard	pattern	(.)	between	the	word	System	and	the	word	Admin	to
match	both	the	space	and	the	newline	situation.	However,	when	it	matched	the	newline	character,	it	removed	it
from	the	string,	causing	the	two	lines	to	merge	into	one	line.	This	may	not	be	exactly	what	you	want.

To	solve	this	problem,	you	can	use	two	substitution	commands	in	the	sed	editor	script,	one	to	match	the	multiline
occurrence	and	one	to	match	the	single-line	occurrence:

$	sed	'N
>	s/System\nAdmin/DevOps\nEngineer/
>	s/System	Admin/DevOps	Engineer/
>	'	data3.txt
On	Tuesday,	the	Linux	DevOps
Engineer	group	meeting	will	be	held.
All	DevOps	Engineers	should	attend.
Thank	you	for	your	cooperation.
$

The	first	substitution	command	specifically	looks	for	the	newline	character	between	the	two	search	words	and
includes	it	in	the	replacement	string.	This	allows	you	to	add	the	newline	character	in	the	same	place	in	the	new	text.

There's	still	one	subtle	problem	with	this	script,	however.	The	script	always	reads	the	next	line	of	text	into	the
pattern	space	before	executing	the	sed	editor	commands.	When	it	reaches	the	last	line	of	text,	there	isn't	a	next	line
of	text	to	read,	so	the	N	command	causes	the	sed	editor	to	stop.	If	the	matching	text	is	on	the	last	line	in	the	data
stream,	the	commands	don't	catch	the	matching	data:

$	cat	data4.txt
On	Tuesday,	the	Linux	System
Admin	group	meeting	will	be	held.
All	System	Admins	should	attend.
$
$	sed	'N
>	s/System\nAdmin/DevOps\nEngineer/
>	s/System	Admin/DevOps	Engineer/
>	'	data4.txt
On	Tuesday,	the	Linux	DevOps
Engineer	group	meeting	will	be	held.
All	System	Admins	should	attend.
$

Because	the	System	Admin	text	appears	in	the	last	line	in	the	data	stream,	the	multiline	(N)	command	misses	it,	as
there	isn't	another	line	to	read	into	the	pattern	space	to	combine.	We	can	easily	resolve	this	problem	by	moving	our
single-line	editing	commands	before	the	multiline	command	and	having	only	the	editing	commands	for	the	multiple
lines	appear	after	the	N	,	like	this:

$	sed	'
>	s/System	Admin/DevOps	Engineer/
>	N
>	s/System\nAdmin/DevOps\nEngineer/
>	'	data4.txt
On	Tuesday,	the	Linux	DevOps
Engineer	group	meeting	will	be	held.
All	DevOps	Engineers	should	attend.
$

Now,	the	substitution	(s)	command	that	looks	for	the	phrase	in	a	single	line	works	just	fine	on	the	last	line	in	the
data	stream,	and	the	substitution	command	after	the	multiline	(N)	command	covers	the	occurrence	in	the	middle	of
the	data	stream.

Navigating	the	multiline	delete	command
In	Chapter	19,	“Introducing	sed	and	gawk,”	we	touched	on	the	topic	of	the	single-line	delete	(d)	command.	The	sed
editor	uses	it	to	delete	the	current	line	in	the	pattern	space.	If	you're	working	with	the	N	command,	however,	you
must	be	careful	when	using	the	single-line	delete	command:

$	sed	'N	;	/System\nAdmin/d'	data4.txt
All	System	Admins	should	attend.
$

The	delete	(d)	command	looked	for	the	words	System	and	Admin	in	separate	lines	and	deleted	both	of	the	lines	in	the
pattern	space.	This	may	or	may	not	have	been	what	you	intended.

The	sed	editor	provides	the	multiline	delete	(D)	command,	which	deletes	only	the	first	line	in	the	pattern	space.	It
removes	all	characters	up	to	and	including	the	newline	character:

$	sed	'N	;	/System\nAdmin/D'	data4.txt
Admin	group	meeting	will	be	held.
All	System	Admins	should	attend.
$

The	second	line	of	text,	added	to	the	pattern	space	by	the	N	command,	remains	intact.	This	comes	in	handy	if	you
need	to	remove	a	line	of	text	that	appears	before	a	line	that	you	find	a	data	string	in.

Here's	an	example	of	removing	a	blank	line	that	appears	before	the	first	line	in	a	data	stream:

$	cat	data5.txt
	
Header	Line
First	Data	Line
	

End	of	Data	Lines
$
$	sed	'/^$/{N	;	/Header/D}'	data5.txt
Header	Line
First	Data	Line
	
End	of	Data	Lines
$

This	sed	editor	script	looks	for	blank	lines	and	then	uses	the	N	command	to	add	the	next	line	of	text	into	the	pattern
space.	If	the	new	pattern	space	contents	contain	the	word	Header	,	the	D	command	removes	the	first	line	in	the
pattern	space.	Without	the	combination	of	the	N	and	D	commands,	it	would	be	impossible	to	remove	the	first	blank
line	without	removing	all	other	blank	lines.

Navigating	the	multiline	print	command
By	now,	you're	probably	catching	on	to	the	difference	between	the	single-line	and	multiline	versions	of	the
commands.	The	multiline	print	command	(P)	follows	along	using	the	same	technique.	It	prints	only	the	first	line	in	a
multiline	pattern	space.	This	includes	all	characters	up	to	the	newline	character	in	the	pattern	space.	It	is	used	in
much	the	same	way	as	the	single-line	p	command	to	display	text	when	you	use	the	-n	option	to	suppress	output	from
the	script.

$	sed	-n	'N	;	/System\nAdmin/P'	data3.txt
On	Tuesday,	the	Linux	System
$

When	the	multiline	match	occurs,	the	P	command	prints	only	the	first	line	in	the	pattern	space.	The	power	of	the
multiline	P	command	comes	into	play	when	you	combine	it	with	the	N	and	D	multiline	commands.

The	D	command	has	a	unique	feature	in	that	after	deleting	the	first	line	from	the	pattern	space,	it	forces	the	sed
editor	to	return	to	the	beginning	of	the	script	and	repeat	the	commands	on	the	current	pattern	space	(it	doesn't	read
a	new	line	of	text	from	the	data	stream).	By	including	the	N	command	in	the	command	script,	you	can	effectively
single-step	through	the	pattern	space,	matching	multiple	lines	together.

Next,	by	using	the	P	command,	you	can	print	the	first	line,	and	then	using	the	D	command,	you	can	delete	the	first
line	and	loop	back	to	the	beginning	of	the	script.	When	you	are	back	at	the	script's	beginning,	the	N	command	reads
in	the	next	line	of	text	and	starts	the	process	all	over	again.	This	loop	continues	until	you	reach	the	end	of	the	data
stream,	as	shown	in	removing	the	data	corruption	in	this	file:

$	cat	corruptData.txt
Header	Line#
@
Data	Line	#1
Data	Line	#2#
@
End	of	Data	Lines#
@
$
$	sed	-n	'
>	N
>	s/#\n@//
>	P
>	D
>	'	corruptData.txt
Header	Line
Data	Line	#1
Data	Line	#2
End	of	Data	Lines
$

The	data	file	has	been	corrupted	with	#	at	some	lines'	ends	followed	by	@	on	the	next	line.	To	fix	this	issue,	using	sed
the	Header	Line#	line	is	loaded	into	the	pattern	space,	and	then	the	multiline	next	(N)	command	loads	the	second
line	(@),	appending	it	to	the	first	line	within	the	space.	The	substitution	(s)	command	removes	the	offending	data
(#\n@)	by	replacing	it	with	a	null.	Next,	the	P	command	prints	only	the	now	cleaned-up	first	line	within	the	pattern
space.	The	delete	(D)	command	removes	this	first	line	from	the	space	and	goes	back	to	the	beginning	of	the	script,
where	the	next	N	command	reads	the	third	line	(Data	Line	#1)	of	text	into	the	pattern	space	and	the	editing	loop
continues.

Holding	Space
The	pattern	space	is	an	active	buffer	area	that	holds	the	text	examined	by	the	sed	editor	while	it	processes
commands.	However,	it	isn't	the	only	space	available	in	the	sed	editor	for	storing	text.

The	sed	editor	utilizes	another	buffer	area	called	the	hold	space.	You	can	use	the	hold	space	to	temporarily	hold	lines
of	text	while	working	on	other	lines	in	the	pattern	space.	The	five	commands	associated	with	operating	with	the	hold
space	are	shown	in	Table	21.1.

TABLE	21.1	The	sed	Editor	Hold	Space	Commands

Command Description

h Copies	pattern	space	to	hold	space

H Appends	pattern	space	to	hold	space

g Copies	hold	space	to	pattern	space

G Appends	hold	space	to	pattern	space

x Exchanges	contents	of	pattern	and	hold	spaces

These	commands	let	you	copy	text	from	the	pattern	space	to	the	hold	space.	This	frees	up	the	pattern	space	to	load
another	string	for	processing.

Usually,	after	using	the	h	or	H	command	to	move	a	string	to	the	hold	space,	eventually	you	want	to	use	the	g	,	G	,	or	x
command	to	move	the	stored	string	back	into	the	pattern	space	(otherwise,	you	wouldn't	have	cared	about	saving
them	in	the	first	place).

With	two	buffer	areas,	trying	to	determine	what	line	of	text	is	in	which	buffer	area	can	sometimes	get	confusing.
Here's	a	short	example	that	demonstrates	how	to	use	the	h	and	g	commands	to	move	data	back	and	forth	between
the	sed	editor	buffer	spaces:

$	cat	data2.txt
Header	Line
First	Data	Line
Second	Data	Line
End	of	Data	Lines
$
$	sed	-n	'/First/	{
>	h	;	p	;
>	n	;	p	;
>	g	;	p	}
>	'	data2.txt
First	Data	Line
Second	Data	Line
First	Data	Line
$

Let's	look	at	the	preceding	code	example	step	by	step:

1.	 The	sed	script	uses	a	regular	expression	in	the	address	to	filter	the	line	containing	the	word	First	.

2.	 When	the	line	containing	the	word	First	appears,	the	initial	command	in	{}	,	the	h	command,	copies	the	line	in
the	pattern	space	to	the	hold	space.	At	this	point,	the	pattern	space	and	the	hold	space	have	the	same	data.

3.	 The	p	command	then	prints	the	contents	of	the	pattern	space	(First	Data	Line),	which	is	still	the	line	that	was
copied	into	the	hold	space.

4.	 The	n	command	retrieves	the	next	line	in	the	data	stream	(Second	Data	Line)	and	places	it	in	the	pattern	space.
Now	the	pattern	space	has	different	data	than	the	hold	space.

5.	 The	p	command	prints	the	contents	of	the	pattern	space	(Second	Data	Line).

6.	 The	g	command	places	the	contents	of	the	hold	space	(First	Data	Line)	back	into	the	pattern	space,	replacing
the	current	text.	The	pattern	space	and	the	hold	space	now	have	the	same	data	again.

7.	 The	p	command	prints	the	current	contents	of	the	pattern	space	(First	Data	Line).

By	shuffling	the	text	lines	around	using	the	hold	space,	we	can	force	the	First	Data	Line	to	appear	after	the	Second
Data	Line	in	the	output.	If	we	just	drop	the	first	p	command,	we	can	output	the	two	lines	in	reverse	order:

$	sed	-n	'/First/	{
>	h	;
>	n	;	p
>	g	;	p	}
>	'	data2.txt
Second	Data	Line
First	Data	Line
$

This	is	the	start	of	something	useful.	You	can	use	this	technique	to	create	a	sed	script	that	reverses	an	entire	file	of
text	data!	To	do	that,	however,	you	need	to	see	the	negating	feature	of	the	sed	editor,	which	is	what	the	next	section
is	all	about.

Negating	a	Command
Chapter	19	showed	that	the	sed	editor	applies	commands	either	to	every	text	line	in	the	data	stream	or	to	lines
specifically	indicated	by	either	a	single	address	or	an	address	range.	You	can	also	configure	a	command	to	not	apply
to	a	specific	address	or	address	range	in	the	data	stream.

The	exclamation	mark	(!)	command	is	used	to	negate	a	command.	This	means	in	situations	where	the	command
would	normally	have	been	activated,	it	isn't.	Here's	an	example	demonstrating	this	feature:

$	sed	-n	'/Header/!p'	data2.txt
First	Data	Line
Second	Data	Line
End	of	Data	Lines
$

The	normal	p	command	would	have	printed	only	the	line	in	the	data2	file	that	contained	the	word	Header	.	By	adding
the	exclamation	mark,	the	opposite	happens	—	all	lines	in	the	file	are	printed	except	the	one	that	contained	the	word
Header.

Using	the	exclamation	mark	comes	in	handy	in	several	applications.	Recall	that	earlier	in	the	chapter,	the
“Navigating	the	Next	Command”	section	showed	a	situation	where	a	sed	editor	command	wouldn't	operate	on	the
last	line	of	text	in	the	data	stream	because	there	wasn't	a	line	after	it.	You	can	use	the	exclamation	point	to	fix	that
problem:

$	cat	data4.txt
On	Tuesday,	the	Linux	System
Admin	group	meeting	will	be	held.
All	System	Admins	should	attend.
$
$	sed	'N;
>	s/System\nAdmin/DevOps\nEngineer/
>	s/System	Admin/DevOps	Engineer/
>	'	data4.txt
On	Tuesday,	the	Linux	DevOps
Engineer	group	meeting	will	be	held.
All	System	Admins	should	attend.
$
$	sed	'$!N;
>	s/System\nAdmin/DevOps\nEngineer/
>	s/System	Admin/DevOps	Engineer/
>	'	data4.txt
On	Tuesday,	the	Linux	DevOps
Engineer	group	meeting	will	be	held.
All	DevOps	Engineers	should	attend.
$

This	example	shows	the	exclamation	mark	used	with	the	N	command,	along	with	the	dollar	sign	($)	special	address.
The	dollar	sign	represents	the	last	line	of	text	in	the	data	stream,	so	when	the	sed	editor	reaches	the	last	line,	it
doesn't	execute	the	N	command.	However,	for	all	other	lines,	it	does	execute	the	command.

Using	this	technique,	you	can	reverse	the	order	of	text	lines	in	a	data	stream.	To	reverse	the	order	of	the	lines	as	they
appear	in	the	text	stream	(display	the	last	line	first	and	the	first	line	last),	you	need	to	do	some	fancy	footwork	using
the	hold	space.

To	accomplish	this,	use	sed	to

1.	 Place	a	text	line	in	the	pattern	space.

2.	 Copy	the	line	in	the	pattern	space	into	the	hold	space.

3.	 Put	the	next	line	of	text	in	the	pattern	space.

4.	 Append	the	hold	space	to	the	pattern	space.

5.	 Copy	everything	in	the	pattern	space	into	the	hold	space.

6.	 Repeat	steps	3	through	5	until	you've	put	all	the	lines	in	reverse	order	in	the	hold	space.

7.	 Retrieve	the	lines,	and	print	them.

Figure	21-1	diagrams	what	this	looks	like	in	more	detail.

FIGURE	21-1	Reversing	the	order	of	a	text	file	using	the	hold	space

When	using	this	technique,	you	do	not	want	to	print	lines	as	they	are	processed.	This	means	using	the	-n	command-
line	option	for	sed	.	The	next	thing	to	determine	is	how	to	append	the	hold	space	text	to	the	pattern	space	text.	This
is	done	by	using	the	G	command.	The	only	problem	is	that	you	don't	want	to	append	the	hold	space	to	the	first	line	of
text	processed.	This	is	easily	solved	by	using	the	exclamation	mark	command:

1!G

The	next	step	is	to	copy	the	new	pattern	space	(the	text	line	with	the	appended	reverse	lines)	into	the	hold	space.
This	is	simple	enough;	just	use	the	h	command.

When	you've	got	the	entire	data	stream	in	the	pattern	space	in	reverse	order,	you	just	need	to	print	the	results.	You
know	you	have	the	entire	data	stream	in	the	pattern	space	when	you've	reached	the	last	line	in	the	data	stream.	To
print	the	results,	just	use	the	following	command:

$p

Those	are	the	pieces	we	need	to	create	our	line-reversing	sed	editor	script.	Now	we'll	try	it	out	in	a	test	run:

$	cat	data2.txt
Header	Line
First	Data	Line
Second	Data	Line
End	of	Data	Lines
$
$	sed	-n	'{1!G	;	h	;	$p	}'	data2.txt
End	of	Data	Lines
Second	Data	Line
First	Data	Line
Header	Line
$

The	sed	editor	script	performed	as	expected.	The	output	from	the	script	reverses	the	original	lines	in	the	text	file.
This	demonstrates	the	power	of	using	the	hold	space	in	your	sed	scripts.	It	provides	an	easy	way	to	manipulate	the
order	of	lines	in	the	script	output.

NOTE
In	case	you're	wondering,	a	Bash	shell	command	can	perform	the	function	of	reversing	a	text
file.	The	tac	command	displays	a	text	file	in	reverse	order.	You	probably	noticed	the	clever
name	of	the	command	because	it	performs	the	reverse	function	of	the	cat	command.

Changing	the	Flow
Normally,	the	sed	editor	processes	commands	starting	at	the	top	and	proceeding	toward	the	end	of	the	script	(the
exception	is	the	D	command,	which	forces	the	sed	editor	to	return	to	the	top	of	the	script	without	reading	a	new	line

of	text).	The	sed	editor	provides	a	method	for	altering	the	flow	of	the	command	script,	producing	a	result	similar	to
that	of	a	structured	programming	environment.

Branching
In	the	previous	section,	you	saw	how	the	exclamation	mark	command	is	used	to	negate	the	effect	of	a	command	on	a
line	of	text.	The	sed	editor	provides	a	way	to	negate	an	entire	section	of	commands,	based	on	an	address,	an	address
pattern,	or	an	address	range.	This	allows	you	to	perform	a	group	of	commands	only	on	a	specific	subset	within	the
data	stream.

Here's	the	format	of	the	branch	(b)	command:

[address]b	[label]

The	address	parameter	determines	which	line	or	lines	of	data	trigger	the	branch	(b)	command.	The	label	parameter
defines	the	location	within	the	script	to	which	to	branch.	If	the	label	parameter	is	not	present,	the	branch	(b)
command	skips	the	line	or	lines	of	data	that	triggered	the	branch,	and	goes	on	to	process	the	other	text	lines.

Here	is	an	example	using	the	address	parameter	with	the	branch	command	but	no	label:

$	cat	data2.txt
Header	Line
First	Data	Line
Second	Data	Line
End	of	Data	Lines
$
$	sed	'{2,3b	;
>	s/Line/Replacement/}
>	'	data2.txt
Header	Replacement
First	Data	Line
Second	Data	Line
End	of	Data	Replacements
$

The	branch	(b)	command	skips	the	substitution	commands	for	the	second	and	third	lines	in	the	data	stream.

Instead	of	going	to	the	end	of	the	script,	you	can	define	a	label	providing	a	location	for	the	branch	command	to
jump.	Labels	start	with	a	colon	and	can	be	up	to	seven	characters	in	length:

:label2

To	specify	the	label,	just	add	it	after	the	b	command.	Using	labels	allows	you	to	provide	alternative	commands	to
process	data	that	match	the	branch	address	but	still	process	other	text	lines	using	the	original	commands	in	the
script:

$	sed	'{/First/b	jump1	;
>	s/Line/Replacement/
>	:jump1
>	s/Line/Jump	Replacement/}
>	'	data2.txt
Header	Replacement
First	Data	Jump	Replacement
Second	Data	Replacement
End	of	Data	Replacements
$

The	branch	(b)	command	specifies	that	the	program	should	jump	to	the	script	line	labeled	jump1	if	the	matching	text
First	appears	in	the	line.	If	the	branch	command	address	doesn't	match,	the	sed	editor	continues	processing
commands	in	the	script,	including	the	command	after	the	branch	label,	jump1	.	(Thus,	both	substitution	commands
are	processed	on	lines	that	don't	match	the	branch	address.)

If	a	line	matches	the	branch	address,	the	sed	editor	branches	to	the	labeled	line,	jump1	.	Thus,	only	the	last
substitution	command	is	executed	for	lines	matching	the	branch	address.

The	example	shows	branching	to	a	label	further	down	in	the	sed	script.	You	can	also	branch	to	a	label	that	appears
earlier	in	the	script,	thus	creating	a	looping	effect:

$	echo	"This,	is,	a,	test,	to,	remove,	commas."	|
>	sed	-n	{'
>	:start
>	s/,//1p
>	b	start
>	}'
This	is,	a,	test,	to,	remove,	commas.
This	is	a,	test,	to,	remove,	commas.
This	is	a	test,	to,	remove,	commas.
This	is	a	test	to,	remove,	commas.
This	is	a	test	to	remove,	commas.
This	is	a	test	to	remove	commas.
^C
$

Each	script	iteration	removes	the	first	occurrence	of	a	comma	from	the	text	string	and	prints	the	string.	There's	one
catch	to	this	script	—	it	never	ends.	This	situation	creates	an	endless	loop,	searching	for	commas	until	you	manually

stop	it	by	sending	a	signal	with	the	Ctrl+C	key	combination.

To	prevent	this	problem,	specify	an	address	pattern	for	the	branch	(b)	command.	If	the	pattern	isn't	present,	the
branching	stops:

$	echo	"This,	is,	a,	test,	to,	remove,	commas."	|
>	sed	-n	{'
>	:start
>	s/,//1p
>	/,/b	start
>	}'
This	is,	a,	test,	to,	remove,	commas.
This	is	a,	test,	to,	remove,	commas.
This	is	a	test,	to,	remove,	commas.
This	is	a	test	to,	remove,	commas.
This	is	a	test	to	remove,	commas.
This	is	a	test	to	remove	commas.
$

Now	the	branch	command	branches	only	if	there's	a	comma	in	the	line.	After	the	last	comma	has	been	removed,	the
branch	(b)	command	doesn't	execute,	allowing	the	script	to	properly	finish.

Testing
Similar	to	the	branch	command,	the	test	(t)	command	is	also	used	to	modify	the	flow	of	the	sed	editor	script.	Instead
of	jumping	to	a	label	based	on	an	address,	the	test	(t)	command	jumps	to	a	label	based	on	the	outcome	of	a
preceding	substitution	command.

If	the	substitution	command	successfully	matches	and	substitutes	a	pattern,	the	test	command	branches	to	the
specified	label.	If	the	substitution	command	doesn't	match	the	specified	pattern,	the	test	command	doesn't	branch.

The	test	(t)	command	uses	the	same	format	as	the	branch	command:

[address]t	[label]

As	with	the	branch	command,	if	you	don't	specify	a	label,	sed	jumps	to	the	end	of	the	script's	commands,	but	only	if
the	test	succeeds.

The	test	(t)	command	provides	a	cheap	way	to	perform	a	basic	if-then	statement	on	the	text	in	the	data	stream.	For
example,	if	you	don't	need	to	make	a	substitution	if	another	substitution	was	made,	the	test	command,	without	a
specified	label	,	can	help:

$	sed	'{s/First/Matched/	;	t
>	s/Line/Replacement/}
>	'	data2.txt
Header	Replacement
Matched	Data	Line
Second	Data	Replacement
End	of	Data	Replacements
$

The	first	substitution	command	looks	for	the	pattern	text	First	.	If	it	matches	the	pattern	in	the	line,	it	replaces	the
text,	and	the	test	(t)	command	jumps	over	the	second	substitution	command.	If	the	first	substitution	command
doesn't	match	the	text	pattern,	the	second	substitution	command	is	processed.

Using	the	test	command,	we	can	clean	up	the	loop	we	tried	using	the	branch	command:

$	echo	"This,	is,	a,	test,	to,	remove,	commas."	|
>	sed	-n	'{
>	:start
>	s/,//1p
>	t	start
>	}'
This	is,	a,	test,	to,	remove,	commas.
This	is	a,	test,	to,	remove,	commas.
This	is	a	test,	to,	remove,	commas.
This	is	a	test	to,	remove,	commas.
This	is	a	test	to	remove,	commas.
This	is	a	test	to	remove	commas.
$

When	there	are	no	more	comma	substitutions	to	make,	the	test	command	doesn't	branch,	and	the	processing	ends.

Replacing	via	a	Pattern
We've	covered	how	to	use	patterns	in	the	sed	commands	to	replace	text	in	the	data	stream.	However,	when	using
wildcard	characters	it's	not	easy	to	know	exactly	what	text	will	match	the	pattern.

For	example,	say	that	you	want	to	place	double	quotation	marks	around	a	word	you	match	in	a	line.	That's	simple
enough	if	you're	just	looking	for	one	word	in	the	pattern	to	match:

$	echo	"The	cat	sleeps	in	his	hat."	|
>	sed	's/cat/"cat"/'
The	"cat"	sleeps	in	his	hat.
$

But	what	if	you	use	a	wildcard	character	(.)	in	the	pattern	to	match	more	than	one	word?

$	echo	"The	cat	sleeps	in	his	hat."	|
>	sed	's/.at/".at"/g'
The	".at"	sleeps	in	his	".at".
$

The	substitution	string	used	the	dot	wildcard	character	to	match	any	occurrence	of	a	letter	followed	by	“at”.
Unfortunately,	the	replacement	string	doesn't	match	the	wildcard	character	value	of	the	matching	word.

Using	the	ampersand
The	sed	editor	has	a	solution	for	you.	The	ampersand	symbol	(&)	is	used	to	represent	the	matching	pattern	in	the
substitution	command.	Whatever	text	matches	the	pattern	defined,	you	can	use	the	ampersand	symbol	to	recall	it	in
the	replacement	pattern.	This	lets	you	manipulate	whatever	word	matches	the	pattern	defined:

$	echo	"The	cat	sleeps	in	his	hat."	|
>	sed	's/.at/"&"/g'
The	"cat"	sleeps	in	his	"hat".
$

When	the	pattern	matches	the	word	cat	,	"cat"	appears	in	the	substituted	word.	When	it	matches	the	word	hat	,
"hat"	appears	in	the	substituted	word.

Replacing	individual	words
The	ampersand	symbol	retrieves	the	entire	string	that	matches	the	pattern	you	specify	in	the	substitution	command.
Sometimes,	you'll	want	to	retrieve	only	a	subset	of	the	string.	You	can	do	that,	too,	but	it's	a	little	tricky.

The	sed	editor	uses	parentheses	to	define	a	substring	component	within	the	substitution	pattern.	You	can	then
reference	each	substring	component	using	a	special	character	in	the	replacement	pattern.	The	replacement	character
consists	of	a	backslash	and	a	number.	The	number	indicates	the	substring	component's	position.	The	sed	editor
assigns	the	first	component	the	character	\1	,	the	second	component	the	character	\2	,	and	so	on.

NOTE
When	you	use	parentheses	in	the	substitution	command,	you	must	use	the	escape	character	to
identify	them	as	grouping	characters	and	not	normal	parentheses.	This	is	the	reverse	of	when
you	escape	other	special	characters.

Look	at	an	example	of	using	this	feature	in	a	sed	editor	script:

$	echo	"The	Guide	to	Programming"	|
>	sed	'
>	s/\(Guide	to\)	Programming/\1	DevOps/'
The	Guide	to	DevOps
$

This	substitution	command	uses	one	set	of	parentheses	around	Guide	To	identifying	it	as	a	substring	component.	It
then	uses	the	\1	in	the	replacement	pattern	to	recall	the	first	identified	component.	This	isn't	too	exciting,	but	it	can
really	be	useful	when	working	with	wildcard	patterns.

Suppose	you	need	to	replace	a	phrase	with	just	a	single	word	that's	a	substring	of	the	phrase,	but	that	substring	just
happens	to	be	using	a	wildcard	character.	In	such	cases,	using	substring	components	is	a	lifesaver:

$	echo	"That	furry	cat	is	pretty."	|
>	sed	's/furry	\(.at\)/\1/'
That	cat	is	pretty.
$
$	echo	"That	furry	hat	is	pretty."	|
>	sed	's/furry	\(.at\)/\1/'
That	hat	is	pretty.
$

In	this	situation,	you	can't	use	the	ampersand	symbol,	because	it	would	replace	the	entire	matching	pattern.	The
substring	component	provides	the	answer,	allowing	you	to	select	just	which	part	of	the	pattern	to	use	as	the
replacement	pattern.

This	feature	can	be	especially	helpful	when	you	need	to	insert	text	between	two	or	more	substring	components.
Here's	a	script	that	uses	substring	components	to	insert	a	comma	in	long	numbers:

$	echo	"1234567"	|	sed	'{
>	:start
>	s/\(.*[0-9]\)\([0-9]\{3\}\)/\1,\2/
>	t	start}'
1,234,567
$

The	script	divides	the	matching	pattern	into	two	components:

.*[0-9]

[0-9]{3}

This	pattern	looks	for	two	substrings.	The	first	substring	is	any	number	of	characters	ending	in	a	digit.	The	second
substring	is	a	series	of	three	digits	(see	Chapter	20,	“Regular	Expressions,”	for	information	about	how	to	use	braces
in	a	regular	expression).	If	this	pattern	is	found	in	the	text,	the	replacement	text	puts	a	comma	between	the	two
components,	each	identified	by	its	component	position.	The	script	uses	the	test	(t)	command	to	iterate	through	the
number	until	all	commas	have	been	put	in	their	proper	place.

Placing	sed	Commands	in	Scripts
Now	that	you've	seen	the	various	parts	of	the	sed	editor,	it's	time	to	put	them	together	and	use	them	in	your	shell
scripts.	This	section	demonstrates	some	of	the	features	that	you	should	know	about	when	using	the	sed	editor	in
your	Bash	shell	scripts.

Using	wrappers
You	may	have	noticed	that	trying	to	implement	a	sed	editor	script	can	be	cumbersome,	especially	if	the	script	is	long.
Instead	of	having	to	retype	the	entire	script	each	time	you	want	to	use	it,	you	can	place	the	sed	editor	command	in	a
shell	script	wrapper.	The	wrapper	acts	as	a	go-between	for	the	sed	editor	script	and	the	command	line.	A	shell	script
wrapper,	ChangeScriptShell.sh	,	was	used	back	in	Chapter	19	as	a	practical	example.

Once	inside	the	shell	script,	you	can	use	normal	shell	variables	and	parameters	with	your	sed	editor	scripts.	Here's
an	example	of	using	the	command-line	parameter	variable	as	the	input	to	a	sed	script:

$	cat	reverse.sh
#!/bin/bash
#	Shell	wrapper	for	sed	editor	script
#	to	reverse	test	file	lines.
#
sed	-n	'{1!G;	h;	$p}'	$1
#
exit
$

The	shell	script	called	reverse.sh	uses	the	sed	editor	script	to	reverse	text	lines	in	a	data	stream.	It	uses	the	$1	shell
parameter	to	retrieve	the	first	parameter	from	the	command	line,	which	should	be	the	name	of	the	file	to	reverse:

$	cat	data2.txt
Header	Line
First	Data	Line
Second	Data	Line
End	of	Data	Lines
$
$./reverse.sh	data2.txt
End	of	Data	Lines
Second	Data	Line
First	Data	Line
Header	Line
$

Now	you	can	easily	use	the	sed	editor	script	on	any	file	without	having	to	constantly	retype	the	entire	sed	command
line.

Redirecting	sed	output
By	default,	the	sed	editor	outputs	the	results	of	the	script	to	STDOUT	.	You	can	employ	all	the	standard	methods	of
redirecting	the	output	of	the	sed	editor	in	your	shell	scripts.

You	can	use	dollar	sign/parenthesis,	$()	,	to	redirect	the	output	of	your	sed	editor	command	to	a	variable	for	use
later	in	the	script.	The	following	is	an	example	of	using	the	sed	script	to	add	commas	to	the	result	of	a	numeric
computation:

$	cat	fact.sh
#!/bin/bash
#	Shell	wrapper	for	sed	editor	script
#	to	calculate	a	factorial,	and
#	format	the	result	with	commas.
#
factorial=1
counter=1
number=$1
#
while	[$counter	-le	$number]
do
			factorial=$[$factorial	*	$counter]
			counter=$[$counter	+	1]
done
#
result=$(echo	$factorial	|
sed	'{
:start
s/\(.*[0-9]\)\([0-9]\{3\}\)/\1,\2/
t	start

}')
#
echo	"The	result	is	$result"
#
exit
$
$./fact.sh	20
The	result	is	2,432,902,008,176,640,000
$

After	you	use	the	normal	factorial	calculation	script,	the	result	of	that	script	is	used	as	the	input	to	the	sed	editor
script,	which	adds	commas.	This	value	is	then	used	in	the	echo	statement	to	produce	the	result.	And	how	nice	to	now
have	that	long	sed	script	within	a	Bash	shell	script	so	that	you	can	use	it	without	typing	all	the	sed	commands	in
again!

Creating	sed	Utilities
As	you've	seen	in	the	short	examples	presented	so	far	in	this	chapter,	you	can	do	lots	of	cool	data-formatting	things
with	the	sed	editor.	This	section	shows	a	few	handy	well-known	sed	editor	scripts	for	performing	common	data-
handling	functions.

Spacing	with	double	lines
To	start	things	off,	look	at	a	simple	sed	script	to	insert	a	blank	line	between	lines	in	a	text	file:

$	sed	'G'	data2.txt
Header	Line
	
First	Data	Line
	
Second	Data	Line
	
End	of	Data	Lines
	
$

That	was	pretty	simple!	The	key	to	this	trick	is	the	default	value	of	the	hold	space.	Recall	that	the	G	command	simply
appends	the	contents	of	the	hold	space	to	the	current	pattern	space	contents.	When	you	start	the	sed	editor,	the	hold
space	contains	an	empty	line.	By	appending	that	to	an	existing	line,	you	create	a	blank	line	after	the	existing	line.

You	may	have	noticed	that	this	script	also	adds	a	blank	line	to	the	last	line	in	the	data	stream,	producing	a	blank	line
at	the	end	of	the	file.	If	you	want	to	get	rid	of	this,	you	can	use	the	negate	symbol	and	the	last	line	symbol	to	ensure
that	the	script	doesn't	add	the	blank	line	to	the	last	line	of	the	data	stream:

$	sed	'$!G'	data2.txt
Header	Line
	
First	Data	Line
	
Second	Data	Line
	
End	of	Data	Lines
$

Now	that	looks	a	little	better.	As	long	as	the	line	isn't	the	last	line,	the	G	command	appends	the	contents	of	the	hold
space.	When	the	sed	editor	gets	to	the	last	line,	it	skips	the	G	command.

Spacing	files	that	may	have	blanks
To	take	double	spacing	one	step	further,	what	if	the	text	file	already	has	a	few	blank	lines	but	you	want	to	double-
space	all	the	lines?	If	you	use	the	previous	script,	you'll	get	some	areas	that	have	too	many	blank	lines,	because	each
existing	blank	line	gets	doubled:

$	cat	data6.txt
Line	one.
Line	two.
	
Line	three.
Line	four.
$
$	sed	'$!G'	data6.txt
Line	one.
	
Line	two.
	
	
	
Line	three.
	
Line	four.
$

Now	we	have	three	blank	lines	where	the	original	blank	line	was	located.	The	solution	to	this	problem	is	to	first

delete	any	blank	lines	from	the	data	stream	and	then	use	the	G	command	to	insert	new	blank	lines	after	all	the	lines.
To	delete	existing	blank	lines,	we	just	need	to	use	the	d	command	with	a	pattern	that	matches	a	blank	line:

/^$/d

This	pattern	uses	the	start	line	tag	(the	caret)	and	the	end	line	tag	(the	dollar	sign).	Adding	this	pattern	to	the	script
produces	the	desired	results:

$	sed	'/^$/d	;	$!G'	data6.txt
Line	one.
	
Line	two.
	
Line	three.
	
Line	four.
$

Perfect!	It	works	just	as	desired.

Numbering	lines	in	a	file
Chapter	19	showed	you	how	to	use	the	equal	sign	to	display	the	line	numbers	of	lines	in	the	data	stream:

$	sed	'='	data2.txt
1
Header	Line
2
First	Data	Line
3
Second	Data	Line
4
End	of	Data	Lines
$

This	can	be	a	little	awkward	to	read,	because	the	line	number	is	on	a	line	above	the	actual	line	in	the	data	stream.	A
better	solution	is	to	place	the	line	number	on	the	same	line	as	the	text.

Now	that	you've	seen	how	to	combine	lines	using	the	N	command,	it	shouldn't	be	too	hard	to	utilize	that	information
in	the	sed	editor	script.	The	trick	to	this	utility,	however,	is	that	you	can't	combine	the	two	commands	in	the	same
script.

After	you	have	the	output	for	the	equal	sign	command,	you	can	pipe	the	output	to	another	sed	editor	script	that	uses
the	N	command	to	combine	the	two	lines.	You	also	need	to	use	the	substitution	(s)	command	to	replace	the	newline
character	with	either	a	space	or	a	tab	character.	Here's	what	the	final	solution	looks	like:

$	sed	'='	data2.txt	|	sed	'N;	s/\n/	/'
1	Header	Line
2	First	Data	Line
3	Second	Data	Line
4	End	of	Data	Lines
$

Now	that	looks	much	better.	This	is	a	great	little	utility	to	have	around	when	you're	working	on	programs	where	you
need	to	see	the	line	numbers	used	in	error	messages.

There	are	Bash	shell	commands	that	can	also	add	line	numbers.	However,	they	add	some	additional	(and	potentially
unwanted)	spacing:

$	nl	data2.txt
					1		Header	Line
					2		First	Data	Line
					3		Second	Data	Line
					4		End	of	Data	Lines
$
$	cat	-n	data2.txt
					1		Header	Line
					2		First	Data	Line
					3		Second	Data	Line
					4		End	of	Data	Lines
$
$	nl	data2.txt	|	sed	's/					//;	s/\t/	/'
1	Header	Line
2	First	Data	Line
3	Second	Data	Line
4	End	of	Data	Lines
$

The	sed	editor	script	handles	the	output	without	any	additional	spacing.	But	if	you	want	to	use	these	utilities,	sed	is
there	to	help	you	remove	any	unwanted	spacing!

Printing	last	lines
So	far,	we've	covered	how	to	use	the	p	command	to	print	all	the	lines	in	a	data	stream	or	just	lines	that	match	a
specific	pattern.	What	if	you	just	need	to	work	with	the	last	few	lines	of	a	long	listing,	such	as	a	log	file?

The	dollar	sign	represents	the	last	line	of	a	data	stream,	so	it's	easy	to	display	just	the	last	line:

$	sed	-n	'$p'	data2.txt
End	of	Data	Lines
$

Now,	how	can	you	use	the	dollar	sign	symbol	to	display	a	set	number	of	lines	at	the	end	of	the	data	stream?	The
answer	is	to	create	a	rolling	window.

A	rolling	window	is	a	common	way	to	examine	blocks	of	text	lines	in	the	pattern	space	by	combining	them	using	the
N	command.	The	N	command	appends	the	next	line	of	text	to	the	text	already	in	the	pattern	space.	After	you	have	a
block	of	10	text	lines	in	the	pattern	space,	you	can	check	to	see	if	you're	at	the	end	of	the	data	stream	using	the	dollar
sign.	If	you're	not	at	the	end,	continue	adding	more	lines	to	the	pattern	space	while	removing	the	original	lines
(remember	the	D	command,	which	deletes	the	first	line	in	the	pattern	space).

By	looping	through	the	N	and	D	commands,	you	add	new	lines	to	the	block	of	lines	in	the	pattern	space	while
removing	old	lines.	The	branch	(b)	command	is	the	perfect	fit	for	the	loop.	To	end	the	loop,	just	identify	the	last	line
and	use	the	q	command	to	quit.

Here's	what	the	final	sed	editor	script	looks	like:

$	cat	data7.txt
Line1
Line2
Line3
Line4
Line5
Line6
Line7
Line1
Line2
Line3
Line4
Line5
Line6
Line7
Line8
Line9
Line10
Line11
Line12
Line13
Line14
Line15
$
$	sed	'{
>	:start
>	$q	;	N	;	11,$D
>	b	start
>	}'	data7.txt
Line6
Line7
Line8
Line9
Line10
Line11
Line12
Line13
Line14
Line15
$

The	script	first	checks	whether	the	line	is	the	last	line	in	the	data	stream.	If	it	is,	the	quit	(q)	command	stops	the
loop.	The	N	command	appends	the	next	line	to	the	current	line	in	the	pattern	space.	The	11,$D	command	deletes	the
first	line	in	the	pattern	space	if	the	current	line	is	after	line	10.	This	creates	the	sliding	window	effect	in	the	pattern
space.	Thus,	the	sed	program	script	displays	only	the	last	10	lines	of	the	data7.txt	file.

Deleting	lines
Another	useful	utility	for	the	sed	editor	is	to	remove	unwanted	blank	lines	in	a	data	stream.	It's	easy	to	remove	all
the	blank	lines	from	a	data	stream,	but	it	takes	a	little	ingenuity	to	selectively	remove	blank	lines.	This	section	shows
you	three	quick	sed	editor	scripts	that	you	can	use	to	help	remove	unwanted	blank	lines	from	your	data.

Deleting	consecutive	blank	lines
It	can	be	a	nuisance	when	extra	blank	lines	crop	up	in	data	files.	Often	you	have	a	data	file	that	contains	blank	lines,
but	sometimes	a	data	line	is	missing	and	produces	too	many	blank	lines	(as	you	saw	in	the	double-spacing	example
earlier).

The	easiest	way	to	remove	consecutive	blank	lines	is	to	check	the	data	stream	using	a	range	address.	In	Chapter	19
we	covered	how	to	use	ranges	in	addresses,	including	how	to	incorporate	patterns	in	the	address	range.	The	sed
editor	executes	the	command	for	all	lines	that	match	within	the	specified	address	range.

The	key	to	removing	consecutive	blank	lines	is	to	create	an	address	range	that	includes	a	non-blank	line	and	a	blank

line.	If	the	sed	editor	comes	across	this	range,	it	shouldn't	delete	the	line.	However,	for	lines	that	don't	match	that
range	(two	or	more	blank	lines	in	a	row),	it	should	delete	the	lines.

Here's	the	script	to	do	this:

/./,/^$/!d

The	range	is	/./	to	/	^	$/	.	The	start	address	in	the	range	matches	any	line	that	contains	at	least	one	character.	The
end	address	in	the	range	matches	a	blank	line.	Lines	within	this	range	aren't	deleted.

Here's	the	script	in	action:

$	cat	data8.txt
Line	one.
	
	
Line	two.
	
Line	three.
	
	
	
Line	four.
$
$	sed	'/./,/^$/!d'	data8.txt
Line	one.
	
Line	two.
	
Line	three.
	
Line	four.
$

No	matter	how	many	blank	lines	appear	between	lines	of	data	in	the	file,	the	output	places	only	one	blank	line
between	the	lines.

Deleting	leading	blank	lines
It	is	also	a	nuisance	when	data	files	contain	multiple	blank	lines	at	the	start	of	the	file.	Often	when	you	are	trying	to
import	data	from	a	text	file	into	a	database,	the	blank	lines	create	null	entries,	throwing	off	any	calculations	using
the	data.

Removing	blank	lines	from	the	top	of	a	data	stream	is	not	a	difficult	task.	Here's	the	script	that	accomplishes	that
function:

/./,$!d

The	script	uses	an	address	range	to	determine	what	lines	are	deleted.	The	range	starts	with	a	line	that	contains	a
character	and	continues	to	the	end	of	the	data	stream.	Any	line	within	this	range	is	not	deleted	from	the	output.	This
means	that	any	lines	before	the	first	line	that	contain	a	character	are	deleted.

Look	at	this	simple	script	in	action:

$	cat	data9.txt
	
	
Line	one.
	
Line	two.
$
$	sed	'/./,$!d'	data9.txt
Line	one.
	
Line	two.
$

The	test	file	contains	two	blank	lines	before	the	data	lines.	The	script	successfully	removes	both	of	the	leading	blank
lines	while	keeping	the	blank	line	within	the	data	intact.

Deleting	trailing	blank	lines
Unfortunately,	deleting	trailing	blank	lines	is	not	as	simple	as	deleting	leading	blank	lines.	Just	like	printing	the	end
of	a	data	stream,	deleting	blank	lines	at	the	end	of	a	data	stream	requires	a	little	ingenuity	and	looping.

Before	we	start	the	discussion,	let's	see	what	the	script	looks	like:

sed	'{
:start
/^\n*$/{$d;	N;	b	start	}
}'

This	may	look	a	little	odd	to	you	at	first.	Notice	that	there	are	braces	within	the	normal	script	braces.	This	allows	you
to	group	commands	together	within	the	overall	command	script.	The	group	of	commands	applies	to	the	specified
address	pattern.	The	address	pattern	matches	any	line	that	contains	only	a	newline	character.	When	one	is	found,	if

it's	the	last	line,	the	d	command	deletes	it.	If	it's	not	the	last	line,	the	N	command	appends	the	next	line	to	it,	and	the
branch	(b)	command	loops	to	the	beginning	to	start	over.

Here's	the	script	in	action:

$	cat	data10.txt
Line	one.
Line	two.
	
	
	
$
$	sed	'{
>	:start
>	/^\n*$/{$d;	N;	b	start}
>	}'	data10.txt
Line	one.
Line	two.
$

The	script	successfully	removed	the	blank	lines	from	the	end	of	the	text	file.

Removing	HTML	tags
These	days,	it's	not	uncommon	to	download	text	from	a	website	to	save	or	use	as	data	in	an	application.	Sometimes,
however,	when	you	download	text	from	the	website,	you	also	get	the	HTML	tags	used	to	format	the	data.	This	can	be
a	problem	when	all	you	want	to	see	is	the	data.

A	standard	HTML	web	page	contains	several	different	types	of	HTML	tags,	identifying	formatting	features	required
to	properly	display	the	page	information.	Here's	a	sample	of	what	an	HTML	file	looks	like:

$	cat	data11.txt
<html>
<head>
<title>This	is	the	page	title</title>
</head>
<body>
<p>
This	is	the	first	line	in	the	Web	page.
This	should	provide	some	useful
information	to	use	in	our	sed	script.
</body>
</html>
$

HTML	tags	are	identified	by	the	less-than	and	greater-than	symbols.	Most	HTML	tags	come	in	pairs.	One	tag	starts
the	formatting	process	(for	example,		for	bolding),	and	another	tag	stops	the	formatting	process	(for	example,
	to	turn	off	bolding).

