
www.it-ebooks.info

http://www.it-ebooks.info/

Lua Game Development
Cookbook

Over 70 recipes that will help you master the elements
and best practices required to build a modern game
engine using Lua

Mário Kašuba

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Lua Game Development Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1200715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-550-4

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Author
Mário Kašuba

Reviewers
Victor Andrade de Oliveira

Anthony Zhang

Commissioning Editor
Sarah Cullington

Acquisition Editor
Kevin Colaco

Content Development Editor
Govindan K

Technical Editor
Vivek Arora

Copy Editors
Merilyn Pereira

Laxmi Subramanian

Project Coordinator
Sanjeet Rao

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Jason Monteiro

Abhinash Sahu

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Mário Kašuba achieved a master's degree in applied informatics at Slovak Technical
University in Bratislava, where he used the Lua language in 3D robotics simulations and
developed various multimedia applications along with a few computer games.

Currently, he is the co-owner and chief information officer of an IT Academy company,
while he also leads courses on C/C++, PHP, Linux, Databases, Typo3, Silverstripe CMS,
VMware virtualization, and the Microsoft Windows Server operating system.

He also works as the head web developer and system administrator for the web portal
http://www.rodinka.sk/.

I would like to acknowledge the support provided by my family, friends,
and colleagues. I am particularly grateful to the members of the Lua users
community who helped me with the reviewing process. I would also like to
thank the staff at Packt Publishing for their guidance and valuable support.

www.it-ebooks.info

http://www.rodinka.sk/
http://www.it-ebooks.info/

About the Reviewer

Victor Andrade de Oliveira is a Brazilian computer engineer who graduated from the
Institute for Higher Studies of the Amazon (IESAM) with a vast knowledge of the Lua language
and has worked for more than 5 years in the development of interactive and embedded
applications for Ginga—the middleware of the Japanese-Brazilian Digital TV System (ISDB-TB)
and ITU-T Recommendation for IPTV services.

Anthony Zhang is a programmer, electronics hobbyist, and digital artist who has an
unhealthy obsession with robotics. If you want to hear him talk for hours on end, ask him
something about AI, physical computing, obscure processor functionality, and computer
graphics. These days, you'll find him working on video games, doing ridiculous things with
microcontrollers, and attempting to add LEDs where they don't belong.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print, and bookmark content

 f On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

i

Table of Contents
Preface v
Chapter 1: Basics of the Game Engine 1

Introduction 1
Preparing a basic file structure for the game engine 3
Making a stack 7
Making a queue 8
Making a prioritized queue 10
Extending ipairs for use in sparse arrays 14
Creating Lua modules 15
Handling errors with pcall, xpcall, and assert 19
Using Lua with existing projects written in C/C++ 21
Getting LuaSDL for libSDL 1.2 30
Designing the main application loop with LuaSDL 31

Chapter 2: Events 35
Introduction 35
Processing input events with LuaSDL 36
Using the keyboard input 41
Using the relative mouse position 44
Using the absolute mouse position 47
Using timers 47

Chapter 3: Graphics – Common Methods 51
Introduction 52
Creating a window in libSDL 52
Creating surfaces 55
Surfaces manipulation 61
Using colors 64

www.it-ebooks.info

http://www.it-ebooks.info/

ii

Table of Contents

Cursor manipulation 69
Initializing the graphics mode with OpenGL 72
Getting OpenGL information 76
Using OpenGL extensions with GLEW and Lua 78
Loading images with SDL_image 79
Creating textures 81
Loading and using bitmap fonts 89
Loading and using TrueType fonts 92
Displaying the text 96
Creating texture atlas with the rover-design pattern 99
Using tiles and tilesets in the game 102

Chapter 4: Graphics – Legacy Method with OpenGL 1.x–2.1 109
Introduction 109
Drawing primitives in immediate mode 110
Setting up blending 124
Moving, rotating, and scaling objects 130
Setting up the orthogonal and perspective cameras 139
Setting up materials 142
Setting up lighting 145
Using display lists 149
Setting up the vertex buffer 151

Chapter 5: Graphics – Modern Method with OpenGL 3.0+ 155
Introduction 155
Loading and using GLSL shaders 156
Using uniform variables with shaders 160
Writing a vertex shader 163
Writing a fragment (pixel) shader 167
Drawing primitives using vertex buffers 172
Rendering to texture 177
Applying highlights and shadows to the scene 180
Bumpmapping 192

Chapter 6: The User Interface 205
Introduction 205
Drawing a simple window 206
Moving the window 212
Using the window hierarchy 216
Showing the part of the window with the stencil test and window
content scrolling 224
Window controls and interaction 229

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Table of Contents

Chapter 7: Physics and Game Mechanics 241
Introduction 242
Using Box2D with Lua 242
Using vector math 245
Choosing the correct vector scaling for the physics engine 247
Creating static and dynamic objects 249
Setting up object properties 252
Moving objects 255
Setting up bullets 257
Running the physics simulation 259
Detecting object collision 262
Setting up object collision filtering 265
Setting up object joints 267

Chapter 8: Artificial Intelligence 281
Introduction 281
A simple pathfinding algorithm for a maze 282
Pathfinding for tile-based environments with obstacles 288
Using a fuzzy logic for decision making 295

Chapter 9: Sounds and Networking 311
Introduction 311
Initializing the audio subsystem 312
Playing sound samples 314
Playing background music 317
Network communication with ZeroMQ 319
Creating a basic client-server architecture 322
Sending messages to many hosts at once 327
Communication between threads 330

Index 333

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

v

Preface
Game development is one of the most complex processes in the world as it requires a wide
set of skills such as programming, math, physics, art, sound engineering, management,
marketing, and many more. Even with modern technologies, it may take from a few hours to
several years to create a game. This depends on the game complexity and tools available.

Computer games are usually based on a mix of simple concepts, which are turned into an
enjoyable experience. The first step in making a good game is a game prototype. These can
be made with the help of various game engines. However, learning how to use a game engine
to the full extent may require you to study how it actually works. This way you have to rely on
the available documentation and features that the game engine provides. Many game engines
today provide a scripting language as a tool to implement certain game mechanics or to
extend the game engine itself with new features.

The Lua programming language is gaining popularity in the game industry mainly due to its
simplicity and efficiency. Most of the time, it's used only for simple tasks such as NPC dialogs,
user interface, or custom game events. However, with additional Lua modules, you can create
your own full-fledged game engine that can use almost all the capabilities of the modern
computer hardware.

In this book, you'll find a set of recipes with solutions to the most common problems you may
encounter while creating games with the Lua language.

The best way to learn something is to play with it. Therefore, each recipe is paired with
simple demo applications that will help you understand the topic covered. You may even
use these demo samples to create your own game prototype in no time.

All sample applications are available in the digital content of this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

vi

What this book covers
Chapter 1, Basics of the Game Engine, covers important algorithms and the basic design of a
game engine written in the Lua programming language, as well as LuaSDL multimedia module
preparation, which is the main part of all the recipes in this book.

Chapter 2, Events, deals with handling input events that are an important part of any
game engine.

Chapter 3, Graphics – Common Methods, contains basic concepts used in computer graphics.
You'll learn how to initialize the graphics mode, use basic OpenGL functions, load images,
create textures, and draw text on the screen.

Chapter 4, Graphics – Legacy Method with OpenGL 1.x-2.1, explains how to use the
intermediate mode of OpenGL, which is intended for use on older GPUs. Even when this
mode is currently deprecated, it holds important information that is vital when using modern
versions of OpenGL. It may be used as a precursor to more advanced topics in Chapter 5,
Graphics – Modern Method with OpenGL 3.0+.

Chapter 5, Graphics – Modern Method with OpenGL 3.0+, covers the basics of using the
GLSL shading language with the Lua language to draw various scenes. You'll also learn how
to use per-pixel lighting, render into textures and apply surface effects with normal maps.

Chapter 6, The User Interface, covers the implementation of the custom user interface from
simple windows to window controls.

Chapter 7, Physics and Game Mechanics, explains how to prepare and use the LuaBox2D
module with the Lua language for physics simulation. The Box2D library is quite popular in
modern side-scrolling games mainly because it offers great flexibility.

Chapter 8, Artificial Intelligence, deals with pathfinding algorithms and fuzzy logic. You'll learn
how pathfinding works in games with simple maze or even tiled environments. More advanced
topics cover decision making with fuzzy logic. In combination with pathfinding algorithms, you
can create intelligent game opponents that won't jump into a lava lake at the first opportunity.

Chapter 9, Sounds and Networking, covers how to initialize the sound card, play sounds, and
music. The second part covers network communication with the high-performance ZeroMQ
library. It contains many improvements over traditional socket communication and it's used
by companies such as AT&T, Cisco, EA, Zynga, Spotify, NASA, Microsoft, and CERN.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

vii

What you need for this book
Sample demonstrations for recipes require the Microsofts Windows or Linux operating systems.
Unfortunately, Mac OS is not currently supported.

If you intend to build binary Lua modules from this book, you'll need the C/C++ compiler
along with the recent version of the CMake building system. Additionally, Linux users will
need to install development packages for the XOrg display server in order to include the
graphical output.

However, it's not necessary to do so as binary Lua modules are included in code files for
this book.

The recipes in Chapter 5, Graphics – Modern Method with OpenGL 3.0+, require a graphic
card released after 2010 with support for OpenGL 3.3.

Who this book is for
This book is for all programmers and game enthusiasts who want to stop dreaming about
creating a game, and actually create one from scratch.

The reader should know the basics of programming and using the Lua language. Knowledge
of the C/C++ programming language is not necessary, but it's strongly recommended in order
to write custom Lua modules extending game engine capabilities or to rewrite parts of the Lua
code into a more efficient form.

Algebra and matrix operations are required in order to understand advanced topics in Chapter
4, Graphics – Legacy Method with OpenGL 1.x-2.1 and Chapter 5, Graphics – Modern Method
with OpenGL 3.0+.

Sample demonstrations are coupled with binary libraries for Windows and Linux operating
systems for convenience.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

viii

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

local sum_of_numbers = 0
local iterations = 3
for i=1,iterations do
 sum_of_numbers = sum_of_numbers + 1/iterations
 print(("%f"):format(sum_of_numbers))
end
-- is the result equal to 1?
print("Sum equals to 1?", sum_of_numbers == 1)

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

ix

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

gl.Begin(gl_enum.GL_LINES)
 -- A
 gl.Color4f(1, 0, 0, 1)
 gl.Vertex3f(-0.5, -0.5, 0)
 -- B
 gl.Color4f(0, 1, 0, 1)
 gl.Vertex3f(0.5, -0.5, 0)
 -- C
 gl.Color4f(0, 0, 1, 1)
 gl.Vertex3f(0.5, 0.5, 0)
 -- D
 gl.Color4f(1, 1, 0, 1)
 gl.Vertex3f(-0.5, 0.5, 0)
gl.End()

Any command-line input or output is written as follows:

mkdir luagl/build
cd luagl/build
cmake ..

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "You can validate settings
by pressing the Configure button"

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

x

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

www.it-ebooks.info

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Preface

xi

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

1

1
Basics of the
Game Engine

In this chapter, we will cover the following recipes:

 f Preparing a basic file structure for the game engine

 f Making a stack

 f Making a queue

 f Making a prioritized queue

 f Extending ipairs for use in sparse arrays

 f Creating Lua modules

 f Handling errors with pcall, xpcall, and assert

 f Using Lua with existing projects written in C/C++

 f Getting LuaSDL for libSDL 1.2

 f Designing the main application loop with LuaSDL

Introduction
Almost every game uses a game engine to help developers in video game production. It is
usually used as a base platform for the game and manages all important functions from
2D/3D graphics, physics, sound effects, and network communication to artificial intelligence,
scripting, and support for various software/hardware platforms. Using the scripting language
in games has gained a lot of attention in the last decade mainly because it allows you to
create game prototypes faster, easier, and it's an important part of the so-called modding
support for the game community.

www.it-ebooks.info

http://www.it-ebooks.info/

Basics of the Game Engine

2

For instance, you can look at Quake game from the id software company, which uses its
own scripting language Quake C and is one of the reasons why there are so many mods
for this game. However, the source code for this language must be compiled before using.
Depending on the project size this means a significant amount of time spent between feature
implementation and testing. The Lua language can be used without prior compilation, which
allows developers to test out their code right away.

The first game that used the Lua language for scripting was Grim Fandango from the company
LucasArts. It was successfully used in further major game titles and today it can be commonly
found in many multiplatform and mobile games.

Modern game engines are one of the most complex applications that are used. This leads to
the situation where game developers use game engine as a black box without knowing how it
actually works. For certain game titles, this might work out quite well. However, if you want to
make a quick game prototype with certain features that are not present in the game engine,
you'll most probably have to write your own game engine extension or find a workaround.

Lua language is fast and mature enough to be used as a game engine base language. Time-
critical portions of a code can be written in C or C++ language and accessed via a Lua/C
language interface. With this approach, you can view the Lua language as a high-level glue
for the game engine process design.

This book will use Lua 5.1 version mainly because it's well supported and the existing code
can be ported into a newer version with minor changes. Another reason behind this choice
is that Lua 5.1 API is used in LuaJIT which is Just-In-Time implementation of Lua language.
It's generally regarded as a faster version of the Lua language, which gives you speed
comparable to compiled C code.

Lua language itself doesn't provide access to graphical output, sound devices or even input
devices except basic I/O file interface. This shortcoming can be overcome with the use of
LuaSDL binding to libSDL multimedia library that gives us the power to access all the devices
needed to create a game with graphics and sounds. Installation and use of this library binding
will be contained in this chapter.

It's always good practice to maintain a consistent file structure in any project. The Lua
language doesn't formally specify modular structure and it's often the case when each
module uses its own style of module specification. This results in namespace conflicts
and unpredictable behavior.

The first part of this chapter will cover the preparation of a modular file structure for your
application, implementation of the most common data structures, and error handling.

The second half of this chapter will deal with more advanced stuff such as writing and using the
Lua modules and using libSDL multimedia library to develop interactive applications in Lua.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

3

Preparing a basic file structure for the game
engine

When programming a larger project, it's always important to keep it maintainable. One of
the common practices is to keep a modular structure. Modular structure can be achieved
by keeping files separated in certain directories.

Lua language uses a require function to include modules in your script files. This function
uses a default list of paths where it tries to find the module file. The Lua modules can be
written as plain Lua scripts or use a form of binary library, which is OS and CPU architecture
dependent. This is especially troublesome if want to include binary libraries for all supported
operating systems and CPU architectures in one project.

A default set of paths might not always be appropriate for your project, mainly if you bundle
many third-party modules with it.

This recipe shows how to set up the Lua interpreter so that it can find correct files in a
systematic and user-definable way. This recipe should be used at the beginning of your
main Lua script file so that further calls to the require function in Lua will use your file
path structure.

Getting ready
You can use a directory structure as shown in the following diagram. If you intend to
implement your application for multiple platforms, always divide platform-specific files
into separate directories.

Platform specific

Linux Windows

Lib Data Log Config

External Graphics Network Sounds Textures Sounds

Main directory

The Lib directory contains all the Lua module files and binary libraries.

www.it-ebooks.info

http://www.it-ebooks.info/

Basics of the Game Engine

4

However, each operating system uses its own file naming convention for binary libraries. The
Lua language doesn't have an easy way to obtain the OS name. For this purpose, you can
download and use the Lua script module os_name.lua from https://gist.github.
com/soulik/82e9d02a818ce12498d1.

You should copy this file into your project directory so that the Lua interpreter can find it.

How to do it…
The require function in the Lua language uses a set of default paths defined in package.
path and package.cpath string variables. With your new directory structure, you'd have to
change those two variables manually for each operating system, which could be cumbersome.

Instead, you can define a Lua script to build up these two string variables from a generic list of
paths for both Lua script files and binary libraries.

In the first step, you need to create a list of directories:

-- A list of paths to lua script modules
local paths = {
 '{root}/{module}',
 '{root}/lib/{module}',
 '{root}/lib/external/{module}',
 '{root}/lib/external/platform-specific/{platform}/{module}',
}
-- A list of paths to binary Lua modules
local module_paths = {
 '?.{extension}',
 '?/init.{extension}',
 '?/core.{extension}',
}

Strings enclosed with curly brackets will be substituted with the following values:

Name Value
root This is the application's root directory
platform This is the current platform
module This is the module's file path
extension This is the module's filename extension, which is platform dependent

www.it-ebooks.info

https://gist.github.com/soulik/82e9d02a818ce12498d1
https://gist.github.com/soulik/82e9d02a818ce12498d1
http://www.it-ebooks.info/

Chapter 1

5

Binary module filename extensions that are platform dependent are also set in a table:

-- List of supported OS paired with binary file extension name
local extensions = {
 Windows = 'dll',
 Linux = 'so',
 Mac = 'dylib',
}

Now, you need to set root_dir which is the current working directory of the application and
the current platform name as follows:

-- os_name is a supplemental module for
-- OS and CPU architecture detection
local os_name = require 'os_name'

-- A dot character represent current working directory
local root_dir = '.'
local current_platform, current_architecture = os_name.getOS()

local cpaths, lpaths = {}, {}
local current_clib_extension = extensions[current_platform]

Before you start building the path list, you need to check whether the current platform has
defined binary module extensions as follows:

if current_clib_extension then
 -- now you can process each defined path for module.
 for _, path in ipairs(paths) do
 local path = path:gsub("{(%w+)}", {
 root = root_dir,
 platform = current_platform,
 })
 -- skip empty path entries
 if #path>0 then
 -- make a substitution for each module file path.
 for _, raw_module_path in ipairs(module_paths) do
 local module_path = path:gsub("{(%w+)}", {
 module = raw_module_path
 })
 -- add path for binary module
 cpaths[#cpaths+1] = module_path:gsub("{(%w+)}", {
 extension = current_clib_extension
 })
 -- add paths for platform independent lua and luac modules

www.it-ebooks.info

http://www.it-ebooks.info/

Basics of the Game Engine

6

 lpaths[#lpaths+1] = module_path:gsub("{(%w+)}", {
 extension = 'lua'
 })
 lpaths[#lpaths+1] = module_path:gsub("{(%w+)}", {
 extension = 'luac'
 })
 end
 end
 end
 -- build module path list delimited with semicolon.
 package.path = table.concat(lpaths, ";")
 package.cpath = table.concat(cpaths, ";")
end

With this design, you can easily manage your module paths just by editing paths and
module_paths tables.

Keep in mind that you need to execute this code before any require command.

How it works…
This recipe builds content for two variables that are used in the require function—package.
path and package.cpath.

Both variables use a semicolon as a delimiter for individual paths. There's also a special
character—the question mark which is substituted with the module name. Note that the path
order might not be as important in this case as with our default list of paths. The path order
might cause problems if you expect to use a module out of the project directory structure.
Therefore, a customized set of paths from this recipe should always be used before the
default set of paths.

The Lua language allows the use of hierarchical structure of modules. You can specify a
submodule with package names delimited by a dot.

require 'main_module.submodule'

A dot is always replaced with the correct directory separator.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

7

Making a stack
Stack data structure can be defined in the Lua language as a closure that always returns a
new table. This table contains two functions defined by keys, push and pop. Both operations
run in constant time.

Getting ready
Code from this recipe will be probably used more than once in your project so that it can
be moved into the Lua module file with similar algorithms. The module file can use the
following structure:

-- algoritms.lua

-- Placeholder for a stack data structure code

return {
 stack = stack,
}

This module structure can be used with algorithms from other recipes as well to keep
everything organized.

How to do it…
The following code contains a local definition of the stack function. You can remove the
local statement to make this function global or include it as part of the module:

local function stack()
 local out = {}
 out.push = function(item)
 out[#out+1] = item
 end
 out.pop = function()
 if #out>0 then
 return table.remove(out, #out)
 end
 end
 out.iterator = function()
 return function()
 return out.pop()
 end
 end
 return out
end

www.it-ebooks.info

http://www.it-ebooks.info/

Basics of the Game Engine

8

This stack data structure can be used in the following way:

local s1 = stack()
-- Place a few elements into stack
for _, element in ipairs {'Lorem','ipsum','dolor','sit','amet'} do
 s1.push(element)
end

-- iterator function can be used to pop and process all elements
for element in s1.iterator() do
 print(element)
end

How it works…
Calling the stack function will create a new empty table with three functions. Push and pop
functions use the property of the length operator that returns the integer index of the last
element. The iterator function returns a closure that can be used in a for loop to pop all
the elements. The out table contains integer indices and no holes (without empty elements).
Both the functions are excluded from the total length of the out table.

After you call the push function, the element is appended at the end of the out table.
The Pop function removes the last element and returns the removed element.

Making a queue
The queue data structure can be constructed in a similar way as a stack with the table.
insert and table.remove functions. However, this will add unnecessary overhead because
each element insertion at the beginning of the list will need to move other elements as well.
A better solution is using two indices that indicate the beginning and the end of the list.

Getting ready
The code from this recipe can be placed into the algorithms.lua file as in the Making a
stack recipe.

How to do it…
The queue data structure will consist of a constructor that returns a new table with three
functions: a push, a pop, and an iterator. The resulting table uses the modified version
of the length operator to get the right length of the queue:

local function queue()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

9

 local out = {}
 local first, last = 0, -1
 out.push = function(item)
 last = last + 1
 out[last] = item
 end
 out.pop = function()
 if first <= last then
 local value = out[first]
 out[first] = nil
 first = first + 1
 return value
 end
 end
 out.iterator = function()
 return function()
 return out.pop()
 end
 end
 setmetatable(out, {
 __len = function()
 return (last-first+1)
 end,
 })
 return out
end

A new queue data structure can be created by calling the queue function:

local q1 = queue()
-- Place a few elements into queue
for _, element in ipairs {'Lorem','ipsum','dolor','sit','amet'} do
 q1.push(element)
end

-- You can use iterator to process all elements in single for loop
for element in q1.iterator() do
 -- each queue element will be printed onto screen
 print(element)
end

www.it-ebooks.info

http://www.it-ebooks.info/

Basics of the Game Engine

10

How it works…
This algorithm uses a pair of integer indices that represent positions of the first and the
last element of the queue. This approach provides element insertion and deletion in
constant time. Because the original length operator isn't suitable for this case, a modified
one is provided.

The iterator function creates a new closure that is used in a for loop. This closure is called
repeatedly until the pop function returns an empty result.

Making a prioritized queue
A prioritized queue or simple priority queue extends basic queue with the entry sorting
feature. Upon entry insertion, you can set what will be the priority of the entry. This data
structure is often used in job queuing where the most important (highest priority) jobs must
be processed before the jobs with lower priority. Priority queues are often used in artificial
intelligence as well.

This version of the prioritized queue allows you to obtain entries with minimal or maximal
priority at constant time. Element priority can be updated. However, priority queue insertion,
update, and removal might use linear time complexity in worst case scenarios.

There are two rules that should be noted:

 f Each entry of this queue should be unique

 f The order of retrieving elements with the same priority is not defined

Getting ready
This recipe will use the following shortcuts:

local ti = table.insert
local tr = table.remove

-- removes element from table by its value
local tr2 = function(t, v)
 for i=1,#t do
 if t[i]==v then
 tr(t, i)
 break
 end
 end
end

It's recommended to put it all together in one Lua module file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

11

How to do it…
The priority queue can be defined as in the following code:

return function pqueue()
 -- interface table
 local t = {}

 -- a set of elements
 local set = {}
 -- a set of priority bags with a elements
 local r_set = {}
 -- sorted list of priorities
 local keys = {}

 -- add element into storage, set its priority and sort keys
 -- k - element
 -- v - priority
 local function addKV(k, v)
 set[k] = v
 -- create a new list for this priority
 if not r_set[v] then
 ti(keys, v)
 table.sort(keys)
 local k0 = {k}
 r_set[v] = k0
 setmetatable(k0, {
 __mode = 'v'
 })
 -- add element into list for this priority
 else
 ti(r_set[v], k)
 end
 end

 -- remove element from storage and sort keys
 local remove = function(k)
 local v = set[k]
 local prioritySet = r_set[v]
 tr2(prioritySet, k)
 if #prioritySet < 1 then
 tr2(keys, v)
 r_set[v] = nil

www.it-ebooks.info

http://www.it-ebooks.info/

Basics of the Game Engine

12

 table.sort(keys)
 set[k] = nil
 end
 end; t.remove = remove

 -- returns an element with the lowest priority
 t.min = function()
 local priority = keys[1]
 if priority then
 return r_set[priority][1] or {}
 else
 return {}
 end
 end

 -- returns an element with the highest priority
 t.max = function()
 local priority = keys[#keys]
 if priority then
 return r_set[priority][1] or {}
 else
 return {}
 end
 end

 -- is this queue empty?
 t.empty = function()
 return #keys < 1
 end
 -- simple element iterator, retrieves elements with
 -- the highest priority first
 t.iterate = function()
 return function()
 if not t.empty() then
 local element = t.max()
 t.remove(element)
 return element
 end
 end
 end
 -- setup pqueue behavior
 setmetatable(t, {
 __index = set,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

13

 __newindex = function(t, k, v)
 if not set[k] then
 -- new item
 addKV(k, v)
 else
 -- existing item
 remove(k)
 addKV(k, v)
 end
 end,
 })
 return t
end

How it works…
This priority queue algorithm uses three tables: set, r_set, and keys. These tables help to
organize elements into so-called priority bags. The first one, set contains elements paired
with their priorities. It's also used when you try to obtain element priority from the queue. The
second one, r_set contains priority bags. Each bag represents a priority level. The last one
keys contains a sorted list of priorities, which is used in the extraction of elements from a
minimal or maximal priority bag.

Each element can be inserted in a way similar to the Lua table with the exception that the
inserted element is used as a key and priority is stored as a value:

priority_queue[element] = priority

This form of access can be used to update element priority. Elements with minimal or maximal
priority can be extracted using the min or max function respectively;

local min_element = priority_queue.min()
local max_element = priority_queue.max()

Note that elements remain in the priority queue until you delete them with the remove function;

priority_queue.remove(element)

Priority queue can be queried with the empty function that returns true if there's no element
in the queue;

priority_queue.empty()

www.it-ebooks.info

http://www.it-ebooks.info/

Basics of the Game Engine

14

You can use the iterator function in for loop to process all queue elements sorted by
their priority:

for element in priority_queue.iterator() do
 -- do something with this element
end

Extending ipairs for use in sparse arrays
The ipairs function in the Lua language is used to iterate over entries in a sequence. This
means every entry must be defined by the pair of key and value, where the key is the integer
value. The main limitation of the ipairs function is that the keys must be consecutive
numbers.

You can modify the ipairs function so that you can successfully iterate over entries with
integer keys that are not consecutive. This is commonly seen in sparse arrays.

Getting ready
In this recipe, you'll need to define our own iterator function, which will return every entry
of a sparse array in deterministic order. In this case, the iterator function can be included in
your code as a global function to accompany pairs and ipairs functions; or you can put it
in a Lua module file not to pollute the global environment space.

How to do it…
This code shows a very simple sparse array iterator without any caching:

function ipairs_sparse(t)
 -- tmpIndex will hold sorted indices, otherwise
 -- this iterator would be no different from pairs iterator
 local tmpIndex = {}
 local index, _ = next(t)
 while index do
 tmpIndex[#tmpIndex+1] = index
 index, _ = next(t, index)
 end
 -- sort table indices
 table.sort(tmpIndex)
 local j = 1

 return function()
 -- get index value
 local i = tmpIndex[j]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

15

 j = j + 1
 if i then
 return i, t[i]
 end
 end
end

The following lines of code show the usage example for iteration over a sparse array;

-- table below contains unsorted sparse array
local t = {
 [10] = 'a', [2] = 'b', [5] = 'c', [100] = 'd', [99] = 'e',
}
-- iterate over entries
for i, v in ipairs_sparse(t) do
 print(i,v)
end

How it works…
The Lua language uses iterator functions in the control structure called the generic for.
The generic for calls the iterator function for each new iteration and stops when the iterator
function returns nil. The ipairs_sparse function works in the following steps:

1. It builds a new index of keys from the table.

2. It sorts the index table.

3. It returns a closure where each call of the closure returns a consecutive index and a
value from the sparse array.

Each call to ipairs_sparse prepares a new index table called index. The index consists of
(integer, entry) pairs.

Creating Lua modules
The Lua language doesn't impose strict policies on what a module should look like. Instead, it
encourages programmers to find their own style depending on the situation.

Getting ready
In this recipe, you will create three versions of a module that contains one local variable, one
variable accessible from outside the module, one function that returns a simple value, and a
function that uses a value from the current module.

www.it-ebooks.info

http://www.it-ebooks.info/

Basics of the Game Engine

16

How to do it…
There are three types of modules that are commonly used:

 f A module that returns a table as a module interface

 f A module in the form of an object

 f A module in the form of a singleton object

The first case is used mostly with modules that contain an interface to third-party libraries.
The second type of module is used less often, but it's useful if you need multiple instances of
the same object, for example, a network stack. The last one uses a similar approach as in the
previous case, but this time there's always only one instance of the object. Many games use
the singleton object for the resource management system.

A module that returns a table as an interface
In this case, the module uses locally defined variables and functions. Every function intended
for external use is put into one table. This common table is used as an interface with the outer
world and is returned at the end of the module:

-- module1.lua
local var1 = 'ipsum'
local function local_function1()
 return 'lorem'
end

local function local_function2(self)
 return var1 .. self.var2
end
-- returns module interface
return {
 lorem = local_function1,
 ipsum = local_function2,
 var2 = 'sit',
}

A module in the form of an object
This module type doesn't manipulate the global namespace. Every object you create uses its
own local namespace:

-- module2.lua
local M = function()
 local instance
 local var1 = 'ipsum'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

17

 instance = {
 var2 = 'sit',
 lorem = function()
 return 'lorem'
 end,
 ipsum = function(self)
 return var1 .. self.var2
 end,
 }
 return instance
end

return M

A module in the form of a singleton object
This is a special case of object module. There is only one and the same object instance:

-- module3.lua
local instance

local M = function()
 if not instance then
 local var1 = 'ipsum'
 instance = {
 var2 = 'sit',
 lorem = function()
 return 'lorem'
 end,
 ipsum = function(self)
 return var1 .. self.var2
 end,
 }
 end
 return instance
end

return M

www.it-ebooks.info

http://www.it-ebooks.info/

Basics of the Game Engine

18

How it works…
Modules are used with the require function that registers them in the global table
modules.loaded. This table contains the compiled code of every module used and ensures
that each module is loaded only once.

Object modules return a local variable M, which contains an object interface. However, you can
use any other name for this variable. Choosing between tables or closure as object contained
is mostly a matter of application design.

Variable var1 is always hidden from the outside world and can be changed only by the
exposed function. Variable var2 is freely accessible and can be modified anytime.

The following lines of code show the usage patterns for all three types of module:

local module1 = require 'module1'
local module2 = require 'module2'
local module3 = require 'module3'
-- create two instances of module2
local module2_A = module2()
local module2_B = module2()
-- try to create an instance of module2 twice
local module3_A = module3()
local module3_B = module3()

-- usage of a module with interface table
print('Module 1 - Before:',
 module1:lorem() .. module1:ipsum())
module1.var2 = 'amet'
print('Module 1 - After:',
 module1:lorem() .. module1:ipsum())

-- usage of a module in a form of an object
print('Module 2a - Before:',
 module2_A:lorem() .. module2_A:ipsum())
module2_A.var2 = 'amet'
print('Module 2a - After:',
 module2_A:lorem() .. module2_A:ipsum())
print('Module 2b - After:',
 module2_B:lorem() .. module2_B:ipsum())

-- usage of a module in a form of a singleton object
print('Module 3a - Before:',
 module3_A:lorem() .. module3_A:ipsum())

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

19

module3_A.var2 = 'amet'
print('Module 3a - After:',
 module3_A:lorem() .. module3_A:ipsum())
print('Module 3b - After:',
 module3_B:lorem() .. module3_B:ipsum())

Handling errors with pcall, xpcall,
and assert

By default, the Lua language uses its internal error function. If an error occurs, Lua will usually
abort code execution and put the error message with trace back into the standard error output.
You can override the standard behavior with the pcall and xpcall functions. The main
difference between these two functions is that pcall will return the status code and error
message as the second return value, and xpcall will use the user-defined error function.

This way you can catch nonfatal errors and emulate the try and catch block.

Getting ready
This recipe will show error handling on a simple function that can exit prematurely with the
error message:

 local function f1(a, b)
 assert((a == 1), "The first parameter must be equal to 1")
 print(b)
 return a+1
end

How to do it…
Here's how you can catch a nonfatal error with pcall by emulating the try and catch block:

function try(fn, catch_fn)
 local status, msg = pcall(fn)
 if not status then
 catch_fn(msg)
 end
end

try(function()
 f1(2, 3) -- this will throw "an exception"
end, function(e)

www.it-ebooks.info

http://www.it-ebooks.info/

Basics of the Game Engine

20

 print('An exception occured:', e)
 error('Throw exception')
end)

The next recipe shows how to create your own specialized xpcall2 function that can handle
input parameters for a function:

local function xpcall2(fn, ...)
 local arg = {...}
 return xpcall(
 -- function wrapper to pass function arguments
 function(...)
 return fn(unpack(arg))
 end,
 -- error function
 function(msg)
 return debug.traceback(msg, 3)
 end
)
end

print(xpcall2(f1, 2, 'a'))

How it works…
The whole principle of the try and catch block emulation in Lua relies on the pcall
function that catches the error message and pushes it into the catch block function.

The only weakness of this approach is that you can't get more information because you're
handling errors outside of the scope of where the error occurred.

This issue can be solved with xpcall which handles error before stack unwinding so you
can use the debug library to get more information about the error.

Xpcall2 works as a wrapper function that not only passes parameters into protected
function calls, but also handles getting the trace back with the debug.traceback
function and returns results or a status code with an error message.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

21

Using Lua with existing projects written
in C/C++

The Lua language provides a set of API functions for communication between C/C++ and the
Lua programming language. You can use these functions in your C code after you include the
lua.h header file or lua.hpp for C++ source code. You can rely on this set of functions, but
sooner or later you'll see that there are certain usage patterns which can be used to simplify
your C/C++ code or just simply make it more readable and error prone. This is especially true
if you want to expose C++ objects and structures to the Lua language environment.

Fortunately, there is the Lutok2 library to help you with that. It consists of a set of header files
and a freely based previous project called Lutok from Julio Merino.

This chapter will cover how to use Lutok2 library as the C++ API library for the Lua language
and as a C++ class wrapper so that you can easily manage making your own extensions in
the future. You'll also see that this library is used in many other libraries to cover access to
multimedia devices from the Lua language.

Getting ready
The first thing you need to do before starting is to get the Lua binary library and the header
files. After this step, you can download the Lutok2 header files and use them in your project.

On Windows:

1. Download the Lua binary files from
https://code.google.com/p/luaforwindows/downloads/list.

2. Download and unzip the Lutok2 source code from https://github.com/soulik/
lutok2/archive/master.zip or get a clone of the repository with the git
command:
git clone https://github.com/soulik/lutok2.git

On Linux:

1. Use your package manager to install the Lua developer package or build the
Lua binary library from source code at http://www.lua.org/ftp/lua-
5.1.5.tar.gz.

2. Download and unzip the Lutok2 source code from https://github.com/soulik/
lutok2/archive/master.zip or get a clone of the repository with the
git command:
git clone https://github.com/soulik/lutok2.git

www.it-ebooks.info

https://code.google.com/p/luaforwindows/downloads/list
https://github.com/soulik/lutok2/archive/master.zip
https://github.com/soulik/lutok2/archive/master.zip
http://www.lua.org/ftp/lua-5.1.5.tar.gz
http://www.lua.org/ftp/lua-5.1.5.tar.gz
https://github.com/soulik/lutok2/archive/master.zip
https://github.com/soulik/lutok2/archive/master.zip
http://www.it-ebooks.info/

Basics of the Game Engine

22

In both cases, you'll need the C++ compiler that can handle C++11 version of the standard
C++ language. You can use clang or gcc compiler under the Unix-like environment, or the
recent version of Microsoft Visual C++.

How to do it…
In the following steps, you'll see most common scenarios of using the Lua language in your
C/C++ project. Most of the Lutok2 code samples are paired with equivalent Lua C API code
so that you can see what the equivalent C code looks like without using the Lutok2 library.

Initializing the Lua state
This is how you initialize a Lua state with Lutok2:

#include <lutok2/lutok2.hpp>

int main(int argc, char ** argv){
 lutok2::State state;
 return 0;
}

This is how you do the same with Lua C API:

#include <lua.hpp>

int main(int argc, char ** argv){
 lua_State * state = luaL_newstate();
 return 0;
}

Creating a Lua module in C/C++
With Lutok2:

#include <lutok2/lutok2.hpp>

using namespace lutok2;

 /* A function to be exposed should always use following form:
 * Input argument : A reference to Lutok2 State object
 * Output variable: An integral number of return values
 */
int lua_example_myfunction(State & state){
 // C/C++ code to be invoked

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

23

 return 0;
}

extern "C" LUA_API int luaopen_example(lua_State * current_state){
 State * state = State(current_state);
 Module myModule;
 /* Expose lua_example_myfunction function in
 * Lua language environment.
 * Key value represents a function name in Lua.
 * Value should always be a function pointer.
 */
 myModule["myfunction"] = lua_example_myfunction;

 /* This module will return a Lua table
 * that exposes all functions listed in myModule.
 */
 state->stack->newTable();
 state->registerLib(myModule);
 return 1;
}

With Lua C API:

#include <lua.hpp>

static int lua_example_myfunction(lua_State * L){
 return 0;
}

static const struct luaL_Reg module[] = {
 {"myfunction", lua_example_myfunction},
 {NULL, NULL}
};

extern "C" LUA_API int luaopen_example(lua_State * L){
 lua_newtable(L);
 luaL_register (L, NULL, module);
 return 1;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Basics of the Game Engine

24

Passing variables from C/C++ into the Lua environment
With Lutok:

int lua_example_myfunction(State & state){
 void * userData = (void*)123456789;
 Stack * stack = state->stack;

 stack->push<bool>(true);
 stack->push<int>(12345);
 stack->push<LUA_NUMBER>(12345.6789);
 stack->push<const std::string &>("A text");
 stack->push<void*>(userData);
 stack->newTable();
 stack.setField<bool>("boolean", false);
 stack.setField<int>("integer", (int)12345);
 stack.setField<LUA_NUMBER>("number", (lua_Number)12345.6789);
 stack.setField<const std::string &>("string", "A text");
 stack.setfield<void *>("userData", userData);
 return 6;
}

With Lua C API:

static int lua_example_myfunction(lua_State * L){
 void * userData = (void*)123456789;
 lua_pushboolean(L, (int)true);
 lua_pushinteger(L, 12345);
 lua_pushnumber(L, 12345.6789);
 lua_pushstring(L, "A text");
 lua_pushlightuserdata(L, userData);
 lua_newtable(L);
 lua_pushboolean(L, (int)false);
 lua_setfield(L, -2, "boolean");
 lua_pushinteger(L, 12345);
 lua_setfield(L, -2, "integer");
 lua_pushnumber(L, 12345.6789);
 lua_setfield(L, -2, "number");
 lua_pushstring(L, "A text");
 lua_setfield(L, -2, "A text");
 lua_pushlightuserdata(L, userData);
 lua_setfield(L, -2, "userData");
 return 6;
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

25

Passing variables from the Lua environment to C/C++
To get a variable from the Lua environment, you need to call the corresponding Lua C
API function lua_to*, for example, lua_tointeger(L, index). You can use the
corresponding version of the luaL_check*(L, index) function to obtain a value with
additional checks for the correct data type.

Lutok2 provides a similar mechanism where you can use a template form of the to function:

state.stack->to<DATA_TYPE_NAME>(index);

The part DATA_TYPE_NAME presents a name of the target data type and the index value is
a position of the variable in the registry. The first function parameter is at index 1. The second
one is at index 2, and so on.

The example code for Lutok2 C++ API is as follows:

int integerValue = state.stack->to<int>(1);

The example code for the plain Lua C API is as follows:

int integerValue = luaL_checkinteger(L, 1);

Making the C++ class accessible from Lua with Lutok2
Let's assume that your class is defined in the ExampleObject.hpp header file. In this
minimal case, the class contains one numerical property and one member function that
returns a string value. The header file will contain the following lines of code:

#ifndef EXAMPLE_OBJECT_H
#define EXAMPLE_OBJECT_H

#include <string>

class ExampleObject {
public:
 int x;
 inline const std::string helloWorld(){
 return "Hello world";
 }
};
#endif

Now, you'll need to create a class declaration and implementation of the C++ class wrapper.
You should always use a reasonable name for the wrapper class so that it is clear what class
is actually handled. This example uses the name LuaExampleObject.

www.it-ebooks.info

http://www.it-ebooks.info/

Basics of the Game Engine

26

The header file will be called LuaExampleObject.hpp and it will contain a declaration for
the LuaExampleObject class. This header file contains the following lines:

#ifndef LUA_EXAMPLE_OBJECT_H
#define LUA_EXAMPLE_OBJECT_H

#include "ExampleObject.hpp"

class LuaExampleObject : public Object<ExampleObject> {
public:
 explicit LuaExampleObject(State * state) :
 Object<ExampleObject>(state){
 /* Properties handle access to member variables
 * with getter and setter functions
 */
 LUTOK_PROPERTY("x",
 &LuaExampleObject::getX,
 &LuaExampleObject::setX);
 // Methods allow you to call member functions
 LUTOK_METHOD("helloWorld",
 &LuaExampleObject::helloWorld);
 }

 ExampleObject * constructor(State & state, bool & managed);
 void destructor(State & state, ExampleObject * object);
 int getX(State & state, ExampleObject * object);
 int setX(State & state, ExampleObject * object);
 int helloWorld(State & state, ExampleObject * object);
};
#endif

The implementation file will be called LuaExampleObject.cpp and it will consist of the
main code that handles access to member variables and functions:

#include <lutok2/lutok2.hpp>
using namespace lutok2;

#include "LuaExampleObject.hpp"

ExampleObject * LuaExampleObject::constructor(State & state, bool
 & managed){
 return new ExampleObject;
}

void LuaExampleObject::destructor(State & state, ExampleObject *
 object){

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

27

 delete object;
}

int LuaExampleObject::getX(State & state, ExampleObject * object){
 state.stack->push<int>(object->x);
 return 1;
}

int LuaExampleObject::setX(State & state, ExampleObject * object){
 if (state.stack->is<LUA_TNUMBER>(1)){
 object->x = state.stack->to<int>(1);
 }
 return 0;
}

int LuaExampleObject::helloWorld(State & state, ExampleObject *
 object){
 state.stack->push<const std::string &>(object->helloWorld());
 return 1;
}

Furthermore, to finish while process, you'll need to register a Lua interface. This is usually
done during the module initialization routine. The following code sample shows how to
prepare a C++ source file with module initialization. This module will return a table that is
used in the Lua script as an interface to create an instance of ExampleObject. Note that
this module doesn't register itself in the global variable space. This is currently the preferred
way of using modules in the Lua language.

The main module file will be called ExampleModule.cpp and will consist of the
following lines:

#include <lutok2/lutok2.hpp>
using namespace lutok2;

#include "LuaExampleObject.hpp"

extern "C" LUA_API int luaopen_example(lua_State * current_state){
 // State object is freed automatically after Lua state closes!
 State * state = new State(current_state);
 Stack * stack = state->stack;

 // Prepare main module interface table
 stack->newTable();

 /* Object interface registration always returns Lua function

www.it-ebooks.info

http://www.it-ebooks.info/

Basics of the Game Engine

28

 * with object constructor.
 */
 state->registerInterface<LuaExampleObject>(
 "LuaExample_ExampleObject");
 /* A new instance of ExampleObject can be obtained by
 * calling ExampleObject function from main interface table.
 */
 stack->setField("ExampleObject");
 return 1;
}

Now, you can include all source code in your C++ project in your favorite IDE and compile
them into the binary library.

Don't forget to move the resulting binary library with the module to the working directory with
your Lua script or anywhere the Lua interpreter can find it.

Finally, your Lua script will look like this:

local exampleModule = require 'Example'

local example_object = exampleModule.ExampleObject()
example_object.x = 5
print(example_object.x)
print(example_object.helloWorld())

This will create a new ExampleObject instance, sets and gets content of member variable;
in the final step, it calls the member function that returns a string value.

How it works…
The Lutok2 library contains most of the commonly used Lua C API functions while sanitizing
access to class objects.

The core of this library is divided into two sections:

 f Functions that manage Lua states and Lua modules

 f Functions that manage Lua stack content

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

29

All Lutok2 classes are encapsulated in Lutok2 namespace, so there should be no naming
conflicts with other libraries. It contains automatic management of the Lua state for these
use cases:

 f Lua modules

 f A standalone application that creates a Lua state during runtime

Class wrapper objects use the template form of lutok2::Object as a generic base class
that handles most of the work in order to register the class interface in the current Lua
environment. The template parameter is mandatory and specifies what class will be wrapped.

lutok2::Object<CLASS_NAME>

The constructor of the class wrapper must always be present, as it defines what methods or
properties will be available in the Lua environment. It's called automatically during interface
registration. The body of the constructor usually consists of several macros that specify the
class members. There are two macros you can use, which are as follows:

 f LUTOK_METHOD(LUA_NAME, FUNCTION)

 f LUTOK_PROPERTY(LUA_NAME, FUNCTION, FUNCTION)

The member functions are defined by their name as a string value and a function pointer. The
member variables use a similar notation while using two function pointers. The first one points
to the getter function that returns a value of the member variable. The second one points to
the setter function that sets the value of the member variable. If you don't want to allow the
member variable modification, you can use the pointer to the nullMethod function instead
of your own setter function. This will effectively block any changes to the member variable
from the Lua script.

Another part of the C++ class wrapper is the functions that manage object instance creation
and destruction—constructor and destructor. The constructor method is called when
you actually call the object constructor in the Lua environment and it gives you space to
actually create a new object instance. There's a reference to the managed argument, which
you can change to the false value if the object instance is managed elsewhere. This will also
cause that destructor method won't be called upon garbage collection in the Lua environment:

CLASS_NAME * constructor(State & state, bool & managed);

The destructor method is called when the object is freed in the Lua environment during garbage
collection. This is the place where you can clean up and free up the object's instance:

 void destructor(State & state, CLASS_NAME * object);

www.it-ebooks.info

http://www.it-ebooks.info/

Basics of the Game Engine

30

Getting LuaSDL for libSDL 1.2
LuaSDL is a binding to the famous libSDL 1.2 multimedia library. LuaSDL provides an
interface not only to libSDL itself but also to the SDL_image, SDL_mixer, SDL_net, SDL_ttf,
and SDL_gfx libraries.

Getting ready
The LuaSDL module depends on many external libraries. To make the module preparation
easier, there's a LuaSDL project repository at GitHub with support for the CMake building
system. This project repository contains all the necessary external libraries, which make
module building process a breeze.

You'll need to have the following software installed to successfully build the LuaSDL module:

 f The git version control system is available at https://git-scm.com/

 f The CMake building system version 3.1 or newer is available at
http://www.cmake.org/

 f The C/C++ compiler, Microsoft Visual Studio, GCC, and clang are supported

 f The Netwide Assembler—NASM (optional) used only for CPU-specific optimizations is
available at http://www.nasm.us/

How to do it…
The building process of LuaSDL is the same on both Windows and Linux operating systems
with minor differences:

1. Download the LuaSDL source code with the git command:
git clone --recursive https://github.com/soulik/LuaSDL.git

2. You need to create an empty working directory, which will contain the project and
binary files:
mkdir LuaSDL/build
cd LuaSDL/build

3. Now, you can run the CMake building tool to prepare the project files or to make
further changes to the building configuration:
cmake ..

www.it-ebooks.info

https://git-scm.com/
http://www.cmake.org/
http://www.nasm.us/
http://www.it-ebooks.info/

Chapter 1

31

4. After successful preparation of the building environment, you can either open the
project file in your IDE or simply run the make command to start the compilation
depending on the compiler of your choice:

 � For Microsoft Visual Studio—use the luasdl.sln file

 � For Linux users—use the make command

5. The successful compilation will result in binary files stored in the bin and
lib directories.

Note that Microsoft Visual Studio will generate the .dll binary files in the bin directory, whereas,
Linux users will find the same binary files in the lib directory. You can copy all the binary files into
one directory where your Lua application resides. This will ensure that the Lua interpreter finds
all the necessary binary modules.

There's more…
LuaSDL uses libSDL 1.2, which is more than 5 years old. Despite being no longer maintained,
the LuaSDL package is considered as stable.

LuaSDL2 is being developed at the time of writing. You can access the source code from
GitHub at https://github.com/soulik/LuaSDL-2.0.git.

Designing the main application loop with
LuaSDL

LuaSDL offers an event-based application design. LibSDL uses a window to capture input
events. Without it, you wouldn't be able to detect key strokes, mouse movement and,
of course, you will be without any graphical output.

Getting ready
Before running your Lua script with LuaSDL, make sure you've got the LuaSDL module with
all the dependencies in the same directory. However, you can always override the PATH
environmental variable so that your application can find the necessary libraries. Note that
the path environment variable is managed in the operating system and it's not for the Lua
module location!

www.it-ebooks.info

https://github.com/soulik/LuaSDL-2.0.git
http://www.it-ebooks.info/

Basics of the Game Engine

32

How to do it…
First, you must load the LuaSDL module file. If this step fails, you are either missing the
correct libSDL library or one of the dependencies:

require 'LuaSDL'

You can define your own assertion check function with the optional SDL error reporting:

function SDL_assert(condition, msg)
 local msg = (msg and msg .. ": " .. SDL.SDL_GetError())
 return assert(condition, msg)
end

You have to set up the default window parameters as follows:

local window_x_pos = 128
local window_y_pos = 128
local window_width = 640
local window_height = 480
local window_bpp = 0
local window_flags = 0

LuaSDL must be initialized with SDL.SDL_Init before any use:

SDL_assert(SDL.SDL_Init(SDL.SDL_INIT_EVERYTHING) >= 0, "Couldn't
initialize SDL")

LuaSDL places the window randomly upon creation. You can override this by setting the
environmental variable SDL_VIDEO_WINDOW_POS:

SDL.SDL_putenv(string.format("SDL_VIDEO_WINDOW_POS=%d,%d",window_x
_pos, window_y_pos))

To set a window caption, you have to call the SDL.SDL_WM_SetCaption function:

SDL.SDL_WM_SetCaption("LuaSDL Example", "Example")

Now, you can create a window with the SDL.SDL_SetVideoMode function, which returns the
SDL_Surface object as a userdata:

local screen = SDL_assert(SDL.SDL_SetVideoMode(window_width,
window_height, window_bpp, window_flags))

You can use the event loop invariant or just use a break statement on the application exit:

local running = true

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

33

It's more efficient to use the table of event functions than the usual approach with the if,
elseif, and else statements. Each table key is an integer constant in this case:

local events = {
 [SDL.SDL_MOUSEMOTION] = function(event_struct)
 local event_struct = event_struct.motion
 -- do something when this event occurs
 end,
 [SDL.SDL_MOUSEBUTTONDOWN] = function(event_struct)
 local event = event_struct.button
 end,
 [SDL.SDL_MOUSEBUTTONUP] = function(event_struct)
 local event = event_struct.button
 end,
 [SDL.SDL_KEYDOWN] = function(event_struct)
 local event = event_struct.key
 local key = event_struct.keysym.sym
 end,
 [SDL.SDL_KEYUP] = function(event_struct)
 local event = event_struct.key
 local key = event_struct.keysym.sym
 end,
 [SDL.SDL_VIDEORESIZE] = function(event_struct)
 local event = event_struct.resize
 end,
 [SDL.SDL_QUIT] = function(event_struct)
 running = false
 end,
}
-- prepare local instance of SDL_Event object
local local_event = SDL.SDL_Event_local()

while (running) do
 -- check for events in the poll
 if (SDL.SDL_PollEvent(local_event)~=0) then
 local event_fn = events[local_event.type]
 if type(event_fn)=='function' then
 event_fn(local_event)
 end
 end
end

www.it-ebooks.info

http://www.it-ebooks.info/

Basics of the Game Engine

34

The SDL.SDL_Quit function ensures that all the temporary objects are freed upon
application exit:

SDL.SDL_Quit()

How it works…
Using the LuaSDL library must follow a certain pattern to ensure correct management
of resources and events. Events are used as a primary source of information about user
interaction with your application. The LuaSDL library can detect mouse movement, keyboard
input, change of application window size, and a request to close your application.

The whole process of event processing uses event polling where you use the SDL.SDL_
PollEvent function in each step of the main application loop to obtain information about the
event that has occurred. This function may return a value 0 if there are no events to process.
In this case, you can use this free time to process game logic. This recipe uses a skeleton
table for event processing functions called events.

The most important event, SDL.SDL_QUIT, is received when the user closes the application
window. You should clean up all the resources and LuaSDL state as well. Don't forget to use
the SDL.SDL_Quit function before exiting your application to ensure all the previously used
memory is freed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

35

2
Events

In this chapter, we will cover the following recipes:

 f Processing input events with LuaSDL

 f Using the keyboard input

 f Using the relative mouse position

 f Using the absolute mouse position

 f Using timers

Introduction
Event-driven design offers a cheap and efficient way to detect user input without the need
to check for input device status in each frame. A naïve approach to this is to query all input
devices for changes in their state. There are many types of input devices such as keyboard,
mouse, joystick, keypad controller, tablet, touch screen, and so on. LuaSDL relies on the
library libSDL 1.2, which supports only basic input devices such as keyboard, mouse, and
joystick. This version doesn't support the use of multiple devices of the same kind. This
limitation has been removed with libSDL 2.x, which is used in LuaSDL 2. LuaSDL 2 is the
successor of a former LuaSDL library and it's in the stage of early development at the time of
writing. This chapter will cover the use of an older LuaSDL library, as the LuaSDL 2 interface
is not so different.

www.it-ebooks.info

http://www.it-ebooks.info/

Events

36

Processing input events with LuaSDL
LuaSDL offers a form of platform-independent abstraction layer to these devices with an inner
event pool. You only have to query the event pool for unprocessed events and, if there are any,
check for the event type.

Getting ready
Before doing any event processing, your application must initialize internal event pools. This
can be achieved with the SDL.SDL_Init function, where the only parameter is a bitmask
representing which parts of LuaSDL you want to initialize. You can use the bitlib library for the
Lua language. Another option would be to use the bit32 internal library if you are using the
newer version of the Lua interpreter. The default value here is SDL.SDL_INIT_EVERYTHING,
which is fine as it starts the event pool automatically. Specifically, you can use the SDL.SDL_
INIT_EVENTTHREAD or SDL.SDL_INIT_VIDEO values to initialize the event pool.

A code sample can be used to initialize the LuaSDL library. It should be used right at the start
of the application:

require 'LuaSDL'
require 'bit'
-- initialize video device and internal thread for event processing
SDL.SDL_Init(bit.bor(SDL.SDL_INIT_VIDEO,
SDL.SDL_INIT_EVENTTHREAD))

How to do it…
You can poll for currently pending events with the SDL.SDL_PollEvent function. This
function uses the SDL_Event object as the only argument and fills this object with event
information, if there's any. LuaSDL provides the SDL.SDL_Event_local function, which
creates the local SDL_Event object. Keep in mind that this object is not kept globally. The
SDL_Event object will be subject to garbage collection after you leave the block where it
was defined. The SDL.SDL_PollEvent function also returns a value 1 if there is an event
that is currently pending or 0 if there aren't any. This approach is quite desirable because
you call this function only once for each event loop iteration. If there are no events pending,
you can just skip further event processing in that iteration.

First of all, you need to create a local event object. This object will contain event information
and can be defined at the start of your application and freed upon application exit.

local event = SDL.SDL_Event_local()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

37

The application event loop can be defined as a while loop:

local running = true
while (running) do
 if (SDL.SDL_PollEvent(event) ~= 0) then
 process_event(event)
 end
end

Incoming events will be processed in the process_event function. This function usually
handles more than one type of event, which is defined in the event.type variable. Each
event type can be processed separately inside the if-then-else chain of code blocks or
you can rely on the function map stored in a Lua table in the form of an associative array.
The Lua language doesn't contain the switch statement known from other programming
languages, so you are mostly left with these two options. For other kinds of switch statement
alternatives, you can refer to the lua-users wiki page at http://lua-users.org/wiki/
SwitchStatement.

As long as the amount of event types is small enough, it doesn't really matter which one
you use.

Event handling with the if-then-else chain
An example of the if-else-if chain is shown in the following code:

local function process_event(event)
 if event.type == SDL.SDL_KEYDOWN then
 print("Key pressed:", event.key.keysym.sym)
 elseif event.type == SDL.SDL_KEYUP then
 print("Key released:", event.key.keysym.sym)
 elseif event.type == SDL.SDL_QUIT
 running = false
 end
end

In the first case with event type SDL.SDL_KEY_DOWN, the code captures an event of pressing a
key on your keyboard. You can get both the key symbol code defined in event.key.keysym.
sym or a scan code from event.key.keysym.scancode. A key symbol code is keyboard-
layout dependent, whereas scancode is a hardware-dependent value. Usually, you'll want to
use a key symbol code if you're developing a game.

The second case with the SDL.SDL_KEYUP event type captures an event of key releasing and
the last one detects a quit event when the user closes the application window.

www.it-ebooks.info

http://lua-users.org/wiki/SwitchStatement
http://lua-users.org/wiki/SwitchStatement
http://www.it-ebooks.info/

Events

38

Event handling with an associative array
The next example shows how to process events with the associative array represented with
the Lua table:

local events = {
 [SDL.SDL_KEYDOWN] = function(raw_event)
 local event = raw_event.key
 local key = event.keysym.sym
 print("Key pressed:", key)
 end,
 [SDL.SDL_KEYUP] = function(raw_event)
 local event = raw_event.key
 local key = event.keysym.sym
 print("Key released:", key)
 end,
 [SDL.SDL_QUIT] = function(raw_event)
 running = false
 end,
}
local function process_event(event)
 local event_fn = events[event.type]
 if type(event_fn)=='function' then
 event_fn(event)
 end
end

In this case, the process_event function looks up for a key-value pair in the events table.
A key part of a pair corresponds to the event type identifier. On the other hand, a value part
contains a function that will be invoked. A complete list of valid event type identifiers is shown
in a table, which we will look at shortly. In every case, an event function will be called with the
current event object placed in the first function argument.

Keep in mind that LuaSDL always uses a generic form of event object. Therefore, to get a
certain event attribute, you need to follow this structure:

event.[structure_name].[structure_attribute]

For instance, if you wanted to know what key was pressed, you can use the key symbol identifier
from the key structure.

local keySymbol = event.key.keysym.sym

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

39

The following table shows what event types LuaSDL can handle:

Event types Description Structure
names

Structure
attributes

SDL_ACTIVEEVENT This allows you to gain or lose
window focus

Active gain state

SDL_KEYDOWN This allows you to press down a
key on the keyboard

Key state keysym

SDL_KEYUP This allows you to release a key
on the keyboard

SDL_MOUSEMOTION This enables mouse movement
over the application window

Motion state

x,y

srel, yrel
SDL_MOUSEBUTTONDOWN This enables pressing a mouse

button
Button which

button

state

x, y

SDL_MOUSEBUTTONUP This enables releasing a mouse
button

SDL_JOYAXISMOTION This enables joystick movement jaxis which

axis

value
SDL_JOYBUTTONDOWN This enables you to press a

joystick button
jbutton which

button

stateSDL_JOYBUTTONUP This enables you to release a
joystick button

SDL_JOYHATMOTION This enables the joystick to
change the hat position

jhat which

hat

value
SDL_JOYBALLMOTION This enables the joystick to

change the trackball movement
jball which

ball

xrel, yrel
SDL_VIDEORESIZE This enables the window to resize resize w,h
SDL_VIDEOEXPOSE This enables screen redraw Not applicable
SDL_SYSWMEVENT This is a platform-dependent

event
syswm msg

SDL_USEREVENT This is a user-defined event User code

data1, data2
SDL_QUIT This means that quit

was requested
Not applicable

www.it-ebooks.info

http://www.it-ebooks.info/

Events

40

Each event type has its own attributes. You can use those attributes to obtain information
about specific events, for example, the mouse button that was pressed or the key symbol
code. The next set of recipes in this chapter will cover the most common use cases of some of
the event types.

How it works…
The LuaSDL library is intended to be used with the event polling mechanism, which is used in
a loop, as you can see in the following sample code:

-- application can be exited be setting running variable to false
local running = true
-- prepare local instance of SDL_Event object
local local_event = SDL.SDL_Event_local()

while (running) do
 -- check for events in the poll
 if (SDL.SDL_PollEvent(local_event)~=0) then
 local event_fn = events[local_event.type]
 if type(event_fn)=='function' then
 event_fn(local_event)
 end
 else
 -- ...do game mechanics
 end
end

This application design allows you to react to the input event when needed while idle time can
be used to process game mechanics or video rendering. However, special care must be taken
to prevent game mechanics from taking too long to finish as this may halt your application or
make it less responsive.

See also
 f The Using the keyboard input recipe

 f The Using the relative mouse position recipe

 f The Using the absolute mouse position recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

41

Using the keyboard input
LuaSDL offers a simple way of determining what key was pressed or released on your
keyboard. Events with event types SDL.SDL_KEYDOWN and SDL.SDL_KEYUP can react to
one keystroke at the time. This is usually fine during a game play. However, if you want to use
keyboard shortcuts in a text input field, the previous approach would not be very efficient.

This recipe will show you how to manage keyboard input in a robust way that can be used for
both situations—to control a game or to write text into an input field.

Getting ready
Let's say you need your game character to run when a Shift key is pressed. There are three key
problems. The common PC keyboard has left and right Shift keys. These are two different keys
with two different key symbol codes. The next thing is that you use these keys with another
keyboard key which may or may not be the modifier key. The last problem is putting key states
together, so you'll know if the player has pressed the Shift + W keys at the same time.

There are rare cases where you need to query key status multiple times in one frame.
It wouldn't be very efficient to do this every time you need a current state of key modifier.
A better solution is to cache key states into a Lua table. A key symbol code will be used as a
table key and the value will indicate a key status (0 means released and 1 means pressed).
You can assume that the key is released if there is no such entry in the key state table.
This assumption doesn't apply to all modifier keys, for example, the Num Lock key, so make
sure that you initialize modifier key states on application startup. The following code will
define tables to store cached information about key states, along with a special table for the
conversion of modifier key codes into scan code:

local keyStates = {}
local keyModStates = {}
-- a list of key modifiers paired with their scan codes
local modKeysScanCodes = {
 [SDL.KMOD_LSHIFT]=SDL.SDLK_LSHIFT,
 [SDL.KMOD_RSHIFT]=SDL.SDLK_RSHIFT,
 [SDL.KMOD_LCTRL]=SDLK_LCTRL, [SDL.KMOD_RCTRL]=SDL.SDLK_RCTRLT,
 [SDL.KMOD_LALT]=SDL.SDLK_LALT, [SDL.KMOD_RALT]=SDL.SDLK_RALT,
 [SDL.KMOD_LMETA]=SDL.SDLK_LMETA,
 [SDL.KMOD_RMETA]=SDL.SDLK_RMETA,
 [SDL.KMOD_NUM]=SDL.SDLK_NUMLOCK,
 [SDL.KMOD_CAPS]=SDL.SDLK_CAPSLOCK,
 [SDL.KMOD_MODE]=SDL.SDLK_MODE,
}

This code should be used before event processing takes place.

www.it-ebooks.info

http://www.it-ebooks.info/

Events

42

How to do it…
This recipe will be separated into two parts. This first part will deal with the storing states of
normal keys. The second part will manage key modifier states as this is a bit more problematic.

Normal keys
Getting the states of normal keys is pretty straightforward. You just need to detect keyboard
input events to store a key state into the keyState table. This part of the recipe will use the
event functions stored in a table, which is explained in the previous recipe in detail:

local events = {
 -- a keyboard key was pressed down
 [SDL.SDL_KEYDOWN] = function(raw_event)
 local event = raw_event.key
 local keySym = event.keysym.sym
 keyStates[keySym] = true
 end,
 -- a keyboard key was released
 [SDL.SDL_KEYUP] = function(raw_event)
 local event = raw_event.key
 local keySym = event.keysym.sym
 keyStates[keySym] = false
 end,
}

Modifier keys
Modifier keys need to be processed separately because LuaSDL can't detect certain key
combinations within the event processing mechanism. You can try to press both left and
right Ctrl keys and you'll notice that the second modifier is not detected at all!

The modifier key state can be obtained with the SDL.SDL_GetModState function in the
form of a bit mask. The following table shows all the modifier key codes:

Modifier key
constant names

Key names Numerical values (in
hexadecimal notation)

KMOD_NONE No modifier key 0x0000
KMOD_LSHIFT The left Shift key 0x0001
KMOD_RSHIFT The right Shift key 0x0002
KMOD_LCTRL The left Ctrl key 0x0040
KMOD_RCTRL The right Ctrl key 0x0080
KMOD_LALT The left Alt key 0x0100

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

43

Modifier key
constant names

Key names Numerical values (in
hexadecimal notation)

KMOD_RALT The right Alt key 0x0200
KMOD_LMETA Usually a left Windows (GUI) key 0x0400
KMOD_RMETA Usually a right Windows (GUI) key 0x0800
KMOD_NUM The Num Lock key status 0x1000
KMOD_CAPS The Caps Lock key status 0x2000
KMOD_MODE The Alt Gr key 0x4000
KMOD_CTRL Both left and right Ctrl keys 0x00C0
KMOD_SHIFT Both left and right Shift keys 0x0003
KMOD_ALT Both left and right Alt keys 0x0300
KMOD_META Both left and right Windows (GUI)

keys
0x0C00

The modifier key state will be processed in a function called processModKeys:

local function processModKeys()
 local modState = SDL.SDL_GetModState()
 for keyMod, keySym in pairs(modKeysScanCodes) do
 -- apply binary and operator to obtain modifier key state
 keyModStates[keySym] = (bit.band(modState, keyMod) > 0)
 end
end

This function needs to be called in every frame so that you always get the current state of the
modifier keys.

How it works…
The second part of this recipe relies on using the binary and the operator to get the modifier
key state. As mentioned earlier, the modifier key states are stored in a bit mask. Therefore, to
get the actual scan code, it uses the conversion table called modKeysScanCodes. Modifier
key states are stored in a local modState variable, which is used in the for loop to do
binary tests for all modifier keys. If a modifier key is pressed, the binary AND operator returns
nonzero value. The result of this operation is stored in the keyModState table.

Note that the key modifier values such as SDL.KMOD_SHIFT, SDL.KMOD_CTRL, SDL.
KMOD_ALT, and SDL.KMOD_META are not included in the modKeysScanCodes table. You can
obtain states for these modifier keys by using Boolean operators as follows:

local SHIFT_state = (keyModStates[SDL.SDLK_LSHIFT] or
keyModStates[SDL.SDLK_RSHIFT])

www.it-ebooks.info

http://www.it-ebooks.info/

Events

44

This will return true if any of the Shift keys is pressed.

From this point, if you need to query the keyboard shortcut status for Shift + W, you can use
the following code:

local SHIFT_W_state =
 (keyModStates[SDL.SDLK_LSHIFT] or
 keyModStates[SDL.SDLK_RSHIFT]) and
 keyState[SDL.SDLK_w]

See also
 f For a complete list of SDLK_ key symbol constants, you can browse a header file

SDK_keysym.h from libSDL 1.2, which is also available in the GitHub repository at
https://github.com/soulik/LuaSDL/blob/master/src/binding/orig/
SDL_keysym.h

Using the relative mouse position
The relative mouse position is often used when you need unconstrained mouse movement. A
typical example of such a use is a first person shooter game in a 3D environment. The relative
mouse position represents how much the mouse pointer position changed in comparison with
the previous state in all the axes.

Getting ready
The biggest problem with the relative mouse position is that the mouse pointer is constrained
to the application window or the screen. You can solve this by centering the mouse cursor in
the center of the application window after computing the relative cursor position or by using
direct values from the mouse driver.

The relative mouse position has the big advantage of versatility because you can apply the
mouse cursor speed modifier simply by multiplying the relative mouse position with a number.
If that number is greater than 1, the mouse cursor will move faster. Multiplying by a number
lesser than 1, will slow down the mouse cursor.

How to do it…
The first solution is the most viable in this situation as you don't have to depend on platform-
specific features.

www.it-ebooks.info

https://github.com/soulik/LuaSDL/blob/master/src/binding/orig/SDL_keysym.h
https://github.com/soulik/LuaSDL/blob/master/src/binding/orig/SDL_keysym.h
http://www.it-ebooks.info/

Chapter 2

45

The whole solution relies on the following steps:

1. Reset the mouse position to the center of the screen or application window on
startup—this is to prevent sudden mouse cursor jumps on startup.

2. Store the current mouse position into temporary variables, currentX and currentY.

3. Reset the mouse position to the center of the screen or application window.

4. Compute the relative mouse cursor position as the difference between its current
position and the screen center position:
relativeX = currentX - centerX
relativeY = currentY - centerY

5. Repeat from step 2.

Mouse cursor centering can be achieved with the SDL.SDL_WarpMouse function, where
the parameters are the cursor positions in the x and y axes. In this case, you can't rely on
the xrel and yrel event attributes because you center the mouse cursor position on every
mouse move. As a consequence of this, the xrel and yrel values will be eliminated with
the -xrel and -yrel values respectively in the next event iteration.

The mouse motion event handler will look like the following code:

 [SDL.SDL_MOUSEMOTION] = function(_event)
 local event = _event.motion

The centerX and centerY values correspond to the screen center position and will change
only on window resize event or on screen resolution change:

 SDL.SDL_WarpMouse(centerX, centerY)
 relativeX, relativeY = event.x - centerX, event.y - center

The totalX and totalY variables will contain unconstrained mouse cursor coordinates:

 totalX, totalY = totalX + diffX, totalY + diffY
 end

By putting the SDL.SDL_WarpMouse function inside the mouse movement event handler,
you can save some time. There's no need to reset the mouse cursor position at every event
loop iteration.

www.it-ebooks.info

http://www.it-ebooks.info/

Events

46

There's more…
You might have noticed that this application doesn't let you move the cursor outside the
application. For example, you need to switch to another application, but your mouse cursor
is stuck in the middle of the application window. This issue can be solved by handling SDL_
ACTIVEEVENT. If your application loses focus, it will stop trying to set the mouse cursor
position in the middle of the window. After it gains a window focus, it will reset the mouse
position and restore the former mouse event handler.

It's a good idea to move the mouse movement event handler into a separate function.
Let's assume that this function is called mouseMotionHandler.

This first thing you must do is to do forward declaration of the events table.

local events
events = {...}

This gives you a way to modify the events table inside the SDL_ACTIVEEVENT event handler
that is defined in this table.

The updated SDL_ACTIVEEVENT handler can look like the following code:

[SDL.SDL_ACTIVEEVENT] = function(raw_event)
 local event = raw_event.active

First, you need to check whether your application gained or lost focus completely using the
following code:

 if SDL.And(event.state, SDL.SDL_APPINPUTFOCUS) > 0 then
 if event.gain == 1 then

The application gained complete focus and can restore the old mouse motion event handler.
Don't forget to put the mouse cursor in the middle of the screen:

 SDL.SDL_WarpMouse(centerX, centerY)
 events[SDL.SDL_MOUSEMOTION] = mouseMotionHandler
 else

The application lost complete focus; therefore, it can disable the mouse motion handler:

 events[SDL.SDL_MOUSEMOTION] = false
 end
 end
end

This way your application behaves in a more suitable manner and allows users to use other
applications at the same time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

47

Using the absolute mouse position
The absolute mouse position is used primarily in window applications, where the mouse
position constraints are desirable. The mouse position (0,0) corresponds to the upper-left
corner of your application window. The maximum mouse position depends always on the size
of the window. Take special care when the mouse cursor is outside the application window.
The behavior of LuaSDL in this situation is highly dependent on the currently used operating
system! In most cases, you won't get any events related to the mouse cursor motion.

The main advantage of this is that you can use the mouse cursor position reported directly by
LuaSDL to precisely manipulate GUI elements inside of the application window. This approach
is used also with tablet touch input devices, where you always get absolute positions.

How to do it…
The following mouse movement handler function shows a simple way to get the absolute
mouse cursor position:

[SDL.SDL_MOUSEMOTION] = function(raw_event)
 local event = raw_event.motion

The absolute mouse position is stored in x and y attributes:

 mouseX = event.x
 mouseY = event.y
end,

Using timers
LuaSDL offers support for timer objects. The problematic part is the use of timers. The LibSDL
library uses callback functions to call event functions. These callbacks run in another thread
and the naïve approach, where you put the Lua function in the position of callback function,
would lead to Lua state corruption. There is a better way to accomplish this by using the
internal LuaSDL callback function that invokes a special user event.

Timers aren't very precise and they are mostly used in GUI updates. If you need more precision,
you'll need to use High Precision Event Timer (HPET), which is out of the scope of this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Events

48

Getting ready
Each timer object uses a user-defined event that contains unique timer function identifiers
represented by integer values. LuaSDL offers a slightly modified version of the SDL.SDL_
AddTimer function, where it accepts two parameters instead of three. The first parameter is
an interval value in milliseconds. The second is the user-defined event object.

How to do it…
The first thing you'll need to do is to define your user-defined event. You can use the SDL.
SDL_Event_local function to create one:

local timerEvent = SDL.SDL_Event_local()

The next thing you'll need to do is to set the event code specific for a timer object. You can
then create a timer object with the SDL.SDL_AddTimer function. This function returns
an internal timer ID, which you can use with the SDL.SDL_RemoveTimer function to stop
the timer.

So far, you've created a user-defined event generator that will generate events at a specified
interval. To make this useful, you can define your user event handler with the following code:

[SDL.SDL_USEREVENT] = function(_event)
 local event = _event.user
 if event.code > 0 then
 timerCallback(event.code)
 end
end

You can use the event code to specify what callback function will be called.

How it works…
After you create the timer object with SDL.SDL_AddTimer, LuaSDL calls the real SDL_
AddTimer function with its own callback function that will periodically push the event you
specified in the second function argument into the event queue. Fortunately, event handling in
LuaSDL is one of the few things that is thread safe. Timer callback functions don't run strictly
in specified intervals. This is because there are platform-specific limitations and, what's more,
callback functions only push events into the event queue. Your application can process timer
events much later.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

49

There's more…
To make timer handling more efficient, you can define a function that will take two arguments.
The first one is the interval and the second is a function or a closure.

This approach uses central table timers with all the timer objects and the user event
handler will always try to query the timer function from the timers table, as shown in
the following code:

local timers = {}
local timerID = 0

-- Each call to createTimer function will create a new timer
 object.
-- Interval argument expects a time in millisecond units
-- Supplied function in the second argument will be called
 repeatedly
local function createTimer(interval, fn)
 assert(type(interval)=='number' and type(fn)=='function')
 local timerObj = {}
 -- Unique timerID number generator with simple incremental
 counting
 timerID = timerID+1
 -- timerEvent will be used to contain timerID user value
 local timerEvent = SDL.SDL_Event_local()
 -- Store a reference for timerEvent object
 -- so it won't be prematurely garbage collected
 timerObj.event = timerEvent
 timerObj.call = fn
 timerEvent.type = SDL.SDL_USEREVENT
 timerEvent.user.code = timerID
 -- Create LuaSDL timer object
 local timer = SDL.SDL_AddTimer(interval, timerEvent)
 timerObj.timer = timer
 -- Destroys current timer object
 timerObj.remove = function()
 SDL.SDL_RemoveTimer(timer)
 timers[timerID] = nil
 end
 timers[timerID] = timerObj
end

www.it-ebooks.info

http://www.it-ebooks.info/

Events

50

There remains one small modification in the user event handler, which is as follows:

[SDL.SDL_USEREVENT] = function(raw_event)
 local event = raw_event.user
 if event.code > 0 then
 local timer = timers[event.code]
 if timer and type(timer.call)=="function" then
 timer.call()
 end
 end
end

The last thing you need to do is to clean up all timers before exiting your application. This is
caused by the fact that timer objects from LuaSDL aren't automatically garbage collected.
You can achieve this with the following simple iteration:

for _, timer in pairs(timers) do
 timer.remove()
end

The remove function will stop the timer and destroy the timer object. Without this step, you'd
be relying on the automatic cleanup functions of the operating system, which is never a good
idea. In the worst case, it could cause a memory leak.

www.it-ebooks.info

http://www.it-ebooks.info/

51

3
Graphics – Common

Methods

This chapter will cover the following recipes:

 f Creating a window in libSDL

 f Creating surfaces

 f Surfaces manipulation

 f Using colors

 f Cursor manipulation

 f Initializing the graphics mode with OpenGL

 f Getting OpenGL information

 f Using OpenGL extensions with GLEW and Lua

 f Loading images with SDL_image

 f Creating textures

 f Loading and using bitmap fonts

 f Loading and using TrueType fonts

 f Displaying the text

 f Creating texture atlas with the rover-design pattern

 f Using tiles and tilesets in the game

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

52

Introduction
This chapter covers the basic principles of using the graphical interface in conjunction of
LuaSDL with OpenGL. It covers basic operations on surface objects, using color models,
cursor manipulation, image loading, and using textures and fonts. It also contains a few
examples of game engine optimizations such as texture atlas and tilesets.

These recipes can be enhanced with the information from subsequent chapters to get
better efficiency on resource handling.

Creating a window in libSDL
A window in an application is the most basic part of the drawing process. LibSDL offers a way
to create one regardless of the graphical environment or operating system being used. Each
window uses the surface object, which contains basic information about the drawing context,
such as the inner window size, color depth, pixel format settings and optional flag variables
to set up the drawing process. LuaSDL allows you to set up these window parameters in a
simple manner.

Moreover, libSDL operates with the screen as the surface object representation. LibSDL
1.2 allows you to use only one window, while the current version of libSDL 2.0 allows multiple
windows. This might be the deciding factor when deciding whether to use the older version of
LuaSDL or the newer LuaSDL 2.

Getting ready
LibSDL 1.2 offers an old interface to set up a window but it's sufficient for simple games and
multimedia applications. Most likely you'll want to use the whole screen for your application,
so you'll need to set up a fullscreen mode. You can achieve this with the flag parameter SDL.
SDL_FULLSCREEN in the SDL.SDL_SetVideoMode function. All flag parameters consist of
bitmasks, so you need to use the binary OR operator to construct the final flag value.

LibSDL tries to use the accelerated window drawing if it's available on the target platform.
Without this feature, all the drawing is processed in software mode, which is substantially
slower than hardware-accelerated drawing. You can check for the hardware acceleration feature
with the SDL.SDL_GetVideoInfo function. It returns a table with the following content:

Field names Description Value types
hw_
available

Are hardware surfaces available? 0 means false and 1 means
true

wm_
available

Is window manager available? 0 means false and 1 means
true

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

53

blit_hw Are hardware-to-hardware blits accelerated? 0 means false and 1 means
true

blit_hw_CC Are hardware-to-hardware color key blits
accelerated?

0 means false and 1 means
true

blit_hw_A Are hardware-to-hardware alpha blits
accelerated?

0 means false and 1 means
true

blit_sw Are software-to-hardware blits accelerated? 0 means false and 1 means
true

blit_sw_CC Are software-to-hardware colorkey blits
accelerated?

0 means false and 1 means
true

blit_sw_A Are software-to-hardware alpha blits
accelerated?

0 means false and 1 means
true

blit_fill Are color fills accelerated? 0 means false and 1 means
true

video_mem This is the total amount of video memory in
Kilobytes

Returns an Integer value, 0
if not available

vfmt This is the pixel format of the current video
device

SDL_PixelFormat

Be aware that each field except vfmt contains a numerical value.

LibSDL 1.2 doesn't contain full support for DirectX acceleration on Windows platforms,
so you may end up with windib video driver. This means you won't be able to use hardware-
accelerated surfaces. Software-based blitting is generally a slow process as it accompanies
RAM to RAM data copy. In this case, most of you will fall back to OpenGL acceleration, which
is fine because OpenGL is known to be platform independent and almost every graphic card
supports OpenGL nowadays.

To get the name of the current video driver, you need to call the SDL.SDL_VideoDriverName
function. However, there's a catch to call this function properly mainly due to Lua++ binding.

The current workaround looks like this:

-- let Lua to allocate a string
local str = string.rep(" ", 256)
str = SDL.SDL_VideoDriverName(str, #str)

This will prepare the str variable to be able to contain at most 256 characters, which is
sufficient in most cases. The str variable will be filled with a name of the current video
driver. Fortunately, the length of the string variable indicates the maximum length of the
video driver name. Longer driver names are truncated to the specified length. This issue
is resolved in LuaSDL 2.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

54

How to do it…
You can set up your screen with the SDL.SDL_SetVideoMode function with formal definition:

SDL.SDL_SetVideoMode(width, height, bpp, flags)

This function will return the surface object or nil on failure. Screen width and height are in
pixels. Each pixel is represented by a color value stored in a binary form. Bits per pixel or the
bpp parameter specifies how many bits are used to describe one pixel. Each color value uses
the RGB (red, green, blue) color representation. Usually, each color channel uses the same
amount of bits. However, other surface objects in the libSDL library may use other binary
representations for colors. For instance, RGB channels may be in reverse order or there may
be a different size for each color channel. The problematics of pixel format description and
doing conversion between them is well explained in an article at https://www.opengl.
org/wiki/Image_Format.

You can also use the bpp parameter with zero value in case you want to use the current
screen bpp setting. This will automatically turn on the SDL.SDL_ANYFORMAT flag.

Optional flags define surface capabilities. You can combine them together with the binary
OR operator from the bit library. The flag values are described in the following table:

Flag names Description
SDL.SDL_SWSURFACE The video surface is in the system memory—RAM
SDL.SDL_HWSURFACE The video surface is in the video memory—graphic card memory
SDL.SDL_ASYNCBLIT This involves asynchronous updates of the display surface and a

speed increase on systems with multiple processors or cores
SDL.SDL_ANYFORMAT This uses the closest pixel format available
SDL.SDL_HWPALETTE This involves exclusive palette access for SDL. Without this,

you may not always get the exact color you request, usually on
screens with 8 bpp.

SDL.SDL_DOUBLEBUF This enables the use of hardware double buffering and is valid
only with SDL.SDL_HWSURFACE.

SDL.SDL_FULLSCREEN SDL will attempt to use a fullscreen mode or tries to set the next
higher resolution with the display window centered.

SDL.SDL_OPENGL This prepares the OpenGL rendering context
SDL.SDL_OPENGLBLIT This prepares the OpenGL rendering context with blitting

capability.
SDL.SDL_RESIZABLE The window that is created will be resizable.
SDL.SDL_NOFRAME This is the window without the title bar or frames.

www.it-ebooks.info

https://www.opengl.org/wiki/Image_Format
https://www.opengl.org/wiki/Image_Format
http://www.it-ebooks.info/

Chapter 3

55

How it works…
The first call of the SDL_SetVideoMode function will always try to create a window. It will
allocate the necessary memory to store the window content in a surface object. However,
this surface object is automatically freed upon the call of the SDL.SDL_Quit function and
should not be freed manually.

Note that the SDL_SetVideoMode function will use the pixel format specified by the bpp
parameter even if it's not supported by the current hardware. In such cases, the surface
object is also called a shadow surface and it means that the libSDL library will do automatic
pixel format conversion when you display content on the screen. This conversion will slow
down screen rendering a bit. You can avoid this by using the SDL.SDL_ANYFORMAT flag
in the SDL_SetVideMode function.

Creating surfaces
Surfaces are an object representation of image data buffers. They play the main role in the
texture management process. Every image you load needs to be placed onto the surface
first. After this, you can use this surface to render your image onto the screen, store it into
graphical memory, or do some image manipulation.

Getting ready
Every surface consists of a pixel format description and binary data. The surface object
structure is shown in the following table:

Field names Description
flags This is the bit mask description of surface properties.
format This is the surface pixel format.
w This is the surface width in pixels.
h This is the surface height in pixels.
pitch This is the length of the surface scanline in bytes. It specifies how many bytes

are used to store a single line surface content and it's used mostly in surface
blitting operations. The pitch value is always dividable by 4 to optimize
surface processing speed.

pixels This is the pointer to pixel data in the form of userdata values.
clip_rect This is the clipping rectangle for the surface. This affects the destination area

that can be modified with blitting.
refcount This is the reference count, which is the internal value and is used primarily

when freeing a surface.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

56

All these fields are read-only except for the pixels field which can be used to indirectly
change the surface content.

The pixel format describes how many bits per pixel your image uses, how many color channels
are there, and so on. The following table shows you the structure of the pixel format in detail:

Field names Description
palette This is the palette structure. It's empty if the value of

BitPerPixel > 8.
BitsPerPixel This is the number of bits used to represent one pixel.

It's usually either 8, 16, 24, or 32.
BytesPerPixel This is the number of bytes used to represent one pixel.

It usually uses a number from 1 to 4.
Rloss, Gloss, Bloss, and
Aloss

This is the precision loss of each color component. It usually
presents a size of color channel in bits.

Rshift, Gshift, Bshift,
and Ashift

This is the binary left shift of each color component.

Rmask, Gmask, Bmask, and
Amask

This is the binary mask to retrieve each color component.

colorkey This is the transparent color identifier.
alpha This is the overall surface alpha value—transparency.

Usually, there is no need for you to set these values. However, they are important if you load
an image with the alpha channel.

How to do it…
You can create a new empty surface with the SDL.SDL_CreateRGBSurface function,
where its definition is as follows:

SDL_CreateRGBSurface(flags, width, height, depth, Rmask, Gmask,
Bmask, Amask)

The Flags parameter is a bitmask that specifies whether the surface is stored in the system
or the video memory. You can use these values:

Flag names Description
SDL.SDL_SWSURFACE Here, the surface will be stored in the system memory. The

pixel level access is faster, but blitting operations don't take
advantage of hardware acceleration.

SDL.SDL_HWSURFACE Here, the surface will be stored in the video memory. Blitting is
hardware accelerated.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

57

Flag names Description
SDL.SDL_SRCCOLORKEY Here, the surface will use the colorkey parameter from the

pixel format descriptor. This color will represent a transparent
color.

SDL.SDL_SRCALPHA Here, the surface will use the alpha value from the pixel format
descriptor to apply transparency on blitting. However, you don't
need this flag to load an image with the transparency channel!

It's completely safe to use flags with zero value as they will use SDL.SDL_SWSURFACE
by default.

The next parameters are the width and height of the image in pixels.

The last parameters are the color depth and bit masks for each color component. These are
fairly important as the incorrect bit masks will result in messed-up colors. Keep in mind that
most of the current computers use little endian bit encoding, which is also called endianness.
This affects the order of the color components in the surface memory. Unfortunately, PNG,
JPEG, and many other file formats use big endian encoding. As a result of this, each pixel
is stored with color components in the (A)BGR order and you have to convert it to RGB(A).
Fortunately, you can deal with this problem easily by setting the correct bit masks for each
color component.

The following image shows what happens when the image is loaded with an invalid pixel format:

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

58

Let's say you want to create an empty image surface of 16 x 16 pixels with a bit depth of
32-bit and an RGBA pixel format. You would create such a surface with the following code:

local surface = SDL.SDL_CreateRGBSurface(0, 16, 16, 32,
0x000000FF, 0x0000FF00, 0x00FF0000, 0xFF000000)

If you have used a big endian computer, you would use the code with swapped bit masks:

local surface = SDL.SDL_CreateRGBSurface(0, 16, 16, 32,
0xFF000000, 0x00FF0000, 0x0000FF00, 0x000000FF)

Surface objects are not freed automatically. Be sure to free up all unused surface objects
with the SDL.SDL_FreeSurface function:

SDL.SDL_FreeSurface(surface)

How it works…
The libSDL library always tries to reserve enough memory for the whole image in uncompressed
form. So, even if your PNG image file has a few kB in size, it must be decompressed before
storing it into memory. You can compute memory consumption in bytes with this simple
equation:

needed_memory = width * height * color_components_count

The situation may change with the use of memory alignment, where each pixel takes 4 bytes
(32 bits), even if your image uses a 24-bit color depth. You can check this with the bytes per
pixel field in the pixel format of the surface.

You can access the pixel format information with the format field:

local pixelFormat = surface.format

Note that the pixel format information is stored as a userdata with metatable and internally
it's just another object.

If you need to change the pixel format of the existing surface, use the SDL.SDL_
ConvertSurface function, which creates a new surface. The existing pixel data will be
correctly converted into the new pixel format. This function has this formal specification:

SDL_ConvertSurface(source_surface, new_pixel_format, flags)

There's more…
You can always convert the existing surface into the current display pixel format with the SDL.
SDL_DisplayFormat(surface) function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

59

There are some occasions where you need to change the pixel format of the surface in a
very specific way. A typical example of such a situation is that you have an ARGB surface and
you need to transfer this surface into graphic card memory with OpenGL. However, OpenGL
supports the RGBA pixel format, which is the closest one. Of course, you can use the SDL.
SDL_ConvertSurface function but you need a pixel format object that describes the
RGBA format. To do this, you can create a garbage collector-friendly version with the SDL.
SDL_PixelFormat_local() function. Be wary that every value in the object must be set
because the object itself is not initialized. Otherwise, you can easily cause a memory access
violation or segmentation fault. The following example shows how to create a 32-bit RGBA
pixel format object:

local pf = SDL.SDL_PixelFormat_local()
local bpp = 32
pf.BitsPerPixel = bpp
pf.BytesPerPixel = math.ceil(bpp/8)
pf.Rmask = 0x000000FF
pf.Gmask = 0x0000FF00
pf.Bmask = 0x00FF0000
pf.Amask = 0xFF000000
pf.Rloss = 0
pf.Gloss = 0
pf.Bloss = 0
pf.Aloss = 0
pf.Rshift = 0
pf.Gshift = 0
pf.Bshift = 0
pf.Ashift = 0
pf.colorkey = 0
pf.alpha = 255
pf.palette = nil

There's another thing with the current stable version of Lua 5.2. This version allows you to
define a custom garbage collection routine for a regular table. This routine can be used to
define automatic surface destruction when the surface object is not used anymore.

Take an example of a situation when you create an interface within your application to
manage textures for each game level. Textures can take a lot of memory space. When you
change the game level, you'll most probably want to use a different set of textures. So, in the
end, you'll need to keep a track of all the textures you use. Before loading a new game level,
you can free up all the previously used textures and load the new ones. However, there will
almost certainly be textures that you use over and over, for example, font textures and decals.
You can achieve proper surface tracking with weak tables, where you only keep a note that the
surface is being used and it should be freed when it's not needed anymore.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

60

The weak table is a special type of a Lua table, which may contain references to other objects.
Additionally, these references aren't considered by the garbage collector, and therefore, it allows
the object to be freed even if there's a reference to it in a weak table.

The problem is that you have to implement your own mechanism to manage that and often,
it's not done correctly. You'll most likely end up with memory leaks. You can solve this with a
Lua table extended with metatable, which will contain the garbage collection routine in the
form of a metamethod stored with the __gc key.

The problem is that Lua 5.1 can use the __gc metamethod only on userdata objects with a
metatable. The newer versions of the Lua language incorporate the so-called finalizers, which
means the __gc metamethod can be called on empty tables when they are garbage collected.

There's a workaround for Lua 5.1 to apply this garbage collection mechanism even on a
regular table. The following lines will define the table.proxy function that will add the
capability to use the __gc metamethod in the Lua 5.1 interpreter:

table.proxy = function(t)
 -- newproxy is not available in Lua 5.2+ !!!
 if type(newproxy)=='function' then
 assert(type(t) == 'table', '1st argument should be a table')

 -- create a new proxy object
 local p = newproxy(true)
 local p_mt = getmetatable(p)

 -- set GC meta-method for proxy object
 p_mt.__gc = function()
 local mt = getmetatable(t)
 local gc_fn = mt.__gc
 if type(gc_fn)=='function' then
 gc_fn(t)
 end
 end

 -- store proxy object in a metatable
 local mt = getmetatable(t) or {}; mt.__proxy = p;
 setmetatable(t, mt)
 end
end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

61

With the garbage collection routine in tables, you can simply define that, if the object (regular
table) is collected, the Lua interpreter will call your custom garbage collection routine, which
will correctly free up the memory space used by the object.

The following example shows such a design on the surface object:

local surface = function(width, height, bpp, rmask, gmask, bmask,
amask)
 local obj = {}
 local raw = assert(SDL.SDL_CreateRGBSurface(0, width, height,
 bpp, rmask, gmask, bmask, amask))
 local mt = {
 __gc = function()
 SDL.SDL_FreeSurface(raw)
 end,
 }
 obj.blit = function(destination, srcRect, destRect)
 ...
 end
 setmetatable(obj, mt)
 table.proxy(obj)
 return obj
end

In this construction, the surface function will return a regular table, which is in fact an
interface to the surface object with one blit method. This function will create a closure
upon calling and keeps the raw surface object hidden within the implementation. The mt
table contains the __gc metamethod definition, where the function uses an upvalue raw
value that contains the surface object. This raw value is used to delete the surface object
and to free up the unused memory space. The beauty of this is that object deletion is done
automatically when the Lua object is no longer used and it's collected.

Surfaces manipulation
The basic surface manipulation usually consists of filling the part or whole surface with
color, which can be in fact clearing the surface, and copying the surface content into another
surface. As you already know, the surface can also represent the screen content. With these
two groups of operations you can do almost anything.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

62

Getting ready
In this recipe, you'll be working with routines that require a definition of a rectangular area
over which the operation will occur. The libSDL library uses its own SDL_Rect object to define
such a rectangular area. You can create this object either with SDL.SDL_Rect_new or SDL.
SDL_Rect_local. The second one is preferred because it contains an automatic garbage
collection routine, so you don't have to explicitly call the SDL.SDL_Rect_delete function
to delete the object. The only downside of this is that you can't set the position nor the size
of rectangle in the constructor. This means that you have to set all the parameters after the
SDL_Rect object is created. The following code shows this in detail:

local rectangle = SDL.SDL_Rect_local()
rectangle.x = 16
rectangle.y = 32
rectangle.w = 64
rectangle.h = 64

This example contains an SDL_Rect object, where the x and y fields represent the
position of the upper-left corner of the rectangle; the w and h fields are the width and
height of the rectangle.

LibSDL usually allows you to use NULL (nil) value instead of the SDL_Rect object if you
need to proceed with the operation on the entire surface. You will find such use cases in
the SDL_FillRect or SDL_BlitSurface functions.

How to do it…
Filling a surface with color is done with the SDL.SDL_FillRect function. The function
specification looks like this:

SDL_FillRect(surface, rectangle, color)

The Surface parameter defines the surface object that you want to fill with color. You can
fill the whole surface or just a part of it. The last parameter, color, defines what color would
be used to fill your surface. You have to be careful to use the SDL.SDL_MapRGBA function
to get the correct color value because its value is dependent on the surface pixel format.
This function has the following specification:

SDL_MapRGBA(pixel_format_descriptor, red, green, blue, alpha)

You can get the pixel format descriptor of the surface with the following code:

surface.format

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

63

Red, green, blue, and alpha parameters accept integer values in the range, 0-255. This
function returns a 32-bit value of the selected color. Of course, you can store these values
in a table, so you don't have to recompute them every time. Just keep in mind that these
values can mean different colors on the surface with different pixel formats.

The following example shows how to fill the rectangular area of an empty surface with a
red color. The surface has a size of 64 x 64 pixels and uses the RGBA pixel format with the
32-bit color depth:

local color = SDL.SDL_MapRGBA(surface.format, 255, 0, 0, 255)
local rect = SDL.SDL_Rect_local()
rect.x, rect.y, rect.w, rect.h = 16, 16, 32, 32
SDL.SDL_FillRect(surface, rect, color)

The result of this can be seen in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

64

Surface content copying is often called blitting. Many graphical APIs use this term to express
the operation of putting data into another place. The libSDL library offers a SDL.SDL_
BlitSurface function to blit surface content into another. This function is quite versatile as
it can do automatic conversion of surface data to destination pixel format. Another thing to
mention is that you can select what portion of the source surface should be copied into part
of the destination surface. The formal specification of this function looks like this:

SDL_BlitSurface(source_surface, source_rectangle,
destination_surface, destination_rectangle)

Note that the destination surface can be the screen surface object. Such blitting will draw the
content of the source surface onto the screen.

In case you only need to convert the surface into another pixel format, you can use the
SDL.SDL_ConvertSurface function. This function has the following specification:

SDL_ConvertSurface(source_surface, target_pixelformat, flags)

You can obtain the pixel format object from another valid surface or you can create one
yourself with SDL.SDL_PixelFormat_local().

The flags parameter accepts the same values as the SDL_CreateRGBSurface function.

How it works…
LibSDL uses an internal mechanism to determine whether the conversion is necessary.
Blitting between surfaces of the same pixel formats is called internally fastblit. It's much
faster because it accompanies only the memcpy function to make a copy of the memory
region. Optionally, libSDL offers SSE optimization for the blitting function to provide even
faster drawing.

Blitting between two regions of the graphical memory is considered to be the fastest
method because it's done entirely on the GPU. However, due to the limited availability of
hardware acceleration of 2D operations, it's not used very often. Note that this is a different
kind of acceleration to the one offered by modern GPUs. Most of the consumer-level graphic
cards nowadays are oriented towards the provision of accelerated 3D operations (OpenGL,
Direct X, and so on) and hardware video decoding.

Using colors
In games, you might have seen many kinds of graphical effects, such as screen desaturation,
HDR image enhancing, or hue shifting. All these effects use the principle of converting between
color models to another color representation, which allows you to easily change certain aspects
of drawing things on screen. This recipe will try to explain how to convert between color models
and how to use them in further image processing.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

65

Usually, colors are defined by three color components—red, green, and blue. This color
representation is also known as RGB. There are more methods to define a color. These
methods are also called color models. They describe that each one is used in different
situations. For example, the RGB color model uses additive color mixing. This is because
computer displays use these three colored lights to mix the final color you can see on the
screen. Printers use the CMYK color model, which uses subtractive color mixing. This is
based on mixing colors like when you are painting on paper. Color mixing on paper behaves
differently to mixing colored lights. However, there are many more color models. HSL or
HSV color models can be used to a color in terms of hue, saturation, and lightness, or
a value. These color models allow you to easily change the color saturation or any other
color parameter.

Note that graphic cards use internally RGB color models and it's commonly extended with
alpha channels to define the transparency. However, in the end, the result in the GPU
framebuffer always uses RGB triplets for colors.

Another point to mention is that color conversion is exact between the RGB and HSL color
models, whereas conversion between RGB and CMYK is not so precise. This is because HSL
is just another color representation developed for computer graphics applications to make
color handling simpler. In contrast to that, the CMYK color model is bound to color mixing
processes in printers. While colors on computer display produce the light, colors on a sheet
of paper adjust the reflected light to the perceiver. The color representation on a paper is
dependent on the paper material, surrounding light and a halftone rasterizing method.
These facts can help you with the choice of color model for your situation.

Getting ready
This recipe will show you how to convert between the three most commonly used color
models. The methods that are described here can be used inside your application, for
example, for color picking and as a part of your fragment shader code, where you can
adjust color rendering on screen—color desaturation.

How to do it…
The most common color models used in games are RGB, HSL, and CMYK. The first part of this
recipe will deal with conversions between the RGB and HSL color models. The second part will
cover conversions between RGB and CMYK color models. RGB color models play a central role
as they are used internally in graphic cards:

1. Converting a color from HSL to RGB;
function hsl2rgb(h, s, l)
 local r, g, b
 if s == 0 then
 r,g,b = l,l,l -- achromatic

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

66

 else
 local p, q
 local function hue2rgb(t)
 t = math.fmod(t, 1)
 if t < 1/6 then
 return p + (q - p) * 6 * t
 elseif t < 1/2 then
 return q
 elseif t < 2/3 then
 return p + (q - p) * (2/3 - t) * 6
 else
 return p
 end
 end
 if l < 0.5 then
 q = l * (1 + s)
 else
 q = l + s - l * s
 end
 p = 2 * l - q
 r = hue2rgb(h + 1/3)
 g = hue2rgb(h)
 b = hue2rgb(h - 1/3)
 end
 return r, g, b
end

2. Converting a color from RGB to HSL:
function rgb2hsl(r, g, b)
 local max = math.max(r, g, b)
 local min = math.min(r, g, b)
 local h,s, l = (max + min) / 2 -- luminance
 s, l = h, h
 if max == min then
 h,s = 0,0 -- achromatic
 else
 local d = max - min;
 if l > 0.5 then
 s = d / (2 - max - min)
 else
 s = d / (max + min)
 end
 if max == r then

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

67

 if g < b then
 h = (g - b) / d + 6
 else
 h = (g - b) / d + 0
 end
 elseif max == g then
 h = (b - r) / d + 2
 elseif max == b then
 h = (r - g) / d + 4
 end
 h = h / 6
 end
 return h, s, l
end

3. Converting a color from CMYK to RGB:
function cmyk2rgb(c, m, y, k)
 local r, g, b
 r = 1.0 - (c * (1.0 - k) + k)
 g = 1.0 - (m * (1.0 - k) + k)
 b = 1.0 - (y * (1.0 - k) + k)
 return r, g, b
end

4. Converting a color from RGB to CMYK:
function rgb2cmyk(r, g, b)
 local c, m, y, k
 if (r == 0) and (g == 0) and (b == 0) then
 c, m, y, k = 0, 0, 0, 1
 elseif (r == 1) and (g == 1) and (b == 1) then
 c, m, y, k = 0, 0, 0, 0
 else
 c = 1.0 - r
 m = 1.0 - g
 y = 1.0 - b
 local minK = math.min(r, g, b)
 c = (c - minK) / (1.0 - minK)
 m = (m - minK) / (1.0 - minK)
 y = (y - minK) / (1.0 - minK)
 k = minK
 end
 return c, y, m, k
end

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

68

How it works…
In the case of converting the HSL color model into RGB, the algorithm first tries to determine
whether the color is achromatic. This means saturation is 0 and so there's no point in computing
hue. Such computation is quickly over because the resulting RGB color is computed only with
lightness. If the saturation is greater than zero, the hue2rgb function is used to determine a
linear combination of the R, G, and B color channels. The following figure shows how the color
channels are combined:

The P and Q quotients are dependent on lightness and saturation and they form the final values
of the R, G and B channels.

Conversion from RGB to the HSL color models starts with finding what color channel has
the greatest (maximum) and lowest (minimum) value. The next thing is the lightness value,
which you can derive by getting the mean value or the minimum and maximum values. If the
minimum and maximum values are equal, it means that the color is achromatic—zero color
saturation. Otherwise, there is a saturation which you can get by using the following formula:

if lightness <= 0.5 then saturation := (max-min)/(max+min)
if lightness > 0.5 then saturation := (max-min)/(2-max-min)

Now you're left with computing the hue. You can refer to the previous figure to see the relation
between the color channel with the maximum value and the position on the hue palette. The
color spectrum can be divided into six parts, where the maximum channels are paired next
to each other, except the red channel. If the red color is the maximum, you'll be looking either
on the left or on the right side of the spectrum. You can get a finer position by getting the
parameter of the linear combination of the other channels. The generalized formula will look
like this:

h = N + (B - A)/(max - min)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

69

Here, N would be the part of sextant, B would be the rising channel on the right, and A would
be the falling channel on the left. The value of the finer position is in the range of (-1,1). The
final value of the hue can be obtained by dividing the hue by 6, which will map the value into
the range of (0,1).

CMYK to RGB color model conversion uses a set of formulas, which are as follows:

 f R = (1-C)*(1-K)

 f G = (1-M)*(1-K)

 f B = (1-Y)*(1-K)

Note that CMYK uses subtractive color mixing. Therefore, the red color is mixed from the
negative color of cyan, the green color is mixed from the negative color of magenta, and
the blue color is mixed from the negative color of yellow.

The RGB to CMYK formula is a bit more complicated and is listed as follows:

 f K = 1 - Max(R, G, B)

 f C = (1 - R - K)/(1 - K)

 f M = (1 - G - K)/(1 - K)

 f Y = (1 - B - K)/(1 - K)

All color models mentioned in this recipe work with the channel range of (0,1).

Cursor manipulation
This recipe incorporates the basic principles of mouse cursor manipulation such as showing
and hiding the mouse cursor.

Be aware that libSDL offers fairly limited support for mouse cursor images. These are
constrained by using 2 bits for each pixel on an image (1 bit for data and 1 bit for mask)
and by image width, which must be a multiple of 8 bits.

There's a much better way to display a mouse cursor. You can use mouse movement events
to get the current mouse cursor position and draw an image on the resulting position. This
gives you much more flexibility because you can use the cursor image with more than 1 bit
for pixels, set up mouse movement smoothing, acceleration, and so on.

This recipe will show you how to implement a custom mouse cursor. This might be especially
useful in a case where you need to emphasize an item location under the cursor.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

70

Getting ready
LibSDL provides its own cursor drawing routine, which is turned on by default. If you want to
use your own cursor image, you need to turn the default cursor off first.

This recipe will need you to include the GL module, which contains the most important
OpenGL functions. This module is defined by the gl namespace.

This recipe assumes that you didn't change viewing frustum scaling. This means that screen
coordinates use a range (-1,1) in each direction and the point at (0,0) position is the center
of the screen. It's also assumed that you have enabled GL_TEXTURE_2D texturing target.
The cursor texture should be bound to the current texturing target:

gl.Enable(GL_TEXTURE_2D)
gl.BindTexture(GL_TEXTURE_2D, cursor_texture_identifier)

How to do it…
First, you need to turn off the default cursor with the SDL.SDL_ShowCursor function:

SDL.SDL_ShowCursor(0)

Alternatively, you can turn the default cursor on with the following code:

SDL.SDL_ShowCursor(1)

Now, you need to get a source of the mouse cursor position. It's preferred to use events for
obtaining the mouse cursor position, but you can also use an SDL.SDL_GetMouseState
function as follows; it returns the state of mouse buttons and a cursor position:

local buttons, x, y = SDL.SDL_GetMouseState()

This position is relative to the position of the application window and you can safely use it to
position the surface on the screen.

Now, you can draw the cursor image on the screen with each screen update. Let's assume
that window_width contains the width of the current application's window and window_
height contains the height of the window. The Mouse variable is a Lua table with both
mouse cursor coordinates x and y. The mouse cursor size is defined by two variables,
c_w and c_h.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

71

Be aware that OpenGL uses a different Cartesian coordinate system by default than you are
used to. The following figure shows how the coordinates are oriented:

All the coordinates are limited to the range (-1,1), where 0 corresponds to the center. That's
why you'll need to divide all the input coordinates with window width and height respectively.

First, you need to define the cursor picture size:

local c_width, c_height = 32/window_width, 32/window_height

Next, you'll need to transform mouse cursor coordinates into a range of (-1, 1) in both
directions:

local x = (mouse.x/window_width)*2-1
local y = -((mouse.y/window_height)*2-1)-c_height

Notice, that the y coordinate is multiplied by -1. That's because (-1,-1) in OpenGL corresponds
to the lower-left corner of the window.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

72

Now, you can draw a simple textured rectangle on the screen with OpenGL functions as follows:

gl.Begin(gl_enum.GL_QUADS)
 gl.Color4f(1,1,1,1)
 gl.TexCoord2f(0, 0)
 gl.Vertex2f(x, y)
 gl.TexCoord2f(1, 0)
 gl.Vertex2f(x+c_width, y)
 gl.TexCoord2f(1, 1)
 gl.Vertex2f(x+c_width, y+c_height)
 gl.TexCoord2f(0, 1)
 gl.Vertex2f(x, y+c_height)
gl.End()

How it works…
Are you still able to detect the mouse movement and position even if you hide the mouse
cursor. The burden of cursor rendering becomes your responsibility.

Cursor rendering should be processed on every time frame so that the user can attain
the best interactivity with your application. Cursor is usually drawn as the closest polygon
to the viewer along with GUI elements. However, you're not limited to this traditional cursor
rendering. For example, you can make the cursor polygon a part of your game. This means
you can apply physics, collisions, feedback, and so on.

See also
 f The Loading images with SDL_image recipe

 f The Creating textures recipe

Initializing the graphics mode with OpenGL
The OpenGL library allows you to draw any 2D or 3D graphical scene on the computer screen.
Its advantage is that many current graphic cards offer acceleration features. It's much faster
than drawing to surfaces that are stored in the system memory.

This recipe introduces the LuaGL module, which allows you to call OpenGL functions from Lua.
However, not every function is available on all systems. Therefore, the LuaGL module uses the
features of the GLEW library, which does all the dynamic function binding and you can detect
whether certain OpenGL features are available.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

73

Getting ready
Lua itself doesn't offer direct access to the OpenGL functions. To use any of the OpenGL
functions, you'll need the OpenGL wrapper library that provides an interface to those
functions. Fortunately, there's one available on GitHub repository for free. You can
download it with the git command:

git clone --recursive https://github.com/soulik/luagl.git

You'll need the recent version of the CMake 3.1 tool as well to prepare the project files.
These can be prepared with the following commands executed in the luagl directory:

mkdir luagl/build
cd luagl/build
cmake ..

After that, you'll need to compile it to binary form with the C++ compiler. The resulting binary
library will be present in the build/bin directory and it will be called luagl.dll or luagl.
so (on Unix-based systems).

How to do it…
First of all, you'll need to set up the OpenGL attributes before creating a window to set
the internal pixel format, which will be used in your graphic card. You can use the SDL_GL_
SetAttribute function provided by libSDL. The minimal setup will look like the following code:

SDL.SDL_GL_SetAttribute(SDL.SDL_GL_RED_SIZE, 8)
SDL.SDL_GL_SetAttribute(SDL.SDL_GL_GREEN_SIZE, 8)
SDL.SDL_GL_SetAttribute(SDL.SDL_GL_BLUE_SIZE, 8)
SDL.SDL_GL_SetAttribute(SDL.SDL_GL_ALPHA_SIZE, 8)
SDL.SDL_GL_SetAttribute(SDL.SDL_GL_DEPTH_SIZE, 16)
SDL.SDL_GL_SetAttribute(SDL.SDL_GL_DOUBLEBUFFER, 1)

This will force OpenGL to use 8 bits for each color component, 16 bits for the depth buffer and
turns on double buffering.