Removing	HTML	tags	creates	a	problem,	however,	if	you're	not	careful.	At	first	glance,	you'd	think	that	the	way	to
remove	HTML	tags	would	be	to	just	look	for	a	text	string	that	starts	with	a	less-than	symbol	(<),	ends	with	a	greater-
than	symbol	(>),	and	has	data	in	between	the	symbols:

	s/<.*>//g

Unfortunately,	this	command	has	some	unintended	consequences:

$	sed	's/<.*>//g'	data11.txt
	
	
	
	
	
	
This	is	the		line	in	the	Web	page.
This	should	provide	some
information	to	use	in	our	sed	script.
	
	
$

Notice	that	the	title	text	is	missing,	along	with	the	text	that	was	bolded	and	italicized.	The	sed	editor	literally
interpreted	the	script	to	mean	any	text	between	the	less-than	and	greater-than	sign,	including	other	less-than	and
greater-than	signs!	Each	time	the	text	was	enclosed	in	HTML	tags	(such	as	first),	the	sed	script	removed
the	entire	text.

The	solution	to	this	problem	is	to	have	the	sed	editor	ignore	any	embedded	greater-than	signs	between	the	original
tags.	To	do	that,	you	can	create	a	character	class	that	negates	the	greater-than	sign.	This	changes	the	script	to

s/<[^>]*>//g

This	script	now	works	properly,	displaying	the	data	you	need	to	see	from	the	web	page	HTML	code:

$	sed	's/<[^>]*>//g'	data11.txt
	

	
This	is	the	page	title
	
	
	
This	is	the	first	line	in	the	Web	page.
This	should	provide	some	useful
information	to	use	in	our	sed	script.
	
	
$

That's	a	little	better.	To	clean	things	up	some,	we	can	add	a	delete	command	to	get	rid	of	those	pesky	blank	lines:

$	sed	's/<[^>]*>//g	;	/^$/d'	data11.txt
This	is	the	page	title
This	is	the	first	line	in	the	Web	page.
This	should	provide	some	useful
information	to	use	in	our	sed	script.
$

Now	that's	much	more	compact;	there's	only	the	data	you	need	to	see.

Working	Through	a	Practical	Example
For	our	practical	example	in	this	chapter,	we'll	use	sed	to	scan	Bash	shell	scripts.	The	purpose	of	this	scan	is	to	find
commands	that	may	be	better	off	located	within	a	function.

Back	in	Chapter	17,	“Creating	Functions,”	we	covered	how	to	set	up	functions	that	can	be	called	multiple	times
within	a	script.	It's	considered	good	form	to	put	any	duplicated	code	blocks	within	a	function.	That	way,	if	a	change
is	needed	for	the	commands	in	the	code	block,	you	need	to	make	those	changes	in	only	one	place.	Not	only	is	this
approach	a	time-saver,	but	it	also	reduces	the	chances	of	introducing	errors	that	may	occur	if	you	change	one	block
of	code	but	not	the	others	strewn	about	the	script.

To	keep	things	simple,	we'll	just	look	for	three	repeating	lines	of	code	within	a	file.	Consider	the	following	text	file:

$	cat	ScriptData.txt
Line	1
Line	2
Line	3
Line	4
Line	5
Line	6
Line	3
Line	4
Line	5
Line	7
Line	8
Line	3
Line	4
Line	5
Line	9
Line	10
Line	11
Line	12
$

If	you	look	carefully,	you'll	notice	that	Line	3	,	Line	4	,	and	Line	5	are	repeated	three	times	throughout	this	file.	To
find	those	repeated	lines,	we'll	merge	each	text	line	together	with	the	next	two	following	lines:

1.	 Read	in	the	next	line,	but	only	if	processing	the	text	file's	first	line,	using	the	multiline	N	command.

2.	 Read	in	the	next	line	(this	is	the	second	read	for	the	text	file's	first	line)	using	the	multiline	N	command.	Now	we
have	three	lines	within	the	pattern	space.

3.	 Print	the	pattern	space	to	STDOUT	.

4.	 Delete	the	first	line	in	the	pattern	space	using	the	D	command,	which	deletes	the	text	within	the	pattern	space
up	to	and	including	the	first	newline,	and	then	starts	processing	the	sed	script	commands	from	the	beginning.

The	following	command	shows	this	process:

$	sed	-n	'{
>	1N
>	N
>	p
>	D}
>	'	ScriptData.txt
Line	1
Line	2
Line	3
Line	2
Line	3
Line	4
Line	3
Line	4

Line	5
Line	4
Line	5
Line	6
Line	5
Line	6
Line	3
Line	6
Line	3
Line	4
Line	3
Line	4
Line	5
Line	4
Line	5
[...]
Line	9
Line	10
Line	9
Line	10
Line	11
Line	10
Line	11
Line	12
$

The	problem	with	this	method	is	that	it	is	hard	for	a	human	to	differentiate	what	lines	have	been	merged	together.
Because	the	lines	still	contain	the	newline	character	(\n),	the	output	is	nearly	impossible	to	interpret.

To	fix	this	issue,	we'll	replace	the	newline	character	at	the	end	of	each	text	line	with	a	bell	sound	character	(\a)	using
the	substitute	(s)	command:

$	sed	-n	'{
>	1N
>	N
>	s/\n/\a/g
>	p
>	s/\a/\n/
>	D}
>	'	ScriptData.txt
Line	1Line	2Line	3
Line	2Line	3Line	4
Line	3Line	4Line	5
Line	4Line	5Line	6
Line	5Line	6Line	3
Line	6Line	3Line	4
Line	3Line	4Line	5
Line	4Line	5Line	7
Line	5Line	7Line	8
Line	7Line	8Line	3
Line	8Line	3Line	4
Line	3Line	4Line	5
Line	4Line	5Line	9
Line	5Line	9Line	10
Line	9Line	10Line	11
Line	10Line	11Line	12
$

Now,	we're	getting	somewhere!	Notice	that	although	we	replaced	the	newline	characters	with	a	bell	sound	character
(globally)	in	the	third	line	of	the	sed	script,	after	printing	the	pattern	space	we	had	to	switch	the	first	bell	sound
character	back	to	a	newline.	This	is	due	to	the	delete	(D)	command,	which	needs	the	newline	character	after	the	first
text	line	so	that	it	won't	delete	the	entire	pattern	space.

While	it	may	be	tempting	to	forge	ahead	to	comparing	the	lines	and	finding	duplicates,	there	is	one	more
consideration.	Shell	script	lines	often	have	spaces	or	tabs	within	each	line,	as	shown	in	this	test	text	file:

$	cat	ScriptDataB.txt
Line	1
Line	2
Line	3
Line	4
	Line	5
Line	6
					Line	3
					Line	4
		Line	5
Line	7
Line	8
								Line	3
								Line	4
								Line	5
Line	9
Line	10
Line	11
Line	12
$

These	spaces	and	tabs	will	disrupt	the	matching	process.	But	it's	fairly	easy	to	handle	this	situation.	We'll	just
eliminate	the	spaces	and	tabs	via	a	global	(g)	substitute	(s)	command:

$	sed	-n	'{
>	1N
>	N
>	s/	//g
>	s/\t//g
>	s/\n/\a/g
>	p
>	s/\a/\n/
>	D}
>	'	ScriptDataB.txt
Line1Line2Line3
Line2Line3Line4
Line3Line4Line5
Line4Line5Line6
Line5Line6Line3
Line6Line3Line4
Line3Line4Line5
Line4Line5Line7
Line5Line7Line8
Line7Line8Line3
Line8Line3Line4
Line3Line4Line5
Line4Line5Line9
Line5Line9Line10
Line9Line10Line11
Line10Line11Line12
$

Now	we'll	employ	two	other	Bash	shell	commands	to	help	us	sort	the	file	(sort)	and	find	any	duplicates	(uniq	-d):

$	sed	-n	'{
>	1N;
>	N;
>	s/	//g;
>	s/\t//g;
>	s/\n/\a/g;
>	p
>	s/\a/\n/;
>	D}
>	'	ScriptDataB.txt	|
>	sort	|	uniq	-d	|
>	sed	's/\a/\n/g'
Line3
Line4
Line5
$

Perfect!	The	commands	scanned	the	file	and	found	three	repeating	lines.	Now	we	can	pretty	this	up,	and	store	it	in	a
shell	wrapper.	Here's	one	way	to	do	it:

$	cat	NeededFunctionCheck.sh
#!/bin/bash
#	Checks	for	3	duplicate	lines	in	scripts.
#	Suggest	these	lines	be	possibly	replaced
#	by	a	function.
#
tempfile=$2
#
#
sed	-n	'{
1N;	N;
s/	//g;	s/\t//g;
s/\n/\a/g;	p;
s/\a/\n/;	D}'	$1>>	$tempfile
#
sort	$tempfile	|	uniq	-d	|	sed	's/\a/\n/g'
#
rm	-i	$tempfile
#
exit
$

Notice	that	this	script	takes	two	parameters	—	the	first	($1)	for	which	file	to	scan,	and	the	second	($2)	to	designate	a
temporary	file	to	store	the	merged	file	lines.	The	reason	we	redirected	STDOUT	to	a	file,	instead	of	directly	into	the
sort	command,	is	that	it	gives	you	the	ability	to	keep	the	temporary	file	to	see	if	your	sed	merging	process	(and	any
tweaks	you	make	to	it)	are	working	correctly.

Before	you	start	diving	into	modifying	this	script	to	try	out	variations,	let's	scan	our	test	text	file	with	it:

$./NeededFunctionCheck.sh	ScriptDataB.txt	TempFile.txt
Line3
Line4
Line5
rm:	remove	regular	file	'TempFile.txt'?	Y

$

This	is	exactly	what	we	are	wanting.	Now,	let's	try	scanning	a	real	script	and	see	how	it	does:

$./NeededFunctionCheck.sh	CheckMe.sh	TempFile.txt
echo"Usage:./CheckMe.shparameter1parameter2"
echo"Exitingscript..."
exit
rm:	remove	regular	file	'TempFile.txt'?	Y
$

This	is	a	little	harder	to	read,	because	we	eliminated	all	the	spaces	within	each	script	line.	(One	script	improvement
you	can	make	is	to	only	remove	multiple	spaces	between	characters.)	However,	it	gives	us	enough	of	a	shove	in	the
right	direction.	We	know	that	these	three	lines	are	repeated	within	the	script.	And	the	script	needs	to	be	reviewed	to
possibly	replace	the	repeated	commands	with	a	function.

You	can	make	lots	of	potential	improvements	within	this	script.	Once	you've	got	your	modifications	in	place	and
working,	remove	that	temporary	file	to	make	it	faster.	How	about	producing	line	numbers	to	show	where	the	code	is
located	within	the	script?	You	could	even	make	the	information	into	a	fancy	report…but	we	recommend	you	wait
until	you	read	through	the	next	chapter,	“Advanced	gawk	,”	before	you	try	that	script	improvement.

Summary
The	sed	editor	provides	some	advanced	features	that	allow	you	to	work	with	text	patterns	across	multiple	lines.	This
chapter	showed	you	how	to	use	the	multiline	next	(N)	command	to	retrieve	the	next	line	in	a	data	stream	and	place	it
in	the	pattern	space.	Once	it's	in	the	pattern	space,	you	can	perform	complex	substitution	(s)	commands	to	replace
phrases	that	span	more	than	one	line	of	text.

The	multiline	delete	(D)	command	allows	you	to	remove	the	first	line	when	the	pattern	space	contains	two	or	more
lines.	This	is	a	convenient	way	to	iterate	through	multiple	lines	in	the	data	stream.	Similarly,	the	multiline	print	(P)
command	allows	you	to	print	just	the	first	line	when	the	pattern	space	contains	two	or	more	lines	of	text.	The
combination	of	the	multiline	commands	allows	you	to	iterate	through	the	data	stream	and	create	a	multiline
substitution	system.

Next,	we	covered	the	hold	space.	The	hold	space	allows	you	to	set	aside	a	line	of	text	while	processing	more	lines	of
text.	You	can	recall	the	contents	of	the	hold	space	at	any	time	and	either	replace	the	text	in	the	pattern	space	or
append	the	contents	of	the	hold	space	to	the	text	in	the	pattern	space.	Using	the	hold	space	allows	you	to	sort
through	data	streams,	reversing	the	order	of	text	lines	as	they	appear	in	the	data.

Next	we	reviewed	the	various	sed	editor	flow	control	commands.	The	branch	(b)	command	provides	a	way	for	you	to
alter	the	normal	flow	of	sed	editor	commands	in	the	script,	creating	loops	or	skipping	commands	under	certain
conditions.	The	test	(t)	command	provides	an	if-then	type	of	statement	for	your	sed	editor	command	scripts.	The
test	(t)	command	branches	only	if	a	prior	substitution	(s)	command	succeeds	in	replacing	text	in	a	line.

The	chapter	continued	with	a	discussion	of	how	to	use	sed	scripts	in	your	shell	scripts.	A	common	technique	for
large	sed	scripts	is	to	place	the	script	in	a	shell	wrapper.	You	can	use	command-line	parameter	variables	within	the
sed	script	to	pass	shell	command-line	values.	This	creates	an	easy	way	to	utilize	your	sed	editor	scripts	directly	from
the	command	line,	or	even	from	other	shell	scripts.

We	concluded	the	chapter	with	a	look	at	creating	common	sed	utilities,	which	allow	you	to	do	lots	of	processing	of
text	files.	Some	features	include	numbering	lines	in	a	file	in	a	more	human-readable	format,	printing	last	text	file
lines,	and	removing	HTML	tags.

The	next	chapter	digs	deeper	into	the	gawk	world.	The	gawk	program	supports	many	features	of	higher-level
programming	languages.	You	can	create	some	pretty	involved	data	manipulation	and	reporting	programs	just	by
using	gawk	.	The	chapter	describes	the	various	programming	features	and	demonstrates	how	to	use	them	to	generate
your	own	fancy	reports	from	simple	data.

CHAPTER	22
Advanced	gawk
IN	THIS	CHAPTER

Using	variables

Working	with	arrays

Considering	patterns

Structured	commands

Printing	with	formats

Using	built‐in	functions
Trying	out	user‐defined	functions

Chapter	19,	“Introducing	sed	and	gawk”	introduced	the	gawk	program	and	demonstrated	the	basics	of	using	it	to
produce	formatted	reports	from	raw	data	files.	This	chapter	dives	more	deeply	into	customizing	gawk	to	produce
reports.	The	gawk	program	is	a	full‐fledged	programming	language,	providing	features	that	allow	you	to	write
advanced	programs	to	manipulate	data.	If	you	are	jumping	into	the	shell	script	world	from	another	programming
language,	you	should	feel	right	at	home	with	gawk	.	In	this	chapter,	you'll	see	how	to	use	the	gawk	programming
language	to	write	programs	to	handle	just	about	any	data‐formatting	task	you'll	run	into.

Using	Variables
One	important	feature	of	any	programming	language	is	the	ability	to	store	and	recall	values	using	variables.	The
gawk	programming	language	supports	two	different	types	of	variables:

Built‐in	variables
User‐defined	variables

Several	built‐in	variables	are	available	for	you	to	use	in	gawk	.	The	built‐in	variables	contain	information	used	in
handling	the	data	fields	and	records	in	the	data	file.	You	can	also	create	your	own	variables	in	your	gawk	programs.
The	following	sections	walk	you	through	how	to	use	variables	in	your	gawk	programs.

TABLE	22.1	The	gawk	Data	Field	and	Record	Variables

Variable Description

FIELDWIDTHS A	space‐separated	list	of	numbers	defining	the	exact	width	(in	spaces)	of	each	data	field

FS Input	field	separator	character

RS Input	record	separator	character

OFS Output	field	separator	character

ORS Output	record	separator	character

Built‐in	variables
The	gawk	program	uses	built‐in	variables	to	reference	specific	features	within	the	program	data.	This	section
describes	the	built‐in	variables	available	for	you	to	use	in	your	gawk	programs	and	demonstrates	how	to	use	them.

The	field	and	record	separator	variables
Chapter	19	demonstrated	one	type	of	built‐in	variable	available	in	gawk	,	the	data	field	variables.	The	data	field
variables	allow	you	to	reference	individual	data	fields	within	a	data	record	using	a	dollar	sign	and	the	numerical
position	of	the	data	field	in	the	record.	Thus,	to	reference	the	first	data	field	in	the	record,	you	use	the	$1	variable.	To
reference	the	second	data	field,	you	use	the	$2	variable,	and	so	on.

Data	fields	are	delineated	by	a	field	separator	character.	By	default,	the	field	separator	character	is	a	whitespace
character,	such	as	a	space	or	a	tab.	Chapter	19	showed	how	to	change	the	field	separator	character	either	on	the
command	line	by	using	the	‐F	command‐line	parameter	or	within	the	gawk	program	by	using	the	special	FS	built‐in
variable.

The	FS	built‐in	variable	belongs	to	a	group	of	built‐in	variables	that	control	how	gawk	handles	fields	and	records	in
both	input	data	and	output	data.	Table	22.1	lists	the	built‐in	variables	contained	in	this	group.
The	FS	and	OFS	variables	define	how	your	gawk	program	handles	data	fields	in	the	data	stream.	You've	already	seen
how	to	use	the	FS	variable	to	define	what	character	separates	data	fields	in	a	record.	The	OFS	variable	performs	the
same	function	but	for	the	output	by	using	the	print	command.

By	default,	gawk	sets	the	OFS	variable	to	a	space,	so	when	you	use	the	command

print	$1,$2,$3

you	see	the	output	as

field1	field2	field3

You	can	see	this	in	the	following	example:

$	cat	data1
data11,data12,data13,data14,data15
data21,data22,data23,data24,data25
data31,data32,data33,data34,data35
$	gawk	'BEGIN{FS=","}	{print	$1,$2,$3}'	data1
data11	data12	data13
data21	data22	data23
data31	data32	data33
$

The	print	command	automatically	places	the	value	of	the	OFS	variable	between	each	data	field	in	the	output.	By
setting	the	OFS	variable,	you	can	use	any	string	to	separate	data	fields	in	the	output:

$	gawk	'BEGIN{FS=",";	OFS="-"}	{print	$1,$2,$3}'	data1
data11-data12-data13
data21-data22-data23
data31-data32-data33
$	gawk	'BEGIN{FS=",";	OFS="--"}	{print	$1,$2,$3}'	data1
data11--data12--data13
data21--data22--data23
data31--data32--data33
$	gawk	'BEGIN{FS=",";	OFS="<-->"}	{print	$1,$2,$3}'	data1
data11<-->data12<-->data13
data21<-->data22<-->data23
data31<-->data32<-->data33
$

The	FIELDWIDTHS	variable	allows	you	to	read	records	without	using	a	field	separator	character.	In	some	applications,
instead	of	using	a	field	separator	character,	data	is	placed	in	specific	columns	within	the	record.	In	these	instances,
you	must	set	the	FIELDWIDTHS	variable	to	the	match	the	layout	of	the	data	in	the	records.

Once	you	set	the	FIELDWIDTHS	variable,	gawk	ignores	the	FS	and	calculates	data	fields	based	on	the	provided	field
width	sizes.	Here's	an	example	using	field	widths	instead	of	field	separator	characters:

$	cat	data1b
1005.3247596.37
115-2.349194.00
05810.1298100.1
$	gawk	'BEGIN{FIELDWIDTHS="3	5	2	5"}{print	$1,$2,$3,$4}'	data1b
100	5.324	75	96.37
115	-2.34	91	94.00
058	10.12	98	100.1
$

The	FIELDWIDTHS	variable	defines	four	data	fields,	and	gawk	parses	the	data	record	accordingly.	The	string	of
numbers	in	each	record	is	split	based	on	the	defined	field	width	values.

WARNING
It's	important	to	remember	that	once	you	set	the	FIELDWIDTHS	variable,	those	values	must	remain
constant.	This	method	can't	accommodate	variable‐length	data	fields.

The	RS	and	ORS	variables	define	how	your	gawk	program	handles	records	in	the	data	stream.	By	default,	gawk	sets	the
RS	and	ORS	variables	to	the	newline	character.	The	default	RS	variable	value	indicates	that	each	new	line	of	text	in	the
input	data	stream	is	a	new	record.

Sometimes	you	run	into	situations	where	data	fields	are	spread	across	multiple	lines	in	the	data	stream.	A	classic
example	of	this	is	data	that	includes	an	address	and	phone	number,	each	on	a	separate	line:

Ima	Test
123	Main	Street
Chicago,	IL	60601
(312)555-1234

If	you	try	to	read	this	data	using	the	default	FS	and	RS	variable	values,	gawk	will	read	each	line	as	a	separate	record
and	interpret	each	space	in	the	record	as	a	field	separator.	This	isn't	what	you	intended.

To	solve	this	problem,	you	need	to	set	the	FS	variable	to	the	newline	character.	This	indicates	that	each	line	in	the
data	stream	is	a	separate	field	and	that	all	of	the	data	on	a	line	belongs	to	the	data	field.	However,	when	you	do	that,
you	don't	know	where	a	new	record	starts.

To	solve	this	problem,	set	the	RS	variable	to	an	empty	string	and	then	leave	a	blank	line	between	data	records	in	the
data	stream.	The	gawk	program	will	interpret	each	blank	line	as	a	record	separator.

The	following	is	an	example	of	using	this	technique:

$	cat	data2
Ima	Test
123	Main	Street
Chicago,	IL	60601
(312)555-1234
	
Frank	Tester
456	Oak	Street
Indianapolis,	IN	46201
(317)555-9876
	
Haley	Example
4231	Elm	Street
Detroit,	MI	48201
(313)555-4938
$	gawk	'BEGIN{FS="\n";	RS=""}	{print	$1,$4}'	data2
Ima	Test	(312)555-1234
Frank	Tester	(317)555-9876
Haley	Example	(313)555-4938
$

Perfect—the	gawk	program	interpreted	each	line	in	the	file	as	a	data	field	and	the	blank	lines	as	record	separators.

Data	variables
Besides	the	field	and	record	separator	variables,	gawk	provides	some	other	built‐in	variables	to	help	you	know	what's
going	on	with	your	data	and	to	extract	information	from	the	shell	environment.	Table	22.2	shows	the	other	built‐in
variables	in	gawk.

TABLE	22.2	More	gawk	Built‐in	Variables

Variable Description

ARGC The	number	of	command‐line	parameters	present.

ARGIND The	index	in	ARGV	of	the	current	file	being	processed.

ARGV An	array	of	command‐line	parameters.

CONVFMT The	conversion	format	for	numbers	(see	the	printf	statement).	The	default	value	is	%.6	g	.

ENVIRON An	associative	array	of	the	current	shell	environment	variables	and	their	values.

ERRNO The	system	error	if	an	error	occurs	when	reading	or	closing	input	files.

FILENAME The	filename	of	the	data	file	used	for	input	to	the	gawk	program.

FNR The	current	record	number	in	the	data	file.

IGNORECASE If	set	to	a	non‐zero	value,	ignore	the	case	of	characters	in	strings	used	in	the	gawk	command.

NF The	total	number	of	data	fields	in	the	data	file.

NR The	number	of	input	records	processed.

OFMT The	output	format	for	displaying	numbers.	The	default	is	%.6g	.,	which	displays	the	value	in	either
floating‐point	or	scientific	notation,	whichever	is	shorter,	using	up	to	six	decimal	places.

RLENGTH The	length	of	the	substring	matched	in	the	match	function.

RSTART The	start	index	of	the	substring	matched	in	the	match	function.

You	should	recognize	a	few	of	these	variables	from	your	shell	script	programming.	The	ARGC	and	ARGV	variables	allow
you	to	retrieve	the	number	of	command‐line	parameters	and	their	values	from	the	shell.	This	can	be	a	little	tricky,
however,	since	gawk	doesn't	count	the	program	script	as	part	of	the	command‐line	parameters:

$	gawk	'BEGIN{print	ARGC,ARGV[1]}'	data1
2	data1
$

The	ARGC	variable	indicates	that	there	are	two	parameters	on	the	command	line.	This	includes	the	gawk	command
and	the	data1	parameter	(remember,	the	program	script	doesn't	count	as	a	parameter).	The	ARGV	array	starts	with	an
index	of	0,	which	represents	the	command.	The	first	array	value	is	the	first	command‐line	parameter	after	the	gawk
command.

TIP
Note	that	unlike	shell	variables,	when	you	reference	a	gawk	variable	in	the	script,	you	don't	add
a	dollar	sign	before	the	variable	name.

The	ENVIRON	variable	may	seem	a	little	odd	to	you.	It	uses	an	associative	array	to	retrieve	shell	environment
variables.	An	associative	array	uses	text	for	the	array	index	values	instead	of	numeric	values.

The	text	in	the	array	index	is	the	shell	environment	variable.	The	value	of	the	array	is	the	value	of	the	shell
environment	variable.	The	following	is	an	example	of	this:

$	gawk	'
>	BEGIN{
>	print	ENVIRON["HOME"]
>	print	ENVIRON["PATH"]
>	}'
/home/rich
/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
$

The	ENVIRON["HOME"]	variable	retrieves	the	HOME	environment	variable	value	from	the	shell.	Likewise,	the
ENVIRON["PATH"]	variable	retrieves	the	PATH	environment	variable	value.	You	can	use	this	technique	to	retrieve	any
environment	variable	value	from	the	shell	to	use	in	your	gawk	programs.

The	FNR	,	NF	,	and	NR	variables	come	in	handy	when	you're	trying	to	keep	track	of	data	fields	and	records	in	your	gawk
program.	Sometimes	you're	in	a	situation	where	you	don't	know	exactly	how	many	data	fields	are	in	a	record.	The	NF
variable	allows	you	to	specify	the	last	data	field	in	the	record	without	having	to	know	its	position:

$	gawk	'BEGIN{FS=":";	OFS=":"}	{print	$1,$NF}'	/etc/passwd
root:/bin/bash
daemon:/usr/sbin/nologin
bin:/usr/sbin/nologin
sys:/usr/sbin/nologin
sync:/bin/sync
games:/usr/sbin/nologin
man:/usr/sbin/nologin
…
rich:/bin/bash
$

The	NF	variable	contains	the	numerical	value	of	the	last	data	field	in	the	data	file.	You	can	then	use	it	as	a	data	field
variable	by	placing	a	dollar	sign	in	front	of	it.

The	FNR	and	NR	variables	are	similar	to	each	other	but	slightly	different.	The	FNR	variable	contains	the	number	of
records	processed	in	the	current	data	file.	The	NR	variable	contains	the	total	number	of	records	processed.	Let's	look
at	a	couple	of	examples	to	see	this	difference:

$	gawk	'BEGIN{FS=","}{print	$1,"FNR="FNR}'	data1	data1
data11	FNR=1
data21	FNR=2
data31	FNR=3
data11	FNR=1
data21	FNR=2
data31	FNR=3
$

In	this	example,	the	gawk	program	command	line	defines	two	input	files.	(It	specifies	the	same	input	file	twice.)	The
script	prints	the	first	data	field	value	and	the	current	value	of	the	FNR	variable.	Notice	that	the	FNR	value	was	reset
back	to	1	when	the	gawk	program	processed	the	second	data	file.

Now,	let's	add	the	NR	variable	and	see	what	that	produces:

$	gawk	'
>	BEGIN	{FS=","}
>	{print	$1,"FNR="FNR,"NR="NR}
>	END{print	"There	were",NR,"records	processed"}'	data1	data1
data11	FNR=1	NR=1
data21	FNR=2	NR=2
data31	FNR=3	NR=3
data11	FNR=1	NR=4
data21	FNR=2	NR=5
data31	FNR=3	NR=6
There	were	6	records	processed
$

The	FNR	variable	value	was	reset	when	gawk	processed	the	second	data	file,	but	the	NR	variable	maintained	its	count
into	the	second	data	file.	The	bottom	line	is	that	if	you're	using	only	one	data	file	for	input,	the	FNR	and	NR	values	will

be	the	same.	If	you're	using	multiple	data	files	for	input,	the	FNR	value	will	be	reset	for	each	data	file,	and	the	NR	value
will	keep	count	throughout	all	the	data	files.

NOTE
You'll	notice	when	using	gawk	that	often	the	gawk	script	can	become	larger	than	the	rest	of	your
shell	script.	In	the	examples	in	this	chapter,	for	simplicity	we	just	run	the	gawk	scripts	directly
from	the	command	line,	using	the	multiline	feature	of	the	shell.	When	you	use	gawk	in	a	shell
script,	you	should	place	different	gawk	commands	on	separate	lines.	Doing	so	will	make	it	much
easier	for	you	to	read	and	follow,	rather	than	trying	to	cram	it	all	onto	one	line	in	the	shell
script.	Also,	if	you	find	yourself	using	the	same	gawk	scripts	in	different	shell	scripts,	remember
you	can	save	the	gawk	script	in	a	separate	file	and	reference	it	using	the	–f	parameter	(see
Chapter	19).

User‐defined	variables
Just	like	any	other	self‐respecting	programming	language,	gawk	allows	you	to	define	your	own	variables	for	use
within	the	program	code.	A	gawk	user‐defined	variable	name	can	be	any	number	of	letters,	digits,	and	underscores,
but	it	can't	begin	with	a	digit.	It	is	also	important	to	remember	that	gawk	variable	names	are	case	sensitive.

Assigning	variables	in	scripts
Assigning	values	to	variables	in	gawk	programs	is	similar	to	doing	so	in	a	shell	script,	using	an	assignment
statement:

$	gawk	'
>	BEGIN{
>	testing="This	is	a	test"
>	print	testing
>	}'
This	is	a	test
$

The	output	of	the	print	statement	is	the	current	value	of	the	testing	variable.	Like	shell	script	variables,	gawk
variables	can	hold	either	numeric	or	text	values:

$	gawk	'
>	BEGIN{
>	testing="This	is	a	test"
>	print	testing
>	testing=45
>	print	testing
>	}'
This	is	a	test
45
$

In	this	example,	the	value	of	the	testing	variable	is	changed	from	a	text	value	to	a	numeric	value.

Assignment	statements	can	also	include	mathematical	algorithms	to	handle	numeric	values:

$	gawk	'BEGIN{x=4;	x=	x	*	2	+	3;	print	x}'
11
$

As	you	can	see	from	this	example,	the	gawk	programming	language	includes	the	standard	mathematical	operators	for
processing	numerical	values.	These	can	include	the	remainder	symbol	(%)	and	the	exponentiation	symbol	(using
either	^	or	**).

Assigning	variables	on	the	command	line
You	can	also	use	the	gawk	command	line	to	assign	values	to	variables	for	the	gawk	program.	This	allows	you	to	set
values	outside	of	the	normal	code,	changing	values	on	the	fly.	Here's	an	example	of	using	a	command‐line	variable	to
display	a	specific	data	field	in	the	file:

$	cat	script1
BEGIN{FS=","}
{print	$n}
$	gawk	-f	script1	n=2	data1
data12
data22
data32
$	gawk	-f	script1	n=3	data1
data13
data23
data33

$

This	feature	allows	you	to	change	the	behavior	of	the	script	without	necessitating	that	you	change	the	actual	script
code.	The	first	example	displays	the	second	data	field	in	the	file,	whereas	the	second	example	displays	the	third	data
field,	just	by	setting	the	value	of	the	n	variable	in	the	command	line.

There's	one	problem	with	using	command‐line	parameters	to	define	variable	values.	When	you	set	the	variable,	the
value	isn't	available	in	the	BEGIN	section	of	the	code:

$	cat	script2
BEGIN{print	"The	starting	value	is",n;	FS=","}
{print	$n}
$	gawk	-f	script2	n=3	data1
The	starting	value	is
data13
data23
data33
$

You	can	solve	this	by	using	the	‐v	command	line	parameter.	This	allows	you	to	specify	variables	that	are	set	before
the	BEGIN	section	of	code.	The	‐v	command‐line	parameter	must	be	placed	before	the	script	code	in	the	command
line:

$	gawk	-v	n=3	-f	script2	data1
The	starting	value	is	3
data13
data23
data33
$

Now	the	n	variable	contains	the	value	set	in	the	command	line	during	the	BEGIN	section	of	code.

Working	with	Arrays
Many	programming	languages	provide	arrays	for	storing	multiple	values	in	a	single	variable.	The	gawk	programming
language	provides	the	array	feature	using	associative	arrays.

Associative	arrays	are	different	from	numerical	arrays	in	that	the	index	value	can	be	any	text	string.	You	don't	have
to	use	sequential	numbers	to	identify	data	elements	contained	in	the	array.	Instead,	an	associative	array	consists	of	a
hodgepodge	of	strings	referencing	values.	Each	index	string	must	be	unique	and	uniquely	identifies	the	data	element
that's	assigned	to	it.	If	you're	familiar	with	other	programming	languages,	this	is	the	same	concept	as	hash	maps	or
dictionaries.

The	following	sections	walk	you	through	using	associative	array	variables	in	your	gawk	programs.

Defining	array	variables
You	can	define	an	array	variable	using	a	standard	assignment	statement.	The	format	of	the	array	variable
assignment	is

var[index]	=	element

where	var	is	the	variable	name,	index	is	the	associative	array	index	value,	and	element	is	the	data	element	value.
Here	are	some	examples	of	array	variables	in	gawk	:

capital["Illinois"]	=	"Springfield"
capital["Indiana"]	=	"Indianapolis"
capital["Ohio"]	=	"Columbus"

When	you	reference	an	array	variable,	you	must	include	the	index	value	to	retrieve	the	appropriate	data	element
value:

$	gawk	'BEGIN{
>	capital["Illinois"]	=	"Springfield"
>	print	capital["Illinois"]
>	}'
Springfield
$

When	you	reference	the	array	variable,	the	data	element	value	appears.	This	also	works	with	numeric	data	element
values:

$	gawk	'BEGIN{
>	var[1]	=	34
>	var[2]	=	3
>	total	=	var[1]	+	var[2]
>	print	total
>	}'

37
$

As	you	can	see	from	this	example,	you	can	use	array	variables	just	as	you	would	any	other	variable	in	the	gawk
program.

Iterating	through	array	variables
The	problem	with	associative	array	variables	is	that	you	might	not	have	any	way	of	knowing	what	the	index	values
are.	Unlike	numeric	arrays,	which	use	sequential	numbers	for	index	values,	an	associative	array	index	can	be
anything.

If	you	need	to	iterate	through	an	associate	array	in	gawk	,	you	can	use	a	special	format	of	the	for	statement:

for	(var	in	array)
{
	statements
}

The	for	statement	loops	through	the	statements,	each	time	assigning	the	variable	var	the	next	index	value	from	the
array	associative	array.	It's	important	to	remember	that	the	variable	is	the	value	of	the	index	and	not	the	data
element	value.	You	can	easily	extract	the	data	element	value	by	using	the	variable	as	the	array	index:

$	gawk	'BEGIN{
>	var["a"]	=	1
>	var["g"]	=	2
>	var["m"]	=	3
>	var["u"]	=	4
>	for	(test	in	var)
>	{
>	print	"Index:",test,"	-	Value:",var[test]
>	}
>	}'
Index:	u	-	Value:	4
Index:	m	-	Value:	3
Index:	a	-	Value:	1
Index:	g	-	Value:	2
$

Notice	that	the	index	values	aren't	returned	in	any	particular	order,	but	they	each	reference	the	appropriate	data
element	value.	This	is	somewhat	important	to	know,	since	you	can't	count	on	the	returned	values	being	in	the	same
order,	just	that	the	index	and	data	values	match.

Deleting	array	variables
Removing	an	array	index	from	an	associative	array	requires	a	special	command:

delete	array[index]

The	delete	command	removes	the	associative	index	value	and	the	associated	data	element	value	from	the	array:

$	gawk	'BEGIN{
>	var["a"]	=	1
>	var["g"]	=	2
>	for	(test	in	var)
>	{
>	print	"Index:",test,"	-	Value:",var[test]
>	}
>	delete	var["g"]
>	print	"---"
>	for	(test	in	var)
>	print	"Index:",test,"	-	Value:",var[test]
>	}'
Index:	a	-	Value:	1
Index:	g	-	Value:	2

Index:	a	-	Value:	1
$

Once	you	delete	an	index	value	from	the	associative	array,	you	can't	retrieve	it.

Considering	Patterns
The	gawk	program	supports	several	types	of	matching	patterns	to	filter	data	records,	in	much	the	same	way	as	the
sed	editor.	Chapter	19	already	showed	two	special	patterns	in	action.	The	BEGIN	and	END	keywords	are	special
patterns	that	execute	statements	before	or	after	the	data	stream	data	has	been	read.	Similarly,	you	can	create	other
patterns	to	execute	statements	when	matching	data	appears	in	the	data	stream.

This	section	demonstrates	how	to	use	matching	patterns	in	your	gawk	scripts	to	limit	what	records	a	program	script
applies	to.

Regular	expressions
Chapter	20,	“Regular	Expressions,”	showed	how	to	use	regular	expressions	as	matching	patterns.	You	can	use	either
a	basic	regular	expression	(BRE)	or	an	extended	regular	expression	(ERE)	to	filter	which	lines	in	the	data	stream	the
program	script	applies	to.

When	you're	using	a	regular	expression,	the	regular	expression	must	appear	before	the	left	brace	of	the	program
script	that	it	controls:

$	gawk	'BEGIN{FS=","}	/11/{print	$1}'	data1
data11
$

The	regular	expression	/11/	matches	records	that	contain	the	string	11	anywhere	in	the	data	fields.	The	gawk
program	matches	the	defined	regular	expression	against	all	the	data	fields	in	the	record,	including	the	field
separator	character:

$	gawk	'BEGIN{FS=","}	/,d/{print	$1}'	data1
data11
data21
data31
$

This	example	matches	the	comma	used	as	the	field	separator	in	the	regular	expression.	This	is	not	always	a	good
thing.	It	can	lead	to	problems	trying	to	match	data	specific	to	one	data	field	that	may	also	appear	in	another	data
field.	If	you	need	to	match	a	regular	expression	to	a	specific	data	instance,	you	should	use	the	matching	operator.

The	matching	operator
The	matching	operator	allows	you	to	restrict	a	regular	expression	to	a	specific	data	field	in	the	records.	The
matching	operator	is	the	tilde	symbol	(~).	You	specify	the	matching	operator,	along	with	the	data	field	variable,	and
the	regular	expression	to	match:

$1	~	/^data/

The	$1	variable	represents	the	first	data	field	in	the	record.	This	expression	filters	records	where	the	first	data	field
starts	with	the	text	data.	The	following	is	an	example	of	using	the	matching	operator	in	a	gawk	program	script:

$	gawk	'BEGIN{FS=","}	$2	~	/^data2/{print	$0}'	data1
data21,data22,data23,data24,data25
$

The	matching	operator	compares	the	second	data	field	with	the	regular	expression	/^data2/	,	which	indicates	the
string	starts	with	the	text	data2.

This	is	a	powerful	tool	that	is	commonly	used	in	gawk	program	scripts	to	search	for	specific	data	elements	in	a	data
file:

$	gawk	-F:	'$1	~	/rich/{print	$1,$NF}'	/etc/passwd
rich	/bin/bash
$

This	example	searches	the	first	data	field	for	the	text	rich	.	When	it	finds	the	pattern	in	a	record,	it	prints	the	first
and	last	data	field	values	of	the	record.

You	can	also	negate	the	regular	expression	match	by	using	the	!	symbol:

$1	!~	/expression/

If	the	regular	expression	isn't	found	in	the	record,	the	program	script	is	applied	to	the	record	data:

$	gawk	–F:	'$1	!~	/rich/{print	$1,$NF}'	/etc/passwd
root	/bin/bash
daemon	/bin/nologin
bin	/bin/nologin
sys	/bin/nologin
---	output	truncated	---
$

In	this	example,	the	gawk	program	script	prints	the	user	ID	and	shell	for	all	of	the	entries	in	the	/etc/passwd	file	that
don't	match	the	user	ID	rich	!

Mathematical	expressions
In	addition	to	regular	expressions,	you	can	use	mathematical	expressions	in	the	matching	pattern.	This	feature
comes	in	handy	when	matching	numerical	values	in	data	fields.	For	example,	if	you	want	to	display	all	the	system
users	who	belong	to	the	root	users	group	(group	number	0),	you	could	use	this	script:

$	gawk	-F:	'$4	==	0{print	$1}'	/etc/passwd
root
$

The	script	checks	for	records	where	the	fourth	data	field	contains	the	value	0	.	On	this	Linux	system	there's	just	one
user	account	that	belongs	to	the	root	user	group.

You	can	use	any	of	the	normal	mathematical	comparison	expressions:

x	==	y	:	Value	x	is	equal	to	y.

x	<=	y	:	Value	x	is	less	than	or	equal	to	y.

x	<	y	:	Value	x	is	less	than	y.

x	>=	y	:	Value	x	is	greater	than	or	equal	to	y.

x	>	y	:	Value	x	is	greater	than	y.

You	can	also	use	expressions	with	text	data,	but	you	must	be	careful.	Unlike	regular	expressions,	expressions	are	an
exact	match.	The	data	must	match	exactly	with	the	pattern:

$	gawk	-F,	'$1	==	"data"{print	$1}'	data1
$
$	gawk	-F,	'$1	==	"data11"{print	$1}'	data1
data11
$

The	first	test	doesn't	match	any	records	because	the	first	data	field	value	isn't	data	in	any	of	the	records.	The	second
test	matches	one	record	with	the	value	data11.

Structured	Commands
The	gawk	programming	language	supports	the	usual	cast	of	structured	programming	commands.	This	section
describes	each	of	these	commands	and	demonstrates	how	to	use	them	within	a	gawk	programming	environment.

The	if	statement
The	gawk	programming	language	supports	the	standard	if‐then‐else	format	of	the	if	statement.	You	must	define	a
condition	for	the	if	statement	to	evaluate,	enclosed	in	parentheses.	If	the	condition	evaluates	to	a	TRUE	condition,
the	statement	immediately	following	the	if	statement	is	executed.	If	the	condition	evaluates	to	a	FALSE	condition,
the	statement	is	skipped.	This	can	use	the	format

if	(condition)
	statement1

or	you	can	place	it	on	one	line,	like	this:

if	(condition)	statement1

Here's	a	simple	example	demonstrating	this	format:

$	cat	data4
10
5
13
50
34
$	gawk	'{if	($1>	20)	print	$1}'	data4
50
34
$

Not	too	complicated.	If	you	need	to	execute	multiple	statements	in	the	if	statement,	you	must	enclose	them	with
braces:

$	gawk	'{
>	if	($1>	20)
>	{
>	x	=	$1	*	2
>	print	x
>	}
>	}'	data4
100
68
$

Be	careful	that	you	don't	confuse	the	if	statement	braces	with	the	braces	used	to	start	and	stop	the	program	script.
The	gawk	program	can	detect	missing	braces	and	will	produce	an	error	message	if	you	mess	up:

$	gawk	'{
>	if	($1>	20)
>	{
>				x	=	$1	*	2
>				print	x
>	}'	data4
gawk:	cmd.	line:7:	(END	OF	FILE)
gawk:	cmd.	line:7:	parse	error
$

The	gawk	if	statement	also	supports	the	else	clause,	allowing	you	to	execute	one	or	more	statements	if	the	if
statement	condition	fails.	Here's	an	example	of	using	the	else	clause:

$	gawk	'{
>	if	($1>	20)
>	{
>				x	=	$1	*	2
>				print	x
>	}	else
>	{
>				x	=	$1	/	2
>				print	x
>	}}'	data4
5
2.5
6.5
100
68
$

You	can	use	the	else	clause	on	a	single	line,	but	you	must	use	a	semicolon	after	the	if	statement	section:

if	(condition)	statement1;	else	statement2

Here's	the	same	example	using	the	single‐line	format:

$	gawk	'{if	($1>	20)	print	$1	*	2;	else	print	$1	/	2}'	data4
5
2.5
6.5
100
68
$

This	format	is	more	compact	but	can	be	harder	to	follow.

The	while	statement
The	while	statement	provides	a	basic	looping	feature	for	gawk	programs.	The	following	is	the	format	of	the	while
statement:

while	(condition)
{
	statements
}

The	while	loop	allows	you	to	iterate	over	a	set	of	data,	checking	a	condition	that	stops	the	iteration.	This	is	useful	if
you	have	multiple	data	values	in	each	record	that	you	must	use	in	calculations:

$	cat	data5
130	120	135
160	113	140
145	170	215
$	gawk	'{
>	total	=	0
>	i	=	1
>	while	(i	<	4)
>	{
>			total	+=	$i
>			i++
>	}
>	avg	=	total	/	3
>	print	"Average:",avg
>	}'	data5
Average:	128.333
Average:	137.667
Average:	176.667
$

The	while	statement	iterates	through	the	data	fields	in	the	record,	adding	each	value	to	the	total	variable	and	then
incrementing	the	counter	variable,	i	.	When	the	counter	value	is	equal	to	4,	the	while	condition	becomes	FALSE	,	and
the	loop	terminates,	dropping	through	to	the	next	statement	in	the	script.	That	statement	calculates	the	average;

then	the	average	is	printed.	This	process	is	repeated	for	each	record	in	the	data	file.

The	gawk	programming	language	supports	using	the	break	and	continue	statements	in	while	loops,	allowing	you	to
jump	out	of	the	middle	of	the	loop:

$	gawk	'{
>	total	=	0
>	i	=	1
>	while	(i	<	4)
>	{
>			total	+=	$i
>			if	(i	==	2)
>						break
>			i++
>	}
>	avg	=	total	/	2
>	print	"The	average	of	the	first	two	data	elements	is:",avg
>	}'	data5
The	average	of	the	first	two	data	elements	is:	125
The	average	of	the	first	two	data	elements	is:	136.5
The	average	of	the	first	two	data	elements	is:	157.5
$

The	break	statement	is	used	to	break	out	of	the	while	loop	if	the	value	of	the	i	variable	is	2.

The	do‐while	statement
The	do‐while	statement	is	similar	to	the	while	statement	but	performs	the	statements	before	checking	the	condition
statement.	The	following	is	the	format	for	the	do‐while	statement:

do
{
		statements
}	while	(condition)

This	format	guarantees	that	the	statements	are	executed	at	least	one	time	before	the	condition	is	evaluated.	This
comes	in	handy	when	you	need	to	perform	statements	before	evaluating	the	condition:

$	gawk	'{
>	total	=	0
>	i	=	1
>	do
>	{
>				total	+=	$i
>				i++
>	}	while	(total	<	150)
>	print	total	}'	data5
250
160
315
$

The	script	reads	the	data	fields	from	each	record	and	totals	them	until	the	cumulative	value	reaches	150.	If	the	first
data	field	is	over	150	(as	seen	in	the	second	record),	the	script	is	guaranteed	to	read	at	least	the	first	data	field	before
evaluating	the	condition.

The	for	statement
The	for	statement	is	a	common	method	used	in	many	programming	languages	for	looping.	The	gawk	programming
language	supports	the	C‐style	of	for	loops:

for(variable	assignment;	condition;	iteration	process)

This	helps	simplify	the	loop	by	combining	several	functions	in	one	statement:

$	gawk	'{
>	total	=	0
>	for	(i	=	1;	i	<	4;	i++)
>	{
>				total	+=	$i
>	}
>	avg	=	total	/	3
>	print	"Average:",avg
>	}'	data5
Average:	128.333
Average:	137.667
Average:	176.667
$

By	defining	the	iteration	counter	in	the	for	loop,	you	don't	have	to	worry	about	incrementing	it	yourself	as	you	did
when	using	the	while	statement.

Printing	with	Formats

You	may	have	noticed	that	the	print	statement	doesn't	exactly	give	you	much	control	over	how	gawk	displays	your
data.	About	all	you	can	do	is	control	the	output	field	separator	character	(OFS).	If	you're	creating	detailed	reports,
often	you'll	need	to	place	data	in	a	specific	format	and	location.

The	solution	is	to	use	the	formatted	printing	command,	called	printf	.	If	you're	familiar	with	C	programming,	the
printf	command	in	gawk	performs	the	same	way,	allowing	you	to	specify	detailed	instructions	on	how	to	display
data.

The	following	is	the	format	of	the	printf	command:

printf	"format	string",	var1,	var2

The	format	string	is	the	key	to	the	formatted	output.	It	specifies	exactly	how	the	formatted	output	should	appear,
using	both	text	elements	and	format	specifiers.	A	format	specifier	is	a	special	code	that	indicates	what	type	of
variable	is	displayed	and	how	to	display	it.	The	gawk	program	uses	each	format	specifier	as	a	placeholder	for	each
variable	listed	in	the	command.	The	first	format	specifier	matches	the	first	variable	listed,	the	second	matches	the
second	variable,	and	so	on.

The	format	specifiers	use	the	following	format:

%[modifier]control-letter

where	control‐letter	is	a	one‐character	code	that	indicates	what	type	of	data	value	will	be	displayed,	and	modifier
defines	an	optional	formatting	feature.

Table	22.3	lists	the	control	letters	that	can	be	used	in	the	format	specifier.

TABLE	22.3	Format	Specifier	Control	Letters

Control	letter Description

c Displays	a	number	as	an	ASCII	character

d Displays	an	integer	value

i Displays	an	integer	value	(same	as	d)

e Displays	a	number	in	scientific	notation

f Displays	a	floating‐point	value
g Displays	either	scientific	notation	or	floating	point,	whichever	is	shorter

o Displays	an	octal	value

s Displays	a	text	string

x Displays	a	hexadecimal	value

X Displays	a	hexadecimal	value,	but	using	capital	letters	for	A	through	F

Thus,	if	you	need	to	display	a	string	variable,	you'd	use	the	format	specifier	%s	.	If	you	need	to	display	an	integer
variable,	you'd	use	either	%d	or	%i	(%d	is	the	C‐style	for	decimals).	If	you	want	to	display	a	large	value	using	scientific
notation,	you'd	use	the	%e	format	specifier:

$	gawk	'BEGIN{
>	x	=	10	*	100
>	printf	"The	answer	is:	%e\n",	x
>	}'
The	answer	is:	1.000000e+03
$

In	addition	to	the	control	letters,	there	are	three	modifiers	that	you	can	use	for	even	more	control	over	your	output:

width	:	A	numeric	value	that	specifies	the	minimum	width	of	the	output	field.	If	the	output	is	shorter,	printf
pads	the	output	with	spaces	with	spaces,	using	right	justification	for	the	text.	If	the	output	is	longer	than	the
specified	width,	it	overrides	the	width	value.

prec	:	A	numeric	value	that	specifies	the	number	of	digits	to	the	right	of	the	decimal	place	in	floating‐point
numbers,	or	the	maximum	number	of	characters	displayed	in	a	text	string.

‐	(minus	sign):	The	minus	sign	indicates	that	left	justification	should	be	used	instead	of	right	justification	when
placing	data	in	the	formatted	space.

When	using	the	printf	statement,	you	have	complete	control	over	how	your	output	appears.	For	example,	in	the
“Built‐in	Variables”	section,	we	used	the	print	command	to	display	data	fields	from	our	records:

$	gawk	'BEGIN{FS="\n";	RS=""}	{print	$1,$4}'	data2
Ima	Test	(312)555-1234
Frank	Tester	(317)555-9876
Haley	Example	(313)555-4938
$

You	can	use	the	printf	command	to	help	format	the	output	so	that	it	looks	better.	First,	let's	convert	the	print
command	to	a	printf	command	and	see	what	that	does:

$	gawk	'BEGIN{FS="\n";	RS=""}	{printf	"%s	%s\n",	$1,	$4}'	data2
Ima	Test		(312)555-1234

Frank	Tester		(317)555-9876
Haley			(313)555-4938
$

That	produces	the	same	output	as	the	print	command.	The	printf	command	uses	the	%s	format	specifier	as	a
placeholder	for	the	two	string	values.

Notice	that	you	have	to	manually	add	the	newline	character	at	the	end	of	the	printf	command	to	force	a	new	line.
Without	it,	the	printf	command	will	continue	to	use	the	same	line	on	subsequent	prints.

This	is	useful	if	you	need	to	print	multiple	things	on	the	same	line	but	using	separate	printf	commands:

$	gawk	'BEGIN{FS=","}	{printf	"%s	",	$1}	END{printf	"\n"}'	data1
data11	data21	data31
$

Each	of	the	printf	outputs	appears	on	the	same	line.	To	be	able	to	terminate	the	line,	the	END	section	prints	a	single
newline	character.

Next,	let's	use	a	modifier	to	format	the	first	string	value:

$	gawk	'BEGIN{FS="\n";	RS=""}	{printf	"%16s		%s\n",	$1,	$4}'	data2
								Ima	Test		(312)555-1234
				Frank	Tester		(317)555-9876
			Haley	Example		(313)555-4938
$

By	adding	the	16	modifier	value,	we	force	the	output	for	the	first	string	to	use	16	spaces.	By	default,	the	printf
command	uses	right	justification	to	place	the	data	in	the	format	space.	To	make	it	left	justified,	just	add	a	minus	sign
to	the	modifier:

$	gawk	'BEGIN{FS="\n";	RS=""}	{printf	"%-16s		%s\n",	$1,	$4}'	data2
Ima	Test										(312)555-1234
Frank	Tester						(317)555-9876
Haley	Example					(313)555-4938
$

Now	that	looks	pretty	professional!

The	printf	command	also	comes	in	handy	when	dealing	with	floating‐point	values.	By	specifying	a	format	for	the
variable,	you	can	make	the	output	look	more	uniform:

$	gawk	'{
>	total	=	0
>	for	(i	=	1;	i	<	4;	i++)
>	{
>				total	+=	$i
>	}
>	avg	=	total	/	3
>	printf	"Average:	%5.1f\n",avg
>	}'	data5
Average:	128.3
Average:	137.7
Average:	176.7
$

By	using	the	%5.1f	format	specifier,	you	can	force	the	printf	command	to	round	the	floating‐point	values	to	a	single
decimal	place.

Using	Built‐in	Functions
The	gawk	programming	language	provides	quite	a	few	built‐in	functions	that	perform	common	mathematical,	string,
and	even	time	functions.	You	can	utilize	these	functions	in	your	gawk	programs	to	help	cut	down	on	the	coding
requirements	in	your	scripts.	This	section	walks	you	through	the	different	built‐in	functions	available	in	gawk.

Mathematical	functions
If	you've	done	programming	in	any	type	of	language,	you're	probably	familiar	with	using	built‐in	functions	in	your
code	to	perform	common	mathematical	functions.	The	gawk	programming	language	doesn't	disappoint	those	looking
for	advanced	mathematical	features.

Table	22.4	shows	the	mathematical	built‐in	functions	available	in	gawk.

TABLE	22.4	The	gawk	Mathematical	Functions

Function Description

atan2(x	,	y) The	arctangent	of	x	/	y,	with	x	and	y	specified	in	radians.

cos(x) The	cosine	of	x,	with	x	specified	in	radians.

exp(x) The	exponential	of	x.

int(x) The	integer	part	of	x,	truncated	toward	0.

log(x) The	natural	logarithm	of	x.

rand() A	random	floating‐point	value	larger	than	0	and	less	than	1.
sin(x) The	sine	of	x,	with	x	specified	in	radians.

sqrt(x) The	square	root	of	x.

srand(x) Specify	a	seed	value	for	calculating	random	numbers.

Although	gawk	does	not	have	an	extensive	list	of	mathematical	functions,	it	does	provide	some	of	the	basic	elements
you	need	for	standard	mathematical	processing.	The	int()	function	produces	the	integer	portion	of	a	value,	but	it
doesn't	round	the	value.	It	behaves	much	like	a	floor	function	found	in	other	programming	languages.	It	produces
the	nearest	integer	to	a	value	between	the	value	and	0.

This	means	that	the	int()	function	of	the	value	5.6	will	return	5,	while	the	int()	function	of	the	value	–5.6	will
return	–5.

The	rand()	function	is	great	for	creating	random	numbers,	but	you'll	need	to	use	a	trick	to	get	meaningful	values.
The	rand()	function	returns	a	random	number,	but	only	between	the	values	0	and	1	(not	including	0	or	1).	To	get	a
larger	number,	you'll	need	to	scale	the	returned	value.

A	common	method	for	producing	larger	integer	random	numbers	is	to	create	an	algorithm	that	uses	the	rand()
function,	along	with	the	int()	function:

x	=	int(10	*	rand())

This	returns	a	random	integer	value	between	(and	including)	0	and	9.	Just	substitute	the	10	in	the	equation	with	the
upper	limit	value	for	your	application,	and	you're	ready	to	go.

Be	careful	when	using	some	of	the	mathematical	functions,	because	the	gawk	programming	language	does	have	a
limited	range	of	numeric	values	it	can	work	with.	If	you	go	over	that	range,	you'll	get	an	error	message:

$	gawk	'BEGIN{x=exp(100);	print	x}'
26881171418161356094253400435962903554686976
$	gawk	'BEGIN{x=exp(1000);	print	x}'
gawk:	warning:	exp	argument	1000	is	out	of	range
inf
$

The	first	example	calculates	the	exponential	of	100,	which	is	a	very	large	number	but	within	the	range	of	the	system.
The	second	example	attempts	to	calculate	the	exponential	of	1000,	which	goes	over	the	numerical	range	limit	of	the
system	and	produces	an	error	message.

Besides	the	standard	mathematical	functions,	gawk	also	provides	a	few	functions	for	bitwise	manipulating	of	data:

and(v1	,	v2)	:	Performs	a	bitwise	AND	of	values	v1	and	v2

compl(val)	:	Performs	the	bitwise	complement	of	val

lshift(val	,	count)	:	Shifts	the	value	val	count	number	of	bits	left

or(v1	,	v2)	:	Performs	a	bitwise	OR	of	values	v1	and	v2

rshift(val	,	count)	:	Shifts	the	value	val	count	number	of	bits	right

xor(v1	,	v2)	:	Performs	a	bitwise	XOR	of	values	v1	and	v2

The	bit	manipulation	functions	are	useful	when	working	with	binary	values	in	your	data.

String	functions
The	gawk	programming	language	also	provides	several	functions	you	can	use	to	manipulate	string	values,	shown	in
Table	22.5.

TABLE	22.5	The	gawk	String	Functions

Function Description

asort(s	[,
d])

Sort	an	array	s	based	on	the	data	element	values.	The	index	values	are	replaced	with	sequential
numbers	indicating	the	new	sort	order.	Alternatively,	the	new	sorted	array	is	stored	in	array	d	if
specified.

asorti(s
[,	d])

Sort	an	array	s	based	on	the	index	values.	The	resulting	array	contains	the	index	values	as	the	data
element	values,	with	sequential	number	indexes	indicating	the	sort	order.	Alternatively,	the	new
sorted	array	is	stored	in	array	d	if	specified.

gensub(r	,
s	,	h	[,	t])

Search	either	the	variable	$0	,	or	the	target	string	t	if	supplied,	for	matches	of	the	regular	expression	r.
If	h	is	a	string	beginning	with	either	g	or	G,	replaces	the	matching	text	with	s.	If	h	is	a	number,	it
represents	which	occurrence	of	r	to	replace.

gsub(r	,	s
[,	t])

Search	either	the	variable	$0	,	or	the	target	string	t	if	supplied,	for	matches	of	the	regular	expression	r.
If	found,	substitute	the	string	s	globally.

index(s	,	t
)

Returns	the	index	of	the	string	t	in	string	s,	or	0	if	not	found.

length([s
])

Returns	the	length	of	string	s,	or	if	not	specified,	the	length	of	$0	.

match(s	,	r
[,	a])

Returns	the	index	of	the	string	s	where	the	regular	expression	r	occurs.	If	array	a	is	specified,	it
contains	the	portion	of	s	that	matches	the	regular	expression.

split(s	,	a
[,	r])

Splits	s	into	array	a	using	either	the	FS	(field	separator)	character,	or	the	regular	expression	r	if
supplied.	Returns	the	number	of	fields.

sprintf(
format	,
variables)

Returns	a	string	similar	to	the	output	of	printf	using	the	format	and	variables	supplied.

sub(r	,	s
[,	t])

Search	either	the	variable	$0	,	or	the	target	string	t,	for	matches	of	the	regular	expression	r.	If	found,
substitutes	the	string	s	for	the	first	occurrence.

substr(s	,
i	[,	n])

Returns	the	nth	character	substring	of	s,	starting	at	index	i.	If	n	is	not	supplied,	the	rest	of	s	is	used.

tolower(s
)

Converts	all	characters	in	s	to	lowercase.

toupper(s
)

Converts	all	characters	in	s	to	uppercase.

Some	of	the	string	functions	are	relatively	self‐explanatory:
$	gawk	'BEGIN{x	=	"testing";	print	toupper(x);	print	length(x)	}'
TESTING
7
$

However,	some	of	the	string	functions	can	get	pretty	complicated.	The	asort	and	asorti	functions	are	new	gawk
functions	that	allow	you	to	sort	an	array	variable	based	on	either	the	data	element	values	(asort)	or	the	index	values
(asorti).	Here's	an	example	of	using	asort	:

$	gawk	'BEGIN{
>	var["a"]	=	1
>	var["g"]	=	2
>	var["m"]	=	3
>	var["u"]	=	4
>	asort(var,	test)
>	for	(i	in	test)
>					print	"Index:",i,"	-	value:",test[i]
>	}'
Index:	4		-	value:	4
Index:	1		-	value:	1
Index:	2		-	value:	2
Index:	3		-	value:	3
$

The	new	array,	test	,	contains	the	newly	sorted	data	elements	of	the	original	array,	but	the	index	values	are	now
changed	to	numerical	values,	indicating	the	proper	sort	order.

The	split	function	is	a	great	way	to	push	data	fields	into	an	array	for	further	processing:

$	gawk	'BEGIN{	FS=","}{
>	split($0,	var)
>	print	var[1],	var[5]
>	}'	data1
data11	data15
data21	data25
data31	data35

$

The	new	array	uses	sequential	numbers	for	the	array	index,	starting	with	index	value	1	containing	the	first	data	field.

Time	functions
The	gawk	programming	language	contains	a	few	functions	to	help	you	deal	with	time	values,	shown	in	Table	22.6.

TABLE	22.6	The	gawk	Time	Functions

Function Description

mktime(datespec) Converts	a	date	specified	in	the	format	YYYY	MM	DD	HH	MM	SS	[DST]	into	a	timestamp
value

strftime(format	[,
timestamp])

Formats	either	the	current	time	of	day	timestamp,	or	timestamp	if	provided,	into	a	formatted
day	and	date,	using	the	date()	shell	function	format

systime() Returns	the	timestamp	for	the	current	time	of	day

The	time	functions	are	often	used	when	working	with	log	files	that	contain	dates	that	you	need	to	compare.	By
converting	the	text	representation	of	a	date	to	the	epoch	time	(the	number	of	seconds	since	midnight,	January	1,
1970),	you	can	easily	compare	dates.

The	following	is	an	example	of	using	the	time	functions	in	a	gawk	program:

$	gawk	'BEGIN{
>	date	=	systime()
>	day	=	strftime("%A,	%B	%d,	%Y",	date)
>	print	day
>	}'
Friday,	December	26,	2014
$

This	example	uses	the	systime	function	to	retrieve	the	current	epoch	timestamp	from	the	system	and	then	uses	the
strftime	function	to	convert	it	into	a	human‐readable	format	using	the	shell	command's	date	format	characters.

Trying	Out	User‐Defined	Functions
You're	not	limited	to	just	using	the	built‐in	functions	available	in	gawk	.	You	can	create	your	own	functions	for	use	in
your	gawk	programs.	This	section	shows	you	how	to	define	and	use	your	own	functions	in	your	gawk	programs.

Defining	a	function
To	define	your	own	function,	you	must	use	the	function	keyword:

function	name([variables])
{
			statements
}

The	function	name	must	uniquely	identify	your	function.	You	can	pass	one	or	more	variables	into	the	function	from
the	calling	gawk	program:

function	printthird()
{
			print	$3
}

This	function	will	print	the	third	data	field	in	the	record.

The	function	can	also	return	a	value	using	the	return	statement:

return	value

The	value	can	be	a	variable,	or	an	equation	that	evaluates	to	a	value:

function	myrand(limit)
{
			return	int(limit	*	rand())
}

You	can	assign	the	value	returned	from	the	function	to	a	variable	in	the	gawk	program:

x	=	myrand(100)

The	variable	will	contain	the	value	returned	from	the	function.

Using	your	functions
When	you	define	a	function,	it	must	appear	by	itself	before	you	define	any	programming	sections	(including	the
BEGIN	section).	This	may	look	a	little	odd	at	first,	but	it	helps	keep	the	function	code	separate	from	the	rest	of	the
gawk	program:

$	gawk	'
>	function	myprint()

>	{
>					printf	"%-16s	-	%s\n",	$1,	$4
>	}
>	BEGIN{FS="\n";	RS=""}
>	{
>					myprint()
>	}'	data2
Ima	Test									-	(312)555-1234
Frank	Tester					-	(317)555-9876
Haley	Example				-	(313)555-4938
$

The	function	defines	the	myprint()	function,	which	formats	the	first	and	fourth	data	fields	in	the	record	for	printing.
The	gawk	program	then	uses	the	function	to	display	the	data	from	the	data	file.

Once	you	define	a	function,	you	can	use	it	as	often	as	necessary	in	the	program	section	of	the	code.	This	saves	lots	of
work	when	using	long	algorithms.

Creating	a	function	library
Obviously,	having	to	rewrite	your	gawk	functions	every	time	you	need	them	is	not	all	that	pleasant	of	an	experience.
However,	gawk	provides	a	way	for	you	to	combine	your	functions	into	a	single	library	file	that	you	can	use	in	all	your
gawk	programming.

First,	you	need	to	create	a	file	that	contains	all	your	gawk	functions:

$	cat	funclib
function	myprint()
{
		printf	"%-16s	-	%s\n",	$1,	$4
}
function	myrand(limit)
{
		return	int(limit	*	rand())
}
function	printthird()
{
		print	$3
}
$

The	funclib	file	contains	three	function	definitions.	To	use	them,	you	need	to	use	the	‐f	command‐line	parameter.
Unfortunately,	you	can't	combine	the	‐f	command‐line	parameter	with	an	inline	gawk	script,	but	you	can	use
multiple	‐f	parameters	on	the	same	command	line.

Thus,	to	use	your	library,	just	create	a	file	that	contains	your	gawk	program,	and	specify	both	the	library	file	and	your
program	file	on	the	command	line:

$	cat	script4
BEGIN{	FS="\n";	RS=""}
{
				myprint()
}
$	gawk	-f	funclib	-f	script4	data2
Ima	Test									-	(312)555-1234
Frank	Tester					-	(317)555-9876
Haley	Example				-	(313)555-4938
$

Now	all	you	need	to	do	is	add	the	funclib	file	to	your	gawk	command	line	whenever	you	need	to	use	a	function
defined	in	the	library.

Working	Through	a	Practical	Example
The	advanced	gawk	features	come	in	handy	if	you	have	to	handle	data	values	in	a	data	file,	such	as	tabulating	sales
figures	or	calculating	bowling	scores.	When	you	work	with	data	files,	the	key	is	to	first	group	related	data	records
together	and	then	perform	any	calculations	required	on	the	related	data.

For	example,	let's	work	with	a	data	file	that	contains	the	bowling	scores	from	a	game	between	two	teams,	each	with
two	players:

$	cat	scores.txt
Rich	Blum,team1,100,115,95
Barbara	Blum,team1,110,115,100
Christine	Bresnahan,team2,120,115,118
Tim	Bresnahan,team2,125,112,116
$

Each	player	has	scores	from	three	separate	games	in	the	data	file,	and	each	player	is	identified	by	a	team	name	in	the
second	column.	Here's	the	shell	script	to	sort	out	the	data	for	each	team	and	calculate	the	totals	and	averages:

$	cat	bowling.sh
$!/bin/sh
	

for	team	in	$(gawk	–F,	'{print	$2}'	scores.txt	|	uniq)
do
			gawk	–v	team=$team	'BEGIN{FS=",";	total=0}
			{
						if	($2==team)
						{
									total	+=	$3	+	$4	+	$5;
						}
			}
			END	{
						avg	=	total	/	6;
						print	"Total	for",	team,	"is",	total,	",the	average	is",avg
			}'	scores.txt
done
$

The	first	gawk	statement	inside	the	for	loop	filters	out	the	team	names	in	the	data	file	and	then	uses	the	uniq
function	to	return	one	value	for	each	separate	team	name.	The	for	loop	then	iterates	for	each	separate	team	name.

The	gawk	statement	inside	the	for	loop	is	what's	doing	the	calculations.	For	each	data	record	it	first	determines	if	the
team	name	matches	the	team	value	currently	in	the	loop	iteration.	That's	done	by	using	the	–v	option	in	gawk	,	which
allows	us	to	pass	a	shell	variable	inside	the	gawk	program.	If	the	team	name	matches,	the	code	keeps	a	running	sum
of	the	three	scores	in	the	data	record,	adding	each	data	record's	values,	as	long	as	that	data	record	matches	the	team
name.

At	the	end	of	each	loop	iteration,	the	gawk	code	displays	the	score	totals	as	well	as	the	average	of	the	scores.	The
output	should	look	like	this:

$./bowling.sh
Total	for	team1	is	635,	the	average	is	105.833
Total	for	team2	is	706,	the	average	is	117.667
$

Now	you	have	a	handy	shell	script	to	calculate	the	results	of	all	your	bowling	tournaments;	you	just	need	to	plug	the
data	from	each	player	into	the	data	text	file	and	run	the	script!

Summary
This	chapter	walked	you	through	the	more	advanced	features	of	the	gawk	programming	language.	Every
programming	language	requires	using	variables,	and	gawk	is	no	different.	The	gawk	programming	language	includes
some	built‐in	variables	that	you	can	use	to	reference	specific	data	field	values	and	retrieve	information	about	the
number	of	data	fields	and	records	processed	in	the	data	file.	You	can	also	create	your	own	variables	for	use	in	your
scripts.

The	gawk	programming	language	also	provides	many	of	the	standard	structured	commands	you'd	expect	from	a
programming	language.	You	can	easily	create	fancy	programs	using	if‐then	logic,	while	,	do‐while	,	and	for	loops.
Each	of	these	commands	allows	you	to	alter	the	flow	of	your	gawk	program	script	to	iterate	through	data	field	values
to	create	detailed	data	reports.

The	printf	command	is	a	great	tool	to	have	if	you	need	to	customize	your	report	output.	It	allows	you	to	specify	the
exact	format	for	displaying	data	from	the	gawk	program	script.	You	can	easily	create	formatted	reports,	placing	data
elements	in	exactly	the	correct	position.

Finally,	this	chapter	discussed	the	many	built‐in	functions	available	in	the	gawk	programming	language	and	showed
you	how	to	create	your	own	functions.	The	gawk	program	contains	many	useful	functions	for	handling	mathematical
features,	such	as	standard	square	roots	and	logarithms,	as	well	as	trigonometric	functions.	There	are	also	several
string‐related	functions	that	make	extracting	substrings	from	larger	strings	a	breeze.

You	aren't	limited	to	the	built‐in	functions	in	the	gawk	program.	If	you're	working	on	an	application	that	uses	lots	of
specialized	algorithms,	you	can	create	your	own	functions	to	process	the	algorithms	and	then	use	those	functions	in
your	own	code.	You	can	also	set	up	a	library	file	containing	all	the	functions	you	use	in	your	gawk	programs,	saving
you	time	and	effort	in	all	your	coding.

The	next	chapter	switches	gears	a	little.	It	examines	a	few	other	shell	environments	you	may	run	into	in	your	Linux
shell‐scripting	endeavors.	Although	the	Bash	shell	is	the	most	common	shell	used	in	Linux,	it's	not	the	only	shell.	It
helps	to	know	a	little	about	some	of	the	other	shells	available	and	how	they	differ	from	the	Bash	shell.

CHAPTER	23
Working	with	Alternative	Shells
IN	THIS	CHAPTER

Understanding	the	Dash	shell

Programming	in	the	Dash	shell

Introducing	the	zsh	shell

Writing	scripts	for	zsh

Although	the	Bash	shell	is	the	most	widely	used	shell	in	Linux	distributions,	it's	not	the	only	one.	Now	that	you've
seen	the	ins	and	outs	of	the	standard	Linux	Bash	shell	and	what	you	can	do	with	it,	it's	time	to	examine	a	few	other
shells	available	in	the	Linux	world.	This	chapter	describes	two	other	popular	shells	that	you	may	run	into	in	your
Linux	journey	and	shows	how	they	differ	from	the	Bash	shell.

Considering	the	Dash	Shell
The	Debian	Linux	distribution,	like	many	of	its	derivatives,	such	as	Ubuntu,	uses	the	Dash	shell	as	a	replacement	for
the	standard	Linux	Bash	shell.	The	Dash	shell	has	had	an	interesting	past.	It's	a	direct	descendant	of	the	ash	shell,	a
simple	copy	of	the	Bourne	shell	available	on	Unix	systems	(see	Chapter	1,	“Starting	with	Linux	Shells”).	Kenneth
Almquist	created	a	small-scale	version	of	the	Bourne	shell	for	Unix	systems	and	called	it	the	Almquist	shell,	which
was	then	shortened	to	ash.	This	original	version	of	the	ash	shell	was	extremely	small	and	fast	but	lacked	many
advanced	features,	such	as	command-line	editing	and	history	features,	making	it	difficult	to	use	as	an	interactive
shell.

The	NetBSD	Unix	operating	system	adopted	the	ash	shell	and	still	uses	it	today	as	the	default	shell.	The	NetBSD
developers	customized	the	ash	shell	by	adding	several	new	features,	making	it	closer	to	the	Bourne	shell.	The	new
features	include	command-line	editing	using	both	Emacs	and	vi	editor	commands,	as	well	as	a	history	command	to
recall	previously	entered	commands.	This	version	of	the	ash	shell	is	also	used	by	the	FreeBSD	operating	system	as
the	default	login	shell.

The	Debian	Linux	distribution	created	its	own	version	of	the	ash	shell	(called	Debian	ash,	or	Dash)	for	inclusion	in
its	version	of	Linux.	For	the	most	part,	Dash	copies	the	features	of	the	NetBSD	version	of	the	ash	shell,	providing	the
advanced	command-line	editing	capabilities.

However,	to	add	to	the	shell	confusion,	the	Dash	shell	is	not	actually	the	default	user	shell	in	many	Debian-based
Linux	distributions.	Because	of	the	popularity	of	the	Bash	shell	in	Linux,	most	Debian-based	Linux	distributions	use
the	Bash	shell	as	the	normal	login	shell,	and	only	use	the	Dash	shell	as	a	quick-start	shell	for	the	installation	script	to
install	the	distribution	files.

To	check	this	out	on	your	system,	just	take	a	peek	at	the	/etc/passwd	file	entry	for	your	user	account;	you	can	see	the
default	interactive	shell	assigned	to	your	account.	Here's	an	example:

$	cat	/etc/passwd	|	grep	rich
rich:x:1000:1000:Rich,,,:/home/rich:/bin/bash
$

This	Ubuntu	system	uses	the	Bash	shell	as	the	default	for	the	interactive	user	shell.	To	check	out	the	default	system
shell,	use	the	ls	command	to	look	at	the	/bin	directory	for	the	sh	file:

$	ls	-al	/bin/sh
lrwxrwxrwx	1	root	root	4	Jul	21	08:10	/bin/sh	->	dash
$

Sure	enough,	this	Ubuntu	system	uses	the	Dash	shell	as	the	default	system	shell.	This	is	where	problems	can	come
in.

As	you	saw	in	Chapter	11,	“Basic	Script	Building,”	every	shell	script	must	start	with	a	line	that	declares	the	shell	used
for	the	script.	In	our	Bash	shell	scripts,	we've	been	using	the	following:

#!/bin/bash

This	tells	the	shell	to	use	the	shell	program	located	at	/bin/bash	to	execute	the	script.	In	the	Unix	world,	the	default
shell	was	always	located	at	/bin/sh	.	Many	shell	script	programmers	familiar	with	the	Unix	environment	use	this	in
their	Linux	shell	scripts:

#!/bin/sh

On	most	Linux	distributions,	the	/bin/sh	file	is	a	symbolic	link	(see	Chapter	3,	“Basic	Bash	Shell	Commands”)	to	the
/bin/bash	shell	program.	This	allows	you	to	easily	port	shell	scripts	designed	for	the	Unix	Bourne	shell	to	the	Linux
environment	without	having	to	modify	them.

But	as	you	saw	in	the	example,	the	Ubuntu	Linux	distribution	links	the	/bin/sh	file	to	the	/bin/dash	shell	program.
Because	the	Dash	shell	contains	only	a	subset	of	the	commands	available	in	the	original	Bourne	shell,	this	can	(and

often	does)	cause	some	shell	scripts	to	not	work	properly.

The	next	section	walks	you	through	the	basics	of	the	Dash	shell	and	how	it	differs	from	the	Bash	shell.	This	is
especially	important	to	know	if	you	write	Bash	shell	scripts	that	may	need	to	be	run	in	an	Ubuntu	environment.

Looking	at	the	Dash	Shell	Features
Although	both	the	Bash	shell	and	the	Dash	shell	are	modeled	after	the	Bourne	shell,	they	have	some	differences.
This	section	walks	you	through	the	features	found	in	the	Dash	shell	to	acquaint	you	with	how	it	works	before	we	dive
into	the	shell	scripting	features.

The	Dash	command-line	parameters
The	Dash	shell	uses	command-line	parameters	to	control	its	behavior.	Table	23.1	lists	these	parameters	and
describes	what	each	does.

TABLE	23.1	The	Dash	Command-Line	Parameters

Parameter Description

-a Export	all	variables	assigned	to	the	shell.

-c Read	commands	from	a	specified	command	string.

-e If	not	interactive,	exit	immediately	if	any	untested	command	fails.

-f Display	pathname	wildcard	characters.

-n If	not	interactive,	read	commands	but	don't	execute	them.

-u Write	an	error	message	to	STDERR	when	attempting	to	expand	a	variable	that	is	not	set.

-v Write	input	to	STDERR	as	it	is	read.

-x Write	each	command	to	STDERR	as	it's	executed.

-I Ignore	EOF	characters	from	the	input	when	in	interactive	mode.

-i Force	the	shell	to	operate	in	interactive	mode.

-m Turn	on	job	control	(enabled	by	default	in	interactive	mode).

-s Read	commands	from	STDIN	(the	default	behavior	if	no	file	arguments	are	present).

-E Enable	the	Emacs	command-line	editor.

-V Enable	the	vi	command-line	editor.

There	are	just	a	few	additional	command-line	parameters	that	Debian	added	to	the	original	ash	shell	command-line
parameter	list.	The	-E	and	-V	command-line	parameters	enable	the	special	command-line	editing	features	of	the
Dash	shell.

The	-E	command-line	parameter	allows	you	to	use	the	Emacs	editor	commands	for	editing	command-line	text	(see
Chapter	10,	“Working	with	Editors”).	You	can	use	all	of	the	Emacs	commands	for	manipulating	text	on	a	single	line
by	using	the	Ctrl	and	Alt	key	combinations.

The	-V	command-line	parameter	allows	you	to	use	the	vi	editor	commands	for	editing	command-line	text	(again,	see
Chapter	9,	“Installing	Software”).	This	feature	allows	you	to	switch	between	normal	mode	and	vi	editor	mode	on	the
command	line	by	pressing	the	Esc	key.	When	you're	in	vi	editor	mode,	you	can	use	all	of	the	standard	vi	editor
commands	(such	as	x	to	delete	a	character	and	i	to	insert	text).	Once	you	are	finished	editing	the	command	line,	you
must	press	the	Esc	key	again	to	exit	vi	editor	mode.

The	Dash	environment	variables
There	are	quite	a	few	default	environment	variables	that	the	Dash	shell	uses	to	track	information,	and	you	can	create
your	own	environment	variables	as	well.	This	section	describes	the	environment	variables	and	how	Dash	handles
them.

Default	environment	variables
The	Dash	environment	variables	are	very	similar	to	the	environment	variables	used	in	Bash	(see	Chapter	5,
“Understanding	the	Shell”).	This	is	not	by	accident.	Remember	that	both	the	Dash	and	Bash	shells	are	extensions	of
the	Bourne	shell,	so	they	both	incorporate	many	of	its	features.	However,	because	of	its	goal	of	simplicity,	the	Dash
shell	contains	significantly	fewer	environment	variables	than	Bash.	You	need	to	take	this	fact	into	consideration
when	creating	shell	scripts	in	a	Dash	shell	environment.

The	Dash	shell	uses	the	set	command	to	display	environment	variables:

$set
COLORTERM=''
DESKTOP_SESSION='default'
DISPLAY=':0.0'
DM_CONTROL='/var/run/xdmctl'
GS_LIB='/home/atest/.fonts'

HOME='/home/atest'
IFS='		
'
KDEROOTHOME='/root/.kde'
KDE_FULL_SESSION='true'
KDE_MULTIHEAD='false'
KONSOLE_DCOP='DCOPRef(konsole-5293,konsole)'
KONSOLE_DCOP_SESSION='DCOPRef(konsole-5293,session-1)'
LANG='en_US'
LANGUAGE='en'
LC_ALL='en_US'
LOGNAME='atest'
OPTIND='1'
PATH='/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin'
PPID='5293'
PS1='$	'
PS2='>	'
PS4='+	'
PWD='/home/atest'
SESSION_MANAGER='local/testbox:/tmp/.ICE-unix/5051'
SHELL='/bin/dash'
SHLVL='1'
TERM='xterm'
USER='atest'
XCURSOR_THEME='default'
_='ash'
$

Your	default	Dash	shell	environment	will	most	likely	differ,	since	different	Linux	distributions	assign	different
default	environment	variables	at	login.

Positional	parameters
In	addition	to	the	default	environment	variables,	the	Dash	shell	assigns	special	variables	to	any	parameters	defined
in	the	command	line.	Here	are	the	positional	parameter	variables	available	for	use	in	the	Dash	shell:

$0	:	The	name	of	the	shell	script

$n	:	The	nth	position	parameter

$*	:	A	single	value	with	the	contents	of	all	the	parameters,	separated	by	the	first	character	in	the	IFS
environment	variable,	or	a	space	if	IFS	isn't	defined

$@	:	Expands	to	multiple	arguments	consisting	of	all	the	command-line	parameters

$#	:	The	number	of	positional	parameters

$?	:	The	exit	status	of	the	most	recent	command

$-	:	The	current	option	flags

$$:	The	process	ID	(PID)	of	the	current	shell

$!	:	The	process	ID	(PID)	of	the	most	recent	background	command

All	of	the	Dash	positional	parameters	mimic	the	same	positional	parameters	available	in	the	Bash	shell.	You	can	use
each	of	the	positional	parameters	in	your	shell	scripts	just	as	you	would	in	the	Bash	shell.

User-defined	environment	variables
The	Dash	shell	also	allows	you	to	set	your	own	environment	variables.	As	with	Bash,	you	can	define	a	new
environment	variable	on	the	command	line	by	using	the	assignment	statement:

$	testing=10	;	export	testing
$	echo	$testing
10
$

Without	the	export	command,	user-defined	environment	variables	are	visible	only	in	the	current	shell	or	process.

WARNING
There's	one	huge	difference	between	Dash	variables	and	Bash	variables.	The	Dash	shell	doesn't
support	variable	arrays.	This	small	feature	causes	all	sorts	of	problems	for	advanced	shell
script	writers.

The	Dash	built-in	commands
Just	as	with	the	Bash	shell,	the	Dash	shell	contains	a	set	of	built-in	commands	that	it	recognizes.	You	can	use	these
commands	directly	from	the	command-line	interface,	or	you	can	incorporate	them	in	your	shell	scripts.	Table	23.2
lists	the	Dash	shell	built-in	commands.

TABLE	23.2	The	Dash	Shell	Built-in	Commands

Command Description

alias Create	an	alias	string	to	represent	a	text	string.

bg Continue	the	specified	job	in	background	mode.

cd Switch	to	the	specified	directory.

echo Display	a	text	string	and	environment	variables.

eval Concatenate	all	arguments	with	a	space.

exec Replace	the	shell	process	with	the	specified	command.

exit Terminate	the	shell	process.

export Export	the	specified	environment	variable	for	use	in	all	child	shells.

fc List,	edit,	or	reexecute	commands	previously	entered	on	the	command	line.

fg Continue	the	specified	job	in	foreground	mode.

getopts Obtain	options	and	arguments	from	a	list	of	parameters.

hash Maintain	and	retrieve	a	hash	table	of	recent	commands	and	their	locations.

pwd Display	the	value	of	the	current	working	directory.

read Read	a	line	from	STDIN	and	assign	the	value	to	a	variable.

readonly Read	a	line	from	STDIN	to	a	variable	that	can't	be	changed.

printf Display	text	and	variables	using	a	formatted	string.

set List	or	set	option	flags	and	environment	variables.

shift Shift	the	positional	parameters	a	specified	number	of	times.

test Evaluate	an	expression	and	return	0	if	true	or	1	if	false.

times Display	the	accumulated	user	and	system	times	for	the	shell	and	all	shell	processes.

trap Parse	and	execute	an	action	when	the	shell	receives	a	specified	signal.

type Interpret	the	specified	name	and	display	the	resolution	(alias,	built-in,	command,	keyword).

ulimit Query	or	set	limits	on	processes.

umask Set	the	value	of	the	default	file	and	directory	permissions.

unalias Remove	the	specified	alias.

unset Remove	the	specified	variable	or	option	flag	from	the	exported	variables.

wait Wait	for	the	specified	job	to	complete	and	return	the	exit	status.

You	probably	recognize	all	of	these	built-in	commands	from	the	Bash	shell.	The	Dash	shell	supports	many	of	the
same	built-in	commands	as	the	Bash	shell.	You'll	notice	that	there	aren't	any	commands	for	the	command	history
file	or	the	directory	stack.	The	Dash	shell	doesn't	support	these	features.

Scripting	in	Dash
Unfortunately,	the	Dash	shell	doesn't	recognize	all	of	the	scripting	features	of	the	Bash	shell.	Shell	scripts	written	for
the	Bash	environment	often	fail	when	run	in	the	Dash	shell,	causing	all	sorts	of	grief	for	shell	script	programmers.
This	section	describes	the	differences	you'll	need	to	be	aware	of	to	get	your	shell	scripts	to	run	properly	in	a	Dash
shell	environment.

Creating	Dash	scripts
You	probably	guessed	by	now	that	creating	shell	scripts	for	the	Dash	shell	is	pretty	similar	to	creating	shell	scripts
for	the	Bash	shell.	You	should	always	specify	which	shell	you	want	to	use	in	your	script	to	ensure	that	the	script	runs
with	the	proper	shell.

You	do	this	on	the	first	line	of	the	shell:

#!/bin/dash

You	can	also	specify	a	shell	command-line	parameter	on	this	line,	as	was	demonstrated	earlier	in	“The	Dash
command-line	parameters”	section.

Things	that	won't	work
Unfortunately,	because	the	Dash	shell	is	only	a	subset	of	the	Bourne	shell	features,	there	are	a	few	things	in	Bash
shell	scripts	that	won't	work	in	the	Dash	shell.	These	are	often	called	Bashisms.	This	section	is	a	quick	summary	of
Bash	shell	features	you	may	be	used	to	using	in	your	Bash	shell	scripts	that	won't	work	if	you're	in	a	Dash	shell
environment.

Using	arithmetic
Chapter	11	showed	three	ways	to	express	a	mathematical	operation	in	the	Bash	shell	script:

Using	the	expr	command:	expr	operation

Using	square	brackets:	$[operation]

Using	double	parentheses:	$((operation))

The	Dash	shell	supports	the	expr	command	and	the	double	parentheses	method	but	doesn't	support	the	square
brackets	method.	This	can	be	a	problem	if	you	have	lots	of	mathematical	operations	that	use	the	square	brackets.

The	proper	format	for	performing	mathematical	operations	in	Dash	shell	scripts	is	to	use	the	double	parentheses
method:

$	cat	test1
#!/bin/dash
#	testing	mathematical	operations
	
value1=10
value2=15
	
value3=$(($value1	*	$value2))
echo	"The	answer	is	$value3"
$./test1
The	answer	is	150
$

Now	the	shell	can	perform	the	calculation	properly.

The	test	command
While	the	Dash	shell	supports	the	test	command,	you	must	be	careful	how	you	use	it.	The	Bash	shell	version	of	the
test	command	is	slightly	different	from	the	Dash	shell	version.

The	Bash	shell	test	command	allows	you	to	use	the	double	equal	sign	(==)	to	test	if	two	strings	are	equal.	This	is	an
add-on	to	accommodate	programmers	familiar	with	using	this	format	in	other	programming	languages.

However,	the	test	command	available	in	the	Dash	shell	doesn't	recognize	the	==	symbol	for	text	comparisons.
Instead,	it	only	recognizes	the	=	symbol.	If	you	use	the	==	symbol	in	your	Bash	scripts,	you'll	need	to	change	the	text
comparison	symbol	to	just	a	single	equal	sign:

$	cat	test2
#!/bin/dash
#	testing	the	=	comparison
	
test1=abcdef
test2=abcdef
	
if	[$test1	=	$test2]
then
			echo	"They're	the	same!"
else
			echo	"They're	different"
fi
$./test2
They're	the	same!
$

This	little	Bashism	is	responsible	for	many	hours	of	frustration	for	shell	programmers!

The	function	command
Chapter	17,	“Creating	Functions,”	showed	you	how	to	define	your	own	functions	in	your	shell	scripts.	The	Bash	shell
supports	two	methods	for	defining	functions:

Using	the	function	statement

Using	the	function	name	only

The	Dash	shell	doesn't	support	the	function	statement.	Instead,	you	must	define	a	function	using	the	function	name
followed	by	parentheses.

If	you're	writing	shell	scripts	that	may	be	used	in	the	Dash	environment,	always	define	functions	using	the	function
name	and	not	the	function	statement:

$	cat	test3
#!/bin/dash
#	testing	functions
	
func1()	{
			echo	"This	is	an	example	of	a	function"
}
	
count=1
while	[$count	-le	5]

do
			func1
			count=$(($count	+	1))
done
echo	"This	is	the	end	of	the	loop"
func1
echo	"This	is	the	end	of	the	script"
$./test3
This	is	an	example	of	a	function
This	is	an	example	of	a	function
This	is	an	example	of	a	function
This	is	an	example	of	a	function
This	is	an	example	of	a	function
This	is	the	end	of	the	loop
This	is	an	example	of	a	function
This	is	the	end	of	the	script
$

Now	the	Dash	shell	recognized	the	function	defined	in	the	script	just	fine	and	was	able	to	use	it	within	the	script.

Exploring	the	zsh	Shell
Another	popular	shell	that	you	may	run	into	is	the	Z	shell	(called	zsh).	The	zsh	shell	is	an	open	source	Unix	shell
developed	by	Paul	Falstad.	It	takes	ideas	from	all	of	the	existing	shells	and	adds	many	unique	features	to	create	a
full-blown	advanced	shell	designed	for	programmers.

The	following	are	some	of	the	features	that	make	the	zsh	shell	unique:

Improved	shell	option	handling

Shell	compatibility	modes

Loadable	modules

Of	all	these	features,	the	loadable	module	is	the	most	advanced	feature	in	shell	design.	As	you've	seen	in	the	Bash
and	Dash	shells,	each	shell	contains	a	set	of	built-in	commands	that	are	available	without	the	need	for	external
utility	programs.	The	benefit	of	built-in	commands	is	execution	speed.	The	shell	doesn't	have	to	load	a	utility
program	into	memory	before	running	it;	the	built-in	commands	are	already	in	the	shell	memory,	ready	to	go.

The	zsh	shell	provides	a	core	set	of	built-in	commands,	plus	the	capability	to	add	additional	command	modules.
Each	command	module	provides	a	set	of	additional	built-in	commands	for	specific	circumstances,	such	as	network
support	and	advanced	math	functions.	You	can	add	only	the	modules	you	think	you	need	for	your	specific	situation.

This	feature	provides	a	great	way	either	to	limit	the	size	of	the	zsh	shell	for	situations	that	require	a	small	shell	size
and	few	commands	or	to	expand	the	number	of	available	built-in	commands	for	situations	that	require	faster
execution	speeds.

TIP
The	Z	shell	is	usually	not	installed	by	default	in	most	Linux	distributions.	However,	due	to	its
popularity,	you	can	easily	install	it	from	the	standard	repository	in	just	about	every	Linux
distribution	(see	Chapter	9).

Viewing	Parts	of	the	zsh	Shell
This	section	walks	you	through	the	basics	of	the	zsh	shell,	showing	the	built-in	commands	that	are	available	(or	that
can	be	added	by	installing	modules)	as	well	as	the	command-line	parameters	and	environment	variables	used	by	the
zsh	shell.

Shell	options
Most	shells	use	command-line	parameters	to	define	the	behavior	of	the	shell.	The	zsh	shell	uses	a	few	command-line
parameters	to	define	the	operation	of	the	shell,	but	mostly	it	uses	options	to	customize	the	behavior	of	the	shell.	You
can	set	shell	options	either	on	the	command	line	or	within	the	shell	itself	by	using	the	set	command.