There are also more attributes you can use:

Attribute names Default values Description
SDL_GL_RED_SIZE 3 This is the minimum number of bits for the

red channel of the color buffer
SDL_GL_GREEN_SIZE 3 This is the minimum number of bits for the

green channel of the color buffer
SDL_GL_BLUE_SIZE 2 This is the minimum number of bits for the

blue channel of the color buffer

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

74

Attribute names Default values Description
SDL_GL_ALPHA_SIZE 0 This is the minimum number of bits for the

alpha channel of the color buffer
SDL_GL_BUFFER_SIZE 0 This is the minimum number of bits for the

frame buffer
SDL_GL_
DOUBLEBUFFER

1 This enables double buffering

SDL_GL_DEPTH_SIZE 16 This is the minimum number of bits for the
depth buffer element

SDL_GL_STENCIL_
SIZE

0 This is the minimum number of bits for the
stencil buffer element

SDL_GL_ACCUM_RED_
SIZE

0 This is the minimum number of bits for the
red channel of the accumulation buffer

SDL_GL_ACCUM_
GREEN_SIZE

0 This is the minimum number of bits for the
green channel of the accumulation buffer

SDL_GL_ACCUM_BLUE_
SIZE

0 This is the minimum number of bits for the
blue channel of the accumulation buffer

SDL_GL_ACCUM_
ALPHA_SIZE

0 This is the minimum number of bits for the
alpha channel of the accumulation buffer

SDL_GL_STEREO 0 This enables stereo 3D output and requires
libSDL 2+

SDL_GL_
MULTISAMPLEBUFFERS

0 This is the number of buffers for multisample
antialiasing and requires libSDL 2+

SDL_GL_
MULTISAMPLESAMPLES

0 This is the number of samples used for
antialiasing and requires libSDL 2+

SDL_GL_
ACCELERATED_VISUAL

1 This forces hardware acceleration for
OpenGL. 0 means software rendering; it
requires libSDL 2+

SDL_GL_CONTEXT_
PROFILE_MASK

0 The types of profile for OpenGL context are
the Core profile, Compatibility profile, and
ES profile; these require libSDL 2+

You can regard these attributes as hints for libSDL to set up OpenGL.

With double buffering enabled, you have to swap buffers on each screen update. Otherwise,
you won't see the results on screen as they'll remain in the frame buffer only. To swap the
buffer, you'll need to use the SDL.SDL_GL_SwapBuffers function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

75

If you're developing a game for mobile devices, you might want to use libSDL 2, where you can
also set the required OpenGL profile to the SDL.SDL_GL_CONTEXT_PROFILE_ES value.

SDL.SDL_GL_SetAttribute(SDL.SDL_GL_CONTEXT_PROFILE_MASK,
SDL.SDL_GL_CONTEXT_PROFILE_ES)

For specific information regarding the OpenGL ES profile, you can refer to the Kronos
reference pages at http://www.khronos.org/opengles/sdk/docs/man/.

After this initialization phase, you can set up the video mode. The following example creates
a window with a size of 800 x 600 pixels with a 32-bit color depth and OpenGL support:

SDL.SDL_SetVideoMode(800, 600, 32, SDL.SDL_OPENGL)

To use fullscreen mode, you'll need to use the binary OR operator to add the SDL.SDL_
FULLSCREEN flag into the last parameter. Fortunately, LuaSDL provides binary operators
which are not a part of the Lua language until version 5.2:

SDL.SDL_SetVideoMode(800, 600, 32, SDl.Or(SDL.SDL_OPENGL,
SDL.SDL_FULLSCREEN))

Note that switching between the fullscreen and windowed modes requires a new GL context.
This means you have to reload all data (this includes textures) into GPU memory again! That's
why many older games require such a long time to recover when toggling the fullscreen mode.
Modern games and libSDL 2 don't have this problem.

How it works…
Upon calling SDL.SDL_SetVideoMode with the OpenGL flag, libSDL automatically creates a
new OpenGL context and sets it as the current one. LibSDL does this because OpenGL context
creation and context selection is always platform dependent.

The OpenGL context represents an individual working environment and stores all the states
associated with the current instance of OpenGL. An application can use multiple OpenGL
contexts, for example, multithreaded application or multiple OpenGL windows with different
states in each one. Contexts can share certain information such as textures, buffer objects,
and GLSL objects. Frame buffers and vertex objects are not shareable.

Having a new OpenGL context also means that every state variable is reset to the default
values. This includes model-view, projection, texture, and color matrices. It is recommended
to set these matrices into appropriate values for your situation.

www.it-ebooks.info

http://www.khronos.org/opengles/sdk/docs/man/
http://www.it-ebooks.info/

Graphics – Common Methods

76

Getting OpenGL information
As you may already know, there are multiple versions of OpenGL. Each version offers a
standard set of functions while other functions may be marked as deprecated. What's more,
graphic card manufacturers try to extend these standard OpenGL functions with so-called
extensions. Some extensions are specific to graphic cards and have a prefix in their names.
Other ones have become standardized over time. For instance, an extension for vertex shader
programs is called ARB_vertex_program and it's provided by the OpenGL Architecture
Review Board. There is also a vendor-specific version of this extension called NV_vertex_
program provided by the NVidia company in their GPUs. Many extensions start with the
vendor-specific version, then they are reworked by the OpenGL ARB. In the final stage, they
may be incorporated into the core specification of OpenGL. There are other extensions with
names starting with GLX or WGL prefixes, which indicates that these extensions are specific
to certain operating systems. GLX is used in Unix-based systems and WGL is oriented towards
the Microsoft Windows operating system. To get the current list of known extensions, you can
visit https://www.opengl.org/registry/.

Getting ready
Before using the extensions, you'll need to check whether they are present in the current
system. You can query for their existence with the gl.Get function. This function is quite
versatile and can also be used to check the current OpenGL version, as well as the shading
language version. Its specification is as follows:

gl.Get(format, name)

The format parameter specifies the returning value type. The valid format specifiers are
shown in the following table:

Format specifiers Description
s(1) This returns a string
i(n) This returns an array of integer elements with the size of n items
f(n) This returns an array of float number elements with the size of n items
d(n) This returns an array of double number elements with the size of n items
b(n) This returns an array of Boolean elements with the size of n items

The list for available name values is quite comprehensive and differs with each OpenGL
version. You can always get the full list from the OpenGL reference manual page for the
glGet function, which you can find on the web page http://www.opengl.org/sdk/
docs/man/xhtml/glGet.xml.

However, this recipe will mention a few of the most used name parameters to get a basic
picture of the current system.

www.it-ebooks.info

https://www.opengl.org/registry/
http://www.opengl.org/sdk/docs/man/xhtml/glGet.xml
http://www.opengl.org/sdk/docs/man/xhtml/glGet.xml
http://www.it-ebooks.info/

Chapter 3

77

How to do it…
This recipe will show you how to obtain four of the most queried information from OpenGL.

Getting the OpenGL version
To get the OpenGL version, you'll need to call:

local version = gl.Get("s(1)", GL_VERSION)

This will return a string in one of these three forms:

 f A.B

 f A.B.C

 f OpenGL ES-DD A.B

Letter A represents a number of the major version. Letter B is the minor version number and
letter C stands for a release number.

The last form can be seen on OpenGL ES hardware (mobile devices), where the DD letters
represent the name of the profile. There are two profiles, which are as follows:

 f CM—Common profile

 f CL—Common Lite profile

Getting the graphic card vendor
You can get a graphic card vendor name with a call:

local vendor = gl.Get("s(1)", GL_VENDOR)

This will tell you if the graphic card is made by NVidia Corporation, AMD, Intel, or some
other company and tells you which vendor-specific extensions you are able to use on the
current system.

Getting the graphic card name
The name of current graphic card can be obtained with a call:

local renderer = gl.Get("s(1)", GL_RENDERER)

The renderer string contains the name of the graphic card but it often contains
other vendor-specific information. Its format is not standardized and is intended to
be human readable.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

78

Getting the extensions list
To get a list of all the supported extensions, you'll need to call:

local extensions = gl.Get("s(1)", GL_EXTENSIONS)

This will return the space delimited list of extension names, which you can process further into
the Lua table:

local extensions_list = {}
for extension in extensions:gmatch("([%w_]+)") do
 extensions_list[extension] = true
end

Now, you can easily determine whether the specific extension is present on the current
system. This is useful, for example, in determining whether there is support for shading
language or not.

However, there is the GLEW library to contain the extensions management in order.

How it works…
The Gl.Get function offers a powerful querying capability. It unifies the glGetBoolean,
glGetInteger, glGetFloat, glGetDouble, and glGetString functions into one.
The catch is that you'll need to know what data type is relevant to the parameter name.
Improper use can have unpredictable results, for example, an application crash. However,
most of the parameters use the numeric format.

Using OpenGL extensions with GLEW
and Lua

The GLEW library handles the correct mapping of the OpenGL function's entry points.
This way you won't have issues with calling nonexistent extension functions if that
extension is not available on the current system.

Getting ready
Support for the GLEW library is included in the OpenGL wrapper module called GL.
First, you need to include this library in the Lua environment with the following code:

local gl = require 'luagl'

The GLEW library is initialized with the call of the gl.InitGLEW function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

79

How to do it…
With the GLEW library initialized, you are able to query for the presence of the specified
extension or the OpenGL version. To do this, you'll need to call the gl.IsSupported
function. The only parameter of this function is an extension name or the GL_VERSION_
{version} string. This function also accepts more than one string parameter delimited
with space. It will return true if such a combination is supported on the current system,
otherwise it will return false.

Let's take a look at how to determine whether your system supports point sprites:

local point_sprites_supported = gl.IsSupported("GL_VERSION_1_4
GL_ARB_point_sprite")

This is how you would determine whether there's support for the vertex program:

local vertex_shader_supported =
gl.IsSupported("GL_ARB_vertex_shader")

Now, you can safely call functions that handle vertex shader programs.

How it works…
The GLEW library scans all the available extensions on initialization and makes appropriate
dynamic bindings to OpenGL extension-specific functions. Without GLEW, this was usually
done with the xxxGetProcAddress function that returns the function address. The three-
letter prefix xxx is replaced with either wgl or glx, depending on the platform.

Loading images with SDL_image
This recipe will show you how to load images from various file formats. SDL_image supports
the file formats BMP, CUR, GIF, ICO, JPG, LBM, PCX, PNG, PNM, TGA, TIF, XCF, XPM, and XV.
SDL_image is a part of the LuaSDL module.

All images are loaded into the new surface object. File formats with support for transparent
pixels (it's not the same as the alpha channel) would have set the color key attribute on
the surface.

Getting ready
The SDL_image library depends on third-party libraries to load JPEG and PNG files. Make sure
that you have the libjpeg, libpng, and zlib libraries installed. SDL_image doesn't require any
additional initialization. LuaSDL handles this internally.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

80

How to do it…
There are two ways of loading images:

 f Loading an image file directly to surface: This method uses the SDL.SDL_IMG_
Load function, where the only parameter is the image filename. If there is such a
file and it is accessible to the application, SDL.SDL_IMG_Load will try to guess
a file format by its extension. Finally, if everything goes well, it'll return a surface
object with the image. Otherwise, it'll return a nil value.

However, there's a downside because you can't detect whether the file doesn't
exist or is unreadable. Another thing is that if the extension doesn't correspond
with the file format, this function will fail.

The following code shows you how to use this function to load an image file:
local surface = assert(SDL.SDL_IMG_Load("image.png"))

 f Loading an image file with the use of RWop: RWop is a form of file I/O abstraction
offered by libSDL. This means libSDL offers you a way to load files regardless of the
platform. Another thing to mention is that you can easily load file content from the
text string or system memory.

The SDL_image library supports loading image files with the RWop file object and
also encourages users to use this way because it's much safer and you can also
detect specific problems when something fails during image loading.

To load an image file, you need to create the RWop file object with the SDL.SDL_
RWFromFile function. The following example shows you how to do this:
local image_file = assert(SDL.SDL_RWFromFile("image.png",
"rb"))

The first parameter is the file path and the second is a string representing the mode to
be used for opening the file. The mode is usually rb, which means that you are using the
file for reading binary data. After this step, you can load an image from the RWop object
provided with the SDL.IMG_Load_RW or SDL.IMG_LoadTyped_RW function. While the
first function will always try to detect the image format, the second one accepts an image
format specification. Both these functions use the second parameter to determine whether
the submitted RWop object can be closed automatically. This is especially useful if you don't
plan to read that file again. These functions will return the surface object with the image upon
success. The image type can specified by one of these strings in uppercase BMP, CUR, GIF,
ICO, JPG, LBM, PCX, PNG, PNM, TGA, TIF, XCF, XPM, and XV.

The following example shows how to use these functions to load the image from the
RWop object:

local image_auto = assert(SDL.IMG_Load_RW(image_file, 1))
local image_png = assert(SDL.IMG_LoadTyped_RW(image_file, 1,
"PNG"))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

81

How it works…
Even if you choose to load the image file with the SDL.SDL_IMG_Load function, it uses
the RWop object internally. If an error occurs, you can rely only on the SDL.SDL_GetError
function to get a better view on what went wrong.

The resulting image will be stored into a new surface object with the corresponding pixel
format. Always check for the pixel format of the resulting surface to avoid confusion later.
A typical example can be a PNG file, which supports 1, 2, 4, 8, 16, 24, and 32-bit color
depth with or without palette, grayscale with the alpha channel or even 64-bit color depth.

Creating textures
OpenGL offers the use of 1D, 2D, and 3D textures. 2D textures are the most commonly used,
even in 3D games. Support for 3D textures was introduced with OpenGL 1.2. A 3D texture can
be thought as a layered 2D texture. 1D textures can be used in situations where the texture
doesn't change along one dimension, for example, a rainbow.

Getting ready
OpenGL, by default, doesn't use any textures. All polygons are rendered with solid color,
defined by colors on the vertices. This method of rendering is called Flat shading. Optionally,
these vertex colors can be interpolated with so-called Smooth shading or Gouraud shading.
The difference between these two modes becomes apparent with vertex lighting as you can
see in the following figure:

To use textures, you'll need to toggle the texturing state with the gl.Enable function.
There are altogether three states for texturing—GL_TEXTURE_1D, GL_TEXTURE_2D, and
GL_TEXTURE_3D. Each one allows you to use a certain type of texture. You can also disable
texturing with the gl.Disable function. This might be desirable when drawing a wireframe
around an object.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

82

How to do it…
Texture creation consists of four steps:

1. Generating the texture object.

2. Binding the texture to a texture target.

3. Setting up texture parameters (optional, but recommended).

4. Uploading the desired content to a texture object.

First of all, you'll need to get a valid texture object. You can get it with the gl.GenTextures
function, which will return a Lua table with texture identifiers. This function has only one
parameter that specifies how many texture objects you want to create:

local textures = gl.GenTextures(1)
local texture_id = textures[1]

The preceding code extracts the texture object identifier in the second line. This identifier will
be used in later steps.

The next step is to decide what kind of texture you'll be using. There are three kinds of
textures to choose from—GL_TEXTURE_1D, GL_TEXTURE_2D, and GL_TEXTURE_3D.
This choice will affect the texturing target name in subsequent instructions.

With the texturing target name, you can bind the texture object to the current texturing unit
with the gl.BindTexture function. The first parameter of this function is the texture target
name and the second is the texture object identifier. The Lua code for this step might look
like this:

gl.BindTexture(GL_TEXTURE_2D, texture_id)

With the texture object bound, you can set up the texture parameter. This step isn't necessary,
but the default texture parameters can lead to unpredictable behavior and bad texture quality.
Therefore, you should use the gl.TexParameter function. Actually, there are two versions of
this function. The first one is called gl.TexParameteri, which only accepts integer values.
Then, there is the second gl.TextParameter function that accepts the float number. With
this texture parameter setting, you can set up texture wrapping/tiling and texture filtering.
The example of texture parameters' setting is shown as follows:

gl.TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
GL_CLAMP_TO_EDGE)
gl.TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
GL_CLAMP_TO_EDGE)
gl.TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)
gl.TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

83

This will set the texture to wrap on both dimensions, which are specified by the s and t
coordinates. The s coordinate is usually the horizontal and the t coordinate is regarded as
vertical. There is also an r coordinate which is used on 3D textures as the depth coordinate.
The other two parameters, GL_TEXTURE_MIN_FILTER and GL_TEXTURE_MAG_FILTER,
correspond to the texture filtering method used on texture minifying and texture magnifying. The
minifying filter is used when the surface area is greater than the texture and the magnifying filter
is used on smaller surface areas. This is most notable on 3D scenes, where the textured object
might move towards or away from the viewing camera.

The following table contains the available values for these parameters:

Parameter names Parameter values Description
GL_TEXTURE_WRAP_x GL_CLAMP The coordinates are

clamped to range
(0,1).

GL_CLAMP_TO_BORDER The coordinates are
clamped to range

<

1
2N
−

,

11
2N

+

>, where N is the
texture size in the
specified direction.
The texture border is
taken into account.

GL_CLAMP_TO_EDGE The coordinates are
clamped to range

<

1
2N ,

11
2N

−

>, where N is the
texture size in the
specified direction.
The texture border is
taken into account.

GL_REPEAT The texture is tiled by
omitting the integer
part of the texture
coordinate.

GL_MIRRORED_REPEAT The texture is tiled
with mirroring used
on every second
repetition.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

84

Parameter names Parameter values Description
GL_TEXTURE_MIN_
FILTER

GL_NEAREST This returns the
nearest texture
element—texel.

GL_LINEAR This is the linear
interpolation that is
used between texels.

GL_NEAREST_MIPMAP_
NEAREST

This uses the nearest
texel in combination
with mipmapping,
where the mipmap
is selected by the
nearest selection
criteria.

GL_LINEAR_MIPMAP_
NEAREST

This uses linear
interpolation
on texels with
mipmapping.
Mipmap is selected
by the nearest
selection criteria.

GL_NEAREST_MIPMAP_
LINEAR

This uses the
nearest texel with
mipmapping. The
resulting mipmap is
a linear combination
of the two closest
mipmaps.

GL_LINEAR_MIPMAP_
LINEAR

This uses linear
interpolation on texel
with mipmapping.
The resulting
mipmap is a linear
combination of
the two closest
mipmaps.

GL_TEXTURE_MAG_
FILTER

GL_NEAREST This returns the
nearest texel.

GL_LINEAR This is the linear
interpolation that is
used between texels.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

85

The difference between the nearest and linear texture filtering can be seen in the following
two screenshots:

An example of the nearest texture filtering is as follows:

An example of the linear texture filtering is as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

86

These two methods suffer from the moiré pattern effect when used on the 3D scene when
the surface goes into distance. To resolve this issue, mipmapping can be used. Mipmapping
represents a method of down sampling the texture into smaller versions. The original texture
version is used when the surface is close enough. As the surface is farther, the smaller
versions of the texture are used. This can be regarded as a simple form of level of detail
automation. Fortunately, graphic cards can generate mipmaps automatically if you choose
mipmap filtering. The following figure shows the scene without mipmapping on the left and
with mipmapping on the right-hand side:

Finally, you can set the size, pixel format, and content of the texture. To do this, you need
to call either the gl.TexImage1D, gl.TexImage2D or gl.TexImage3D function. These
functions will submit the texture into the graphic card and reserve the corresponding space
in memory for the texture. This example shows the usage of the 2D version, which is the
most commonly used:

local texture_target = GL_TEXTURE_2D
local mipmap_level = 0
local internal_format = GL_RGBA
local width = surface.w
local height = surface.h
local border = 0
local format = GL_RGBA
local data = surface.pixels
gl.TexImage2D(texture_target, mipmap_levels, internal_format,
width, height, border, format, data)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

87

A texture target should correspond to the gl.TexImage version; although, a different texture
target can be used to convert, for example, from 1D image to 2D image. The mipmap-level
parameter will set the original level of detail for mipmapping. The internal format specifies how
the image will be stored in the graphical memory. The Border parameter creates a border
around the texture. The border color can be changed with the GL_TEXTURE_BORDER_COLOR
texture parameter. The Format parameter specifies the input image format. This is usually
GL_RGB or GL_RGBA if you're using an image with the alpha channel. The last parameter
contains the texture data. This parameter can also be 0, which means that nothing will be
stored in this texture. This is useful if you're going to generate the texture on-the-fly.

Note that the gl.TexImage function will reserve memory space with each call and it's not
suitable to update texture content!

The last thing to do is to free the texturing target with the following line of code:

gl.BindTexture(texture_target, 0)

This means that you won't be doing anything with the texture. The zero value is reserved for
the default texture in OpenGL. This technique is often called texture unbinding.

How it works…
OpenGL always uses numeric identification of the texture object. As a result of this, manipulation
with OpenGL objects is much simpler and portable.

Internally, OpenGL doesn't care if a certain portion of the memory is used by a 2D texture or
vertex buffer. This gives the programmer much flexibility and it's also very dangerous at the
same time. Therefore, always try to be consistent with the use of OpenGL objects.

The internal format parameter of gl.TexImage can be supplied with a number of channels
or with one of the many internal formats OpenGL supports. The most notable formats are
GL_RGB, GL_RGBA, GL_LUMINANCE, or GL_INTENSITY. The last two formats are often
used with grayscale images.

The data parameter refers to the pointer value which LuaGL interconnects with light user data
type. You can use this fact to easily supply an array of pixels or any other data.

There's more…
If you need to update the existing texture or just a portion of it, you can use the
gl.TexSubImage function. There are three versions of this function for each texture
target, which are gl.TexSubImage1D, gl.TexSubImage2D, and gl.TexSubImage3D.
These functions have the following specifications:

gl.TexSubImage1D(texture_target, mipmap_level, xoffset, width,
format, data)

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

88

gl.TexSubImage2D(texture_target, mipmap_level, xoffset, yoffset,
width, height, format, data)
gl.TexSubImage3D(texture_target, mipmap_level, xoffset, yoffset,
zoffset, width, height, depth, format, data)

With these functions, you can also set the offsets for each dimension. Notice that these
functions don't do any texture resizing. Image resizing must be done on a surface level
with the SDL.GFX_zoomSurface function. The function specification looks like this:

SDL.GFX_zoomSurface(surface, x_zoom_factor, y_zoom_factor,
antialiasing)

This function will return a new surface object. Zoom factors smaller than 1 will cause the
resulting image to be smaller in that direction and factors greater than 1 will stretch the
image. You can also turn on antialiasing, which makes the resulting image nicer. Antialiasing
is a method of reducing visible artefacts that usually occur during image resizing.

Functions such as gl.TexImage and gl.TexSubImage support a zero value in their data
parameter. This is a special case when OpenGL allows you to copy the texture into another.

The following screenshot shows the modification of the existing surface with
gl.TexSubImage2D:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

89

Loading and using bitmap fonts
Bitmap fonts are used mainly with monospaced fonts. Mainly, that's because you can evenly
divide bitmap into rectangular areas. Each of these areas contains one font character. Usually,
such font characters are sorted by ASCII coding or use a part of this coding. Once you have
loaded the image file with the bitmap font, you can easily access each font character finding
its rectangular coordinates. These coordinates can be stored in a Lua table which makes
character lookup fast. This kind of font is quite popular mainly because each font character has
equal spacing between characters, so you don't have to handle problems with font kerning.

The following example shows a bitmap font stored in an image:

This recipe will deal with single glyph rendering.

Getting ready
First you need to load the bitmap font into graphical memory. Let's assume that the
font_texture_id variable contains a valid texture object, which contains the font image.
The Font_texture_width and font_texture_height variables will contain the texture
size. The Glyph_width and glyph_height variables will contain the glyph size. Now, the
only information you'll need is the glyphs count in the single line in font texture. This will be
addressed in the glyphs_per_line variable.

The next thing you'll need is texturing support. You can turn it on with the following code:

gl.Enable(GL_TEXTURE_2D)

Finally, you can bind the font texture into the texture target:

gl.BindTexture(GL_TEXTURE_2D, font_texture_id)

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

90

How to do it…
Glyph rendering will be done in the GL_QUADS mode. This means each glyph will consist of
four vertices connected into one polygon. Each vertex will be described by its position and
texture coordinates. Texture coordinates play the most important role in this case. Texture
coordinates in OpenGL use the range (0,1), so you'll need to convert the position from your
font texture into this range. You can achieve this with the following equations:

local font_texture_x = glyph_width*(glyph_index%glyphs_per_line)
local font_texture_y =
glyph_height*math.floor(glyph_index/glyphs_per_line)
local texcoord_x0 = font_texture_x/font_texture_width
local texcoord_y0 = font_texture_y/font_texture_height
local texcoord_x1 = texcoord_x0 + glyph_width/font_texture_width
local texcoord_y1 = texcoord_y0 + glyph_height/font_texture_height

The Glyph_index variable is the glyph index with range (0,N), where N is the total number
of glyphs in the font image. Coordinates are used to describe corresponding corners as you
can see in the following figure:

You can store these coordinates into the Lua table to improve the game performance.

Now you can finally use this information to render font glyph on screen. Glyph will be drawn in
a rectangular polygon. The glyph position on the screen will be defined by two coordinates, x
and y. The size of the rectangular polygon will use two variables, w and h. The code to draw
this rectangle will look like this:

gl.Begin(GL_QUADS)
 gl.Color4f(1,1,1,1)
 gl.TexCoord2f(texcoord_x0, texcoord_y0)
 gl.Vertex2f(x, y)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

91

 gl.TexCoord2f(texcoord_x0, texcoord_y1)
 gl.Vertex2f(x, y+h)
 gl.TexCoord2f(texcoord_x1, texcoord_y1)
 gl.Vertex2f(x+w, y+h)
 gl.TexCoord2f(texcoord_x1, texcoord_y0)
 gl.Vertex2f(x+w, y)
gl.End()

Notice that there's only one definition of the polygon color. OpenGL accepts this by using
the same color on all vertices. Another thing to mention is that this font glyph renderer will
overwrite the whole rectangular area. This is because OpenGL doesn't know which parts
should be transparent yet. This issue can be resolved by using the OpenGL blending function.

How it works…
Bitmap fonts rely on regular positions of characters. This allows the designer to easily divide
the bitmap font with the grid and draw font bitmaps pixel by pixel. The main disadvantage
is that each letter must be of the same size. The larger letter often consists of 2, 4 or more
parts. In the old days of DOS, this technique was often used to generate graphics in text
mode, where the font in the system memory was regularly updated.

Font bitmaps often use white color because you can easily change that color with vertex
coloring with the gl.Color4f function.

Each font glyph is defined by four vertices. The vertex definition must follow the instructed
order—color, texcoord, and vertex or texcoord, color, and vertex.

There's more…
Glyph coordinate equations can be used with texture tiles too. In fact, the bitmap font is
a tileset!

See also
 f The Displaying the text recipe

 f The Using tiles and tilesets in the game recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

92

Loading and using TrueType fonts
TrueType fonts present a higher quality font rendering with the use of font outlines. Each font
character is called a glyph. TTF files contain not only outlines but also the glyph's information.
Glyph rendering from outlines is much slower than drawing bitmap font characters on screen.
This is mainly because these glyphs are being drawn on-the-run and font rendering may be
enhanced with antialiasing, which is costly. Because of this, applications using TrueType fonts
often cache font glyphs into textures.

The SDL_ttf library manages the loading of the TrueType font files. Everything you need to
use these files is included in the LuaSDL library.

This recipe will deal with loading font glyph in surface object, which you can store into the
texture or as a smaller part of the bigger texture—texture atlas.

Getting ready
First, you'll need a TTF file with font data. Let's assume that you already have one called
font.ttf. The next thing you'll need to know is what font size will be used. This is important
because the SDL_ttf library uses this size to set the proper glyph metrics on scalable fonts
and to choose the glyph set on nonscalable fonts.

The SDL_ttf library needs initialization before the first use. You can initialize it with the
function call:

SDL.TTF_Init()

The same goes for freeing the resources when you're about to quit the application. You should
always call SDL.TTF_Quit() at the end.

How to do it…
There are four versions of the function you can use to load the SDL.TTF_OpenFont, SDL.
TTF_OpenFontIndex, SDL.TTF_OpenFontRW, and SDL_TTF_OpenFontIndexRW font.
The first two use filename to load the font file. The other two use the RWop object. The
functions with the index keyword accept one additional parameter with the font face index.
Their specifications are as follows:

SDL.TTF_OpenFont(font_filename, font_size)
SDL.TTF_OpenFontIndex(font_filename, font_size, font_face_index)
SDL.TTF_OpenFont(rwop, free_src, font_size)
SDL.TTF_OpenFontIndex(rwop, free_src, font_size, font_face_index)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

93

The free_src parameter set to 1 will free the RWop object after successful load. In this case,
the recipe will be using the last version of the function.

First, you need to open the font file:

local rwop = assert(SDL.SDL_RWFromFile("font.ttf","rb"))

Now, you can read the content from the font file:

local font_size = 12
local face_index = 0
local font = assert(SDl.TTF_OpenFontIndexRW(rwop, 1, font_size,
face_index))

Now that you have successfully loaded the font file, you can read the font information and
glyphs. You'll need the font ascent and descent values to be able to set correct glyph positions.

The next step is to render a glyph. Each glyph contains information about glyph positioning.
Without it, the characters wouldn't sit on the baseline because each glyph usually has a different
size. To get the glyph positioning information, you need to call SDL.TTF_GlyphMetrics. Each
glyph has different metrics, so you need to obtain this information for each glyph. Fortunately,
you can store glyph metrics in the Lua table. You can use the method shown in the following
sample:

local glyph_metrics = {}
local text = "Hello world ABCDEF"
for i=1,#text do
 local code = string.byte(text, i)
 if not glyph_metrics[code] then
 local _, minx, maxx, miny, maxy, advance =
 SDL.TTF_GlyphMetrics(font, code)
 glyph_metrics[code] = {
 minx = minx,
 maxx = maxx,
 miny = miny,
 maxy = maxy,
 advance = advance,
 }
 end
end

Glyph metrics are useful if you are rendering texts that change often. If this is not the case,
you can safely use the internal SDL_ttf text renderer to produce surface objects that contain
whole text with characters at the right places.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

94

The final part of this recipe is text rendering. There are altogether 12 functions that provide
text rendering. Their description is shown in the following table:

Function names Description
SDL.TTF_RenderText_Solid This renders text in Latin1 encoding in solid mode
SDL.TTF_RenderUTF8_Solid This renders text in UTF8 encoding in solid mode
SDL.TTF_RenderUNICODE_Solid This renders text in UNICODE encoding in solid

mode
SDL.TTF_RenderGlyph_Solid This renders a UNICODE glyph in solid mode
SDL.TTF_RenderText_Shaded This renders text in Latin1 encoding in shaded mode
SDL.TTF_RenderUTF8_Shaded This renders text in UTF8 encoding in shaded mode
SDL.TTF_RenderUNICODE_
Shaded

This renders text in UNICODE encoding in shaded
mode

SDL.TTF_RenderGlyph_Shaded This renders a UNICODE glyph in shaded mode
SDL.TTF_RenderText_Blended This renders text in Latin1 encoding in blended

mode
SDL.TTF_RenderUTF8_Blended This renders text in UTF8 encoding in blended mode
SDL.TTF_RenderUNICODE_
Blended

This renders text in UNICODE encoding in blended
mode

SDL.TTF_RenderGlyph_Blended This renders a UNICODE glyph in blended mode

You must have noticed that there are three rendering modes:

 f Solid: While solid mode is the fastest, it uses an 8-bit surface with palette. Color
index 0 is used as a color key—transparent color. Color index 1 is used for text
foreground color. The text is not very smooth.

 f Shaded: This mode is slower but nicer. It uses an 8-bit surface. Color index 0 is
used as a background. Other colors are used as varying degrees of foreground
color. This text is not transparent and it's surrounded with a solid box filled with
background color.

 f Blended: This mode is the slowest. It uses a 32-bit surface with the alpha channel.
What's more, the text is antialiased.

You should always use the blended mode with OpenGL. Not only does the text look better,
but the process of uploading the texture into the graphic card memory is much easier.

You can draw a single character with any of the SDL.TTF_RenderGlyph_xxx functions.
The following example will be using the blended mode:

local color = SDL.SDL_Color_local()
color.r,color.g,color.b = 255,255,255

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

95

local glyph_surface =
assert(SDL.TTF_RenderGlyph_Blended(font, string.byte("A",1),
color))

You can blit glyph_surface directly to the screen surface object or transfer it into the OpenGL
texture. However, be sure to check the pixel format of the glyph_surface object! The color
channel mask can be quite different from what the OpenGL function gl.TexImage expects.
The order of the color channels in glyph_surface must match the internal texture format!
Otherwise, you can expect incomplete texture, invalid texture colors or even segmentation
faults (crashes).

Don't forget to call SDL.TTF_CloseFont to free the font object:

SDL.TTF_CloseFont(font)

How it works…
Font glyph uses metrics information to maintain the correct glyph placement. A summary of
these metrics can be found in the following figure:

The font ascent and descent values can help you with the vertical positioning of characters.
Ascent is the distance from the top of the font to the baseline. Descent is the distance from
the baseline to the bottom of the font. You can get these two parameters with the SDL.TTF_
FontAscent(font) and SDL.TTF_FontDescent(font) functions.

See also
 f The Displaying the text recipe

 f The Creating texture atlas with the rover design pattern recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

96

Displaying the text
Text rendering if often the base part of any graphical engine. The text rendering engine can be
divided into two groups:

 f The bitmap font rendering engine

 f The TrueType font rendering engine

The main difference is that bitmap fonts are usually proportional and glyph placement is quite
easy as each glyph uses the same spacing and all glyphs use the texture of the same size. On
the other hand, TrueType font rendering is more complex as it uses glyphs of different sizes.
Each glyph has its own characteristics and you can't easily determine how much space will be
taken by text.

This recipe will cover the second case with TrueType font rendering. Bitmap font rendering can
be easily derived from this recipe with a few changes.

Getting ready
Before you start, make sure you have a valid font object with font information. You'll also
need to apply a blending function so that the transparent parts of the glyph won't be visible.
Otherwise, you will see only solid rectangles instead of characters. This can be set somewhere
after you have created the OpenGL window:

gl.Enable(GL_BLEND)
gl.BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

Let's assume that glyph_textures is a Lua table that always contains valid font glyph
textures. You can generate textures on-the-fly and store them into this table from which you
can reuse them repeatedly, so it won't cause a major slowdown.

Also, don't forget to turn on texture rendering by using the following code:

gl.Enable(GL_TEXTURE_2D)

How to do it…
This recipe will contain the whole text drawing function, which you can reuse and modify to
suit your needs.

First, you need to obtain the basic font information by using the following code:

local font_descent = SDL.TTF_FontDescent(font)
local font_lineskip = SDL.TTF_FontLineSkip(font)
local glyph_metrics = {}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

97

These two font parameters are sufficient for text rendering. The text drawing function will be
called ttf_print:

function ttf_print(x, y, color, size_factor, text)
 local size_factor = size_factor or 1
 -- pos_x and pos_y store current glyph position on screen
 local pos_x, pos_y = x, y
 -- loop through all string characters
 for I=1, #text do
 -- character code
 local code = string.byte(text,i)
 -- obtain cached glyph metrics
 local metrics = glyph_metrics[code]
 -- store glyph metrics into cache if the glyph
 -- is used for the first time
 if not metrics then
 local _, minx, maxx, miny, maxy, advance =
 SDL.TTF_GlyphMetrics(font, code)
 metrics = {
 minx = minx,
 maxx = maxx,
 miny = miny,
 maxy = maxy,
 advance = advance,
 }
 glyph_metrics[code] = metrics
 end
 -- obtain glyph image
 local glyph_texture = glyph_textures[code]
 if glyph_texture then
 gl.BindTexture(GL_TEXTURE_2D, glyph_texture)

Variables tc_x0, tc_y0, tc_x1, and tc_y1 contain texture coordinates for glyphs. In this
case, all the glyphs use the same texture coordinates, but this can vary depending on your
implementation of texture storage. These coordinates will be unique for each glyph if you
use texture atlas:

 local tc_x0, tc_y0, tc_x1, tc_y1 = 0, 0, 1, 1
 local glyph_x = pos_x + metrics.minx * size_factor
 local glyph_y = pos_y + (font_descent – metrics.maxy) *
 size_factor
 local glyph_width = (metrics.maxx - metrics.minx) *
 size_factor
 local glyph_height = (metrics.maxy - metrics.miny) *
 size_factor

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

98

Glyphs will use rectangular polygons. Note that the order of vertices is important. The reverse
order will cause disappearing of the polygons because their orientation will be inside the
screen and not outside to the viewer:

 -- draws a rectangle filled with glyph image
 gl.Begin(GL_QUADS)
 gl.Color4f(color.r, color.g, color.b, 1)
 gl.TexCoord2f(tc_x0, tc_y0)
 gl.Vertex2f(glyph_x, glyph_y)

 gl.TexCoord2f(tc_x1, tc_y0)
 gl.Vertex2f(glyph_x + glyph_width, glyph_y)

 gl.TexCoord2f(tc_x1, tc_y1)
 gl.Vertex2f(glyph_x + glyph_width, glyph_y + glyph_height)

 gl.TexCoord2f(tc_x0, tc_y1)
 gl.Vertex2f(glyph_x, glyph_y + glyph_height)
 gl.End()

Each glyph should be moved a bit horizontally. Otherwise, the glyphs will overlap each other.

 pos_x = pos_x + metrics.advance * size_factor

Optionally, you can emulate newlines by incrementing the pos_y variable with the font_
lineskip parameter and resetting the pos_x variable to x:

 end
 end
end

You can manage the rendered font size by changing the size_factor parameter. Factor 1
means the original size.

How it works…
SDL_ttf works internally with UNICODE encoding to determine the index of glyph. Glyph
textures should use points with a considerably larger size as downsizing the texture is
usually handled pretty well by GPU. Resizing low resolution glyph textures doesn't provide
good results. Higher resolution glyphs take more memory space, of course. It's always
good to find a balance between quality and memory consumption.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

99

You can see this resolution problem in the series of the two following figures. The first one
shows the result of downsizing high resolution glyphs on GPU:

The second one shows scaling up the low resolution glyphs:

See also
 f The Loading and using bitmap fonts recipe

 f The Loading and using TrueType fonts recipe

Creating texture atlas with the rover-design
pattern

Texture management becomes important with increasing the number of textures. An intuitive
approach of using different OpenGL texture objects for each game texture presents the major
bottleneck with rapid texture switching. That's because every time you change active texture
unit, the graphic card needs to change its internal state. This problem can be eliminated using
fewer larger textures that contain smaller images. This can be compared to a texture atlas
where images are placed next to each other. These images can be accessed using different
texture coordinates for every image.

Texture atlas can use evenly-spaced images with the same size or use some placement
algorithm to place images of unequal sizes efficiently.

The first method was used in older games and is often used in games in which the images
have the same size. Such texture atlas is often pregenerated to save the game loading time.
Every time the game needs to use a different set of images, a new texture atlas is loaded
into memory. The disadvantage is that these texture atlases may contain the same images
from other atlases and you can't add a new image to them. These texture atlases are often
called tiles.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

100

The second method uses dynamic generated texture atlases. These are generated on-the-fly
and each new image takes a specific place. Image placement can be controlled by a certain
algorithm, which can make the placement more compact so that the space is used more
efficiently. One of the algorithms is called the rover design pattern. This algorithm can be
found, for example, in games from the id software company.

Getting ready
The texture atlas technique uses storing smaller images into one big texture. The basic
prerequisite is at least one free texture that can be used as storage. This texture should at
least be as big as the largest image you'll be using. In a memory-constrained environment,
you can do proportional resizing of the image so that it fits into the texture atlas. LuaSDL
offers this kind of function called SDL.GFX_zoomSurface and it's specified using the
following function definition:

local surface = SDL.GFX_ZoomSurface(surface, scale_x, scale_y,
smooth)

This function will accept the source surface object in the first argument. Scale values
present scaling factors and the last argument is a numeric flag value to enable antialiasing
for zooming. The next sample code will scale the image down to half of its original size with
smoothing enabled:

local scale_x = 0.5
local scale_y = 0.5
local dst_surface = SDL.GFX_ZoomSurface(src_surface, scale_x,
scale_y, 1)

The total size of the atlas texture can be set dynamically to achieve a certain level of texture
detail. This is commonly found in modern games where you have an option in the settings to
set the texture quality.

How to do it…
This example of texture atlas algorithm will use a texture atlas with the size of 512 x 512 pixels.
You can use it every time you need to place a new image into the texture atlas. It will return
coordinates in the texture atlas for the specified size of the image. If there is not enough space
for the image, it will return false:

local atlas = {
 width = 512,
 height = 512,
 fill = {},
 full = false,
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

101

local function allocBlock(width, height)
 local allocated = atlas.fill
 local i,j,best1,best2,x,y = 0,0,atlas.height,0,0,0
 for i=0, atlas.width-width do
 best2 = 0
 for k=0,width-1 do
 local column = allocated[i+k]
 j = k
 if not column then
 column = 0
 allocated[i+k] = column
 end
 if (column >= best1) then
 break
 end
 if (column > best2) then
 best2 = column
 end
 end
 if j == width-1 then
 -- valid area
 x = i
 y, best1 = best2, best2
 end
 end
 if (best1 + height) > atlas.height then
 return false
 end
 for i=0, width-1 do
 allocated[x+i] = best1 + height
 end
 return x,y
end

How it works…
The texture atlas function uses the atlas table to store the information about free space
in the texture atlas. Free space lookup works just like the famous Tetris game with the board
flipped upside-down. This algorithm works in two nested loops. The first one (the outer loop)
tries to place the block of specified size from the left side to the right side. The second
one (the inner loop) checks whether there are any obstacles in the current block placement.
If there aren't any, the placement is regarded as valid and the function returns this position.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

102

Note that the order of placement is important in this case. Smaller objects should be placed
first, although there might be better methods with additional heuristics.

The texture atlas can look like the following figure:

Using tiles and tilesets in the game
Tiles are usually referred to as small subimages that are part of a bigger image. Tiles usually
have the same size, so they are easily compacted into one rectangular area. You can see
tiles mostly in 2D games, especially in platform games, RPGs and even 3D action games.
The rectangular property makes tiles very efficient in the question of accessing specific
subimages from a large tileset. You can store the whole tileset into the graphical memory,
and with the knowledge of the subimage positions, you can easily select the tiles you need.

You can observe that many small game animations consist of a connected set of tiles—called
tileset. Tilesets can define an animation as an ordered list of tile indices. Tile indices are
often accompanied with destination coordinates so you can make an animated movement
with the same tile.

The main advantage of the Lua language is that it has excellent support for structural data
description. Therefore, you can use Lua tables to describe tiles and tilesets.

This recipe will show you an example of the tileset engine.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

103

Getting ready
First, let's assume that you've already loaded the tileset image into a texture single object with
a size of 512 x 512 pixels. This texture object will be identified by the texture variable, which
will be obtained from the Lua table textures. It may look like the following screenshot:

From this, you can see that this image is an animation divided into 4 x 4 sections.
These sections are the tiles you'll be using.

To select one specific tile, you can either rely on regular tile placement or use the tileset
descriptor defined by the Lua table:

local tilesets = {
 ['sparkle'] = {
 filename = "sparkle.png",
 w = 512, h = 512,
 tiles = {
 ['sparkle_01'] = {
 x=0, y=0, w=128, h=128,
 },
 ['sparkle_02'] = {
 x=128, y=0, w=128, h=128,
 },
 ['sparkle_03'] = {
 x=256, y=0, w=128, h=128,
 },
 ['sparkle_04'] = {
 x=384, y=0, w=128, h=128,
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

104

 ['sparkle_05'] = {
 x=0, y=128, w=128, h=128,
 },
 ...
 }
 }
}

Now that you have described all the tiles from the sparkle tileset, you can proceed to the
function that will retrieve tile information from this table.

How to do it…
The process of drawing a tile consist of three phases:

 f The first phase will obtain tile coordinates that correspond to the tileset name
and to the name of the tile. The result will be four coordinates that will need to
be transformed according to the texture matrix configuration and the texture
object identifier that contains the tileset image.

 f The second phase will map the obtained coordinates to a valid range of texture
coordinates, which is usually (0,1).

 f The last phase will draw a textured rectangular polygon at the specified place.
Each vertex will use its respective texture coordinate.

These phases can be enhanced with other parameters such as tile coloring, rotation, offset
from tile origin point, and so on.

The function for the first phase will consist of two input parameters, the name of the tileset
and the name of the tile. It will return the texture object identifier, texture size, and four
coordinates that describe the rectangular region of the tileset image:

function getTile(tileset_name, tile_name)
 local tileset = tiles[tileset_name]
 if tileset then
 local texture = textures[tileset.filename]
 if texture then
 local tile = tileset.tiles[tile_name]
 if tile then
 return texture, tileset.w, tileset.h, tile.x, tile.y,
 tile.w, tile.h
 end
 end
 end
 return false
end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

105

In the second phase, you'll need to convert tile coordinates to texture space so that they can
be used directly with the OpenGL gl.TexCoord2f function. The whole conversion is based
on mapping from pixel coordinates into the numeric range (0,1). It's important to do this
because OpenGL uses this range by default. Otherwise, you will get barely visible downscaled
tile images.

Coordinate conversion will be done in the transformCoordinates function and will accept
texture atlas dimensions and four tile coordinates. The result will consist of four pairs of
coordinates that can be used directly with the OpenGL gl.TexCoord function:

function transformCoordinates(tileset_width, tileset_height, x, y,
w, h)
 local out_x = x/tileset_width
 local out_y = y/tileset_height
 local out_w = w/tileset_width
 local out_h = h/tileset_height
 return {
 {x = out_x, y = out_y },
 {x = out_x + out_w, y = out_y },
 {x = out_x + out_w, y = out_y + out_h},
 {x = out_x, y = out_y + out_h},
 }
end

Now you can step into the last phase of tile rendering. This function will use the previous
functions to construct an array of texture coordinates and use them to draw a textured
rectangle on screen:

function drawTile(tileset_name, tile_name, x, y, scale_factor)
 local texture, ts_w, ts_h, t_x, t_y, t_w, t_h =
 getTile(tileset_name, tile_name)
 if texture then
 local scale_factor = scale_factor or 1
 local tex_coord = transformCoordinates(ts_w, ts_h, t_x, t_y,
 t_w, t_h)
 gl.BindTexture(GL_TEXTURE_2D, texture)
 gl.Begin(GL_QUADS)
 gl.Color4f(1, 1, 1, 1)
 gl.TexCoord2f(tex_coord[1].x, tex_coord[1].y)
 gl.Vertex2f(x, y)

 gl.TexCoord2f(tex_coord[2].x, tex_coord[2].y)
 gl.Vertex2f((x + t_x) * scale_factor, y)

 gl.TexCoord2f(tex_coord[3].x, tex_coord[3].y)

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Common Methods

106

 gl.Vertex2f((x + t_x) * scale_factor, (y + t_y) *
 scale_factor)

 gl.TexCoord2f(tex_coord[4].x, tex_coord[4].y)
 gl.Vertex2f(x, (y + t_y) * scale_factor)
 gl.End()
 end
end

With this function, you can place tiles anywhere on screen. The polygon position is defined
by the x and y parameters. Optionally, you can also scale the tile with the scale_factor
parameter. With the default scale, the tile size will be the same as it is in the tileset.

How it works…
This recipe uses the power of the Lua language to describe any data structure with the Lua
tables in a very brief way. Because of this, tileset data doesn't have to be stored in a special
file. It can be read directly by the Lua interpreter into the variable.

The transformation of texture coordinates is necessary to map coordinates into valid texture
space. Textures usually use coordinates in the range of (0,1), although you are not explicitly
limited to it. The behavior of the coordinates across the specified range is defined by the
texture object parameters, GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T. If the texture
uses the GL_REPEAT mode, you can safely use coordinates that don't fall into the range (0,1).
Otherwise, you will get a clamped result as shown in the following figure:

With correct texture coordinates, the drawTile function will bind the corresponding texture
object into the 2D texture target. From this point, this texture will be used in subsequent
operations. This function uses intermediate mode to draw a rectangular polygon. This means this
group of vertices enclosed by the gl.Begin and gl.End functions will be drawn immediately.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

107

This whole polygon will use white color for all vertices, which results in tile rendering with the
same colors as the tileset image. The vertex color can be used to modify polygon colorization.
If you have used gl.Color4f(0, 0, 0, 1), the vertices would be black and so would be
the whole polygon. The vertex color is usually multiplied with the texture color. However, this
behavior can be changed with vertex program, vertex shader, or fragment shader.

Notice that these vertices are in a certain order. This order assures that the polygon will be
drawn facing the viewer—you. This order can be changed with the gl.FrontFace function.
This function accepts one of these parameters, GL_CW and GL_CCW. The first one renders
polygons in a clockwise fashion and the second one renders polygons counterclockwise,
which is the default value.

See also
 f The Loading images with SDL_image recipe

 f The Creating textures recipe

 f The Loading and using bitmap fonts recipe

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

109

4
Graphics – Legacy

Method with
OpenGL 1.x–2.1

This chapter will deal with the following recipes:

 f Drawing primitives in immediate mode

 f Setting up blending

 f Moving, rotating, and scaling objects

 f Setting up the orthogonal and perspective cameras

 f Setting up materials

 f Setting up lighting

 f Using display lists

 f Setting up the vertex buffer

Introduction
There are two ways of using OpenGL. The first one was used over many years from the
introduction of the first version of OpenGL. This method uses the so-called immediate
mode. This means that every command is processed immediately and the graphic card
uses a fixed pipeline. It's mostly used in Hello World samples because it's very easy to use.

The second one uses a dynamic programmable pipeline, which is a bit more difficult to use
and it allows you to achieve optimal application performance.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Legacy Method with OpenGL 1.x–2.1

110

This chapter will cover this first method, so you can learn the basics of OpenGL. The Lua
scripting language will help you with your first prototype of the OpenGL application. You'll learn
how to draw graphical primitives, change their parameters, position, rotation and scale. The next
thing you'll learn will be object matrix transformations, accompanied by other types of matrix
transformations. The last part will deal with the basics of using display lists and vertex buffers.

Display lists and vertex buffers played an important role in the last few years before the
introduction of the programmable pipeline on graphic cards. It was the only way of uploading
and using a bigger amount of vertex data.

Drawing primitives in immediate mode
The OpenGL drawing process consists of drawing graphic primitives. These are basic shapes
such as points, lines, triangles, quadrilaterals and polygons. There are also special cases when
you can use the OpenGL utility functions (GLUT) to draw more complex objects such as curves,
spheres, NURBS curves, and so on. However, this chapter is oriented toward basic OpenGL
operations. More information about this library can be found at https://www.opengl.org/
resources/libraries/glut/.

Immediate mode drawing commands consist of the gl.Begin and gl.End blocks.
Each of these blocks contain the element drawing specification. For instance, there's only
one specification for drawing points, but there are three modes of drawing a set of lines.
You can draw each line separately or you can connect them in a way that each line segment
will connect to the previous segment.

This recipe will show you how to use each individual type of primitive in certain situations with
visual samples.

Getting ready
To get access to the OpenGL functions from the Lua language, you'll need to use the LuaGL
binding library. You can use LuaGL available at the GitHub repository https://github.
com/soulik/luagl.

Refer to the Initialize graphics mode with OpenGL recipe in Chapter 3, Graphics – Common
Methods, to get the usable binary module for LuaGL.

First, you'll need to get the LuaGL module loaded in the Lua source code. You can do this with
the following code:

local gl = require 'luagl'

The next thing you'll need is a list of the OpenGL constants. This list of constants is a part
of LuaGL project and can be found at https://github.com/soulik/luagl/blob/
master/src/gldefs.lua.

www.it-ebooks.info

https://www.opengl.org/resources/libraries/glut/
https://www.opengl.org/resources/libraries/glut/
https://github.com/soulik/luagl
https://github.com/soulik/luagl
https://github.com/soulik/luagl/blob/master/src/gldefs.lua
https://github.com/soulik/luagl/blob/master/src/gldefs.lua
http://www.it-ebooks.info/

Chapter 4

111

This list is constantly updated with each new OpenGL revision or with the introduction of a
new graphic card. This way you can manually update this list and add a new constant without
recompilation. Upon including this file, a new global table, gl_enum, is defined. You can query
a value of the constant like this:

gl_enum.GL_POINTS

This will return the same value as the C macro definition GL_POINTS. This list is imported from
the GLEW library header file, which should contain the most up-to-date list of OpenGL constants.

Each vertex consists of these basic parameters—position, color, and texture coordinates.
The vertex position can be defined by these two functions—gl.Vertex2f(x, y) and
gl.Vertex3f(x, y, z). The function parameters x, y, and z are coordinates for each
dimension of 3D space. Note that the final vertex position on screen can be modified by
transformation matrix operations such as rotation, translation, and scaling. The next functions
set the color of the next vertex gl.Color3f(r, g, b) and gl.Color4f(r, g, b,
a). Color components use a numerical range (0,1). The last vertex parameters are texture
coordinates for the next vertex. These can be set with the functions: gl.TexCoord2f(u, v)
and gl.TexCoord3f(u, v, w). U, V, and W are texture coordinates in the 2D or 3D space
of a texture. These are usually in a range (0,1), but you are allowed to use any range you need.
Coordinates from this range are used in conjunction with the wrapping mode set to GL_REPEAT
so that the texture repeats itself.

How to do it…
Each primitive definition block begins with the gl.Begin command. This command accepts
one argument with a primitive type specification. As of OpenGL version 2.1, there were 10
possible primitive types. This list was later extended with special cases of primitive drawing
modes. Primitives are defined by a set of vertices. Each vertex need at least one position
specification. You can also set the vertex color and vertex specific texture coordinates. Do
note that if you don't set vertex color, OpenGL will use the default color—red. The same goes
for default texture coordinates with zeroes in all dimensions. Vertex parameters must be set
before setting the vertex position.

Drawing points
The simplest primitive is a point. Each point consists of exactly one vertex. Point primitives
are mostly used with particle effects. In conjunction with the point sprites technique and
GLSL shaders, you can create various effects such as a flame or water flow. The point sprites
technique uses textures instead of simple points. In this case, textures are always oriented
toward the viewer. More about GLSL shaders can be found in Chapter 5, Graphics – Modern
Method with OpenGL 3.0+.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Legacy Method with OpenGL 1.x–2.1

112

The point drawing code can look like the following:

gl.Begin(gl_enum.GL_POINTS)
 -- A
 gl.Color4f(1, 0, 0, 1)
 gl.Vertex3f(-0.5, -0.5, 0)
 -- B
 gl.Color4f(0, 1, 0, 1)
 gl.Vertex3f(0.5, -0.5, 0)
 -- C
 gl.Color4f(0, 0, 1, 1)
 gl.Vertex3f(0.5, 0.5, 0)
 -- D
 gl.Color4f(1, 1, 0, 1)
 gl.Vertex3f(-0.5, 0.5, 0)
gl.End()

This will draw four colored points with the size of one pixel. Points of this size are hardly seen.
You can the change point size in pixels with the gl.PointSize function. This function will
accept a positive floating point number that specifies the point diameter. However, OpenGL
uses the square shape for points by default. You can change this behavior to use the circular
shape with:

gl.Enable(gl_enum.GL_POINT_SMOOTH)

Note that you need to set these point parameters before drawing. Otherwise, the changes will
apply to the next drawing block.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

113

An example of the previous sample output will look like the following screenshot:

Drawing lines
The next primitive type is lines. Lines consist of two vertices. One primitive can be made up
of more than one line. In this case, you can tell OpenGL if you'd like to specify each line with
a pair of two vertices or with just the final vertex, where the first one is determined by the
previous vertex position. Vertex color and texture coordinates must be defined before the
gl.Vertex function.

The drawing code block is mostly the same as in the point drawing code:

gl.Begin(gl_enum.GL_LINES)
 -- A
 gl.Color4f(1, 0, 0, 1)
 gl.Vertex3f(-0.5, -0.5, 0)
 -- B
 gl.Color4f(0, 1, 0, 1)
 gl.Vertex3f(0.5, -0.5, 0)

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Legacy Method with OpenGL 1.x–2.1

114

 -- C
 gl.Color4f(0, 0, 1, 1)
 gl.Vertex3f(0.5, 0.5, 0)
 -- D
 gl.Color4f(1, 1, 0, 1)
 gl.Vertex3f(-0.5, 0.5, 0)
gl.End()

This code would draw straight horizontal lines with 1 pixel width. You can adjust the line width
with the gl.LineWidth function. OpenGL guarantees that you can use lines with 1 pixel
width. However, the upper limit is specific to your system. You can check the available range
with gl.Get('f(2)',gl_enum.GL_LINE_WIDTH_RANGE). This will return a Lua table with
minimum and maximum values of line width. There is also an option to enable line smoothing,
so that they don't look so jagged. You can enable this with:

gl.Enable(gl_enum.GL_LINT_SMOOTH)

The resulting output will look like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

115

Drawing line strips
Line strips are used to draw a sequence of connected lines. A typical example of usage can be
linear graphs or curved trails. You can reuse the previous code where you change the primitive
type only:

gl.Begin(gl_enum.GL_LINE_STRIP)
 ...
gl.End()

The resulting image would look like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Legacy Method with OpenGL 1.x–2.1

116

Drawing line loops
You must have noticed that standard OpenGL doesn't provide functions for drawing circles
or any other closed outline shapes—hollow polygons. You have to do this by yourself with line
loops. Line loops behave just like the line strips, except the last vertex is connected to the first
one with a line. This is fairly useful when drawing object outlines:

gl.Begin(gl_enum.GL_LINE_LOOP)
 ...
gl.End()

This code uses the same vertices as the previous example with point primitives and results in
a colorful rectangle, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

117

Drawing triangles
So far, you've been shown how to draw points, lines, and hollow polygons. The following parts
will deal with filled primitives, such as triangles, quadrilaterals and polygons. Triangles often
represent the basic part of more complex 2D or 3D objects as any polygon can be decomposed
into triangles. Every triangle consists of exactly three vertices. The following code will draw a
single-colored triangle where each vertex will have its own color; OpenGL can do automatic
color interpolation in the area between vertices:

gl.Begin(gl_enum.GL_TRIANGLES)
 -- A
 gl.Color4f(1, 0, 0, 1)
 gl.Vertex3f(-0.5, -0.5, 0)
 -- B
 gl.Color4f(0, 1, 0, 1)
 gl.Vertex3f(0.5, -0.5, 0)
 -- C
 gl.Color4f(0, 0, 1, 1)
 gl.Vertex3f(0.5, 0.5, 0)
gl.End()

The result will look like this:

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Legacy Method with OpenGL 1.x–2.1

118

Note that, in this case, every triangle needs to be specified separately. For instance, to draw
two triangles, you'd need to use the gl.Vertex3f function six times. The gl.Begin and
gl.End blocks might contain vertex specifications for more than one graphical primitive of
the same type.

Drawing triangle strips
Triangle strips are most often used when drawing various beams and trails. Let's assume that
the first triangle is defined by a sequence of vertices marked with the letters A, B, and C. The
next triangle can be constructed by adding one vertex D, where this triangle would contain
vertices B, C, and D. This method is more efficient than defining every triangle separately.
You can see the construction process in the following screenshot:

This picture consists of five triangles defined by seven vertices. If you wanted to draw this in
the GL_TRIANGLES mode, you would need to pass 15 vertices to OpenGL. Keep in mind that
passing data between CPU and GPU directly affects video game performance. Both sides are
limited by the currently available RAM bandwidth.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

119

The following code sample will draw five connected triangles from the preceding screenshot:

gl.Begin(gl_enum.GL_TRIANGLE_STRIP)
 -- A
 gl.Color4f(1, 0, 0, 1)
 gl.Vertex3f(-0.25, -0.75, 0)
 -- B
 gl.Color4f(0, 1, 0, 1)
 gl.Vertex3f(0.25, -0.75, 0)
 -- C
 gl.Color4f(1, 1, 0, 1)
 gl.Vertex3f(-0.25, -0.25, 0)
 -- D
 gl.Color4f(0, 0, 1, 1)
 gl.Vertex3f(0.25, -0.25, 0)
 -- E
 gl.Color4f(1, 0, 1, 1)
 gl.Vertex3f(-0.25, 0.25, 0)
 -- F
 gl.Color4f(0, 1, 1, 1)
 gl.Vertex3f(0.25, 0.25, 0)
 -- G
 gl.Color4f(1, 1, 1, 1)
 gl.Vertex3f(-0.25, 0.75, 0)
gl.End()

Drawing triangle fans
Triangle fans are similar to triangle strips. They are more efficient than drawing every triangle
separately. Triangle fans are mostly used for drawing filled arcs, circles, convex polygons or
even simpler concave polygons such as a star shape. It works in a way that the first vertex in
the list is used as a central vertex, the second one corresponds to the last vertex used in the
previous triangle, and finally, you define the last one. A sample code is as follows:

gl.Begin(gl_enum.GL_TRIANGLE_FAN)
 -- A
 gl.Color4f(1, 0, 0, 1)
 gl.Vertex3f(0.0, 0.0, 0)
 -- B
 gl.Color4f(0, 1, 0, 1)
 gl.Vertex3f(0.0, -0.75, 0)
 -- C
 gl.Color4f(1, 1, 0, 1)
 gl.Vertex3f(0.5, -0.5, 0)
 -- D

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Legacy Method with OpenGL 1.x–2.1

120

 gl.Color4f(0, 0, 1, 1)
 gl.Vertex3f(0.75, 0.0, 0)
 -- E
 gl.Color4f(1, 0, 1, 1)
 gl.Vertex3f(0.5, 0.5, 0)
 -- F
 gl.Color4f(0, 1, 1, 1)
 gl.Vertex3f(0.0, 0.75, 0)
 -- G
 gl.Color4f(1, 1, 1, 1)
 gl.Vertex3f(-0.5, 0.5, 0)
gl.End()

This code will draw five triangles from the list of seven vertices. You can see the result with the
description in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

121

Drawing quads
Quads are primitives that consist of exactly four vertices. It's expected that these four vertices
are in 1 plane. Otherwise, the result is unpredictable. This primitive type is mostly used with
rectangular surfaces such as you can find in games with tiles and sprites. Quads are also
used with font rendering because each glyph is made out of a separate rectangle. A quad
definition will look like the following code:

gl.Begin(gl_enum.GL_QUADS)
 -- A
 gl.Color4f(1, 0, 0, 1)
 gl.Vertex3f(-0.5, -0.5, 0)
 -- B
 gl.Color4f(0, 1, 0, 1)
 gl.Vertex3f(0.5, -0.5, 0)
 -- C
 gl.Color4f(1, 1, 0, 1)
 gl.Vertex3f(0.5, 0.5, 0)
 -- D
 gl.Color4f(0, 0, 1, 1)
 gl.Vertex3f(-0.5, 0.5, 0)
gl.End()

This will render a single colored rectangular polygon, as shown in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Legacy Method with OpenGL 1.x–2.1

122

Drawing quad strips
Quad strips are connected quads that share exactly one edge. The last two vertices from the
previous quad are used as the first two vertices in the new quad. This can be used to draw
beams or trails just like triangle strips. The main difference between quad and triangle strips
is that the neighboring quads share two vertices along with vertex attributes, whereas triangle
strips share only one vertex with its attributes. This is mostly noticeable when you apply
texture coordinates on vertices. The following code will draw two colored quads:

gl.Begin(gl_enum.GL_QUAD_STRIP)
 -- A
 gl.Color4f(1, 0, 0, 1)
 gl.Vertex3f(-0.25, -0.5, 0)
 -- B
 gl.Color4f(0, 1, 0, 1)
 gl.Vertex3f(0.25, -0.5, 0)
 -- C
 gl.Color4f(1, 1, 0, 1)
 gl.Vertex3f(-0.5, 0.0, 0)
 -- D
 gl.Color4f(0, 0, 1, 1)
 gl.Vertex3f(0.5, 0.0, 0)
 -- E
 gl.Color4f(1, 0, 1, 1)
 gl.Vertex3f(-0.25, 0.5, 0)
 -- F
 gl.Color4f(0, 1, 1, 1)
 gl.Vertex3f(0.25, 0.5, 0)
gl.End()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

123

This will lead to drawing a hexagonal shape that consists of two quads, as you can see in the
following screenshot:

Note that the order of vertices differs from the usual quads. In this case, vertices follow the
zigzag movement.

Drawing polygons
Polygonal primitives can be used to draw convex objects only and they are quite limited in
terms of performance. The same object can be drawn much faster with triangles than with the
polygon. Therefore, programmers are mostly discouraged from using this type of primitive.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Legacy Method with OpenGL 1.x–2.1

124

How it works…
Drawing blocks gl.Begin and gl.End may consist of functions that specify vertex attributes
only. Any other command in these blocks is considered as an error.

Examples contained in this recipe use the default camera settings. Therefore, the x coordinates
represent the horizontal position from left to right in a range (-1,1). The y coordinates are the
vertical position from bottom to top in a range (-1,1) and the z coordinates represent the depth
in a range (-1,1). The positive values are nearer to the viewer and the negative values are farther
from the viewer.

Note that drawing objects with the gl.Begin and gl.End blocks is slow because each call
transfers data from the CPU to the graphic card. The graphic card waits until the data transfer
is complete and this also has a negative effect on the performance.

See also
 f The Using display lists recipe

 f The Setting up the vertex buffer recipe

Setting up blending
OpenGL allows you to change the way textures are drawn. This process is called blending and it's
often used when combining multiple textures. However, blending can also be applied to texture
rendering on screen. OpenGL uses a so-called "blending function" to define the mathematical
function that calculates the final color value. For example, the GL_FUNC_ADD blending function
defines additive blending, which is used when mixing colored lights in a scene.

This function uses two values:

 f The source value is usually a color or alpha channel value of the texture you are
currently using. The source value is also called a fragment.

 f The destination value is a color or alpha channel value that's on the destination
surface or the screen.

You can't directly put values into the blending function. What you are allowed to do is to use
one of the predefined functions to be used for the source value or the destination value.

Note that the blending function is also used with the modern rendering techniques introduced
by dynamic programmable pipelines—GLSL shaders, which will be covered in Chapter 5,
Graphics – Modern Method with OpenGL 3.0+.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

125

Getting ready
By default, OpenGL doesn't use blending in the process of rendering the scene. You can
enable it with the gl.Enable(gl_enum.GL_BLEND) function call. With blending turned
on, you can apply transparency control with the blending function.

How to do it…
As you can see, there are many possible combinations for the final form of the blending
equation. However, there are only a few combinations found that are used in games.
These are additive blending, subtractive blending, and alpha blending.

Additive blending
This type of blending is commonly used for particles that affect the light. For instance,
you can use it for water particles, blood splats, laser beams, fire, and so on. You can set
up additive blending with the following code:

gl.Enable(gl_enum.GL_BLEND)
gl.BlendFunc(gl_enum.GL_SRC_ALPHA, gl_enum.GL_ONE)
gl.BlendEquation(gl_enum.GL_FUNC_ADD)

This assumes that the particle texture has an alpha channel. If this is not the case, you'll need
to set the source blending function to the GL_ONE constant. An example of additive blending
can be seen in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Legacy Method with OpenGL 1.x–2.1

126

Subtractive blending
Subtractive blending is mostly used with smoke particles, decals, or paintings that cover a
surface. In this situation, you can use the following code:

gl.Enable(gl_enum.GL_BLEND)
gl.BlendFunc(gl_enum.GL_ONE_MINUS_SRC_COLOR, gl_enum.GL_SRC_COLOR)
gl.BlendEquation(gl_enum.GL_FUNC_ADD)

This type of blending is often used with a grayscale picture where the white color is fully
transparent and the black color is opaque. The result is shown in the following screenshot:

Alpha blending
Alpha blending is similar to subtractive blending with the exception that the alpha channel is
used to control transparency instead of the color lightness. This gives you an advantage over
subtractive blending because you can draw colored decals over surfaces. For instance, you
can draw nails on wood, signs on walls and so on. The code for alpha blending is as follows:

gl.Enable(gl_enum.GL_BLEND)
gl.BlendFunc(gl_enum.GL_SRC_ALPHA, gl_enum.GL_ONE_MINUS_SRC_ALPHA)
gl.BlendEquation(gl_enum.GL_FUNC_ADD)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

127

Remember that this code works only with pictures that have an alpha channel. Otherwise, the
picture will overdraw previous content.

The correct use of alpha blending is shown in the following screenshot:

How it works…
The general form of the blending equation looks like this:

final value = blending_equation(fragment_color * source_factor,
pixel_color * destination_factor)

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Legacy Method with OpenGL 1.x–2.1

128

The blending function in the equation uses two parameters: the source value and the
destination value. The exact form of the blending function depends on the choice of the
blending equation, which you can change with the gl.BlendEquation function. You can
choose one of the equations given in the following table:

Equations Mathematical operators
GL_FUNC_ADD output = src + dest
GL_FUNC_SUBSTRACT output = src - dest
GL_FUNC_REVERSE_SUBSTRACT output = dest - src
GL_MIN output = min(src, dest)
GL_MAX output = max(src, dest)

OpenGL uses GL_FUNC_ADD by default, which is great for antialiasing and transparency.

The source and destination factors are determined by the choice of the blending function.
The list of blending functions is shown in the following table:

Blending functions Description
GL_ZERO (0,0,0,0)
GL_ONE (1,1,1,1)
GL_SRC_COLOR (Rs,Gs,Bs,As)
GL_ONE_MINUS_SRC_COLOR (1,1,1,1) - (Rs,Gs,Bs,As)
GL_DST_COLOR (Rd,Gd,Bd,Ad)
GL_ONE_MINUS_DST_COLOR (1,1,1,1,) - (Rd, Gd, Bd, Ad)
GL_SRC_ALPHA (As, As, As, As)
GL_ONE_MINUS_SRC_ALPHA (1,1,1,1) - (As, As, As, As)
GL_DST_ALPHA (Ad, Ad, Ad, Ad)
GL_ONE_MINUS_DST_ALPHA (1,1,1,1) - (Ad, Ad, Ad, Ad)
GL_CONSTANT_COLOR (Rc, Gc, Bc, Ac)
GL_ONE_MINUS_CONSTANT_COLOR (1,1,1,1) - (Rc, Gc, Bc, Ac)
GL_CONSTANT_ALPHA (Ac, Ac, Ac, Ac)
GL_ONE_MINUS_CONSTANT_COLOR (1,1,1,1) - (Ac, Ac, Ac, Ac)
GL_SRC_ALPHA_SATURATE (Rd * Gd * Bd * i, 1)

i = min(As, 1 - Ad)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

129

The color component values are specified by R—red, G—green, B—blue, and A—alpha. The
subscript s specifies the source color channel, d is for the destination color channel, and the
c subscript refers to the constant color channel that you can set with the gl.BlendColor
function. The gl.BlendColor function uses the same parameters as gl.Vertex4f. To
get a better idea of how blending works, you can refer to the following screenshot, where the
source image uses a transparent picture of the Lua logo and the destination is the famous
picture of Lena. The samples use all the possible combinations of the blending functions—for
the source it is the horizontal direction and for the destination it is the vertical direction:

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Legacy Method with OpenGL 1.x–2.1

130

Moving, rotating, and scaling objects
OpenGL offers you stack-based matrix transformations. These transformations include
translating—moving, rotating, and scaling. Stacking means that previous transformations can
affect succeeding transformations and they create the hierarchical structure. A typical example
may be a human-like arm simulation. The arm consists of several parts connected with joints.
Each part's position and orientation is dependent on the position and orientation of the previous
part. Similar rules of dependency apply to all parts of the solar system. Planets orbit around
stars and moons orbit their planets at the same time.

This recipe will show you how to create a simple scene with your own animated miniature of
the solar system.

Getting ready
The core to success with scene animation is to understand how matrix transformations affect
parts of your scene. There are four main rules to remember:

 f Each transformation changes the state of the local coordinate system, so the order of
transformations is important.

 f Matrix transformation doesn't affect the previous transformations—it doesn't
propagate backwards.

 f The matrix state can be reset, stored, and restored from stack, which is, of course,
limited by its maximum depth in specific matrix mode. Matrix modes will be explained
later in the How it works… section of this recipe.

 f There are four types of matrices—the model view matrix, projection matrix, texture
transformation matrix, and color transformation matrix.

The best way to design the transformation system is to draw a simple scheme of
transformations. It's always good to think of matrix transformations as a movement of
your arm and fingers. When you rotate your arm, you'll also move your fingers into another
position. When you move your fingers, it doesn't affect the position of your arm. This recipe
will refer to the following scheme diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

131

Sun

Rotation
Z axis

Rotation
Z axis

Translation
X axis

Planet

Rotation
Z axis

Rotation
Z axis

Translation
X axis

Moon

This recipe will use the default matrix settings, where the world will start at the origin position
(0,0,0) and you'll only be using the model view matrix.

The entire solar system will be stored in a structure made up of the Lua tables. Each solar
system will have its own planets and each planet will have its own moon. Every space object
will contain its size, color, and distance from the center of the rotation, outer and inner
angular speed, and its objects. The configuration of the solar system can look like this:

local stars = {
 {size = 0.3, color = {1,1,0,1}, planets = {
 {distance = 0.2, outerSpeed = 1, innerSpeed = -1,
 size = 0.05, color = {1,0,0,1},},
 {distance = 0.4, outerSpeed = 0.5, innerSpeed = 0.3,
 size = 0.09, color = {0.8,1,0,1}, moons = {
 {distance = 0.15, outerSpeed = 2, innerSpeed = 1,
 size = 0.04, color = {0.8,0.7,0.7,1},},
 }},
 {distance = 0.9, outerSpeed = 0.4, innerSpeed = -0.5,
 size = 0.2, color = {0.2,0.7,1,1}, moons = {
 {distance = 0.2, outerSpeed = -2, innerSpeed = -1,
 size = 0.04, color = {0.9,0.9,0.9,1}, },
 {distance = 0.3, outerSpeed = -1.5, innerSpeed = -1,
 size = 0.03, color = {0.7,0.7,0.9,1},},
 }},
 }}
}

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Legacy Method with OpenGL 1.x–2.1

132

Space objects will be drawn with the drawObject function, which will accept one
parameter—object color. This function will draw an object at position (0,0,0) with the
specified color. You can decide whether the object will be represented by a rectangle,
sphere, or anything you want. That's all you'll need for now.

How to do it…
First, you'll want to start with a star—the sun. For simplicity, you can assume that the sun
will be the center of your small world. You can assume that the sun is static. The next step is
to set the position of the planets. Each planet orbits around the sun, so you'll need to apply
rotation. Don't worry, the sun already has its position and it won't be affected by the following
transformations.

Each planet has its own distance, especially if you don't want the planets to collide. So, the next
transformation will be the translation to set the distance.

The next thing you'll probably want is the planet rotation around its own axis. Now, the problem
is, how to place moons around the planet so that each moon can have its own rotation, which
isn't affected by the rotation of the planet. You can do this by saving the matrix state before
you do the planet rotation around its own axis. You can do the same with planets, so each
one will have its own rotation speed and distance. After you have placed the planet, you can
restore the matrix state and rotate the moon around the planet.

After this, you only need to set the moon distance from the planet by translation, and finally,
you can rotate the moon around its own axis.

The following code will process all the stars, planets, and the moon step by step:

gl.MatrixMode(gl_enum.GL_MODELVIEW)
for _, star in ipairs(stars) do
 gl.LoadIdentity()
 gl.PushMatrix()
 gl.Scalef(star.size, star.size, 1)
 drawObject(star.color) - draw the star
 gl.PopMatrix()

 for _, planet in ipairs(star.planets) do
 gl.PushMatrix()
 planet.outerAngle = math.fmod((planet.outerAngle or 0) +
 planet.outerSpeed, 360)
 planet.innerAngle = math.fmod((planet.innerAngle or 0) +
 planet.innerSpeed, 360)

 gl.Rotatef(planet.outerAngle, 0, 0, 1)
 gl.Translatef(planet.distance, 0, 0)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

133

 gl.PushMatrix()
 gl.Rotatef(planet.innerAngle, 0, 0, 1)
 gl.Scalef(planet.size, planet.size, 1)
 drawObject(planet.color) - draw the planet
 gl.PopMatrix()

 if planet.moons then
 for _, moon in ipairs(planet.moons) do
 gl.PushMatrix()
 moon.outerAngle = math.fmod((moon.outerAngle or 0) +
 moon.outerSpeed, 360)
 moon.innerAngle = math.fmod((moon.innerAngle or 0) +
 moon.innerSpeed, 360)

 gl.Rotatef(moon.outerAngle, 0, 0, 1)
 gl.Translatef(moon.distance, 0, 0)
 gl.PushMatrix()
 gl.Rotatef(moon.innerAngle, 0, 0, 1)
 gl.Scalef(moon.size, moon.size, 1)
 drawObject(moon.color) - draw the moon
 gl.PopMatrix()
 gl.PopMatrix()
 end
 end
 gl.PopMatrix()
 end
end

This will result in an animated scene of the solar system model. The following screenshot
shows the resulting solar system model with textured space objects:

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Legacy Method with OpenGL 1.x–2.1

134

How it works…
This first thing this recipe does is to set the active matrix mode with the gl.MatrixMode
function. This function accepts four matrix modes:

Matrix mode
names

Guaranteed
minimum
stack depth

Description

GL_MODELVIEW 32 This mode applies transformations to the current set of
objects in the scene.

GL_PROJECTION 2 The projection matrix affects the current camera view.
It's usually used for setting up the zooming factor,
aspect ratio of the screen, and perspective correction.

GL_TEXTURE 2 This mode is used to adjust the texture placement as it
operates on the texture coordinates.

GL_COLOR 2 The color matrix applies transformations to colors.
However, due to poor support, it's rarely used.

After this, the code loops through all the stars, where each star starts with a model view matrix
resets into identity matrix. The next operation is to scale with the gl.Scalef function, but
because this operation will also scale the entire solar system, you'll need to store the current
matrix into stack memory with the gl.PushMatrix function. After scaling, you can draw the
star, which is based on some generic space object with the unit size. Scaling will multiply the
size of this star. After you have drawn your star, you can restore the model view matrix before
scale transformation.

The next step is planets. Each planet starts with storing the current matrix state, which is
restored after you have finished drawing the planet. After storing, you need to place the planet.
You will need to think of the placement, such as playing 2D tanks artillery game or the famous
Worms game. First, you set the direction and then you set the distance. You'll need to rotate the
coordinate system about the z axis, which is directed toward you, perpendicular to the screen.
This angle will change over time because matrix transformations aren't considered stable. The
mathematical stability issue with floating point numbers is well known in the field of computer
science. Each matrix operation will introduce a certain level of inaccuracy, which is the direct
result of how floating point numbers work. The following example shows a simplified case of
floating point numbers' inaccuracy with adding numbers to the sum:

local sum_of_numbers = 0
local iterations = 3
for i=1,iterations do
 sum_of_numbers = sum_of_numbers + 1/iterations
 print(("%f"):format(sum_of_numbers))
end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

135

-- is the result equal to 1?
print("Sum equals to 1?", sum_of_numbers == 1)

After running this code, you'll get these four lines on the output screen:

0.333333
0.666667
1.000000
Sum equals to 1? true

As you'd expect, a value of one third is represented by an infinite sequence of digits. The
second line contains rounded values of two thirds. The last line contains true if the sum is
equal to 1. Computers can only store a limited amount of information; therefore, you'll always
get an approximate value. Floating point number rounding can be handy in a limited set of
cases. On the other hand, it introduces the so-called rounding error if you're working with
smaller numbers, which is not unusual in matrix math. Try to change a number of iterations up
to 6, and you'll see that, with six iterations, the resulting sum value is not equal to 1 anymore!

You can read more about floating-point numbers in Wikipedia article at
https://en.wikipedia.org/wiki/Floating_point.

Unless you're doing science stuff, you can mitigate inaccuracy problems by storing the
exact state of the matrix for later use.

Rotation is done with the gl.Rotatef(degrees, x, y, z) function, where the angle
should be in the range (0,360) and the x, y, and z parameters are normalized direction
vectors. A normalized vector has a length of 1 unit. Rotation around the X axis uses the
direction vector (1,0,0), rotation around the Y axis uses the vector (0,1,0), and rotation
around the Z axis uses the vector (0,0,1).

Now, you can set the planet's distance from the sun with translation over the X axis with the
gl.Translatef(x,y,z) function. After this, you can scale and rotate the planet around
its own axis of rotation if the planet has no moons. Scaling and rotation will affect the moons,
so you'll need to use the gl.PushMatrix function before applying scaling and rotation.
After drawing your planet, you can restore the matrix with the gl.PopMatrix function.
The following process with moons is practically the same as with drawing planets.

www.it-ebooks.info

https://en.wikipedia.org/wiki/Floating_point
http://www.it-ebooks.info/

Graphics – Legacy Method with OpenGL 1.x–2.1

136

The transformation matrix is defined by a 4 x 4 numerical matrix, which means there are
four rows by four columns. The first three columns represent the position of the axes.
The last column presents the origin point:

This recipe example uses six types of matrix operations, which are as follows:

 f Load matrix identity

 f Push matrix into stack

 f Pop matrix from stack

 f The translation matrix

 f The rotation matrix

 f The scale matrix

Every matrix operation, except push and pop, is defined by a special form of transformation
matrix. For instance, the identity matrix contains one on the diagonal from the top left to the
bottom right edge of the matrix. Any other field contains a zero value. Transformation matrices
are applied to vertices by matrix multiplication. The following diagram shows the application of
a 4 x 4 translation matrix on the 4 x 1 vector of vertex coordinates:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

137

This sample uses the vertex at location (0,1,2). The last element of the vertex location vector
is the w coordinate, which is also known as the homogeneous coordinate. This w coordinate
can help the with representation of affine transformations such as translation or perspective
correction. For instance, directional vectors use a w value equal to 0, while positional vectors
use w = 1. You can find out more about affine transformations in the article at https://
en.wikipedia.org/wiki/Transformation_matrix#Affine_transformations.

On the left-hand side, there is a translation matrix that moves the vertex in all axes by (1,2,3).
The right-hand side of multiplication contains positional vectors with w equal to 1 and it's placed
at the point with (0,1,2) coordinates in the Euclidean space. This vector transformation will
result in homogeneous coordinates (1,3,5,1). However, you'll most probably need a Euclidean
space coordinate, which can be easily obtained by dividing the first three coordinates by the w
coordinate. The final result will consist of a point in the Euclidean space with coordinates (1,3,5),
which can be directly used to set a new vertex position.

Also, do note that the multiplication between matrix and vector in this example results in a
vector with a size of 4 x 1 (four rows and one column). This is a result of the matrix multiplication
rule. A vector can be regarded as a matrix with one column or one row respectively. Let's assume
that you want to multiply two matrices with sizes A x B and B x C. This will always result in a
matrix with a size of A x C.

The identity matrix
The identity matrix has a special property that multiplies any 4 x 4 matrix with a 4 x 4 identity
matrix, and the resulting matrix will remain the same as the original matrix. The identity matrix
also presents the neutral operation as it doesn't change anything. The identity matrix has the
following form:

The translation matrix
The translation matrix is similar to the identity matrix with the exception that the last column
contains X, Y, and Z coordinates that shift the origin of the coordinate system:

www.it-ebooks.info

https://en.wikipedia.org/wiki/Transformation_matrix#Affine_transformations
https://en.wikipedia.org/wiki/Transformation_matrix#Affine_transformations
http://www.it-ebooks.info/

Graphics – Legacy Method with OpenGL 1.x–2.1

138

The scale matrix
The scale matrix is based on the identity matrix, where the scale is defined as a scaling
factor in each dimension. These scaling factors are positioned in the diagonal of the matrix.
You can see this in the following diagram:

The rotation matrix
The rotation matrix is a bit more complicated. Its columns contain positions of the axes for
the rotated coordinate system. This matrix can be decomposed into simpler matrices that
contain rotation in one direction. For instance, complex rotation in all axes in 3D space can be
decomposed into three matrices. The first one rotates the coordinate system in the x dimension,
the second one rotates in the y dimension, and the last one rotates in the z dimension. Note that
the order of rotation matrices is important. Because of this, rotation around the z and the x axes
is different from the rotation around the x and the z axes. Rotation matrices have two forms. One
for the right-handed coordinate system and one for the left-handed system. OpenGL uses the
standard right-handed coordinate system. Also, that's why positive y coordinates are directed
towards the top of the screen.

The form of the rotation matrix around the x axis is as follows:

The rotation matrix about the y axis has the following form:

The matrix for rotation about the z axis has the following form:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

139

There's more…
You can use textured rectangles for each type of space object, so you might be able to recognize
whether the space object is a star, a planet, or a moon.

You can load your own transformation matrices into OpenGL with the gl.LoadMatrix
and gl.LoadTransposeMatrix functions. These functions accept one Lua table with
16 elements of the 4 x 4 matrix. You are also allowed to apply your own matrix multiplication
with the gl.MultMatrix and gl.MultTransposeMatrix functions. Be aware that this
matrix multiplication is slower because you are sending a bunch of data from CPU to GPU
with each function call.

See also
 f The Setting up the orthogonal and perspective cameras recipe

Setting up the orthogonal and perspective
cameras

The camera view is affected by the projection matrix. The projection matrix allows you to set
up the camera position, rotation and the size of visible space.

Games mostly use two modes of camera projection. The first one is the orthogonal mode,
which can be used to draw 2D scenes on the screen. This mode doesn't use the perspective
camera, so the object's distance doesn't affect its size. On the other hand, the perspective
mode causes farther objects to be visibly smaller than the nearer objects.

Getting ready
This recipe will assume that the current screen dimensions are stored in the variables
screen_width and screen_height. These variables might change their values when
you resize the application window or change the screen resolution. You might want to
update these variables on resize event.

How to do it…
Camera space operations are divided into two parts. The first one shows how to use orthogonal
projection for 2D screen elements and the second one will refer to perspective projection, which
is used primarily for 3D scenes.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Legacy Method with OpenGL 1.x–2.1

140

The orthogonal mode
The orthogonal mode is used commonly with UI elements, which are on the 2D surface
of the screen. It causes parallel projection. This mode can be applied with the gl.Ortho
function, which will set up the projection matrix. The following code shows you how to use
this function properly:

local left, right = 0, screen_width
local top, bottom = 0, screen_height
local near, far = -1, 1
gl.MatrixMode(gl_enum.GL_PROJECTION)
gl.LoadIdentity()
gl.Ortho(left, right, bottom, top, near, far)

This will cause a change to the coordinate system. The vertex coordinate (0,0) will be positioned
on the top-left corner of the screen. The bottom-right corner will correspond to the coordinate
(screen_width,screen_height). Remember that you don't have to change the size of the
orthogonal view with every change of the window size. The size of the orthogonal projection can
be viewed as a grid where you divide the screen into even parts. If you need to divide the screen
space into 10 x 10 even parts, you'll be using the following code:

gl.Ortho(0,10, 10, 0, -1, 1)

The perspective mode
This perspective mode is commonly used in 3D graphics, where you need to do perspective
correction, move or rotate the camera, and change the field of view (FOV). To keep things
simple, you can use the OpenGL utility library function gl.Perspective, which has the
following specification:

gl.Perspective(fov, screen_aspect_ratio, zNear, zFar)

The first parameter fov defines the field of view in the Y direction in degrees. The screen
aspect ratio is a ratio of the screen width to the screen height. The last two parameters
zNear and zFar specify the position of the near and far clipping plane. Both the values
must be positive numbers. Precision of the depth buffer is affected by the zNear and zFar
ratio, which is defined as the zFar value divided by zNear. The greater the ratio, the greater
will be the bits of depth buffer that are lost.

You can apply matrix transformation on the camera as well. With this, you can achieve camera
movement, rotation, and scaling.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

141

How it works…
The whole process of transformation from 3D space to 2D space is based on matrix
multiplications. Transformation matrices are presented as a state in OpenGL. This means
once you set up a certain transformation matrix, it will be used until you change it. This recipe
won't cover matrix transformations in detail as this is a subject for the whole book. A visual
representation of the whole transformation process can be seen in the following diagram:

Vertex Modelview
Matrix

Projection
Matrix

Perspective
Division

(Also known as
perspective correction)

Viewport
Transformation Screen

There's more…
The OpenGL function, gl.Frustum, presents a simple way to compute the transformation
matrix for perspective corrections, which is important in realistic 3D scenes. It defines the
viewing volume for the current scene and has the following specification:

gl.Frustum(left, right, bottom, top, near, far)

The first four parameters define a size of the viewable portion on the screen. The last two
parameters are used to define the viewing distance.

As you can see, this function is very similar to the gl.Ortho function in terms of parameters.
However, instead of using screen edges, this function uses clipping planes. For a better
understanding, see the following diagram:

Camera

Left

Top

Right

Near Far

Bottom

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Legacy Method with OpenGL 1.x–2.1

142

The following code shows how the gl.Perspective function works in relation to
the gl.Frustum function. As you can see, the gl.Perspective function is actually
a shortcut that computes positions of clipping planes and submits them directly to the
gl.Frustum function:

function computeFrustum(fov, screen_aspect_ratio, zNear, zFar)
 -- tangent value refers to the half of the size of
 -- viewable screen portion
 local tangent = math.tan(math.rad(fov/2))
 local bottom = tangent*zNear
 local top = -bottom
 local right = bottom*screen_aspect_ratio
 local left = -right
 return left, right, bottom, top, zNear, zFar
end

The result of this function can be used directly on the gl.Frustum function.

You can use the gl.Viewport function to select the screen area that will be used for
rendering. You can use this function to do split screen rendering.

See also
 f The Moving, rotating, and scaling objects recipe

Setting up materials
Lighting can add certain dynamics into your 3D scene or game, which can make it more
immersive. Everything you see is a light that reflects from surfaces. Some part of the visible
light is absorbed by the material on a surface. The rest of the visible light spectrum defines
the material color. You can say that the surface material reacts with the light in a certain way.
Therefore, OpenGL attributes light processing into parts—material and lighting.

OpenGL tries to approximate light distribution and reflection by five material attributes, which
are as follows:

 f GL_DIFFUSE: This specifies the color of the surface and is mostly the attribute you
will want to use

 f GL_AMBIENT: This affects all vertices equally and often simulates ambient light
 f GL_SPECULAR: This is the color of the highlight
 f GL_EMISSION: This is the emitted light color, which can be used for surfaces that

emit light, such as lamps or LEDs
 f GL_SHININESS: This specifies the size of the highlighted area; smaller values are

often used for metal surface simulation

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

143

Getting ready
Material settings are applied only when lighting is enabled. You can enable lighting with
this line:

gl.Enable(gl_enum.GL_LIGHTING)

Otherwise, scene objects will use the vertex color defined by the gl.Color function.
The recipe will assume that your scene contains white omnidirectional light. This light
can simulate the light bulb.

How to do it…
Materials are applied to polygons in a similar fashion as vertex colors. They can be used on
the front side or the back side of the polygons. You can set the material properties with the
gl.Materialf and gl.Materialfv functions. The following code will set up the material
for the front side of the polygons:

local m_diffuse = {0.8, 0.0, 0.0, 1.0}
local m_ambient = {0.0, 0.0, 0.5, 1.0}
local m_specular = {1.0, 1.0, 1.0, 1.0}
local m_emission = {0.0, 0.0, 0.0, 1.0}
local m_shininess = 50
local m_side = gl_enum.GL_FRONT

gl.Materialfv(m_side, gl_enum.GL_DIFFUSE, m_diffuse)
gl.Materialfv(m_side, gl_enum.GL_AMBIENT, m_ambient)
gl.Materialfv(m_side, gl_enum.GL_SPECULAR, m_specular)
gl.Materialfv(m_side, gl_enum.GL_EMISSION, m_emission)

gl.Materialf(m_side, gl_enum.GL_SHININESS, m_shininess)

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Legacy Method with OpenGL 1.x–2.1

144

This example will set a bright red material for all polygons that are rendered after this code.
You can see the result in the following screenshot:

Notice that the gl.Materialfv function accepts the Lua table, whereas gl.Materialf
accepts a number.

How it works…
OpenGL uses material values and light parameters to determine the final vertex color.
The vertex color is a composition of the global ambient color, local ambient color, diffuse
color, specular color, and emission color. Each component is basically a result of the
multiplication of a light component, a material component, and a normal vector.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

145

There's more…
Setting material attributes every time is fairly expensive. What's more, the gl.Color
function doesn't work with the material and you can't include the material color in a vertex
buffer. Fortunately, you can use the gl.ColorMaterial function that binds gl.Color to
the material color attribute. The following example will bind the gl.Color function to the
GL_DIFFUSE attribute:

local r,g,b,a = 1.0, 1.0, 1.0, 1.0
gl.ColorMaterial(gl_enum.GL_FRONT, gl_enum.GL_DIFFUSE)
gl.Enable(gl_enum.GL_COLOR_MATERIAL)
gl.Color4f(r, g, b, a)

Note that the material's diffuse color also has the alpha channel, which can be used to apply
object transparency. Other material attributes don't use the alpha channel!

See also
 f The Setting up lighting recipe

Setting up lighting
The fixed pipeline of OpenGL allows you to set up simple lighting. This lighting system is mostly
used for static scenes with a few light sources. This is mostly because it has a few limitations:

 f OpenGL guarantees that there are at least eight light sources available.

 f It only supports Gouraud shading—vertex color interpolation

 f There are predefined equations for normal mapping and attenuation. You can only
change a few parameters.

If you're okay with these limitations, you can use this lighting system without the need
of CPU-computed lighting or GPU shaders. Games such as Quake and Quake 2 use vertex
colors and light map textures to compute lighting on CPU, which is expensive, but these
games use certain tricks to keep the performance at an acceptable level. For instance,
Quake 2 uses compressed normal vectors that can be compressed into 1 byte.

Getting ready
This recipe will operate not only with vertex position coordinates but also with normal vectors.
Normal vectors are important as they specify the facing direction of polygons. These normal
vectors are applied on triangles usually, but they can be used on vertices.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Legacy Method with OpenGL 1.x–2.1

146

How to do it…
First, you'll need to obtain normal vectors. If you don't already have them, you can compute
them for each triangle. Let's say that the triangle contains three vertices v1, v2, and v3. Each
vertex has three coordinates: x, y, and z. A normal vector can be defined as a cross product
of two vectors that define edges of the triangle. You can use triangle vertices v1, v2, and v3
to obtain these two vectors U and V. Finally, the U and V vectors can be used to compute the
normal vector. The whole procedure is explained in the following lines, for which, first you need
to obtain the U and V vectors:

U.x = v2.x - v1.x
U.y = v2.y - v1.y
U.z = v2.z - v1.z

V.x = v3.x - v1.x
V.y = v3.y - v1.y
V.z = v3.z - v1.z

Now you can use these vectors to compute the normal vector N:

N.x = U.y*V.z - U.z*V.y
N.y = U.z*V.x - U.x*V.z
N.z = U.x*V.y - U.y*V.x

The last thing you'll need to do is normal vector normalization. It means that the vector will
always have a length of 1 unit. You can perform normalization by first obtaining the current
length of the normal vector:

length = math.sqrt(N.x*N.x + N.y*N.y + N.z*N.z)

Now, you'll need to divide each normal vector coordinate with this length:

N.x = N.x/length
N.y = N.y/length
N.z = N.z/length

Finally, with normal vector N, you can draw a triangle:

gl.Begin(gl_enum.GL_TRIANGLES)
 gl.Normal3f(N.x, N.y, N.z)
 gl.Vertex3f(v1.x, v1.y, v1.z)
 gl.Vertex3f(v2.x, v2.y, v2.z)
 gl.Vertex3f(v3.x, v3.y, v3.z)
gl.End()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

147

From now, this triangle will be able to reflect light because OpenGL knows in which direction the
triangle is facing. In some cases, you'll need to change the direction of the normal vector to the
opposite direction in relation to a different order of vertices, which is defined by winding. This
may be important if you change the definition of the front-facing and back-facing polygons with
the gl.FrontFace function. By default, OpenGL uses gl.FrontFace(gl_enum.GL_CCW),
which means that the front face of the triangle is the one facing the normal vector that is
computed from the vertices submitted in the counterclockwise direction.

A light source can be defined with three basic properties—diffuse color, specular color, and
ambient color. These properties can be set with the following code:

local light_source = gl_enum.GL_LIGHT0
local light_diffuse = {1, 1, 1, 1}
local light_specular = {1, 1, 1, 1}
local light_ambient = {0, 0, 0, 1}

gl.Lightfv(light_source, gl_enum.GL_DIFFUSE, light_diffuse)
gl.Lightfv(light_source, gl_enum.GL_SPECULAR, light_specular)
gl.Lightfv(light_source, gl_enum.GL_AMBIENT, light_ambient)

This will produce a white light source. Each light source has its own identifier
gl_enum.GL_LIGHTx, where x is a number from 0 to 7. You can turn the light source
on or off with the following command:

gl.Enable(light_source) -- to turn on
gl.Disable(light_source) -- to turn off

You can also set other light source parameters such as light source position or direction,
light spot size and direction, and light attenuation. These parameters can be set by using
the following code:

local light_position = {0.2, 0.2, 0.4, 1.0}
local light_spot_direction = {0, 0, 0}
local light_attenuation_constant = 1
local light_attenuation_linear = 0.04
local light_attenuation_quadratic = 0.08
local light_spot_cutoff = 120

gl.Lightfv(light_source, gl_enum.GL_POSITION, light_position)
gl.Lightfv(light_source, gl_enum.GL_SPOT_DIRECTION,
light_spot_direction)
gl.Lightf(light_source, gl_enum.GL_CONSTANT_ATTENUATION,
light_attenuation_constant)
gl.Lightf(light_source, gl_enum.GL_LINEAR_ATTENUATION,
light_attenuation_linear)
gl.Lightf(light_source, gl_enum.GL_QUADRATIC_ATTENUATION,
light_attenuation_quadratic)
gl.Lightf(light_source, gl_enum.GL_SPOT_CUTOFF, light_spot_cutoff)

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Legacy Method with OpenGL 1.x–2.1

148

Special care should be taken to light position the vector. As you can see, it uses four
coordinates x, y, z, and w. The last coordinate w can be set to 0 or 1. A zero value means
that the light source is directional. This can be used for light panels, big screens, and so on.
If the w coordinate equals to 1, the light source is positional. This is often viable for light
bulbs, car lights, or spot lights.

How it works…
The final vertex color is defined by this equation:

C = global_ambient * material_ambient + material_emission

for each light L
 C = C + light_attenuation * spotlight_factor * (
 light_ambient * material_ambient +
 light_diffuse * material_diffuse * normal . vectorLC +
 light_specular * material_specular *
 (normal . vectorRV) ^ shininess
)

Every light on the scene contributes to the final vertex color. This equation uses the dot
product with the vertex normal vector to determine the surface light intensity. In the first
case, it's used with vectorLC, which contains direction of the light source to the vertex
position. As you can see, camera orientation does not play any role in diffuse lighting.

In the second case, the dot product is used together with vectorRV, which contains the camera
orientation vector. This is used to produce a shiny surface effect and it can be controlled with the
shininess value. A lower shininess value will result in brighter light reflection.

The light attenuation value is based on the following equation:

light_attenuation = 1 / (a + b*r + c*r^2)

The distance between vertex and the light source is represented by the r variable. Other
variables: a, b, and c are attenuation factors:

 f Constant attenuation—a

 f Linear attenuation—b

 f Quadratic attenuation—c

Attenuation determines how much will the light intensity decrease with increasing distance
between the light source and object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

149

There's more…
If your object looks too "blocky" with lighting, you might need to apply some kind of interpolation
for normal vectors. This recipe applies them for whole polygons. You can use linear interpolation
to obtain normal vectors for each vertex. The normal vector for the vertex can be computed in
the following fashion. Let's assume that you want to compute the vertex normal vector for the V1
vertex, which is a part of the triangle with the normal vector N1. This vertex V1 is also a part of
an other two triangles with normal vectors N2 and N3. A new normal vector N1V1 for vertex V1
will be computed as follows:

N1V1.x = (N1.x + N2.x + N3.x)/3
N1V1.y = (N1.y + N2.y + N3.y)/3
N1V1.z = (N1.z + N2.z + N3.z)/3

Now, when you compute normal vectors for each vertex, you can submit them for each vertex
and you'll get smooth surface with lighting.

See also
 f The Setting up materials recipe

Using display lists
Display lists present a way to duplicate scene objects. They use a block structure such as
the gl.Begin and gl.End function pairs. Almost every OpenGL call is stored into display
list except those that manipulate with buffers and memory content. Display lists were
intensively used and misused in the past to make scene rendering faster. However, they
are now deprecated in relation to vertex buffers, which offer superior performance.

Getting ready
Before using the display list, you need to generate the display list object with the
gl.GenLists(range) function. This function accepts one argument that represents the
number of continuous display lists to be generated. It returns an identifier of the first display list.

The included sample code will assume that the dl_id variable contains a valid display
list identifier.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Legacy Method with OpenGL 1.x–2.1

150

How to do it…
The display list can be filled with instructions in a block that is enclosed by the gl.NewList
and gl.EndList commands. The gl.NewList function has this specification:

gl.NewList(display_list_identifier, mode)

There are two modes that the display list builder will work with:

Display list modes Description
GL_COMPILE Here, the display list is only compiled but is not executed.

It is useful if you're preparing a display list for later use.
GL_COMPILE_AND_EXECUTE Here, the display list is compiled and executed. It behaves

like an ordinal command block but the display list can
reproduce the entire command block many times over.

The sample code with the usage of display lists is as follows:

gl.NewList(dl_id, gl_enum.GL_COMPILE)
 gl.Begin(gl_enum.GL_TRIANGLES)
 -- A
 gl.Color4f(1, 0, 0, 1)
 gl.Vertex3f(-0.5, -0.5, 0)
 -- B
 gl.Color4f(0, 1, 0, 1)
 gl.Vertex3f(0.5, -0.5, 0)
 -- C
 gl.Color4f(0, 0, 1, 1)
 gl.Vertex3f(0.5, 0.5, 0)
 gl.End()
gl.EndList()

After this, you can execute the display list with the gl.CallList or gl.CallLists
commands. These commands present a convenient way to call repetitive tasks with one
command. The following example shows the usage of both functions:

gl.CallList(dl_id)
gl.CallLists({dl_id, ...})

After you no longer need the display list, you have to delete the display list with the
gl.DeleteLists(display_list_identifier, range) function.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

151

How it works…
Display lists compile the entire command block for efficient execution. Games often use
display list compilations during the loading screen, where it prepares all the important data
for the gameplay.

Note that the display lists contain only command calls. You are allowed to do the nesting
of display lists with the gl.CallList(another_display_list) function call inside the
display list, but the content of another display list is not transferred. Therefore, you can easily
replace the content of the child display list.

Another thing is that, once the display list is compiled, you might only replace the whole
display list content.

See also
 f The Setting up the vertex buffer recipe

Setting up the vertex buffer
The vertex buffer offers another technique of improving performance. Instead of using
the gl.Vertex function for each vertex, you can load vertices into the memory in a batch.
This is considerably faster because you only use one function call instead of hundreds or
thousands of calls.

Getting ready
Vertex buffers are represented by vertex buffer objects or VBO in short. VBO was introduced as
an extension of OpenGL and you can check its presence in the extension list with the extension
name GL_ARB_vertex_buffer_object. Fortunately, LuaGL contains support for the GLEW
library, which manages extension initialization.

The vertex buffer object must be initialized with the gl.GenBuffers function. This function
will only reserve the buffer object identifiers and returns a Lua table with the buffer object
identifiers. Further buffer object specification must be done with the gl.BufferData function.

This recipe assumes that you already have a valid buffer object generated with the
following code:

local vbo_ids = gl.GenBuffers(2)
local vbo_vertices = vbo_ids[1]
local vbo_colors = vbo_ids[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Legacy Method with OpenGL 1.x–2.1

152

There are two vertex buffer objects generated, where vbo_vertices will contain vertex
positions and vbo_colors, which will contain the color information for the vertices.

How to do it…
The usage of the vertex buffer objects is, in many ways, similar to texture object management.
There are also the gl.BindBuffer and gl.BufferSubData functions. That's why the
gl.BufferData function is used mostly for buffer initialization and gl.BufferSubData
is used to update buffer contents.

First, you must fill the vertex buffer object with data. You can do this by selecting the current
buffer object with the gl.BindBuffer function:

gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, vbo_vertices)

After this, you can fill the buffer with data:

local data = {
 -0.5, -0.5, 0,
 0.5, -0.5, 0,
 0.5, 0.5, 0,
}
local usage = gl_enum.GL_STATIC_DRAW
gl.BufferData(gl_enum.GL_ARRAY_BUFFER, data, usage)

By using the GL_STATIC_DRAW constant for usage parameter, you give OpenGL a hint
that you don't intend to change the buffer content very often. This may help to improve
performance. You can do the same for vertex color data:

gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, vbo_colors)
local data = {
 1, 0, 0, 1,
 0, 1, 0, 1,
 0, 0, 1, 1,
}
local usage = gl_enum.GL_STATIC_DRAW
gl.BufferData(gl_enum.GL_ARRAY_BUFFER, data, usage)

The final step is setting the OpenGL client state, which will tell OpenGL what kind of data will
be used:

gl.EnableClientState(gl_enum.GL_VERTEX_ARRAY)
gl.EnableClientState(gl_enum.GL_COLOR_ARRAY)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

153

Now, you're ready to use those vertex buffers in your scene. OpenGL uses a special way of
using buffer data. It consists of using gl.BindBuffer to select the buffer object and then
calling the pointer version of the gl.Vertex, gl.Color, or gl.TexCoord functions. The
following code shows how this process looks:

gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, vbo_vertices)
gl.VertexPointer(3)
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, vbo_colors)
gl.ColorPointer(4)
gl.DrawArrays(gl_enum.GL_TRIANGLES, 0, 3)

This will draw a colored triangle on the screen.

How it works…
Vertex buffers are defined by the gl.BufferData function. This function accepts three
arguments: the buffer type, data, and data usage hint. The vertex buffer objects use the GL_
ARRAY_BUFFER type. Buffer data is defined by the Lua table, which is converted into an array
of float data type internally. The last parameter might help you with performance optimization.
You can use one of the values listed in the following table:

Usage type Description
GL_STREAM_DRAW Here, the data will be modified by the application once and used a

few times for drawing. This usage is desirable for streaming movies
or animations into the OpenGL texture.

GL_STREAM_READ Here, the data will be modified by OpenGL once and used a few
times in the application query command.

GL_STREAM_COPY Here, the data will be modified by OpenGL once and used a few
times for drawing. You can use this for postprocessing effect
buffers.

GL_STATIC_DRAW Here, the data will be modified by the application once and used
many times for drawing. This is often used for world rendering.

GL_STATIC_READ Here, the data will be modified by OpenGL once and used many
times in the application query command.

GL_STATIC_COPY Here, the data will be modified by OpenGL once and used many
times for drawing.

GL_DYNAMIC_DRAW Here, the data will be modified by the application repeatedly and
used many times for drawing.

GL_DYNAMIC_READ Here, the data will be modified by OpenGL repeatedly and used
many times in the application query command.

GL_DYNAMIC_COPY Here, the data will be modified by OpenGL repeatedly and used
many times for drawing.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Legacy Method with OpenGL 1.x–2.1

154

When using vertex buffers, you need to choose which vertex parameters will be used. That's
why there is a need for the gl.EnableClientState functions. For the purpose of vertex
buffer object management, there are eight client states, which are listed in the following table:

Client state names Corresponding pointer functions
GL_COLOR_ARRAY gl.ColorPointer

GL_EDGE_FLAG_ARRAY gl.EdgeFlagPointer

GL_FOG_COORD_ARRAY gl.FogCoordPointer

GL_INDEX_ARRAY gl.IndexPointer

GL_NORMAL_ARRAY gl.NormalPointer

GL_SECONDARY_COLOR_ARRAY gl.ColorPointer

GL_TEXTURE_COORD_ARRAY gl.TexCoordPointer

GL_VERTEX_ARRAY gl.VertexPointer

The functions gl.VertexPointer and gl.ColorPointer use only one parameter
that specifies how many elements are there in the buffer for one vertex. In this case,
each vertex uses X, Y, and Z coordinates. Therefore, gl.VertexPointer uses three
elements. The colors are defined by four color channels: R, G, B, and A, which is why the
gl.ColorPointer function uses four elements.

There's more…
Vertex buffers are also a standard feature of the new OpenGL 4.0+ standard. The immediate
mode is deprecated from this version, so vertex buffers are the only way of transferring vertex
data into the graphic card memory. This is also valid for the mobile profile of OpenGL ES 2.0.

www.it-ebooks.info

http://www.it-ebooks.info/

5
Graphics – Modern

Method with
OpenGL 3.0+

This chapter will cover the following recipes:

 f Loading and using GLSL shaders

 f Using uniform variables with shaders

 f Writing a vertex shader

 f Writing a fragment (pixel) shader

 f Drawing primitives by using vertex buffers

 f Rendering to texture

 f Applying highlights and shadows to the scene

 f Bumpmapping

Introduction
This chapter will deal with programming and using dynamic rendering pipeline in OpenGL.
While shaders have been available since OpenGL 2.0, their first versions are now considered
deprecated. A wide variety of graphic cards now support at least OpenGL 3.3, which implements
the currently valid specification of GLSL shaders. This chapter will focus on GLSL version 3.3,
which is relevant for OpenGL 3.3.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

156

Shaders are small programs that define the behavior of the graphic card for scene rendering.
They are usually written in C-like language and compiled into binary form by the graphical
driver. Shader programs are compiled at runtime. Just out of curiosity, a newer version of
OpenGL 4.1 allows you to compile shader programs into binary form, which can be saved
into a file and used later without re-compilation.

Shaders provide substantially better flexibility than a fixed pipeline and present a door to
parallel graphical processing on GPU.