Table	23.3	lists	the	command-line	parameters	available	for	the	zsh	shell.

TABLE	23.3	The	zsh	Shell	Command-Line	Parameters

Parameter Description

-c Execute	only	the	specified	command	and	exit.

-i Start	as	an	interactive	shell,	providing	a	command-line	interface	prompt.

-s Force	the	shell	to	read	commands	from	STDIN	.

-o Specify	command-line	options.

Although	this	may	seem	like	a	small	set	of	command-line	parameters,	the	-o	parameter	is	somewhat	misleading.	It

allows	you	to	set	shell	options	that	define	features	within	the	shell.	By	far	the	zsh	shell	is	the	most	customizable	shell
available.	There	are	lots	of	features	that	you	can	alter	for	your	shell	environment.	The	different	options	fit	into
several	general	categories:

Changing	directories:	Options	that	control	how	the	cd	and	dirs	commands	handle	directory	changes

Completion:	Options	that	control	command-completion	features

Expansion	and	globbing:	Options	that	control	file	expansion	in	commands

History:	Options	that	control	command	history	recall

Initialization:	Options	that	control	how	the	shell	handles	variables	and	startup	files	when	started

Input/Output:	Options	that	control	command	handling

Job	Control:	Options	that	dictate	how	the	shell	handles	and	starts	jobs

Prompting:	Options	that	define	how	the	shell	works	with	command-line	prompts

Scripts	and	functions:	Options	that	control	how	the	shell	processes	shell	scripts	and	defines	shell	functions

Shell	emulation:	Options	that	allow	you	to	set	the	behavior	of	the	zsh	shell	to	mimic	the	behavior	of	other
shell	types

Shell	state:	Options	that	define	what	type	of	shell	to	start

zle:	Options	for	controlling	the	zsh	line	editor	(zle)	feature

Option	aliases:	Special	options	that	can	be	used	as	aliases	for	other	option	names

With	this	many	different	categories	of	shell	options,	you	can	imagine	just	how	many	actual	options	the	zsh	shell
supports.

Built-in	commands
The	zsh	shell	is	unique	in	that	it	allows	you	to	expand	the	built-in	commands	available	in	the	shell.	This	provides	for
a	wealth	of	speedy	utilities	at	your	fingertips	for	a	host	of	different	applications.

This	section	describes	the	core	built-in	commands,	along	with	the	various	modules	available	as	of	this	writing.

Core	built-in	commands
The	core	of	the	zsh	shell	contains	the	basic	built-in	commands	you're	used	to	seeing	in	other	shells.	Table	23.4
describes	the	built-in	commands	available	for	you.

TABLE	23.4	The	zsh	Core	Built-in	Commands

Command Description

alias Define	an	alternate	name	for	a	command	and	arguments.

autoload Preload	a	shell	function	into	memory	for	quicker	access.

bg Execute	a	job	in	background	mode.

bindkey Bind	keyboard	combinations	to	commands.

builtin Execute	the	specified	built-in	command	instead	of	an	executable	file	of	the	same	name.

bye The	same	as	exit	.

cd Change	the	current	working	directory.

chdir Change	the	current	working	directory.

command Execute	the	specified	command	as	an	external	file	instead	of	a	function	or	built-in	command.

declare Set	the	data	type	of	a	variable	(same	as	typeset).

dirs Display	the	contents	of	the	directory	stack.

disable Temporarily	disable	the	specified	hash	table	elements.

disown Remove	the	specified	job	from	the	job	table.

echo Display	variables	and	text.

emulate Set	zsh	to	emulate	another	shell,	such	as	the	Bourne,	Korn,	or	C	shell.

enable Enable	the	specified	hash	table	elements.

eval Execute	the	specified	command	and	arguments	in	the	current	shell	process.

exec Execute	the	specified	command	and	arguments	replacing	the	current	shell	process.

exit Exit	the	shell	with	the	specified	exit	status.	If	none	specified,	use	the	exit	status	of	the	last	command.

export Allow	the	specified	environment	variable	names	and	values	to	be	used	in	child	shell	processes.

false Return	an	exit	status	of	1.

fc Select	a	range	of	commands	from	the	history	list.

fg Execute	the	specified	job	in	foreground	mode.

float Set	the	specified	variable	for	use	as	a	floating-point	variable.

functions Set	the	specified	name	as	a	function.

getln Read	the	next	value	in	the	buffer	stack	and	place	it	in	the	specified	variable.

getopts Retrieve	the	next	valid	option	in	the	command-line	arguments	and	place	it	in	the	specified	variable.

hash Directly	modify	the	contents	of	the	command	hash	table.

history List	the	commands	contained	in	the	history	file.

integer Set	the	specified	variable	for	use	as	an	integer	value.

jobs List	information	about	the	specified	job,	or	all	jobs	assigned	to	the	shell	process.

kill Send	a	signal	(Default	SIGTERM)	to	the	specified	process	or	job.

let Evaluate	a	mathematical	operation	and	assign	the	result	to	a	variable.

limit Set	or	display	resource	limits.

local Set	the	data	features	for	the	specified	variable.

log Display	all	users	currently	logged	in	who	are	affected	by	the	watch	parameter.

logout Same	as	exit	,	but	only	works	when	the	shell	is	a	login	shell.

popd Remove	the	next	entry	from	the	directory	stack.

print Display	variables	and	text.

printf Display	variables	and	text	using	C-style	format	strings.

pushd Change	the	current	working	directory,	and	put	the	previous	directory	in	the	directory	stack.

pushln Place	the	specified	arguments	into	the	editing	buffer	stack.

pwd Display	the	full	pathname	of	the	current	working	directory.

read Read	a	line	and	assign	data	fields	to	the	specified	variables	using	the	IFS	characters.

readonly Assign	a	value	to	a	variable	that	can't	be	changed.

rehash Rebuild	the	command	hash	table.

set Set	options	or	positional	parameters	for	the	shell.

setopt Set	the	options	for	a	shell.

shift Read	and	delete	the	first	positional	parameter,	and	then	shift	the	remaining	ones	down	one	position.

source Find	the	specified	file	and	copy	its	contents	into	the	current	location.

suspend Suspend	the	execution	of	the	shell	until	it	receives	a	SIGCONT	signal.

test Return	an	exit	status	of	0	if	the	specified	condition	is	TRUE	.

times Display	the	cumulative	user	and	system	times	for	the	shell	and	processes	that	run	in	the	shell.

trap Block	the	specified	signals	from	being	processed	by	the	shell,	and	execute	the	specified	commands	if
the	signals	are	received.

true Return	a	zero	exit	status.

ttyctl Lock	and	unlock	the	display.

type Display	how	the	specified	command	would	be	interpreted	by	the	shell.

typeset Set	or	display	attributes	of	variables.

ulimit Set	or	display	resource	limits	of	the	shell	or	processes	running	in	the	shell.

umask Set	or	display	the	default	permissions	for	creating	files	and	directories.

unalias Remove	the	specified	command	alias.

unfunction Remove	the	specified	defined	function.

unhash Remove	the	specified	command	from	the	hash	table.

unlimit Remove	the	specified	resource	limit.

unset Remove	the	specified	variable	attribute.

unsetopt Remove	the	specified	shell	option.

wait Wait	for	the	specified	job	or	process	to	complete.

whence Display	how	the	specified	command	would	be	interpreted	by	the	shell.

where Display	the	pathname	of	the	specified	command	if	found	by	the	shell.

which Display	the	pathname	of	the	specified	command	using	the	csh	shell-style	output.

zcompile Compile	the	specified	function	or	script	for	faster	autoloading.

zmodload Perform	operations	on	loadable	zsh	modules.

The	zsh	shell	is	no	slouch	when	it	comes	to	providing	built-in	commands!	You	should	recognize	most	of	these
commands	from	their	Bash	counterparts.	The	most	important	features	of	the	zsh	shell	built-in	commands	are
modules.

Add-in	modules
There's	a	long	list	of	modules	that	provide	additional	built-in	commands	for	the	zsh	shell,	and	the	list	continues	to
grow	as	resourceful	programmers	create	new	modules.	Table	23.5	shows	some	popular	modules.

TABLE	23.5	The	zsh	Modules

Module Description

zsh/datetime Additional	date	and	time	commands	and	variables

zsh/files Commands	for	basic	file	handling

zsh/mapfile Access	to	external	files	via	associative	arrays

zsh/mathfunc Additional	scientific	functions

zsh/pcre The	extended	regular	expression	library

zsh/net/socket Unix	domain	socket	support

zsh/stat Access	to	the	stat	system	call	to	provide	system	statistics

zsh/system Interface	for	various	low-level	system	features

zsh/net/tcp Access	to	TCP	sockets

zsh/zftp A	specialized	FTP	client	command

zsh/zselect Block	and	return	when	file	descriptors	are	ready

zsh/zutil Various	shell	utilities

The	zsh	shell	modules	cover	a	wide	range	of	topics,	from	providing	simple	command-line	editing	features	to
advanced	networking	functions.	The	idea	behind	the	zsh	shell	is	to	provide	a	basic	minimum	shell	environment	and
let	you	add	on	the	pieces	you	need	to	accomplish	your	programming	job.

Viewing,	adding,	and	removing	modules
The	zmodload	command	is	the	interface	to	the	zsh	modules.	You	use	this	command	to	view,	add,	and	remove
modules	from	the	zsh	shell	session.

Using	the	zmodload	command	without	any	command-line	parameters	displays	the	currently	installed	modules	in
your	zsh	shell:

%	zmodload
zsh/complete
zsh/files
zsh/main
zsh/parameter
zsh/stat
zsh/terminfo
zsh/zle
zsh/zutil
%

Different	zsh	shell	implementations	include	different	modules	by	default.	To	add	a	new	module,	just	specify	the
module	name	on	the	zmodload	command	line:

%	zmodload	zsh/net/tcp
%

Nothing	indicates	that	the	module	loaded.	You	can	perform	another	zmodload	command,	and	the	new	module	should
appear	in	the	list	of	installed	modules.	Once	you	load	a	module,	the	commands	associated	with	the	module	are
available	as	built-in	commands.

TIP
It's	a	common	practice	to	place	zmodload	commands	in	the	$HOME/.zshrc	startup	file	so	that	your
favorite	functions	load	automatically	when	the	zsh	shell	starts.

Scripting	with	zsh
The	main	purpose	of	the	zsh	shell	was	to	provide	an	advanced	programming	environment	for	shell	programmers.

With	that	in	mind,	it's	no	surprise	that	the	zsh	shell	offers	many	features	that	make	shell	scripting	easier.

Mathematical	operations
As	you	would	expect,	the	zsh	shell	allows	you	to	perform	mathematical	functions	with	ease.	In	the	past,	the	Korn
shell	has	led	the	way	in	supporting	mathematical	operations	by	providing	support	for	floating-point	numbers.	The
zsh	shell	has	full	support	for	floating-point	numbers	in	all	of	its	mathematical	operations!

Performing	calculations
The	zsh	shell	supports	two	methods	for	performing	mathematical	operations:

The	let	command

Double	parentheses

When	you	use	the	let	command,	you	should	enclose	the	operation	in	double	quotation	marks	to	allow	for	spaces:

%	let	value1="	4	*	5.1	/	3.2	"
%	echo	$value1
6.3749999999999991
%

Notice	that	using	floating-point	numbers	introduces	a	precision	problem.	To	solve	this,	it's	always	a	good	idea	to	use
the	printf	command	and	specify	the	decimal	precision	needed	to	correctly	display	the	answer:

%	printf	"%6.3f\n"	$value1
6.375
%

Now	that's	much	better!

The	second	method	is	to	use	the	double	parentheses.	This	method	incorporates	two	techniques	for	defining	the
mathematical	operation:

%	value1=$((4	*	5.1))
%	((value2	=	4	*	5.1))
%	printf	"%6.3f\n"	$value1	$value2
20.400
20.400
%

Notice	that	you	can	place	the	double	parentheses	either	around	just	the	operation	(preceded	by	a	dollar	sign)	or
around	the	entire	assignment	statement.	Both	methods	produce	the	same	results.

If	you	don't	use	the	typeset	command	to	declare	the	data	type	of	a	variable	beforehand,	the	zsh	shell	attempts	to
automatically	assign	the	data	type.	This	can	be	dangerous	when	working	with	both	integer	and	floating-point
numbers.	Take	a	look	at	this	example:

%	value=10
%	value2=$(($value1	/	3))
%	echo	$value2
3
%

Now	that's	probably	not	the	answer	you	want	to	come	out	from	the	calculation.	When	you	specify	numbers	without
decimal	places,	the	zsh	shell	interprets	them	as	integer	values	and	performs	integer	calculations.	To	ensure	that	the
result	is	a	floating-point	number,	you	must	specify	the	numbers	with	decimal	places:

%	value=10.
%	value2=$(($value1	/	3.))
%	echo	$value2
3.3333333333333335
%

Now	the	result	is	in	the	floating-point	format.

Mathematical	functions
With	the	zsh	shell,	built-in	mathematical	functions	are	either	feast	or	famine.	The	default	zsh	shell	doesn't	include
any	special	mathematical	function.	However,	if	you	install	the	zsh/mathfunc	module,	you'll	have	more	math
functions	than	you'll	most	likely	ever	need:

%	value1=$((sqrt(9)))
zsh:	unknown	function:	sqrt
%	zmodload	zsh/mathfunc
%	value1=$((sqrt(9)))
%	echo	$value1
3.
%

That	was	simple!	Now	you	have	an	entire	math	library	of	functions	at	your	fingertips.

TIP
Lots	of	mathematical	functions	are	supported	in	zsh.	For	a	complete	listing	of	all	the	math
functions	that	the	zsh/mathfunc	module	provides,	look	at	the	manual	page	for	zshmodules.

Structured	commands
The	zsh	shell	provides	the	usual	set	of	structured	commands	for	your	shell	scripts:

if-then-else	statements

for	loops	(including	the	C-style)

while	loops

until	loops

select	statements

case	statements

The	zsh	shell	uses	the	same	syntax	for	each	of	these	structured	commands	that	you're	used	to	from	the	Bash	shell.
The	zsh	shell	also	includes	a	different	structured	command	called	repeat	.	The	repeat	command	uses	the	following
format:

repeat	param
do
			commands
done

The	param	parameter	must	be	a	number	or	a	mathematical	operation	that	equates	to	a	number.	The	repeat
command	then	performs	the	specified	commands	that	number	of	times:

%	cat	test4
#!/bin/zsh
#	using	the	repeat	command
	
value1=$((10	/	2))
repeat	$value1
do
			echo	"This	is	a	test"
done
$./test4
This	is	a	test
This	is	a	test
This	is	a	test
This	is	a	test
This	is	a	test
%

This	command	allows	you	to	repeat	sections	of	code	for	a	set	number	of	times	based	on	a	calculation.

Functions
The	zsh	shell	supports	the	creation	of	your	own	functions	either	by	using	the	function	command	or	by	defining	the
function	name	followed	by	parentheses:

%	function	functest1	{
>	echo	"This	is	the	test1	function"
}
%	functest2()	{
>	echo	"This	is	the	test2	function"
}
%	functest1
This	is	the	test1	function
%	functest2
This	is	the	test2	function
%

As	with	Bash	shell	functions	(see	Chapter	17),	you	can	define	functions	within	your	shell	script	and	then	either	use
global	variables	or	pass	parameters	to	your	functions.

Working	Through	a	Practical	Example
A	very	useful	module	in	the	zsh	shell	is	the	tcp	module.	It	allows	you	to	create	a	TCP	socket,	listen	for	incoming
connections,	and	then	establish	a	connection	with	a	remote	system.	This	is	a	great	way	to	transfer	data	between	shell
applications!

To	demonstrate,	here's	a	quick	example.	First,	you'll	want	to	open	a	shell	window	to	act	as	the	server.	Start	zsh,	load
the	tcp	module,	and	then	define	a	TCP	socket	number	to	listen	for	incoming	connections.	Do	that	with	these
commands:

server$	zsh
server%	zmodload	zsh/net/tcp
server%	ztcp	-l	8000
server%	listen=$REPLY
server%	ztcp	-a	$listen	

The	ztcp	command	with	the	-l	option	listens	on	the	specified	TCP	port	(8000	in	this	example)	for	incoming
network	connections.	The	special	$REPLY	variable	contains	the	file	handle	associated	with	the	network	socket.	The
ztcp	command	with	the	-a	option	waits	until	an	incoming	connection	is	established.

Now	open	another	shell	window	on	your	system	(or	you	can	even	do	this	on	another	Linux	system	on	the	same
network)	to	act	as	the	client,	and	enter	these	commands	to	connect	to	the	other	shell:

client$	zsh
client%	zmodload	zsh/net/tcp
client%	ztcp	localhost	8000
client%	remote=$REPLY
client%

When	the	connection	is	established,	you'll	see	a	zsh	shell	prompt	appear	on	in	the	server	shell	window.	You	can	then
save	the	new	connection	handle	on	the	server	to	a	variable:

server%	remote=$REPLY

Now	you're	ready	to	send	and	receive	data!	To	send	a	message	from	one	system	to	the	other,	use	the	print
statement,	sending	the	text	to	the	$remote	connection	handle:

client%	print	'This	is	a	test	message'>&$remote
client%

Then,	in	the	other	shell	window	use	the	read	command	to	retrieve	the	data	received	on	the	$remote	connection
handle	and	the	print	command	to	display	it:

server%	read	-r	data	>&$remote;	print	-r	$data
This	is	a	test	message
server%

Congratulations,	you've	just	sent	data	from	one	shell	to	another!	You	can	use	the	same	technique	to	send	data	in	the
opposite	direction.	When	you're	done,	use	the	-c	option	to	close	out	the	appropriate	handles	on	each	system.	For	the
server,	use	the	following:

server%	ztcp	-c	$listen
server%	ztcp	-c	$remote

And	for	the	client,	use	this:

client%	ztcp	-c	$remote

Now	you	have	networking	features	available	for	your	shell	scripts,	taking	them	to	a	new	level!

Summary
This	chapter	discussed	two	popular	alternative	Linux	shells	that	you	may	run	into.	The	Dash	shell	was	developed	as
part	of	the	Debian	Linux	distribution	and	is	mainly	found	in	the	Ubuntu	Linux	distribution.	It's	a	smaller	version	of
the	Bourne	shell,	so	it	doesn't	support	as	many	features	as	the	Bash	shell,	which	can	cause	problems	for	script
writing.

The	zsh	shell	is	often	found	in	programming	environments,	since	it	provides	lots	of	cool	features	for	shell	script
programmers.	It	uses	loadable	modules	to	load	separate	code	libraries,	which	make	using	advanced	functions	as
easy	as	running	command-line	commands.	Loadable	modules	are	available	for	lots	of	different	functions,	from
complex	mathematical	algorithms	to	network	applications	such	as	FTP	and	HTTP.

The	next	section	of	this	book	dives	into	some	specific	scripting	applications	you	might	encounter	in	the	Linux
environment.	In	the	next	chapter	you'll	see	how	to	put	your	scripting	skills	to	use	to	help	with	Linux	system
administration.

Part	IV
Creating	and	Managing
Practical	Scripts
IN	THIS	PART

Chapter	24	Writing	Simple	Script	Utilities

Chapter	25	Getting	Organized

CHAPTER	24
Writing	Simple	Script	Utilities
IN	THIS	CHAPTER

Automating	archives

Scripting	Account	Removal

Auditing	your	system

Shell	scripts	are	all	about	automating	tasks,	making	your	life	easier,	and	letting	the	system	handle	the	boring	jobs.

We've	included	several	sample	useful	scripts	throughout	the	book,	and	this	chapter	adds	some	additional	ones.
Learning	how	to	write	Bash	script	utilities	will	pay	you	back	many	times	over.	And	the	beauty	of	shell	scripts	is	that
they	are	easily	customized	for	your	particular	needs	—	especially	now	that	you	are	almost	a	Bash	script-writing	guru!

Performing	Backups
Whether	you're	responsible	for	a	Linux	system	in	a	large	corporate	environment	or	a	small	mom-and-pop	shop,	or
you're	just	using	it	at	home,	the	loss	of	data	can	be	catastrophic.	To	help	prevent	bad	things	from	happening,	it's
always	a	good	idea	to	perform	regular	backups	(also	called	archives).

However,	what's	a	good	idea	and	what's	practical	are	often	two	separate	things.	Trying	to	arrange	a	backup	schedule
to	store	important	project	files	can	be	a	challenge.	This	is	another	place	where	shell	scripts	often	come	to	the	rescue.

NOTE
There	are	several	fancy	GUI	and/or	web-based	programs	you	can	use	to	conduct	and	manage
backups,	such	as	Amanda,	Bacula,	and	Duplicity.	However,	at	their	core	are	Bash	shell
commands.	If	don't	want	or	need	anything	that	flashy,	or	you'd	like	to	understand	the	engine
within	these	programs,	this	chapter	section	is	for	you.

If	you	desire	to	write	your	own	backup	scripts,	we	demonstrate	two	methods	for	using	shell	scripts	so	that	you	can
archive	specific	data	on	your	Linux	systems.

Backing	up	files	daily
If	you're	using	your	Linux	system	to	work	on	an	important	project,	you	can	create	a	shell	script	that	automatically
takes	backups	of	specific	directories.	Doing	so	helps	avoid	a	time-consuming	restore	process	from	your	main	archive
files.	Designating	these	directories	in	a	configuration	file	allows	you	to	change	them	when	a	particular	project
changes	and/or	reuse	the	script's	configuration	file	for	a	different	project.

Here	we	show	you	how	to	create	an	automated	shell	script	that	can	take	backups	of	specified	directories	and	keep	a
record	of	your	data's	past	versions.

Obtaining	the	required	functions
The	workhorse	for	backing	up	data	in	the	Linux	world	is	the	tar	command	(Chapter	4,	“More	Bash	Shell
Commands”).	The	tar	command	is	used	to	archive	entire	directories	into	a	single	file.	Here's	an	example	of	creating
an	archive	file	of	a	working	directory	using	the	tar	command:

$	ls	-1	/home/christine/Project
addem.sh
AndBoolean.sh
askage.sh
[...]
update_file.sh
variable_content_eval.sh
$
$	tar	-cf	archive.tar	/home/christine/Project/*.*
tar:	Removing	leading	`/'	from	member	names
tar:	Removing	leading	`/'	from	hard	link	targets
$
$	ls	-og	archive.tar
-rw-rw-r--	1	112640	Aug		6	13:33	archive.tar
$

Notice	the	tar	command	responds	with	a	warning	message	that	it's	removing	the	leading	forward	slash	from
member	names.	This	means	that	the	pathname	is	converted	from	an	absolute	pathname	to	a	relative	pathname
(Chapter	3,	“Basic	Bash	Shell	Commands”),	which	allows	you	to	extract	the	tar	archived	files	anywhere	you	want	in
your	filesystem.	You'll	probably	want	to	get	rid	of	any	output	messages	in	your	script.	We	can	accomplish	this	by
redirecting	STDERR	to	the	/dev/null	file	(Chapter	15,	“Presenting	Data”):

$	pwd
/home/christine
$
$	tar	-cf	archive.tar	Project/*.*	2>/dev/null
$
$	ls	-og	archive.tar
-rw-rw-r--	1	112640	Aug		6	13:38	archive.tar
$

Because	a	tar	archive	file	can	consume	lots	of	disk	space,	it's	a	good	idea	to	compress	the	file.	You	can	do	so	by
simply	adding	the	-z	option	(Chapter	4).	This	compresses	the	tar	archive	file	into	a	gzipped	tar	file,	which	is	called	a
tarball.	Be	sure	to	use	the	proper	file	extensions	to	denote	that	the	file	is	a	tarball.	Either	.tar.gz	or	.tgz	is	fine.
Here's	an	example	of	creating	a	tarball	of	a	project	directory:

$	tar	-zcf	archive.tgz	Project/*.*	2>/dev/null
$
$	ls	-hog	archive.tgz
-rw-rw-r--	1	11K	Aug		6	13:40	archive.tgz
$
$	ls	-hog	archive.tar
-rw-rw-r--	1	110K	Aug		6	13:38	archive.tar
$

Notice	that	due	to	compression	archive.tgz	is	about	99	KB	smaller	than	the	archive.tar	file.	Now	we	have	the	main
component	for	our	backup	script	completed.

Instead	of	modifying	or	creating	a	new	archive	script	for	every	new	directory	of	files	we	want	to	back	up,	we	can	use
a	configuration	file.	The	configuration	file	should	contain	each	directory's	absolute	directory	reference	we	want
included	in	the	archive.

$	cat	Files_To_Backup.txt
/home/christine/BackupScriptProject/
/home/christine/Downloads/
/home/christine/Does_not_exist/
/home/christine/PythonConversion/
$

Notice	the	Does_not_exist	directory.	We'll	use	that	particular	directory	(which	doesn't	exist)	to	test	a	script	feature
later.

NOTE
If	you're	using	a	Linux	distribution	that	includes	a	graphical	desktop,	be	careful	about	backing
up	your	entire	$HOME	directory.	Although	this	may	be	tempting,	the	$HOME	directory	contains	lots
of	configuration	and	temporary	files	related	to	the	graphical	desktop.	It	creates	a	much	larger
archive	file	than	you	probably	intended.	Pick	a	subdirectory	(or	two)	in	which	to	store	your
working	files,	and	use	that	subdirectory	in	your	archive	configuration	file.

To	have	our	script	read	through	the	configuration	file	and	add	the	names	of	each	directory	to	an	archive	list,	we'll
use	the	simple	read	command	(Chapter	14,	“Handling	User	Input”).	But	instead	of	using	the	cat	command	piped
into	a	while	loop	(Chapter	13,	“More	Structured	Commands”),	this	script	redirects	standard	input	(STDIN)	using	the
exec	command	(see	Chapter	15).	Here's	how	it	looks	in	the	script:

exec	0	<	$config_file
	
read	file_name

Notice	that	a	variable	is	used	for	the	archive	configuration	file,	config_file	.	Each	record	is	read	in	from	the
configuration	file.	As	long	as	the	read	command	finds	a	new	configuration	file	record	to	read,	it	returns	an	exit	value
of	0	for	success	in	the	?	variable	(Chapter	11,	“Basic	Script	Building”).	You	can	use	this	as	a	test	in	a	while	loop	in
order	to	read	all	the	records	from	the	configuration	file:

while	[$?	-eq	0]
do
[...]
read	file_name
done

When	the	read	command	hits	the	end	of	the	configuration	file,	it	returns	a	non-zero	status	in	the	?	variable.	At	that
point,	the	while	loop	is	exited.

In	the	while	loop,	two	things	need	to	happen.	First,	we	must	add	the	directory	name	to	our	archive	list.	Even	more
important	is	to	check	if	that	directory	even	exists!	It	would	be	very	easy	to	remove	a	directory	from	the	filesystem
and	forget	to	update	the	archive	configuration	file.	We	can	check	a	directory's	existence	using	a	simple	if	statement
(see	Chapter	12,	“Using	Structured	Commands”).	If	the	directory	does	exist,	it	is	added	to	the	list	of	directories	to
archive,	file_list	.	Otherwise,	a	warning	message	is	issued.	Here	is	what	this	if	statement	looks	like:

if	[-f	$file_name	-o	-d	$file_name]	
then	
					file_list="$file_list	$file_name"

else
					echo
					echo	"$file_name,	does	not	exist."	
					echo	"Obviously,	I	will	not	include	it	in	this	archive."
					echo	"It	is	listed	on	line	$file_no	of	the	config	file."
					echo	"Continuing	to	build	archive	list..."	
					echo	
fi
#	
file_no=$[$file_no	+	1]	

Because	a	record	in	our	archive	configuration	file	can	be	a	filename	or	a	directory,	the	if	statement	tests	for	the
existence	of	both,	using	the	-f	and	the	-d	options.	The	or	option,	-o	,	allows	for	either	the	file's	or	the	directory's
existence	test	to	return	a	non-zero	status	for	the	entire	if	statement	to	be	treated	as	true.

To	provide	a	little	extra	help	in	tracking	down	nonexistent	directories	and	files,	the	variable	file_no	is	added.	Thus,
the	script	can	tell	you	exactly	what	line	number	in	the	archive	configuration	file	contains	the	incorrect	or	missing	file
or	directory.

Creating	a	daily	archive	location
If	you	are	just	backing	up	a	few	files,	it's	fine	to	keep	the	archive	in	your	personal	directory.	However,	if	several
directories	are	backed	up,	it	is	best	to	create	a	central	repository	archive	directory:

$	sudo	mkdir	/archive
	[sudo]	password	for	christine:
$
$	ls	-ld	/archive
drwxr-xr-x	2	root	root	4096	Aug		6	14:20	/archive
$

After	you	have	your	central	repository	archive	directory	created,	you	need	to	grant	access	to	it	for	certain	users.	If
you	do	not	do	this,	trying	to	create	files	in	this	directory	fails,	as	shown	here:

$	mv	Files_To_Backup.txt	/archive/
mv:	cannot	move	'Files_To_Backup.txt'	to	
'/archive/Files_To_Backup.txt':	Permission	denied
$

You	could	grant	the	users	needing	to	create	files	in	this	directory	permission	via	sudo	or	create	a	user	group.	In	this
case,	a	special	user	group	is	created,	Archivers	:

$	sudo	groupadd	Archivers
$
$	sudo	chgrp	Archivers	/archive
$
$	ls	-ld	/archive
drwxr-xr-x	2	root	Archivers	4096	Aug		6	14:20	/archive
$
$	sudo	usermod	-aG	Archivers	christine
$
$	sudo	chmod	775	/archive
$
$	ls	-ld	/archive
drwxrwxr-x	2	root	Archivers	4096	Aug		6	14:20	/archive
$

After	a	user	has	been	added	to	the	Archivers	group,	the	user	must	log	out	and	log	back	in	for	the	group	membership
to	take	effect.	Now	files	can	be	created	by	this	group's	members	without	the	use	of	super	user	privileges:

$	mv	Files_To_Backup.txt	/archive/
$
$	ls	/archive/
Files_To_Backup.txt
$

Keep	in	mind	that	all	Archivers	group	members	can	add	and	delete	files	from	this	directory.	It	may	be	best	to	add
the	sticky	bit	(Chapter	7,	“Understanding	Linux	File	Permissions”)	to	the	directory,	in	order	to	keep	group	members
from	deleting	each	other's	tarballs.	To	keep	things	organized,	consider	creating	subdirectories	within	the	/archive
directory	for	each	user.

You	should	now	have	enough	information	to	start	building	the	script.	The	next	section	walks	you	through	creating
this	daily	project	backup	script.

Creating	a	daily	backup	script
The	Daily_Archive.sh	script	automatically	creates	an	archive	to	a	designated	location,	using	the	current	date	to
uniquely	identify	the	file.	Here's	the	code	for	that	portion	of	the	script:

today=$(date	+%y%m%d)
#
#	Set	Archive	File	Name
#
backupFile=archive$today.tar.gz
#	

#	Set	Configuration	and	Destination	File
#
config_file=/archive/Files_To_Backup
destination=/archive/$backupFile
#

The	destination	variable	appends	the	full	pathname	for	the	archived	file.	The	config_file	variable	points	to	the
archive	configuration	file	containing	the	directories	to	be	archived.	These	both	are	easily	changed	to	alternate
directories	and	files	if	needed.

The	Daily_Archive.sh	script,	all	put	together,	now	looks	like	this:

$	cat	Daily_Archive.sh
#!/bin/bash
#
#	Daily_Archive	-	Archive	designated	files	&	directories
##
#
#	Gather	Current	Date
#
today=$(date	+%y%m%d)
#
#	Set	Archive	File	Name
#
backupFile=archive$today.tar.gz
#
#	Set	Configuration	and	Destination	File
#
config_file=/archive/Files_To_Backup.txt
destination=/archive/$backupfile
#
#########	Main	Script	#########################
#
#	Check	Backup	Config	file	exists
#
if	[-f	$config_file]	#	Make	sure	the	config	file	still	exists.
then											#	If	it	exists,	do	nothing	but	continue	on.
					echo
else											#	If	it	doesn't	exist,	issue	error	&	exit	script.
					echo
					echo	"$config_file	does	not	exist."
					echo	"Backup	not	completed	due	to	missing	Configuration	File"
					echo
					exit
fi
#
#	Build	the	names	of	all	the	files	to	backup
#
file_no=1														#	Start	on	Line	1	of	Config	File.
exec	0<	$config_file			#	Redirect	Std	Input	to	name	of	Config	File
#
read	file_name									#	Read	1st	record
#
while	[$?	-eq	0]					#	Create	list	of	files	to	backup.
do
								#	Make	sure	the	file	or	directory	exists.
					if	[-f	$file_name	-o	-d	$file_name]
					then
										#	If	file	exists,	add	its	name	to	the	list.
										file_list="$file_list	$file_name"
					else
										#	If	file	doesn't	exist,	issue	warning
										echo
										echo	"$file_name,	does	not	exist."
										echo	"Obviously,	I	will	not	include	it	in	this	archive."
										echo	"It	is	listed	on	line	$file_no	of	the	config	file."
										echo	"Continuing	to	build	archive	list..."
										echo
					fi
#
					file_no=$[$file_no	+	1]		#	Increase	Line/File	number	by	one.
					read	file_name											#	Read	next	record.
done
#
#######################################
#
#	Backup	the	files	and	Compress	Archive
#
echo	"Starting	archive..."
echo
#
tar	-czf	$destination	$file_list	2>	/dev/null
#
echo	"Archive	completed"
echo	"Resulting	archive	file	is:	$destination"
echo
#

exit
$

Hopefully,	you	saw	a	few	potential	needed	improvements	for	this	script.	For	example,	what	if	there	are	no	existing
files	or	directories	to	back	up	and	$file_list	is	empty?	You	can	use	an	if	-	then	statement	to	check	for	that
problem.	How	about	using	the	-v	option	on	the	tar	command	and	redirecting	STDOUT	to	create	a	report	or	log?	You
can	make	this	script	as	rigorous	as	you	need.

Running	the	daily	archive	script
Before	you	attempt	to	test	the	script,	remember	that	we	need	to	change	permissions	on	the	script	file	(Chapter	11).
The	file's	owner	must	be	given	execute	(x)	privilege	before	the	script	can	be	run:

$	ls	-og	Daily_Archive.sh
-rw-r--r--	1	2039	Aug		6	14:13	Daily_Archive.sh
$
$	chmod	u+x	Daily_Archive.sh
$
$	ls	-og	Daily_Archive.sh
-rwxr--r--	1	2039	Aug		6	14:13	Daily_Archive.sh
$

Testing	the	Daily_Archive.sh	script	is	straightforward:

$./Daily_Archive.sh
	
	
/home/christine/Does_not_exist/,	does	not	exist.
Obviously,	I	will	not	include	it	in	this	archive.
It	is	listed	on	line	3	of	the	config	file.
Continuing	to	build	archive	list...
	
Starting	archive...
	
Archive	completed
Resulting	archive	file	is:	/archive/archive200806.tar.gz
	
$

You	can	see	that	the	script	caught	one	directory	that	does	not	exist,	/home/christine/Does_not_exist	.	It	lets	you
know	what	line	number	in	the	configuration	file	this	erroneous	directory	is	on	and	continues	making	a	list	and
archiving	the	data.

Our	special	project	data	(and	other	files)	is	now	safely	archived	in	a	tarball	file:

$	ls	/archive/
archive200806.tar.gz		Files_To_Backup.txt
$

Since	this	is	an	important	script,	consider	using	anacron	(Chapter	16,	“Script	Control”)	so	that	it	is	run	on	a	daily
basis	without	you	needing	to	remember	to	launch	the	script.

TIP
Keep	in	mind	that	tar	is	one	way	to	perform	backups	on	your	system	using	Bash	shell
commands.	There	are	several	other	utilities	(or	combinations	of	commands)	that	may	better
meet	your	needs,	such	as	rsync	.	To	see	various	utility	names	that	may	assist	in	this	backup
endeavor,	type	man	-k	archive	and	then	man	-k	copy	at	the	command-line	prompt.

Creating	an	hourly	archive	script
If	you	are	in	a	high-volume	production	environment	where	files	are	changing	rapidly,	a	daily	archive	might	not	meet
your	needs.	If	you	want	to	increase	the	archiving	frequency	to	hourly,	you	need	to	take	another	item	into
consideration.

When	you're	backing	up	files	hourly	and	trying	to	use	the	date	command	to	time	stamp	each	tarball,	things	can	get
ugly	rather	quickly.	Sifting	through	a	directory	of	tarballs	with	filenames	looking	like	this	is	tedious:

archive200806110233.tar.gz

Instead	of	placing	all	the	archive	files	in	the	same	folder,	you	can	create	a	directory	hierarchy	for	your	archived	files.
Figure	24.1	demonstrates	this	principle.

The	archive	directory	contains	directories	for	each	month	of	the	year,	using	the	month	number	as	the	directory
name.	Each	month's	directory	in	turn	contains	folders	for	each	day	of	the	month	(using	the	day's	numerical	value	as
the	directory	name).	This	allows	you	to	just	time	stamp	the	individual	tarballs	and	place	them	in	the	appropriate
directory	for	the	day	and	month.

First,	the	new	directory	/archive/hourly	must	be	created,	along	with	the	appropriate	permissions	set	upon	it.
Remember	from	early	in	this	chapter	that	members	of	the	Archivers	group	are	granted	permission	to	create	archives

in	this	directory	area.	Thus,	the	newly	created	directory	must	have	its	primary	group	and	group	permissions
changed:

FIGURE	24.1	Creating	an	archive	directory	hierarchy

$	sudo	mkdir	/archive/hourly
[sudo]	password	for	christine:
$
$	sudo	chgrp	Archivers	/archive/hourly
$
$	ls	-ogd	/archive/hourly/
drwxr-xr-x	2	4096	Aug		7	15:56	/archive/hourly/
$
$	sudo	chmod	775	/archive/hourly
$
$	ls	-ogd	/archive/hourly/
drwxrwxr-x	2	4096	Aug		7	15:56	/archive/hourly/
$

After	the	new	directory	is	set	up,	the	Files_To_Backup	configuration	file	for	the	hourly	archives	can	be	moved	to	the
new	directory:

$	cat	Files_To_Backup.txt
/usr/local/Production/Machine_Errors/
/home/Development/Simulation_Logs/
$
$	mv	Files_To_Backup.txt	/archive/hourly/
$

Now,	there	is	a	new	challenge	to	solve.	The	script	must	create	the	individual	month	and	day	directories
automatically.	However,	if	these	directories	already	exist	and	the	script	tries	to	create	them,	an	error	is	generated.
This	is	not	a	desirable	outcome!

If	you	look	at	the	command-line	options	for	the	mkdir	command	(Chapter	3),	you'll	find	the	-p	command-line

option.	This	option	allows	you	to	create	directories	and	subdirectories	in	a	single	command.	Plus,	the	added	benefit
is	that	it	doesn't	produce	an	error	message	if	the	directory	already	exists.	Perfect	fit	for	what	is	needed	in	the	script!

We're	now	ready	to	create	the	Hourly_Archive.sh	script.	Here	is	the	top	half	of	the	script:

$	cat	Hourly_Archive.sh
#!/bin/bash
#
#	Hourly_Archive	-	Every	hour	create	an	archive
##
#
#	Set	Configuration	File
#
config_file=/archive/hourly/Files_To_Backup.txt
#
#	Set	Base	Archive	Destination	Location
#
basedest=/archive/hourly
#
#	Gather	Current	Day,	Month	&	Time
#
day=$(DATE	+%D)
month=$(DATE	+%M)
time=$(DATE	+%K%M)
#
#	Create	Archive	Destination	Directory
#
mkdir	-p	$basedest/$month/$day
#
#	Build	Archive	Destination	File	Name
#
destination=$basedest/$month/$day/archive$time.tar.gz
#
#########	Main	Script	#########################
[...]

When	Hourly_Archive.sh	reaches	the	“Main	Script”	section,	the	rest	of	the	code	is	an	exact	duplicate	of	what	is	in	the
Daily_Archive.sh	script.	Lots	of	the	work	was	already	done!

Hourly_Archive.sh	retrieves	the	day	and	month	values	from	the	date	command,	along	with	the	time	stamp	used	to
uniquely	identify	the	archive	file.	It	then	uses	that	information	to	create	the	archive	directory	for	the	day	(or	to
silently	continue	if	it	already	exists).	Finally,	the	script	uses	the	tar	command	to	create	the	archive	and	compress	it
into	a	tarball.

Running	the	hourly	archive	script
As	with	the	Daily_Archive.sh	script,	it's	a	good	idea	to	test	the	Hourly_Archive.sh	script	before	putting	it	in	the	cron
table.	But	first	the	permissions	need	modification.	Also,	it's	a	good	idea	to	get	the	current	hour	and	minute	via	the
date	command	before	testing	the	script.	Having	this	information	allows	verification	of	final	archive's	filename	for
correctness:

$	chmod	u+x	Hourly_Archive.sh
$
$	date	+%k%M
1610
$
$./Hourly_Archive.sh
	
Starting	archive...
	
Archive	completed
Resulting	archive	file	is:	
/archive/hourly/08/07/archive1610.tar.gz
	
$
$	ls	/archive/hourly/08/07/
/archive/hourly/08/07/archive1610.tar.gz
$

The	script	worked	fine	the	first	time,	creating	the	appropriate	month	and	day	directories,	and	then	creating	the
properly	named	archive	file.	Notice	that	the	archive	file	has	the	appropriate	hour	(16)	and	minute	(10)	in	its	name,
archive1610.tar.gz.

TIP
If	you	run	the	Hourly_Archive.sh	script	during	the	day,	when	the	hour	is	in	single	digits,	your
archive	file's	name	will	have	only	three	digits.	For	example,	if	you	run	the	script	at	1:15	a.m.,
the	archive	file's	name	is	archive115.tar.gz	.	If	you	prefer	to	always	have	four	digits	in	the
archive	filename,	modify	the	script	line,	TIME=$(date	+%k%M)	to	TIME=$(date	+%k0%M)	.	By	adding	a
zero	(0)	after	the	%k	,	any	single-digit	hours	are	padded	to	two	digits	with	a	leading	zero.	Thus,
archive115.tar.gz	is	instead	named	archive0115.tar.gz.

Just	to	test	things	out,	the	script	is	run	a	second	time	to	see	if	it	has	a	problem	with	the	existing	directory,
/archive/hourly/08/07/	:

$	date	+%k%M
1615
$
$./Hourly_Archive.sh
	
Starting	archive...
	
Archive	completed
Resulting	archive	file	is:	
/archive/hourly/08/07/archive1615.tar.gz
	
$
$	ls	/archive/hourly/08/07/
archive1610.tar.gz		archive1615.tar.gz
$

No	problems	with	the	existing	directory!	The	script	again	ran	fine	and	created	a	second	archive	file.	It's	now	ready
for	the	cron	table.

Managing	Account	Deletion
Managing	local	user	accounts	is	much	more	than	just	adding,	modifying,	and	deleting	accounts.	You	must	also
consider	security	issues,	the	need	to	preserve	work,	and	the	accurate	deletion	of	accounts.	This	can	be	a	time-
consuming	task.	Here	is	another	instance	when	writing	script	utilities	is	a	real	time	saver!

Obtaining	the	required	functions
Deleting	a	local	account	is	the	more	complicated	task	of	accounts	management,	because	at	least	four	separate
actions	are	required:

1.	 Obtain	the	correct	user	account	name	to	delete.

2.	 Kill	any	processes	currently	running	on	the	system	that	belong	to	the	account.

3.	 Determine	all	files	on	the	system	belonging	to	the	account.

4.	 Remove	the	user	account.

It's	easy	to	miss	a	step.	The	shell	script	utility	in	this	section	helps	you	(or	your	system	admin	interns)	avoid	making
such	mistakes.

Getting	the	correct	account	name
The	first	step	in	the	account	deletion	process	is	the	most	important:	obtaining	the	correct	user	account	name	to
delete.	Because	this	is	an	interactive	script,	we	use	the	read	command	(Chapter	14)	to	obtain	the	account	name.
Since	the	script	user	may	get	interrupted	and	leave	the	question	hanging,	we	added	the	-t	option	on	the	read
command	and	timeout	after	giving	the	script	user	60	seconds	to	answer	the	question:

echo	"Please	enter	the	username	of	the	user	"	
echo	-e	"account	you	wish	to	delete	from	system:	\c"
read	-t	60	answer

Because	interruptions	are	part	of	life,	it's	best	to	give	users	three	chances	to	answer	the	question.	This	is
accomplished	by	using	a	while	loop	(Chapter	13)	with	the	-z	option,	to	test	whether	the	answer	variable	is	empty.
The	answer	variable	is	empty	when	the	script	first	enters	the	while	loop	on	purpose.	The	question	to	fill	the	answer
variable	is	at	the	end	of	the	loop:

while	[-z	"$answer"]
do
[...]
echo	"Please	enter	the	username	of	the	user	"	
echo	-e	"account	you	wish	to	delete	from	system:	\c"
read	-t	60	answer
done

A	way	to	communicate	with	the	script	user	is	needed	when	the	first	question	timeout	occurs,	when	there	is	another
chance	to	answer	the	question.	The	case	statement	(Chapter	12)	is	the	structured	command	that	works	perfectly

here.	Using	an	incremented	variable	(ask_count),	different	messages	are	set	up	to	communicate	with	the	script	user.
The	code	for	this	section	looks	like	this:

case	$ask_count	in
2)
					echo
					echo	"Please	answer	the	question."
					echo
;;
3)
					echo
					echo	"One	last	try...please	answer	the	question."
					echo
;;
4)
					echo
					echo	"Since	you	refuse	to	answer	the	question..."
					echo	"exiting	program."
					echo
					#
					exit	
;;
esac
#

Now	the	script	has	all	the	structure	it	needs	to	ask	the	user	what	account	to	delete.	There	are	several	more	questions
in	this	script	to	ask	the	user,	and	asking	just	that	one	question	was	lots	of	code!	Therefore,	we'll	turn	this	piece	of
code	into	a	function	(Chapter	17,	“Creating	Functions”)	in	order	to	use	it	in	multiple	locations	within	the
Delete_User.sh	script.