The immediate mode for the fixed rendering pipeline used rendering commands enclosed
in the gl.Begin and gl.End pairs. Dynamic rendering pipeline no longer uses these
commands. Instead, it relies on massive usage of vertex buffers for data storage. Usually, you
fill the vertex buffer with vertex data such as color, position, texture coordinates, and normal
vectors. This data is used by shader programs to render vertices. This approach is much
faster because you're encouraged to transfer vertex data in batches. Frequent calls from the
application to the GPU cause stalling of rendering processes, and therefore, decrease the
overall performance.

This chapter will also show a few tricks with rendering to texture, which can be used for
postprocessing effects. The final set of recipes will deal with the Phong shading effect
and the bumpmapping effect.

Loading and using GLSL shaders
Shader programs must be compiled before use. Fortunately, OpenGL offers an interface
to load shader programs in text form. The shader source code uses a syntax similar to the
C code with several limitations. For instance, you can't perform recursive function calls.
After compilation, you can check whether there were any errors in the process.

Shaders can use input values from your application. These input values are called uniforms.
You can use these values in any part of the rendering pipeline, which consists of several
shader program stages:

 f Vertex shader: This performs operations on vertex attributes: vertex color, position,
normal vector and many others

 f Tessellation control shader: This controls tessellation amount on polygons

 f Tessellation evaluation shader: This computes the interpolated vertex positions
after tessellation

 f Geometry shader: This performs per vertex operations on polygons

 f Fragment shader: This operates on fragments after the rasterization process;
the results are stored into the frame buffer, the depth buffer, or the stencil buffer

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

157

Only vertex and fragment shaders are mandatory for basic rendering of operations.
The following diagram shows the complete rendering pipeline:

Tessellation

Fragment processing

Vertex Shader
Tessellation

Control Shader
Tessellator

Fragment tests Fragment Shader Rasterization Clipping Geometry Shader

Tessellation
Evaluation Shader

Transform
Feedback

Write maskingFramebuffer
blending and logic

Write result to
framebuffer

The red parts are mandatory shaders; the optional shaders are in orange. Blue and white
parts present steps that aren't fully controllable by the user.

Getting ready
Before using GLSL shaders, you should always check whether the current graphic card
supports them. For this, you can use the gl.IsSupported function. It accepts one string
parameter that consists of the OpenGL extension names and version names. For example,
the following code tests whether there is support for OpenGL 3.0, vertex and fragment
shaders in the current system:

assert(gl.IsSupported("GL_VERSION_3_0 GL_ARB_vertex_shader
GL_ARB_fragment_shader"))

Each string part is delimited with one space and always starts with the GL_ prefix. After this
check, you can be confident using GLSL shaders or any other extension. Otherwise, you might
end up producing memory access violation or segmentation fault, as the required functions
aren't available.

A list of valid extension names can be found at http://glew.sourceforge.net/glew.
html.

www.it-ebooks.info

http://glew.sourceforge.net/glew.html
http://glew.sourceforge.net/glew.html
http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

158

You'll need the valid shader source code. You can use the following example of the vertex
shader source code:

local shader_source = [[
#version 330 //use GLSL specification version 3.3
layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec4 VertexColor;
layout (location = 2) in vec2 VertexTexCoord;

out vec4 Color;
out vec2 TexCoord;

void main(){
 gl_Position = vec4(VertexPosition.xyz, 1.0);
 Color = vec4(VertexColor.rgba);
 TexCoord = vec2(VertexTexCoord.xy);
}
]]

This vertex shader uses GLSL version 3.3 and does basic preparation of vertex attributes for
the next stage.

How to do it…
GLSL shaders and programs use special OpenGL objects. These must be created before
using. You can create the shader object with the gl.CreateShader function. It accepts
the shader stage identifier and results in a numerical object identifier. Let's assume that this
shader object identifier is stored in the shader_object variable with the following code:

local shader_stage = gl_enum.GL_VERTEX_SHADER
local shader_object = gl.CreateShader(shader_stage)

Now you can use this shader object to load your shader's source code:

gl.ShaderSource(shader_object, shader_source)

After this step, you can compile the shader with the gl.CompileShader function. You can
check the shader compilation status with this code:

local compilation_status = ""
local status = gl.GetShaderiv(shader_object,
gl_enum.GL_COMPILE_STATUS)
if status == gl_enum.GL_FALSE then
 compilation_status = gl.GetShaderInfoLog(shader_object)
end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

159

The status variable contains a numerical value, which is set to GL_TRUE if the compilation
is successful. Otherwise, it's set to GL_FALSE and you can obtain the textual error message
with the gl.GetShaderInfoLog function.

After successful compilation, you can link shader objects into shader programs, but first you
must create one with the gl.CreateProgram function. It returns a numerical identifier for
the shader program. Let's store this value into the shader_program value as shown in the
following code:

local shader_program = gl.CreateProgram()

Now you can attach the shader objects into the shader program with the following command:

gl.AttachShader(shader_program, shader_object)

With this step done, you can finally link shaders into the program with the command:

gl.LinkProgram(shader_program)

You should always check for the last linking operation status with the following code:

local link_status = ""
local status = gl.GetProgramiv(shader_program,
gl_enum.GL_LINK_STATUS)
if status == gl_enum.GL_FALSE then
 link_status = gl.GetProgramInfoLog(shader_program)
end

After the shader program is linked, the shader objects are not needed anymore and you can
safely delete them with:

gl.DeleteShader(shader_object)

The shader program can be used with the following code:

gl.UseProgram(shader_program)

If there's no need for the shader program, you can delete it with the following code:

gl.DeleteProgram(shader_program)

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

160

How it works…
The GLSL shader loading process consists of two steps. The first step is the shader stage
compilation into the shader object. It works in a similar fashion as in a C compiler, where the
source code is compiled into binary object files. The compilation is followed by the linking
process. Shader objects are linked into one shader program. This presents the final result of
the GLSL shader preparation process. Of course, your application might contain more than
one shader program and you can switch between them. On some rare occasions, it's better
to merge more shaders into one and separate them with conditional blocks. This approach
introduces additional overhead to the shader code especially in fragment shader, but this might
be better than switching shaders. There's no general rule for this, so you'll need to experiment.

When you're writing your own shaders, you should always take into account the amount
of shader runs for each element. For instance, the vertex shader is used on every vertex,
whereas the fragment shader is almost always used many more times as it operates on
fragment elements. You can think of fragments as pixels on the frame buffer. So, whenever
you're writing a program for the fragment shader, try to think about implementing it in the
vertex shader first. This way you can further optimize your shaders, especially if you intend
to use them in an application on mobile devices.

See also
 f The Using uniform variables with shaders recipe

 f The Writing a vertex shader recipe

 f The Writing a fragment (pixel) shader recipe

Using uniform variables with shaders
Uniform variables present a way to pass variables from the application into GLSL shaders.
However, you are limited to pass numerical values, vectors, and matrices only.

The dynamic rendering pipeline doesn't use immediate mode functions to set up vertices
or matrices. This means functions such as gl.Vertex, gl.Rotate, gl.Translate, and
gl.Scale are of no use anymore. For this situation, vertices are stored in vertex buffers.
Other variables such as model view and projection matrix have to be supplied by uniform
variables. These variables are also used often to set up or change the behavior of the
shader program during runtime. For example, you can adjust the glowing effect amount
in your shader program.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

161

Getting ready
Each uniform variable has its own numerical location identifier. This identifier is used to
access almost any uniform variable. The location identifier is limited to primitive values
such as integer, float, and vectors. Matrices present a special case where you can upload
the whole matrix in one step, but you can retrieve only one element from the shader program
at one time. You can obtain a uniform variable location with the gl.GetUniformLocation
function. There are three ways to use this function:

 f The location of a single primitive value:
local location = gl.GetUniformLocation(shader_program,
"variable_name")

 f The location of an array element:
local location = gl.GetUniformLocation(shader_program,
"array_variable[1]")

 f The location of a structure element:
local location = gl.GetUniformLocation(shader_program,
"structure_variable.element")

Let's assume that shader_program is the valid identifier for the shader program. This function
returns the location identifier of the specified uniform variable. If such a variable doesn't exist
in the shader program or is discarded in the process of compilation, the returned value is -1.
The uniform variable is discarded if it isn't actively used in the shader program.

How to do it…
Now that you've got the location of the uniform variable, you can either set the content of the
uniform variable or obtain its value.

Writing into uniform variables
You can set the uniform variable by one of these three functions: gl.Uniformi,
gl.Uniformf, and gl.UniformMatrix. The first one is used in integer values,
the second is for float number, and the last one is for matrices.

Both gl.Uniformi and gl.Uniformf accept two to five parameters. The first one is
always the location of the uniform variable. The second one can be a primitive numeric
value or Lua table. Lua tables are usually used for vectors. The following examples show
how to set a primitive float number and a vector of floats:

local primitive_value = 1.5
local vector = {1.0, 2.0, 3.0}
gl.Uniformf(location, primitive_value)

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

162

gl.Uniformf(location, vector[1], vector[2], vector[3])
gl.Uniformf(location, vector)

Setting up matrices is a bit more difficult. Matrix values have to be stored in a flat Lua table.
Matrix sizes can vary from 2 x 2 to 4 x 4 elements. You can also let the gl.UniformMatrix
function to transpose your matrix. It means that matrix rows will be swapped with matrix
columns. This is useful if you're supplying matrices that consist of multiple vectors. The
following example shows how to upload the whole matrix of size 4 x 4:

local x,y,z = 1,2,3
local translation = {
 1, 0, 0, x,
 0, 1, 0, y,
 0, 0, 1, z,
 0, 0, 0, 1,
}
local rows, columns = 4, 4
local transpose = false
gl.UniformMatrix(location, translation, rows, columns, transpose)

Reading from uniform variables
Uniform variables can be read from shader programs with the gl.GetUniform functions.
There are four versions of this function. One for each type of value: integer, unsigned integer,
float, and double. Each of these functions can return one or more variables as return values.
This depends on whether the queried variable is a primitive type such as a float, an integer,
or a vector. The following table lists all the versions of the gl.GetUniform function:

Function names Return types
gl.GetUniformi Integer
gl.GetUniformui Unsigned integer
gl.GetUniformf Float
gl.GetUniformd Double

Generic function specification accepts two arguments:

gl.GetUniform(shader_program, location)

For example, if you'd want to obtain a 3D vector from the shader program, you'd use the
following code:

local x,y,z = gl.GetUniformf(shader_program, location)

All three variables would be filled with vector variable content.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

163

How it works…
Uniform variables are available for all parts of the shader program. For instance, you can
access the same uniform variable from the vertex and fragment shaders. You should always
try to minimize the amount of uniform variable updates. Every update consumes a small part
of bandwidth between CPU memory and GPU memory.

Writing a vertex shader
Vertex shaders are programs that operate on vertices and their attributes. This stage is also
used to apply matrix transformations as well. GLSL shader programs use input and output
variables. In the case of a vertex shader, input variables are either uniforms or vertex buffer
data. Output variables are passed to the next stage of rendering the pipeline. There are also
special built-in variables such as gl_Position, gl_PointSize, and others. These are
mostly used with fixed functionality and may not be redeclared.

All shaders use the entry point function—main. This function is applied on each element—vertex.

Getting ready
This recipe will use the GLSL shading language with version 3.3. It assumes that all the
vertices are stored in Vertex Buffer Object (VBO). The vertex shader program is applied
on every vertex that is contained within VBO.

To prepare the vertex shader, you'll need to create the shader object first:

local shader_stage = gl_enum.GL_VERTEX_SHADER
local shader_object = gl.CreateShader(shader_stage)

How to do it…
The shader programs code can be stored in a text file or you can submit it directly as a string
value. This recipe will use the latter method. The following source code will define the basic
vertex shader:

local shader_source = [[
//Requires GLSL 3.3 at least
#version 330

//Input variables – vertex attributes
layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec4 VertexColor;
layout (location = 2) in vec2 VertexTexCoord;

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

164

//Output variables for later shader stages
out VertexData {
 vec4 Color;
 vec2 TexCoord;
} outData;

//Application variable
uniform mat4 matrix;

//Entry function for vertex shader
void main(){
 gl_Position = matrix * vec4(VertexPosition.xyz, 1.0);
 outData.Color = vec4(VertexColor.rgba);
 outData.TexCoord = vec2(VertexTexCoord.st);
}
]]

Now you can load and compile this source code into the shader object:

gl.ShaderSource(shader_object, shader_source)
gl.CompileShader(shader_object)

Be sure to always check for the compilation status. The production version of the game should
use at least some kind of message logging mechanism, so you can store error messages into the
bug report file, which is always handy. In order to store the messages, use the following code:

local status = gl.GetShaderiv(shader_object,
gl_enum.GL_COMPILE_STATUS)
if status == gl_enum.GL_FALSE then
 local compilation_status = gl.GetShaderInfoLog(shader_object)
 error("Vertex Shader compilation failed: "..compilation_status)
end

After these steps, you can finally link the vertex shader with the shader program.

How it works…
It's recommended to specify the required shader specification version at the beginning of the
shader source code. This is done with preprocessor macro:

#version VERSION_NUMBER

The version number is always in the form of three digits. For example, for GLSL version
1.5, one would use a number 150. The good thing is that OpenGL shaders are backwards
compatible. This way you can use older GLSL specifications even on newer graphic cards.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

165

The input variables for the vertex shader can have two forms. You can use either the uniform
variables or the vertex attributes stored in VBO. This recipe uses the vertex attributes with
layout specification. Each vertex attribute layout number represents a VBO identifier. This
way the GLSL shader knows what VBO to use:

layout (location = 0) in vec3 VertexPosition;

Optionally, layouts can be set explicitly in Lua with the following code:

local attribute_name = "VertexPosition"
gl.BindAttribLocation(shader_program, layout_index,
attribute_name)

The vertex shader has to pass results to the next stage. The output variables can be specified
in two ways. The first one uses direct output variable specification:

out vec4 VertexColor;

The second way is more preferred as it offers a certain level of consistency:

out VertexData {
 vec4 Color;
 vec2 TexCoord;
} outData;

This is also called as an interface block. Interface blocks are shared between shader stages.
However, this will work only if the interface block shares the same interface name, variable
name, and also their order and types have to be the same. Notice that the interface block
name VertexData is specified right after our qualifier. The local interface name outData
is valid only in the local context. You can refer to these variables as if you were using C
structures. Therefore, to set the vertex color, you would use the following code:

outData.Color = vec4(...);

You may also omit the local interface name. In that case, you can refer to the interface
variables in this fashion:

Color = vec4(...);

The uniform variables are specified with the qualifier uniform:

uniform mat4 matrix;

The last and the most important part of vertex shader is the main function. This sample does
simple matrix transformation on the vertex position:

gl_Position = matrix * vec4(VertexPosition.xyz, 1.0);

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

166

It takes three coordinates x, y, and z in the form of a vector with three elements. This vector
is extended to contain four elements with the vec4 type declaration. Notice that the forth
element is set to 1. This is because the matrix multiplication rule must be applied. The A x B
matrix can be multiplied only with matrix B x C. This will result in A x C matrix. In this case, you
are using 4 x 4 matrix and you multiply it with the 4 x 1 matrix. Vectors with N elements can
be seen as matrices with the size of N x 1. The result of this is a 4 x 1 matrix or a vector with
four elements.

The other attributes such as the vertex color of texture coordinates are passed unchanged:

outData.Color = vec4(VertexColor.rgba);
outData.TexCoord = vec2(VertexTexCoord.xy);

There's more…
The vector data type in GLSL can contain 2, 3, or 4 components. As you've already seen,
components are accessed by their names x, y, z and w. This is also called swizzling. That's
because you can use any combination of components as long as you maintain the correct
output data type. Therefore, the following code is completely valid:

vec2 vector1;
vec3 vector2 = vector1.xxy;
vec4 vector3 = vector2.zwyx;
vec4 vector4 = vector1.xxxx;

You can use swizzling even on the left side (also known as l-value) of the value assignment:

vec4 vector1;
vector1.xz = vec2(1.0, 2.0);

Alternatively, you can use color component names r, g, b, and a; or even texture coordinate
names s, t, p, and q.

See also
 f The Loading and using GLSL shaders recipe

 f The Using uniform variables with shaders recipe

 f The Writing fragment (pixel) shader recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

167

Writing a fragment (pixel) shader
Fragment shader operates on pixel fragments from the rasterization process. The rasterizer
transforms the whole graphical scene into a set of values that form fragments. A set of values
that are related to one graphical primitive is called a fragment. These values may contain colors,
alpha transparency, depth values, or even user supplied data. The fragment shader program
might even decide whether to discard certain pixels from being drawn into the frame buffer.

Fragment shaders are often used in two-pass postprocessing. In the first pass, the whole
scene is rendered into the texture or a buffer by using the first fragment shader. This shader
renders primitives without postprocessing effects. In the second pass, this texture is used
on a rectangle that covers the whole screen. This pass uses the fragment shader to control
rendering of the texture on the rectangle. This way you can apply various effects such as
High Definition Range transformation—HDR, screen distortions, and many others.

The other uses of the fragment shader may be per pixel lighting and shadows.

Keep in mind that fragment shaders usually use more iterations than vertex shaders.
Therefore, always try to minimize the complexity of the fragment shader program.

Getting ready
The preparation of the fragment shader is fairly similar to the preparation of the vertex shader:

local shader_stage = gl_enum.GL_FRAGMENT_SHADER
local shader_object = gl.CreateShader(shader_stage)

This will create the shader object, which you can use to load and compile the shader
source code.

How to do it…
This recipe will use the shader code stored in a string variable:

#version 330

in VertexData {
 vec4 Color;
 vec2 TexCoord;
} inData;

uniform sampler2D texID;
uniform int textured;

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

168

layout(location = 0) out vec4 diffuseColor;

void main() {
 if (textured>0){
 int LOD = 0;
 ivec2 texSize = textureSize(texID, LOD);
 ivec2 tc = ivec2(inData.TexCoord * texSize);

 vec4 texel0 = texelFetch(texID, tc, LOD);
 vec4 texel1 = texture(texID, inData.TexCoord);

 diffuseColor = inData.Color * texel1.rgba;
 }else{
 diffuseColor = inData.Color;
 }
}

This fragment shader doesn't do anything special. It can draw colored primitive on screen
where the vertex colors are automatically interpolated. Optionally, you can switch uniform
variable textured to draw textured primitive.

How it works…
Firstly, you should always set the required GLSL version. It's considered as a good practice
because this way you can safely expect and use certain features that are available from this
version of GLSL. If this version is not supported on the system, the compilation process
will fail, and therefore, you can apply the fallback mechanism. To set the version use the
following code:

#version 330

Another part is the interface block definition:

in VertexData {
 vec4 Color;
 vec2 TexCoord;
} inData;

Notice that this block contains the same variables as in the vertex shader interface block.
This block is used as data input; therefore, the in qualifier comes before the block name.
Every variable inside this block is accessible via the local block name inData, so to access
vertex color, you'd use inData.Color. Another thing to mention as that these variables are
linearly interpolated by default.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

169

This shader makes use of uniform variables. This first one, called texID points, at one texture,
which is two-dimensional, in this case, and uses float numbers. Therefore, it's defined to use
the sampler2D type. As you already know, there are many types of textures. A list of the
sampler types is shown in the following table:

Sampler type OpenGL texture type Description
gsampler1D GL_TEXTURE_1D This is a 1D texture
gsampler2D GL_TEXTURE_2D This is a 2D texture
gsampler3D GL_TEXTURE_3D This is a 3D texture
gsamplerCube GL_TEXTURE_CUBE_MAP This is a cubemap

texture
gsampler2DRect GL_TEXTURE_RECTANGLE This is a rectangle

texture
gsampler1DArray GL_TEXTURE_1D_ARRAY This is a 1D array

texture
gsampler2DArray GL_TEXTURE_2D_ARRAY This is a 2D array

texture
gsamplerCubeArray GL_TEXTURE_CUBE_MAP_ARRAY This is a cubemap

array texture
gsamplerBuffer GL_TEXTURE_BUFFER This is a buffer texture
gsampler2DMS GL_TEXTURE_2D_MULTISAMPLE This is a multisample

texture
gsampler2DMSArray GL_TEXTURE_2D_MULTISAMPLE_

ARRAY
This is a multisample
texture array

You may wonder why all sampler types have a prefix g. This prefix specifies the element data
type. If you omit this prefix, GLSL assumes that the texture contains float values.

Sampler type prefixes Data types
sampler float

isampler int

usampler unsigned int

The second uniform variable textured enables or disables texturing:

uniform int textured;

You can omit this variable if you don't need to control texturing in your fragment shader.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

170

The last thing you'll need to specify is the output of the fragment shader. The shader in this
recipe uses the color output only. The output variable at location 0 is reserved to diffuse the
color output by default:

layout(location = 0) out vec4 diffuseColor;

On certain occasions, you might want to use multiple outputs in the fragment shader.
Each output variable must have its own location, which in return can be used to bind
the frame buffer. This is often used to split the output to color and the depth buffer.

As in the case of the vertex shader, the fragment shader also uses the main function.
This function is divided into two modes of operation by the control variable textured.
When texturing is enabled, you can access the texture elements—texels—in two ways. Either
you use the normalized float texture coordinates that are within the range (0,1), or you
use the exact texture coordinates specified as an integer's offset values from the origin
point. The first way is used often as you can directly use texture coordinates produced by
the vertex shader. With this method, you can also query subpixel values that are calculated
with linear interpolation:

vec4 texel1 = texture(texID, inData.TexCoord);

The second method is more exact but you'll need to know the texture size in pixels:

vec4 texel0 = texelFetch(texID, tc, LOD);

The LOD or Level of Detail value is used in conjunction with mipmapping. It defines the
mipmap level where the level 0 is a base texture. Be aware that the texelFetch function
uses the ivec texture coordinates that use integer values. You can obtain the texture size
with the textureSize function:

ivec2 texSize = textureSize(texID, LOD);

If you want to use the texture coordinates from the vertex shader with pixel perfect
coordinates, you can use the following code:

ivec2 tc = ivec2(inData.TexCoord * texSize);

It uses float number coordinates that are in the range (0, 1) and multiplies them with texture
dimensions. This will produce the vec2 type vector, which is not what you want to use in this
case. Therefore, you'll need to cast the vec2 vector into the ivec2 vector. All values in the
vector are truncated.

You can apply the texel value directly to the fragment shader output. Alternatively, you can
combine it with vertex color—inData.Color. This value is obtained from the vertex shader
and it's the only output variable if texturing is turned off.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

171

The following code contains a complete example of the simple fragment shader program that
fills the graphical primitive with the texture:

//this shader program requires as least OpenGL 3.3
#version 330
//diffuseTexture will contain texture unit identifier (integer)
uniform sampler2D diffuseTexture;

//structure contains values from previous stage (vertex shader)
//all values use linear interpolation by default
in VertexData {
 vec4 Color; //vertex color value
 vec2 TexCoord; //texture coordinates
} inData;

//fragment shader output variable
layout(location = 0) out vec4 diffuseColor;

//main procedure will be called for each texel
void main() {
 //texel will be filled with color value from a texture
 vec4 texel = texture(diffuseTexture, inData.TexCoord);
 //texel value is multiplied with vertex color in this case
 diffuseColor = inData.Color * texel;
}

Texture rendering can be controlled by setting vertex colors. The original form of the texture
will be rendered if you use white color on all vertices.

There's more…
If you're using the depth or depth-stencil texture format, you'll need to use a special kind of
sampler. These are called shadow samplers. The following table shows the list of shadow
samplers depending on the OpenGL texture type:

Show sampler type OpenGL texture type
sampler1DShadow GL_TEXTURE_1D

sampler2DShadow GL_TEXTURE_2D

samplerCubeShadow GL_TEXTURE_CUBE_MAP

sampler2DRectShadow GL_TEXTURE_RECTANGLE

sampler1DArrayShadow GL_TEXTURE_1D_ARRAY

sampler2DArrayShadow GL_TEXTURE_2D_ARRAY

samplerCubeArrayShadow GL_TEXTURE_CUBE_MAP_ARRAY

These textures use only float numbers that are on the range (0,1).

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

172

See also
 f The Using uniform variables with shaders recipe

 f The Writing vertex shader recipe

Drawing primitives using vertex buffers
VBO was, in the past, a part of an OpenGL as an extension. With the new OpenGL specification,
the VBO mechanism is included in the GLSL specification. This means that you can reuse much
of the existing functionality with small changes. VBOs present an opaque storage for data;
therefore, they might contain the vertex positions, texture coordinates, colors or any other data.
GLSL shaders can use these buffers but they must be differentiated so the shader program
knows what data is stored inside of these buffers. That's where the vertex array objects or
VAO come in. The vertex array object is a structure that merges VBOs for use in the shader
program. They are used in GLSL shader programs as a main source of vertex attributes. Each
of the attributes can be submitted in its own VBO. It ensures efficient upload of all vertices into
graphic memory and you can easily add other vertices if needed.

You may find it desirable to use interleaved data format for VBO. It's a way to store all the vertex
attributes into one vertex buffer. Examples of data layout are shown in the following diagram:

VBO VBOVBO

VBO

VBO

V

V

V V V

V

V

V

V

N

N

N

N

N

N

N

N

N

C

C

C

C

C

C

C

C

C

There are three cases of decisions on data layout:

 f Each vertex attribute has its own VBO—vertices, normal vectors, and vertex colors.

 f All the attributes are stored in one VBO. They are grouped by the attribute type.

 f All the attributes are stored in one VBO. They are grouped by the vertex.

Note that if you plan on frequent updating of vertex attributes, it's better to reserve the whole
VBO for this purpose. This way OpenGL can optimize memory access to vertex attributes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

173

Getting ready
This recipe will use data layout where each vertex attribute will use its own VBO. You'll be using
the vertex position, the texture coordinates, and the vertex color. Therefore, you'll need to create
three VBOs. You can create the vertex buffer objects with the gl.GenBuffers function:

local vertex_buffer_object = gl.GenBuffers(3)

It accepts one parameter that presents the number of vertex buffer objects to be created.

You'll also be using the vertex array object that specifies the vertex data layout and references
to all used VBOs. The vertex array object can be created using the gl.GenVertexArrays
function. This function accepts the number of vertex array objects to be reserved:

local vertex_array_object = gl.GenVertexArrays(1)

How to do it…
You'll need one vertex buffer object for each vertex attribute. In this case, you'll be using
three vertex buffer objects for the vertex position, the vertex color, and the vertex texture
coordinates. Now, you can fill each one with the corresponding vertex data.

Vertex positions
We will use four vertices to draw the rectangular polygon. The following code will define the
vertex positions for one rectangle:

//vertex positions are specified by X, Y pairs
local vertex_positions = {
 -1, -1,
 1, -1,
 1, 1,
 -1, 1,
}
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, vertex_buffer_object[1])
gl.BufferData(gl_enum.GL_ARRAY_BUFFER, vertex_positions,
gl_enum.GL_STATIC_DRAW)

Vertex colors
You can use this code to store the vertex colors:

//vertex colors use RGBA quadruplets
local vertex_colors = {
 1,0,0,1,
 0,1,0,1,

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

174

 0,0,1,1,
 1,1,0,1,
}
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, vertex_buffer_object[2])
gl.BufferData(gl_enum.GL_ARRAY_BUFFER, vertex_colors,
gl_enum.GL_STATIC_DRAW)

Vertex texture coordinates
The following code will define the texture coordinates for vertices:

//texture coordinates use U, V coordinate pairs
local vertex_texcoords = {
 0, 0,
 1, 0,
 1, 1,
 0, 1,
}
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, vertex_buffer_object[3])
gl.BufferData(gl_enum.GL_ARRAY_BUFFER, vertex_texcoords,
gl_enum.GL_STATIC_DRAW)

Now that you have data stored in VBOs, you'll have to bind them into VAO. The vertex
array object contains data layout information. For instance, if the vertex position consists
of three dimensions, each vertex will use three subsequent values from VBO that contains
vertex positions.

Before using the vertex array object, you'll need to bind it with the gl.BindVertexArray
function:

gl.BindVertexArray(vertex_array_object[1])

Another step is enabling and mapping vertex attributes to buffers. In this recipe, each
vertex contains three vertex attributes: the vertex position, the vertex color and the texture
coordinate. Each vertex attribute will use different attribute index. This index will correspond
to the location value in the shader source:

layout (location = 0) in vec3 VertexPosition;

The vertex attribute is mapped by a pair of functions: gl.BindBuffer and
gl.VertexAttribPointer. The first one prepares VBO to be used. The second
command uses this function specification:

gl.VertexAttribPointer(location_index, vertex_elements_count,
normalized, stride)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

175

The final code will look like this:

-- vertex position
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, vertex_buffer_object[1])
gl.VertexAttribPointer(0, 2, false, 0)

-- vertex color
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, vertex_buffer_object[2])
gl.VertexAttribPointer(1, 4, false, 0)

-- texture coordinates
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, vertex_buffer_object[3])
gl.VertexAttribPointer(2, 2, false, 0)

Notice that the vertex position is specified by two elements (x, y), vertex color by four elements
(r, g, b, a) and texture coordinates by two elements (s, t).

The last thing you'll need to do before drawing is enabling vertex attributes with the
gl.EnableVertexAttribArray function.

gl.EnableVertexAttribArray(0)
gl.EnableVertexAttribArray(1)
gl.EnableVertexAttribArray(2)

Alternatively, you can disable certain vertex attributes with the gl.DisableVertexArray
function:

gl.DisableVertexAttribArray(attribute_index)

After all these steps, you are ready to use VBOs and VAO to efficiently draw vertices. Don't
forget to bind the currently used vertex array object before drawing. Otherwise, OpenGL
wouldn't know what data to use and you could get unpredictable results.

Vertices can be drawn by using the gl.DrawArrays function:

gl.DrawArrays(gl_enum.GL_QUADS, 0, 4)

The first parameter specifies what graphic primitive will be used. It uses the same constants
as were used in the gl.Begin function. The second parameter sets the vertex offset and the
last one is a number of vertices to be used.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

176

How it works…
Vertex buffer objects can contain arbitrary data. Vertex itself can use more than one vertex
attribute. Attributes usually contain more than one element. For instance, the vertex position
uses two coordinates in 2D space, but in 3D space there are three coordinates. OpenGL
doesn't know how many coordinates you use for vertices. Therefore, vertex array objects are
used to help with this issue. Vertex array object defines how to get attributes for each vertex.
Keep in mind that it contains only references to VBOs, so you'll need to keep them.

LuaGL uses the float data type for VBO elements.

Vertex Array Buffer Shader

Vertex Buffer
Object
(VBO)

Vertex Buffer
Object
(VBO)

Vertex Buffer
Object
(VBO)

Vertex Attribute
location: 0

Vertex Attribute
location: 1

Vertex Attribute
location: 2

Input variable
layout (location = 0)

Input variable
layout (location = 1)

Input variable
layout (location = 2)

There's more…
VBO presents a common data storage. It provides limited storage depending on implementation
and current machine. Some parts can be cached in system RAM and the currently used parts
are in graphic memory.

Another thing is that the gl.BufferData function reserves a certain amount of memory
to store data. You can use only a reserved range for data updates. There might be situations
where you know exactly how much storage you'll need, but you don't want to upload data right
away. For this case, you can use the gl.BufferData function, but instead of submitting data
in a Lua table, you'll be using elements count:

local element_count = 12
gl.BufferData(gl_enum.GL_ARRAY_BUFFER, element_count,
gl_enum.GL_STATIC_DRAW)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

177

This will reserve memory space for 12 elements, which you can update with the
gl.BufferSubData function:

local offset = 0
local data = {1,2,3,4}
gl.BufferSubData(gl_enum.GL_ARRAY_BUFFER, offset, data)

The offset parameter presents a number of elements to be skipped.

See also
 f The Using uniform variables with shaders recipe

 f The Writing a vertex shader recipe

 f The Writing a fragment (pixel) shader recipe

Rendering to texture
Rendering to texture technique is used whenever you need to apply some kind of postprocessing
on screen or to produce dynamic textures in reflections.

Over the past few years, OpenGL introduced a number of ways to obtain screen content and
transfer it to texture. You could read directly from the frame buffer and store all data in texture
with gl.TexSubImage2D function. This approach is a slow process because all rendering
must be stalled in order to obtain a copy of the whole frame. For this kind of operation, there
was a P buffer introduced sometime in 2000. It presented a more efficient way of transferring
larger blocks of pixel data. However, this kind of buffer wasn't available everywhere and what's
more, it was hard to use. Later, it was deprecated in OpenGL 3.0 and subsequently removed
from OpenGL 3.1. Currently, the standardized way of working with frame buffer is to work with
Render Buffer. Render buffer objects have been available since OpenGL 3.0. They use native
pixel format, which makes them optimized for offscreen rendering target. The older technique
used a texture as a target and used the pixel format conversion in each update which is slow.

This recipe will show you how to prepare and use render buffer object.

Getting ready
You can attach render buffers to various kinds of data that frame buffer produces.
Render buffer can store color data, depth information, or stencil data.

Each render buffer will need to know its dimensions. Let's assume that you have
this information already since you need to have the application window in order to
display anything. The size of the application window will be stored in these variables:
screen_width and screen_height.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

178

You'll also need a valid texture that will be used as a rendering target. This texture will contain
screen content and it will use the texture identifier stored in the screen_texture variable.
Note that this texture should be at least as big as the application window.

How to do it…
First, you'll need to create the frame buffer object or FBO:

local fbos = gl.GenFrameBuffers(1)

The next thing is to activate this frame buffer:

gl.BindFramebuffer(gl_enum.GL_FRAMEBUFFER, fbos[1])

With this set, you can proceed to individual render buffers. This recipe will show you how to
create and use the render buffer for color data and depth information.

The render buffer with the color attachment
The render buffer with the color attachment is used often for offscreen rendering in order to
do postprocessing effects. Render buffer will use all four color components, where each one
will use 8 bits. This means that one color value will use 32 bits or 4 bytes:

local render_buffers = gl.GenRenderBuffers(1)
local internal_format = gl_enum.GL_RGBA8
local rb_target = gl_enum.GL_RENDERBUFFER
local fb_target = gl_enum.GL_FRAMEBUFFER
local attachment = gl_enum.GL_COLOR_ATTACHMENT0

gl.BindRenderBuffer(rb_target, render_buffers[1])
gl.RenderBufferStorage(rb_target, internal_format, screen_width,
screen_height)
gl.FramebufferRenderbuffer(fb_target, attachment, rb_target,
render_buffers[1])

The render buffer with the depth attachment
The render buffer with the depth data usage can be seen in deferred shading or depth of field
effects. Deferred shading is a process where the graphical scene is rendered into separate
parts—buffers. These buffers usually contain color information, map of normal vectors, and
z depth. Basically, it skips all pixels that doesn't get to the screen (pixels that fail the Z test).
This technique is used to save time spent by the fragment shader and it's used on complex
scenes with a large number of lights:

local render_buffers = gl.GenRenderBuffers(1)
local internal_format = gl_enum.GL_DEPTH_COMPONENT16
local rb_target = gl_enum.GL_RENDERBUFFER

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

179

local fb_target = gl_enum.GL_FRAMEBUFFER
local attachment = gl_enum.GL_DEPTH_ATTACHMENT

gl.BindRenderBuffer(rb_target, render_buffers[1])
gl.RenderBufferStorage(rb_target, internal_format, screen_width,
screen_height)
gl.FramebufferRenderbuffer(fb_target, attachment, rb_target,
render_buffers[1])

You should always check the frame buffer has been prepared properly:

local status =
gl.CheckFramebufferStatus(gl_enum.GL_DRAW_FRAMEBUFFER)
if status ~= gl_enum.GL_FRAMEBUFFER_COMPLETE then
 error('Frame buffer is not complete!')
end

After this step, you can switch rendering to this frame buffer with the gl.BindFramebuffer
function:

gl.BindFramebuffer(gl_enum.GL_FRAMEBUFFER, fbos[1])

Alternatively, you can turn off rendering to this frame buffer with the following code:

gl.BindFramebuffer(gl_enum.GL_FRAMEBUFFER, 0)

This will cause rendering to the default frame buffer—screen.

OpenGL offers a very powerful function, gl.CopyImageSubData. It allows you to copy data
from one buffer to another. This can be used to copy render buffer content to texture:

local src_level = 0
local src_x, src_y, src_z = 0, 0, 0
local dest_level = 0
local dest_x, dest_y, dest_z = 0, 0, 0
local src_width, src_height = screen_width, screen_height
local src_depth = 1

gl.CopyImageSubData(
 render_buffers[1], gl_enum.GL_RENDERBUFFER,
 src_level,
 src_x, src_y, src_z,
 screen_texture, gl_enum.GL_TEXTURE_2D,
 dest_level,
 dest_x, dest_y, dest_z,
 src_width, src_height, src_depth
)

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

180

After this step, you can apply the screen_texture texture on polygons. Postprocessing is
usually done by rendering this texture on one rectangular polygon that occupies the whole
screen. This is shown in the following pseudo-code:

gl.BindFramebuffer(gl_enum.GL_FRAMEBUFFER, fbos[1])
 draw_scene()
gl.BindFramebuffer(gl_enum.GL_FRAMEBUFFER, 0)

gl.CopyImageSubData(...)
draw_textured_quad_on_whole_screen()

How it works…
OpenGL, by default, uses its own frame buffer. Frame buffer represents an abstract structure
that sets the output for color data, depth information, and others. On the other hand, render
buffer contains real data that has to be allocated in memory.

Render buffer uses native data format. Therefore, its content can be directly drawn on screen.
Optionally, the render buffer content can be copied into the texture, which uses data format
conversion. This approach is faster than rendering into texture first with each frame.

See also
 f The Writing a fragment (pixel) shader recipe

 f The Drawing primitives using vertex buffers recipe

Applying highlights and shadows to
the scene

This recipe will deal with per-pixel lighting and simple shadowing. It will allow you to apply one
or more lights in the 3D scene. There are two types of light sources: directional and positional
light. Directional light doesn't have a position and it's used mostly for daylight. Positional light
has a source at a certain position. This type of light can be divided to omnidirectional and
spotlight. Omnidirectional light is used mostly with light bulbs. Spotlight is often used with
reflectors. Light intensity decreases with increasing distance from the light source.

This recipe will use simple shadowing. This means that surfaces that aren't directly facing the
light source will be in the shadow. However, this doesn't include real shadow casting as this is
a more advanced topic that's beyond the scope of this book.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

181

Getting ready
Before staring, you'll need to set up the camera position, object state in a scene, light sources,
and materials. The camera position is stored in a structure, cameraState. It includes three
matrices: position, rotation, and perspective correction. You could've multiplied these matrices
into one but keep in mind that not every matrix is updated frame by frame. What's more, GPU
can do matrix multiplication much faster than on CPU.

The object state is defined by object position. The position is computed from translation and
rotation matrices stored in the positionState structure.

Light sources use a structure, lightState, that stores all the needed information about
the light source such as light position, direction, attenuation, and spotlight parameters.
The scene uses ambient light color, sceneAmbient, to emulate global illumination.

The last thing you'll need to set up is material parameters stored in the materialState
structure.

You'll be setting uniform variables quite a lot. This means you'll be getting a uniform variable
location on every access. To make uniform variable manipulation easier, you can bundle these
operations into one function that stores location identifiers in a table:

local uniformLocations = {}
local uniformTypeFn = {
 f = gl.Uniformf, -- float number
 d = gl.Uniformd, -- double float number
 i = gl.Uniformi, -- integer number
 ui = gl.Uniformui, -- unsigned integer number
 m = gl.UniformMatrix, -- matrix
}

local function setUniform(var_type, name, ...)
 -- uniform variable location is cached to speed up process
 local location = uniformLocations[name]
 if not location then
 location = gl.GetUniformLocation(shader_program, name)
 uniformLocations[name] = location
 end
 local uniformFn = uniformTypeFn[var_type]
 if type(uniformFn) == "function" then
 uniformFn(location, ...)
 end
end

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

182

Do note that this function works on single shader programs. Each shader program must use
its own uniformLocation table.

The last thing you'll need is a way to compute projection matrix for camera perspective
correction. You can use the following example of a function to get the projection matrix
based on the field of a view angle, the screen aspect ratio, and the depth parameters. The
projectionMatrix function is based on the computeFrustum function from the Setting
up orthogonal and perspective camera recipe in Chapter 4, Graphics – Legacy Method with
OpenGL 1.x-2.1. The main difference is that, in this case, it results in a transformation matrix.
You can find the whole derivation process of the projection matrix at http://www.songho.
ca/opengl/gl_projectionmatrix.html.

The previous version relied on OpenGL to compute the matrix internally:

local function projectionMatrix(fov, aspect, znear, zfar)
 -- xymax variable refers to the coordinate
 -- of the right/bottom clip-plane
 local xymax = znear * math.tan(math.rad(fov/2))
 local ymin = -xymax -- top clip-plane
 local xmin = -xymax -- left clip-plane

 local width = xymax - xmin
 local height = xymax - ymin
 local depth = zfar - znear

 -- q and qn parameters are used to achieve
 -- perspective correction
 local q = -(zfar + znear) / depth
 local qn = -2 * (zfar * znear) / depth

 local w = 2 * znear / width
 w = w / aspect
 local h = 2 * znear / height

 -- transposed version of the projection matrix
 return {
 w, 0, 0, 0,
 0, h, 0, 0,
 0, 0, q, -1,
 0, 0, qn, 0,
 }
end

www.it-ebooks.info

http://www.songho.ca/opengl/gl_projectionmatrix.html
http://www.songho.ca/opengl/gl_projectionmatrix.html
http://www.it-ebooks.info/

Chapter 5

183

How to do it…
The first step is to supply the initial values to all uniform variables. This recipe will use one
positional light source that is placed just next to the camera. The scene object is positioned
in front of the camera:

-- camera parameters
setUniform('m', 'camera.translation', {
 1,0,0,0,
 0,1,0,0,
 0,0,1,0,
 0,0,0,1,
}, 4, 4, true)
setUniform('m', 'camera.rotation', {
 1,0,0,0,
 0,1,0,0,
 0,0,1,0,
 0,0,0,1,
}, 4, 4, true)
setUniform('m', 'camera.perspective', projectionMatrix(60, 1, 1,
10), 4, 4, true)

-- object parameters
setUniform('m', 'object.translation', {
 1,0,0,-0.5,
 0,1,0,-0.5,
 0,0,1,-0.5,
 0,0,0,1,
}, 4, 4, true)
setUniform('m', 'object.rotation', {
 1,0,0,0,
 0,1,0,0,
 0,0,1,0,
 0,0,0,1,
}, 4, 4, true)

-- light parameters
setUniform('f', 'lights[0].position', {-1, 0, -1, 1})
setUniform('f', 'lights[0].diffuse', {1, 0.8, 0.8, 1})
setUniform('f', 'lights[0].specular', {1, 1, 1, 1})
setUniform('f', 'lights[0].spotCutoff', 180.0)
setUniform('f', 'lights[0].spotExponent', 1.2)
setUniform('f', 'lights[0].constantAttenuation', 0)

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

184

setUniform('f', 'lights[0].linearAttenuation', 1)
setUniform('f', 'lights[0].quadraticAttenuation', 0)
setUniform('f', 'lights[0].spotDirection', {0, 0, 0})

setUniform('i', 'totalLights', 1)

-- material parameters
setUniform('f', 'material.ambient', {0.2, 0.2, 0.2, 1})
setUniform('f', 'material.diffuse', {1, 1, 1, 1})
setUniform('f', 'material.specular', {1, 1, 1, 1})
setUniform('f', 'material.shininess', 5.0)

-- scene ambient color
setUniform('f', 'sceneAmbient', {0.2, 0.2, 0.2, 1})

-- textures
setUniform('i', 'diffuseTexture', 0)

The next important thing is having correct vertex attributes. You'll need the vertex position,
the vertex texture coordinates, and the vertex normal vector. Therefore, you'll need three
vertex buffer objects. Each one for every vertex attribute:

local positionVBO = gl.GenBuffers(1)
local texcoordVBO = gl.GenBuffers(1)
local normalVBO = gl.GenBuffers(1)
local vertex_array_object = gl.GenVertexArrays(1)

-- vertex coordinates
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, positionVBO)
gl.BufferData(gl_enum.GL_ARRAY_BUFFER, vertexPositions, gl_enum.GL_
STATIC_DRAW)
-- normal vector coordinates
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER
-- texture coordinates
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, texcoordVBO)
gl.BufferData(gl_enum.GL_ARRAY_BUFFER, texcoords,
gl_enum.GL_STATIC_DRAW), normalVBO)
gl.BufferData(gl_enum.GL_ARRAY_BUFFER, normals,
gl_enum.GL_STATIC_DRAW)

-- setup vertex attributes
gl.BindVertexArray(vertex_array_object[1])

-- vertex position

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

185

gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, positionVBO)
gl.VertexAttribPointer(0, 3, false, 0)

-- vertex texture coordinates
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, texcoordVBO)
gl.VertexAttribPointer(1, 2, false, 0)

-- vertex normal vector
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, normalVBO)
gl.VertexAttribPointer(2, 3, false, 0)

Vertex shader
The vertex shader code would look like this:

#version 330

struct cameraState{
 mat4 perspective;
 mat4 translation;
 mat4 rotation;
};

struct positionState{
 mat4 translation;
 mat4 rotation;
};

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec2 VertexTexCoord;
layout (location = 2) in vec3 VertexNormal;

out VertexData {
 vec2 texCoord;
 vec3 normal;
 vec3 position;
} outData;

uniform float time;
uniform cameraState camera;
uniform positionState object;

void main(){
 // model-view matrix
 mat4 objMatrix = (object.translation * object.rotation);

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

186

 // vertex position in the world
 vec4 localPos = objMatrix * vec4(VertexPosition.xyz, 1.0);
 // final vertex position on screen
 gl_Position = (camera.perspective * camera.translation *
 camera.rotation) * localPos;
 // texture coordinates and original vertex position
 // for the next stage - fragment shader
 outData.texCoord = vec2(VertexTexCoord.st);
 outData.position = vertexPos.xyz;
 // normal vectors are adjusted to match object orientation
 vec4 tmpNormal = objMatrix * vec4(VertexNormal.xyz, 0.0);
 outData.normal = normalize(tmpNormal.xyz);
}

Fragment shader
The fragment shader code would contain these definitions:

#version 330
// a structure for light parameters
struct lightState {
 vec4 position;
 vec4 diffuse;
 vec4 specular;
 float constantAttenuation, linearAttenuation,
 quadraticAttenuation;
 float spotCutoff, spotExponent;
 vec3 spotDirection;
};
// structure with material properties
struct materialState {
 vec4 ambient;
 vec4 diffuse;
 vec4 specular;
 float shininess;
};
// camera position and orientation matrices
struct cameraState{
 mat4 perspective;
 mat4 translation;
 mat4 rotation;
};

// diffuseTexture contains texture unit identifier (integer)
uniform sampler2D diffuseTexture;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

187

uniform cameraState camera;
uniform materialState material;
// ambient light color
uniform vec4 sceneAmbient;

//total number of lights, currently 8 is the maximum
uniform int totalLights;
uniform lightState lights[8];

in VertexData {
 vec2 texCoord;
 vec3 normal;
 vec3 position;
} inData;

layout(location = 0) out vec4 diffuseColor;

The whole light reflection algorithm is packed into one function, processLighting.
It accepts three parameters: material parameters, the current point on surface, and
the normal vector. This makes the entire code much easier to read. Note that the
processLighting function operates on voxels—points in space:

/*
 Input:
 material - material type specification
 surface - voxel position in world space
 normalDirection - normal vector for current voxel
*/
vec4 processLighting(in materialState material, in vec3 surface,
 in vec3 normalDirection){
 // camera position in world space
 vec4 cam = camera.translation * vec4(0,0,0,1);
 // directional vector from the surface to the camera
 // it's used primarily to determine highlights
 vec3 camDirection = normalize(cam.xyz - surface);
 vec3 lightDirection;

 float attenuation;

 // ambient light
 vec3 ambientLighting = sceneAmbient.rgb * material.ambient.rgb;
 vec3 totalLighting = ambientLighting;

 // iterate over all lights on the scene

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

188

 for (int index=0; index < totalLights; index++){
 lightState light = lights[index];

 // omni-directional light
 if (light.position.w == 0.0){
 lightDirection = light.position.xyz;
 attenuation = 1.0;
 }else{
 // directional light
 vec3 lightVector = light.position.xyz - surface.xyz;
 lightDirection = normalize(lightVector);
 float distance = length(lightVector);

 attenuation = 1.0 / (
 light.constantAttenuation +
 light.linearAttenuation * distance +
 light.quadraticAttenuation * (distance * distance)
);

 /* spot-light
 Note: cut-off angle presents one half of
 light cone spatial angle
 A light with cut-off angle greater than 90 degrees
 is considered to be omni-light
 */
 if (light.spotCutoff <= 90.0){
 float spotAngle = max(0.0,
 dot(lightDirection, light.spotDirection)
);
 // there's no light outside of light cone
 if (spotAngle < cos(radians(light.spotCutoff))){
 attenuation = 0.0;
 }else{
 attenuation *= pow(spotAngle, light.spotExponent);
 }
 }
 }

 /*
 Diffuse light is dependent only on the surface normal
 and light direction
 */
 vec3 diffuseReflection = attenuation *
 light.diffuse.rgb * material.diffuse.rgb *
 max(0.0, dot(normalDirection, lightDirection));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

189

 /*
 Specular reflection is present only if the light ray
 reflects almost directly to camera lenses.
 */
 vec3 specularReflection;
 // There's no specular reflection on the dark side
 if (dot(normalDirection, lightDirection) < 0.0) {
 specularReflection = vec3(0.0, 0.0, 0.0);
 } else {
 // Specular reflection
 specularReflection = attenuation *
 light.specular.rgb * material.specular.rgb *
 pow(
 max(0.0,
 dot(reflect(-lightDirection, normalDirection),
 camDirection)
),
 material.shininess
);
 }

 // Add to total lighting contribution
 totalLighting += diffuseReflection + specularReflection;
 }
 /*
 Material transparency is controlled by alpha channel
 of diffuse color
 */
 return vec4(totalLighting, material.diffuse.a);
}

Now you can summarize everything in the main function for fragment shader.

void main() {
 vec4 texel = texture(diffuseTexture, inData.texCoord.st);
 materialState localMaterial = material;
 // Texel color is directly applied to current diffuse color
 localMaterial.diffuse *= texel;
 // Compute output color for current voxel
 diffuseColor = processLighting(
 localMaterial,
 inData.position,
 normalize(inData.normal)
);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

190

How it works…
The total light contribution is divided into three parts: ambient light, diffuse light, and specular
light. Ambient light is a constant light produced by the surrounding environment. This lighting is
simply added to the total light contribution. Diffuse lighting is produced by the lighting source.
It's scattered in all directions in response to a rough material surface. Therefore, it mainly
reflects the light that isn't absorbed by the material. In this case, the material color is reflected
to the viewer. The specular light is a part of the lighting where the light directly reflects from the
surface to the viewer with minimum scattering. This also means that specular reflection consists
mainly of light color. You can observe this when you're looking at the water surface under low
angle. The light reflection diagram is shown as follows:

� �

...

The light source position is defined by the vector with four components. If the last component
equals 1, this vector defines the light position. Otherwise, this vector defines the orientation of
directional light. Directional light doesn't have a source so the attenuation factor is 1.

The positional light uses the light source distance from the surface to adjust the light intensity.
The light intensity can be described as the following attenuation formula:

This formula uses three parameters: C—constant attenuation, L—linear attenuation, and
Q—quadratic attenuation.

The spotlight's cut-off value specifies the angular size of the light cone. The omnidirectional light
has the spotlight's cut-off value greater than 90 degrees. The light spot intensity decreases with
the second power of the angular distance from the light spot direction.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

191

�

�

After these steps, you should have the final attenuation value, which will be used on diffuse
and specular reflection.

Diffuse reflection uses the surface normal vector and light direction vector to calculate the
amount of light reflected. Note that this type of reflection is independent of camera position.
The final diffuse color is a result of multiplication of material color value with light color value
and dot product of surface normal vector with the light direction vector. The dot product always
produces values in a range (-1,1). If those two vectors are parallel, it results in a value 1. If they
are perpendicular, it's 0. The negative values are produced when those two vectors enclose an
angle greater than 90 degree. The final value of diffusion color is modified by attenuation value,
so there are dark parts on the surface that are out of the light source range.

Specular reflection occurs only on surface parts that reflect light almost directly to the camera.
The total amount of specular reflection is modified by the result of this formula:

Finally, the diffuse and specular reflections are added to total light contribution on the
selected part of the surface.

See also
 f The Bumpmapping recipe

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

192

Bumpmapping
Bumpmapping presents a way to increase a detail level without increasing the total polygon
count. This technique relies on using normal maps applied to surfaces. Without this, each
surface or polygon would have only one normal vector, and therefore, it would look like a
flat surface. It uses the term mapping because in addition to the basic texture map, it uses
another texture that represents a normal map. A normal map contains normal vectors in
tangent space and can be encoded as simple RGB texture, where each color component
represents a normal vector component. It makes the surface look rough with bumps.

Bumpmap textures usually consist of grayscale image, where dark areas represent lower
regions and lighter areas represent a higher region. Such images need to be converted into
colorful normal map. You can use NVidia Texture Tools for Adobe Photoshop or a normal map
plugin for the GIMP image editor. There's even a free online tool to do such conversion called
NormalMap Online and it's available at the GitHub page http://cpetry.github.io/
NormalMap-Online/.

Getting ready
This recipe uses a slightly modified version of shaders from the previous recipe. While the
vertex shader is almost the same, the fragment shader uses two texture units instead of
one. The first one is used for texture map and the second one is used for normal map.
Therefore, you'll need to set up two texture units as follows:

local texture_target = gl_enum.GL_TEXTURE_2D
gl.ActiveTexture(gl_enum.GL_TEXTURE0)
gl.BindTexture(texture_target, texture_map)

gl.ActiveTexture(gl_enum.GL_TEXTURE1)
gl.BindTexture(texture_target, normal_map)

-- textures
setUniform('i', 'diffuseTexture', 0)
setUniform('i', 'normalTexture', 1)

You'll also need to prepare lights in your scene. You can copy the light setup from the previous
recipe about lighting basics.

You could try to apply a normal map as an ordinal texture, but soon you would've discovered
certain artifacts in normal vector orientations. That's why you'll need to know triangle tangent
vectors additionally to existing vertex attributes, such as a normal vector. These vectors describe
the direction of the triangle plane. You'll need these vectors to apply vector correction in a
normal map. Otherwise, the normal map would cause distortions and incorrect light reflections.
You can supply tangent vectors for each vertex by the vertex buffer.

www.it-ebooks.info

http://cpetry.github.io/NormalMap-Online/
http://cpetry.github.io/NormalMap-Online/
http://www.it-ebooks.info/

Chapter 5

193

How to do it…
First you'll have to prepare the vertex buffer objects and vertex attributes to prepare all data
for shaders:

local positionVBO = gl.GenBuffers(1)
local texcoordVBO = gl.GenBuffers(1)
local normalVBO = gl.GenBuffers(1)
local tangentVBO = gl.GenBuffers(1)
local vertex_array_object = gl.GenVertexArrays(1)

-- vertex coordinates
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, positionVBO)
gl.BufferData(gl_enum.GL_ARRAY_BUFFER, vertexPositions, gl_enum.GL_
STATIC_DRAW)
-- texture coordinates
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, texcoordVBO)
gl.BufferData(gl_enum.GL_ARRAY_BUFFER, texcoords, gl_enum.GL_STATIC_
DRAW)
-- normal vector coordinates
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, normalVBO)
gl.BufferData(gl_enum.GL_ARRAY_BUFFER, normals, gl_enum.GL_STATIC_
DRAW)
-- tangent vector coordinates
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, tangentVBO)
gl.BufferData(gl_enum.GL_ARRAY_BUFFER, tangents, gl_enum.GL_STATIC_
DRAW)

-- setup vertex attributes
gl.BindVertexArray(vertex_array_object[1])

-- vertex position
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, positionVBO)
gl.VertexAttribPointer(0, 3, false, 0)

-- vertex texture coordinates
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, texcoordVBO)
gl.VertexAttribPointer(1, 2, false, 0)

-- vertex normal vector
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, normalVBO)
gl.VertexAttribPointer(2, 3, false, 0)

-- vertex tangent vector
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, tangentVBO)
gl.VertexAttribPointer(3, 4, false, 0)

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

194

You can get vertex positions, texture coordinates, and normal vectors easily. The difficult part
is obtaining tangent vector.

Let's assume that you define each polygon with a triangle. Therefore, each triangle has three
points: A, B, and C as shown in the following diagram:

There are two vectors U and V that describe a plane defined by triangle points. You can compute
these two vectors with the following code:

local U = {
 x = C.x - A.x,
 y = C.y - A.y,
 z = C.x - A.z
}
local V = {
 x = B.x - A.x,
 y = B.y - A.y,
 z = B.x - A.z
}

You'll need to do the same with texture coordinates as well. Texture coordinate vectors will use
letters S and T:

local S = {
 x = C.tx - A.tx,
 y = C.ty - A.ty,
}
local T = {
 x = B.tx - A.tx,
 y = B.ty - A.ty,
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

195

Now that you have the U and V triangle edge vectors and texel direction vectors S and T, you
can compute tangent and bi-tangent vectors with the following formula:

local r = 1/(S.x*T.y - S.y*T.x)
local tangent = {
 x = (T.y*U.x - S.y*V.x)*r,
 y = (T.y*U.y - S.y*V.y)*r,
 z = (T.y*U.z - S.y*V.z)*r
}
local bitangent = {
 x = (S.x*V.x - T.x*U.x)*r,
 y = (S.x*V.y - T.x*U.y)*r,
 z = (S.x*V.z - T.x*U.z)*r
}

Note that these tangent and bitangent vectors are related to the edge vectors and texture
space vectors. You could use those vectors in normal mapping, but on certain occasions, you
would get incorrect results. That's because these tangent space vectors aren't orthogonal or
because they've got different orientation. You can solve these problems with Gram-Schmidt
orthogonalization. For this operation, you'll need a normal vector N. The Gram-Schmidt
orthogonalization formula looks like this:

You can rewrite it in the Lua language with the following code:

local NdotS = N.x*tangent.x + N.y*tangent.Y + N.z*tangent.z
local tangentOrthogonal = {
 x = tangent.X - N.x*NdotS,
 y = tangent.y - N.y*NdotS,
 z = tangent.z - N.z*NdotS,
}

Now you're left with determining the triangle winding direction. Winding direction defines the
order of triangle vertices. A visual representation of this triangle is regarded to be the front
face. The back face of the triangle uses the opposite winding direction of vertices. The winding
direction helps to determine the direction of the orthogonal tangent vector in the final step.
The invalid (opposite) direction of the tangent vector would reverse a texture on the triangle.

In most cases, you'll be using counterclockwise winding, but this can differ if you're using
triangle strips, where the triangle winding alternates and this can pose a problem. You can
obtain winding direction from the following formula:

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

196

You'll need to rewrite this formula into the Lua language:

local NcrossS = {
 x = N.y * tangent.z - N.z * tangent.y,
 y = N.x * tangent.z - N.z * tangent.x,
 z = N.x * tangent.y - N.y * tangent.x,
}
local winding = NcrossS.x * bitangent.x +
 NcrossS.y * bitangent.y +
 NcrossS.z * bitangent.z

The last step in producing tangent vectors is to include the winding information in the tangent
vector itself. You can store this information in the fourth element w of the tangent vector:

tangentOrthogonal.w = (winding < 0) and 1 or -1

Do note that this tangent vector has four elements: x, y, z, and w. The last one is used in the
vertex shader to correct TBN matrix orientation. Fortunately, you only have to compute tangent
vectors once.

To produce a bumpmapping effect, you can reuse the shader code introduced in previous
samples with a few changes.

Vertex shader
The vertex shader code will need to include another vertex attribute that will contain the tangent
vector for each vertex. You can do this by including this vertex layout specification code:

layout (location = 4) in vec4 VertexTangent;

After this step, you'll have to compute the so-called TBN matrix with the size of 3 x 3 elements.
This matrix contains three columns, where the first contains the tangent vector, the second
contains the bitangent vector and the last one contains the normal vector. This matrix
represents a new vector space and is often known as the tangent space. The TBN matrix will
be used in the fragment shader to correct the normal vector orientation. To build a TBN matrix,
you'll need to know the bitangent vector as well. Fortunately, you can compute the bitangent
vector from normal and tangent vectors. A bitangent vector is perpendicular to normal and
tangent vectors. Note that it's important to adjust the vector orientation in this matrix to
correspond with your coordinate system. OpenGL uses this coordinate system by default:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

197

To produce the TBN matrix, you'll use the following code:

outData.tbn = mat3(
 normalize((objMatrix *
 vec4(VertexTangent.xyz, 0.0)).xyz),
 normalize((objMatrix *
 vec4(cross(VertexNormal, VertexTangent.xyz)*
 VertexTangent.w, 0.0)).xyz),
 normalize((objMatrix *
 vec4(VertexNormal.xyz, 0.0)).xyz)
);

The TBN matrix will be passed to the fragment shader by the modified VertexData structure:

out VertexData {
 vec2 texCoord;
 vec3 position;
 mat3 tbn;
} outData;

The final vertex shader code would be as follows:

#version 330

struct cameraState{
 mat4 perspective;
 mat4 position;
};

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

198

struct positionState{
 mat4 position;
};

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec3 VertexNormal;
layout (location = 2) in vec2 VertexTexCoord;
layout (location = 3) in vec4 VertexTangent;

out VertexData {
 vec2 texCoord;
 vec3 position;
 mat3 tbn;
} outData;

uniform cameraState camera;
uniform positionState object;

void main(){
 mat4 objMatrix = object.position;
 vec4 vertexPos = objMatrix * vec4(VertexPosition.xyz, 1.0);

 gl_Position = camera.perspective * camera.position * objMatrix *
 vec4(VertexPosition.xyz, 1.0);
 outData.texCoord = vec2(VertexTexCoord.st);
 outData.position = vertexPos.xyz;

 outData.tbn = mat3(
 normalize((objMatrix * vec4(VertexTangent.xyz, 0.0)).xyz),
 normalize((objMatrix * vec4(cross(VertexNormal,
 VertexTangent.xyz)*VertexTangent.w, 0.0)).xyz),
 normalize((objMatrix * vec4(VertexNormal.xyz, 0.0)).xyz)
);
}

Fragment shader
First, you'll need to modify the fragment shader code to include the TBN matrix from the
vertex shader:

in VertexData {
 vec2 texCoord;
 vec3 position;
 mat3 tbn;
} inData;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

199

Now, you can read the normal map texel value from the normalTexture texture unit:

vec3 normalTexel = texture(normalTexture, inData.texCoord.st).xyz;

The normalTexel vector contains raw values of the normal vector from the normal map texture
for the current texel. It means that all values are now in the range (0,1), which is the color
component range in OpenGL as well. You need to convert these values into range (-1,1), so you
can use them to produce a valid normal vector. You can do this with the following formula:

normalTexel = 2*normalTexel.xyz - vec3(1.0);

In addition to this conversion, you can apply the vector orientation correction by multiplying
the normalTexel vector with the vec3 vector.

normalTexel *= vec3(1, 1, 1);

Values in the vector multiplier are related to normal map values. Normal maps aren't
standardized, so you'll need to find out what kind of normal map suits you the best. The
normal maps that are generated from bumpmaps are usually fine. However, they are not
very accurate for more complex 3D models. Such an example might be a 3D model with a
low polygon count while using a normal map to define fine details. This is usually the result
of using the sculpting tool in the Blender application. Fortunately, you can use the normal
map baking tool to generate accurate normal maps from the sculpture.

Remember to always set up correct mapping of normal vector coordinates to color channels
in a normal map. In most cases, normal maps use the blue color to represent the facing
vector as you can see in the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

200

After all these steps, you can produce the final per-texel normal vector by converting the
normalTexel vector into world space:

vec3 perTexelNormal = inData.tbn * normalize(normalTexel);

This vector can be used instead of the per-vertex normal vector in the processLighting
function.

In the end, the fragment shader code would look like this:

#version 330

struct lightState {
 vec4 position;
 vec4 diffuse;
 vec4 specular;
 float constantAttenuation, linearAttenuation, quadraticAttenuation;
 float spotCutoff, spotExponent;
 vec3 spotDirection;
};

struct materialState {
 vec4 ambient;
 vec4 diffuse;
 vec4 specular;
 float shininess;
};

struct cameraState{
 mat4 perspective;
 mat4 translation;
 mat4 rotation;
};

uniform sampler2D diffuseTexture;
uniform sampler2D normalTexture;
uniform cameraState camera;
uniform materialState material;
uniform vec4 sceneAmbient;

uniform int totalLights;
uniform lightState lights[8];

in VertexData {
 vec2 texCoord;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

201

 vec3 normal;
 vec3 position;
} inData;

layout(location = 0) out vec4 diffuseColor;

vec4 processLighting(in materialState material, in vec3 surface, in
vec3 normalDirection){
 ...
}

void main() {
 //local copy of material
 materialState localMaterial = material;

 //texture texel
 vec4 texel = texture(diffuseTexture, inData.texCoord.st);
 localMaterial.diffuse *= texel;

 //normalmap texel
 vec3 normalTexel = texture(normalTexture, inData.texCoord.st).xyz;

 //normalize range
 normalTexel = (2*normalTexel.xyz - vec3(1.0));

 //change normal vector orientation
 normalTexel *= vec3(-1, -1, 1);

 //convert normal map vector into world space
 vec3 perTexelNormal = inData.tbn * normalize(normalTexel);

 diffuseColor = processLighting(
 localMaterial,
 inData.position,
 normalize(perTexelNormal)
);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

202

The result of the applied normal map on a 3D cube with a texture can be seen in the
following screenshot:

How it works…
Bumpmapping affects the normal vector direction at each point of the polygon. Without it,
normal vectors would use only linear interpolation between vertices and the surface would
look smooth.

A normal map is usually represented by a 2D texture, where each pixel contains an encoded
normal vector. A normal vector consists of three axes: x, y, and z, while in a normal texture
map, they are mapped to R, G, and B color channels. A perfectly flat normal map would have
a bluish look. That's because every pixel would use (128,128,255) RGB colors, which also
means it will use a normal vector with XYZ coordinates (0,0,1).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

203

The difficult part is to use these normal map values to produce a usable normal vector. You
can't directly use a normal map as a simple texture because each polygon would have the
same normal vectors. It would be as if all polygons were facing you, which is rare. Therefore,
you'll need to rotate these normal vectors so that the normal vector (0,0,1) on the normal map
would be the same as the normal vector of the polygon. You can achieve this by using the
matrix multiplication on the vector from the normal map. This matrix will contain the tangent,
bitangent, and normal vector values. Each one corresponds to the axis of the local coordinate
system on each polygon:

Therefore, this matrix is often called a TBN matrix:

After multiplication with a normal vector from the normal map texture, you'll get the correct
normal vector, which can be used with the lighting function.

There's more…
There's a simple way to debug normal vectors by using the perTexelNormal vector in place
of the output color:

diffuseColor = vec4((normalize(perTexelNormal)+1.0)/2.0, 1);

Note that you'll need to adjust the value range of the vector because the normal vector can
contain negative values and it would more often than not be black.

www.it-ebooks.info

http://www.it-ebooks.info/

Graphics – Modern Method with OpenGL 3.0+

204

In this case, the blue color represents the facing direction, the red one is directed to the right,
and the green one goes to the top:

See also
 f The Applying highlights and shadows to the scene recipe

www.it-ebooks.info

http://www.it-ebooks.info/

205

6
The User Interface

This chapter will cover the following recipes:

 f Drawing a simple window

 f Moving the window

 f Using the window hierarchy

 f Showing the part of the window with the stencil test and window content scrolling

 f Window controls and interaction

Introduction
What every game needs is an interface between a user and the game itself. In theory,
a user interface should be able to provide two ways of interaction. This includes some
form of status visualization and input controls. There's a part of computer science which
deals with human-computer interaction or HCI in short.

This chapter will deal with a small part of HCI featuring a window as the basic element of
interaction. This also means that a window can provide information to the user as well as
taking input from the user. Windows plays a major role in the WIMP (windows, icons, menus,
and pointer) interaction used in many modern operating systems.

Efficient text rendering will be important because it's the most used medium to display
exact information.

Many ideas introduced in this chapter will be based on principles used in modern web
browsers as they are most widely used applications in terms of HCI.

In the end, you'll be able to design any kind of user interface with ease.

www.it-ebooks.info

http://www.it-ebooks.info/

The User Interface

206

Drawing a simple window
Drawing a window usually means drawing a rectangular region filled with information.
This recipe will show you how to do this efficiently with new capabilities that OpenGL can
offer, such as vertex buffers and shaders.

You could be tempted to put the window corner coordinates into the vertex buffer, which is fine
for static windows. However, soon you would realize that it is harder to manipulate a window. To
move your window, you'd need to change the window coordinates, which would mean changing
the content of the vertex buffer. As you already know, moving data from CPU to GPU is a slow
process and it basically halts the GPU processing for a while. A better solution to this would
be putting static unit-sized window coordinates and transforming it with a model-view matrix.
Matrices can be updated by using uniform variables as they tend to be much faster than doing
buffer updates. This gives you an incredible amount of power for drawing a window because you
can use those matrices in window positioning, hierarchy, and various visual effects.

Getting ready
This recipe will use a matrix manipulation library in the sample code for matrix operations.
You can get one from the GitHub repository at https://github.com/soulik/matrix.
A short introduction to this library is a part of the GitHub page as well.

You'll need to prepare at least two vertex buffers. One for vertex coordinates and one for
texture coordinates. You'll also need the vertex array object, which will bind these buffers to
your shader code. The good thing is that you can reuse this vertex buffer for all the windows
you'll ever use.

The last thing you'll need are two matrices: the projection matrix and model-view matrix.
The projection matrix will transform view space into a more suitable coordinate system.
OpenGL uses coordinates within the range of (-1,1) for both horizontal and vertical directions.
This might be valid in a case where you need your UI to scale with the screen resolution.
If you want to render textured windows with pixel-perfect size, you'll need to transform the
coordinate system into (0,screen_width) and (0,screen_height) respectively.

The model-view matrix will move and scale your rectangle into a desired position on the
screen. This means that each window will have its own model-view matrix.

www.it-ebooks.info

https://github.com/soulik/matrix
http://www.it-ebooks.info/

Chapter 6

207

How to do it…
In the first step, you'll fill vertex buffers to create the basic window shape. The code you'll be
using will look like this:

local vertex_buffer_object = gl.GenBuffers(2)
local vertex_array_object = gl.GenVertexArrays(1)

-- vertex coordinates
local vertex_positions = {
 -0.5, 0.5, 0,
 0.5, 0.5, 0,
 0.5, -0.5, 0,
 -0.5, -0.5, 0,
}
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, vertex_buffer_object[1])
gl.BufferData(gl_enum.GL_ARRAY_BUFFER, vertex_positions,
gl_enum.GL_STATIC_DRAW)

-- texture coordinates
local vertex_texcoords = {
 0, 0,
 1, 0,
 1, 1,
 0, 1,
}
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, vertex_buffer_object[2])
gl.BufferData(gl_enum.GL_ARRAY_BUFFER, vertex_texcoords,
gl_enum.GL_STATIC_DRAW)

-- bind vertex buffers to vertex array object
gl.BindVertexArray(vertex_array_object[1])

-- bind vertex coordinates
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, vertex_buffer_object[1])
gl.VertexAttribPointer(0, 3, false, 0)

-- bind texture coordinates
gl.BindBuffer(gl_enum.GL_ARRAY_BUFFER, vertex_buffer_object[2])
gl.VertexAttribPointer(1, 2, false, 0)

-- enable vertex attributes in shader code
gl.EnableVertexAttribArray(0)
gl.EnableVertexAttribArray(1)

www.it-ebooks.info

http://www.it-ebooks.info/

The User Interface

208

The second step will deal with the shader code for the UI. It's better to have one for each logic
part of your application as it makes experimenting and spotting bugs easier in the future.

The shader code will consist of the vertex and fragment shader code. The vertex shader code
will look like this:

#version 330

layout (location = 0) in vec3 VertexPosition;
layout (location = 1) in vec2 VertexTexCoord;

out VertexData {
 vec2 TexCoord;
} outData;

uniform mat4 projectionMatrix;
uniform mat4 modelviewMatrix;

void main(){
 gl_Position = projectionMatrix * modelviewMatrix *
 vec4(VertexPosition.xyz, 1.0);
 outData.TexCoord = vec2(VertexTexCoord.st);
}

To complete this part, you'll need the fragment shader code as well:

#version 330

uniform sampler2D diffuseTexture;
uniform mat3 UVmatrix;

in VertexData {
 vec2 TexCoord;
} inData;

layout(location = 0) out vec4 diffuseColor;

void main() {
 vec2 texSize = vec2(textureSize(diffuseTexture, 0));

 mat3 UV = matrixCompMult(UVmatrix, mat3(
 1/texSize.s, 1, 1/texSize.s,
 1, 1/texSize.t, 1/texSize.t,
 1/texSize.s, 1/texSize.t, 1
));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

209

 vec2 finalTexCoord = (vec3(inData.TexCoord.s, 1 -
 inData.TexCoord.t, 1) * UV).st;

 diffuseColor = texelFetch(diffuseTexture,
 ivec2(finalTexCoord.s*texSize.s, finalTexCoord.t*texSize.t), 0);
}

Now, in the third step, you'll have to fill the content of uniform variables. For this task, you can
use the setUniform function from the previous chapter, which will make setting uniform
variables much easier. There are two matrices in the vertex shader code to be filled. The first
one is for camera and second one is for a placement of your window. Fragment shader code
uses the texture unit identifier and the UV mapping matrix. The UV mapping matrix can be set
to identity, if you're not using a texture atlas. Remember that you don't have to set uniform
variables in each drawing frame as they are stored in the GPU memory for each shader program.
Also, don't forget to activate the shader program before setting up uniform variables:

setUniform('m', 'projectionMatrix',
 projectionMatrix, 4, 4, true)
setUniform('m', 'modelviewMatrix',
 modelviewMatrix, 4, 4, true)
setUniform('i', 'diffuseTexture', texture_unit)
setUniform('m', 'UVmatrix',{
 1,0,0,
 0,1,0,
 0,0,1,
 }, 3, 3, true)

The projection and model-view matrices will use the homogenous transformation matrix for
affine transformation. There are four basic forms of transformation: translation, rotation, scale,
and skew. These can be combined with multiplication to produce any desired transformation.
Remember that the order of matrix multiplication is extremely important. For example, applying
translation after rotation is different from translation followed by rotation.

The projection matrix can be obtained with this code:

local matrix = (require 'matrix')()
local T,S = matrix.translate, matrix.scale
local invW, invH = 1/screen_width, 1/screen_height
local invMaxDepth = 1/16378
projectionMatrix = T(-1, -1, 0.01)*S(2, 2, 1)*S(invW, intH, -
invMaxDepth)

This will transform screen space to match the screen resolution except that the (0,0)
coordinate will correspond to the bottom-left corner.

www.it-ebooks.info

http://www.it-ebooks.info/

The User Interface

210

The next and most important step is to generate the model-view matrix. This will determine
the position of the resulting window. Depending on your needs, the model-view matrix will be
constructed from translation and scaling transformations:

modelviewMatrix = T(window_x, window_y, 0)
 * S(window_width, window_height, 1)
 * T(window_origin_x, window_origin_y, 0)

The window position is set by the window_x and window_y variables. The window's and height
use the window_width and window_height variables. The last two window_origin_x and
window_origin_y variables present the coordinates of the window's origin point. The origin
point is a basic element of positioning. With this point, you can set the window to be center or
corner aligned. Another thing worth mentioning is that the window's position and size variables
use pixel units, whereas the window's origin point uses the range (-0.5,0.5), where the value
zero represents the center.

Now, in the final step, you'll draw the window with the gl.DrawArrays command:

gl.DrawArrays(gl_enum.GL_QUADS, 0, 4)

The resulting window will be drawn on the screen and it will look like the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

211

How it works…
This recipe relies on drawing textured rectangles on your screen with GLSL. However, instead
of drawing different sets of vertices for each window, it uses the same four vertices on all
the windows.

Each window uses its own model-view matrix, which will transform vertex positions to match
window-specific coordinates. To be specific, it's homogenous transformation, which means
each transformation operates on the local coordinate system. If you use translation, you're
applying the translation movement on the coordinate system. This approach is the basis of
the hierarchical windowing system. This recipe uses translation and scaling transformation,
as shown in the following diagram:

[window_x, window_y]

[window_width, window_height]

[window_origin_x, window_origin_y]

[screen_width, 0]

[0, screen_height] [screen_width, screen_height]

0.

[0, 0]

Screen

Rendered window

2.

3.

1.

The first step consists of moving the basic rectangle to its origin point. This is followed by
scaling, which will set the dimensions of the window. The final step is the translation to
move the window to the desired position.

www.it-ebooks.info

http://www.it-ebooks.info/

The User Interface

212

Moving the window
In some situations, it may be desirable for the user to be able to move the window to different
places. There are many ways to achieve window movement. This recipe will show you how to
use matrix operations to apply correct drag and drop movements in various situations.

Getting ready
First, you'll need to have the working event system from the LuaSDL library to catch the input
from your mouse device. There are two kinds of events you'll want to detect: mouse movement
and mouse button presses/releases. The most important part of this process is obtaining the
mouse cursor position on the application window.

The last component of this recipe that you'll need is the window's model-view matrix. This will
be used to determine the mouse cursor position on a window.

How to do it…
The first step of this recipe is to determine the current mouse cursor position. You can obtain
its position by catching the SDL.SDL_MOUSEMOTION event, which returns the horizontal and
vertical positions of the mouse cursor relative to the application window.

The code for the event catching process can look like the following sample code:

local running = true
local eventHandlers = {}

local function handleEvent(name, ...)
 local handlers = eventHandlers[name]
 if type(handlers)=="table" then
 for _, handler in ipairs(handlers) do
 if type(handler)=="function" then
 handler(...)
 end
 end
 end
end

local function addHandler(name, fn)
 local handlers = eventHandlers[name] or {}
 table.insert(handlers, fn)
 eventHandlers[name] = handlers
end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

213

local events = {
 [SDL.SDL_MOUSEMOTION] = function(_event)
 local event = _event.motion
 handleEvent(SDL.SDL_MOUSEMOTION, event.x, event.y)
 end,
 [SDL.SDL_MOUSEBUTTONDOWN] = function(_event)
 local event = _event.button
 handleEvent(SDL.SDL_ MOUSEBUTTONDOWN, event.x, event.y,
 event.button)
 end,
 [SDL.SDL_MOUSEBUTTONUP] = function(_event)
 local event = _event.button
 handleEvent(SDL.SDL_ MOUSEBUTTONUP, event.x, event.y,
 event.button)
 end,
 [SDL.SDL_QUIT] = function(_event)
 running = false
 end,
}

local event = SDL.SDL_Event_local()
while (running) do
 if (SDL.SDL_PollEvent(event)~=0) then
 local event_fn = events[event.type]
 if type(event_fn)=='function' then
 event_fn(event)
 end
 end
 -- main application loop
 ...
end

Now, you'll need to obtain the inverse matrix to the model-view matrix of the window.
If you have used only homogenous transformations on the model-view matrix, you can
safely assume that the matrix is invertible. This matrix will be used to decide whether the
mouse cursor is positioned on a window and to get mouse cursor position relative to the
window. This will also work if the window has been rotated. By multiplying the inverted
model-view matrix with the mouse cursor vector, you'll obtain the mouse cursor coordinates
relative to the window. If these coordinates are in range (-0.5,0.5) in both dimensions, the
mouse cursor is over the window. Otherwise, the mouse cursor is outside the window:

local relativeMouseCoords = modelviewMatrix.inv()
 * {mouse_x, mouse_y, 0, 1}

www.it-ebooks.info

http://www.it-ebooks.info/

The User Interface

214

You can convert these coordinates to pixels with this formula:

local T,S = matrix.translate, matrix.scale
local originMatrix = T(window_origin_x, window_origin_y, 0)
local scaleMatrix = S(window_width, window_height, 1)
local mouseCoordsOnWindow = scaleMatrix * originMatrix
 * relativeMouseCoords

Note that you have to put the mouse cursor coordinates into the vector with four elements.
The last element must be set to 1 to obtain the cursor position.

Now, you can use relativeMouseCoords to determine whether the mouse cursor is over
the current window:

local wx,wy = relativeMouseCoords[1], relativeMouseCoords[2]
local isMouseCursorOverWindow = (wX<=0.5 and wX>=-0.5 and wY<=0.5
and wY>=-0.5)

To make further operations easier, you can turn the previous lines into functions:

local function projectMouseCursorToWindow(mouse_x, mouse_y)
 local relativeMouseCoords = modelviewMatrix.inv()
 * {mouse_x, mouse_y, 0, 1}
 local T,S = matrix.translate, matrix.scale
 local originMatrix = T(window_origin_x, window_origin_y, 0)
 local scaleMatrix = S(window_width, window_height, 1)
 local mouseCoordsOnWindow = scaleMatrix * originMatrix
 * relativeMouseCoords
 return mouseCoordsOnWindow[1], mouseCoordsOnWindow[2]
end

local function isMouseOverWindow(mouse_x, mouse_y)
 local relativeMouseCoords = modelviewMatrix.inv()
 * {mouse_x, mouse_y, 0, 1}
 local wx,wy = relativeMouseCoords[1], relativeMouseCoords[2]
 return (wX<=0.5 and wX>=-0.5 and wY<=0.5 and wY>=-0.5)
end

To achieve window movement with the mouse cursor, you'll need to process the mouse button
and cursor movement events. This type of interaction usually consists of three steps:

 f The pressed mouse button determines which window is under the cursor, set it into a
focused state and store the mouse cursor position.

 f The mouse cursor movement computes the movement of the vector for a selected
window and move focused window

 f The released mouse cursor clears the focused status of the selected window

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

215

In the first step of window movement, you'll have to add an event handler for pressing the
mouse button:

local windowMovementStatus = {
 start_mouse_x = 0, start_mouse_y = 0,
 focused_window = false,
}
addHandler(SDL.SDL_MOUSEBUTTONDOWN, function(x, y, button)
 -- left mouse button uses number 1 identifier
 if button==1 and isMouseOverWindow(x, y)
 and not windowMovementStatus.focused_window then

 local projected_x, projected_y =
 projectMouseCursorToWindow(x, y)
 windowMovementStatus.start_mouse_x = projected_x
 windowMovementStatus.start_mouse_y = projected_y
 windowMovementStatus.focused_window = true
 end
end)

The second step is the most important one as it results in window movement. Therefore, you'll
have to add the mouse movement event handler:

addHandler(SDL.SDL_MOUSEMOTION, function(x, y)
 if windowMovementStatus.focused_window then
 local projected_x, projected_y =
 projectMouseCursorToWindow(x, y)
 local movementMatrix = T(
 projected_x - windowMovementStatus.start_mouse_x,
 projected_y - windowMovementStatus.start_mouse_y,
 0
)
 local newWindowPosition = movementMatrix
 * {window_x, window_y, 0, 1}
 window_x = newWindowPosition[1]
 window_y = newWindowPosition[2]
 -- update modelview matrix for selected window
 end
end)

And the final step will clear the focus status of the window to prevent further movement:

addHandler(SDL.SDL_MOUSEBUTTONUP, function(x, y, button)
 if button==1 and windowMovementStatus.focused_window then
 windowMovementStatus.focused_window = false
 end
end)

www.it-ebooks.info

http://www.it-ebooks.info/

The User Interface

216

How it works…
Affine transformations allow you to manipulate with coordinates in various ways. Common
window managers assume that windows are always perpendicular to screen edges. In this
case, windows can be rotated, scaled, or skewed and you'll still be able to move them in the
correct way. What's more, you can apply these techniques in sprite rendering and you can
select them with your mouse cursor. Without affine transformations, correct object selection
could be achieved with offscreen scene rendering to the frame buffer, where each object
would be rendered with a unique opaque color. The object would be identified by its color
value at the mouse cursor position in the frame buffer. After this, you'd need to redraw the
whole scene. This was often used in the past and it wasn't as efficient. Remember that
transferring data from CPU to GPU is a slow process.

As you already know, window placement is defined by the transformation matrix. In general,
the inverse of this transformation matrix will produce a reverse transformation. In this case,
the model-view matrix of a window transforms window vertices into a screen coordinate
system. The inverse of the model-view matrix is used to produce coordinates in window
space from the coordinates on screen.

Window movement relies on mouse cursor coordinates in window space. This approach uses
two coordinates to produce a movement vector. The starting point of this vector is the mouse
cursor coordinate in the moment of pressing the mouse button. The ending point of this vector
uses the current mouse cursor position. This way you can move windows or any other objects
in an easy manner.

Using the window hierarchy
A basic game UI can be constructed with a bunch of windows that are on the same level.
There might be occasions where you'll need more complex UI with layered windows. You can
observe this kind of UI in many modern window managers or web browsers. Windows can
contain other windows or user controls. If you move the main window, it will also move inner
elements with it. This behavior is done with the window hierarchy.

Getting ready
Implementing the window hierarchy system requires a well-defined data structure design,
as well as correct use of matrix transformations.

This recipe will use a simple graph structure that consists of nodes and a list of child nodes.
You can implement this structure in the Lua language with tables:

local main_window = {
 properties = {},
 children = {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

217

 {
 properties = {},
 children = {},
 },
 -- ...
 },
}

In this case, each node contains window properties and a list of children windows. With this
design, you can traverse all windows in one direction—from parent windows to child windows.

How to do it…
In this recipe, you'll be using a combination of tables and closures to define the window
hierarchy. Every window functionality will be defined inside the window object closure.
This will make things easier to maintain in further steps. The following code shows an
example of the window hierarchy with two levels defined by the table structure:

--[[gui table contains all functions to create
window object closures --]]
local gui = {}
local main_window = gui.window {
 properties = {
 width = 128,
 height = 128,
 x = 0, y = 0, z = 0,
 },
 children = {
 gui.window {
 properties = {
 width = 128,
 height = 128,
 x = 32, y = 0, z = 0,
 },
 children = {},
 },
 },
}

There are several points of view in window hierarchy implementations. The first one deals with
drawing child windows correctly. Also, if the parental window is invisible, child windows should
be invisible too.

Another point of view addresses event propagation to child windows.

www.it-ebooks.info

http://www.it-ebooks.info/

The User Interface

218

Child window rendering
Each window uses its own model-view matrix to draw the window on screen at the desired
position. From this point, window rendering is fairly easy to implement. The only problem
is how to obtain the correct form of model-view matrix so that the child window is always
relative to its parent window. This can be solved by a hierarchically propagated update of
the model-view matrix of children windows when you update the parent windows' parameters.
This way you can assure that each child window honors the model-view matrix of its parent
window and it prevents the application of unwanted side effects such as child window
stretching when you resize its parent window.

This might seem to be an expensive operation but take into account that it uses the tree
structure to eliminate unnecessary updates and additionally, such window updates do not
occur very often.

The following sample code uses the object closure approach so that each window object can
be constructed with a single function call and a single table that contains the initial window
parameters. You'll see the benefits of this later in the code:

-- def – window definition
gui.window = function(def)
 -- window object instance
 local obj = {}
 local prop = def.properties
 obj.properties = props
 local children = def.children

 -- computed model-view matrix
 local modelViewMatrix
 -- window visibility property
 if type(def.visible)=="boolean" then
 obj.visible = prop.visible
 else
 obj.visible = true
 end
 -- event propagation for window
 if type(def.enabled)=="boolean" then
 obj.enabled = prop.enabled
 else
 obj.enabled = true
 end

 --[[updates model-view matrices - function parameters are
 expected to be matrices, these will be also used in addition to
 local model-view matrix
--]]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

219

 obj.update = function(...)
 local outermatrices = {...}
 -- reset model-view matrix to identity
 modelViewMatrix = matrix.dup()

 local scaleMatrix = S(prop.width or 1, prop.height or 1, 1)
 -- invScaleMatrix prevents of unwanted side-effect propagation
 local invScaleMatrix = scaleMatrix.inv()

 table.insert(outerMatrices,
 T(prop.x or 0, prop.y or 0, prop.z or 0)
 * R(prop.rotateX or 0, prop.rotateY or 0, prop.rotateZ or 0,
 prop.rotateAngle or 0)
 * scaleMatrix
 * T(prop.originX or 0, prop.originY or 0, prop.originZ or 0)
)

 for _, m in ipairs(outerMatrices) do
 modelViewMatrix = modelViewMatrix * m
 end

 for i, child in ipairs(children) do
 local prop = child.properties
 child.update(modelViewMatrix, T((prop.relativeX or 0),
 (prop.relativeY or 0), (prop.relativeZ or 0)),
 invScaleMatrix)
 end

 obj.modelViewMatrix = modelViewMatrix
 end

 obj.draw = function()
 if obj.enabled then
 -- apply shader program for GUI if it's not already used
 if obj.visible then
 -- draw window with current model-view matrix
 -- ...window rendering code...
 for _, child in ipairs(children) do
 child.draw()
 end
 end
 end
 end
 -- prepare model-view matrix before first use

www.it-ebooks.info

http://www.it-ebooks.info/

The User Interface

220

 obj.update()
 return obj
end

Notice that window rendering relies on two functions, update and draw. The update function
generates the model-view matrix for the window and its children. The draw function simply
draws the current window and the same process is recursively repeated on the child windows.

Event propagation
Windows and user controls need some form of interaction. This is usually achieved with the
event system. This recipe will use the so-called signal slots. Each signal slot represents a
specific type of the event and it consists of a list of functions that will be called consecutively.
You can implement this by extending the window creation routine with signal storage and
three functions, namely, propagateSignal, addSignal, and callSignal. The following
sample code shows the basis of this implementation:

gui.window = function(def)
 -- ...previous code for window object initialization
 local signals = {}
 --[[list of events are invoked only
if mouse cursor is over window --]]
 local onWindowEvents = {
 SDL.SDL_MOUSEMOTION,
 SDL.SDL_MOUSEBUTTONDOWN,
 SDL.SDL_MOUSEBUTTONUP,
 }
 -- does this window have a focus?
 obj.focused = false

 obj.propagateSignal = function(name, ...)
 if obj.enabled then
 local propagate, callSignal = true, true
 for _, eventName in ipairs(onWindowEvents) do
 if eventName == name then
 local mouse_x, mouse_y = unpack {...}
 if obj.isMouseOverWindow(mouse_x, mouse_y) then
 propagate = false
 else
 callSignal = false
 end
 break
 end
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

221

 for _, child in ipairs(children) do
 if not child.propagateSignal(name, ...) then
 return false
 end
 end

 if callSignal then
 obj.callSignal(name, ...)
 end
 return propagate
 else
 return false
 end
 end

 obj.callSignal = function(name, ...)
 local list = signals[name]
 if type(list)=="table" then
 for i, action in ipairs(list) do
 if type(action)=="function" then
 if not action(obj, ...) then
 return false
 end
 end
 end
 end
 return true
 end

 obj.addSignal = function(name, fn)
 if not signals[name] then
 signals[name] = {}
 end
 local list = signals[name]
 if type(list)=="table" and type(fn)=="function" then
 table.insert(list, fn)
 end
 end

 obj.projectMouseCursorToWindow = function(mouse_x, mouse_y)
 local relativeMouseCoords = modelviewMatrix.inv()
 * {mouse_x, mouse_y, 0, 1}
 local T,S = matrix.translate, matrix.scale

www.it-ebooks.info

http://www.it-ebooks.info/

The User Interface

222

 local originMatrix = T(prop.originX or 0, prop.originY or 0,
 0)
 local scaleMatrix = S(prop.width or 0, prop.height or 0, 1)
 local mouseCoordsOnWindow = scaleMatrix * originMatrix
 * relativeMouseCoords
 return mouseCoordsOnWindow[1], mouseCoordsOnWindow[2]
 end

 obj.isMouseOverWindow = function(mouse_x, mouse_y)
 local relativeMouseCoords = modelviewMatrix.inv()
 * {mouse_x, mouse_y, 0, 1}
 local wx,wy = relativeMouseCoords[1], relativeMouseCoords[2]
 return (wX<=0.5 and wX>=-0.5 and wY<=0.5 and wY>=-0.5)
 end

 -- handle window focus state
 obj.addSignal(SDL.SDL_MOUSEBUTTONUP,
 function(self, x, y, button)
 if button==1 then
 if gui.focusedWindow then
 gui.focusedWindow.callSignal('lostFocus')
 gui.focusedWindow.focused = false
 end
 gui.focusedWindow = obj
 gui.focusedWindow.callSignal('focus')
 obj.focused = true
 end
 end)

 -- ...window object finalizer code
 return obj
end

Note that the callSignal function expects the signal functions to return a Boolean value.
This helps to determine whether further signal functions should be called. This behavior
allows you to literally consume the signal, if further processing of the event is not necessary.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

223

However, for this to work, you'll need to modify the handleEvent function to route the event
into the main window:

local function handleEvent(name, ...)
 main_window.propagateSignal(name, ...)
end

How it works…
The window hierarchy is based on the tree structure. Each node is represented by the window
or control elements. Each node can contain a list of children windows.

Note that window definitions use table structures. Each one consists of window properties and
a list of children elements.

The drawing process paints the windows from the top to the bottom level. Each window has
two Boolean flags that define the painting behavior. If the window has the enabled flag set
to false, it's invisible along with the children windows. On the other hand, if the window has
the visible flag set to false, it's invisible but the drawing process continues on its children
windows. This way you can create window containers that aren't visible to the user but they
can override the behavior of its children windows. This is useful for making window element
groups or scrollable window content.

The good thing is that you can draw each window with the same set of vertices. The only thing
that changes for each window is its model-view matrix. This allows you to avoid unnecessary
CPU/GPU data transfer, which will slow down your game. However, this approach is valid only
for windows that share the same window shape. This recipe uses a simple rectangular shape.

Events are defined by simple structures represented by signals. Each signal uses its own
ordered list of functions. Signal functions return a Boolean value that determines whether
the signal should be propagated further.

The propagateSignal function is a bit more complex. It uses a list of events that are
invoked only if the mouse cursor is over the current window. You must have noticed that it
uses depth-first node traversal. This is especially useful when you click on a child window
and you don't want the event to be propagated to parent windows. This will also ensure
correct handling of the drag and drop feature for Windows.

See also
 f The Drawing a simple window recipe

www.it-ebooks.info

http://www.it-ebooks.info/

The User Interface

224

Showing the part of the window with the
stencil test and window content scrolling

Sometimes you'll need to draw only a part of the window content inside the closed region.
In this case, you could have used the scissor test to define the rectangular region. Pixels
would be drawn only inside this region. The downside of this approach would be that
this region is strictly rectangular and each side of the region would be parallel with the
corresponding screen side.

In this recipe, you'll learn how to use stencil test, which provides a more general solution
to this problem. Stencil test defines a bit mask with any shape.

Getting ready
Before getting started, make sure you have the stencil buffer available on your graphic card.
Nowadays, almost any graphic card allows you to use stencil buffer with at least 8 bits per
pixel depth. This will provide enough space to draw 255 masked layers of windows.

Be sure to initialize the stencil buffer before setting up the graphic mode with this code:

SDL.SDL_GL_SetAttribute(SDL.SDL_GL_STENCIL_SIZE, 8)

Note that the LuaSDL library doesn't use the stencil buffer by default.

How to do it…
To enable content slipping inside a window, you'll have to modify the window drawing function:

local stencilEnabled = false

gui.window = function(def)
 -- ...existing code of window object closure
 -- window content clipping
 obj.clip = def.clip
 -- model-view matrix for children elements
 obj.childMatrix = function(...)
 local outerMatrices = {...}
 local localMatrix = modelViewMatrix
 local scaleMatrix = S(def.width or 1, def.height or 1, 1)

 for _, m in ipairs(outerMatrices) do
 localMatrix = localMatrix * m
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

225

 return localMatrix * scaleMatrix.inv()
 end
 -- modified window drawing function
 obj.draw = function(parentData)
 if obj.enabled then
 local parentData = parentData or {}
 local parentStencilValue = parentData.stencilValue or 0x00
 local parentStencilMask = parentData.stencilMask or 0xFF
 local currentStencilValue = parentStencilValue
 local currentStencilMask = parentStencilMask

 -- apply shader program for GUI if it's not already used
 if obj.visible then
 if obj.clip then
 if not stencilEnabled then
 gl.Enable(gl_enum.GL_STENCIL_TEST)
 stencilEnabled = true
 end
 currentStencilValue = currentStencilValue + 1
 if currentStencilValue == 1 then
 gl.StencilOp(
 gl_enum.GL_REPLACE,
 gl_enum.GL_REPLACE,
 gl_enum.GL_REPLACE)
 gl.StencilFunc(
 gl_enum.GL_ALWAYS,
 currentStencilValue,
 currentStencilMask)
 else
 gl.StencilOp(
 gl_enum.GL_KEEP,
 gl_enum.GL_KEEP,
 gl_enum.GL_INCR)
 gl.StencilFunc(
 gl_enum.GL_EQUAL,
 parentStencilValue,
 parentStencilMask)
 end
 gl.StencilMask(0xFF)
 end
 -- draw window with current model-view matrix
 -- ...window rendering code...
 --[[disable further writes to stencil buffer

www.it-ebooks.info

http://www.it-ebooks.info/

The User Interface

226

 and allow children elements to be rendered
 --]]
 if obj.clip then
 gl.StencilOp(
 gl_enum.GL_KEEP,
 gl_enum.GL_KEEP,
 gl_enum.GL_KEEP)
 gl.StencilFunc(
 gl_enum.GL_EQUAL,
 currentStencilValue,
 currentStencilMask)
 gl.StencilMask(0x00)
 end

 -- call custom drawing function
 callSignal('draw', obj.childMatrix())

 for _, child in ipairs(children) do
 child.draw({
 stencilValue = currentStencilValue,
 stencilMask = currentStencilMask,
 })
 end
 -- revert previous state of stencil buffer
 if obj.clip then
 gl.StencilOp(
 gl_enum.GL_KEEP,
 gl_enum.GL_KEEP,
 gl_enum.GL_KEEP)
 gl.StencilFunc(
 gl_enum.GL_EQUAL,
 parentStencilValue,
 parentStencilMask)
 end
 if stencilEnabled and currentStencilValue == 1 then
 gl.Disable(gl_enum.GL_STENCIL_TEST)
 stencilEnabled = false
 end
 end
 end
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

227

 -- prepare model-view matrix before first use
 obj.update()
 return obj
end

There's one more thing left to do. You'll have to clear the stencil buffer before rendering the
next frame. Otherwise, the stencil test will have unexpected results. Before clearing the stencil
buffer, you'll need to set the current stencil bit mask to a 0xFF value:

gl.StencilMask(0xFF)
gl.Clear(gl_enum.GL_STENCIL_BUFFER_BIT)
gl.StencilMask(0x00)

The following screenshot shows the result of the window content clipping on the scene with
one main window and two inner windows:

www.it-ebooks.info

http://www.it-ebooks.info/

The User Interface

228

How it works…
Masking with the stencil buffer usually consists of drawing a mask shape followed by
object rendering. In this case, you can use a rendered window to produce a mask at
the same time. Every window that applies clipping has its own stencil buffer value that
represents the mask level.

The stencil test uses a reference value for testing, as well as for writing into the stencil
buffer. This is set by the gl.StencilFunc function, where the first parameter presents a
comparator function, the second is a reference value, and the third one is a bit mask. The
behavior of the stencil test is set by the gl.StencilOp function, where this first parameter
sets an action if the stencil test fails. The second parameter presents the operation if the
depth buffer test fails, and the third one influences the operation if both the depth test and
stencil test pass. Keep in mind that you can't write to the stencil buffer directly. Writing to the
stencil buffer uses a bit mask defined by the gl.StencilMask function. This is also used
when clearing the content of the stencil buffer. The stencil test affects rendering only if the
GL_STENCIL_TEST flag is set.

This recipe uses the following approach. The stencil test is turned on the first window with
content clipping. In this stage, the stencil test always passes so the first mask with value 1 is
rendered into the stencil buffer. Every following window uses a different configuration, where, in
the first step, OpenGL tests which parts of the window will be visible. In the next step, values in
the stencil buffer that correspond to all the visible parts of the window are incremented by one.
This procedure is repeated for each child window that has the clipping enabled.

Keep in mind that the stencil buffer clamps values to prevent the value overflow. Therefore, the
maximum depth of the clipping is 255 with an 8-bit stencil buffer.

The following screenshot shows the content of a stencil buffer to get a better idea of how it
works. The black color represents the stencil buffer value of 0, the gray color has a value of 1,
and the white parts have a value of 2:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

229

As you may have noticed, the sample code in this recipe calls the custom drawing function
with the signal draw. This signal also receives a single parameter that contains the model-view
matrix applicable for child elements. It can be used to draw more complex windows such as
buttons with captions or edit boxes.

See also
 f The Drawing a simple window recipe

Window controls and interaction
Now that you've got the basic functionality to draw and manipulate windows, you can design
your own control elements such as buttons, edit boxes, and many other.

This recipe will show you how to create buttons and edit boxes that users can interact with.
There will be three subsections where each one will deal with one king of control element.

Getting ready
This recipe will use the concepts of the previous window element to create window controls.
You should be able to create and draw a window and handle input events. You'll be using
mouse and keyboard events primarily.

First, you should extend the applicable event types with keyboard operations. You can do this
by adding two event handlers, as shown in the following code:

events[SDL.SDL_KEYDOWN] = function(_event)
 local event = _event.key
 local key = event.keysym.sym
 local mod = event.keysym.mod
 if gui.focusedWindow then
 gui.focusedWindow.callSignal(SDL.SDL_KEYDOWN, key, mod)
 end
end
events[SDL.SDL_KEYUP] = function(_event)
 local event = _event.key
 local key = event.keysym.sym
 local mod = event.keysym.mod
 if gui.focusedWindow then
 gui.focusedWindow.callSignal(SDL.SDL_KEYUP, key, mod)
 end
end

www.it-ebooks.info

http://www.it-ebooks.info/

The User Interface

230

For edit box control, you'll also need functions for bit operations from the bit library. You can
include it with the following line:

local bit = require 'bit'

From now on, you can capture and process the keyboard input, which will be important to edit
box user control.

How to do it…
The following lines will show you how to create user controls by extending the capabilities of
basic windows.

Button
One of the most important user controls is a button. It's a specialized type of window that
invokes a procedure on mouse button release. Buttons usually contain caption text or an
image that describes the button action.

You can divide buttons into three groups by their behavior:

 f The momentary button: Pressing this button down will perform an action

 f The toggle button: Each press of this button will change the state of the action

 f The click button: This action is performed when you press and release the button

The button object can be defined as an extension of the basic window object. The following
code shows you how to implement the click button:

gui.clickButton = function(def)
 local obj = gui.window(def)
 local prop = obj.properties
 prop.caption = prop.caption or "Default button caption"

 obj.addSignal('draw', function(self, modelViewMatrix)
 local textPosition = modelViewMatrix * {0,0,0,1}
 -- draw caption text at position specified by textPosition
 end)

 obj.addSignal(SDL.SDL_MOUSEBUTTONUP,
 function(self, x, y, button)
 if button==1 then
 -- code to be invoked on button click
 end
 end)
 return obj
end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

231

As you can see, extending the window object is a simple process because all the necessary
handlers are already implemented in the base object.

You can implement other types of buttons in this fashion as well. The following sample
code shows the implementation of the toggle button:

gui.toggleButton = function(def)
 local obj = gui.window(def)
 local prop = obj.properties
 prop.state = false

 -- code for custom drawing function...

 obj.addSignal(SDL.SDL_MOUSEBUTTONUP,
 function(self, x, y, button)
 if button==1 then
 prop.state = not prop.state
 -- code to be invoked on button state change
 end
 end)
 return obj
end

The following sample code shows the implementation of the momentary button:

gui.momentaryButton = function(def)
 local obj = gui.window(def)
 local prop = obj.properties
 prop.state = false

 -- code for custom drawing function...

 obj.addSignal(SDL.SDL_MOUSEBUTTONDOWN,
 function(self, x, y, button)
 if button==1 then
 prop.state = true
 -- code to be invoked on button press
 end
 end)
 obj.addSignal(SDL.SDL_MOUSEBUTTONUP,
 function(self, x, y, button)
 if button==1 then
 prop.state = false
 -- code to be invoked on button release
 end
 end)
 return obj
end

www.it-ebooks.info

http://www.it-ebooks.info/

The User Interface

232

Edit box
Creating the edit box user control is a bit more complex mainly because you need to solve
keyboard input handling. This user control usually uses caret cursor to visualize the current
editing position in text. However, this recipe will deal mainly with keyboard input handling and
virtual caret that's invisible to the user. That's because the correct positioning of the caret
on screen needs to know the width of each letter, its exact position, and an amount of font
kerning. This information is also vital to selecting a part of text using the mouse cursor. The
problems of caret positioning exceed the scope of this book and it's not necessary to create
fully working edit box controls.

If you're interested in correct caret cursor rendering, you can refer to Chapter 3, Text Components
with Custom Views in the book Core Swing: Advanced Programming by Kim Topley. Alternatively,
you can use the online reference manual to the Text API for the Java programming language at
https://docs.oracle.com/javase/tutorial/2d/text/index.html.

The edit box implementation is shown in the following sample code:

gui.editbox = function(def)
 local obj = gui.window(def)
 local prop = obj.properties

 -- default values for selected properties
 prop.caption = prop.caption or "Default caption"
 prop.maxLength = prop.maxLength or 8
 prop.locale = prop.locale or os.setlocale()
 -- key repetition uses ms unit
 prop.keyRepeatDelay = prop.keyRepeatDelay or 500
 prop.keyRepeatInterval = prop.keyRepeatInterval or 100

 local caret = {
 pos = 0,
 visible = false,
 }; obj.caret = caret

 -- functions for caret movement and text deletion
 local keyboardFn = {
 [SDL.SDLK_LEFT] = function()
 if caret.pos>0 then
 caret.pos = caret.pos - 1
 end
 end,
 [SDL.SDLK_RIGHT] = function()
 if caret.pos<#prop.caption then
 caret.pos = caret.pos + 1
 end

www.it-ebooks.info

https://docs.oracle.com/javase/tutorial/2d/text/index.html
http://www.it-ebooks.info/

Chapter 6

233

 end,
 [SDL.SDLK_HOME] = function()
 caret.pos = 0
 end,
 [SDL.SDLK_END] = function()
 caret.pos = #prop.caption
 end,
 [SDL.SDLK_DELETE] = function()
 if caret.pos < #prop.caption then
 local tmpCaption = {}
 table.insert(tmpCaption, string.sub(prop.caption, 1,
 caret.pos))
 table.insert(tmpCaption, string.sub(prop.caption,
 caret.pos+2))
 prop.caption = table.concat(tmpCaption)
 end
 end,
 [SDL.SDLK_BACKSPACE] = function()
 if caret.pos > 0 then
 print('Backspace')
 local tmpCaption = {}
 table.insert(tmpCaption, string.sub(prop.caption, 1,
 caret.pos-1))
 table.insert(tmpCaption, string.sub(prop.caption,
 caret.pos+1))
 prop.caption = table.concat(tmpCaption)
 caret.pos = caret.pos - 1
 end
 end,
 }

 local keycodeTranslations = {
 -- standard locale for en-US keyboard layout
 ['C'] = {
 shift = {
 [0x31] = 0x21, [0x32] = 0x40, [0x33] = 0x23,
 [0x34] = 0x24, [0x35] = 0x25, [0x36] = 0x5E,
 [0x37] = 0x26, [0x38] = 0x2A, [0x39] = 0x28,
 [0x30] = 0x29, [0x60] = 0x7E, [0x2D] = 0x5F,
 [0x3D] = 0x2B, [0x5B] = 0x7B, [0x5D] = 0x7D,
 [0x5C] = 0x7C, [0x3B] = 0x3A, [0x27] = 0x22,
 [0x2C] = 0x3C, [0x2E] = 0x3E, [0x2F] = 0x3F,
 },
 keypad = {

www.it-ebooks.info

http://www.it-ebooks.info/

The User Interface

234

 [SDL.SDLK_KP_DIVIDE] = 0x2F,
 [SDL.SDLK_KP_MULTIPLY] = 0x2A,
 [SDL.SDLK_KP_MINUS] = 0x2D,
 [SDL.SDLK_KP_PLUS] = 0x2B,
 -- period character on numpad is locale-dependent!
 [SDL.SDLK_KP_PERIOD] = 0x2E,
 },
 },
 }

 local band = bit.band

 --[[determine if pressed key is printable along with
 optional translation
 --]]
 local function isPrintable(key, mod)
 local key0 = key
 local keycodeTranslation = keycodeTranslations[prop.locale]
 -- defaults to C locale
 if not keycodeTranslation then
 keycodeTranslation = keycodeTranslations['C']
 end

 if key0 >= 0x20 and key0 < 0x7F then
 if band(mod, SDL.KMOD_SHIFT)>0 or band(mod, SDL.KMOD_CAPS)>0
 then
 -- big letters
 if key0>=0x61 and key0<= 0x7A then
 key = key0 - 0x20
 -- alternative characters for various keys
 elseif keycodeTranslation.shift[key0] then
 key = keycodeTranslation.shift[key0]
 end
 end
 return key
 elseif key0 >= 0x100 and key0 <= 0x10E and band(mod,
 SDL.KMOD_NUM)>0 then
 -- numpad number keys
 if key0 <= 0x109 then
 return key0 - 0xD0
 -- numpad operator keys
 elseif keycodeTranslation.keypad[key0] then
 return keycodeTranslation.keypad[key0]
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

235

 end
 return false
 end

 local function processKeyboard(key, mod)
 local key0 = isPrintable(key, mod)
 -- insert character into caption at caret position
 if key0 then
 local tmpCaption = {}
 table.insert(tmpCaption, string.sub(prop.caption, 1,
 caret.pos))
 table.insert(tmpCaption, string.char(key0))
 table.insert(tmpCaption, string.sub(prop.caption,
 caret.pos+1))
 prop.caption = table.concat(tmpCaption)
 caret.pos = caret.pos + 1
 else
 -- caret movement
 local kFn = keyboardFn[key]
 if type(kFn)=="function" then
 kFn()
 end
 end
 end

 obj.addSignal('draw', function(self, modelViewMatrix)
 -- don't call font rendering if the caption is empty
 if #prop.caption>0 then
 local textPosition = modelViewMatrix * {0,0,0,1}
 -- draw caption text at position specified by textPosition
 end
 end)

 obj.addSignal(SDL.SDL_MOUSEBUTTONUP,
 function(self, x, y, button)
 if button==1 then
 -- code to be invoked on button click
 end
 end)

 obj.addSignal('focus',
 function(self)
 caret.pos = 0
 caret.visible = true

www.it-ebooks.info

http://www.it-ebooks.info/

The User Interface

236

 -- tunrn on key repetition
 SDL.SDL_EnableKeyRepeat(
 prop.keyRepeatDelay,
 prop.keyRepeatInterval)
 end)

 obj.addSignal('lostFocus',
 function(self)
 caret.visible = false
 -- disable key repetition
 SDL.SDL_EnableKeyRepeat(0, 0)
 end)

 obj.addSignal(SDL.SDL_KEYDOWN,
 function(self, key, mod)
 if obj.focused then
 processKeyboard(key, mod)
 end
 end)
 return obj
end

Such an edit box is able to handle simple text editing with caret movement.