Creating	a	function	to	get	the	correct	account	name
The	first	thing	we	did	was	to	declare	the	function's	name,	get_answer	.	Next,	we	clear	out	any	previous	answers	to
questions	the	script	user	gave,	using	the	unset	command	(Chapter	6,	“Using	Linux	Environment	Variables”).	The
code	to	do	these	two	items	looks	like	this:

function	get_answer	{
#
unset	answer

The	other	original	code	item	we	need	to	change	is	the	question	to	the	script	user.	The	script	doesn't	ask	the	same
question	each	time,	so	two	new	variables	are	created,	line1	and	line2	,	to	handle	question	lines:

echo	$line1
echo	-e	$line2"	\c"

However,	not	every	question	has	two	lines	to	display.	Some	have	only	one	line.	An	if	statement	(Chapter	12)	assists
with	this	problem.	The	function	tests	if	line2	is	empty	and	only	uses	line1	if	it	is:

if	[-n	"$line2"]
then
					echo	$line1
					echo	-e	$line2"	\c"
else
					echo	-e	$line1"	\c"
fi

Finally,	the	function	needs	to	clean	up	after	itself	by	clearing	out	the	line1	and	line2	variables.	The	function	now
looks	like	this:

function	get_answer	{
#
unset	answer
$ask_count=0
#
while	[-z	"$answer"]
do
					ask_count=$[$ask_count	+	1]
#
					case	$ask_count	in
					2)
											echo
[...]
					esac
#
					echo
					if	[-n	"$line2"]
					then																	#Print	2	lines
											echo	$line1
											echo	-e	$line2"	\c"
					else																				#Print	1	line
											echo	-e	$line1"	\c"
					fi
#
					read	-t	60	answer
done

#	
unset	line1
unset	line2
#
}		#End	of	get_answer	function

To	ask	the	script	user	what	account	to	delete,	a	few	variables	are	set	and	the	get_answer	function	is	called.	Using	this
function	makes	the	script	code	cleaner:

line1="Please	enter	the	username	of	the	user	"	
line2="account	you	wish	to	delete	from	system:"
get_answer
user_account=$answer

Verifying	the	entered	account	name
Because	of	potential	typographical	errors,	the	user	account	name	entered	needs	verification.	Doing	so	is	easy
because	the	code	is	already	in	place	to	handle	asking	questions:

line1="Is	$user_account	the	user	account	"	
line2="you	wish	to	delete	from	the	system?	[y/n]"
get_answer

After	the	question	is	asked,	the	script	must	process	the	answer.	The	variable	answer	again	carries	the	script	user's
answer	to	the	question.	If	the	user	answers	“yes,”	the	correct	user	account	to	delete	has	been	entered	and	the	script
can	continue.	A	case	statement	(see	Chapter	12)	is	used	to	process	the	answer,	and	it	is	coded	in	a	way	to	check	for
the	multiple	ways	the	answer	“yes”	can	be	entered.

case	$answer	in
y|Y|YES|yes|Yes|yEs|yeS|YEs|yES)	
#
;;
*)																			
							echo	
							echo	"Because	the	account,	$user_account,	is	not	"
							echo	"the	one	you	wish	to	delete,	we	are	leaving	the	script..."
							echo	
							exit
;;
esac

That's	tedious!	Since	we	plan	on	only	continuing	the	processing	if	the	user	answers	a	variation	of	“yes”	to	our
question,	we	can	simplify	the	case	statement	by	stripping	down	the	answer	variable.	To	accomplish	this	task,	we
employ	command	substitution	(Chapter	11),	a	pipe,	and	the	cut	command,	which	will	allow	us	to	reduce	the
characters	in	the	answer	variable.	Specifically,	the	cut	command's	-c1	option	strips	everything	from	answer	but	the
first	character:

answer=$(echo	$answer	|	cut	-c1)

Now	that	we	have	to	deal	with	only	the	first	character,	our	case	statement	is	more	compact:

case	$answer	in
y|Y)	
#
;;
[...]
esac

NOTE
You	may	wonder	why	we	didn't	use	the	-n1	option	on	the	read	command	(Chapter	14)	within	the
get_answer	function	to	keep	answer	limited	to	one	character	in	length,	as	opposed	to	stripping	it
down	later	with	the	cut	command.	The	reason	for	this	is	that	the	get_answer	function	is	used	also
to	obtain	user	account	names,	which	are	typically	longer	than	one	character.	And	by	using	the
cut	command	to	limit	answer	leaves	the	get_answer	function	more	versatile.

In	different	locations,	this	script	handles	multiple	yes/no	answers	from	the	user.	Thus,	again,	it	makes	sense	to
create	a	function	to	handle	this	task,	and	only	a	few	changes	are	made	to	the	preceding	code:	the	function's	name	is
declared	and	the	variables	exit_line1	and	exit_line2	are	added	to	the	case	statement.	These	changes,	along	with
some	variable	cleanup	at	the	end,	result	in	the	process_answer	function:

function	process_answer	{
#
answer=$(echo	$answer	|	cut	-c1)
#
case	$answer	in
y|Y)	
;;
*)																			
								echo	
								echo	$exit_line1	

								echo	$exit_line2
								echo	
								exit
;;
esac
#
unset	exit_line1
unset	exit_line2
#
}	#End	of	process_answer	function

A	simple	function	call	now	processes	the	answer:

exit_line1="Because	the	account,	$user_account,	is	not	"	
exit_line2="the	one	you	wish	to	delete,	we	are	leaving	the	script..."
process_answer

Determining	whether	the	account	exists
The	user	has	given	us	the	name	of	the	account	to	delete	and	has	verified	it.	Now	is	a	good	time	to	double-check	that
the	user	account	really	exists	on	the	system.	Also,	just	to	be	safe,	we'll	show	the	full	account	record	to	the	script	user
to	check	one	more	time	that	this	is	the	account	to	delete.	To	accomplish	these	items,	a	variable,	user_account_record
,	is	set	to	the	outcome	of	a	grep	(Chapter	4)	search	for	the	account	through	the	/etc/passwd	file.	The	-w	option	allows
an	exact	word	match	for	this	particular	user	account:

user_account_record=$(cat	/etc/passwd	|	grep	-w	$user_account)

If	no	user	account	record	is	found	in	/etc/passwd	,	the	account	has	already	been	deleted	or	never	existed	in	the	first
place.	In	either	case,	the	script	user	needs	notification	of	this	situation	and	the	script	exited.	The	exit	status	of	the
grep	command	helps	here.	If	the	account	record	is	not	found,	the	?	variable	is	set	to	1	:

if	[$?	-eq	1]	
then	
					echo	
					echo	"Account,	$user_account,	not	found.	"	
					echo	"Leaving	the	script..."	
					echo	
					exit	
fi	

If	the	record	was	found,	we	still	need	to	verify	with	the	script	user	that	this	is	the	correct	account.	Here	is	where	all
the	work	to	set	up	the	functions	really	pays	off!	We	just	set	the	proper	variables	and	call	the	functions:

echo	"I	found	this	record:"	
echo	$user_account_record	
echo	
#	
line1="Is	this	the	correct	User	Account?	[y/n]"	
get_answer
#	
exit_line1="Because	the	account,	$user_account,	is	not"	
exit_line2="the	one	you	wish	to	delete,	we	are	leaving	the	script..."	
process_answer

Removing	any	account	processes
So	far,	the	script	has	obtained	and	verified	the	correct	name	of	the	user	account	to	be	deleted.	In	order	to	remove	the
user	account	from	the	system,	the	account	cannot	own	any	processes	currently	running.	Thus,	the	next	step	is	to	find
and	kill	off	those	processes.	This	is	going	to	get	a	little	complicated!

Finding	the	user	processes	is	the	easy	part.	Here	the	script	can	use	the	ps	command	(Chapter	4)	and	the	-u	option	to
locate	any	running	processes	owned	by	the	account.	By	redirecting	the	output	to	/dev/null	,	the	user	doesn't	see	any
display.	This	is	handy,	because	if	there	are	no	processes,	the	ps	command	shows	only	a	header,	which	may	confuse
the	script	user:

ps	-u	$user_account>/dev/null	

The	ps	command's	exit	status	and	a	case	structure	are	used	to	determine	the	next	step	to	take:

case	$?	in
1)			#	No	processes	running	for	this	User	Account
					#
					echo	"There	are	no	processes	for	this	account	currently	running."
					echo
;;
0)			#	Processes	running	for	this	User	Account.
					#	Ask	Script	User	if	wants	us	to	kill	the	processes.
					#
					echo	"$user_account	has	the	following	process(es)	running:"
					ps	-u	$user_account
					#
					line1="Would	you	like	me	to	kill	the	process(es)?	[y/n]"
					get_answer
					#
[...]

;;
esac

If	the	ps	command's	exit	status	returns	a	1	,	there	are	no	processes	running	on	the	system	that	belong	to	the	user
account.	However,	if	the	exit	status	returns	a	0	,	processes	owned	by	this	account	are	running	on	the	system.	In	this
case,	the	script	needs	to	ask	the	script	user	if	they	would	like	to	have	these	processes	killed.	This	task	can	be
accomplished	by	using	the	get_answer	function.

You	might	think	that	the	next	action	the	script	does	is	to	call	the	process_answer	function.	Unfortunately,	the	next
item	is	too	complicated	for	process_answer	.	Thus,	another	case	statement	is	embedded	to	process	the	script	user's
answer.	The	first	part	of	the	case	statement	looks	very	similar	to	the	process_answer	function:

answer=$(echo	$answer	|	cut	-c1)
#
case	$answer	in
y|Y)						#	If	user	answers	"yes",
										#	kill	User	Account	processes.
[...]
;;
*)			#	If	user	answers	anything	but	"yes",	do	not	kill.
					echo
					echo	"Will	not	kill	the	process(es)"
					echo
#
;;
esac

As	you	can	see,	there	is	nothing	interesting	in	the	case	statement	itself.	However,	things	get	intriguing	within	the
“yes”	section	of	the	case	statement,	where	the	user	account	processes	are	killed.	To	build	the	command	necessary	to
kill	off	one	or	more	processes,	three	commands	are	needed.	The	first	command	is	the	ps	command	again.	It	is
needed	to	gather	up	the	process	IDs	(PIDs)	of	the	currently	running	user	account	processes.	The	necessary	ps
command	is	assigned	to	the	variable,	command_1	:

command_1="ps	-u	$user_account	--no-heading"

The	second	command	strips	off	just	the	PIDs.	This	simple	gawk	command	(Chapter	19,	“Introducing	sed	and	gawk	”)
strips	off	the	first	field	from	the	ps	command's	output,	which	happens	to	be	the	PIDs:

gawk	'{print	$1}'	

The	third	command,	xargs	,	has	not	yet	been	introduced	in	this	book.	The	xargs	command	builds	and	executes
commands	from	standard	input,	STDIN	(Chapter	15).	It	is	a	great	command	to	use	at	the	end	of	a	pipe,	building	and
executing	commands	from	each	STDIN	item	produced.	The	xargs	command	is	actually	killing	off	each	process	via	its
PID	using	the	absolute	directory	reference	of	the	kill	command	and	sudo	:

command_3="xargs	-d	\\n	/usr/bin/sudo	/bin/kill	-9"

The	xargs	command	is	assigned	to	the	variable	command_3	.	It	uses	the	-d	option	to	denote	what	is	considered	a
delimiter.	In	other	words,	because	the	xargs	command	can	accept	multiple	items	as	input,	what	separates	one	item
from	another	item?	In	this	case,	\n	(newline)	is	used	to	set	the	delimiter.	Thus,	when	each	PID	is	sent	to	xargs	,	it
treats	the	PID	as	a	separate	item	to	process.	Because	the	xargs	command	is	being	assigned	to	a	variable,	the
backslash	(\)	in	the	\n	must	be	escaped	with	an	additional	backslash	(\).

Notice	that	xargs	uses	the	full	pathname	of	the	commands	it	is	using	on	each	PID.	Both	the	sudo	and	kill	(Chapter
4)	commands	are	used	to	kill	any	of	the	user	account's	running	processes.	Also	notice	that	the	kill	signal	-9	is	used.

NOTE
Modern	implementations	of	the	xargs	command	do	not	require	the	absolute	directory
reference	of	commands,	such	as	sudo	and	kill	.	However,	Linux	distributions	that	are	only	a	few
years	older	may	have	the	earlier	version	of	the	xargs	command,	so	we	kept	the	absolute
directory	references.

All	three	commands	are	hooked	together	via	a	pipe.	The	ps	command	produces	a	list	of	the	user's	running	processes,
which	include	the	PID	of	each	process.	The	ps	command	passes	its	standard	output	(STDOUT)	as	STDIN	to	the	gawk
command.	The	gawk	command,	in	turn,	strips	off	only	the	PIDs	from	the	ps	command's	STDOUT	(Chapter	15).	The
xargs	command	takes	each	PID	the	gawk	command	produces	as	STDIN	.	It	creates	and	executes	the	kill	command	for
each	PID	to	kill	all	the	user's	running	processes.	The	entire	command	pipe	looks	like	this:

$command_1	|	gawk	'{print	$1}'	|	$command_3

Thus,	the	complete	case	statement	for	killing	off	any	of	the	user	account's	running	processes	is	as	follows:

case	$answer	in
y|Y)		#	If	user	answers	"yes",
						#	kill	User	Account	processes.
						#
						echo
						echo	"Killing	off	process(es)...

						#
						#	List	user	process	running	code	in	command_1
						command_1="ps	-u	$user_account	--no-heading"
						#
						#	Create	command_3	to	kill	processes	in	variable
						command_3="xargs	-d	\\n	/usr/bin/sudo	/bin/kill	-9"
						#
						#	Kill	processes	via	piping	commands	together
						$command_1	|	gawk	'{print	$1}'	|	$command_3
						#
						echo
						echo	"Process(es)	killed."
;;
*)					#If	user	answers	anything	but	"yes",	do	not	kill.
							echo
							echo	"Will	not	kill	process(es)."
;;
esac

By	far,	this	is	the	most	complicated	piece	of	the	script!	However,	now	with	any	user	account–owned	processes	gone,
the	script	can	move	on	to	the	next	step:	finding	all	the	user	account's	files.

Finding	account	files
When	a	user	account	is	deleted	from	the	system,	it	is	a	good	practice	to	back	up	all	the	files	that	belonged	to	that
account.	Along	with	that	practice,	it	is	also	important	to	remove	the	files	or	assign	their	ownership	to	another
account.	If	the	account	you	delete	has	a	User	ID	of	1003,	and	you	don't	remove	or	reassign	those	files,	then	the	next
account	that	is	created	with	a	User	ID	of	1003	owns	those	files!	You	can	see	the	security	disasters	that	can	occur	in
this	scenario.

The	Delete_User.sh	script	doesn't	do	all	that	for	you;	instead,	it	creates	a	report	that	can	be	slightly	modified	and
used	in	a	backup	script	as	an	archive	configuration	file.	Also,	you	can	use	the	report	to	help	you	remove	or	reassign
the	files.

To	find	the	user's	files,	we	use	another	new-to-this-book	command:	the	find	command.	In	this	case,	the	find
command	searches	the	entire	virtual	directory	(/)	with	the	-user	option,	which	pinpoints	any	files	owned	by	the
user_account	.	The	command	looks	like	the	following:

find	/	-user	$user_account>	$report_file

That	was	pretty	simple	compared	to	dealing	with	the	user	account	processes.	It	gets	even	easier	in	the	next	step	of
the	Delete_User.sh	script:	actually	removing	the	user	account.

Removing	the	account
A	little	caution	is	always	a	good	idea	when	removing	a	user	account	from	the	system.	Therefore,	we	ask	one	more
time	if	the	script	user	really	wants	to	remove	the	account:

line1="Remove	$user_account's	account	from	system?	[y/n]"
get_answer
#	
exit_line1="Since	you	do	not	wish	to	remove	the	user	account,"
exit_line2="$user_account	at	this	time,	exiting	the	script..."
process_answer

Finally,	we	get	to	the	main	purpose	of	our	script:	actually	removing	the	user	account	from	the	system.	Here	the
userdel	command	(Chapter	7)	is	used:

userdel	$user_account

Now	that	we	have	all	the	script's	pieces,	we	are	ready	to	put	them	together	into	a	whole,	useful	script	utility.

Creating	the	script
The	Delete_User.sh	script	is	highly	interactive	with	the	script's	user.	Therefore,	it	is	important	to	include	lots	of
verbiage	to	keep	the	script	user	informed	about	what	is	going	on	during	the	script's	execution.

At	the	top	of	the	script,	the	two	functions	get_answer	and	process_answer	are	declared.	The	script	then	goes	to	the
four	steps	of	removing	the	user	account:

1.	 Obtaining	and	confirming	the	user	account	name

2.	 Finding	and	killing	any	user	processes

3.	 Creating	a	report	of	all	files	owned	by	the	user	account

4.	 Removing	the	user	account

Here's	the	entire	Delete_User.sh	script:

$	cat	Delete_User.sh
#!/bin/bash
#
#Delete_User	-	Automates	the	4	steps	to	remove	an	account
#

###
#	Define	Functions
#
###
function	get_answer	{
#
unset	answer
ask_count=0
#
while	[-z	"$answer"]				#While	no	answer	is	given,	keep	asking.
do
					ask_count=$[$ask_count	+	1]
#
					case	$ask_count	in			#If	user	gives	no	answer	in	time	allotted
					2)
										echo
										echo	"Please	answer	the	question."
										echo
					;;
					3)
										echo
										echo	"One	last	try...please	answer	the	question."
										echo
					;;
					4)
										echo
										echo	"Since	you	refuse	to	answer	the	question..."
										echo	"exiting	program."
										echo
										#
										exit
					;;
					esac
#
					if	[-n	"$line2"]
					then															#Print	2	lines
										echo	$line1
										echo	-e	$line2"	\c"
					else																				#Print	1	line
										echo	-e	$line1"	\c"
					fi
#
#					Allow	60	seconds	to	answer	before	time-out
					read	-t	60	answer
done
#	Do	a	little	variable	clean-up
unset	line1
unset	line2
#
}		#End	of	get_answer	function
#
###
function	process_answer	{
#
answer=$(echo	$answer	|	cut	-c1)
#
case	$answer	in
y|Y)
#	If	user	answers	"yes",	do	nothing.
;;
*)
#	If	user	answers	anything	but	"yes",	exit	script
								echo
								echo	$exit_line1
								echo	$exit_line2
								echo
								exit
;;
esac
#
#	Do	a	little	variable	clean-up
#
unset	exit_line1
unset	exit_line2
#
}	#End	of	process_answer	function
#
##
#	End	of	Function	Definitions
#
#############	Main	Script	####################
#	Get	name	of	User	Account	to	check
#
echo	"Step	#1	-	Determine	User	Account	name	to	Delete	"
echo
line1="Please	enter	the	username	of	the	user	"
line2="account	you	wish	to	delete	from	system:"

get_answer
user_account=$answer
#
#	Double	check	with	script	user	that	this	is	the	correct	User	Account
#
line1="Is	$user_account	the	user	account	"
line2="you	wish	to	delete	from	the	system?	[y/n]"
get_answer
#
#	Call	process_answer	funtion:
#					if	user	answers	anything	but	"yes",	exit	script
#
exit_line1="Because	the	account,	$user_account,	is	not	"
exit_line1="the	one	you	wish	to	delete,	we	are	leaving	the	script..."
process_answer
#
##
#	Check	that	user_account	is	really	an	account	on	the	system
#
user_account_record=$(cat	/etc/passwd	|	grep	-w	$user_account)
#
if	[$?	-eq	1]										#	If	the	account	is	not	found,	exit	script
then
					echo
					echo	"Account,	$user_account,	not	found.	"
					echo	"Leaving	the	script..."
					echo
					exit
fi
#
echo
echo	"I	found	this	record:"
echo	$user_account_record
echo
#
line1="Is	this	the	correct	User	Account?	[y/n]"
get_answer
#
#
#	Call	process_answer	function:
#							if	user	answers	anything	but	"yes",	exit	script
#
exit_line1="Because	the	account,	$user_account,	is	not	"
exit_line2="the	one	you	wish	to	delete,	we	are	leaving	the	script..."
process_answer
#
##
#	Search	for	any	running	processes	that	belong	to	the	User	Account
#
echo
echo	"Step	#2	-	Find	process	on	system	belonging	to	user	account"
echo
#
ps	-u	$user_account>	/dev/null		#List	user	processes	running.
	
case	$?	in
1)					#	No	processes	running	for	this	User	Account
								#
					echo	"There	are	no	processes	for	this	account	currently	running."
					echo
;;
0)			#	Processes	running	for	this	User	Account.
					#	Ask	Script	User	if	wants	us	to	kill	the	processes.
					#
					echo	"$user_account	has	the	following	process(es)	running:"
					ps	-u	$user_account
					#
					line1="Would	you	like	me	to	kill	the	process(es)?	[y/n]"
					get_answer
					#
					answer=$(echo	$answer	|	cut	-c1)
					#
					case	$answer	in
					y|Y)			#	If	user	answers	"yes",
												#	kill	User	Account	processes.
												#
												echo
												echo	"Killing	off	process(es)..."
												#
												#	List	user	process	running	code	in	command_1
												command_1="ps	-u	$user_account	--no-heading"
												#
												#	Create	command_3	to	kill	processes	in	variable
												command_3="xargs	-d	\\n	/usr/bin/sudo	/bin/kill	-9"
												#
												#	Kill	processes	via	piping	commands	together
												$command_1	|	gawk	'{print	$1}'	|	$command_3

												#
												echo
												echo	"Process(es)	killed."
					;;
					*)					#If	user	answers	anything	but	"yes",	do	not	kill.
												echo
												echo	"Will	not	kill	process(es)."
					;;
					esac
;;
esac
###
#	Create	a	report	of	all	files	owned	by	User	Account
#
echo
echo	"Step	#3	-	Find	files	on	system	belonging	to	user	account"
echo
echo	"Creating	a	report	of	all	files	owned	by	$user_account."
echo
echo	"It	is	recommended	that	you	backup/archive	these	files,"
echo	"and	then	do	one	of	two	things:"
echo	"		1)	Delete	the	files"
echo	"		2)	Change	the	files'	ownership	to	a	current	user	account."
echo
echo	"Please	wait.	This	may	take	a	while..."
#
report_date=$(date	+%y%m%d)
report_file="$user_account"_Files_"$report_date".rpt
#
find	/	-user	$user_account>	$report_file	2>/dev/null
#
echo
echo	"Report	is	complete."
echo	"Name	of	report:						$report_file"
echo	-n	"Location	of	report:	";	pwd
echo
####################################
#		Remove	User	Account
echo
echo	"Step	#4	-	Remove	user	account"
echo
#
line1="Do	you	wish	to	remove	$user_account's	account	from	system?	[y/n]"
get_answer
#
#	Call	process_answer	function:
#							if	user	answers	anything	but	"yes",	exit	script
#
exit_line1="Since	you	do	not	wish	to	remove	the	user	account,"
exit_line2="$user_account	at	this	time,	exiting	the	script..."
process_answer
#
userdel	$user_account										#delete	user	account
echo
echo	"User	account,	$user_account,	has	been	removed"
echo
#
exit
$

That	was	lots	of	work!	However,	the	Delete_User.sh	script	is	a	great	time-saver	and	helps	you	avoid	lots	of	nasty
problems	when	deleting	local	user	accounts.

Running	the	script
Because	it	is	intended	to	function	as	an	interactive	script,	the	Delete_User.sh	script	should	not	be	placed	in	the	cron
table.	However,	it	is	still	important	to	ensure	that	it	works	as	expected.

Before	the	script	is	tested,	the	appropriate	permissions	are	set	on	the	script's	file:

$	chmod	u+x	Delete_User.sh
$
$	ls	-og	Delete_User.sh
-rwxr-xr-x	1	6111	Aug	12	14:18	Delete_User.sh
$

NOTE
To	run	this	type	of	script,	you	must	either	be	logged	in	as	the	root	user	account	or	use	the	sudo
command	to	run	the	script	with	super	user	privileges.

The	script	is	tested	by	removing	an	account,	consultant	,	that	was	set	up	for	a	company's	temporary	consultant	on
this	system:

$	sudo	./Delete_User.sh
[sudo]	password	for	christine:
Step	#1	-	Determine	User	Account	name	to	Delete
	
Please	enter	the	username	of	the	user
account	you	wish	to	delete	from	system:	consultant
Is	consultant	the	user	account
you	wish	to	delete	from	the	system?	[y/n]	yes
	
I	found	this	record:
consultant:x:1003:1004::/home/consultant:/bin/bash
	
Is	this	the	correct	User	Account?	[y/n]	y
	
Step	#2	-	Find	process	on	system	belonging	to	user	account
	
consultant	has	the	following	process(es)	running:
				PID	TTY										TIME	CMD
			5781	?								00:00:00	systemd
[...]
			5884	?								00:00:00	trojanhorse.sh
			5885	?								00:00:00	sleep
			5886	?								00:00:00	badjuju.sh
			5887	?								00:00:00	sleep
Would	you	like	me	to	kill	the	process(es)?	[y/n]	y
	
Killing	off	process(es)...
	
Process(es)	killed.
	
Step	#3	-	Find	files	on	system	belonging	to	user	account
	
Creating	a	report	of	all	files	owned	by	consultant.
	
It	is	recommended	that	you	backup/archive	these	files,
and	then	do	one	of	two	things:
		1)	Delete	the	files
		2)	Change	the	files'	ownership	to	a	current	user	account.
	
Please	wait.	This	may	take	a	while...
	
Report	is	complete.
Name	of	report:						consultant_Files_200812.rpt
Location	of	report:	/home/christine/scripts
	
	
Step	#4	-	Remove	user	account
	
Do	you	wish	to	remove	consultant's	account	from	system?	[y/n]	yes
	
User	account,	consultant,	has	been	removed
	
$	ls	*.rpt
consultant_Files_200812.rpt
$
$	grep	^consultant	/etc/passwd
$

That	worked	great!	Notice	the	script	was	run	using	sudo	,	because	super	user	privileges	are	needed	for	deleting
accounts.	And	notice	that	the	Consultant	user's	files	were	found	and	put	into	a	report	file,	and	then	the	account	was
deleted.

Now	you	have	a	script	utility	that	assists	you	when	you	need	to	delete	user	accounts.	Even	better,	you	can	modify	it
to	meet	your	organization's	needs.

Monitoring	Your	System
Mistakes	happen.	But	you	don't	want	those	mistakes	to	compromise	the	security	of	your	Linux	system.	One	thing
you	can	do	to	keep	an	eye	on	things	is	monitor	your	system	with	an	audit	script.	In	this	section,	we'll	delve	into	a
script	that	allows	you	to	monitor	two	particularly	tricky	areas	within	your	Linux	systems	—	system	account	shells
and	potentially	dangerous	file	permissions.

Obtaining	the	default	shell	audit	functions
System	accounts	(Chapter	7)	are	accounts	that	provide	services	or	perform	special	tasks.	Typically,	they	need	an
account	record	within	the	/etc/passwd	file	but	are	blocked	from	logging	into	the	system.	(A	classic	exception	to	this
rule	is	the	root	account.)

The	way	to	prevent	anyone	from	logging	into	these	accounts	is	to	set	their	default	shell	to	/bin/false	,
/usr/sbin/nologin	,	or	some	variation	(such	as	/sbin/nologin).	The	problem	occurs	when	a	system	account's	default
shell	is	changed	from	its	current	setting	to	/bin/bash	.	Although	a	nefarious	person	(called	a	bad	actor	in	modern
security	terminology)	cannot	log	in	to	that	account	unless	a	password	is	set	for	it,	it	still	is	a	step	toward	weakened
security.	Thus,	these	account	settings	need	auditing	and	any	incorrect	default	shell	situations	rectified.

One	way	to	audit	this	potential	issue	is	to	determine	how	many	accounts	have	false	or	nologin	set	as	their	default
shell,	and	then	periodically	check	this	number.	If	the	number	decreases,	it's	worth	further	investigation.

First,	to	grab	the	default	shell	from	each	account	within	the	/etc/passwd	file,	we'll	use	the	cut	command.	With	this
command,	we	can	denote	the	field	delimiter	used	by	the	file,	and	tell	it	what	field	we	want	from	each	record.	In	the
case	of	the	/etc/passwd	file,	the	delimiter	is	a	colon	(:),	and	we	want	to	see	what	is	in	the	default	shell	field,	which
happens	to	be	the	seventh	field	in	each	record:

$	cut	-d:	-f7	/etc/passwd
/bin/bash
/usr/sbin/nologin
/usr/sbin/nologin
/usr/sbin/nologin
[...]
/bin/false
/bin/bash
/usr/sbin/nologin
/bin/bash
/usr/sbin/nologin
/bin/bash
$

Now	that	we're	able	to	grab	the	right	field,	we	need	to	filter	out	the	results.	The	only	items	we	are	interested	in	are
false	and	nologin	shells.	Here,	grep	(Chapter	4)	can	help	us.	One	of	the	neat	things	about	grep	is	that	we	can	use
regular	expressions	(Chapter	20,	“Regular	Expressions”)	as	our	pattern	for	which	to	search.	In	this	case,	because	we
need	to	search	for	both	false	and	nologin,	we'll	need	an	extended	regular	expression	(ERE).	And	grep	can	handle
those,	too,	as	long	as	we	tack	on	its	-E	option.	We'll	pipe	the	cut	command's	findings	into	the	grep	command	and
filter	out	any	default	shells	that	don't	match	what	we're	looking	for:

$	cut	-d:	-f7	/etc/passwd	|
>	grep	-E	"(false|nologin)"
/usr/sbin/nologin
/usr/sbin/nologin
/usr/sbin/nologin
/usr/sbin/nologin
[...]
/bin/false
/bin/false
/usr/sbin/nologin
/usr/sbin/nologin
$

That	works	perfectly!	Notice	in	our	grep	command,	the	two	choices	to	find	are	false	and	nologin	.	In	order	to	act	as
an	extended	regular	expression,	these	either/or	choices	are	placed	into	parentheses	and	separated	by	a	pipe	(|)
symbol.	One	more	item	is	required	for	this	grep	filter	to	work:	shell	quoting.	Due	to	the	fact	that	parentheses	and
pipes	have	special	meaning	to	the	Bash	shell,	we	must	encase	this	ERE	syntax	in	shell	quotes	to	protect	them	from
incorrect	interpretation	by	the	shell.

Now	we	have	almost	all	the	pieces	of	the	puzzle	in	place.	Still	needed	is	the	ability	to	count	the	number	of	accounts
that	have	these	special	default	shells.	Thus,	we'll	include	the	wc	command	(Chapter	11).	Because	the	only	item	we	are
interested	in	is	the	number	of	accounts	that	have	these	shells,	we	will	use	the	-l	(lowercase	L)	option	to	count	the
lines	produced	by	the	grep	command.	Now	our	code	looks	like	this:

$	cut	-d:	-f7	/etc/passwd	|
>	grep	-E	"(false|nologin)"	|	wc	-l
44
$

Thus,	we	have	44	accounts	on	this	system	that	have	either	false	or	nologin	as	their	default	shell.	We	still	need	to
send	this	number	to	a	report	file,	but	we	want	it	to	display	to	the	script	user	too.	To	accomplish	this	task,	we'll	use
the	tee	command	(Chapter	15).

$	cut	-d:	-f7	/etc/passwd	|
>	grep	-E	"(false|nologin)"	|	wc	-l	|
>	tee	mydefaultshell.rpt
44
$
$	cat	mydefaultshell.rpt
44
$

Now	we're	getting	somewhere.	However,	because	we	need	to	keep	multiple	copies	of	the	produced	report	for	later
comparison,	a	name	better	than	mydefaultshell.rpt	is	essential.	It's	typically	a	good	idea	to	include	the	current	date
into	the	file's	name	in	situations	like	this.	To	grab	the	date	and	some	additional	time	identification	information,	we'll
use	the	date	command.	The	needed	format	of	the	date	command	looks	like	this:

$	date	+%F%s
2020-08-141597420127
$

So	that	we	can	use	it	in	a	filename,	we	set	the	format	to	one	that	displays	the	current	date	with	dashes	(%F).	Because
this	audit	may	run	multiple	times	per	day,	we	tacked	onto	the	time	stamp	additional	time	identification	information
(%s):	the	number	of	seconds	since	January	1,	1970.

NOTE
Unix	Epoch	time,	which	is	also	called	POSIX	time,	is	the	number	of	seconds	since	January	1,
1970.	It	is	used	within	Linux	systems	for	a	variety	of	purposes,	such	as	recording	the	last	time
your	password	was	changed.

Now	we	can	create	an	absolute	directory	reference	to	our	uniquely	named	file	for	use	in	our	tee	command:

reportDir="/home/christine/scripts/AuditReports"
reportDate="$(date	+%F%s)"
accountReport=$reportDir/AccountAudit$reportDate.rpt
cat	/etc/passwd	|	cut	-d:	-f7	|
grep	-E	"(nologin|false)"	|	wc	-l	|
tee	$accountReport

There	is	another	problem	to	handle	before	we	move	on	to	the	second	audit	of	this	script:	protecting	the	newly
created	report.	Once	this	system	account	default	shell	count	is	recorded,	you	don't	want	anyone	to	modify	the	report
or	delete	it,	because	the	script	will	need	it	later	for	a	count	comparison.

To	protect	the	report,	we'll	enlist	the	immutable	attribute.	This	setting	is	so	named	because,	once	set	on	a	file,	no
one	can	modify	the	file	or	remove	it	(as	well	as	some	additional	features.)	To	set	this	attribute,	super	user	privileges
are	required,	and	the	chattr	command	is	used:

$	sudo	chattr	+i	mydefaultshell.rpt
[sudo]	password	for	christine:
$
$	rm	-i	mydefaultshell.rpt
rm:	cannot	remove	'mydefaultshell.rpt':	Operation	not	permitted
$
$	sudo	rm	-i	mydefaultshell.rpt
rm:	remove	regular	file	'mydefaultshell.rpt'?	y
rm:	cannot	remove	'mydefaultshell.rpt':	Operation	not	permitted
$
$	echo	"Hello"	>>	mydefaultshell.rpt
-bash:	mydefaultshell.rpt:	Operation	not	permitted
$
	

Once	the	immutable	attribute	(sometimes	called	the	immutable	bit)	is	set,	no	one	can	remove	or	modify	the	file,
including	those	with	super	user	privileges!	To	see	if	this	attribute	is	set,	use	the	lsattr	command	and	look	for	the	i
in	the	output.	To	remove	the	attribute,	you	again	need	super	user	privileges	for	use	the	chattr	command.	Once
removed,	the	file	can	be	modified	or	deleted:

$	lsattr	mydefaultshell.rpt
----i---------e-----	mydefaultshell.rpt
$
$	sudo	chattr	-i	mydefaultshell.rpt
$
$	lsattr	mydefaultshell.rpt
--------------e-----	mydefaultshell.rpt
$
$	echo	"Hello"	>>	mydefaultshell.rpt
$
$	cat	mydefaultshell.rpt
44
Hello
$
$	rm	-i	mydefaultshell.rpt
rm:	remove	regular	file	'mydefaultshell.rpt'?	y
$

Now	that	we	can	protect	our	audit	report,	only	one	last	issue	remains:	comparing	the	current	report	to	the	last
report.	In	order	to	do	this,	we'll	employ	the	ls	command	and	two	new	options:	-1	(the	number	one)	and	-t	.	Using
these	options,	the	ls	command	will	list	out	the	files	in	a	single	column	in	the	order	of	newest	report	to	oldest:

$	reportDate="$(date	+%F%s)"
$	touch	AccountAudit$reportDate.rpt
$
$	reportDate="$(date	+%F%s)"
$	touch	AccountAudit$reportDate.rpt
$
$	ls	-1t	AccountAudit*.rpt
AccountAudit2020-08-141597422307.rpt
AccountAudit2020-08-141597422296.rpt
$

The	reason	for	listing	the	files	in	a	single-column	format	is	so	that	we	can	employ	sed	to	help	us	grab	the	filename	of
the	second	oldest	report	for	comparison,	as	such:

$	prevReport="$(ls	-1t	AccountAudit*.rpt	|
>	sed	-n	'2p')"

$
$	echo	$prevReport
AccountAudit2020-08-141597422296.rpt
$

That	worked	just	as	we	were	expecting.	But	what	if	the	second	report	doesn't	exist?	We'll	get	unexpected	results,
which	may	result	in	problems	within	our	script.	To	handle	this	last	audit	report	issue,	we'll	bring	in	the	if	-	then
statement:

prevReport="$(ls	-1t	$reportDir/AccountAudit*.rpt	|
sed	-n	'2p')"
#
if	[-z	$prevReport]
then
				echo
				echo	"No	previous	false/nologin	report	exists	to	compare."
else
				echo
				echo	"Previous	report's	false/nologin	shells:	"
				cat	$prevReport
				fi

Now	that	we've	got	all	the	default	shell	audit	functionality	determined,	we	can	start	taking	a	look	at	the	permission
audit	side	of	our	script.

NOTE
This	script	is	handy	for	conducting	audits.	However,	it	is	not	an	intrusion	detection	system
(IDS).	An	IDS	application	monitors	the	network	and/or	applications	running	on	your	system,
looking	for	suspicious	behavior.	It	provides	various	features,	such	as	blocking	attacks	and
reporting	anything	it	finds	potentially	malicious.	If	you	are	concerned	about	bad	actors
compromising	your	system,	an	IDS	application	is	the	way	to	go.	There	are	several	from	which
to	choose,	such	as	Snort,	DenyHosts,	and	Fail2ban.

Obtaining	the	permission	audit	functions
The	set	user	ID	(SUID)	and	set	group	ID	(SGID)	are	handy	permissions	that	are	used	by	several	programs	within	the
Linux	virtual	directory	system	(Chapter	7).	However,	problems	arise	if	these	permissions	are	unintentionally	or	even
maliciously	set	on	programs,	causing	them	to	run	under	a	different	grouping	of	permissions.	Thus,	these	two
potentially	“dangerous”	permissions	are	worthwhile	to	audit	on	your	system	to	ensure	they	are	set	only	where	they
belong.

To	locate	the	files	and	directories	that	have	these	two	permissions,	we'll	employ	the	find	command.	Since	we	need	to
audit	all	files	and	directories	residing	on	this	system,	the	starting	point	for	this	search	will	be	the	top	of	the	virtual
directory	structure	(/).	To	designate	to	the	find	command	what	permissions	we	are	searching	for,	the	-perm	option
(permissions)	will	work.	This	particular	option	allows	us	to	use	an	octal	value	(Chapter	7)	to	designate	the	particular
permission	settings	we	need	to	find.	We'll	also	use	super	user	privileges	to	examine	all	the	various	files	and
directories.	And	to	keep	the	display	clean,	we'll	throw	errors	(2)	into	the	black	hole	(/dev/null):

$	sudo	find	/	-perm	/6000	2>/dev/null
[sudo]	password	for	christine:
/var/local
/var/crash
/var/metrics
/var/log/journal
[...]
/usr/bin/umount
/usr/bin/sudo
/usr/bin/chsh
[...]
/run/log/journal
$

Notice	that	the	value	after	-perm	is	/	6000	.	The	octal	value	of	6	designates	find	to	search	for	both	SUID	and	SGID
permissions.	The	forward	slash	(/)	and	the	000	octal	values	tell	the	find	command	to	ignore	the	rest	of	a	file's	or
directory's	permissions.	If	the	forward	slash	(/)	was	not	used,	find	would	look	for	files	with	the	SUID	and	SGID
permissions,	and	all	other	permissions	set	to	nothing	(000),	which	is	not	what	we	want.

NOTE
In	older	versions	of	the	find	command,	the	plus	symbol	was	used	(+),	instead	of	the	forward
slash	(/)	to	ignore	certain	permissions.	If	you	are	using	an	older	version	of	Linux,	you	may
need	to	swap	out	the	forward	slash	for	the	plus	symbol.

You	can	redirect	STDOUT	from	the	find	command	into	a	file	to	leisurely	review	later.	It	is	also	useful	to	save	this

report	to	compare	with	later	audits	of	these	permissions:

reportDir="/home/christine/scripts/AuditReports"
reportDate="$(date	+%F%s)"
permReport=$reportDir/PermissionAudit$reportDate.rpt
#
sudo	find	/	-perm	/6000>$permReport	2>/dev/null

Now	that	the	permission	audit	report	is	saved,	we	can	compare	earlier	versions	of	the	report	to	the	current	one	to
notify	the	script	user	of	any	differences	between	the	two.	Changes	to	file	permissions	indicate	either	new	software
was	installed	that	needed	these	settings	or	that	a	file	has	been	erroneously	(or	maliciously)	set	with	these
permissions.

To	perform	this	comparison,	we	can	use	the	diff	command.	This	utility	allows	us	to	compare	files,	and	it	displays
any	differences	between	the	two	to	STDOUT.

WARNING
The	diff	command	compares	files	only	on	a	line-by-line	basis.	Thus,	for	these	reports	it	will
compare	line	1	of	the	first	report	to	line	1	of	the	second	report,	line	2	to	line	2,	line	3	to	line	3,
and	so	on.	If	a	new	file	or	set	of	files	is	added,	due	to	say	a	software	installation,	and	the	files
need	the	SUID	or	SGID	permissions,	when	the	next	audit	is	run,	diff	will	display	many
differences!	To	solve	this	potential	problem,	you	can	use	the	-q	or	the	--brief	option	on	the	diff
command,	and	it	will	only	display	the	message	that	the	two	reports	are	different.

We'll	also	need	verification	that	another	report	exists	before	we	try	this	comparison.	Here's	what	this	code	looks	like:

prevReport="$(ls	-1t	$reportDir/PermissionAudit*.rpt	|
sed	-n	'2p')"
#
if	[-z	$prevReport]
then
				echo
				echo	"No	previous	permission	report	exists	to	compare."
else
					echo
					echo	"Differences	between	this	report	and	the	last:	"
					#
					differences=$(diff	$permReport	$prevReport)
					#
					if	[-z	"$differences"]
					then
									echo	"No	differences	exist."
					else
									echo	$differences
									fi
				fi

Notice	that	checks	are	done	not	only	for	another	report	but	also	to	see	if	there	are	truly	any	differences	between	the
two	reports.	If	there	are	no	differences,	only	No	differences	exist	is	displayed.

Creating	the	script
Now	that	we	have	all	the	primary	features	figured	out	for	this	audit	script,	we	can	start	putting	it	together.	For	this
particular	Bash	shell	script,	we	decided	to	use	getopts	(Chapter	14)	and	offer	the	use	of	the	-A	option	to	run	only	the
account	audit,	and	the	-p	option	to	execute	only	the	permission	audit.	Although	you	can	run	both	audits	by
combining	the	two	options	(-Ap),	we	included	the	flexibility	of	running	both	audits	if	no	options	were	provided.	This
allows	easier	incorporation	of	this	script	into	an	automated	environment	via	cron	or	anacron.

Here's	the	entire	Audit_System.sh	script	for	your	review:

$	cat	Audit_System.sh
#!/bin/bash
#
#	Audit_System.sh	-	Audit	system	files	and	accounts
##
#
###	Initialize	variables	#######################
#
runAccountAudit="false"
runPermAudit="false"
#
reportDir="/home/christine/scripts/AuditReports"
#
###	Get	options	(if	provided)	#################
#
while	getopts	:Ap	opt
do
					case	"$opt"	in
										A)	runAccountAudit="true"	;;

										p)	runPermAudit="true"	;;
										*)	echo	"Not	a	valid	option."
													echo	"Valid	options	are:	-A,	-p,	or	-Ap"
													exit
										;;
					esac
done
#
###	Determine	if	no	options	##################
#
if	[$OPTIND	-eq	1]
then
					#	No	options	were	provided;	set	all	to	"true"
					runAccountAudit="true"
					runPermAudit="true"
fi
#
###	Run	selected	audits	#######################
#
##	Account	Audit	##################
#
if	[$runAccountAudit	=	"true"]
then
				echo
				echo	"******	Account	Audit	*****"
				echo
#
#	Determine	current	false/nologin	shell	count
#
				echo	"Number	of	current	false/nologin	shells:	"
#
				reportDate="$(date	+%F%s)"
				accountReport=$reportDir/AccountAudit$reportDate.rpt
#
				#	Create	current	report
				cat	/etc/passwd	|	cut	-d:	-f7	|
				grep	-E	"(nologin|false)"	|	wc	-l	|
				tee	$accountReport
#
				#	Change	report's	attributes:
				sudo	chattr	+i		$accountReport
#
#	Show	past	false/nologin	shell	count
#
				prevReport="$(ls	-1t	$reportDir/AccountAudit*.rpt	|
				sed	-n	'2p')"
				if	[-z	$prevReport]
				then
									echo
									echo	"No	previous	false/nologin	report	exists	to	compare."
				else
									echo
									echo	"Previous	report's	false/nologin	shells:	"
									cat	$prevReport
				fi
fi
#
##	Permissions	Audit	##############
#
if	[$runPermAudit	=	"true"]
then
				echo
				echo	"******	SUID/SGID	Audit	*****"
				echo
				reportDate="$(date	+%F%s)"
				permReport=$reportDir/PermissionAudit$reportDate.rpt
#
				#	Create	current	report
				echo	"Creating	report.	This	may	take	a	while..."
				sudo	find	/	-perm	/6000>$permReport	2>/dev/null
#
				#	Change	report's	attributes:
				sudo	chattr	+i		$permReport
#
#	Compare	to	last	permission	report
#
				#
				prevReport="$(ls	-1t	$reportDir/PermissionAudit*.rpt	|
				sed	-n	'2p')"
				#
				if	[-z	$prevReport]
				then
									echo
									echo	"No	previous	permission	report	exists	to	compare."
				else
									echo
									echo	"Differences	between	this	report	and	the	last:	"

									#
									differences=$(diff	$permReport	$prevReport)
									#
									if	[-z	"$differences"]
									then
													echo	"No	differences	exist."
									else
													echo	$differences
									fi
				fi
fi
#
exit
$

There	is	a	lot	of	high-level	scripting	going	on	in	this	file.	And	now	that	you've	reached	Bash	shell	scripting	guru
status,	you	may	be	tempted	to	start	thinking	about	tweaks,	but	hold	on.	We've	got	to	test	the	script	first.

Running	the	script
Before	we	run	the	script,	we	need	to	create	the	audit	report	directory.	The	directory	will	hold	the	audit	reports,	so
choose	your	directory	location	carefully.

$	mkdir	AuditReports
$	ls	AuditReports/
$

Once	the	audit	report	directory	is	created,	you	can	start	running	the	script.	Our	first	time	through,	we'll	run	only	the
account	default	shell	audit	by	using	the	-A	option:

$./Audit_System.sh	-A
	
******	Account	Audit	*****
	
Number	of	current	false/nologin	shells:
44
	
No	previous	false/nologin	report	exists	to	compare.
$

That	worked	perfectly.	Notice	that	there	are	44	accounts	on	this	system	that	use	false	or	nologin	as	their	default
shells.	Also	notice	that	since	no	other	account	audit	reports	exist,	the	script	properly	let	us	know	there	was	nothing
with	which	to	compare	this	report.

Now	let's	try	out	the	permission	audit	portion	of	the	script	by	employing	the	-p	option:

$./Audit_System.sh	-p
	
******	SUID/SGID	Audit	*****
	
Creating	report.	This	may	take	a	while...
	
No	previous	permission	report	exists	to	compare.
$
$	ls	-1	AuditReports/
AccountAudit2020-08-141597427922.rpt
PermissionAudit2020-08-141597428079.rpt
$

It	worked	as	expected.	Now	we	have	two	audit	reports	stored	in	our	AuditReports	directory.

NOTE
You	may	have	noticed	that	the	sudo	command	is	used	two	times	within	this	script.	The	reason
the	script	didn't	ask	for	our	password	when	running	the	script	is	due	to	our	recent	use	of	the
sudo	command.	If	you	haven't	used	sudo	in	a	while,	it	will	come	up	and	ask	for	your	password.	If
you	don't	want	this	type	of	behavior	within	your	script,	remove	the	sudo	commands	from	it	and
run	the	script	like	this:	sudo	./Audit_System.sh	,	along	with	the	options	you	choose	to	use.

Now,	let's	add	a	bogus	file	that	has	SUID	permissions	and	see	if	the	script	catches	it.	We'll	try	running	it	with	both
options	(so	that	both	audits	are	conducted)	this	time	too:

$	touch	sneakyFile.exe
$	chmod	u+xs	sneakyFile.exe
$
$./Audit_System.sh	-Ap
	
******	Account	Audit	*****
	
Number	of	current	false/nologin	shells:
44
	

Previous	report's	false/nologin	shells:
44
	
******	SUID/SGID	Audit	*****
	
Creating	report.	This	may	take	a	while...
	
Differences	between	this	report	and	the	last:
82d81	<	/home/christine/scripts/sneakyFile.exe
$

Not	only	did	both	audits	run,	but	the	permission	audit	caught	our	sneakyFile.exe	SUID	permission.	Now	that	we
know	the	script	runs	correctly,	it's	time	to	start	thinking	about	modifications	and	improvements.	Here	are	a	few	for
you	to	consider:

Add	additional	audits	to	the	script,	such	as	reports	on	newly	added	accounts	or	failed	login	attempts.

Limit	the	number	of	reports	stored	in	the	AuditReports	directory.

Use	checksums	(type	man	SHA512sum	to	learn	more)	to	add	an	additional	layer	that	helps	ensure	reports	have	not
been	modified.

What	additional	functionality	or	tweaks	would	you	like	to	add	to	this	script?	Now	that	you	are	a	Linux	Bash	shell
scripting	ninja,	we	bet	you	have	a	lot	of	great	ideas.

Summary
This	chapter	put	some	of	the	shell-scripting	information	presented	in	the	book	to	good	use	for	creating	additional
Linux	utilities.	When	you're	responsible	for	a	Linux	system,	whether	it's	a	large	multiuser	system	or	your	own
system,	you	need	to	watch	lots	of	things.	Instead	of	manually	running	commands,	you	can	create	shell	script	utilities
to	do	the	work	for	you.

The	first	section	walked	you	through	using	shell	scripts	for	archiving	and	backing	up	data	files	on	the	Linux	system.
The	tar	command	is	a	popular	command	for	archiving	data.	The	chapter	showed	you	how	to	use	it	in	shell	scripts	to
create	archive	files	and	how	to	manage	the	archive	files	in	an	archive	directory.

The	next	section	covered	using	a	shell	script	for	the	four	steps	needed	to	delete	user	accounts.	Creating	functions	for
shell	code	that	is	repeated	within	a	script	makes	the	code	easier	to	read	and	modify.	This	script	combined	many	of
the	different	structured	commands,	such	as	the	case	and	while	commands.	The	chapter	demonstrated	the	difference
in	script	structure	for	a	script	destined	for	the	cron	tables	versus	an	interactive	script.

The	chapter	ended	with	a	script	that	helps	to	audit	some	potential	problems:	misuse	of	the	SUID	and	SGID
permissions,	and	incorrect	default	shells	for	system	accounts.	This	script	is	easily	expanded	to	add	many	additional
audits.	It	is	also	rather	simple	to	modify	the	script	so	that	it	can	be	run	automatically	on	a	daily	or	a	weekly	basis	by
anacron.

Next,	we'll	look	at	how	to	manage	all	these	shell	scripts	you	now	have,	as	well	as	the	additional	ones	you'll	write
along	your	Bash	shell	scripting	career	path.

CHAPTER	25
Getting	Organized
IN	THIS	CHAPTER

Looking	at	version	control

Building	a	Git	environment

Using	Git

Writing	complex	and	useful	shell	scripts	saves	lots	of	time,	but	you	can	quickly	lose	that	saved	time	through	script
mismanagement.	Tracking	updates	to	scripts,	working	with	other	team	members	involved	in	modifying	the	scripts,
and	distributing	the	scripts	to	your	various	systems	all	add	to	the	complexity	of	script	management.	Fortunately,
there	is	a	utility	that	can	help	you	properly	manage	your	Bash	shell	scripts.	In	this	chapter,	we	take	you	through	the
concept	of	version	control	and	the	popular	Git	utility	that	implements	it.

Understanding	Version	Control
Imagine	a	system	admin	team	whose	members	all	write	scripts	for	the	various	Linux	systems	in	the	company.	A
backup	script	is	managed	by	this	team,	and	it	is	deployed	on	nearly	all	of	the	company's	servers.	A	few	special
versions	of	this	backup	script	exist	that	use	encryption	due	to	files	being	transferred	over	public	networks.

One	day,	it's	determined	that	the	backup	script	needs	an	update	to	improve	its	processing	speed	and	reliability.	The
team	starts	the	backup	script	update	project.	They	begin	the	process	of	modifying	the	backup	script	and	testing	the
modifications.	Through	this	process,	each	project	team	member	has	to	make	sure	they	get	the	latest	version	of	the
script	to	modify	and/or	test.	Adding	more	complexity	to	this	matter,	the	team	is	not	located	in	the	same	building.	In
fact,	they	are	located	around	the	world.	To	keep	everything	straight,	the	backup	script	update	project	requires	a	lot
of	text	messages,	emails,	and	sometimes	online	meetings.	In	addition,	the	special	versions	of	the	backup	script	that
use	encryption	also	must	be	modified	with	the	latest	changes	and	tested.	This	script	update	project	quickly	becomes
bogged	down	with	complications	and	required	extra	communication.

The	backup	script	update	project	team	can	get	help	through	version	control.	Version	control	(also	known	as	source
control	or	revision	control)	is	a	method	or	system	that	organizes	various	project	files	and	tracks	updates	to	them.

NOTE
Version	control	methods	or	systems	can	control	more	than	Bash	scripts.	They	can	typically
handle	in-house	written	software	programs,	plain-text	files,	graphics,	word	processing
documents,	compressed	files,	and	more.

A	version	control	system	(VCS)	provides	a	common	central	place	to	store	and	merge	Bash	script	files	so	that	the
latest	version	is	easily	accessed.	It	protects	the	files	so	that	a	script	is	not	accidentally	overwritten	by	another	script
writer.	And	it	eliminates	extra	communications	concerning	who	is	currently	modifying	what.

Additional	benefits	include	situations	around	new	team	members	of	a	script	project.	For	example,	a	new	script
writer	team	member	can	get	a	copy	of	the	latest	backup	script	version	through	the	version	control	system	and
immediately	start	work	on	the	backup	script	update	project.

Distributed	VCSs	make	script	projects	even	easier.	The	script	writers	can	perform	their	development	or	modification
work	on	their	own	Linux	system.	Once	they've	reach	a	modification	goal,	they	send	a	copy	of	their	modified	files	and
VCS	metadata	to	the	remote	central	system,	and	other	team	members	can	download	this	latest	project	version	and
conduct	tests	or	work	on	their	modification	goal.	A	side	benefit	is	that	now	the	work	is	backed	up	to	a	central
location,	which	is	easily	accessible	from	around	the	world.

NOTE
A	version	control	system	for	Linux	projects	was	created	by	Linus	Torvalds	in	2005.	You	may
recognize	that	name,	since	he	developed	the	Linux	kernel	(Chapter	1,	“Starting	with	Linux
Shells”).	Linus	desired	a	distributed	VCS	that	could	quickly	merge	files	as	well	as	provide	other
features	that	Linux	kernel	developers	needed.	He	couldn't	find	one,	so	he	wrote	one!	The	result
was	Git,	which	is	still	a	very	popular	high-performance	distributed	VCS.

Git	is	a	distributed	VCS,	which	is	often	employed	in	agile	and	continuous	software	development	environments.	But	it
is	also	used	for	managing	Bash	shell	scripts.	To	understand	Git's	underlying	principles,	you	need	to	know	a	few
terms	related	to	its	configuration.	Figure	25-1	shows	a	conceptual	depiction	of	the	Git	environment.

Each	location	within	the	Git	environment	is	important.	The	following	sections	cover	the	details	of	these	areas	and

highlight	a	few	special	Git	features.

Working	directory
The	working	directory	is	where	all	the	scripts	are	created,	modified,	and	reviewed.	It	is	typically	a	subdirectory
within	the	script	writer's	home	directory,	similar	to	/home/christine/scripts.	It	is	best	to	create	a	new	subdirectory
for	every	project,	because	Git	places	files	within	that	location	for	tracking	purposes.

FIGURE	25-1	Conceptual	depiction	of	the	Git	environment

The	script	writer's	Linux	system,	where	the	working	directory	resides,	is	typically	a	local	server	or	laptop,	depending
on	workplace	requirements.	You	could	even	set	up	your	working	environment	within	a	local	virtual	machine	that
mimics	the	script's	destination	system(s).	This	is	also	a	wonderful	method	for	testing	modified	or	new	scripts,
because	it	protects	the	destination	Linux	systems	from	disruption.

Staging	area
A	staging	area	is	also	called	the	index.	This	area	is	located	on	the	same	system	as	the	working	directory.	Bash	scripts
in	the	working	directory	are	registered	into	the	staging	area	via	a	Git	command	(git	add).	The	staging	area	employs
a	hidden	subdirectory	in	the	working	directory	named	.git	.	This	required	location	is	created	via	the	git	init
command.

When	scripts	are	cataloged	into	the	staging	area,	Git	creates	or	updates	script	information	in	an	index	file,
.git/index	.	The	data	recorded	includes	checksums	(Chapter	24,	“Writing	Simple	Script	Utilities”),	time	stamps,	and
associated	script	filenames.

Besides	updating	the	index	file,	Git	compresses	the	script	file(s)	and	stores	these	compressed	files	as	an	object(s),
also	called	a	blob,	in	a	.git/objects/	directory.	If	a	script	has	been	modified,	it	is	compressed	and	stored	as	a	new
object	in	the	.git/objects/	directory.	Git	does	not	just	store	script	modifications;	it	keeps	a	compressed	copy	of
each	modified	script.

Looking	at	the	local	repository
The	local	repository	contains	each	script	file's	history.	It	uses	the	working	directory's	.git	subdirectory	as	well.
Relationships	between	the	script	file	versions	(called	a	project	tree)	and	commit	information	are	stored	as	objects	in
the	.git/objects/	directory	via	a	Git	command	(git	commit).

Together	the	project	tree	and	commit	data	are	called	a	snapshot.	Every	commit	creates	a	new	snapshot.	However,
old	snapshots	are	kept,	and	they	are	viewable.	Another	nice	feature	is	that	you	can	return	to	a	previous	snapshot	if
needed.

Exploring	a	remote	repository
In	the	Git	configuration,	the	remote	repository	is	typically	a	cloud-based	location	that	provides	a	code	hosting
service.	However,	you	can	set	up	a	code	hosting	site	on	another	server	within	your	local	network	to	serve	as	the
remote	repository.	What	you	use	really	depends	on	your	project's	needs	as	well	as	your	script	management	team
members'	locations.

Prominent	remote	repositories	include	GitHub,	GitLab,	BitBucket,	and	Launchpad.	However,	by	far,	GitHub	is	the
most	popular.	We	use	GitHub	for	our	remote	repository	examples	in	this	book.

Branching
An	additional	feature	provided	by	Git,	called	a	branch,	can	help	in	your	various	script	projects.	A	branch	is	an	area
within	a	local	repository	for	a	particular	project	section.	For	example,	you	can	have	the	primary	branch	in	your	script
project	named	main	,	and	when	you	make	a	modification	to	the	script	in	the	main	branch,	it's	best	practice	to	create	a
new	branch,	called	something	like	modification	,	and	make	the	changes	to	the	script	there.	Once	the	script	changes
have	been	tested,	the	script	in	the	modification	branch	is	often	merged	back	into	the	primary	branch.

The	advantage	to	using	this	method	is	that	your	scripts	that	reside	in	the	main	branch	stay	production-worthy,	since
the	Bash	shell	scripts	that	are	being	modified	and	tested	reside	in	a	different	branch.	Only	when	the	modified	scripts

are	successfully	tested	are	the	scripts	merged	into	the	main	branch.

Cloning
Another	nice	feature	of	Git	is	that	you	can	copy	a	project.	This	process	is	called	cloning.	If	your	team	brings	on	a	new
member,	that	individual	can	clone	the	script	and	tracking	files	from	the	remote	repository	and	have	all	they	need	to
start	participating	in	modifying	the	script.

This	feature	is	also	useful	for	specialized	versions	of	a	script.	In	our	earlier	scenario,	the	backup	script	was	modified
on	a	few	Linux	systems	to	include	encryption.	When	the	backup	script	update	project	has	completed	its
modifications,	merged	them	into	the	primary	branch,	and	pushed	the	local	repository	to	a	remote	repository,	the
team	responsible	for	making	the	special	backup	script	versions	can	clone	the	project.	Then	they'll	have	all	the	pieces
needed	to	add	encryption	to	the	improved	backup	script.

NOTE
With	Git,	cloning	and	forking	are	different	but	closely	related	activities.	A	project	clone	occurs
when	the	files	are	downloaded	from	a	remote	repository	to	your	local	system	using	the	git
clone	command.	Forking	happens	when	you	copy	from	one	remote	repository	to	another	one.

Using	Git	for	VCS
In	case	you	are	not	yet	sold	on	the	idea	of	using	Git	as	your	version	control	system	for	your	script	projects,	we'll	try
to	make	our	case	a	little	stronger.	Using	Git	as	your	VCS	includes	the	following	benefits:

Performance	Git	uses	only	local	files	to	operate,	making	it	faster	to	employ.	The	exceptions	to	this	include
sending	and	retrieving	files	to	and	from	a	remote	repository.

History	Git	captures	all	the	files'	contents	at	the	moment	the	file	is	registered	with	the	index.	When	a	commit
is	completed	to	the	local	repository,	Git	creates	and	stores	a	reference	to	that	snapshot	in	time.

Accuracy	Git	employs	checksums	to	protect	file	integrity.

Decentralization	Script	writers	can	work	on	the	same	project,	but	they	don't	have	to	be	on	the	same	network
or	system.

Older	VCSs	required	script	writers	to	be	on	the	same	network,	which	didn't	provide	a	great	deal	of	flexibility.	They
were	also	slower	in	operation,	which	is	one	reason	Linus	Torvalds	decided	to	create	Git.

Now	that,	hopefully,	we	have	convinced	you	to	consider	Git,	we'll	cover	the	basics	of	using	it	for	your	next	script
writing	or	modification	project.

Setting	Up	Your	Git	Environment
The	Git	utility	typically	is	not	installed	by	default.	Thus,	you'll	need	to	install	the	git	package	prior	to	setting	up	your
Git	environment.	See	Chapter	9,	“Installing	Software,”	for	details	on	package	installation.

Here's	an	installation	of	Git	on	a	CentOS	Linux	distribution:

$	sudo	dnf	install	git
[sudo]	password	for	christine:
[...]
Dependencies	resolved.
===
	Package															Arch								Version																	Repository						Size
===
Installing:
	git																			x86_64						2.18.4-2.el8_2										AppStream						186	k
Installing	dependencies:
	git-core														x86_64						2.18.4-2.el8_2										AppStream						4.0	M
	git-core-doc										noarch						2.18.4-2.el8_2										AppStream						2.3	M
	perl-Error												noarch						1:0.17025-2.el8									AppStream							46	k
	perl-Git														noarch						2.18.4-2.el8_2										AppStream							77	k
	perl-TermReadKey						x86_64						2.37-7.el8														AppStream							40	k
	
Transaction	Summary
===
Install		6	Packages
	
Total	download	size:	6.6	M
Installed	size:	36	M
Is	this	ok	[y/N]:	y
Downloading	Packages:
[...]
Running	transaction	check
Transaction	check	succeeded.
Running	transaction	test
Transaction	test	succeeded.
[...]

Installed:
		git-2.18.4-2.el8_2.x86_64														git-core-2.18.4-2.el8_2.x86_64
		git-core-doc-2.18.4-2.el8_2.noarch					perl-Error-1:0.17025-2.el8.noarch
		perl-Git-2.18.4-2.el8_2.noarch									perl-TermReadKey-2.37-7.el8.x86_64
	
Complete!
$
$	which	git
/usr/bin/git
$

And	here's	an	installation	of	Git	on	an	Ubuntu	Linux	distribution:

$	sudo	apt	install	git
[sudo]	password	for	christine:
Reading	package	lists...	Done
Building	dependency	tree
Reading	state	information...	Done
The	following	additional	packages	will	be	installed:
		git-man	liberror-perl
[...]
After	this	operation,	38.4	MB	of	additional	disk	space	will	be	used.
Do	you	want	to	continue?	[Y/n]	Y
[...]
Fetched	5,464	kB	in	1min	33s	(58.9	kB/s)
Selecting	previously	unselected	package	liberror-perl.
(Reading	database	...	202052	files	and	directories	currently	installed.)
[...]
Unpacking	git	(1:2.25.1-1ubuntu3)	...
Setting	up	liberror-perl	(0.17029-1)	...
Setting	up	git-man	(1:2.25.1-1ubuntu3)	...
Setting	up	git	(1:2.25.1-1ubuntu3)	...
Processing	triggers	for	man-db	(2.9.1-1)	...
$
$	which	git
/usr/bin/git
$

Nothing	was	too	difficult	with	this	process.	As	long	as	you	have	super	user	privileges,	installing	Git	is	fairly	easy.

After	you	have	the	git	package	installed	on	your	system,	setting	up	your	Git	environment	for	a	new	script	writing
project	involves	four	basic	steps:

1.	 Create	a	working	directory.

2.	 Initialize	the	.git/	directory.

3.	 Set	up	the	local	repository	options.

4.	 Establish	your	remote	repository	location.

To	begin	the	process,	create	a	working	directory.	A	subdirectory	in	your	local	home	folder	will	suffice:

$	mkdir	MWGuard
$
$	cd	MWGuard/
$
$	pwd
/home/christine/MWGuard
$

A	simple	subdirectory	MWGuard	was	created	for	the	script	writing	project.	After	the	working	directory	is	created,	use
the	cd	command	to	move	your	present	working	directory	into	it.

Within	the	working	directory,	initialize	the	.git/	directory.	This	task	employs	the	git	init	command:

$	git	init
Initialized	empty	Git	repository	in	/home/christine/MWGuard/.git/
$
$	ls	-ld	.git
drwxrwxr-x	7	christine	christine	4096	Aug	24	14:49	.git
$

The	git	init	command	creates	the	.git/	subdirectory.	Because	the	directory	name	is	preceded	with	a	dot	(.),	it	is
hidden	from	regular	ls	commands.	Use	the	ls	-la	command	or	add	the	directory	name	as	an	argument	to	the	ls	-
ld	command,	as	we	did	earlier,	in	order	to	view	its	metadata.

NOTE
You	can	have	multiple	project	directories	at	the	same	time.	To	accomplish	this,	create	a
separate	working	directory	for	each	project.

If	this	is	the	first	time	you	have	built	a	.git/	subdirectory	on	your	system,	add	a	name	and	email	address	to	the
global	Git	repository's	configuration	file.	This	identification	data	helps	in	tracking	file	changes,	especially	if	you	have

several	people	involved	in	the	project.	To	perform	this	task,	use	the	git	config	command:

$	git	config	--global	user.name	"Christine	Bresnahan"
$
$	git	config	--global	user.email	"cbresn1723@gmail.com"
$
$	git	config	--get	user.name
Christine	Bresnahan
$
$	git	config	--get	user.email
cbresn1723@gmail.com
$

By	including	--global	on	the	git	config	command,	the	user.name	and	user.email	data	is	stored	in	the	global	Git
configuration	file.	Notice	that	you	can	view	this	information	using	the	--get	option	and	passing	it	the	data's	name	as
an	argument.

NOTE
Global	Git	configuration	information	means	that	this	data	applies	to	all	Git	projects	on	this
system.	Local	Git	configuration	information	is	applied	only	to	a	particular	Git	project	stored
within	a	working	directory	on	the	system.

Git	global	configuration	information	is	stored	in	the	.gitconfig	file	within	your	home	directory	and	the	local
repository,	which	is	the	working-directory	/.git/config	configuration	file.	Be	aware	that	some	systems	have	a
system-level	configuration	file,	which	is	/etc/gitconfig.

To	view	all	the	various	configurations	stored	in	these	files,	use	the	git	config	--list	command:

$	git	config	--list
user.name=Christine	Bresnahan
user.email=cbresn1723@gmail.com
core.repositoryformatversion=0
core.filemode=true
core.bare=false
core.logallrefupdates=true
$
$	ls	/home/christine/.gitconfig
/home/christine/.gitconfig
$
$	cat	/home/christine/.gitconfig
[user]
								name	=	Christine	Bresnahan
								email	=	cbresn1723@gmail.com
$
$	ls	/home/christine/MWGuard/.git/config
/home/christine/MWGuard/.git/config
$
$	cat	/home/christine/MWGuard/.git/config
[core]
								repositoryformatversion	=	0
								filemode	=	true
								bare	=	false
								logallrefupdates	=	true
$

The	settings	that	are	displayed	via	the	--list	option	use	a	file-section.name	format.	Notice	that	when	the	two	Git
configuration	files	(global	and	the	project's	local	repository)	are	displayed	to	STDOUT	with	the	cat	command,	the
section	names	are	shown	along	with	the	data	they	hold.

After	your	local	Git	environment	is	configured,	it	is	time	to	establish	your	project's	remote	repository.	For
demonstration	purposes,	we	chose	the	cloud-based	remote	repository	GitHub.	If	you	want	to	follow	along,	you	can
set	up	a	free	remote	repository	through	the	github.com/join	link.

NOTE
Though	Git	can	work	with	any	file	type,	its	tools	are	primarily	aimed	at	plain-text	files,	such	as
Bash	shell	scripts.	Therefore,	be	aware	that	you	are	not	able	to	use	all	the	git	utilities	on	any
nontext	files.

After	you	have	your	project's	remote	repository	established,	you'll	need	to	record	the	web	address	it	provides.	This
address	is	used	for	sending	your	project	files	to	the	remote	repository,	which	is	covered	later	in	this	chapter.

Committing	with	Git
When	you	have	your	Git	environment	established,	you	can	begin	employing	its	various	organizational	features.

There	are	basic	four	steps,	as	follows:

1.	 Create	or	modify	the	script(s).

2.	 Add	the	script(s)	to	the	staging	area	(index).

3.	 Commit	the	script(s)	to	the	local	repository.

4.	 Push	the	script(s)	to	the	remote	repository.

Depending	on	your	workflow,	you	may	repeat	certain	steps	before	progressing	to	the	next	one.	For	example,	in	a
single	day,	a	Linux	admin	works	on	writing	Bash	shell	scripts	and,	as	they	are	completed,	moves	them	to	the	staging
area.	At	the	end	of	the	day,	the	script	writer	commits	the	entire	project	to	the	local	repository.	After	that,	they	push
the	project	work	to	the	remote	repository	for	nonlocal	team	members	to	access.

Here,	a	simple	shell	script,	MyGitExampleScript.sh	,	was	created	to	use	as	a	project	example	with	Git:

$	cat	MyGitExampleScript.sh
#!/bin/bash
#	Git	example	script
#
echo	"Hello	Git	World"
exit
$

After	the	script	is	created,	it	is	added	to	the	staging	area	(index).	This	is	accomplished	through	the	git	add
command.	Since	the	script	was	not	currently	in	our	working	directory,	/home/christine/MWGuard	,	we	copied	it	there
first.	Now	that	our	script	is	in	the	correct	location,	we'll	perform	the	git	add	command	while	our	present	working
directory	(displayed	via	the	pwd	command)	is	also	in	the	correct	location,	/home/christine/MWGuard	:

$	pwd
/home/christine/scripts
$
$	cp	MyGitExampleScript.sh	/home/christine/MWGuard/
$
$	cd	/home/christine/MWGuard/
$
$	pwd
/home/christine/MWGuard
$
$	ls	*.sh
MyGitExampleScript.sh
$
$	git	add	MyGitExampleScript.sh
$
$	git	status
[...]
No	commits	yet
	
Changes	to	be	committed:
		(use	"git	rm	--cached	<file>..."	to	unstage)
								new	file:			MyGitExampleScript.sh
	
$

The	git	add	command	does	not	provide	any	output	when	it	is	executed.	Thus,	to	see	if	it	worked	as	desired,	we	used
the	git	status	command.	The	git	status	command	shows	that	a	new	file,	MyGitExampleScript.sh	,	was	added	to
the	index.	This	is	just	what	we	wanted	to	happen.

TIP
If	you	want,	you	can	add	all	your	scripts	in	the	current	working	directory	to	the	staging	area's
index	at	the	same	time.	To	accomplish	this,	issue	the	git	add	.	command.	Notice	the	period	(.)
at	the	end	of	the	command!	It	is	effectively	a	wildcard,	telling	Git	to	add	all	the	working
directory's	files	to	the	index.

However,	if	you	have	files	in	your	working	directory	that	you	do	not	want	added	to	the	staging
area	index,	create	a	.gitignore	file	in	the	working	directory.	Next,	add	the	names	of	files	and
directories	you	do	not	want	included	in	the	index	into	this	file	via	your	favorite	text	editor.	The
git	add	.	command	will	now	ignore	those	files	but	move	the	rest	of	the	script	files	to	the	staging
area's	index.

The	staging	area's	index	filename	is	.git/index	,	and	when	the	file	command	is	used	on	it,	the	file	type	is	shown	as
a	Git	index.	This	is	the	file	that	Git	uses	to	track	changes.

$	file	.git/index
.git/index:	Git	index,	version	2,	1	entries
$

The	next	step	in	the	process	is	to	commit	the	project	to	the	local	repository.	The	commit	is	accomplished	via	the	git
commit	command.	We	added	the	-m	option	to	add	a	comment,	which	is	useful	for	documenting	commits:

$	git	commit	-m	"Initial	Commit"
[...]	Initial	Commit
	1	file	changed,	5	insertions(+)
	create	mode	100644	MyGitExampleScript.sh
$
$	cat	.git/COMMIT_EDITMSG
Initial	Commit
$
$	git	status
[...]
nothing	to	commit,	working	tree	clean
$

TIP
Comments	are	stored	in	the	COMMIT_EDITMSG	file,	and	they	are	helpful	for	tracking	why	changes
were	made	to	various	scripts.	When	you	make	commits	later	in	a	script's	life,	include	why	the
modification	was	made	with	the	-m	option	arguments,	such	as	-m	"Improved	script's	user
interface".

After	you	have	issued	git	commit	,	the	git	status	command	will	display	the	message	nothing	to	commit,	working
directory	clean	.	This	tells	you	that	Git	now	considers	all	the	scripts	in	the	working	directory	as	committed	to	the
local	repository.

WARNING
If	you	do	not	add	the	-m	option	and	its	argument	to	the	git	commit	command,	you	are	placed	into
the	vim	editor	to	edit	the	.git/COMMIT_EDITMSG	file	by	hand.	The	vim	editor	was	covered	in	Chapter
10,	“Working	with	Editors.”

Now	that	the	script	project	is	committed	to	the	local	repository,	it	can	be	shared	with	other	script	project	team
members	by	pushing	it	to	the	remote	repository.	If	the	script(s)	is	completed,	you	can	also	share	it	with	select	others
or	the	whole	world.

If	this	is	a	new	script	project,	after	the	remote	repository	account	is	established,	create	a	special	file	called	a
Markdown	file.	The	file's	content	displays	on	the	remote	repository's	web	page	and	describes	the	repository.	It	uses
what	is	called	Markdown	language.	You'll	need	to	name	the	file	README.md	.	Here	is	an	example	of	creating	this	file,
adding	it	to	the	staging	area	index,	and	committing	it	to	the	local	repository:

$	pwd
/home/christine/MWGuard
$
$	ls
MyGitExampleScript.sh
$
$	echo	"#	Milky	Way	Guardian"	>	README.md
$	echo	"##	Script	Project"	>>	README.md
$
$	cat	README.md
#	Milky	Way	Guardian
##	Script	Project
$
$
$	git	add	README.md
$
$	git	status
[...]
Changes	to	be	committed:
		(use	"git	restore	--staged	<file>..."	to	unstage)
								new	file:			README.md
	
$
$	git	commit	-m	"README.md	commit"
[...]	README.md	commit
	1	file	changed,	2	insertions(+)
	create	mode	100644	README.md
$
$	git	status
[...]
nothing	to	commit,	working	tree	clean
$

NOTE
You	can	get	really	fancy	with	your	README.md	file	by	using	various	features	of	the	Markdown
language.	Find	out	more	about	Markdown	at	guides.github.com/features/mastering-markdown.

At	any	time	you	can	review	the	Git	log,	but	it's	always	a	good	idea	to	do	so	before	pushing	your	script	project	to	a
remote	repository.	Each	commit	is	given	a	hash	number	to	identify	it,	which	is	shown	in	the	log.	Also,	notice	the
various	comment	lines	along	with	dates	and	author	information.

$	git	log
commit	898330bd0b01e0b6eee507c5eeb3c72f9544f506[...]
Author:	Christine	Bresnahan	<cbresn1723@gmail.com>
Date:			Mon	Aug	24	15:58:52	2020	-0400
	
				README.md	commit
	
commit	3b484638bc6e391d0a1b816946cba8c5f4bbc8e6
Author:	Christine	Bresnahan	<cbresn1723@gmail.com>
Date:			Mon	Aug	24	15:46:56	2020	-0400
	
				Initial	Commit
$

Before	you	can	push	your	project	to	the	remote	repository,	you	need	to	configure	its	address	on	your	system.	This
address	is	provided	to	you	when	you	set	up	your	remote	repository	with	a	Git	service	provider,	such	as	GitHub.

To	add	the	address,	use	the	git	remote	add	origin	URL	command,	where	URL	is	the	remote	repository's	address:

$	git	remote	add	origin	https://github.com/C-Bresnahan/MWGuard.git
$
$	git	remote	-v
origin		https://github.com/C-Bresnahan/MWGuard.git	(fetch)
origin		https://github.com/C-Bresnahan/MWGuard.git	(push)
$

Notice	that	we	checked	the	status	of	the	remote	address	via	the	git	remote	-v	command.	It's	a	good	idea	to	check
the	address	before	pushing	a	project.	If	you've	got	the	wrong	address	or	you	made	a	typographical	error,	the	push
will	not	work.	So	review	everything	carefully!

TIP
If	you	make	a	mistake,	such	as	a	typographical	error,	in	the	address,	you	can	remove	the
remote	repository's	address	via	the	git	remote	rm	origin	command.	After	it	is	removed,	set	up
the	remote	address	again	using	the	correct	address.

After	the	remote	repository	address	is	configured,	we	can	push	our	script	project	up	to	its	location.	However,	before
we	do	that,	to	keep	things	simple	we're	going	to	rename	the	primary	branch	to	main	using	the	git	branch	command:

$	git	branch	-m	main
$
$	git	branch	--show-current
main
$

Notice	that	you	can	see	the	current	branch	name	using	the	git	branch	--show-current	command.	It's	is	a	good	idea
to	do	this	before	a	push	to	ensure	you've	got	the	correct	branch	name,	which	we	need	in	the	push	command.

Now	to	copy	our	script	up	to	the	remote	repository,	we	need	the	-u	origin	option	tacked	onto	the	push	command	to
denote	the	location	of	the	repository,	and	the	name	of	the	branch,	main	,	that	we	are	currently	using:

$	git	push	-u	origin	main
Username	for	'https://github.com':	C-Bresnahan
Password	for	'https://C-Bresnahan@github.com':
Enumerating	objects:	6,	done.
Counting	objects:	100%	(6/6),	done.
Compressing	objects:	100%	(4/4),	done.
Writing	objects:	100%	(6/6),	604	bytes	|	60.00	KiB/s,	done.
Total	6	(delta	0),	reused	0	(delta	0)
To	https://github.com/C-Bresnahan/MWGuard.git
	*	[new	branch]						main	->	main
Branch	'main'	set	up	to	track	remote	branch	'main'	from	'origin'.
$

Typically	the	remote	repository	will	demand	a	username	and	password.	When	the	project	is	pushed	to	the	remote
repository,	you	should	be	able	to	view	it	using	your	favorite	web	browser.	If	it	is	a	private	repository,	you'll	have	to
log	into	the	remote	repository	service	in	order	to	see	your	work.

Figure	25-2	shows	the	remote	repository	on	GitHub	for	this	project.	Keep	in	mind	that	different	Git	remote

repository	providers	will	have	different	user	interfaces	for	your	script	projects.

FIGURE	25-2	MWGuard	remote	repository

What	is	really	nice	about	the	remote	repository	is	that	anyone	on	your	Linux	admin	team	who	is	working	on	the
project	can	pull	down	the	latest	script	versions	using	the	git	pull	command.	You'll	need	to	either	set	up	access	for
them	to	the	remote	repository	or	make	it	public.

$	whoami
rich
$
$	pwd
/home/rich/MWGuard
$
$	git	remote	add	origin	https://github.com/C-Bresnahan/MWGuard.git
$
$	git	pull	origin	main
remote:	Enumerating	objects:	6,	done.
remote:	Counting	objects:	100%	(6/6),	done.
remote:	Compressing	objects:	100%	(4/4),	done.
remote:	Total	6	(delta	0),	reused	6	(delta	0),	pack-reused	0
Unpacking	objects:	100%	(6/6),	584	bytes	|	58.00	KiB/s,	done.
From	https://github.com/C-Bresnahan/MWGuard
	*	branch												main							->	FETCH_HEAD
	*	[new	branch]						main							->	origin/main
$

If	the	individual	pulling	down	the	project	files	already	has	a	modified	version	of	a	particular	script	in	their	local
repository	that	was	not	uploaded	to	the	remote	repository,	the	git	pull	command	will	fail	and	protect	that	script.
However,	the	error	message	will	instruct	how	to	rectify	this	problem.

WARNING
Keep	in	mind	that	if	anyone	wants	the	latest	script	versions,	and	they	weren't	already	working
on	the	project,	they'll	get	an	error	message	similar	to	fatal:	not	a	git	repository	when	they
attempt	to	issue	the	git	remote	add	origin	command.	It	would	be	best	for	them	to	clone	the
project,	which	is	covered	next.

A	new	development	team	member	can	copy	the	entire	script	project	to	their	local	system	from	the	remote	repository
using	the	git	clone	command:

$	whoami
tim
$
$	ls
$
$	git	clone	https://github.com/C-Bresnahan/MWGuard.git

Cloning	into	'MWGuard'...
remote:	Enumerating	objects:	6,	done.
remote:	Counting	objects:	100%	(6/6),	done.
remote:	Compressing	objects:	100%	(4/4),	done.
remote:	Total	6	(delta	0),	reused	6	(delta	0),	pack-reused	0
Unpacking	objects:	100%	(6/6),	584	bytes	|	58.00	KiB/s,	done.
$
$	ls
MWGuard
$
$	cd	MWGuard/
$
$	ls	-a
.		..		.git		MyGitExampleScript.sh		README.md
$
$	git	log
commit	[...](HEAD	->	main,	origin/main,	origin/HEAD)
Author:	Christine	Bresnahan	<cbresn1723@gmail.com>
Date:			Mon	Aug	24	15:58:52	2020	-0400
	
				README.md	commit
	
commit	3b484638bc6e391d0a1b816946cba8c5f4bbc8e6
Author:	Christine	Bresnahan	<cbresn1723@gmail.com>
Date:			Mon	Aug	24	15:46:56	2020	-0400
	
				Initial	Commit
$

When	the	project	is	cloned	from	the	remote	repository,	the	working	directory	is	automatically	created,	along	with
the	.git/	directory,	the	Git	staging	area	(index),	and	the	local	repository.	The	git	log	command	shows	the	project's
history.	This	is	an	easy	way	for	a	new	team	member	to	grab	everything	needed	to	begin	working	on	the	project.

The	distributed	VCS	utility	Git	is	useful	in	many	ways	beyond	the	needs	of	script	writers.	There	are	many	more
useful	project	features	available	with	Git.	The	ones	covered	in	this	chapter	will	get	you	started	down	the	right	path
for	managing	all	the	amazing	Bash	shell	scripts	you	are	going	to	write	in	your	lifetime.

Summary
In	this	chapter,	we	first	set	the	stage	for	Git	by	covering	concepts	such	as	VCS.	Created	by	Linus	Torvalds,	Git
provides	an	amazing	distributed	VCS	that	is	useful	for	many	things,	including	managing	Bash	shell	scripts.	We	also
took	a	look	at	important	Git	locations,	such	as	the	working	directory;	the	staging	area,	which	is	also	called	the	index;
and	the	local	and	remote	repositories.	In	addition,	we	touched	on	the	branches	and	cloning	features	of	Git.

Because	many	Linux	distributions	do	not	have	Git	installed	by	default,	we	stepped	through	installing	the	git
package	on	both	CentOS	and	Ubuntu.	Setting	up	a	working	directory	for	the	project	was	done	first	for	the	local
configuration.	The	next	part	covered	how	to	use	the	git	init	command,	which	creates	a	hidden	subdirectory,	.git/	,
within	the	working	directory.	After	that,	we	demonstrated	how	to	configure	local	repository	options	for	tracking
purposes.	Finally,	we	touched	on	the	remote	repository,	using	GitHub	as	our	example.

The	chapter	ended	with	using	Git	in	a	practical	way.	Using	a	sample	Bash	shell	script,	we	moved	it	to	the	working
directory,	and	then	added	it	to	the	staging	area	(index)	using	the	git	add	command.	The	sample	script	was	next
committed	to	the	local	repository.	This	was	accomplished	by	using	the	git	commit	command.	The	last	step	in	this
process	was	to	move	the	project	files	to	the	remote	repository.	We	used	GitHub	as	our	remote	repository	and	sent
the	project	there	through	the	git	push	command.

Thanks	for	joining	us	on	this	journey	through	the	Linux	command	line	and	shell	scripting.	We	hope	you've	enjoyed
the	expedition	and	have	learned	how	to	get	around	on	the	command	line,	and	how	to	create	and	manage	shell	scripts
to	save	time.	But	don't	stop	your	command-line	education	here!	There's	always	something	new	being	developed	in
the	open	source	world,	whether	it's	a	new	command-line	utility	or	a	full-blown	shell.	Stay	in	touch	with	the	Linux
community	and	follow	along	with	new	advances	and	features.

APPENDIX	A
Quick	Guide	to	Bash	Commands
IN	THIS	APPENDIX

Reviewing	built‐in	commands

Looking	at	common	Bash	commands

Assessing	environment	variables

As	you've	seen	throughout	this	book,	the	Bash	shell	contains	lots	of	features	and	thus	has	lots	of	commands
available.	This	appendix	provides	a	concise	guide	to	allow	you	to	quickly	look	up	a	feature	or	command	that	you	can
use	from	the	Bash	command	line	or	from	a	Bash	shell	script.

Reviewing	Built‐In	Commands
The	Bash	shell	includes	many	popular	commands	built	into	the	shell.	You	can	use	these	commands	to	achieve	faster
processing	times.	Table	A.1	shows	the	built‐in	commands	available	directly	from	the	Bash	shell.

TABLE	A.1	Bash	Built‐In	Commands

Command Description

& Starts	a	job	in	background	mode

((x)) Evaluates	the	x	mathematical	expression

not: Reads	and	executes	commands	from	a	designated	file	in	the	current	shell

: Does	nothing,	and	always	exits	successfully

[t] Evaluates	the	t	conditional	expression

[[e]] Evaluates	the	e	conditional	expression

alias Defines	an	alias	for	the	specified	command

bg Resumes	a	job	in	background	mode

bind Binds	a	keyboard	sequence	to	a	readline	function	or	macro

break Exits	from	a	for	,	while	,	select	,	or	until	loop

builtin Executes	the	specified	shell	built‐in	command
caller Returns	the	context	of	any	active	subroutine	call

case Selectively	executes	commands	based	on	pattern

cd Changes	the	current	directory	to	the	specified	directory

command Executes	the	specified	command	without	the	normal	shell	lookup

compgen Generates	possible	completion	matches	for	the	specified	word

complete Displays	how	the	specified	words	would	be	completed

compopt Changes	options	for	how	the	specified	words	would	be	completed

continue Resumes	the	next	iteration	of	a	for	,	while	,	select	,	or	until	loop

coproc Executes	a	coprocess

declare Declares	a	variable	or	variable	type

dirs Displays	a	list	of	currently	remembered	directories

disown Removes	the	specified	jobs	from	the	jobs	table	for	the	process

echo Displays	the	specified	string	to	STDOUT

enable Enables	or	disables	the	specified	built‐in	shell	command
eval Concatenates	the	specified	arguments	into	a	single	command,	and	executes	the	command

exec Replaces	the	shell	process	with	the	specified	command

exit Forces	the	shell	to	exit	with	the	specified	exit	status

export Sets	the	specified	variables	to	be	available	for	child	shell	processes

false Sets	a	result	to	failed	status

fc Selects	a	list	of	commands	from	the	history	list

fg Resumes	a	job	in	foreground	mode

for Executes	set	commands	for	every	item	in	the	list

function Defines	a	shell	script	function

getopts Parses	the	specified	positional	parameters

hash Finds	and	remembers	the	full	pathname	of	the	specified	command

help Displays	a	help	file

history Displays	the	command	history

if Executes	set	commands	based	on	conditional	expression

jobs Lists	the	active	jobs

kill Sends	a	system	signal	to	the	specified	process	ID	(PID)

let Evaluates	each	argument	in	a	mathematical	expression

local Creates	a	limited‐scope	variable	in	a	function
logout Exits	a	login	shell

mapfile Reads	STDIN	lines	and	puts	them	into	an	indexed	array

popd Removes	entries	from	the	directory	stack

printf Displays	text	using	formatted	strings

pushd Adds	a	directory	to	the	directory	stack

pwd Displays	the	pathname	of	the	current	working	directory

read Reads	one	line	of	data	from	STDIN	,	and	assigns	it	to	a	variable

readarray Reads	STDIN	lines,	and	puts	them	into	an	indexed	array

readonly Reads	one	line	of	data	from	STDIN	,	and	assigns	it	to	a	variable	that	can't	be	changed

return Forces	a	function	to	exit	with	a	value	that	can	be	retrieved	by	the	calling	script

select Displays	list	of	words	with	numbers	allowing	selection

set Sets	and	displays	environment	variable	values	and	shell	attributes

shift Rotates	positional	parameters	down	one	position

shopt Toggles	the	values	of	variables	controlling	optional	shell	behavior

source Reads	and	executes	commands	from	a	designated	file	in	the	current	shell

suspend Suspends	the	execution	of	the	shell	until	a	SIGCONT	signal	is	received

test Returns	an	exit	status	of	0	or	1	based	on	the	specified	condition

time Displays	the	accumulated	real,	user,	and	system	times	executing	command(s)

times Displays	the	accumulated	user	and	system	shell	times

trap Executes	the	specified	command	if	the	specified	system	signal	is	received

true Sets	a	result	to	successful	status

type Displays	how	the	specified	word	would	be	interpreted	if	used	as	a	command

typeset Declares	a	variable	or	variable	type

ulimit Sets	a	limit	on	the	specified	resource	for	system	users

umask Sets	default	permissions	for	newly	created	files	and	directories

unalias Removes	the	specified	alias

unset Removes	the	specified	environment	variable	or	shell	attribute

until Executes	set	commands	until	condition	statement	returns	true

wait Waits	for	the	specified	process	to	complete,	and	returns	the	exit	status

while Executes	set	commands	while	condition	statement	returns	true

{	c;	} Group	commands	to	execute	within	current	shell

The	built‐in	commands	provide	higher	performance	than	external	commands,	but	the	more	built‐in	commands	that
are	added	to	a	shell,	the	more	memory	it	consumes	with	commands	that	you	may	never	use.	The	Bash	shell	also
contains	external	commands	that	provide	extended	functionality	for	the	shell.	These	are	discussed	in	the	following
section.

Looking	at	Common	Bash	Commands
In	addition	to	the	built‐in	commands,	the	Bash	shell	utilizes	external	commands	to	allow	you	to	maneuver	around
the	filesystem	and	manipulate	files	and	directories.	Table	A.2	shows	the	common	external	commands	you'll	want	to
use	when	working	in	the	Bash	shell.