How it works…
As you have already noticed, apart from only using mouse events, this recipe deals with
keyboard input events. Almost all events are propagated along with window hierarchy except
for keyboard events. These are sent directly to the focused window. This is the known behavior
of most window managers.

This recipe uses two user-defined events called focus and lostFocus. These events handle
getting and losing window focus when clicking. You can use them to highlight specific user
control as well.

The button user control primarily uses mouse button events. The action is performed only if
certain conditions are met depending on the button type.

The edit box user control is much more complex as it requires you to handle the locale-specific
text input. Unfortunately, older versions of the LibSDL library provide low-level keyboard input
only. You can write your own keyboard handler to fit your needs or use the one provided with
this recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

237

Keyboard inputs are divided into two categories. The first one represents key presses that write
down printable characters. The second one deals with caret movement and text deletion.

The first case uses the isPrintable function to determine whether the pressed key
is printable. On success, it returns the character code. There's also a shift key translation
process that turns letters to uppercase if the Shift key is pressed or if the Caps Lock key
is pressed, which sets the modifier. The translation process is used on other keys such as
numbers, square braces, and others as well. The numeric keyboard block has numbers and
mathematic operators as well so these keys are processed only if the num lock modifier is set.

A new character is put right at the caret position, which, by default, is positioned at the
beginning of the caption text.

Notice that keyboard input uses the locale name obtained by the os.setlocale() function.

The caret movement is achieved with left and right cursor keys, the Home and End keys.
The Delete and backspace keys present a special case where you have to take care to delete
only the desired part of text. The Delete key maintains the caret position and deletes only the
character in front of the caret. On the other hand, the backspace key deletes the character on
the left of the caret position and moves the caret to the left. Both cases make sure that you
won't delete the character or move outside the caption text.

The last thing that edit box handles are key repetitions, that is, if a key on the
keyboard is pressed longer than a specified amount of time. This recipe uses the
SDL.SDL_EnableKeyRepeat function provided by LuaSDL. You can set a delay before
the first repetition and an interval for all succeeding repetitions with it. You can turn it
off by setting both parameters to 0. The key repetition feature is useful only on text input.
Otherwise it would make in-game movement with the keyboard rather strange. The following
screenshot shows a scene with one parent window, one edit box control, and one button:

www.it-ebooks.info

http://www.it-ebooks.info/

The User Interface

238

There's more…
You can add a special keystroke handler for certain key combinations such as Ctrl + C,
Ctrl + V, and so on. This can be achieved by adding the following lines of code before the
isPrintable function:

 local band, bor = bit.band, bit.bor

 local keystrokes = {
 [0x63] = {
 [SDL.KMOD_CTRL] = function()
 end,
 },
 [0x76] = {
 [SDL.KMOD_CTRL] = function()
 end,
 }
 }

 local function handleKeystroke(key, mod)
 local keyFns = keystrokes[key]
 if type(keyFns)=="table" then
 for modMask, keystrokefn in pairs(keyFns) do
 if band(mod, modMask)>0 then
 keystrokeFn()
 return true
 end
 end
 end
 return false
 end

To make keystrokes work, you'll need to use handleKeystrokes in the processKeyboard
function, resulting in the following code:

 local function processKeyboard(key, mod)
 if handleKeyStrokes(key, mod) then
 --[[you don't want further processing
 after successful keystroke
]]--
 return
 end
 local key0 = isPrintable(key, mod)
 -- ... previous code
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

239

The edit box control can be extended with clipboard capabilities with a newer version of the
libSDL Lua binding called LuaSDL2. There are three clipboard functions: hasClipboardText,
getClipboardText, and setClipboardText. You can find more information about this
function at the libSDL2 wiki page at https://wiki.libsdl.org/CategoryClipboard.

The LuaSDL2 library obeys function specifications used in the plain libSDL2 library, so using
them should be straightforward.

This way you can create fully operating edit box controls that are able to interact with shared
content from other applications.

See also
 f The Drawing a simple window recipe

 f The Displaying the text recipe

 f The Using the window hierarchy recipe

www.it-ebooks.info

https://wiki.libsdl.org/CategoryClipboard
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

241

7
Physics and Game

Mechanics

This chapter will cover following topics:

 f Using Box2D with Lua

 f Using vector math

 f Choosing the correct vector scaling for the physics engine

 f Creating static and dynamic objects

 f Setting up object properties

 f Moving objects

 f Setting up bullets

 f Running the physics simulation

 f Detecting object collision

 f Setting up object collision filtering

 f Setting up object joints

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Game Mechanics

242

Introduction
Physics simulation plays an important role in modern games. The first generation of games
often used simplified math in a physics simulation to accommodate the CPU power at those
times. Usually, it relied on the assumption that each frame took approximately the same time
to render. This caused some games to run sluggishly or too fast on certain occasions. Another
problem that arose from those simplifications was collision detection. The physical movement
of an object isn't a continuous process. Instead, physical simulation uses small steps. The fast
movement of objects results in larger steps and on certain occasions, the step might be large
enough to skip a wall. For instance, you can shoot or run through a wall in some action games.

A good physical engine tries to eliminate most of these problems. This chapter will use the
Box2D library for physical simulation in a 2D space.

Using Box2D with Lua
The Box2D library is a physical simulation engine developed in the C++ language. Fortunately,
there's a binding to the Lua language called LuaBox2D. This recipe shows you how to prepare
the LuaBox2D library for use in case there's no binary package available for your platform.

Getting ready
The LuaBox2D library uses the CMake building system to accommodate different platform
needs. This also makes the preparation process almost painless and automatic. However,
there are certain requirements to make this possible.

You'll will need the following:

 f A C++11 standard compliant C++ compiler

 f The CMake build system

 f The Git versioning system

 f The Lua 5.1 development package with header files and linkable libraries

After these requirements are satisfied, you can start building the LuaBox2D library.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

243

How to do it…
First, you'll have to download the LuaBox2D repository content to your computer with the
following Git command:

git clone --recursive https://github.com/soulik/LuaBox2D.git

This will create the LuaBox2D directory with the source files. In the next step, you'll need
to prepare a working directory that will contain project files, as well as compiled binaries.
This directory will be called build and can be created with the mkdir command:

mkdir LuaBox2D/build

You can move into the working directory with the following command:

cd LuaBox2D/build

Now, it's time to use CMake to prepare project building files. The easiest way to use CMake is
to run the following command in the current directory:

cmake ..

Depending on the currently used platform, this will locate the Lua 5.1 header files and
libraries and set up the building environment without the use of an intervention. This is mostly
true on Unix-based systems where every file has its place. In case you're using the Windows
operating system, you'll need to set the correct paths for the Lua 5.1 header and library files.

To make this easier, there's a graphical frontend for the CMake building system called
cmake-gui. You can use it by issuing a similar command to the LuaBox2D directory:

cmake-gui ..

This will open up a CMake application window with the dialog window asking for your building
environment type. Unix-based systems usually provide the cmake tool with a similar interface
to cmake-gui, but it uses the gui console instead. The usage of this tool is exactly the same
as in previous cases.

On the Windows operating system, you'll probably want to use Microsoft Visual Studio.
The only settings you'll need to change are LUA_INCLUDE_DIR, LUA_LIBRARIES, and
LUA_LIBRARY. The first one should point to the directory with header files from the Lua
development package ending with .h. The other two should point to the Lua 5.1 library file
ending with the .lib or .a extensions.

You can validate the settings by pressing the Configure button. If requirements are satisfied,
all parts marked in the color red will turn white.

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Game Mechanics

244

Clicking on the Generate button will complete the preparation for building the environment:

Now, you can use the building tool to actually build the LuaBox2D library. On the Windows
operating system, you'll need to open the Microsoft Visual Studio solution file ending with the
.sln extension and build it. On the Unix-based system, you can use the make command in
the LuaBox2D directory.

If everything went well, you should be left with the LuaBox2D library file ending with the .dll
or .so extensions inside the build/bin directory.

From this point, you can use the LuaBox2D library in your Lua scripts with the following line:

local box2d = require 'LuaBox2D'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

245

How it works...
LuaBox2D presents an interface between the Lua language and the Box2D library, which is
written in the C++ language.

The main issue is correct memory management of the Box2D objects to prevent application
crashes and other unexpected behavior. LuaBox2D tries to elevate those concerns by doing all
the hard work behind the scenes. Lua developers are presented with an easy-to-use interface
and all the features that the Box2D library provides.

Most of this work is done with the next generation of the Lutok2 middleware library
that connects the C++ language with Lua language environment. There are many other
alternatives to this middleware library. Each one has its pros, cons, and limitations. This one
tries to offer a full set of functions that the Lua language provides with certain perks the
newest C++ language standard provides.

Using vector math
The Box2D library uses two-dimensional vectors in a form of its own native data type called
b2Vec2. It's used in many places of the Box2D library so it's better to stick with this one.

This data type can be used to specify the position in a 2D space, directional vector with unit
size or a speed vector. Keep in mind that Box2D doesn't know the difference between the
uses of this vector.

Getting ready
This recipe expects the user to have a basic knowledge of vector math.

The LuaBox2D library contains the b2Vec2 object interface called Vec2. You can create one
simply by calling its constructor function. Almost all object constructors are available via the
LuaBox2D interface:

local box2d = require 'LuaBox2D'
local Vec2 = box2d.Vec2

This will define a shortcut for the Vec2 object constructor.

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Game Mechanics

246

How to do it…
You can create a new Vec2 vector object by calling the constructor in one of the following ways:

-- create zero vector
local vector1 = Vec2()
-- create a vector with x=1 and y=2
local vector2 = Vec2(1, 2)

The first case uses the Vec2 object constructor without a parameter that will create a vector
with both coordinates set to zero. This is also known as a zero vector. The second case uses
the constructor parameters to set initial coordinate values.

Each Vec2 vector object contains two coordinates: x and y. You can access and modify them
directly as shown in the following sample code:

local vector = Vec2(1, 2)
vector.x = 10.5
vector.y = 13.25 + vector.x

The Vec2 object provides the following set of mathematical operations: addition, subtraction,
negation, scalar multiplication, dot product, and cross product. All operations are immutable,
which means that each mathematical operation on vectors results in a new Vec2 object.
Unused vector objects are automatically cleaned with a garbage collection mechanism.
This behavior is a part of the Lua language design.

The following table will show the usage of basic mathematical operations on the Vec2 object
where v1 and v2 variables present valid Vec2 objects:

Operation Lua notation
The addition of two Vec2 vectors v1 + v2

The addition of the Vec2 vector with a scalar number v1 + 5.5

The subtraction of two Vec2 vectors v1 - v2

The subtraction of the Vec2 vector with a scalar number v1 - 5.5

The Vec2 vector negation -v1

The scalar multiplication of the Vec2 vector v1 * 5.5

The dot product of two Vec2 vectors v1 * v2

The cross product of two Vec2 vectors v1 % v2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

247

There are other operations available on vectors such as: vector equality comparison, the
minimum and maximum of two vectors, vector normalization, vector length determination,
the distance between two positional vectors, and the clamping of a vector.

Operation Lua notation
Compare two vectors (v1 == v2)

Get a minimum of two vectors v1.min(v2)

Get a maximum of two vectors v1.max(v2)

Get the vector length v1.length

or

#v1

Obtain a distance between two positional vectors v1.distanceFrom(v2)

Clamp a vector v1.clamp(Vec2(0,0),
Vec2(1,1))

How it works…
The Vec2 object presents an interface between the Lua and Box2D world for the b2Vec2
object. Its purpose is to make using 2D vectors easier.

Keep in mind that the Vec2 object adds a small overhead because it must create the
b2Vec2 object before use, and with each call of the mathematical operator, it has to
do an input validation.

Choosing the correct vector scaling for the
physics engine

The Box2D library uses floating numbers to represent numerical values. The problem with
these kind of numbers is that they offer limited precision. This limitation often results in
various artefacts such as players walking right above the ground or boxes that can't remain in
one place. Box2D uses the MKS (meters, kilograms, and seconds) system to represent the
basic units. You should never use a pixel as a base unit. Therefore, you are expected to use
the scaling factor to convert Box2D coordinates to pixels on the screen.

Getting ready
First, you should decide what scaling factor you will use. If you decide that 100 pixels will
represent 1 meter, the scaling factor will be 100. You can define this factor as a global
constant in the Lua language:

box2dScalingFactor = 100

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Game Mechanics

248

How to do it…
When converting pixel-sized objects or vectors to the Box2D system, the scaling factor will be
used to scale down by dividing all those values. The following pseudo code shows how to use
scaling when you want to create a new Box2D object with pixel units:

-- definition of crate box dimensions
local crate_box = {
 width = 50,
 height = 50,
}
-- create a crate box physical object in Box2D system
local box2d_crate = box2d_create_box(
 crate_box.width / box2dScalingFactor,
 crate_box.height / box2dScalingFactor
)

The other situation is when you're rendering physical objects on the screen. You'll need to
use the scaling factor to multiply the object's dimensions and its world position. The following
pseudo code shows how to scale up physical objects from the Box2D system to match pixels
and render it on the screen:

local box_position = box2d_crate.body.position *
 box2dScalingFactor

draw_box(box_position.x, box_position.y,
 crate_box.width, crate_box.height)

Notice that the box2dScalingFactor value was used on a Vec2 vector object that
represents the physical object's position in a world. This way, you use the Vec2 operators
to convert a position based on the MKS unit system to pixels. You already know the crate
box size in pixels, so you can use that in the draw_box function that draws a nice box in
your game.

How it works…
The correct use of the floating point numbers comes from the fact that floating numbers
offer a limited precision. The Box2D library uses a 32-bit floating number mainly due to
performance reasons. However, you can't express every real number in a floating point
variable. Therefore, a floating point math uses rounding to get an approximate value.

The creator of Box2D knows a great deal about this issue and empirically set the usable
range of floating point numbers that can be used to simulate the physical environment
and object interactions within certain limits. This is true not only for object coordinates
but for movement vectors as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

249

This is why you should appropriately scale your game world to match this range. Your objects
should be within the range of 0.1 and 10 meters in size. This will guarantee a good level of
simulation quality.

Creating static and dynamic objects
The Box2D library uses its own special representation of physical objects to achieve the
simulation of physics. It's often desirable that some objects are fixed in place and other
objects move after physical interaction.

This recipe will show you how to prepare physical objects with the LuaBox2D library in an
environment of the Lua language.

Getting ready
First of all, you'll need to set up the world environment where all the physical objects will reside.
To do this, you'll have to create a World object, as shown in the following sample code:

local gravity = Vec2(0, -10)
local world = box2d.World(gravity)

You'll often need to have only one World object. The World object constructor accepts one
Vec2 vector object to set the gravity vector. You can change it later with the following code:

world.gravity = Vec2(0, -5) -- uses unit m/s^2

Do note that the Box2D library uses metric units. The vector for gravitational acceleration uses
m*s-2. However, you can change the overall scale of all the units to suit your game.

From this point , you've got the World object ready and you can create bodies of physical
objects.

How to do it…
The Box2D library was designed with efficiency in mind. Therefore, initial body properties
are defined in the BodyDef object that acts as a template for body objects. The BodyDef
object contains initial properties of the body object such as the body type, position, angle, and
damping. Box2D assumes that all objects are static by default. If you want the physical object
to be dynamic, you'll have to set this property in the BodyDef object. The following lines show
how to create a static object from the BodyDef definition:

local body_def = box2d.BodyDef()
body_def.type = 'static'
body_def.position = Vec(0,0)
-- angle uses radian units

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Game Mechanics

250

body_def.angle = 0

local body = world.createBody(body_def)

This will create a body of physical objects. However, this object doesn't have a shape or size.
To fix this, you'll need to create a fixture:

-- definition of crate box object
local crate_box = {
 width = 50,
 height = 50,
 density = 1,
}

local box_shape = box2d.PolygonShape()
box_shape.setAsBox(
 crate_box.width/box2dScalingFactor,
 crate_box.height/box2dScalingFactor)
local box_fixture = body.createFixture(box_shape,
 crate_box. density)

Now you have created a static box object that can act as a wall because no matter what you'll
do, this box will stay in its place.

In contrast to static objects, dynamic objects can move and they are affected by forces.
Creating a dynamic object is not much different from creating static ones. The following
code shows you how to do it:

local body_def = box2d.BodyDef()
body_def.type = 'dynamic'
body_def.position = Vec(0,20)
-- angle uses radian units
body_def.angle = 0

local body = world.createBody(body_def)
-- definition of crate box object
local crate_box = {
 width = 50,
 height = 50,
 density = 1,
 friction = 0.1,
}

local box_shape = box2d.PolygonShape()
box_shape.setAsBox(

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

251

 crate_box.width/box2dScalingFactor,
 crate_box.height/box2dScalingFactor)

-- fixture definition
local fixture_def = box2d.FixtureDef()
fixture_def.shape = box_shape
fixture_def.density = crate_box.density
fixture_def.friction = crate_box.friction

local box_fixture = body.createFixture(fixture_def)

You can see that instead of using the shape and density as a parameter in the createFixture
function, you can use the FixtureDef object as well. This way you can set all the important
fixture parameters in a fixture definition object and reuse this definition later.

How it works…
Each physical object consists of a body and its fixture. The body of the object contains the
position of the object's origin point, angle, damping values, and many other parameters.
On the other hand, a fixture defines the physical properties of an object and its shape.

This library divides the physical object types into two main categories: static and dynamic
objects. However, there's a third kind of objects called kinematic. Kinematic objects
behave as if they have an indefinite mass and they don't respond to forces.

There's more…
The body object can contain more fixtures to achieve more complex object shapes. To create
a new one, simply call the createFixture function. The Box2D library knows three more
shapes you can use: CircleShape, EdgeShape, and ChainShape.

CircleShape represents a circle with a radius and a position of central point. EdgeShape
can be used to define a line segment with two points. This one is often used on simple
platforms but it's not that great on terrain. ChainShape can be used to create variously
shaped terrains. You can see these shapes in the following code:

local circle_shape = box2d.CircleShape()
circle_shape.radius = 1
-- central point
circle_shape.m_p = Vec2(0,0)

local edge_shape = box2d.EdgeShape()
edge_shape.vertex1 = Vec2(-1, 0)
edge_shape.vertex2 = Vec2(1, 0)

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Game Mechanics

252

local chain_shape = box2d.ChainShape()
chain_shape.createChain({
 Vec2(-1,0), Vec2(1,1), Vec2(2,1), Vec2(4, 0)
})

The body object can contain more than one fixture. You can cycle over the body object fixtures
using the following code:

local current_fixture = body.fixture
while current_fixture do
 -- do something with Fixture object
 current_fixture = current_fixture.next
end

Setting up object properties
Physical objects in the Box2D simulation environment contain many customizable properties.
You can use this to adapt object behavior to suit your needs.

Getting ready
First of all, you'll need an object to set properties on. For all properties to be effective, you can
use a dynamic object:

local body_def = box2d.BodyDef()
body_def.type = 'dynamic'
body_def.position = Vec(0,0)
body_def.angle = 0

local body = world.createBody(body_def)
local shape = box2d.CircleShape()
shape.radius = 1

local fixture_def = box2d.FixtureDef()
fixture_def.shape = box_shape
fixture_def.density = 1

local fixture = body.createFixture(fixture_def)

Now that you've got everything prepared, you can set up physical object properties. Keep in
mind that you should never change object properties during a simulation cycle as it will lead
to simulation errors. You can determine this situation by querying the World object world.
locked. The world object is locked when you're in the middle of the simulation process.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

253

How to do it…
The body object offers parameters such as linear, angular damping, gravity scale, rotation
locking, and many others.

Movement damping
Damping leads to the gradual slowing of object movement and it approximates the movement
friction in the real world. Otherwise, the object would move indefinitely. While linear damping
applies to linear motion, angular damping applies to rotational movement. You can access
these parameters in a form of the body object properties:

body.linearDamping = 0
body.angularDamping = 0.1

Object gravity scale
Another parameter accessible on the body object is the gravity scale factor. This can be used
to artificially decrease or increase the object's weight or make objects float:

-- normal gravity scale is equal to 1, floating objects can use 0
body.gravityScale = 1

Fixed rotation
When simulating the player's body, it's often desirable to lock object rotation. This is
achievable by setting the fixedRotation property to true:

body.fixedRotation = true

Object sleeping
When simulation takes place, Box2D determines what objects are currently moving or
interacting with other objects. Such objects are awake. Other objects are in a resting (idle)
state. These are turned into a sleeping state when they are not moving at all or there are
no other objects touching them for a certain period of time. This period of time is defined in
the Box2D source code, and you should not change it unless you know what you're doing.
This feature can greatly increase the physical engine performance.

You can obtain the object awake state with the awake property:

if not body.awake then
 -- do something
end

The object sleeping can be manually disabled with the allowSleeping property:

body.allowSleeping = true

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Game Mechanics

254

Object mass and rotational inertia
Each body object contains information about its mass value in kilograms and inertia in the
kg*m2 unit. Body mass affects the object's ability to move in a linear movement. On the
other hand, rotational inertia determines the ability to rotate. For instance, figure skaters
can decrease their rotational inertia by pulling their arms. This allows them to spin faster.

You can't change these properties directly from the body object. However, these properties
are indirectly accessible from the massData object that you can obtain with the massData
property. The following lines of code will show you how to access and modify these properties:

local object_mass = body.mass
local object_inertia = body.inertia
local mass_data = body.massData
massData.center = Vec2(0, 0)
massData.mass = 10.0
massData.inertia = 0.9

So far, you've seen the use of properties that are accessible directly from the body objects.
For physical properties of the object material, you'll have to use the fixture object. You can
access the fixture object from the body object or use the object reference obtained from
the createFixture function:

local fixture = body.fixture

The fixture object contains properties such as friction, restitution, and density.

Friction
Friction determines how much an object will move when its surface is in contact with another
object. Objects with friction 1 will glide until damping slows them down:

body.fixture.friction = 0.5

Restitution
The restitution property affects the object elasticity on impact. For instance, you can use this
property to simulate inflatable balls:

body.fixture.restitution = 0.6

Density
Density is usually set in the BodyDef object during the object's creation. It might be desirable
to change this value as part of the object's heating simulation or size expansion:

body.fixture.density = 0.8

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

255

When you change the object's density, it's good to call resetMassData as well. This will
apply the density property to the object mass and rotational inertia:

body.resetMassData()

How it works…
LuaBox2D contains interfaces for each Box2D object. This gives you the ability to experiment
with various types of bodies and settings without much trouble as if you've used the Box2D
C++ interface. The LuaBox2D library uses UpperCamelCase for object constructors. All
object properties use lowerCamelCase.

For a more detailed description of all the available object properties, you can refer to the
Box2D manual, which you can find online at http://box2d.org/manual.pdf.

Moving objects
Dynamic objects can be moved primarily by using forces. Moving objects by setting their
position manually is not recommended because you can easily miss an object collision this
way. However, you can set an object's position at the start of your game to adjust the initial
object location.

Getting ready
For this recipe, you'll need a dynamic object with a nonzero mass and density:

local body_def = box2d.BodyDef()
body_def.type = 'dynamic'
body_def.position = Vec(0,0)
body_def.angle = 0

local body = world.createBody(body_def)
local shape = box2d.CircleShape()
shape.radius = 1

local fixture_def = box2d.FixtureDef()
fixture_def.shape = shape
fixture_def.density = 1.5
fixture_def.friction = 0.3
fixture_def.restitution = 0.2

local fixture = body.createFixture(fixture_def)

www.it-ebooks.info

http://box2d.org/manual.pdf
http://www.it-ebooks.info/

Physics and Game Mechanics

256

How to do it…
In the real world, you have to use a force to move objects. There are two ways in which you can
apply a force to move objects in Box2D—the continual force and impulses.

The continual force
The continual force affects object movement gradually for a longer time. Depending on the
previous state of an object's movement, this can take some time for the object to achieve the
desired speed. You can either choose to apply force to certain points of an object or use the
object's center. If you choose other to apply a force on a point other than the object's center,
it will generate a torque and the object will rotate:

local point_on_object = Vec2(0.5, 0.5)
local linear_force = Vec2(1, 0)
local rotational_moment = 20

body.applyForce(linear_force, point_on_object, true)
body.applyForceToCenter(linear_force, true)

You can use the applyTorque function to change the angular velocity. The base unit for the
rotational moment is N*m:

body.applyTorque(rotational_moment, true)

The last parameter of this function determines whether to wake the body object after the force
has been applied. This is usually set to true.

Impulses
Impulses result in a sudden change of movement direction or speed. An impulse, in general,
is a force applied over a time interval. They are usually used with a very large force over a very
short time span. When the time is short enough, it can be approximated as an instantaneous
change of velocity. Similarly, as in a case with the continual force, you can apply an impulse to
a certain point of the object:

body.applyLinearImpulse(linear_force, point_on_object, true)
body.applyAngularImpulse(rotational_moment, true)

Object velocity information
Sometimes you'll need to get the current object velocity. For instance, this information is
useful in the motion blur effect for fast moving objects. There are two types of velocity you
can use: linear and angular velocity. Linear velocity is used for translation movement and
it's represented by the Vec2 vector.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

257

Angular velocity tells you how fast the object rotates and uses units of radians per second:

local linear_velocity = body.linearVelocity
local angular_velocity = body.angularVelocity

You can use these properties to set the current object velocity as well but it results in
unnatural movement. However, it can be useful when setting up an initial object velocity:

body.linearVelocity = Vec2(1, 0)
body.angularVelocity = 2

How it works…
Movement in Box2D is simulated in small discreet steps. The size of these steps varies with
the time spent on frame rendering.

There are a few problems that a rise from discrete physics simulation. The most notable one
is object tunneling when an object moves so fast that it literally teleports through the wall.
Box2D eliminated this problem with continuous collision detection or CCD. Because CCD
increases the processing time for each frame, it's turned off by default for all objects.

The maximum velocity of objects is 2 meters per time-step. This might seem small but take in
to account that you usually use from 30 to 60 time-step frames per second, which gives you a
maximum object speed from 60 to 120 meters per second or from 216 to 432 kms per hour.
This limit exists to achieve better accuracy. To get greater speeds, you'll need to lower your
physical world scale.

Setting up bullets
Objects usually move slow enough to stop before passing through walls. However, some
objects might move so fast that they teleport through obstacles. This is especially true for
bullet type objects. You can eliminate this problem by letting Box2D know that these objects
should be treated as bullets. Some games use a ray-casting technique where you basically
determine the point of the bullet's impact on a wall or another object. This usually assumes a
bullet trajectory in a straight line, which is not very accurate when compared to
the real world.

Getting ready
For this recipe, you'll need to have one dynamic object, bullet, and one static object, wall to
build a sample scene. For this purpose, you can use the following code:

local function createBullet(position, radius)
 local body_def = box2d.BodyDef()
 body_def.type = 'dynamic'

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Game Mechanics

258

 body_def.position = position * box2dScalingFactor
 body_def.angle = 0

 local body = world.createBody(body_def)
 local shape = box2d.CircleShape()
 shape.radius = radius * box2dScalingFactor

 local fixture_def = box2d.FixtureDef()
 fixture_def.shape = shape
 fixture_def.density = 1.5
 fixture_def.friction = 0.3
 fixture_def.restitution = 0.2

 body.createFixture(fixture_def)
 body.bullet = true
 return body
end

local function createWall(position, size)
 local size = size * box2dScalingFactor
 local body_def = box2d.BodyDef()
 body_def.type = 'static
 body_def.position = position * box2dScalingFactor
 body_def.angle = 0

 local body = world.createBody(body_def)choose
 local shape = box2d.PolygonShape()
 shape.setAsBox(size.x, size.y)

 body.createFixture(shape, 0)
 return body
end

How to do it…
Now, with the basic function set, you can create a model scene with one bullet and four walls
that enclose the space around the bullet so it won't escape to the outside world:

local walls = {
 createWall(Vec2(0, -5), Vec2(10, 1)),
 createWall(Vec2(5, 0), Vec2(1, 10)),
 createWall(Vec2(0, 5), Vec2(10, 1)),
 createWall(Vec2(-5, 0), Vec2(1, 10)),
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

259

local bullets = {
 createBullet(Vec2(0, 0), 0.5),
}

Bullet behavior for the body object is set by its property bullet to true. You can notice this
in the createBullet function near the end. With this, bullet objects can run really fast and
they will still collide with walls. Without this, the bullet would most probably run through the
wall and into outer space.

How it works…
Box2D uses two phases for object collision detection: a broad phase and a narrow phase. A
broad phase uses an internal dynamic tree structure to determine what objects will collide at
a certain point in time. On the other hand, a narrow phase is used to denote the collision of
two objects.

A bullet simulation takes collision detection further by using continuous collision detection or
CCD for short. On each time-step, it sweeps objects along the path it took and tries to detect
collisions with a time of impact. Do note that all collision detection uses the body shape
of the object! After collision is detected, it moves an object to a location where these two
objects nearly collide. After this, there might be another substep and time of impact events to
complete object collision.

Running the physics simulation
The Box2D library uses the physics simulation divided into time steps. You can think of it as a
world where you can control time. The Box2D library offers you two modes: the fixed-time step
and the dynamic time step. It uses the fixed-time step by default, which is fine for accurate
and stable simulation. This mode assumes that your game will have a constant frame-rate.

With the second simulation mode using the dynamic-time step, the world time doesn't
flow continuously but rather in small steps with varying durations. The Box2D library can
simulate object movement and collisions with relatively high accuracy regardless of the
size of time steps, although the accuracy might suffer. However, this mode might sometimes
be accompanied by sudden jumps between object positions. This issue can be remedied
with the interpolation of object transformations between the previous and current state of
the physical simulation. The interpolation code isn't included in this recipe but you can find
inspiration from a great article, Fix your timestep!, by Glenn Fiedler. It's available at
http://gafferongames.com/game-physics/fix-your-timestep/.

This recipe will show you how to use both modes with a fixed or dynamic time step.

www.it-ebooks.info

http://gafferongames.com/game-physics/fix-your-timestep/
http://www.it-ebooks.info/

Physics and Game Mechanics

260

Getting ready
This recipe will require you to have at least one World object. You can prepare one with the
gravity vector set to match a value of the real-world gravitational acceleration approximated
at 9.81 m*s2:

local gravity = Vec2(0, -9.81)
local world = box2d.World(gravity)

Another thing to consider is the size of the time step in your game. This is related to the used
rate of frames that is usually 30 or 60 frames per second or fps in short. Lower values of
frames per second tend to make games more stuttering, but you'll have more time to process
the game logic. Most of the movies use frame rates below 30 fps, 24 fps to be precise. This is
what makes movies seem like movies. Higher frame rates make motion in movies look more
lifelike. You can notice this difference between movies and some TV shows.

The size of the time step should be constant and should not relate directly to the current
game frame-rate. This leads to more predictable results in simulation.

How to do it…
You can run one step of the physics simulation by using the step function in the World object.
This function accepts three parameters: the size of a time step, number of iterations for the
velocity constraint solver, and a number of iterations for the position constraint solver:

local desired_fps = 60
local time_step = 1/desired_fps
local velocity_iterations = 8
local position_iterations = 3

world.step(time_step, velocity_iterations, position_iterations)

A greater number of iterations increases the simulation stability and it's independent of the
time step duration. Therefore, you should never compensate for larger time step durations
with a larger number of iterations.

During the time step, some Box2D library processes: velocity, position, constraints, and
collisions for each object if needed.

Usually, you'll want to use the step function periodically in each frame.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

261

The fixed-time step
The following pseudo code shows the typical usage simulation stepping with the fixed-time step:

local function game_loop()
 while (game_running) do
 process_user_input()

 world.step(time_step,
 velocity_iterations,
 position_iterations)

 draw_objects_on_screen()
 end
end

The dynamic-time step
Physical simulation with the dynamic-time step assumes that you use an accurate source for
the current time. For the sake of code simplicity, you'll be using the os.clock function which
is available in plain Lua language:

local clock = os.clock -- returns approx. time used in seconds
local currentTime, timeAccum = 0, 0

local function game_loop()
 while (game_running) do
 process_user_input()
 local newTime = clock()
 -- incorporate maximum time for the simulation is the game
 -- runs too slow - less than 4fps
 local frameTime = math.min(newTime - currentTime, 0.25)
 currentTime = newTime
 -- timeAccum contains time spent by game logic and renderer
 timeAccum = timeAccum + frameTime
 -- loop to accommodate simulation with slower frame rate
 -- it'll advance simulation to match the time lost
 -- by the renderer if it takes more time than time_step
 while (timeAccum >= time_step) do
 world.step(time_step,
 velocity_iterations,
 position_iterations)
 timeAccum = timeAccum - time_step
 end
 draw_objects_on_screen()
 end
end

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Game Mechanics

262

How it works…
Physical simulation problems are hard to solve accurately in general. Solving object position,
movement, and collisions usually needs the use of differential equations. There are many
methods for solving these equations. Each solver is better suited to different situations.
Therefore, there's no best solver for differential equations.

The Box2D library uses the Symplectic Euler's integration method, which provides great
performance with relatively good accuracy and stability with fewer time steps. This method
is used to solve an ordinary differential equation, or ODE for short. It uses one independent
variable (time) and its derivatives (position and velocity) to determine object location.

There's more…
The Box2D library supports a more advanced method of solving simulation with the fixed-time
step duration and variable game frame rate. This method is called substepping.

Detecting object collision
The basic set of features that the Box2D library offers might be sufficient for simple games.
However, sometimes you need to know when objects collide. For instance, in action games
you usually shoot things and need to know what object was hit by your projectile.

Fortunately, the Box2D library offers an interface for collision detection in the form of callbacks.
Using callbacks in the Lua language might not be straightforward because of the Lua language
design. LuaBox2D contains a simple interface to set up callback functions for collision detection.

This recipe shows you how to define your own callback function in the Lua environment and
how to process events when collision occurs.

Getting ready
First of all, you'll need a World object, some static walls, and at least one dynamic object. You
can use the createWall and createBullet functions from the Setting up bullets recipe.

How to do it…
Object collision can be detected with the ContactListener object. It provides a simple
interface to a set of callback functions that are called in various stages of collision. To be
precise, there are four callback functions you can override: beginContact, endContact,
preSolve, and postSolve.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

263

First, you'll have to create the ContactListener object. After this step, you can set one of
these callback functions to point to your function in the Lua environment.

The last step consists of setting a current contact listener in the World object to your new
ContactListener object. The following sample code sets a new contact listener with
callback functions:

local contact_listener = box2d.ContactListener()
contact_listener.beginContact = function(contact)
end
contact_listener.endContact = function(contact)
end
contact_listener.preSolve = function(contact, oldManifold)
end
contact_listener.postSolve = function(contact, contactImpulse)
end
world.contactListener = contactListener

How it works…
The Box2D library allows you to observe and analyze various stages of the object collision
test. An important thing to remember is that callback functions are called during the time
step. All the objects are in a locked state during this stage and you shouldn't change the
objects' properties. This would lead to computational errors and instability. Now, because all
the callback functions are defined in the Lua environment, it's fairly easy to postpone such
changes on objects until the current time step is complete.

The beginContact callback
This function is called before fixtures begin to touch. Although this function gives you only
one parameter in the form of a Contact object, it offers you everything you'll need.

The Contact object consists of many properties, but most notable among them are
manifold, isTouching, enabled, fixtureA, fixtureB, and next.

The manifold contains a list of contact points between two fixtures. A property isTouching
tells you if these two fixtures are actually touching. You can disable further collision testing for
these two fixtures by setting the enabled property to false. Both fixtures are available from
the fixtureA and fixtureB properties. You can access respective body objects for each of
these two fixtures, and it's often used in conjunction with user data to get information about
which game objects have collided.

Don't forget that there might be more than one contact. You can get the next Contact object
with the next property.

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Game Mechanics

264

The endContact callback
This function is used when two objects cease to collide. Similarly, as with the beginContact
callback function, you've got only one parameter—the Contact object.

The preSolve callback
The Box2D library calls this function whenever contacts are updated. This gives you a chance
to inspect a contact just before it's used in the solver. This function gives you two parameters:
the Contact object and the oldManifold object. This way, you detect changes in contact
points.

This function is rarely used in games.

The postSolve callback
This function lets you inspect resulting contacts after the solver has finished its job. This
is particularly useful if you want to inspect contact impulses. Contact impulses can help
you determine the outcome of the collision response after the solver has processed all
the contacts.

The PostSolve callback accepts two parameters—the Contact object and the
ContactImpulse object, which contains a list of contact impulses.

Do note that Box2D might call the preSolve and postSolve callbacks many times even
when there's only one collision. This is a result of approximation in the solver.

There's more…
The following sample code shows how to use ContactListener with user data to know
exactly which game objects did collide:

local wall = createWall(Vec2(0,0), Vec2(5,1))
local bullet = createBullet(Vec2(0, 5), 1)
wall.userData = {
 name = 'Wall'
}
bullet.userData = {
 name = 'Bullet'
}

local contact_listener = box2d.ContactListener()
contact_listener.beginContact = function(contact)
 local bodyA = contact.fixtureA.body
 local bodyB = contact.fixtureB.body
 local dataA = bodyA.userData

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

265

 local dataB = bodyB.userData
 if type(dataA)=="table" and type(dataB)=="table" then
 print(dataA.name, 'has collided with', dataB.name)
 end
end

As you can see, the userData property can refer to any Lua value. This value is bound to
the Body object and if you destroy the Body object, you'll lose the reference to the userData
value as well. Therefore, it's always better to store the object data somewhere in your Lua
environment and use userData only to store references in it.

You can use userData on the Fixture object as well to store fixture-specific information.

Setting up object collision filtering
Object collision might not be always desirable. For example, if your game allows multiplayer, it
can be frustrating when another player blocks your movement right in front of doors and you
can't get past them. The Box2D library solves this problem with the binary mask for collisions.

Getting ready
This recipe will require a basic understanding of bitwise operations. You'll need at least two
FixtureDef or Fixture objects.

How to do it…
The Box2D library uses a pair of two 16-bit binary masks to determine whether two objects
should collide. The first one is called categoryBits and it indicates the object category.
The second one uses the name maskBits and it indicates what object categories are allowed
to collide with the current object. The following sample code shows the typical uses of these
bit-masks in the FixtureDef object:

local fixture_def = box2d.FixtureDef()
fixture_def.shape = shape
fixture_def.density = 1.5
fixture_def.friction = 0.3
fixture_def.restitution = 0.2

fixture_def.filter.maskBits = 0x0001
fixture_def.filter.categoryBits = 0x0002

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Game Mechanics

266

Usually, you set these bit masks in the FixtureDef object before actually creating the
Fixture object. However, you may change filtering settings later with a small overhead as
this will automatically call the refilter function in the fixture object to update Box2D's
internal state.

The following sample code shows how to update fixture masks on the go:

local new_filter = box2d.Filter()
new_filter.maskBits = 0x0000
new_filter.categoryBits = 0x0002
body.fixture.filter = new_filter

This will cause the fixture to not collide with anything because maskBits is set to a zero value.

How it works…
The Box2D library uses 0xFFFF masks and 0x0001 category bits by default for every Fixture
object you've created. This leads to a situation where every object can collide with other objects.

Before the collision occurs, the Box2D library tests if such a collision is allowed by using
the AND binary operation. If the result is nonzero it means that the collision is allowed.
The following pseudo code shows how this binary test looks:

result = (current_object.categoryBits & other_object.maskBits)
if result > 0 then
 -- collision allowed
else
 -- skip collision
end

The advantage of using bit-masks in collision detection is that it can skip the whole process of
computing collision points and you can save a bit of performance in your game.

There's more…
For special situations where objects are somehow related, you can use the groupIndex
property on the Filter object. The same positive numbers mean that these two objects should
always collide. On the other hand, the same negative numbers indicate that these two objects
should never collide. This property has a higher precedence over mask and category bits.
If this property is set to zero or the groupIndex values don't match, collision testing will
use mask and category bits:

local FD = box2d.FixtureDef
local f1,f2,f3,f4 = FD(), FD(), FD(), FD()
f1.filter.groupIndex = 42
f2.filter.groupIndex = 42

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

267

f3.filter.groupIndex = -3
f4.filter.groupIndex = -3

Fixtures f1 and f2 can always collide, but fixtures f3 and f4 will never collide.

Setting up object joints
Joints present a way of two or more connected objects with a certain type of constraint. The
Box2D library offers several types of joints between objects. This type of object connection is
useful when simulating arms, wheels, or more complex objects such as cars, robots, and so on.

Getting ready
You'll need at least two dynamic objects to use joints. This recipe will use two rectangular
bodies that will be used with various types of joint connections. To make things easier, the
following sample code offers a simple function that prepares a rectangular body that
will be used many times in this recipe:

local makeBox = function(position, size, angle)
 local size = size * box2dScalingFactor
 local bodyDef = box2d.BodyDef()
 bodyDef.type = 'dynamic'
 bodyDef.position = position * box2dScalingFactor
 bodyDef.angle = math.rad(a)

 local body = world.createBody(bodyDef)
 local box = box2d.PolygonShape()
 box.setAsBox(size.x, size.y)

 local fixtureDef = box2d.FixtureDef()
 fixtureDef.shape = box
 fixtureDef.density = 0.1
 fixtureDef.friction = 0.3
 fixtureDef.restitution = 0.2
 body.createFixture(fixtureDef)
 return body
end

Now, you can create two rectangular bodies that will be used for each joint type:

local bodyA = makeBox(Vec2(0, 50), Vec2(2, 2))
local bodyB = makeBox(Vec2(10, 50), Vec2(2, 2))

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Game Mechanics

268

The following screenshot shows a scene with two red boxes next to each other. There are four
static green walls around the scene to keep the red boxes inside. This scene will be used as a
base for each type of joint between those two red boxes.

How to do it…
The Box2D library offers 11 types of joints. Each creation of a joint is preceded by the joint
definition object that is used in a similar fashion to the BodyDef and FixtureDef objects.

The following sections will show you how to prepare the joint definition object and use it to
create respective Joint objects.

Revolute joint
This type of joint is one of the most used joints in games mainly because of its versatility.
You can use it to simulate arms, worms, trap doors, and many others.

Anchor point

Body B

Body A

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

269

First, prepare the joint definition object. Revolute joint types use RevoluteJointDef:

local anchorA = Vec2(5, 0)
local anchorB = Vec2(0, 0)

local jd = box2d.RevoluteJointDef()
jd.bodyA = bodyA
jd.bodyB = bodyB
jd.collideConnected = false
jd.localAnchorA = anchorA
jd.localAnchorB = anchorB

This is the simplest form of the definition object for revolute joint types. Note that this joint
uses one anchor point for each body. The anchor point uses relative coordinates from the
origin point of the body and defines a local point of rotation axis.

Now you can create the RevoluteJoint object by calling the createJoint function on
the World object:

local joint = world.createJoint(jd)
local revolute_joint = box2d.RevoluteJoint(joint)

After you create the revolute joint, it tries to merge anchor points into one. Also, notice that
there's the box2d.RevoluteJoint constructor used to actually convert generic joint type to
RevoluteJoint. You only have to show this if you want to change joint properties over time.

You can define limits for angular motion such as the maximum angle and minimum angle:

jd.enableLimit = true
jd.lowerAngle = math.rad(-45)
jd.upperAngle = math.rad(45)

The revolute joint can be used as a motor joint if you wish, where speed uses rad/s units:

jd.enableMotor = true
jd.motorSpeed = math.pi*2
jd.maxMotorTorque = 10

Motor should always have a reasonable limit for torque defined by the maxMotorTorque
property. This property uses N*m units.

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Game Mechanics

270

The prismatic joint
The prismatic or slider joint is used commonly for elevators, moving platforms, sliding doors, and
pistons. This joint fixes the angle between two bodies and moves them along a specified axis.

Body B

Axis

Upper limit
Body A

Lower limit

Anchor point

Joint definition for the prismatic joint can look like the following:

local anchorA = Vec2(5, 0)
local anchorB = Vec2(0, 0)
local axisA = Vec2(1,0)

local jd = box2d.PrismaticJointDef()
jd.bodyA = bodyA
jd.bodyB = bodyB
jd.collideConnected = false
jd.localAnchorA = anchorA
jd.localAnchorB = anchorB
jd.lowerTranslation = -10
jd.upperTranslation = 10
jd.enableLimit = true
jd.axisA = axisA

There are additional parameters for this joint. You can motorize this joint with these three
parameters:

jd.enableMotor = true
jd.maxMotorForce = 1
jd.motorSpeed = math.pi/4

You can create the PrismaticJoint object with the createJoint function in the
World object:

local joint = world.createJoint(jd)
local prismatic_joint = box2d.PrismaticJoint(joint)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

271

This joint uses anchor points for each body object, as well as axis vector for translation
movement. You can set up additional constrains to limit translation movement by using
the lowerTranslation, upperTranslation, and enableLimit properties.

The movement axis is set by the axisA property and its position is set by the anchor
point of the first body.

The distance joint
The distance joint is used when you need to maintain a constant distance between two bodies
or anchor points, to be precise.

Body B

Body A

Anchor point B

Anchor point A
Length

Definition for this type of joint can look like the following code:

local anchorA = Vec2(5, 0)
local anchorB = Vec2(0, 0)
local distance = 20

local jd = box2d.DistanceJointDef()
jd.bodyA = bodyA
jd.bodyB = bodyB
jd.collideConnected = false
jd.localAnchorA = anchorA
jd.localAnchorB = anchorB
jd.length = distance

This joint can behave like a spring to a certain measure. You can set this with these two
properties—frequencyHz and dampingRatio:

jd.frequencyHz =5
jd.dampingRatio = 0.8

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Game Mechanics

272

The DistanceJoint object is created with the createJoint function in the World object:

local joint = world.createJoint(jd)
local distance_joint = box2d.DistanceJoint(joint)

The rope joint
The rope joint works in a very similar fashion to the distance joint with one exception.
Instead of maintaining a constant distance from the other object, this one uses the
maximum distance constraints. As the name suggests, the rope joint is great for rope
simulation like in the Tarzan movie:

The RopeJoint definition looks like the following code:

local anchorA = Vec2(5, 0)
local anchorB = Vec2(0, 0)
local max_length = 20

local jd = box2d.RopeJointDef()
jd.bodyA = bodyA
jd.bodyB = bodyB
jd.collideConnected = false
jd.localAnchorA = anchorA
jd.localAnchorB = anchorB
jd.maxLength = max_length

The only difference between the DinstanceJointDef object is in the maxLength property.
This will set the length of a rope.

The rope joint is created with the following code:

local joint = world.createJoint(jd)
local rope_joint = box2d.RopeJoint(joint)

The weld joint
The weld joint is the simplest type of joint that connects two bodies. It is very similar to the
distance joint, but it locks the body rotation as well. With this joint, two bodies behave as if
they are one body. Therefore, bodies keep the same orientation and constant distance.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

273

Body B

Body A

Anchor point B

Anchor point A

You can define this joint with the following lines of code:

local anchorA = Vec2(5, 0)
local anchorB = Vec2(0, 0)
local referenceAngle = 0

local jd = box2d.DistanceJointDef()
jd.bodyA = bodyA
jd.bodyB = bodyB
jd.collideConnected = false
jd.localAnchorA = anchorA
jd.localAnchorB = anchorB
-- mass-spring-damper frequency
jd.frequencyHz = 0
jd.dampingRatio = 0
jd.referenceAngle = referenceAngle

The weld joint can have a certain amount of stiffness set by the frequencyHz and
dampingRatio properties. You can disable damping completely by setting dampingRatio
to 0. Another thing is the referenceAngle property. This one is used to set the initial angle
between two bodies. Usually, this angle is set to zero, which means that bodies manage the
angle as they did before the joint application.

You can create the WeldJoint object with the following two lines:

local joint = world.createJoint(jd)
local weld_joint = box2d.WeldJoint(joint)

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Game Mechanics

274

The pulley joint
The pulley is a special type of joint where two bodies are attached to a virtual rope and this
rope hangs in the air. This can be useful to simulate various traps or hanging platforms.

Body BBody A

Anchor point BAnchor point A

Ground anchor point A Ground anchor point B

The following sample code contains the definition for the pulley joint. Notice that you can set
the pulley ratio to simulate, block, and tackle:

local anchorA = Vec2(0, 0)
local anchorB = Vec2(0, 0)
local groundAnchorA = Vec2(-10, 40)
local groundAnchorB = Vec2(10, 40)
local lengthA = 20
local lengthB = 20
local ratio = 1

local jd = box2d.PulleyJointDef()
jd.bodyA = bodyA
jd.bodyB = bodyB
jd.collideConnected = false
jd.localAnchorA = anchorA
jd.localAnchorB = anchor
jd.groundAnchorA = groundAnchorA
jd.groundAnchorB = groundAnchorB
jd.lengthA = lengthA
jd.lengthB = lengthB
jd.ratio = ratio

In this situation, each body is attached to the rope at a local anchor point. The rope hangs at
one or two places in the air, set by the ground anchor point. Be sure to set up the rope length
at each side. It's recommended to place static objects around the ground anchor point to
prevent bodies from being pulled out of the pulley. In reality, this can't happen but it can
cause inconsistencies in the pulley simulation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

275

The pulley joint is created after the createJoint function call in the World object:

local joint = world.createJoint(jd)
local pulley_joint = box2d.PulleyJoint(joint)

The wheel joint
The wheel joint is a renamed version of the so-called line joint that was used in earlier
versions of the Box2D library. This one behaves like a combination of the prismatic joint
for spring and shock absorber and the revolute joint for a wheel. It is commonly used
when simulating cars.

Anchor point

Body B
(a car)

Body A
(a wheel)

Local axis

You can define the wheel joint with the following code:

local anchorA = Vec2(0, 0)
local anchorB = Vec2(0, -5)
local axisA = Vec2(0, 1)

local jd = box2d.WheelJointDef()
jd.bodyA = bodyA
jd.bodyB = bodyB
jd.collideConnected = false
jd.localAnchorA = anchorA
jd.localAnchorB = anchorB
jd.axisA = axisA

You can set a hardness of wheel hinge with the frequencyHz and dampingRatio properties:

jd.frequencyHz = 5
jd.dampingRatio = 0.8

Now you can use this joint definition to create the WheelJoint object:

local joint = world.createJoint(jd)
local wheel_joint = box2d.WheelJoint(joint)

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Game Mechanics

276

The wheel joint can rotate a wheel by itself. You'll just have to set the motor parameters and
enable the motor by setting the enableMotor property:

-- one rotation over 4 seconds
wheel_joint.motorSpeed = math.pi/4
-- max torque is 10 N×m
wheel_joint.maxMotorTorque = 10
wheel_joint.enableMotor = true

After this, you can easily notice that the wheel is slowly rotating.

The gear joint
The gear joint connects the other two joints to the virtual gear. However, this type of joint
works only with revolute and prismatic joints. There are three possible variations: two revolute
joints, two prismatic joints, and one revolute with the prismatic joint. In any case, the gear
joint uses a ratio to measure the movement of the other joint. This is the type of joint that
can be used, for example, on cog-wheels, platforms on wheels, or hydraulic lifts. You can see
these three scenes in the following three diagram.

The first one shows a scene with cog-wheels:

Body B
Body A

Revolute joint Revolute joint

The second one illustrates a platform on wheels:

Body B

Body A

Revolute joint

Prismatic joint

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

277

The last one contains a scene with hydraulic lifts:

Body BBody A

Prismatic jointPrismatic joint

The gear joint definition will look like this:

local jd = box2d.GearJointDef()
jd.bodyA = bodyA
jd.bodyB = bodyB
jd.collideConnected = false
jd.joint1 = revolute_joint1
jd.joint2 = revolute_joint2
jd.ratio = 1

Keep in mind that movable objects should always be set in the bodyB property for each of these
two joints: joint1 and joint2. Otherwise, it won't be moving objects you expected.

You can change the movement direction of the other object with a negative ratio.

Now you can finalize this joint by calling the createJoint function in the World object:

local joint = world.createJoint(jd)
local gear_joint = box2d.GearJoint(joint)

The motor joint
Sometimes you need to control the movement of the body relative to the other body.
The motor joint is designed exactly for this task. This can be used to push the body to
always be next to another object at a certain relative position. You can use this to create
interactive popups or icons that hover above the player's head.

Body B

Relative
position

to Body B

Body A

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Game Mechanics

278

You can define the motor joint with the following code:

local jd = box2d.MotorJointDef()
jd.bodyA = bodyA
jd.bodyB = bodyB
jd.collideConnected = true
jd.linearOffset = Vec(0, 5)
jd.angularOffset = 0
jd.maxForce = 1
jd.maxTorque = 1
jd.correctionFactor = 0.3

As you can there, there are many options to set. For instance, you can set a relative
position with the linearOffset property. You can also set a relative angle with the
property angularOffset so the object will try to be at a certain angle relative to the
other one. Sometimes, you might want to slow down hovering over the object. To do this,
you can experiment with different values for the maxForce and maxTorque properties.
The final option you can use is correctionFactor, which sets the measure of how
much will hovering object try to accommodate with a new position.

The MotorJoint object can be finalized with the following two lines:

local joint = world.createJoint(jd)
local motor_joint = box2d.MotorJoint(joint)

The mouse joint
This type of joint works in a similar way to the MotorJoint object, but instead of using the
relative position to the other object, this one uses world coordinates.

World
coordinate

Body A

The MouseJoint object is used primarily in the Box2D TestBed application to test out the
model situations with various objects and constraints. Even when this joint isn't included in the
Box2D documentation, you can certainly find its use for special cases. For instance, if you've got
a space simulator game, you can move your ship by clicking with your mouse button somewhere
in the space. The ship will slowly follow the destination specified in the world coordinates.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

279

The MouseJoint object definition can look like the following code:

local target_x = 0
local target_y = 0

local jd = box2d.MotorJointDef()
jd.bodyA = bodyA
jd.bodyB = bodyB
jd.collideConnected = true
jd.target = Vec(target_x, target_y)
jd.maxForce = 1
jd.frequencyHz = 5
jd.dampingRatio = 0.7

Target coordinates use world space coordinates and they are set in the target property.
You can maximize the speed of the ship by changing the maxForce property. You can take a
measure of the movement elasticity with the frequencyHz and dampingRatio properties.