TABLE	A.2	The	Bash	Shell	External	Commands

Command Description

at Executes	designated	script	or	command	to	run	at	set	future	time

atq Displays	jobs	in	the	at	utility	queue

atrm Removes	designated	job	from	the	at	utility	queue

bash Interprets	commands	from	standard	input	or	from	a	file,	or	starts	a	subshell	using	the	Bourne	Again
Shell	command	language

bc Performs	calculations	via	its	programming	language

bzip2 Compresses	using	the	Burrows–Wheeler	block	sorting	text	compression	algorithm	and	Huffman
coding

cat Lists	the	contents	of	the	specified	file

chage Changes	the	password	expiration	date	for	the	specified	system	user	account

chfn Changes	the	specified	user	account's	current	information

chgrp Changes	the	default	group	of	the	specified	file	or	directory

chmod Changes	system	security	permissions	for	the	specified	file	or	directory

chown Changes	the	default	owner	of	the	specified	file	or	directory

chpasswd Reads	a	file	of	login	name	and	password	pairs	and	updates	the	passwords

chsh Changes	the	specified	user	account's	default	shell

clear Removes	text	from	a	terminal	emulator	or	virtual	console	terminal

compress Original	Unix	file	compression	utility

coproc Spawns	a	subshell	in	background	mode	and	executes	the	designated	command

cp Copies	the	specified	files	to	an	alternate	location

crontab Initiates	the	editor	for	the	user's	cron	table	file,	if	allowed

cut Removes	a	designated	portion	of	each	specified	file's	lines

date Displays	the	date	in	various	formats

df Displays	current	disk	space	statistics	for	all	mounted	devices

dialog Creates	window	dialogs	in	a	text	environment

du Displays	disk	usage	statistics	for	the	specified	file	path

emacs Invokes	the	Emacs	text	editor

env Executes	the	designated	program	in	a	modified	environment	or	displays	the	value	of	all	the
environment	variables

exit Performs	a	normal	termination	of	current	process

expr Evaluates	the	designated	expression

fdisk Organizes	and	creates	the	specified	disk's	partition	table

file Displays	the	file	type	of	the	specified	file

find Performs	a	recursive	search	for	files

free Checks	available	and	used	memory	on	the	system

fsck Checks	and	optionally	repairs	designated	filesystem

gawk Streams	editing	using	programming	language	commands

grep Searches	a	file	for	the	specified	pattern

gedit Invokes	the	GNOME	Desktop	editor

getopt Parses	command	options,	including	long	options

gdialog Creates	window	dialogs	for	GNOME	Shell

groups Displays	group	membership	of	the	designated	user

groupadd Creates	a	new	system	group

groupmod Modifies	an	existing	system	group

gunzip The	GNU	Project's	reversal	of	compression	using	Lempel–Ziv	compression

gzcat The	GNU	Project's	utility	for	displaying	contents	of	compressed	files	using	Lempel–Ziv	compression

gzip The	GNU	Project's	compression	using	Lempel–Ziv	compression

head Displays	the	first	portion	of	the	specified	file's	contents

help Displays	the	help	pages	for	Bash	built‐in	commands
kdialog Creates	window	dialogs	for	KDE

killall Sends	a	system	signal	to	a	running	process	based	on	process	name

kwrite Invokes	the	KWrite	text	editor

less Advanced	viewing	of	file	contents

link Creates	a	link	to	a	file	using	an	alias	name

ln Creates	a	symbolic	or	hard	link	to	a	designated	file

ls Lists	directory	contents	and/or	file	information

lvcreate Creates	a	Logical	Volume	Manager	(LVM)	volume

lvdisplay Displays	an	LVM	volume

lvextend Increases	the	size	of	an	LVM	volume

lvreduce Decreases	the	size	of	an	LVM	volume

mandb Creates	the	database	allowing	man	page	keyword	searches

man Displays	the	man	pages	for	the	designated	command	or	topic

mkdir Creates	the	specified	directory

mkfs Formats	a	partition	with	specified	filesystem

mktemp Creates	a	temporary	file	or	directory

more Lists	the	contents	of	the	specified	file,	pausing	after	each	screen	of	data

mount Displays	or	mounts	disk	devices	into	the	virtual	filesystem

mv Renames	a	file	or	directory

nano Invokes	the	nano	text	editor

nice Runs	a	command	using	a	different	priority	level	on	the	system

nohup Executes	designated	command	while	ignoring	SIGHUP	signal

passwd Changes	the	password	for	a	system	user	account

printenv Displays	the	value	of	the	specified	environment	variable	or	displays	the	value	of	all	the	environment
variables

ps Displays	information	about	the	running	processes	on	the	system

pvcreate Creates	a	physical	LVM	volume

pvdisplay Displays	a	physical	LVM	volume

pwd Displays	the	current	working	directory

renice Changes	the	priority	of	a	running	application	on	the	system

rm Deletes	the	specified	file	or	directory

rmdir Deletes	the	specified	empty	directory

sed Streams	line	editing	using	editor	commands

setterm Modifies	terminal	settings

sleep Pauses	Bash	shell	operation	for	a	specified	amount	of	time

sort Organizes	data	in	a	data	file	based	on	the	specified	order

stat Views	the	file	statistics	of	the	specified	file

sudo Runs	an	application	as	the	root	user	account

tail Displays	the	last	portion	of	the	specified	file's	contents

tar Archives	data	and	directories	into	a	single	file

tee Sends	information	to	both	STDOUT	and	STDIN

top Displays	the	active	processes,	showing	vital	system	statistics

touch Creates	a	new	empty	file	or	updates	the	time	stamp	on	an	existing	file

umount Removes	a	mounted	disk	device	from	the	virtual	filesystem

uptime Displays	information	on	how	long	the	system	has	been	running

useradd Creates	a	new	system	user	account

userdel Removes	an	existing	system	user	account

usermod Modifies	an	existing	system	user	account

vgchange Activates	or	deactivates	an	LVM	volume	group

vgcreate Creates	an	LVM	volume	group

vgdisplay Displays	an	LVM	volume	group

vgextend Increases	the	size	of	an	LVM	volume	group

vgreduce Decreases	the	size	of	an	LVM	volume	group

vgremove Deletes	an	LVM	volume	group

vi Invokes	the	vim	text	editor

vim Invokes	the	vim	text	editor

vmstat Produces	a	detailed	report	on	memory	and	CPU	usage	on	the	system

wc Displays	text	file	statistics

whereis Displays	a	designated	command's	files,	including	binary,	source	code,	and	man	pages

which Finds	the	location	of	an	executable	file

who Displays	users	currently	logged	into	system

whoami Displays	the	current	user's	username

xargs Takes	items	from	STDIN	,	builds	commands,	and	executes	the	commands

xterm Invokes	the	xterm	terminal	emulator

zenity Creates	window	widgets	for	GNOME	Shell

zip Unix	version	of	the	Windows	PKZIP	program

You	can	accomplish	just	about	any	task	you	need	to	on	the	command	line	by	using	these	commands.

Assessing	Environment	Variables
The	Bash	shell	also	utilizes	many	environment	variables.	Although	environment	variables	aren't	commands,	they
often	affect	how	shell	commands	operate,	so	it's	important	to	know	some	of	the	shell	environment	variables.	Table
A.3	shows	several	of	the	environment	variables	available	in	the	Bash	shell.

TABLE	A.3	Bash	Shell	Environment	Variables

Variable Description

* Contains	all	the	command‐line	parameters	as	a	single	text	value
@ Contains	all	the	command‐line	parameters	as	separate	text	values
# The	number	of	command‐line	parameters
? The	exit	status	of	the	most	recently	used	foreground	process

‐ The	current	command‐line	option	flags
$ The	process	ID	(PID)	of	the	current	shell

! The	PID	of	the	most	recently	executed	background	process

0 The	name	of	the	command	from	the	command	line

_ The	absolute	pathname	of	the	shell

BASH The	full	filename	used	to	invoke	the	shell

BASHOPTS Enabled	shell	options	in	a	colon‐separated	list
BASHPID The	current	Bash	shell's	PID

BASH_ALIASES An	array	containing	the	currently	used	aliases

BASH_ARGC The	number	of	parameters	in	the	current	subroutine

BASH_ARGV An	array	containing	all	the	command‐line	parameters	specified
BASH_CMDS An	array	containing	the	internal	hash	table	of	commands

BASH_COMMAND The	name	of	the	command	currently	being	executed

BASH_ENV When	set,	each	Bash	script	attempts	to	execute	a	startup	file	defined	by	this	variable
before	running.

BASH_EXECUTION_STRING The	command	used	in	the	‐c	command‐line	option
BASH_LINENO An	array	containing	the	line	numbers	of	each	command	in	the	script

BASH_REMATCH An	array	containing	text	elements	that	match	a	specified	regular	expression

BASH_SOURCE An	array	containing	source	filenames	for	the	declared	functions	in	the	shell

BASH_SUBSHELL The	number	of	subshells	spawned	by	the	current	shell

BASH_VERSINFO A	variable	array	that	contains	the	individual	major	and	minor	version	numbers	of	the
current	instance	of	the	Bash	shell

BASH_VERSION The	version	number	of	the	current	instance	of	the	Bash	shell

BASH_XTRACEFD When	set	to	a	valid	file	descriptor	integer,	trace	output	is	generated	and	separated	from
diagnostic	and	error	messages.	The	file	descriptor	must	have	set	‐x	enabled.

BROWSER The	absolute	pathname	of	the	preferred	web	browser

COLUMNS Contains	the	terminal	width	of	the	terminal	used	for	the	current	instance	of	the	Bash
shell

COMP_CWORD An	index	into	the	variable	COMP_WORDS	,	which	contains	the	current	cursor	position

COMP_KEY The	completion	invocation	character	keyboard	key

COMP_LINE The	current	command	line

COMP_POINT The	index	of	the	current	cursor	position	relative	to	the	beginning	of	the	current
command

COMP_TYPE The	completion	type	integer	value

COM_WORDBREAKS A	set	of	characters	used	as	word	separators	when	performing	word	completion

COMP_WORDS A	variable	array	that	contains	the	individual	words	on	the	current	command	line

COMPREPLY A	variable	array	that	contains	the	possible	completion	codes	generated	by	a	shell
function

COPROC A	variable	array	that	holds	file	descriptors	for	an	unnamed	coprocess's	I/O

DBUS_SESSION_BUS_ADDRESS The	current	login	session's	D‐Bus	address	that	provides	a	map	for	connections
DE A	variable	that	contains	the	current	login	session's	desktop	environment

DESKTOP_SESSION Within	an	LXDE	environment,	a	variable	that	contains	the	current	login	session's
desktop	environment

DIRSTACK A	variable	array	that	contains	the	current	contents	of	the	directory	stack

DISPLAY A	variable	that	contains	a	map	for	graphical	applications	for	where	to	display	the
graphical	user	interface

EDITOR When	set,	defines	the	default	editor	used	by	some	shell	commands

EMACS When	set,	the	shell	assumes	it's	running	in	an	Emacs	shell	buffer	and	disables	line
editing.

ENV When	the	shell	is	invoked	in	POSIX	mode,	each	Bash	script	attempts	to	execute	a
startup	file	defined	by	this	variable	before	running.

EUID The	numeric	effective	user	ID	of	the	current	user

FCEDIT The	default	editor	used	by	the	fc	command

FIGNORE A	colon‐separated	list	of	suffixes	to	ignore	when	performing	filename	completion
FUNCNAME The	name	of	the	currently	executing	shell	function

FUNCNEST The	maximum	level	for	nesting	functions

GLOBIGNORE A	colon‐separated	list	of	patterns	defining	the	set	of	filenames	to	be	ignored	by
filename	expansion

GROUPS A	variable	array	containing	the	list	of	groups	of	which	the	current	user	is	a	member

histchars Up	to	three	characters	that	control	history	expansion

HISTCMD The	history	number	of	the	current	command

HISTCONTROL Controls	what	commands	are	entered	in	the	shell	history	list

HISTFILE The	name	of	the	file	to	save	the	shell	history	list	(~/.bash_history	by	default)

HISTFILESIZE The	maximum	number	of	lines	to	save	in	the	history	file

HISTIGNORE A	colon‐separated	list	of	patterns	used	to	decide	which	commands	are	ignored	for	the
history	file

HISTSIZE The	maximum	number	of	commands	stored	in	the	history	file

HISTTIMEFORMAT When	set,	determines	the	format	string	for	the	history	file	entries'	time	stamps

HOME Current	login	session's	home	directory	name

HOSTALIASES Contains	the	name	of	the	file	that	holds	aliases	for	various	host	names	used	by	some
shell	commands

HOSTFILE Contains	the	name	of	the	file	that	should	be	read	when	the	shell	needs	to	complete	a
host	name

HOSTNAME The	name	of	the	current	host

HOSTTYPE A	string	describing	the	machine	the	Bash	shell	is	running	on

IFS Contains	a	list	of	characters	used	to	separate	files,	when	the	words	are	split	as	part	of	an

expansion

IGNOREEOF The	number	of	consecutive	EOF	characters	the	shell	must	receive	before	exiting.	If	this
value	doesn't	exist,	the	default	is	1.

INFODIR A	colon‐separated	list	of	info	page	directories	searched	by	the	info	command
INPUTRC The	name	of	the	readline	initialization	file.	The	default	is	~/.inputrc	.

INVOCATION_ID A	random	and	unique	128‐bit	identifier	used	to	identify	login	shells	(and	other	units)	by
systemd

JOURNAL_STREAM A	colon‐separated	list	of	a	file	descriptor's	device	and	inode	number	(in	decimal
format).	This	is	set	only	when	STDOUT	or	STDERR	are	connected	to	the	journaling	system.

LANG The	locale	category	for	the	shell

LC_ALL Overrides	the	LANG	variable,	defining	a	locale	category

LC_ADDRESS Determines	how	address	information	is	displayed

LC_COLLATE Sets	the	collation	order	used	when	sorting	string	values

LC_CTYPE Determines	the	interpretation	of	characters	used	in	filename	expansion	and	pattern
matching

LC_IDENTIFICATION Contains	locale	metadata	information

LC_MEASUREMENT Sets	the	locale	to	use	for	units	of	measurement

LC_MESSAGES Determines	the	locale	setting	used	when	interpreting	double‐quoted	strings	preceded
by	a	dollar	sign

LC_MONETARY Defines	the	format	of	monetary	numeric	values

LC_NAME Sets	the	format	of	names

LC_NUMERIC Determines	the	locale	setting	used	when	formatting	numbers

LC_PAPER Defines	the	locale	setting	used	for	paper	standards	and	formats

LC_TELEPHONE Sets	the	structure	of	telephone	numbers

LD_LIBRARY_PATH A	colon‐separated	list	of	library	directories	searched	prior	to	standard	library
directories

LINENO The	line	number	in	a	script	currently	executing

LINES Defines	the	number	of	lines	available	on	the	terminal

LOGNAME Username	of	current	login	session

LS_COLORS Determines	the	colors	used	to	display	filenames

MACHTYPE A	string	defining	the	system	type	in	cpu‐company‐system	format
MAIL If	set,	defines	the	mail	file	of	the	current	login	session	intermittently	searched	by	some

mail	programs	for	new	mail

MAILCHECK Sets	how	often	(in	seconds)	the	shell	should	check	for	new	mail	(the	default	is	60)

MAILPATH A	colon‐separated	list	of	mail	filenames	intermittently	searched	by	some	mail	programs
for	new	mail

MANPATH A	colon‐separated	list	of	man	page	directories	searched	by	the	man	command
MAPFILE Array	variable	containing	the	mapfile	command's	read	text;	used	only	when	no	variable

name	is	given

OLDPWD The	previous	working	directory	used	in	the	shell

OPTARG Contains	the	value	to	use	if	an	option	requires	a	parameter	value,	and	is	set	by	the
getopts	command

OPTERR If	set	to	1,	the	Bash	shell	displays	errors	generated	by	the	getopts	command.

OPTIND Contains	the	value	of	the	current	location	within	a	parameter	list	where	the	getopts
command	left	off

OSTYPE A	string	defining	the	operating	system	the	shell	is	running	on

PAGER Determines	the	pager	utility	to	use	for	viewing	files	with	some	shell	commands

PATH A	colon‐separated	list	of	directories	searched	by	the	shell	for	commands
PIPESTATUS A	variable	array	containing	a	list	of	exit	status	values	from	the	processes	in	the

foreground	process

POSIXLY_CORRECT If	set,	Bash	starts	in	POSIX	mode.

PPID The	PID	of	the	Bash	shell's	parent	process

PROMPT_COMMAND If	set,	the	command	to	execute	before	displaying	the	primary	prompt

PS1 The	primary	command‐line	prompt	string
PS2 The	secondary	command‐line	prompt	string
PS3 The	prompt	to	use	for	the	select	command

PS4 The	prompt	displayed	before	the	command	line	is	echoed	if	the	Bash	‐x	parameter	is
used

PWD The	current	working	directory

RANDOM Returns	a	random	number	between	0	and	32767.	Assigning	a	value	to	this	variable
seeds	the	random	number	generator.

READLINE_LINE The	readline	line	buffer	contents

READLINE_POINT The	current	readline	line	buffer's	insertion	point	position

REPLY The	default	variable	for	the	read	command

SECONDS The	number	of	seconds	since	the	shell	was	started.	Assigning	a	value	resets	the	timer	to
the	value.

SHELL The	shell's	full	pathname

SHELLOPTS A	colon‐separated	list	of	enabled	Bash	shell	options
SHLVL Indicates	the	shell	level,	incremented	by	1	each	time	a	new	Bash	shell	is	started

TERM Terminal	type	currently	in	use	by	login	session,	where	the	information	is	provided	from
a	file	pointed	to	by	the	variable

TERMCAP Terminal	type	currently	in	use	by	login	session,	where	the	information	is	provided
within	the	variable

TIMEFORMAT A	format	specifying	how	the	shell	displays	time	values

TMOUT The	value	of	how	long	(in	seconds)	the	select	and	read	commands	should	wait	for
input.	The	default	of	0	indicates	to	wait	indefinitely.

TMPDIR When	set	to	a	directory	name,	the	shell	uses	the	directory	as	a	location	for	temporary
shell	files.

TZ If	set,	specifies	the	system's	time	zone

TZDIR Defines	the	directory	where	time	zone	files	are	located

UID The	numeric	real	user	ID	of	the	current	user

USER Username	of	current	login	session

VISUAL When	set,	defines	the	default	screen‐based	editor	used	by	some	shell	commands

You	can	display	the	currently	defined	environment	variables	using	the	printenv	command.	Shell	environment
variables	established	at	boot	time	can	(and	often	do)	vary	between	different	Linux	distributions.

APPENDIX	B
Quick	Guide	to	sed	and	gawk
IN	THIS	APPENDIX

The	basics	for	using	sed

What	you	need	to	know	about	gawk

If	you	do	any	type	of	data	handling	in	your	shell	scripts,	most	likely	you'll	need	to	use	either	the	sed	program	or	the
gawk	program	(and	sometimes	both).	This	appendix	provides	a	quick	reference	for	sed	and	gawk	commands	that
come	in	handy	when	working	with	data	in	your	shell	scripts.

The	sed	Editor
The	sed	editor	can	manipulate	data	in	a	data	stream	based	on	commands	you	either	enter	into	the	command	line	or
store	in	a	command	text	file.	It	reads	one	line	of	data	at	a	time	from	the	input	and	matches	that	data	with	the
supplied	editor	commands,	changes	data	in	the	stream	as	specified	in	the	commands,	and	then	outputs	the	new	data
to	STDOUT.

Starting	the	sed	editor
Here's	the	format	for	using	the	sed	command:

sed	options	script	file

The	options	parameters	allow	you	to	customize	the	behavior	of	the	sed	command	and	include	the	options	shown	in
Table	B.1.

TABLE	B.1	The	sed	Command	Options

Option Description

‐e	script Adds	commands	specified	in	script	to	the	commands	run	while	processing	the	input

‐f	file Adds	the	commands	specified	in	the	file	file	to	the	commands	run	while	processing	the	input

‐n Doesn't	produce	output	for	each	command	but	waits	for	the	print	command

The	script	parameter	specifies	a	single	command	to	apply	against	the	stream	data.	If	more	than	one	command	is
required,	you	must	use	either	the	‐e	option,	to	specify	them	in	the	command	line,	or	the	‐f	option,	to	specify	them	in
a	separate	file.

sed	commands
The	sed	editor	script	contains	commands	that	sed	processes	for	each	line	of	data	in	the	input	stream.	This	section
describes	some	of	the	more	common	sed	commands	you'll	want	to	use.

Substitution
The	s	command	substitutes	text	in	the	input	stream.	Here's	the	format	of	the	s	command:

s/pattern/replacement/flags	

pattern	is	the	text	to	replace,	and	replacement	is	the	new	text	that	sed	inserts	in	its	place.

The	flags	parameter	controls	how	the	substitution	takes	place.	Four	types	of	substitution	flags	are	available:

A	number	indicates	the	pattern	occurrence	that	should	be	replaced.

g	indicates	that	all	occurrences	of	the	text	should	be	replaced.

p	indicates	that	the	contents	of	the	original	line	should	be	printed.

w	file	indicates	that	the	results	of	the	substitution	should	be	written	to	a	file.

In	the	first	type	of	substitution,	you	can	specify	which	occurrence	of	the	matching	pattern	the	sed	editor	should
replace.	For	example,	you	use	the	number	2	to	replace	only	the	second	occurrence	of	the	pattern.

Addressing
By	default,	the	commands	you	use	in	the	sed	editor	apply	to	all	lines	of	the	text	data.	If	you	want	to	apply	a
command	to	only	a	specific	line,	or	a	group	of	lines,	you	must	use	line	addressing.

There	are	two	forms	of	line	addressing	in	the	sed	editor:

A	numeric	range	of	lines

A	text	pattern	that	filters	out	a	line

Both	forms	use	the	same	format	for	specifying	the	address:

[address]command	

When	using	numeric	line	addressing,	you	reference	lines	by	their	line	position	in	the	text	stream.	The	sed	editor
assigns	the	first	line	in	the	text	stream	as	line	number	1	and	continues	sequentially	for	each	new	line.	To	replace	the
word	“dog”	with	the	word	“cat”	but	only	if	it	appears	on	lines	2	or	3	in	the	data	file,	you'd	use	this:

$	sed	'2,3s/dog/cat/'	data1	

The	other	method	of	restricting	which	lines	a	command	applies	to	is	a	bit	more	complicated.	The	sed	editor	allows
you	to	specify	a	text	pattern	that	it	uses	to	filter	lines	for	the	command.	Here's	the	format	for	this:

/pattern/command	

You	must	encapsulate	the	pattern	you	specify	in	forward	slashes.	The	sed	editor	applies	the	command	only	to	lines
that	contain	the	text	pattern	that	you	specify.

$	sed	'/rich/s/bash/csh/'	/etc/passwd	

This	filter	finds	the	line	that	contains	the	text	rich	and	replaces	the	text	bash	with	csh.

You	can	also	group	more	than	one	command	together	for	a	specific	address:

address	{
					command1
					command2
					command3	}	

The	sed	editor	applies	each	of	the	commands	you	specify	only	to	lines	that	match	the	address	specified.	The	sed
editor	processes	each	command	listed	on	the	address	line(s):

$	sed	'2{
>	s/fox/elephant/	
>	s/dog/cat/	
>	}'	data1	

The	sed	editor	applies	each	of	the	substitutions	to	the	second	line	in	the	data	file.

Deleting	lines
The	delete	command,	d	,	pretty	much	does	what	it	says.	It	deletes	any	text	lines	that	match	the	addressing	scheme
supplied.	Be	careful	with	the	delete	command,	because	if	you	forget	to	include	an	addressing	scheme,	all	the	lines
are	deleted	from	the	stream:

$	sed	'd'	data1	

The	delete	command	is	obviously	most	useful	when	used	in	conjunction	with	a	specified	address.	This	allows	you	to
delete	specific	lines	of	text	from	the	data	stream,	either	by	line	number:

$	sed	'3'	data1

or	by	a	specific	range	of	lines:

$	sed	'2,3d'	data1

The	pattern‐matching	feature	of	the	sed	editor	also	applies	to	the	delete	command:
$	sed	'/number	1/d'	data1

Only	lines	matching	the	specified	text	are	deleted	from	the	stream.

Inserting	and	appending	text
As	you	would	expect,	like	any	other	editor,	the	sed	editor	allows	you	to	insert	and	append	text	lines	to	the	data
stream.	The	difference	between	the	two	actions	can	be	confusing:

The	insert	command	(i)	adds	a	new	line	before	the	specified	line.

The	append	command	(a)	adds	a	new	line	after	the	specified	line.

The	format	of	these	two	commands	can	be	confusing;	you	can't	use	these	commands	on	a	single	command	line.	You
must	specify	the	line	to	insert	or	append	on	a	separate	line	by	itself.	Here's	the	format	for	doing	this:

sed	'[address]command\
new	line'	

The	text	in	new	line	appears	in	the	sed	editor	output	in	the	place	you	specify.	Remember	that	when	you	use	the
insert	command,	the	text	appears	before	the	data	stream	text:

$	echo	"testing"	|	sed	'i\
>	This	is	a	test'
This	is	a	test
testing	
$

And	when	you	use	the	append	command,	the	text	appears	after	the	data	stream	text:

$	echo	"testing"	|	sed	'a\	
>	This	is	a	test'

testing	
This	is	a	test	
$

This	allows	you	to	insert	text	at	the	end	of	the	normal	text.

Changing	lines
The	change	command	(c)	allows	you	to	change	the	contents	of	an	entire	line	of	text	in	the	data	stream.	It	works	the
same	as	the	insert	and	append	commands,	in	that	you	must	specify	the	new	line	separately	from	the	rest	of	the	sed
command:

$	sed	'3c\	
>	This	is	a	changed	line	of	text.'	data1

The	backslash	character	is	used	to	indicate	the	new	line	of	data	in	the	script.

Transform	command
The	transform	command	(y)	is	the	only	sed	editor	command	that	operates	on	a	single	character.	The	transform
command	uses	this	format:

[address]y/inchars/outchars/	

The	transform	command	performs	a	one‐to‐one	mapping	of	the	inchars	and	the	outchars	values.	The	first	character
in	inchars	is	converted	to	the	first	character	in	outchars.	The	second	character	in	inchars	is	converted	to	the	second
character	in	outchars.	This	mapping	continues	throughout	the	length	of	the	specified	characters.	If	the	inchars	and
outchars	are	not	the	same	length,	the	sed	editor	produces	an	error	message.

Printing	lines
Similar	to	the	p	flag	in	the	substitution	command,	the	p	command	prints	a	line	in	the	sed	editor	output.	The	most
common	use	for	the	print	command	is	for	printing	lines	that	contain	matching	text	from	a	text	pattern:

$	sed	-n	'/number	3/p'	data1	
This	is	line	number	3.	
$	

The	print	command	allows	you	to	filter	only	specific	lines	of	data	from	the	input	stream.

Writing	to	a	file
The	w	command	is	used	to	write	lines	to	a	file.	Here's	the	format	for	the	w	command:

[address]w	filename	

The	filename	can	be	specified	as	either	a	relative	or	absolute	pathname,	but	in	either	case,	the	person	running	the
sed	editor	must	have	write	permissions	for	the	file.	address	can	be	any	type	of	addressing	method	used	in	sed	,	such
as	a	single	line	number,	a	text	pattern,	or	a	range	of	line	numbers	or	text	patterns.

Here's	an	example	that	prints	only	the	first	two	lines	of	a	data	stream	to	a	text	file:

$	sed	'1,2w	test'	data1	

The	output	file	test	contains	only	the	first	two	lines	from	the	input	stream.

Reading	from	a	file
You've	already	seen	how	to	insert	and	append	text	into	a	data	stream	from	the	sed	command	line.	The	read
command	(r)	allows	you	to	insert	data	contained	in	a	separate	file.

Here's	the	format	of	the	read	command:

[address]r	filename	

The	filename	parameter	specifies	either	an	absolute	or	relative	pathname	for	the	file	that	contains	the	data.	You
can't	use	a	range	of	addresses	for	the	read	command.	You	can	specify	only	a	single	line	number	or	text	pattern
address.	The	sed	editor	inserts	the	text	from	the	file	after	the	address.

$	sed	'3r	data'	data1	

The	sed	editor	inserts	the	complete	text	from	the	data	file	into	the	data1	file,	starting	at	line	3	of	the	data1	file.

The	gawk	Program
The	gawk	program	is	the	GNU	version	of	the	original	awk	program	in	Unix.	The	awk	program	takes	stream	editing	one
step	further	than	the	sed	editor	by	providing	a	programming	language	instead	of	just	editor	commands.	This	section
describes	the	basics	of	the	gawk	program	as	a	quick	reference	to	its	abilities.

The	gawk	command	format
The	basic	format	of	the	gawk	program	is	as	follows:

gawk	options	program	file	

Table	B.2	shows	the	options	available	with	the	gawk	program.

TABLE	B.2	The	gawk	Options

Option Description

‐F	fs Specifies	a	file	separator	for	delineating	data	fields	in	a	line

‐f	file Specifies	a	filename	to	read	the	program	from

‐v	var=
value

Defines	a	variable	and	default	value	used	in	the	gawk	program

‐mf	N Specifies	the	maximum	number	of	fields	to	process	in	the	data	file

‐mr	N Specifies	the	maximum	record	size	in	the	data	file

‐W	keyword Specifies	the	compatibility	mode	or	warning	level	for	gawk.	Use	the	help	option	to	list	all	the	available
keywords.

The	command‐line	options	provide	an	easy	way	to	customize	features	in	the	gawk	program.

Using	gawk
You	can	use	gawk	either	directly	from	the	command	line	or	from	within	your	shell	scripts.	This	section	demonstrates
how	to	use	the	gawk	program	and	how	to	enter	scripts	for	gawk	to	process.

Reading	the	program	script	from	the	command	line
A	gawk	program	script	is	defined	by	an	opening	and	closing	brace.	You	must	place	script	commands	between	the	two
braces.	Because	the	gawk	command	line	assumes	that	the	script	is	a	single	text	string,	you	must	also	enclose	your
script	in	single	quotation	marks.	Here's	an	example	of	a	simple	gawk	program	script	specified	on	the	command	line:

$	gawk	'{print	$1}'	

This	script	displays	the	first	data	field	in	every	line	of	the	input	stream.

Using	multiple	commands	in	the	program	script
A	programming	language	wouldn't	be	very	useful	if	you	could	execute	only	one	command.	The	gawk	programming
language	allows	you	to	combine	commands	into	a	normal	program.	To	use	multiple	commands	in	the	program
script	specified	on	the	command	line,	just	place	a	semicolon	between	commands:

$	echo	"My	name	is	Rich"	|	gawk	'{$4="Dave";	print	$0}'	
My	name	is	Dave	
$	

The	script	performs	two	commands:	it	replaces	the	fourth	data	field	with	a	different	value,	and	then	it	displays	the
entire	data	line	in	the	stream.

Reading	the	program	from	a	file
As	with	the	sed	editor,	the	gawk	editor	allows	you	to	store	your	programs	in	a	file	and	refer	to	them	in	the	command
line:

$	cat	script1	
{	print	$5	"'s	userid	is	"	$1	}	
$	gawk	-F:	-f	script1	/etc/passwd	

The	gawk	program	processes	all	the	commands	specified	in	the	file	on	the	input	stream	data.

Running	scripts	before	processing	data
The	gawk	program	also	allows	you	to	specify	when	the	program	script	is	run.	By	default,	gawk	reads	a	line	of	text	from
the	input	and	then	executes	the	program	script	on	the	data	in	the	line	of	text.	Sometimes,	you	may	need	to	run	a
script	before	processing	data,	such	as	to	create	a	header	section	for	a	report.	To	do	that,	you	use	the	BEGIN	keyword.
This	forces	gawk	to	execute	the	program	script	specified	after	the	BEGIN	keyword	before	reading	the	data:

$	gawk	'BEGIN	{print	"This	is	a	test	report"}'
This	is	a	test	report	
$	

You	can	place	any	type	of	gawk	command	in	the	BEGIN	section,	such	as	commands	that	assign	default	values	to
variables.

Running	scripts	after	processing	data
Similar	to	the	BEGIN	keyword,	the	END	keyword	allows	you	to	specify	a	program	script	that	gawk	executes	after	reading
the	data:

$	gawk	'BEGIN	{print	"Hello	World!"}	{print	$0}	END	{print
					"byebye"}'	data1
Hello	World!	
This	is	a	test	
This	is	a	test	

This	is	another	test.	
This	is	another	test.	
byebye	
$	

The	gawk	program	executes	the	code	in	the	BEGIN	section	first,	then	processes	any	data	in	the	input	stream,	and	then
executes	the	code	in	the	END	section.

The	gawk	variables
The	gawk	program	is	more	than	just	an	editor;	it's	a	complete	programming	environment.	As	such,	lots	of	commands
and	features	are	associated	with	gawk	.	This	section	shows	the	main	features	you	need	to	know	for	programming	with
gawk.

Built‐in	variables
The	gawk	program	uses	built‐in	variables	to	reference	specific	features	within	the	program	data.	This	section
describes	the	gawk	built‐in	variables	available	for	you	to	use	in	your	gawk	programs	and	demonstrates	how	to	use
them.

The	gawk	program	defines	data	as	records	and	data	fields.	A	record	is	a	line	of	data	(delineated	by	the	newline
characters	by	default),	and	a	data	field	is	a	separate	data	element	within	the	line	(delineated	by	a	white	space
character,	such	as	a	space	or	tab,	by	default).

The	gawk	program	uses	data	field	variables	to	reference	data	elements	within	each	record.	Table	B.3	describes	these
variables.

TABLE	B.3	The	gawk	Data	Field	and	Record	Variables

Variable Description

$0 The	entire	data	record

$1 The	first	data	field	in	the	record

$2 The	second	data	field	in	the	record

$n The	nth	data	field	in	the	record

FIELDWIDTHS A	space‐separated	list	of	numbers	defining	the	exact	width	(in	spaces)	of	each	data	field
FS Input	field	separator	character

RS Input	record	separator	character

OFS Output	field	separator	character

ORS Output	record	separator	character

In	addition	to	the	field	and	record	separator	variables,	gawk	provides	some	other	built‐in	variables	to	help	you	know
what's	going	on	with	your	data	and	to	extract	information	from	the	shell	environment.	Table	B.4	shows	the	other
built‐in	variables	in	gawk.

TABLE	B.4	More	gawk	Built‐In	Variables

Variable Description

ARGC The	number	of	command‐line	parameters	present
ARGIND The	index	in	ARGV	of	the	current	file	being	processed

ARGV An	array	of	command‐line	parameters
CONVFMT The	conversion	format	for	numbers	(see	the	printf	statement),	with	a	default	value	of	%.6g

ENVIRON An	associative	array	of	the	current	shell	environment	variables	and	their	values

ERRNO The	system	error	if	an	error	occurs	reading	or	closing	input	files

FILENAME The	filename	of	the	data	file	used	for	input	to	the	gawk	program

FNR The	current	record	number	in	the	data	file

IGNORECASE If	set	to	a	non‐zero	value,	gawk	ignores	the	case	of	all	characters	in	all	string	functions	(including
regular	expressions)

NF The	total	number	of	data	fields	in	the	data	file

NR The	number	of	input	records	processed

OFMT The	output	format	for	displaying	numbers,	with	a	default	of	%.6g

RLENGTH The	length	of	the	substring	matched	in	the	match	function

RSTART The	start	index	of	the	substring	matched	in	the	match	function

You	can	use	the	built‐in	variables	anywhere	in	the	gawk	program	script,	including	the	BEGIN	and	END	sections.

Assigning	variables	in	scripts

Assigning	values	to	variables	in	gawk	programs	is	similar	to	how	you	assign	values	to	variables	in	a	shell	script—
using	an	assignment	statement:

$	gawk	'	
>	BEGIN{	
>	testing="This	is	a	test"	
>	print	testing	
>	}’	
This	is	a	test	
$	

After	you	assign	a	value	to	a	variable,	you	can	use	that	variable	anywhere	in	your	gawk	script.

Assigning	variables	in	the	command	line
You	can	also	use	the	gawk	command	line	to	assign	values	to	variables	for	the	gawk	program.	This	allows	you	to	set
values	outside	of	the	normal	code,	changing	values	on	the	fly.	Here's	an	example	of	using	a	command‐line	variable	to
display	a	specific	data	field	in	the	file:

$	cat	script1	
BEGIN{FS=","}	
{print	$n}	
$	gawk	-f	script1	n=2	data1	
$	gawk	-f	script1	n=3	data1	

This	feature	is	a	great	way	to	process	data	from	your	shell	scripts	in	the	gawk	script.

The	gawk	program	features
Some	features	of	the	gawk	program	make	it	handy	for	manipulating	data,	allowing	you	to	create	gawk	scripts	that	can
parse	just	about	any	type	of	text	file,	including	log	files.

Regular	expressions
You	can	use	either	a	Basic	Regular	Expression	(BRE)	or	an	Extended	Regular	Expression	(ERE)	to	filter	the	lines	in
the	data	stream	to	which	the	program	script	applies.

When	using	a	regular	expression,	the	regular	expression	must	appear	before	the	left	brace	of	the	program	script	that
it	controls:

$	gawk	'BEGIN{FS=","}	/test/{print	$1}'	data1
This	is	a	test	
$	

The	matching	operator
The	matching	operator	allows	you	to	restrict	a	regular	expression	to	a	specific	data	field	in	the	records.	The
matching	operator	is	the	tilde	character	(~).	You	specify	the	matching	operator,	along	with	the	data	field	variable,
and	the	regular	expression	to	match:

$1	~	/^data/	

This	expression	filters	records	where	the	first	data	field	starts	with	the	text	data.

Mathematical	expressions
In	addition	to	regular	expressions,	you	can	use	mathematical	expressions	in	the	matching	pattern.	This	feature
comes	in	handy	when	you're	matching	numerical	values	in	data	fields.	For	example,	if	you	want	to	display	all	the
system	users	who	belong	to	the	root	users	group	(group	number	0),	you	could	use	this	script:

$	gawk	-F:	'$4	==	0{print	$1}'	/etc/passwd	

This	script	displays	the	first	data	field	value	for	all	lines	that	contain	the	value	0	in	the	fourth	data	field.

Structured	commands
The	gawk	program	supports	the	structured	commands	discussed	in	this	section.

The	if‐then‐else	statement:

	if	(condition)	statement1;	else	statement2	

The	while	statement:

	while	(condition)	
{
				statements	
}	

The	do‐while	statement:

	do	{
				statements	
}	while	(condition)	

The	for	statement:

for(variable	assignment;	condition;	iteration	process)	

This	provides	a	wealth	of	programming	opportunities	for	the	gawk	script	programmer.	You	can	write	gawk	programs
that	rival	the	functions	of	just	about	any	higher‐level	language	program.

Index
Symbols	and	Numerics

$#,	382–384

$@,	384–386

$*,	384–386

$?,	477,	478–479

$(),	609–610

$?,	663

$($#),	384–386

$()	format,	283

$?	special	variable,	297

&>,	415

$0,	380,	480,	537

$1,	378,	537

1>,	415

$2,	537

2>,	415

&	(ampersand),	443–444,	449,	606–607

*	(asterisk),	64–65,	114,	502,	566,	578–579

\	(backslash	character),	758

`	(backtick	character),	283

^	(caret	character),	243,	570–571

'	(closing	quotation	mark),	534

{}	(curly	braces),	127,	536,	581–582

$	(dollar	sign),	48,	571–572,	600

.	(dot)	operator,	59,	68,	277,	490,	493,	572–573

--	(double	dash),	389–390,	393

..	(double	dot),	59–60

!!	(double	exclamation	mark),	131

>>	(double	greater	than),	285,	413

<<	(double	less-than	symbol),	286

=	(equal	sign),	555

!	(exclamation	mark),	65,	600–602

/	(forward	slash),	570

>	(greater	than),	285

<	(less	than),	285

+	(plus	sign),	580–581

|	(pipe	character),	106,	582–583

#	(pound	sign),	in	shell	scripts,	276

?	(question	mark),	64–65,	579–580

"	(quotation	marks),	141

;	(semicolon),	121,	122,	127,	275,	276,	534

[]	(square	brackets),	573–575

~	(tilde),	639–640

|	(vertical	line),	287

A

absolute	directory	references,	57–60,	67

access	control	list	(ACL),	184–186

access	permission	triplets,	176–177

accounts

creating	multiple,	374–375

managing

creating	script	for,	703–708

determining	existence,	698–699

finding	files,	702

getting	name,	693–696

removing	account,	702

removing	processes,	699–702

running	script	for,	708–710

verifying	name,	696–698

system,	164

user,	163

Activities	menu	(GNOME	3	desktop),	14

add	command,	732–733

address	pattern,	604

addresses

e-mail,	587–589

range,	615

sed

about,	756–757

grouping,	546

numeric,	544–545

text	pattern	filters,	545–546

Advanced	Package	Tool	(APT)	suite,	210

AIX	Unix,	192

Alacritty,	27

alias,	159,	236

Almquist,	Kenneth,	659

Almquist	shell,	659

ampersand	(&),	443–444,	449,	606–607

anacron,	460–461

anchor	characters

^	(caret	character),	570–571

$	(dollar	sign),	571–572

combining,	572

append	command,	549–551,	758

applets,	13

application	containers,	225–228

apt-cache,	210

apt-get,	210

apt-get	install,	506

aptitude

about,	210

installing	software	packages,	213–215

managing	packages,	211–213

repositories,	218–220

uninstalling	software,	216–217

updating	software,	215–216

aptitude	full-upgrade,	216

aptitude	install,	214

aptitude	purge,	217

aptitude	search,	213

archiving	data

about,	109–111

daily	archive	script

creating,	686–688

running,	688–689

hourly	archive	script

creating,	689–693

running,	692–693

scripting

configuration	file,	682–684

creating	daily	archive	location,	685–686

ARGC	variable,	632

ARGV	variable,	632

arrays

associative,	632,	636

functions

passing,	485–487

returning,	487–488

gawk

deleting,	638

iteration	through,	637–638

variable	assignment,	636–637

variable,	159–161

ash	shell,	11,	659

asort,	651–652

asorti,	651–652

assignment	statement,	634

associative	array,	632,	636

asterisk	(*),	64–65,	114,	502,	566,	578–579

at,	454–458

atd,	454

atq,	457

atrm,	457–458

AT&T	Unix,	86,	89

autoremove	command,	217

B

background	jobs,	445–446

background	mode,	429–430

--background	option,	26

backslash	character	(\),	758

backtick	character	(`),	283

basename,	380

bash,	117–120,	139,	142

bash	calculator	(bc),	293–297

bash	shell

about,	11,	660

basic	commands,	47–82

Bourne	variables,	145

commands

about,	85–111

built-in,	127,	741–744

common,	744–748

environment	variables,	748–753

environment	variables,	146–150,	748–753

EOF	key	combination,	537

external	commands,	744–748

handling	files,	66–74

interacting	with	Bash	manual,	49–53

line	numbers,	612–613

listing	files	and	directories,	60–65

managing	directories,	74–76

mathematical	operations,	292–293

navigating	filesystem,	53–60

referencing	current	directory,	277

signaling,	435–436

starting,	47–48

using	shell	prompt,	48–49

viewing	file	contents,	77–82

BASH_ENV	environment	variable,	146,	158

.bash_history,	131–132

.bash_login	file,	462

.bash_profile	file,	462

.bashrc	file

about,	152,	462

function	definition	in

directly	defining,	492–493

sourcing	function	files,	493–494

batch,	455

bc,	293–297

BEGIN	keyword,	539–541,	638

Bell	Labs,	86

Berkeley	Software	Distribution	(BSD),	89–91

bg,	450–451

/bin/bash,	660

/bin/sh,	115,	116,	660

bitwise	manipulation,	650

block	device	files,	8

Bookmarks	menu	(Konsole	Terminal	Emulator),	40–41

Boolean	operators,	331–332

Bourne	shell,	11,	290,	292,	659

Bourne	variables,	145

brackets

double,	335

math,	292–293

pattern	matching,	335

square,	573–575

branch	command,	603–605

branching,	726

BRE.	See	POSIX	Basic	Regular	Expression	engine

break	command,	365–368,	390,	504

break	statement,	644

broken	dependencies,	223–224

BSD.	See	Berkeley	Software	Distribution

B-tree	filesystem,	193

Btrfs	filesystem,	193

buffers

emacs,	250–251

scrollback,	39

built-in	commands

bash,	127,	741–744

dash	shell,	664–665

reviewing,	741–744

shell,	129–132

zsh

add-in	modules,	673

core,	670–672

viewing,	adding,	removing	modules,	673–674

built-in	variables,	gawk,	628–634,	763–764

Burrows-Wheeler	block	sorting	text	compression,	108

bzip2,	108

C

C	shell,	114

Calendar	menu	(GNOME	3	desktop),	14

caret	character	(^),	243,	570–571

case	command,	335–337

case	sensitivity,	regular	expressions,	568

case	statement

default	case,	502

menu	functions,	501–502

menu	logic,	502

processing	options,	388–389

removing	account	processes,	700–702

shell	script	menus,	499

zsh,	676

cat,	78,	80,	403,	412,	731

cd,	59,	129,	230

CentOS,	24,	116,	153–154,	727–728

chage,	170,	171–173

change	command,	551–552

changing	ownership,	181–182

character	classes

about,	573–575

negating,	575–576

special,	577

character	device	files,	8

character	mode,	425

characters

anchor

^	(caret	character),	570–571

$	(dollar	sign),	571–572

combining,	572

dot,	572–573

EOF,	296–297,	537

escape,	292,	347–348,	569–570

field	separation,	537,	628

ranges,	576–577

regular	expressions

anchor,	570–572

asterisk,	578–579

braces,	581–582

character	classes,	573–575

dot	character,	572–573

escape,	569–570

negating	character	classes,	575–576

pipe	symbol,	582–583

plain	text,	567–569

plus	sign,	580–581

question	mark,	579–580

ranges,	576–577

special,	569–570

special	character	classes,	577

replacing	with	sed,	543–544

shell	escape,	292

special,	569–570,	572–573

transforming	with	sed,	552–553

wildcard

about,	64,	565–566

cron	tables,	458

reading	directory	using,	352–354

replacement	strings,	606–608

checking	filesystems,	201–202

checklist	widget,	518

chfn,	170,	171–173

chgrp,	181–182,	184

child	process,	128

child	shell,	parent	relationships,	117–125

chmod,	180–181,	183,	277

chown,	181–182

chpasswd,	170–171

chsh,	170,	171–173

Cinnamon	desktop,	15,	16

clear	command,	500,	502

CLI.	See	command	line	interface	(CLI)

Client,	23

clone,	192

cloning,	726

closing	file	descriptors,	424–425

closing	quotation	mark	('),	534

colon	(:),	47,	151

combining	anchors,	572

command	aliases,	157

command	grouping,	122

command	line	interface	(CLI)

about,	21–23,	275

accessing	via	graphical	terminal	emulation,	26–27

accessing	via	Linux	console	terminal,	23–26

functions,	491–494

gawk

about,	536–537

variable	assignment,	635–636,	764

sed,	533–535

command	line	mode,	242

command	line	options

getopt	command,	392–395

getopts	command,	393,	395–398

processing,	388–389,	391–392

separating	from	parameters,	389–390

standardizing,	398–399

zsh,	668

command	line	parameters

counting,	382–384

dash	shell,	661–662

gawk,	634

getopt	command,	392–395

getopts	command,	393,	395–398

iterating	with	for	statement,	384–386

reading,	377–380

script	name,	380–381

shifting,	386–388

special	variables,	382–386

testing,	381–382

useradd,	166–169

xterm,	44–45

zsh,	668

command	mode	(vim	editor),	238–239

command	modules

about,	668

add-in,	673

viewing,	adding,	removing,	673–674

command	substitutions

backtick,	287

subshells,	284

variables,	283–284

command-line	completion,	69

command-line	parameters,	44–45

commands.	See	also	specific	commands

external,	127–129,	744–748

history,	130–132

reading	values	from,	350–351

shell	built-in

about,	129–132

bash	shell,	127,	741–744

dash	shell,	664–665

zsh,	670–674

structured

gawk,	641–645

zsh,	676

comma-separated	value	files,	374

committing,	with	Git,	732–739

common	bash	commands,	744–748

compound	testing,	331–332

compress,	108–109

compressing	data,	108–109,	683

conditions,	311

configure	command,	230–231

consecutive	blank	lines,	615–616

console	terminals,	22

containers,	managing	software	using,	225–228

continue	command,	368–371

continue	statement,	644

control	commands	(nano	editor),	243–244

cool-retro-term,	27

coproc,	126–127

co-processes,	126–127

copying	and	pasting

in	Emacs	editor,	249

in	vim	editor,	240–241

copying	files,	66–69

copy-on-write	(COW),	192–193

coreutils,	10

cp,	66–69,	72

CPU	utilization,	94

creating

directories,	74–75

files,	66

filesystems,	199–201

cron,	454,	458–460

cron	directories,	460

cron	tables,	458–459,	692,	708

crontab,	459

.csv	files,	374

Ctrl+Alt	key	combination,	24

Ctrl+Alt+T,	30

Ctrl+Shift+M,	38

curly	braces	({}),	127,	536,	581–582

current	working	directory,	58

D

d	command,	241

dash	(-),	117

dash	shell

about,	659–661

built-in	commands,	664–665

command	line	parameters,	661–662

environment	variables,	662–664

features,	661–665

positional	parameters,	663

scripting

arithmetic,	666

function	command,	667–668

test	command,	666–667

data,	editing.	See	editors

data	field	variables,	537–538,	628,	639

data	files

archiving

about,	109–111

configuration	file,	682–684

creating	location	for,	685–686

daily	script,	686–688

hourly	script,	689–693

scripting,	681–693

compressing,	108–109,	683

looping	on,	364–365

searching,	106–108

sorting,	102–106

data	mode	journaling,	191

date,	276,	692

dd	command,	241

deb,	219

Debian

about,	18

dash	shell,	659–661

package	management,	210–220

deb-src,	219

DEC.	See	Digital	Equipment	Corporation

decoding	file	permissions,	176–179

default	exit	status,	477–478

default	group,	329–330

default	interactive	shell,	117

default	shell	audit	functions,	710–714

default	shell	program,	113

default	system	shell,	116

delete	command,	sed,	547–549

deleting	directories,	75–76

deleting	files,	73–74

deleting	lines,	614–617

dependencies,	210,	223–224

desktop	environment

GNOME	desktop,	13–15

KDE,	12–13

Linux,	11–17

/dev/hdx,	194

device	drivers,	8

device	files,	8

device	names,	hard	drives,	194

/dev/sdx,	194

df,	100–101,	516

dialog	command

about,	506–507

scripting,	515–516

specifying	widget,	507

dialog	package

options,	513–515

output,	507

using	in	script,	515–516

widgets

about,	506–507

fselect,	512

inputbox,	508–510

menu,	511–512

msgbox,	507–508

textbox,	510–511

yesno,	508,	509

Dickey,	Thomas	E.,	505

diff,	716

Digital	Equipment	Corporation	(DEC),	42

directories

absolute	references,	57–60,	67

counting	files,	584–585

creating,	74–75

cron,	460

deleting,	75–76

file	comparisons	using,	320–321

HOME,	277

$HOME/bin,	277

listing,	60–65

managing,	74–76

parent,	75

reading	using	wildcards,	352–354

referencing	current,	277

relative	references,	59–60

root,	54

temporary,	429–430

/tmp,	427

traversing,	57–60

virtual,	53–54

disk	blocks,	190

disk	space,	monitoring,	96–102,	710–721

display	server,	23

displaying	messages,	scripting,	278–279

distributed	VCSs,	724

distribution,	17–19

dnf

broken	dependencies,	223–224

installing	software,	221–222

listing	installed	packages,	220–221

repositories,	224

uninstalling	software,	223

updating	software,	223

dnf	clean	all,	223

dnf	deplist,	224

dnf	install,	221,	246

dnf	list,	223,	245

dnf	list	installed,	220

dnf	remove,	223

do	statement,	346

dollar	sign	($),	48,	571–572,	600

done	command,	362

done	statement,	346

dot	(.)	operator,	59,	68,	277,	490,	493,	572–573

double	bracket	command,	335

double	dash	(--),	389–390,	393

double	dot	(..),	59–60

double	exclamation	mark	(!!),	131

double	greater	than	(>>),	285,	413

double	less-than	symbol	(<<),	286

double	line	spacing,	610–611

double	parentheses	command,	333–335

do-while	statement,	644–645

dpkg,	210,	212

du,	101–102,	106

dumb	terminal,	21

E

echo	$0	command,	117

echo	$BASH_SUBSHELL,	122

echo	command

about,	126,	129,	139,	278–279,	422

background	process	list,	126

-en	option,	501

menu	layouts,	499–501

-n	parameter,	279

echo	$my_variable,	141–142

Edit	menu

GNOME	Terminal,	33

Konsole	Terminal	Emulator,	39

KWrite	editor,	255–256

editing	data,	240

editors.	See	also	gawk;	sed	editor

emacs

basics,	247–248

buffers,	250–251

on	console,	246–252

copying	and	pasting,	249

editing,	248–249

in	GUI,	252–253

installing,	244

searching	and	replacing,	249–250

windows,	251–252

GNOME,	263–271

Kate,	259–263

KDE,	253–263

nano,	242–244

stream,	531

vim

basics,	237–239

copying	and	pasting,	240–241

editing,	240

installing,	236–237

searching	and	substituting,	241–242

egrep	command,	108

elif	statement,	308–311

else	clause,	309–312,	642–643

emacs

basics,	247–248

buffers,	250–251

copying	and	pasting,	249

editing,	248–249

installing,	244

searching	and	replacing,	249–250

using

on	console,	246–252

in	GUI,	252–253

windows,	251–252

e-mail	addresses,	parsing,	587–589

empty	files,	325–326

END	keyword,	540,	638

env,	138–139,	140

ENVIRON	variable,	632

environment,	Git,	727–732

environment	files,	152

environment	variables

about,	137–138

bash	shell

about,	146–150

commands,	748–753

default,	748–753

BASH_ENV,	146,	158

dash	shell,	662–664

default	shell,	145–150

in	gawk,	632

global,	138–139

IFS,	364–365

local,	140

LS_COLORS,	61

OPTARG,	396

OPTIND,	396,	397

PAM,	152

PATH,	150–151,	277,	373

persisting,	159

removing,	144–145

scripting,	280–281

system

interactive	shell,	157

login	shell,	152–157

non-interactive	shell,	158

user-defined,	141–144

variable	arrays,	159–161

EOF	text	string,	296–297,	537

epoch	time,	652,	712

equal	sign	(=),	555

equal	sign	command,	555

ERE.	See	POSIX	Extended	Regular	Expression	engine

error	messages,	414–415

escape	character,	292,	347–348,	569–570

/etc/apt/sources.list,	218

/etc/bash.bashrc,	153

/etc/cron.hourly,	461

/etc/cron.monthly,	460–461

/etc/fstab,	201

/etc/group	file,	173–174

/etc/inittabs	file,	7

/etc/login.defs,	umask	values,	166

/etc/passwd	file,	164–165,	169,	307–308,	364–365,	698,	710–711

/etc/profile

about,	152–156,	159

CentOS,	155–156

Ubuntu	Linux,	153

umask	values,	179

/etc/profile.d,	153–154,	158

/etc/rc.d	folders,	7

/etc/shadow,	165–166

/etc/skel	directory,	166

/etc/yum.repos.d,	224

Ex	mode	(vim	editor),	238–239

exclamation	mark	(!),	65,	600–602

exec,	418,	419,	683

executable	files,	328,	373–374

execute	privilege,	688

exit,	120–121,	129,	298–300,	438

EXIT	signal,	440

exit	status

codes

checking,	297–298

dialog	widget	output,	507

test	command,	311–312

default,	477–478

ps,	699–700

exiting	scripts,	297–300

export,	142–144

expr	command,	290–292,	666

((expression))	(double	bracket	command),	335

((expression))	(double	parentheses	command),	333–335

ext	filesystem,	9,	190

ext2	filesystem,	9,	190

ext3	filesystem,	9,	191

ext4	filesystem,	9,	191

extended	filesystem.	See	ext	filesystem

extended	regular	expressions,	567,	579–583

external	commands,	127–129,	744–748

F

Falstad,	Paul,	668

fdisk,	194–196

Fedora	Linux,	19,	210,	220

fg,	451

fgrep	command,	108

FHS.	See	Filesystem	Hierarchy	Standard

field	separation	character,	537,	628

field	separators,	internal,	351–352

FIELDWIDTHS	variable,	629–630

file,	77

File	Browser,	268

file	compression	utilities,	108–109

file	descriptor

about,	412

closing,	424–425

creating	input,	421

creating	output,	419–420

listing	open,	424–426

read/write,	422

redirecting,	420–421

standard,	412–414

file	globbing,	65,	352

File	menu

GNOME	Terminal,	33

Konsole	Terminal	Emulator,	38

file	paths,	54

file	permissions

access	control	lists	(ACL),	184–186

changing,	179–182

codes,	176–179

decoding,	176–179

groups,	173–176

security,	163–173

sharing	files,	182–184

file	redirection,	432

files

account,	702

comparisons

checking	directories,	320–321

checking	for	file,	322–324

checking	for	object	existence,	321–322

date,	330

default	group,	329–330

execute	permission,	328

ownership,	328–329

read	access,	324

write	permission,	326–327

copying,	66–69

creating,	66

date,	330

default	group,	329–330

deleting,	73–74

executable,	finding,	373–374

linking,	69–71

listing,	60–65

looping	on	data,	364–365

numbering	lines	in,	612–613

ownership,	328–329

printing	last	lines,	613–614

reading	editor	commands	from,	534–535,	759

reading	gawk	scripts	from,	539,	760

redirecting	loop	output	to,	371–372

renaming,	71–73

script,	creating,	276–278

sed	using

reading,	557–559

writing,	556–557

sharing,	182–184

spacing	with	double	lines,	610–611

startup,	462

temporary,	427–430

using	command-line	completion,	69

viewing	contents,	77–82

filesystem	commands.	See	external	commands

Filesystem	Hierarchy	Standard	(FHS),	57

filesystems

about,	8–9,	189–190

checking	and	repairing,	201–202

creating,	199–201

as	a	function	of	Linux	kernel,	5,	8–9

GNU	parted	program,	198–199

journaling,	191–192

Linux,	53–57

management,	8–9

managing	logical	volumes,	202–207

mounting	media,	97–100

navigating,	53–60

partitions,	194–197

traversing	directories,	57–60

volume-managing,	192–194

working	with,	194–202

working	with	gdisk,	197–198

filtering	listing	output,	64–65

find,	702,	715

finding	executable	files,	373–374

finger,	171,	172

5dd	command,	240

flags,	756

flatpak	command,	227–228

flatpak	containers,	227–228

floating-point	math,	293–297

Fluxbox,	16

FNR	variable,	632–633

for	command

about,	345–354

changing	field	separator,	351–352

C-style,	354–357

piping	output,	371–372

reading	complex	values	in	list,	347–349

reading	directory	using	wildcards,	352–354

reading	list	from	variable,	349–350

reading	values	from	command,	350–351

reading	values	in	list,	346–347

redirecting	output	to	file,	371–372

for	loops,	361–363,	676

for	statement,	384–386,	645

--foreground	option,	26

forking,	128

format	specifiers

control	letters,	646

modifiers,	647

format	string,	646

formatted	numbers,	574–575

formatted	printing,	645–648

forward	slash	(/),	54,	57,	59,	61,	67,	241,	570

FreeBSD,	659

FS	variable,	628

fsck,	201–202

fselect	widget,	512

function	command,	667–668

function	keyword,	474,	653–654

function()	statement,	667–668

functions

array	variables,	485–488

command	line	usage,	491–494

creating,	474

creating	on	command	line,	491–492

dash	shell,	667–668

default	exit	status,	477–478

default	shell	audit,	710–714

defining	in	.bashrc	file,	492–494

gawk

built-in,	648–653

creating	library,	654–655

defining,	653–654

mathematical,	649–650

string,	650–652

time,	652–653

user-defined,	653–655

using,	654

get	account	name,	695–696

libraries,	489–491

parameter	passing	to,	480–482

recursion,	488–489

return	command,	478–479

returning	values,	477–480

scope,	482

stub,	501

using,	474–476

using	output,	479–480

variables	in,	480–485

zsh,	675–677

Fvwm,	16

fvwm95,	16

G

gawk

about,	535–541,	566,	760–765

arrays

deleting,	638

iteration	through,	637–638

variable	assignment,	636–637

bitwise	manipulation,	650

command	format,	536,	760

data	field	variables,	537–538,	763

environment	variables,	632

features,	764–765

formatted	printing,	645–648

functions

built-in,	648–653

creating	library,	654–655

defining,	653–654

mathematical,	649–650

string,	650–652

time,	652–653

user-defined,	653–655

using,	654

intervals,	581

matching	operator,	764

mathematical	expressions,	764

multiple	commands	in	program	script,	538,	761

options,	760

pattern	matching

matching	operator,	639–640

mathematical	expressions,	640–641

regular	expressions,	639,	764

print	command,	629

reading	program	file,	539,	761

reading	script	from	command	line,	536–537,	760

record	variables,	763

running	scripts

after	processing	data,	540–541,	761–762

before	processing	data,	539–540,	761

structured	commands,	641–645,	765

using,	760–762

variables

about,	537–538,	627–636

ARGC,	632

ARGV,	632

assigning	in	scripts,	634–635

assigning	on	command	line,	635–636,	764

built-in,	628–634,	763–764

data,	631–634

data	field,	628–631,	639

ENVIRON,	632

field	and	record	separator,	628–631

FIELDWIDTHS,	629–630

FNR,	632–633

FS,	628

NF,	632–633

NR,	632–633

OFS,	628–629

ORS,	630

RS,	630

user-defined,	634–636

gdialog,	521

gdisk	utility,	194,	197–198

gedit,	264–271

Gentoo,	18

getfacl	command,	184–186

getopt	command,	392–395,	393

getopts	command,	395–398

Git.	See	also	version	control

committing	with,	732–739

setting	up	environment,	727–732

using	for	version	control,	727

global	environment	variables,	138–139

global	variables,	in	functions,	483–484

GNOME	desktop,	13–15

GNOME	editor.	See	gedit

GNOME	graphical	environment,	521–525

GNOME	Terminal

accessing,	27–32

menu	bar,	32–36

gnome-terminal,	31

GNU

about,	3,	9–11

gzip,	109

vim,	235

GNU	bash	shell,	114–115

GNU	long	parameters,	91–92

GNU	Network	Object	Model	Environment.	See	GNOME	desktop

GNU	parted	program,	198–199

GNU	utilities,	9–11

graphical	interfaces,	elements,	26–27

graphical	terminal	emulation,	accessing	CLI	via,	26–27

graphical	terminals,	22–23

greater	than	(>),	285

grep,	106–108,	305,	711

grip	utility,	108–109

groupadd,	174–175

grouping	commands,	546

grouping	expressions,	583

groupmod,	175–176

groups

about,	173,	685–686

changing	file	ownership,	181–182

creating,	174–175

default,	329–330

/etc/group	file,	173–174

modifying,	175–176

Guake,	29

GUI	environment,	using	Emacs	editor	in,	252–253

gunzip,	109

gzcat,	109

gzip,	109

H

hard	links,	70–71

hardware	management,	5,	8

hdparm,	196

head,	82

Help	menu

GNOME	Terminal,	36

Konsole	Terminal	Emulator,	41–42

history	command,	130–132

hold	space,	598–599

$HOME,	280–281,	322–324

HOME	directory,	277

$HOME	startup	files,	156–157

$HOME/.bash_login,	152

$HOME/.bash_profile,	152

$HOME/.bashrc,	152

$HOME/bin	directory,	277

$HOME/.profile,	152

hpfs	filesystem,	9

HTML	tags,	removing,	617–619

Huffman	coding,	108

I

-i	command,	73–74

IBM,	192

IDE	drives,	194

if	statement

archiving	data	files	script,	684

gawk,	641–643

nested,	307–311

IFS,	351–352

IFS	environment	variable,	364–365

if-then	statements

about,	605

compound	testing,	331–332

continue	command,	368–371

as	test	command	alternative,	313

working	with,	303–306

if-then-else	statements,	306–307,	676

immutable	attribute,	712–713

incremental	search,	249–250

index,	725

init	command,	730

init	process,	6

inline	input	redirection,	285–286,	296

inner	loop,	362,	366–367

inode	numbers,	70–71,	190

inode	table,	190,	191

inodes,	190

input	redirection

inline,	285–286,	296

scripting,	285–286,	418–419

inputbox	widget,	508–510

insert	command,	549–551,	758

insert	mode	(vim	editor),	238–239

inserting	text,	549–551,	608

installing	software,	209–232

int(),	649–650

interactive	shell,	157

internal	field	separator,	351–352

interprocess	communication,	95

interrupting	processes,	436–437

intervals,	581–582

--inversescreen	option,	26

IRIX	Unix,	195

ISO	image	file,	18

iso9660	filesystem,	9,	98

J

JFS.	See	Journaled	File	System

jfs	filesystem,	9

job	control,	448

job	number,	437

job	queue,	455

jobs

background,	445–446

controlling,	448–451

restarting,	450–451

scheduling

listing	pending,	457

output,	455–457

removing,	457–458

stopped,	437–438

viewing,	448–450

jobs,	124–125,	448–450

Journaled	File	System	(JFS),	192

journaling	filesystems,	191

JWM,	16

K

K	Desktop	Environment	(KDE).	See	KDE

K	menu,	13

Kate	editor,	259–263

KDE.	See	also	Konsole	Terminal

about,	12–13

editors

Kate,	259–263

KWrite,	253–259

KDE	Plasma,	12–13

Kdialog

using,	519–521

widgets,	517–519

kernel

filesystem	management,	8–9

hardware	management,	8

software	program	management,	6–7

system	memory	management,	5–6

kill,	95–96,	448,	450,	701

kitty,	27

Konsole	Terminal

about,	27

accessing,	36–37

menu	bar,	38–42

using,	36–42

korn	shell,	11

Kwin,	23

KWrite,	253–259

kwrite	command,	254–255

L

label	parameter,	603–604

Lam,	Savio,	505

leading	blank	lines,	616

Lempel-Ziv	coding,	108

less,	80,	220

less	than	(<),	285

let	command,	674

libraries,	489–491,	493–494

line	addressing

about,	756–757

grouping,	546

numeric,	544–545

text	pattern	filters,	545–546

line	numbers,	555,	612–613

lines

listing,	555–556

printing,	554

printing	numbers,	555

linking	files,	69–71

links,	symbolic,	70,	660

Linux

about,	3–4

desktop	environment,	11–17

distributions,	17–19

GNU	utilities,	9–11

kernel

filesystem	management,	8–9

hardware	management,	8

software	program	management,	6–7

system	memory	management,	5–6

signals,	436

Linux	console,	22,	23–26

Linux	filesystem,	53–57

Linux	LiveDVD,	19

Linux	Mint,	19,	210,	220

LISP,	251

list	parameter,	504

listing	lines,	555–556

lists

reading	complex	values	in,	347–349

reading	from	variable,	349–350

reading	values	in,	346–347

LiveDVD,	3,	19

ln,	70

load	average,	93,	94

local	environment	variables,	140

local	keyword,	484–485

local	repository,	725–726

local	variables,	140,	484–485

logging,	scripting,	430–431

logging	in,	23–26

logical	volume	(LV),	202–207

Logical	Volume	Manager	(LVM),	202–207

login	name,	163

login	program,	165

login	shell,	116,	152–157

loops

for,	361–363,	676

controlling

break	command,	365–368

continue	command,	368–371

on	file	data,	364–365

inner,	362,	366–367

nested,	361–363

outer,	breaking	out,	367–368

processing	output,	371–372

until,	363,	676

while

about,	390,	676

archiving	data	files	script,	684

menu	dialog,	516

nested,	361–363

reading	files,	403–404

text	menus,	504

ls,	60–65,	176–177,	237,	713,	730

ls	-l	command,	237

LS_COLORS	environment	variable,	61

lsof,	424–426

LV.	See	logical	volume

lvcreate,	205–206

lvdisplay,	205

lvextend,	207

LVM.	See	Logical	Volume	Manager

lvreduce,	207

M

man,	50–52

man	pages,	50–53

managing	directories,	74–76

manual,	Bash,	49–53

Markdown	file,	734

matching	operator,	639–640,	764

MATE	desktop,	15

math

brackets,	292–293

expr	command,	290–292

floating-point,	293–297

gawk

bitwise	manipulation,	650

built-in	functions,	649–650

pattern	matching,	639–640

scripting,	289–297

mathematical	comparisons,	333–335

mathematical	functions,	675–676

media

mounting,	97–100

removable,	97,	98

meminfo,	516

memory	management,	5–6

menu	bar

GNOME	Terminal,	32–36

Konsole	Terminal	Emulator,	38–42

menu	scripts,	499

menu	widget,	511–512

messages

displaying	from	scripts,	278–279

error,	414–415

metacharacter	wildcards,	65

Metacity,	23

Microsoft	Windows,	11

minix	filesystem,	9

Mint,	19,	210,	220

minus	sign	(-),	125

mkdir,	74–75,	200,	691

mke2fs,	199

mkefs,	199

mkfs.btrfs,	199

mkfs.ext3,	199

mkfs.ext4,	199,	200,	206

mkfs.xfs,	199

mkfs.zfs,	199

mkreiserfs,	199

mktemp,	427–428,	516

mktemp	-t,	428–429

monitoring	disk	space,	710–721

more,	78–79,	80

mount,	97–99,	200

mount	points,	55

mounting,	97–100

moving	files,	71–73

msdos	filesystem,	9

msgbox	widget,	507–508

multiline	commands

delete,	595–596

next,	592–595

print,	596–597

multiple	background	jobs,	445–446

multiple	commands,	scripting,	275–276

multi-word	values,	348–349

mv,	72–73

MX	Linux,	19

N

$n,	537

n	command,	592–593

nano,	242–244

ncp	filesystem,	9

negating	character	classes,	575–576

nested	loops,	361–363

network	browser,	23

network	device	files,	8

new	line,	758

next	command

multi-line,	593–595

single-line,	592–593

NF	variable,	632–633

nfs	filesystem,	9

nice,	452–453

nodes,	8

nohup,	447–448

nohup.out,	447–448

non-incremental	search,	250

non-interactive	shell,	158

normal	mode,	256

NR	variable,	632–633

ntfs	filesystem,	9,	98

number	manipulation.	See	math

numbering	lines,	612–613

numeric	comparisons,	313–314

numeric	line	addressing,	544–545

O

Octal	mode,	178–179

OFS	variable,	628–629

open	source	software	(OSS),	10

OpenSolaris,	193

openSUSE,	12,	18,	193,	210,	220

OPTARG	environment	variable,	396

OPTIND	environment	variable,	396,	397

options.	See	command	line	options

ordered	mode	journaling,	191

ORS	variable,	630

OSS.	See	open	source	software

outer	loop,	breaking	out,	367–368

output	redirection,	413–414,	416–418

output	redirections

permanent,	417–418

scripting,	285,	416–418

output	suppression,	426

ownership,	changing,	181–182

P

p	command,	196,	241

package	management,	209–210

Package	Management	System	(PMS)

about,	209–210

aptitude

installing	software	packages,	213–215

managing	packages,	211–213

repositories,	218–220

uninstalling	software,	216–217

updating	software,	215–216

dnf,	220

yum,	220

zypper,	220

pager,	50

pages,	6

PAM.	See	Pluggable	Authentication	Modules

Panel	(KDE	Plasma	desktop),	13

parameters.	See	also	command	line	parameters

BSD-style,	89–91

dash	shell

command	line,	661–662

command-line,	661–662

positional,	663

GNU	long,	91–92

list,	504

passing	arrays	as,	486

passing	to	function,	480–482

positional,	378–379,	663

testing,	381–382

Unix-style,	86–89

parent	directories,	75

parent	process	ID	(PPID),	88

parent	shell,	child	relationships,	117–127

partitions,	creating,	194–197

partprobe,	196

passwd,	170–171

passwords,	reading,	402–403

PATH	environment	variable,	150–151,	277,	373

pattern	matching

double	bracket	command,	335

filtering	file	listings,	64–65

gawk

matching	operator,	639–640

mathematical	expressions,	640–641

regular	expressions,	639,	764

sed,	545–546,	551

pattern	space,	593,	597,	602

/pattern/command,	757

pausing	processes,	437–438

period	(.),	61

permanent	redirection,	417–418

permissions

about,	688

audit	functions,	714–716

changing,	180–181

file	comparisons,	327–328

persistent	environment	variables,	159

phone	numbers,	validating,	585–587

physical	volumes	(PV),	203,	204

PID.	See	process	ID

pipe	character	(|),	106,	582–583

pipes

loop	output,	371–372

reading	from	files,	403–404

scripting,	287–289

tee	command,	430–431

pkill	command,	96

PKZIP,	108

Pluggable	Authentication	Modules	(PAM),	152

plugins,	managing,	268–271

plus	sign	(+),	125,	580–581

PMS.	See	Package	Management	System	(PMS)

positional	parameters,	378–379,	663

POSIX	Basic	Regular	Expression	engine	(BRE),	567

POSIX	Extended	Regular	Expression	engine	(ERE),	567

pound	sign	(#),	in	shell	scripts,	276

PPID.	See	parent	process	ID

present	working	directory,	58

print	command,	629

Print	Screen	option	(File	menu),	38

printenv,	138–139,	140,	144

printf	command,	645–648,	674–675

printing

formatted,	645–648

last	lines,	613–614

lines,	759

priority,	451–452

proc	filesystem,	9

process

co-processes,	126–127

defined,	6,	85,	118

forking,	128

init,	6

interrupting,	436–437

pausing,	437–438

real-time	monitoring,	93–95

removing	for	account,	699–702

stopping,	95–96

process	ID	(PID),	444

process	lists

about,	121–123,	333

background,	125–126

co-processing,	126–127

process	signals,	95–96

.profile	file,	462

profile.d,	153–154

program	shortcuts,	13

programs

gawk	scripts

multiple	commands,	538,	761

reading	file,	539,	761

management,	6–7

monitoring,	85–96

prompt,	Bash	shell,	48–49

ps

about,	86–95,	124,	128

BSD-style	parameters,	89–91

exit	status,	699–700

—forest	parameter,	119

GNU	long	parameters,	91–92

Unix-style	parameters,	86–89

Puppy	Linux,	19

PV.	See	physical	volumes	(PV)

pvcreate,	204

pwd,	58,	129,	304

Q

-qa	parameters,	288

question	mark	(?),	64–65,	579–580

quotation	marks	("),	141

R

radiolist	widget,	518

rand(),	649

range	address,	615

ranges,	576–577

read	access,	324

read	command

about,	399–400,	422,	684,	693–694

from	file,	403–404

menu	functions,	501,	502

with	no	display,	402–403

sed,	557–559

timing	out,	401–402

reading	from	file

about,	403–404

gawk,	539,	761

sed,	534–535,	759

while	loop,	403–404

readlink	command,	237

real-time	process	monitoring,	93–95

recovery	commands,	201

recursion,	488–489

Red	Hat	Linux,	13,	18,	220–224.	See	also	RHEL

Red	Hat	Package	Management	system	(RPM),	287

redirection

creating,	419–420

errors,	414–416

file,	371–372,	432

file	descriptors,	420–421

input

about,	296,	418–419

inline,	285–286,	296

scripting,	285–286

output

about,	285,	413–414

permanent,	417–418

in	scripts,	416–418

sed	scripts,	609–610

temporary,	416–417

output	and	errors,	416–418

redirect-on-write	(ROW),	192

regular	expression	engine,	567

regular	expressions

about,	546

BRE	patterns,	567–579

building,	585

case	sensitivity,	568

characters

anchor,	570–572

asterisk,	578–579

braces,	581–582

character	classes,	573–575

dot	character,	572–573

escape,	569–570

negating	character	classes,	575–576

pipe	symbol,	582–583

plain	text,	567–569

plus	sign,	580–581

question	mark,	579–580

ranges,	576–577

special,	569–570

special	character	classes,	577

special	characters,	569–570

combining	anchors,	572

counting	directory	files,	584–585

defining,	565–566

gawk,	639,	764

grouping	expressions,	583

intervals,	581–582

parsing	e-mail	addresses,	587–589

types,	567

validating	phone	numbers,	585–587

whitespace,	537

Reiser,	Hans,	192

Reiser4	filesystem,	192,	193

ReiserFS	filesystem,	192

relative	directory	references,	59–60

remote	repository,	726

removable	media,	97,	98

removing

environment	variables,	144–145

files,	73–74

HTML	tags,	617–619

users,	169

renaming	files,	71–73

renice,	453

repairing	filesystems,	201–202

repeat	command,	676

replacement	strings,	606–608

replace-string,	250

replacing,	in	Emacs	editor,	249–250

Report	Bug	option	(Help	menu),	42

repositories

about,	209–210

aptitude,	218–220

local,	725–726

remote,	726

rpm,	224

--reset	option,	26

restarting	jobs,	450–451

return	command,	478–479

revision	control.	See	version	control

rf	command,	76

RHEL,	27,	193,	194

rm,	73–74,	76

rmdir,	75–76

rolling	window,	613

root	directory,	54

root	drive,	54

rpm,	210,	220,	287–289

RPM.	See	Red	Hat	Package	Management	system

rpmfusion.org,	224

rpm.list,	289

RS	variable,	630

run	level,	6–7

run-parts,	461

rxvt-unicode,	27

S

s	command,	593–594

Sakura,	27

SATA	drives,	194

scale,	294

scheduling

jobs,	454–458

regular	scripts,	458–461

scheduling	priority,	451–452

scope,	function,	482–483

script	exits,	trapping,	440

script	name,	reading,	380–381

scripting

archiving	data	files

about,	681–693

configuration	file,	682–684

creating	daily	archive	location,	685–686

daily	archive	script,	686–688

hourly	archive	script,	689–693

background	mode,	443–445

bc,	295–297

comment	line,	276

creating	file,	276–278

creating	multiple	user	accounts,	374–375

dash	shell

arithmetic,	666

function	command,	667–668

test	command,	666–667

dialog	command	in,	515–516

displaying	messages,	278–279

exiting,	297–300

file	descriptors

closing,	424–425

listing	open,	424–426

redirection,	419–424

finding	executable	files,	373–374

floating-point	math,	293–297

functions

about,	473–476

array	variables,	485–488

command	line	usage,	491–494

creating,	474

creating	on	command	line,	491–492

default	exit	status,	477–478

defining	in	.bashrc	file,	492–494

global	variables,	483–484

libraries,	489–491

local	variables,	484–485

parameter	passing	to,	480–482

passing	arrays,	485–487

return	command,	478–479

returning	arrays,	487–488

returning	values,	477–480

scope,	482–483

using,	474–476

using	output,	479–480

variables	in,	480–485

gawk,	assigning	in	scripts,	634–635

getopt	command	in,	393–395

input	redirection,	285–286,	418–419

logging,	430–431

managing	user	accounts

creating	script	for,	703–708

determining	existence,	698–699

finding	files,	702

getting	name,	693–696

removing	account,	702

removing	processes,	699–702

running	script	for,	708–710

verifying	name,	696–698

monitoring	disk	space,	710–721

multiple	commands,	275–276

options

processing,	388–389

processing	with	values,	391–392

output	redirection,	285,	416–418

parameters

command	line,	377–382

counting,	382–384

reading,	377–380

script	name,	380–381

shifting,	386–388

special	variables,	382–386

testing,	381–382

performing	math,	289–297

pipes,	287–289

redirecting	input	and	output,	284–286

running	without	hang-up,	447–448

scheduling,	458–461

sed	commands	in

redirecting	output,	609–610

wrappers,	608–609

starting	with	new	shell,	462–463

suppressing	output,	426

temporary	files,	427–430

text	strings,	278

user	input,	399–404

variables

environment,	280–281

user,	281–283

zenity	in,	521–525

zsh,	674–677

scripts

creating,	716–719

running,	719–721

scrollback	buffer,	39

SCSI	drives,	194

search	command,	213

Search	menu	(GNOME	Terminal),	34

searching

data,	106–108

in	Emacs	editor,	249–250

in	vim	editor,	241–242

security

adding	users,	166–169

changing	settings,	179–182

/etc/passwd	file,	164–165

/etc/shadow	file,	165–166

Linux,	163–173

modifying	users,	169–173

removing	users,	169

sed	editor

&,	606–607

about,	532–535,	566,	755–759

address	pattern,	604

addresses,	544–546

branch	command,	603–605

branching,	603–605

changing	lines,	551–552

characters

replacing,	543–544

transforming,	552–553

command	options,	532,	755

commands

addressing,	756–757

changing	lines,	758

defining,	533

deleting	lines,	757

inserting	and	appending	text,	549–551,	758

printing	lines,	759

reading	from	file,	534–535,	759

substitution,	756

transform	command,	758–759

writing	to	file,	759

d	command,	595–596

deleting	lines,	547–549

files

reading,	557–559

writing,	556–557

G	command,	610–611

hold	space	commands,	598–599

inserting	and	appending	text,	549–551,	758

inserting	text,	608

label	parameter,	603–604

line	addressing,	756–757

multiline	commands

delete,	595–596

next,	592–595

print,	596–597

multiple	commands,	534

n	command,	592–593

N	command,	593–595

negating	commands,	599–602

options	script	file,	755

P	command,	596–597

printing

about,	543

line	numbers,	555

lines,	554

listing	lines,	555–556

replacement	via	pattern,	606–608

replacing	individual	words,	607–608

s	command,	593–595

script	flow,	602–606

in	scripts

redirecting	output,	609–610

shell	script	wrappers,	608–609

starting,	755–759

substitution	flags,	542–544

testing,	605–606

text	strings,	568

utilities

deleting	consecutive	blank	lines,	615–616

deleting	leading	blank	lines,	616

deleting	lines,	614–617

deleting	trailing	blank	lines,	616–617

numbering	lines,	612–613

printing	last	lines,	613–614

removing	HTML	tags,	617–619

spacing	files	with	blanks,	611–612

spacing	with	double	lines,	610–611

select	command,	504–505,	676

self-containment,	488

semicolon	(;),	121,	122,	127,	275,	276,	534

sendmail,	456

serial	cable,	21

set,	140,	393,	662–663

set	group	ID	(SGID),	183,	714

set	user	ID	(SUID),	183,	714

setfacl	command,	184–186

setterm	-background	white,	26

setterm	-foreground	black,	26

setterm	-inversescreen	on,	26

setterm	options,	25–26

Settings	menu	(Konsole	Terminal	Emulator),	41

SGID.	See	set	group	ID

sharing	files,	182–184

shell

about,	10–11,	113

accessing	CLI	via	graphical	terminal	emulation,	26–27

accessing	CLI	via	Linux	console	terminal,	23–26

built-in	commands,	127–132

external	commands,	127–132

getting	to	the,	21–45

GNU	utilities,	10–11

interactive,	157

non-interactive,	158

parent	and	child	relationships,	117–127

reaching	the	command	line,	21–23

starting	scripts	with	new,	462–463

types,	113–117

using	GNOME	terminal	emulator,	27–36

using	Konsole	terminal	emulator,	36–42

using	xterm	terminal	emulator,	42–45

shell	escape	character,	292

shell	prompt,	using,	48–49

shell	quoting,	711

shell	script,	275–276,	499

shell	script	wrappers,	608–609

shell	scripts,	10–11

shift,	386–388,	390

SIGCONT,	448

SIGHUP,	436,	447

SIGINT,	436–437,	438–439,	442

SIGKILL,	438

signaling,	129,	435–436

signals

about,	129

EXIT,	440

generating,	436–438

Linux,	436

process,	95–96

TERM,	95

trapping,	438–439

SIGQUIT,	436

SIGTERM,	436

SIGTSTP,	437

single	parentheses,	332–333

single	quotation	marks,	347–348

single-user	mode,	6

Slackware,	18

sleep,	124,	125–126,	437

smb	filesystem,	9

snap	command,	225–227

snap	containers,	225–227

snapshots,	192,	193

soft	link,	70

software

Debian-based	systems,	210–220

installing,	209–232

installing	from	source	code,	228–232

installing	package	management,	209–210

managing	using	containers,	225–228

Red	Hat-based	systems,	220–224

X	Window,	12

software	program	management,	5,	6–7

sort,	102–106,	288

sorting	data,	102–106

source	code,	installing	software	from,	229–232

source	command,	490,	493–494

source	control.	See	version	control

sourcing	function	files,	493–494

spacing	files	with	blanks,	611–612

s/pattern/replacement/flags,	756

special	character	classes,	577

special	characters,	569–570,	572–573

split,	652

square	brackets,	573–575

square	brackets	([]),	573–575

SSD	NVMe	drives,	194

st,	27

staging	area,	725

standard	file	descriptors,	412–414

standard	input,	399–400

startup	files,	152,	156–157,	462

STDERR

about,	414

dialog	widget	output,	507

redirecting,	414–416,	507

redirection

permanent,	417–418

temporary,	416–417

STDIN

about,	412–413

gawk	input,	536

redirecting,	418–419

sed	input,	533

STDOUT

about,	413–414

gawk	output,	536

redirection

alternative	file	descriptor,	420–421

permanent,	417–418

temporary,	416–417

sed	output,	532–533

sticky	bit,	183

storage	devices,	55

--store	option,	26

Stratis	filesystem,	193

stream	editor,	532

strftime,	653

string	comparisons

equality,	315–316

order,	316–318

size,	318–319

string	delimiters,	543–544

strings

EOF	text,	296–297,	537

format,	646

gawk	functions,	650–652

replacement,	606–608

scripting,	278

sed,	568

structured	commands

about,	303

gawk

do-while	statement,	644–645

if	statement,	641–643

for	statement,	645

while	statement,	643–644

gawk	program,	765

zsh,	676

stub	functions,	501

subshell

about,	119,	123–127

command	substitution,	284

forking,	128

substituting,	in	vim	editor,	241–242

substitution	command

about,	593–595,	756

individual	word	replacement,	607–608

parentheses	in,	607

substitution	flags,	542–544,	756

sudo,	215,	232,	701

SUID.	See	set	user	ID

Sun	Microsystems,	193

suppressing	command	output,	426

swap	space,	5

swapping	out,	6

symbolic	links,	70,	660

sysstat,	229

system	accounts,	164

system	environment	variables

interactive	shell,	157

login	shell,	152–157

non-interactive	shell,	158

system	information,	93

system	memory,	status,	94

system	memory	management,	5–6

System	menu	(GNOME	3	desktop),	14

systemd	initialization	method,	6–7

systime,	653

sysv	filesystem,	9

SysVinit	(SysV)	initialization	method,	6

T

tab	auto-complete,	69

tab	silence,	40

Tabs	menu	(GNOME	Terminal),	35–36

tac	command,	602

tail,	80–81,	82

tar,	109–111,	229,	683

tarball,	229,	683

taskbar,	13

tcsh,	114

tcsh	shell,	11

tee,	430–431

Tektronix	4014,	42

teletypewriter,	24

temporary	directory,	429–430

temporary	files,	427–430

temporary	redirection,	416–417

TERM	signal,	95

terminal	(TTY),	86

terminal	emulation,	22

Terminal	menu	(GNOME	Terminal),	34–35

Terminator,	27

Terminology,	27

Termite,	27

test	command

about,	605–606,	666–667

file	comparisons

checking	directories,	320–321

checking	for	file,	322–324

checking	for	object	existence,	321–322

date,	330

default	group,	329–330

empty	files,	325–326

execute	permission,	328

ownership,	328–329

read	access,	324

write	permission,	326–327

numeric	comparisons,	313–314

string	comparisons

equality,	315–316

order,	316–318

size,	318–319

test	commands,	357–359

testing	parameters,	381–382

text

inserting,	608

inserting	and	appending	with	sed,	549–551

manipulating,	531–541

removing	HTML	tags	from,	617–619

text	menus

creating,	499–505

menu	functions,	501–502

menu	layout,	499–501

menu	logic,	502

text	mode	virtual	consoles,	24

text	pattern	filters,	545–546

text	strings

EOF,	296–297,	537

scripting,	278

sed,	568

textbox	widget,	510–511

tilda,	27

tilde	(~),	58,	156,	238,	639–640

time

epoch,	652,	712

gawk,	functions,	652–653

timestamps

anacron,	461

hourly	backups,	692

/tmp	directory,	427

top,	94–95

Torvalds,	Linus,	4–5

touch,	66

trailing	blank	lines,	616–617

transform	command,	552–553,	758–759

trap,	438–439,	441–442

trapping	script	exit,	440

trapping	signals,	438–439

traps

modifying	or	removing,	441–443

script	exits,	440

tty,	24

TTY.	See	terminal

2x	command,	240

type,	128

typeset	command,	675

U

Ubuntu	Linux,	19,	660

ufs	filesystem,	9

UID.	See	user	ID

$UID,	280–281

umask,	178

umount,	99–100

umsdos	filesystem,	9

uncompress	command,	109

uninstalling

software	with	aptitude,	216–217

software	with	dnf,	223

University	of	California,	Berkeley,	89

Unix-style	parameters,	86–89

unset,	144,	160

until	command,	359–361

until	loops,	363,	676

upgrade	command,	215–216,	223–224

upgrading

software	with	aptitude,	215–216

software	with	dnf,	223

$USER,	280–281

user	accounts

about,	163

creating	multiple,	374–375

managing

creating	script	for,	703–708

determining	existence,	698–699

finding	files,	702

getting	name,	693–696

removing	account,	702

removing	processes,	699–702

running	script	for,	708–710

verifying	name,	696–698

user	ID	(UID),	163,	166,	280

user	input,	399–404

user	variables,	281–283

useradd,	166–169

user-defined	variables

about,	140

dash	shell,	663–664

gawk,	634–636

setting,	141–144

userdel,	169

usermod,	170,	174

users

adding	new,	166–169

creating	multiple	accounts,	374–375

modifying,	169–173

processes,	699–702

removing,	169

/usr/bin/batch,	455

V

variable	arrays,	159–161

${variable}	format,	280–281

variables.	See	also	environment	variables

command	substitution,	283–284

functions

output	assignment	to,	479–480

using,	480–485

gawk

about,	537–538,	627–636

ARGC,	632

ARGV,	632

array	variable	assignment,	636–637

assigning	in	scripts,	634–635

assigning	on	command	line,	635–636

built-in,	628–634,	763–764

data,	631–634

data	field,	628

ENVIRON,	632

field	and	record	separator,	628–631

FIELDWIDTHS,	629–630

FNR,	632–633

FS,	628

NF,	632–633

NR,	632–633

OFS,	628–629

ORS,	630

RS,	630

multiple,	356–357

reading	list	from,	349–350

scripting,	279–284,	382–386

user,	281–283

user-defined

about,	140–144

dash	shell,	663–664

gawk,	634–636

/var/spool/anacron,	461

/var/spool/at,	454

version	control

about,	723–724

branching,	726

cloning,	726

local	repository,	725–726

remote	repository,	726

staging	area,	725

using	Git	for,	727

working	directory,	724–725

vertical	line	(|),	287

vfat	filesystem,	9,	97,	98

VFS.	See	Virtual	Files	System

VG.	See	volume	group

vgcreate,	204–205

vgdisplay,	205

vgextend,	204

vgreduce,	207

vi,	237

View	menu

GNOME	Terminal,	34

Konsole	Terminal	Emulator,	39–40

viewing	file	contents,	77–82

vim

basics,	237–239

copying	and	pasting,	240–241

editing,	240

installing,	236–237

searching	and	substituting,	241–242

vim,	532

virtual	consoles,	22,	23–26

virtual	directories,	53–54

Virtual	Files	System	(VFS),	9

virtual	memory,	5,	6

visual	mode,	241

Visual	Studio	for	Linux,	242

volume,	193

volume	group	(VG),	203–207

volume-managing	filesystems,	192–194

VT102,	42

VT220,	42

W

w	command,	556–557

Wayland,	12

wc	command,	286

which,	246

while	command

about,	374

format,	357–358

multiple	test	commands,	358–359

while	loop

about,	390,	676

archiving	data	files	script,	684

menu	dialog,	516

nested,	361–363

reading	files,	403–404

text	menus,	504

while	statement,	643–644

who,	276,	413

whoeson,	516

widgets	libraries

about,	23

kdialog,	517–521

zenity,	521–525

wildcard	characters

about,	64,	565–566

cron	tables,	458

reading	directory	using,	352–354

replacement	strings,	606–608

wildcard	metacharacters,	68,	69

window	manager,	23

working	directory,	724–725

writable-snapshot,	192

write	access,	326–327

writeback	mode	journaling,	191,	192

writing	to	file,	759

X

X	File	System	(XFS),	192

X	Window	system,	12,	516

xargs	command,	700–701

Xfce,	17

Xfce4	Terminal,	27

XFS	filesystem,	9,	192

X.org	package,	12

xterm

about,	27,	42–43

accessing,	43–44

command-line	parameters,	44–45

xz	utility,	108

Y

Yakuake,	27

yesno	widget,	508,	509

yum,	220

Z

z	shell.	See	zsh

zenity

using	in	scripts,	523–525

widgets,	521–523

zero,	297

ZFS	filesystem,	193

zip,	108,	109

zmodload	command,	673–674

zsh	(zshell)

about,	11,	293

built-in	commands

add-in	modules,	673

core,	670–672

viewing,	adding,	removing	modules,	673–674

options,	669–670

scripting

calculations,	674–675

functions,	677

mathematical	functions,	675–676

mathematical	operations,	674–676

structured	commands,	676

zsh/mathfunc	module,	676

zypper,	220

WILEY	END	USER	LICENSE	AGREEMENT
Go	to	www.wiley.com/go/eula	to	access	Wiley’s	ebook	EULA.