The MouseJoint object is created with the following code:

local joint = world.createJoint(jd)
local mouse_joint = box2d.MouseJoint(joint)

The friction joint
The friction joint is used mostly as the name suggests, to add friction to the movement at
certain places. For instance, it you're making a platform game, the player can sometimes
jump from heights. If you've implemented a fall damage, this type of joint can come in handy.
You can create special landing platforms that add friction to the player's falling movement,
and therefore, save them from breaking their bones. Other examples of use can be found in
the wind simulation where the friction joint slows down the player when running.

The friction joint can be defined as follows:

local anchorA = Vec2(0, 0)
local anchorB = Vec2(0, 0)
local max_force = 0.8
local max_torque = 0.9

local jd = box2d.FrictionJointDef()
jd.bodyA = bodyA
jd.bodyB = bodyB
jd.collideConnected = false
jd.localAnchorA = anchorA
jd.localAnchorB = anchorB
jd.maxForce = max_force
jd.maxTorque = max_torque

www.it-ebooks.info

http://www.it-ebooks.info/

Physics and Game Mechanics

280

Greater values of maxForce and maxTorque have a greater damping effect on objects.
Do note that anchor points might not have any significant effect on the friction of movement.

You can complete the friction joint with the following two lines:

local joint = world.createJoint(jd)
local friction_joint = box2d.FrictionJoint(joint)

How it works…
The Box2D objects usually have three degrees of movement freedom; these are horizontal
movement, vertical movement, and rotation around the z axis (out of your screen's direction).
This might not be desirable for certain cases. Joints limit object movement specifically to used
joint types.

However, these movement constraints might not always be exact mainly due to computational
and rounding errors. Even with these inaccuracies, you should be fine as long as you're not
doing 100 percent physically correct simulations or using inappropriate values for world scaling.

Each joint is created in two steps. First, you have to create a joint definition, and after this step
you can use this joint definition as many times as you desire. The last step is joint creation
with the createJoint function in the World object.

The joint object needs to be contained within your Lua environment because the Joint object
can be garbage collected when unused. After this process, your Joint object will no longer
exist. It's better to put the Joint object into the Lua table, which will keep the Joint object
alive. This table should exist at least until the scene finishes.

See also
 f The Choosing the correct vector scaling for the physics engine recipe

www.it-ebooks.info

http://www.it-ebooks.info/

281

8
Artificial Intelligence

This chapter will cover the following recipes:

 f A simple pathfinding algorithm for a maze

 f Pathfinding for tile-based environments with obstacles

 f Using a fuzzy logic for decision making

Introduction
This chapter will show you how to add a bit of intelligence into your game. However,
this does not mean that your game characters will be able to behave like real-life people.
Instead, they will be able to handle specific situations with a predefined set of rules. This
adds a realistic-looking behavior to the game characters.

The earlier games used a simple mechanism with static environment and static movement
paths. Nonplayer characters or NPCs could move only along certain paths and couldn't handle
changes in the game environment. You could see this in the Super Mario Bros series.

The next step in artificial intelligence was introduced in 3D action games such as Doom.
NPCs always try to approach the player character after they've been alarmed about the
player's presence. But still, they can't handle the simplest obstacles. A certain level of
intelligence is emulated with special skills to make the games more challenging.

Modern games use a static or dynamic set of paths to move from one point to another.
The advantage of static paths is that these are usually well designed within certain game
environments and allow NPCs to move to other locations even if there are obstacles. The
downside of this approach is that this set of paths must be prepared by game developers
and it usually can't be changed during gameplay. What's more, it can't respond to dynamic
changes in the environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Artificial Intelligence

282

Dynamic paths are used in some games today to incorporate intelligent movement in
changing game environments. This consists of graph-like structures, where significant
locations are marked as graph nodes and paths between these nodes can contain a set
of instructions to successfully move between these two locations. However, this approach
is the hardest to implement and it's more computationally intensive as well.

Artificial intelligence in games is used not only for pathfinding, but also for NPC behavior.
This kind of AI can be divided into two categories: static and dynamic. Most games use static
behavioral AI with a set of rules that define NPC actions on certain inputs. The downside of static
AI is that it can't learn new things. Dynamic behavioral AI usually uses neural network expert
systems with a feedback loop (observation) to generate a set of rules on top of predefined static
rules. A typical example of such a system is the H.A.L. 9000 computer in A Space Odyssey or a
robot in the Terminator movie series.

A simple pathfinding algorithm for a maze
Maze pathfinding can be used effectively in many types of games, such as side-scrolling
platform games or top-down, gauntlet-like games. The point is to find the shortest viable path
from one point on the map to another. This can be used for moving NPCs and players as well.

Getting ready
This recipe will use a simple maze environment to find a path starting at the start point and
ending at the exit point. You can either prepare one by yourself or let the computer create one
for you. A map will be represented by a 2D-map structure where each cell will consist of a cell
type and cell connections. The cell type values are as follows:

 f 0 means a wall

 f 1 means an empty cell

 f 2 means the start point

 f 3 means the exit point

Cell connections will use a bitmask value to get information about which cells are connected
to the current cell. The following diagram contains cell connection bitmask values with their
respective positions:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

283

y

x

2

1

4

8

Now, the quite common problem in programming is how to implement an efficient data structure
for 2D maps. Usually, this is done either with a relatively large one-dimensional array or with an
array of arrays. All these arrays have a specified static size, so map dimensions are fixed. The
problem arises when you use a simple 1D array and you need to change the map size during
gameplay or the map size should be unlimited. This is where map cell indexing comes into place.
Often you can use this formula to compute the cell index from 2D map coordinates:

local index = x + y * map_width
map[index] = value

There's nothing wrong with this approach when the map size is definite. However, changing
the map size would invalidate the whole data structure as the map_width variable would
change its value. A solution to this is to use indexing that's independent from the map size.
This way you can ensure consistent access to all elements even if you resize the 2D map.

You can use some kind of hashing algorithm that packs map cell coordinates into one value
that can be used as a unique key. Another way to accomplish this is to use the Cantor pairing
function, which is defined for two input coordinates:

Index value distribution is shown in the following diagram:

www.it-ebooks.info

http://www.it-ebooks.info/

Artificial Intelligence

284

The Cantor pairing function ensures that there are no key collisions no matter what coordinates
you use. What's more, it can be trivially extended to support three or more input coordinates. To
illustrate the usage of the Cantor pairing function for more dimensions, its primitive form will be
defined as a function cantor(k1, k2), where k1 and k2 are input coordinates. The pairing
function for three dimensions will look like this:

local function cantor3D(k1, k2, k3)
 return cantor(cantor(k1, k2), k3)
end

Keep in mind that the Cantor pairing function always returns one integer value. With higher
number of dimensions, you'll soon get very large values in the results. This may pose a problem
because the Lua language can offer 52 bits for integer values. For example, for 2D coordinates
(83114015, 11792250) you'll get a value 0x000FFFFFFFFFFFFF that still can fit into 52-bit
integer values without rounding errors. The larger coordinates will return inaccurate values and
subsequently you'd get key collisions. Value overflow can be avoided by dividing large maps into
smaller ones, where each one uses the full address space that Lua numbers can offer. You can
use another coordinate to identify submaps.

This recipe will use specialized data structures for a 2D map with the Cantor pairing function
for internal cell indexing. You can use the following code to prepare this type of data structure:

function map2D(defaultValue)
 local t = {}
 -- Cantor pair function
 local function cantorPair(k1, k2)
 return 0.5 * (k1 + k2) * ((k1 + k2) + 1) + k2
 end
 setmetatable(t, {
 __index = function(_, k)
 if type(k)=="table" then
 local i = rawget(t, cantorPair(k[1] or 1, k[2] or 1))
 return i or defaultValue
 end
 end,
 __newindex = function(_, k, v)
 if type(k)=="table" then
 rawset(t, cantorPair(k[1] or 1, k[2] or 1), v)
 else
 rawset(t, k, v)
 end
 end,
 })
 return t
end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

285

The maze generator as well as the pathfinding algorithm will need a stack data structure.
For more information, refer to the Making a stack recipe from Chapter 1, Basics of the
Game Engine.

How to do it…
This section is divided into two parts, where each one solves very similar problems from the
perspective of the maze generator and the maze solver.

Maze generation
You can either load a maze from a file or generate a random one. The following steps will
show you how to generate a unique maze.

First, you'll need to grab a maze generator library from the GitHub repository with the
following command:

git clone https://github.com/soulik/maze_generator

This maze generator uses the depth-first approach with backtracking.

You can use this maze generator in the following steps. First, you'll need to set up maze
parameters such as maze size, entry, and exit points.

local mazeGenerator = require 'maze'
local maze = mazeGenerator {
 width = 50,
 height = 25,
 entry = {x = 2, y = 2},
 exit = {x = 30, y = 4},
 finishOnExit = false,
}

The final step is to iteratively generate the maze map until it's finished or a certain step count
is reached. The number of steps should always be one order of magnitude greater than the
total number of maze cells mainly due to backtracking. Note that it's not necessary for each
maze to connect entry and exit points in this case.

for i=1,12500 do
 local result = maze.generate()
 if result == 1 then
 break
 end
end

www.it-ebooks.info

http://www.it-ebooks.info/

Artificial Intelligence

286

Now you can access each maze cell with the maze.map variable in the following manner:

local cell = maze.map[{x, y}]
local cellType = cell.type
local cellConnections = cell.connections

Maze solving
This recipe will show you how to use a modified Trémaux's algorithm, which is based on
depth-first search and path marking. This method guarantees finding the path to the exit point
if there's one. It relies on using two keys in each step: current position and neighbors.

This algorithm will use three state variables—the current position, a set of visited cells, and
the current path from the starting point:

local currentPosition = {maze.entry.x, maze.entry.y}
local visistedCells = map2D(false)
local path = stack()

The whole maze solving process will be placed into one loop. This algorithm is always finite,
so you can use the infinite while loop.

-- A placeholder for neighbours function that will be defined
later
local neighbours

-- testing function for passable cells
local cellTestFn = function(cell, position)
 return (cell.type >= 1) and (not visitedCells[position])
end

-- include starting point into path
visitedCells[currentPosition] = true
path.push(currentPosition)

while true do
 local currentCell = maze.map[currentPosition]
 -- is current cell an exit point?
 if currentCell and
 (currentCell.type == 3 or currentCell.type == 4) then
 break
 else
 -- have a look around and find viable cells
 local possibleCells = neighbours(currentPosition, cellTestFn)
 if #possibleCells > 0 then
 -- let's try the first available cell

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

287

 currentPosition = possibleCells[1]
 visitedCells[currentPosition] = true
 path.push(currentPosition)
 elseif not path.empty() then
 -- get back one step
 currentPosition = path.pop()
 else
 -- there's no solution
 break
 end
 end
end

This fairly simple algorithm uses the neighbours function to obtain a list of cells that haven't
been visited yet:

-- A shorthand for direction coordinates
local neighbourLocations = {
 [0] = {0, 1},
 [1] = {1, 0},
 [2] = {0, -1},
 [3] = {-1, 0},
}

local function neighbours(position0, fn)
 local neighbours = {}
 local currentCell = map[position0]
 if type(currentCell)=='table' then
 local connections = currentCell.connections
 for i=0,3 do
 -- is this cell connected?
 if bit.band(connections, 2^i) >= 1 then
 local neighbourLocation = neighbourLocations[i]
 local position1 = {position0[1] + neighbourLocation[1],
 position0[2] + neighbourLocation[2]}
 if (position1[1]>=1 and position1[1] <= maze.width and
 position1[2]>=1 and position1[2] <= maze.height) then
 if type(fn)=="function" then
 if fn(map[position1], position1) then
 table.insert(neighbours, position1)
 end
 else
 table.insert(neighbours, position1)
 end
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Artificial Intelligence

288

 end
 end
 end
 return neighbours
end

When this algorithm finishes, a valid path between entry and exit points is stored in the path
variable represented by the stack data structure. The path variable will contain an empty
stack if there's no solution for the maze.

How it works…
This pathfinding algorithm uses two main steps. First, it looks around the current maze cell to
find cells that are connected to the current maze cell with a passage. This will result in a list of
possible cells that haven't been visited yet. In this case, the algorithm will always use the first
available cell from this list. Each step is recorded in the stack structure, so in the end, you can
reconstruct the whole path from the exit point to the entry point. If there are no maze cells to
go, it will head back to the previous cell from the stack.

The most important is the neighbours function, which determines where to go from
the current point. It uses two input parameters: current position and a cell testing function.
It looks around the current cell in four directions in clockwise order: up, right, down, and left.
There must be a passage from the current cell to each surrounding cell; otherwise, it'll just
skip to the next cell. Another step determines whether the cell is within the rectangular maze
region. Finally, the cell is passed into the user-defined testing function, which will determine
whether to include the current cell in a list of usable cells.

The maze cell testing function consists of a simple Boolean expression. It returns true if the
cell has a correct cell type (not a wall) and hasn't been visited yet. A positive result will lead
to inclusion of this cell to a list of usable cells.

Note that even if this pathfinding algorithm finds a path to the exit point, it doesn't guarantee
that this path is the shortest possible.

Pathfinding for tile-based environments
with obstacles

This recipe will show you how to solve the pathfinding problem in your game by using the
A* algorithm. You can use this whenever you need to move from one point to another in an
unknown environment. It uses heuristics to improve the search speed and efficiency. The good
thing is that you can use it with any shape of tile. The most common use of the A* search
algorithm can be found in strategic games, many action games, and tower defense games.
Its use can be extended beyond pathfinding problems to adapt AI decisions to the
environment or to make a dynamic liquid-like environment.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

289

Getting ready
The A* searching algorithm makes extensive use of the priority queue data structure and it
needs to access map cells quite frequently. For this purpose, you'll be using a slightly modified
version of the priority queue and map2D structure.

You can use the following code to define the priority queue object:

-- useful shortcuts
local ti = table.insert
local tr = table.remove
-- remove table element by its value
local tr2 = function(t, v)
 for i=1,#t do
 if t[i]==v then
 tr(t, i)
 break
 end
 end
end

function pqueue()
 local t = {}
 -- a set of elements
 local set = {}
 -- a set of priorities paired with a elements
 local r_set = {}
 -- sorted list of priorities
 local keys = {}
 -- add element into storage and set its priority and sort keys
 local function addKV(k, v)
 set[k] = v
 if not r_set[v] then
 ti(keys, v)
 table.sort(keys)
 local k0 = {k}
 r_set[v] = k0
 setmetatable(k0, {
 __mode = 'v'
 })
 else
 ti(r_set[v], k)
 end
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Artificial Intelligence

290

 -- remove element from storage and sort keys
 local remove = function(k)
 local v = set[k]
 local prioritySet = r_set[v]
 tr2(prioritySet, k)
 if #prioritySet < 1 then
 tr2(keys, v)
 r_set[v] = nil
 table.sort(keys)
 set[k] = nil
 end
 end; t.remove = remove
 -- returns an element with the lowest priority
 t.min = function()
 local priority = keys[1]
 if priority then
 return r_set[priority] or {}
 else
 return {}
 end
 end
 -- returns an element with the highest priority
 t.max = function()
 local priority = keys[#keys]
 if priority then
 return r_set[priority] or {}
 else
 return {}
 end
 end
 -- is this queue empty?
 t.empty = function()
 return #keys < 1
 end

 setmetatable(t, {
 __index = set,
 __newindex = function(t, k, v)
 if not set[k] then
 -- new element
 addKV(k, v)
 else
 -- existing element, change its priority
 remove(k)
 addKV(k, v)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

291

 end
 end,
 })

 return t
end

In contrast to the previous version of priority queue in the first chapter, this one allows you to
obtain elements with the lowest or highest priority as well as test their existence in the queue.

How to do it…
The A* searching algorithm in this recipe will use the priority queue to define the frontier of
the observed region. It will also need access to map cell data and also access to both the
starting and ending points of the pathfinding process.

You can enclose the whole pathfinding solver into one function with three parameters—a list
of map cells defined by the map2D data structure, the starting, and the ending point:

function solver(mapCells, startPoint, endPoint)
 ...
end

This recipe will use the tuple data structure to define the point position. However, the Lua
language doesn't offer a real tuple data structure, where each tuple element is uniquely
defined by its content. The easiest way to achieve tuple uniqueness is to cache tuples by
their values.

The following lines of code will show you how to use the Cantor pairing function in tuple caching:

local cellCache = {}
local function cantorPair(k1, k2)
 return 0.5 * (k1 + k2) * ((k1 + k2) + 1) + k2
end
local function storeCells(...)
 for _, elm in ipairs {...} do
 cellCache[cantorPair(elm[1], elm[2])] = elm
 end
end
local function queryCell(p)
local cp = cantorPair(p[1], p[2])
 local cell = cellCache[cp]
 if not cell then
 cell = p
 cellCache[cp] = cell
 end
 return cell
end

www.it-ebooks.info

http://www.it-ebooks.info/

Artificial Intelligence

292

Note that these functions should be inside the solver function to make the whole solving
process independent of the current Lua state.

The next thing you'll need is a way to obtain the neighbor cell around the current map cell.
You can implement this function as an iterator:

local directionSet = {
 {-1,-1}, { 0, 1}, { 1, 1},
 {-1, 0}, { 1, 0},
 { 1,-1}, { 0,-1}, {-1, 1},
}
-- general form of neighbour iterator
local function neighboursFn(p0)
 local list = {}
 for _, direction in ipairs(directionSet) do
 local p1 = queryCell({p0[1] + direction[1],
 p0[2] + direction[2]})
 coroutine.yield(p1)
 end
 coroutine.yield()
end
-- returns specialized parametrical iterator
local function neighbours(p0)
 return coroutine.wrap(function()
 return neighboursFn(p0)
 end)
end

Another important point of this algorithm is path reconstruction. The pathfinding solver uses
a graph-like data structure, where the starting point is at the root of the graph and the ending
point is at one of the leaf nodes. Path reconstruction goes from the leaf node—ending point
back to the root while storing the whole path in a list data structure:

local function reconstructPath(cameFrom, goal)
 local totalPath = {current}
 local current = cameFrom[goal]
 while current do
 table.insert(totalPath, current)
 current = cameFrom[current]
 end
 return totalPath
end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

293

The pathfinding algorithm uses simple heuristic functions to estimate which path is the best
to take. You can use the Manhattan distance function to obtain the path cost estimation. The
good thing is that it's easier to solve than the usual distance function with a square root.

local function heuristicCostEstimate(p0, p1)
 return math.abs(p0[1] - p1[1]) + math.abs(p0[2] - p1[2])
end

You'll need to get the cost of stepping to the neighbor cell as well. This can be determined by the
cost function that looks at the target map cell to check whether there's a passage or a wall:

local function cost(p0, p1)
 local cell = mapCells[p1]
 -- map cell with 0 value is a wall
 if cell == 0 then
 return math.huge -- impassable wall cost
 else
 return 1 -- normal step cost
 end
end

Now, with all the necessary helping functions, you put them together with the A* searching
algorithm implementation.

The code for the whole pathfinding solver will look like this:

function solver(mapCells, startPoint, endPoint)
 ... helping functions from above
 -- initial state
 local frontier = pqueue()
 local cameFrom = {}
 local costSoFar = {
 [start] = 0,
 }
 frontier[start] = 0
 storeCells(start, goal)

 while not frontier.empty() do
 local current = assert((frontier.min())[1])
 -- are we at goal?
 if current == goal then
 return reconstructPath(cameFrom, goal)
 end
 -- remove current position from the frontier
 frontier.remove(current)
 -- look at neighbours

www.it-ebooks.info

http://www.it-ebooks.info/

Artificial Intelligence

294

 for neighbour in neighbours(current) do
 local newCost = costSoFar[current] +
 cost(current, neighbour)
 if not costSoFar[neighbour]
 or (newCost < costSoFar[neighbour]) then
 costSoFar[neighbour] = newCost
 frontier[neighbour] = newCost +
 heuristicCostEstimate(goal, neighbour)
 cameFrom[neighbour] = current
 end
 end
 end
end

The solver function can be used in the following manner:

mapCells = map2D(1)
local startPosition = {1, 1}
local endPosition = {10, 5}
local path = solver(mapCells, startPosition, endPosition)

How it works…
The A* search algorithm uses a best-first search approach, where it looks for a least-cost
path from the starting point to the ending point. During path traversal, it looks for a path with
the lowest expected cost. A set of possible path segments is stored in a priority queue sorted
by the path segment cost. In a tiled environment, this priority queue can be imagined as a
frontier.

This algorithm can be viewed as a combination of Dijkstras's and a greedy best-first algorithm
by taking the best of both worlds. The heuristic function can help to quicken this process by
adjusting the cost of the expected path so that path searching will lead in a direction closer to
the goal. This heuristic function is a part of greedy best-first search algorithms and might not
always lead to the best solution.Path cost.

This recipe uses two functions to measure the path cost. The immediate path cost to the
neighbor cell is determined by the cost function, which will return step cost 1 if you can pass
to the next cell. Otherwise, it will return a huge number or infinity, indicating that there's a wall
and you can't walk through it no matter what. An important point to note about this function
is that you can customize it to simulate passable but costly environment, such as water pools,
grass, or a bush. You'll just need to set the cost number to be higher than 1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

295

Heuristic
A frontier ring of observed cells usually expands evenly in all directions. With the heuristic
function, the shape of a frontier ring is formed differently. The ring expands more in the
direction to the goal point. You can imagine the heuristic function as a hint that tells you
what direction will probably be cheaper. This probability comes from the heuristic estimate
that uses the Manhattan distance between the current and a goal point without taking
obstacles into account. This distance function is based on the grid-like street geography of
the New York borough of Manhattan.

There's more…
Note that the A* searching algorithm performs well in a static environment. It can be used
in dynamic environments as well, but the observed area must be reasonably small to keep
performance impact at minimum. What's more, the A* searching algorithm can't reuse
search data from previous runs.

In general, the D* searching algorithm is more suited to be used in dynamic environments
mainly because it can reuse its search data. If you add changes to the environment, it will
recompute only a small fragment of search data.

This algorithm works in the same fashion as the A* algorithm when there are no changes
in the observed environment. Other than that, it keeps path costs between each node
and their parent node. This way, it can detect environment inconsistencies and adjust
the corresponding path costs.

See also
 f The Simple pathfinding algorithm for a maze recipe

Using a fuzzy logic for decision making
Fuzzy logic presents a way to move from exact reasoning of Boolean logic to an approximation
of a truth value, whereas Boolean logic uses a binary set of true or false values; fuzzy logic
can operate anywhere between these two values.

This can be used to deal with situations where you can't be 100 percent sure about the result.
Many modern games use this to make autonomous NPCs or intelligent enemies that can
accommodate their actions to the current situation or environment.

This recipe will use a simplistic version of the fuzzy inference system with a fixed number of
value points. It's not as precise as the professional grade fuzzy inference systems, but still
performs well enough to be used in games.

www.it-ebooks.info

http://www.it-ebooks.info/

Artificial Intelligence

296

The FIS solver is designed in a way to make its configuration as simple as possible.

Fuzzy sets are often used with neural networks, mainly because neurons operate on various
levels at synapses.

Getting ready
First, you'll need to prepare a special version of the mathematical and geometric functions in
the form of function templates. These functions form the basic building blocks for fuzzy logic.

The following code contains basic mathematical functions capable of operating on fuzzy sets:

-- minimum of a fuzzy set
local function min(a, b)
 return function(x, y)
 return math.min(a(x), b(y))
 end
end
-- maximum of a fuzzy set
local function max(a, b)
 return function(x, y)
 return math.max(a(x), b(y))
 end
end
-- negation of a fuzzy set
local function neg(a)
 return function(x)
 return 1.0 - a(x)
 end
end
-- crop values of a fuzzy set
local function crop(rangeMin, rangeMax)
 return function(x)
 return math.min(math.max(x, rangeMin), rangeMax)
 end
end
-- merge two fuzzy sets
local function mergeSets(a, b)
 local out = {}
 for k, _ in pairs(a) do
 out[k] = true
 end
 if type(b)=='table' then
 for k, _ in pairs(b) do

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

297

 out[k] = true
 end
 end
 return out
end

You'll need functions to define truth values in fuzzy sets as well. The truth value is a part of the
fuzzy set and can be represented by continuous membership functions. It maps lexical value
into a set of numerical values or vice versa. To get a better idea, see the following diagram
showing truth values in a fuzzy set to map the temperature from word expressions into
numerical values:

Truth values usually take one of these three shapes: triangle, trapezoid, or gauss curve:

local function triangle(a, b, c)
 return function(_x)
 return function()
 local x = _x()
 if x>=a and x<b then
 return (x - a)/(b-a)
 elseif x>=b and x<c then
 return (c - x)/(c-b)
 else
 return 0
 end
 end
 end
end

local function trapezoid(a, b, c, d)
 return function(_x)
 return function()
 local x = _x()
 if x>=a and x<b then
 return (x - a)/(b-a)
 elseif x>=b and x<c then

www.it-ebooks.info

http://www.it-ebooks.info/

Artificial Intelligence

298

 return 1
 elseif x>=c and x<d then
 return (d - x)/(d-c)
 else
 return 0
 end
 end
 end
end

local function gauss(deviation, mean)
 return function(_x)
 return function()
 local x = _x()
 return math.exp(-((x - mean)^2)/(2*deviation^2))
 end
 end
end

Each of these shapes uses a set of control points to define its position or to modify the
shape itself.

How to do it…
The hardest part will be the fuzzy inference system or FIS solver. The whole code for the solver
will be in the form of closure, so you can create the FIS solver just by using the constructor
function.

FIS will consist of the objects' fuzzy sets, linguistic variables, and rules. A fuzzy set can
represent input or output values with a specified numerical range. A fuzzy set is filled with at
least one linguistic variable. Linguistic variables are also used in rules either in the form of a
predicate or implication. The FIS solver will use these rules to produce numerical variables in
the output.

The following code shows the basic FIS solver skeleton:

local function solver()
 local rules = {}
 local fuzzySets = {}
 local outputFuzzySets = {}

 local obj = {
 rules = rules,
 settings = {
 implicationOperator = math.min,
 aggregationOperator = math.max,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

299

 step = 0.01,
 },
 }
 -- fuzzy set
 obj.F = function(def)
 end
 -- linguistic variable
 obj.L = function(def)
 end
 -- rule
 obj.R = function(factor)
 end

 local function computeImplication(rule)
 end
 local function aggregateResults(ruleResults)
 end
 local function defuzzifyResult(fuzzyResult)
 end
 -- the first parameter can be omitted as is contains a reference
 to the object itself
 local function solve(_, inputs)
 end

 setmetatable(obj, {
 __call = solve,
 })
 return obj
end

In the next step, you'll need to implement the FIS elements—a fuzzy set, a linguistic variable,
and a rule.

A fuzzy set
A fuzzy set object constructor will accept one parameter in the form of a table to define the
fuzzy set name and a range of fuzzy set values.

obj.F = function()
 assert(type(def)=='table')
 local name, range = unpack(def)
 assert(type(name)=='string' and type(range)=='table')

 local out = {}
 local range = {_min(unpack(range)), _max(unpack(range))}

www.it-ebooks.info

http://www.it-ebooks.info/

Artificial Intelligence

300

 out.range = range
 out.name = name
 local langValues = {}; out.langValues = langValues
 fuzzySets[name] = {
 value = 0,
 range = range,
 }

 local crop = M.crop(unpack(range))
 local cropValue = M.crop(0, 1)
 local min, max, neg = M.min, M.max, M.neg

 local function getFuzzyValueFunctor()
 return function()
 return crop(fuzzySets[name].value)
 end
 end
 -- prepare fuzzy set object
 local function prepareFuzzySet(fn)
 local var = {
 fn = fn,
 crop = crop,
 fuzzySets = {
 [out] = true,
 },
 }
 -- define fuzzy set operators
 setmetatable(var, {
 -- OR
 __add = function(a, b)
 local fs = prepareFuzzySet(max(a.fn, b.fn))
 fs.fuzzySets = mergeSets(a.fuzzySets, b.fuzzySets)
 return fs
 end,
 -- AND
 __mul = function(a, b)
 local fs = prepareFuzzySet(min(a.fn, b.fn))
 fs.fuzzySets = mergeSets(a.fuzzySets, b.fuzzySets)
 return fs
 end,
 -- NOT
 __unm = function(a)
 local fs = prepareFuzzySet(neg(a.fn))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

301

 fs.fuzzySets = mergeSets(a.fuzzySets)
 return fs
 end,
 __call = function(a)
 return cropValue(fn())
 end,
 })
 return var
 end

 setmetatable(out, {
 __index = function(_, name)
 return langValues[name]
 end,
 __newindex = function(_, name, fuzzySetFn)
 assert(type(fuzzySetFn)=='function')
 langValues[name] = prepareFuzzySet(
 -- prepare elementary fuzzy set
 fuzzySetFn(getFuzzyValueFunctor())
)
 end,
 })
 return out
end

A linguistic variable
Each fuzzy set must contain at least one linguistic variable. The linguistic variable object
describes the truth value with the membership function. This object uses one parameter
in the constructor to define the linguistic variable function shape:

obj.L = function(def)
 assert(type(def)=='table')
 local fnGen, parameters = unpack(def)
 assert(type(fnGen)=='function' and type(parameters)=='table')
 return fnGen(unpack(parameters))
end

A rule
FIS uses a set of rules to evaluate input variables into output variables. All rules consist of
premise and implication. They are always in the following form:

IF premise THEN implication

www.it-ebooks.info

http://www.it-ebooks.info/

Artificial Intelligence

302

You may use Zadeh operators in premises to specify more complex conditions. Zadeh
operators AND, OR, and NOT are special types of Boolean operators and are defined as
minimum, maximum, and complement:

obj.R = function(factor)
 local out = {
 premise = false,
 implication = false,
 factor = factor or 1,
 }
 table.insert(rules, out)
 return out
end

The rules parameter can use the factor value to modify the scale of rule impact on output
variables. This is used mostly with more than one output variable.

The third step is the implementation of three functions computeImplication,
aggregateResults, and defuzzifyResult. These functions are used in individual
parts of the fuzzy inference evaluation process as follows:

local function computeImplication(rule)
 local premiseResult = rule.premise()
 local implication = rule.implication
 local factor = rule.factor or 1

 local out = {
 }

 local implicationFuzzySets = implication.fuzzySets
 local langValues = implication.langValues
 local implicationOperator = obj.settings.implicationOperator
 local oldValues = {}
 local range = {0, 0}

 -- store current values and obtain maximum range
 for fs, _ in pairs(implicationFuzzySets) do
 oldValues[fs.name] = fuzzySets[fs.name].value
 range[1] = _min(range[1], fs.range[1])
 range[2] = _max(range[2], fs.range[2])
 end

 -- compute values for each implication conclusion
 for x = range[1], range[2], obj.settings.step do
 for fs, _ in pairs(implicationFuzzySets) do

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

303

 fuzzySets[fs.name].value = x
 end
 local result = implicationOperator(implication(),
 premiseResult)
 table.insert(out, {x, result*factor})
 end

 -- restore old value
 for fs, _ in pairs(implicationFuzzySets) do
 fuzzySets[fs.name].value = oldValues[fs.name]
 end
 return out
end

local function aggregateResults(ruleResults)
 local aggregatedResult = {}
 local ruleResult1 = ruleResults[1]
 local aggregationOperator = obj.settings.aggregationOperator

 if #ruleResults > 1 then
 for i, point in ipairs(ruleResult1) do
 local values = {point[2]}
 for j=2,#ruleResults do
 table.insert(values, ruleResults[j][i][2])
 end
 aggregatedResult[i] = {point[1],
 aggregationOperator(unpack(values))}
 end
 else
 aggregatedResult = ruleResults[1]
 end
 return aggregatedResult
end

-- compute centroid point from fuzzy result
local function defuzzifyResult(fuzzyResult)
 local accumXY, accumY = 0, 0
 for i, point in ipairs(fuzzyResult) do
 if point[2] > 0 then
 accumXY = accumXY + point[1]*point[2]
 accumY = accumY + point[2]
 end
 end
 if accumY > 0 then

www.it-ebooks.info

http://www.it-ebooks.info/

Artificial Intelligence

304

 return accumXY/accumY
 else
 return (fuzzyResult[1][2]-fuzzyResult[#fs][2])/2
 end
end

A solver
The final step in FIS implementation is the solver function. It will accept a table of
input variables. Input variables are specified by a fuzzy set name as a key paired with
numerical values.

local solve = function(_, inputs)
 for name, value in pairs(inputs) do
 fuzzySets[name].value = value
 end
 --outputFuzzySets
 local partialResults = {}
 for i, rule in ipairs(rules) do
 local implicationFSs = rule.implication.fuzzySets
 for FS, _ in pairs(implicationFSs) do
 local result = partialResults[FS.name]
 if not result then
 result = {}; partialResults[FS.name] = result
 end
 table.insert(result, computeImplication(rule))
 end
 end
 for name, results in pairs(partialResults) do
 local aggResult = aggregateResults(results)
 outputFuzzySets[name] = defuzzifyResult(aggResult)
 end
 return outputFuzzySets
end

A usage
The following example uses the FIS solver object to obtain the recommended tip amount in a
restaurant depending on the food quality and the level of service:

local FIS = solver()
local F,L,R = FIS.F, FIS.L, FIS.R

local service = F {'service', {0, 10}}
service['poor'] = L {gauss, {1.5, 0}}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

305

service['good'] = L {gauss, {1.5, 5}}
service['excellent'] = L {gauss, {1.5, 10}}

local food = F {'food', {0, 10}}
food['rancid'] = L {trapezoid, {0, 0, 1, 3}}
food['delicious'] = L {trapezoid, {7,9, 10, 10}}

local tip = F {'tip', {0, 30}}
tip['cheap'] = L {triangle, {0, 5, 10}}
tip['average'] = L {triangle, {10, 15, 20}}
tip['generous'] = L {triangle, {20, 25, 30}}

-- IF service is poor OR food is rancid THEN tip is cheap
local rule1 = R()
rule1.premise = service['poor'] + food['rancid']
rule1.implication = tip['cheap']
-- IF service is good THEN tip is average
local rule2 = R()
rule2.premise = service['good']
rule2.implication = tip['average']
-- IF service is excellent OR food is delicious THEN tip is
generous
local rule3 = R()
rule3.premise = service['excellent'] + food['delicious']
rule3.implication = tip['generous']

local inputVariables = {
 service = 8.0,
 food = 6.5,
}
local result = FIS(inputVariable)

This example will result in a table with one output variable:

Output variable name Value
tip 22.213269948097

This means you were most probably satisfied with the food and the overall service in the
restaurant was great. Therefore, you can give a tip of around $22 from your budget of $30
for tips.

www.it-ebooks.info

http://www.it-ebooks.info/

Artificial Intelligence

306

How it works…
The fuzzy inference system is the process of mapping input variables into output variables
using fuzzy logic. There are two kinds of fuzzy inference systems: Mamdani and Sugeno.
This recipe uses the Mamdani-type inference system as it's the most commonly used in
this field and it's more intuitive than the Sugeno-type inference system.

The process of computing output variables in the Mamdani inference system can be briefly
described in six steps:

1. Setting up and determination of fuzzy rules.

2. Fuzzification of input variables using membership functions.

3. Application of fuzzy rules on fuzzied input variables to obtain rule strength.

4. Computation of rule implication—consequences of using rule strength and the
output membership function.

5. Combination of consequences in the output distribution function.

6. Defuzzification of the output distribution function into a crisp output variable.

First of all, you set mapping of crisp input variables into truth levels in a fuzzy set using the
membership function. The following diagram shows a graphical representation of truth levels
for service, food, and tip:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

307

In the preceding diagram, the horizontal axis relates to the satisfaction level from 0 to 10 for the
service. The vertical axis indicates the level of truth for all lexical terms that are used in this fuzzy
set. As you can see, the lexical term poor service is the truest, around 0 level of satisfaction on
the horizontal axis. Moving towards crisp value 5, the service is mostly regarded as a good one.
This fuzzy set uses gauss curves to describe truth values for lexical terms.

The second diagram contains a fuzzy set for food quality evaluation; it uses the trapezoid
shape of truth values for both terms:

www.it-ebooks.info

http://www.it-ebooks.info/

Artificial Intelligence

308

The preceding diagram contains a fuzzy set to determine what tip you should give to the
waiter. Tips are divided into three levels: cheap, average, and generous. Notice that there's
no exact result telling you how much you should give. Lexical terms use the triangular shape
for truth values.

Input variable mapping can be interpreted as follows—if the crisp value for a service is 4, it
means that the service is more likely good than poor, and even less likely excellent. The result
of the input variable mapping are truth levels for each linguistic variable. For instance, if the
crisp value of service is 4, truth levels would be as shown in the following table:

Lexical variable Truth level
Poor 0.0286
Good 0.8007
Excellent 0.0003

This process is called fuzzification.

The next step applies fuzzied input variables in the premise part of all rules. Rules usually
use one of the three fuzzy operators: AND, OR, and NOT. The AND operator uses a minimum
value of input variables, the OR operator uses the maximum value, and the NOT operator
negates the truth level of the input variable. The resulting value is used in the implication part
of the rule. The implication process combines the premise result with the output variable in
intermediate fuzzy sets using minimal values. The following diagram shows the computation
of the first rule:

This process is repeated for all rules and output variables.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

309

The second last step consists of fuzzy set aggregation into one output fuzzy set. Aggregation
merges all the fuzzy sets that correspond to the same output variable by using the maximum
value. The following diagram shows the aggregated output fuzzy set for the tip output variable:

The last step of fuzzy inference is defuzzification to obtain a crisp value of the output variable.
There are many defuzzification methods. This recipe uses an average of the weight function
with approximation to speed up computation.

Note that aggregation and defuzzification is repeated for each output variable.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

311

9
Sounds and Networking

This chapter will cover the following topics:

 f Initializing the audio subsystem

 f Playing sound samples

 f Playing the background music

 f Network communication with ZeroMQ

 f Creating a basic client-server architecture

 f Sending messages to many hosts at once

 f Communication between threads

Introduction
In this chapter, you'll learn how to use the sound subsystem in LuaSDL and to communicate
over the network or between the threads with the ZeroMQ library.

Sounds and music in games can enhance the overall atmosphere or make them even more
memorable to players. The LibSDL library itself contains only the basic function to send raw
data to your audio card. Fortunately, the LuaSDL library bundles the LibSDL library with the
SDL_Mixer add-on, which extends a number of audio file decoders and adds simple audio
effects, such as volume control, fade-in, and fade-out. You can load sound samples by using
one of these file formats: WAV, MID, MOD, OGG, or MP3.

Whether or not you plan to use multiplayer, the ZeroMQ library can solve many common
problems with network communication or multithreading.

www.it-ebooks.info

http://www.it-ebooks.info/

Sounds and Networking

312

This library provides a robust yet simple communication system. It supersedes classic
socket connections with reliable message transport and automatic reconnection. Optionally,
connections can be encrypted to ensure transport security. You can use the same networking
code to send messages over the network or even between threads. It uses its own transport
protocol—ZMTP, which is incompatible with most of the TCP-based network services. However,
in special cases it can use the raw mode to communicate with other TCP services.

Initializing the audio subsystem
Before using your audio card, you'll need to initialize the sound playback parameters.
These parameters are:

 f Sampling frequency

 f Output audio format

 f Number of audio channels and buffer size

It's important to note that LuaSDL can play many sound samples at the same time, where
each sound sample uses exactly one sound channel. This is often used for relatively short
sounds. Longer sounds such as a game music can be played in the background. However,
there's only one background channel, so there is no easy way to mix two songs together.

Getting ready
First, you'll need to initialize the LuaSDL library with its subsystems. It's common practice to
just initialize all subsystems at the start.

You can achieve this with two lines of Lua code:

require 'LuaSDL'
assert(SDL.SDL_Init(SDL.SDL_INIT_EVERYTHING) >= 0)

This will prepare all subsystems to be fully operational.

How to do it…
To initialize the audio subsystem, follow these steps:

1. Normally, you would use the SDL.SDL_OpenAudio function to prepare your
audio device for playback. Unfortunately, this would expect you to submit your
audio callback function, which isn't very usable in the Lua language environment.
You'd need to submit raw audio data as well as mix it up to play any sound at all.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

313

2. You can use the SDL.Mix_OpenAudio function instead to get basic sound playback
to work. This function accepts four parameters: sampling frequency, audio format,
channels count and a size of audio buffer.
local frequency = 44100
local audioFormat = SDL.MIX_DEFAULT_FORMAT
local audioChannels = 2
local bufferSize = 4096

assert(SDL.Mix_OpenAudio(frequency, audioFormat,
audioChannels,
bufferSize) == 0)

3. After this step, you'll be able to play sound samples.

4. The audio device should always be closed after you finish playing sound samples.
You can do this with the SDL.Mix_CloseAudio function without any parameters.
SDL.Mix_CloseAudio()

This function is usually used just before closing your application.

How it works…
The LibSDL library is divided into a set of subsystems that includes timers, audio, video,
CD-ROM, and joystick. Each of these subsystems takes a small amount of computer memory
and can be enabled when needed. Notably, the audio subsystem reserves internal memory for
audio processing and audio buffers upon initialization. Without the SDL_Mixer extension, you
will need to prepare your own audio mixing routine and do audio format decoding by yourself.
The Lua language isn't very appropriate for such tasks, since it uses the garbage collector,
which adds latention to code execution. This can be quite notable during audio playback.
The SDL_Mixer extension handles this for you, so you can simply choose how many audio
mixing channels you need and use the available audio decoding functions to play various
audio formats.

The SDL.Mix_OpenAudio function will set up the correct audio format and prepares the audio
mixing channels. By default, there are eight mixing channels. This means you can play eight
sounds in parallel and this should be sufficient for simple games. One channel can be occupied
by one sound at a time. More complex games can use up all eight channels quite quickly and
would result in sound skipping. Many games today commonly use 32 mixing channels.

www.it-ebooks.info

http://www.it-ebooks.info/

Sounds and Networking

314

Another important thing is the sound buffer size. This will determine the minimal latency
accompanied by sound mixing. A larger sound buffer can result in smoother playback;
however, there's a price for that in the form of greater latency. So, the response to a quick
change of sounds can be slower. This is especially true with digital sound processing (DSP),
where the size of the sound buffer should be as small as possible. On the other hand, if the
buffer is too small, your computer might not be fast enough to process all incoming data and
can result in notable pops and clicks in the sound output. The usual size of the sound buffer
is between 512 and 4,096 bytes.

The audio format can be left at its default value, SDL.MIX_DEFAULT_FORMAT, which means
that each sound sample will be described by a 16-bit signed integer. A list of applicable
sample formats can be found in the following table:

Sound format identifier Description
SDL.AUDIO_U8 These are unsigned 8-bit samples
SDL.AUDIO_S8 These are signed 8-bit samples
SDL.AUDIO_U16LSB These are unsigned 16-bit samples with little-endian byte order
SDL.AUDIO_S16LSB These are signed 16-bit samples with little-endian byte order
SDL.AUDIO_U16MSB These are unsigned 16-bit samples with big-endian byte order
SDL.AUDIO_S16MSB These are signed 16-bit samples with big-endian byte order
SDL.AUDIO_U16 This is the same as SDL.AUDIO_U16LSB
SDL.AUDIO_S16 This is the same as SDL.AUDIO_S16LSB
SDL.AUDIO_U16SYS These are unsigned 16-bit samples with system byte order
SDL.AUDIO_S16SYS These are signed 16-bit samples with system byte order

The last important thing is the number of output channels. The SDL.Mix_OpenAudio
function accepts one or two channels, so you can have mono or stereo output.

Playing sound samples
LuaSDL can play many sound samples at the same time by using mixing channels.
This allows you to not only play more sounds simultaneously but also apply basic mixing
functions to sound channels, such as volume control, panning, fade-in, and fade-out.

Getting ready
There are eight mixing channels by default, which is usually fine for simple games. You
can increase the number of mixing channels by using the SDL.Mix_AllocateChannels
function with one argument. The maximum number of channels is limited only by your
memory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

315

Be extra careful when using a large number of mixing channels as you
can easily slip into a segmentation fault and crash your application!

This can be used in three ways. If you submit a positive number of channels in the argument,
it will allocate channels to match the desired channel count. If the submitted number is lower
than a number of currently allocated channels, it'll free up the unnecessary channels. A negative
number will only return a number of currently allocated mixing channels. Zero number will free
up all mixing channels. However, the background music channel will still be available.

The following line of code will allocate 32 mixing channels, which should be enough even for
action games:

SDL.Mix_AllocateChannels(32)

How to do it…
Now, you are ready to load and play sound samples:

1. In the first step, you'll need to load your sound file into the memory. This can be done
with the SDL.Mix_LoadWAV function. Regardless of its name, it can load sound
format files such as WAV, AIFF, RIFF, OGG, and VOC.
local fileName = 'sound_file.WAV'
local soundSample = SDL.Mix_LoadWAV(fileName)

This will return a sound sample handle, which can be used later to play it. In case of
failure or a nonexistent file, you'll get the nil value.

2. After you finish using the sound sample, you should always free it by using the
SDL.Mix_FreeChunk function.
SDL.Mix_FreeChunk(soundSample)

3. To play the desired sound sample, you can use the SDL.Mix_PlayChannel
function. It accepts three arguments, namely, mixing channel number, sound
sample handle, and a number of loops. Zero loops means that the sample will
play only once:
local channel = 0
local loops = 0
SDL.Mix_PlayChannel(channel, soundSample, loops)

4. You can pause or resume the mixing channel with functions SDL.Mix_
PauseChannel and SDL.Mix_ResumeChannel.
local channel = 0
SDL.Mix_PauseChannel(channel)
SDl.Mix_ResumeChannel(channel)

www.it-ebooks.info

http://www.it-ebooks.info/

Sounds and Networking

316

Channel can be stopped with the SDL.Mix_HaltChannel function, which accepts
the channel number as the only argument. If you use -1 as the channel number, it'll
stop all the available channels.

How it works…
All functions in this recipe are channel oriented, which means you can control the sound
playback for a specific channel. The SDL.Mix_LoadWAV function incorporates decoders
for various sound formats.

You can either implement your own mechanism of free channel selection for playback or you
can use the channel number -1 in the SDL.Mix_PlayChannel function, so LuaSDL will pick
one for you automatically.

Sound playback is done asynchronously in the background thread, so once you start playing a
sound sample, you can go ahead and continue executing the other parts of your application.

There's more…
For more advanced uses there are two other functions to manage simple transitions
between sound samples: SDL.Mix_FadeInChannel, SDL.Mix_ExpireChannel,
and SDL.Mix_FadeOutChannel.

 f The first one will start playing a sound sample while slowly increasing the sound
volume from 0 up to full volume:
local channel = 0
local loops = 0
local time = 500 -- 500ms
SDL.Mix_FadeInChannel(channel, soundSample, loops, time)

 f The second one will stop playing the sound sample after a specified amount of
time in milliseconds:
local channel = 0
local time = 500 -- 500ms
SDL.Mix_ExpireChannel(channel, time)

 f The last one will slowly fade out sound playback. This is used mostly for longer
sound samples:
local channel = 0
local fadeOutTime = 500 -- 500ms
SDL.Mix_FadeOutChannel(channel, time)

You can query specific channels for their status with the functions SDL.Mix_Playing, SDL.
Mix_Paused, and SDL.Mix_FadingChannel.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

317

The first one will tell you whether the channel is occupied with sound playback at the moment.
It will return 1 if the channel is currently playing, or 0 if there's nothing to play. However, it
can also return a number of channels currently used in playback if you use -1 instead of the
number of a channel:

local channel = -1
local status = SDL.Mix_Playing(channel)

The SDL.Mix_Paused function uses a similar mechanism to determine whether the channel
is currently in a paused state:

local channel = -1
local status = SDL.Mix_Paused(channel)

The last one, SDL.Mix_FadingChannel, will tell you whether the channel is fading in or
fading out.

local channel = 0
local status = SDL.Mix_FadingChannel(channel)
if status == SDL.MIX_NO_FADING then
 -- selected channel is not fading
elseif status == SDL.MIX_FADING_IN then
 -- selected channel is currently fading in
elseif status == SDL.MIX_FADING_OUT then
 -- selected channel is currently fading out
end

See also
 f The Initializing the audio subsystem recipe

Playing background music
Music playback works similarly to the sound sample playback with one exception that there's
only one music channel and it's controlled separately from the other mixing channels.

What's more, music playback can be moved into a specific position, so it can be used as a
simple music player if that's your intention.

Getting ready
The music channel is allocated automatically, so there's no need to allocate more mixing
channels to play music.

www.it-ebooks.info

http://www.it-ebooks.info/

Sounds and Networking

318

How to do it…
The first step in playing music is:

1. To load a sound file into memory with the SDL.Mix_LoadMUS function. In this case,
you can use a different set of file formats, such as WAV, MOD, MIDI, OGG, MP3, or
even FLAC. This function returns a handle upon success similar to sound samples.
If there's a problem loading sound files, it returns the nil value:
local fileName = 'sound_file.MP3'
local musicHandle = SDL.Mix_LoadMUS(fileName)

2. From this moment, you can use various functions to control music. The first one,
SDL.Mix_PlayMusic, is to start music playback. The following lines of code show
how to play music twice.
local loops = 1
SDL.Mix_PlayMusic(musicHandle, loops)

3. You can pause and resume music playback by calling the SDL.Mix_PauseMusic
or SDL.Mix_ResumeMusic function without any parameters.
SDL.Mix_PauseMusic()
SDL.Mix_ResumeMusic()

4. Music playback can be stopped in two ways. Either you stop the music immediately or
slowly fade the volume down. For the first case, there is the SDL.Mix_HaltMusic
function, and for the fade out effect, you can use the SDL.Mix_FadeOutMusic
function:
local time = 500 -- 500ms
SDL.Mix_HaltMusic()
SDl.Mix_FadeOutMusic(time)

There is a fade-in effect for the music as well. This can be achieved with the
SDL.Mix_FadeInMusic function:
local loops = 0
local time = 500 -- 500ms
SDL.Mix_FadeInMusic(musicHandle, loops, time)

5. The music position can be controlled with a set of two functions: SDL.Mix_
RewindMusic and SDL.Mix_SetMusicPosition. You can either rewind the
position to the beginning of the song or move to a specific time. The latter one can
be tricky because SDL.Mix_SetMusicPosition will interpret the time value
differently depending on the type of song. OGG files use the time value as a position
from the beginning of the song in seconds. MP3 files use it as a relative position in
seconds. And lastly, MOD files will cast the value into 16-bit unsigned integers that
mark a pattern number.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

319

local position = 1.5 -- 1.5s
SDL.Mix_RewindMusic(musicHandle)
SDL.Mix_SetMusicPosition(position)

6. Don't forget to free up the allocated resources after use with the SDL.Mix_FreeMUS
function:
SDL.Mix_FreeMUS(musicHandle)

Be careful not to use the sound sample handle in the music
function by mistake as it could lead to an application crash!

How it works…
LuaSDL always reserves one special audio mixing channel for music playback. It's controlled
by a separate set of functions, so it's guaranteed that sound samples won't disturb the
music playback.

The SDL.Mix_LoadMUS function can decode other kinds of sound formats, such as MP3 and
FLAC. You can't use these formats for sound playback because of the design decisions behind
the SDL_Mixer library. These sound formats are better suited for streaming of audio data
mainly because of the latency incorporated in audio decoding routines.

Handling of position change in music is not an easy problem to solve because you can easily
disturb music playback by a sudden change in sound buffer content. Audio decoding works
with chunks of sound data with various sizes depending on the used bit rate of the encoded
audio file. That's one of the reasons why you can't use this feature with sound samples.

See also
 f The Playing sound samples recipe

Network communication with ZeroMQ
The ZeroMQ library is written in the C/C++ programming language and it's not a part of the
Lua language. Therefore, you'll have to use one of the Lua language bindings to expose its
functions to Lua scripts. This chapter will use the LuaZMQ binding library as it tries to be up
to date with the current ZeroMQ version. While it exposes all the available functions from the
ZeroMQ API, it adds an object-oriented approach to make it easier to use.

www.it-ebooks.info

http://www.it-ebooks.info/

Sounds and Networking

320

Getting ready
Before you start using the LuaZMQ library, you'll have to compile it into binary form.

You'll need the following items:

 f The Git versioning tool to get source files (optional)

 f The C++11 compliant compiler

 f The CMake build system

 f Lua development files

Development files for the Lua language are available at the SourceForge.net page for the
LuaBinaries project at http://luabinaries.sourceforge.net/download.html.

How to do it…
Let's see how to get started with the LuaZMQ library:

1. First, you'll have to download source files for the LuaZMQ library from the GitHub
repository. This can be done using the Git tool to clone the repository. This will
create a new directory called luazmq, where the source files will be stored:
git clone git@github.com:soulik/luazmq.git --recursive

Notice that there's a recursive parameter for the git command. It's used to
download linked dependencies from GitHub as well. This will ensure that all
the files that are necessary are there before building.

2. The next step will be to move into empty the build directory, where you can start
building the project:
cd luazmq/build/

3. Now, you can run the cmake command to prepare the project files. On the Windows
platform, you'll probably need to set the correct paths for the Lua header and library
files:
cmake ..

Alternatively, you can use the GUI frontend for cmake:
cmake-gui ..

4. After you finish generating project files, depending on the platform used, you can start
building either with the make command or with open project files in your favorite IDE.

5. After successful compilation, you should end up with two files: luazmq.dll
(Windows) or luazmq.so (Unix-based OS) and zmq.lua.

www.it-ebooks.info

http://luabinaries.sourceforge.net/download.html
http://www.it-ebooks.info/

Chapter 9

321

6. These two files should be either in the same directory as your project or they should
be placed in a directory where the Lua interpreter can find them. In the latter case,
you can set search paths in the Lua language with the variables package.path and
package.cpath.

7. On the Windows platform, you'll probably need to copy the libzmq.dll file into you
project directory as well.

Now, you are ready to explore network communication with the ZeroMQ library using the
Lua language.

How it works…
The LuaZMQ binding library consists of two files: the binary library and a Lua helper script to
minimize the programming effort in use.

The LuaZMQ library handles differences between the C/C++ programming language and
the Lua language. One of these differences is primarily memory management. The ZeroMQ
library tries to minimize redundancy of message data duplication. This is mostly valid for C/
C++ applications, where you can handle data access directly. However, the Lua programming
language uses every string part as an atomic entity. Therefore, there are many redundant
operations and allocations accompanied with simple message transfer. The LuaZMQ library
tries to elevate these problems from the Lua language to specialized C/C++ functions. Such
a problem can easily occur when you try to send very long messages over the network, for
instance during file transfer.

Another thing that LuaZMQ handles quite well is thread management, so you can easily invoke
other Lua states in parallel and connect them with ZeroMQ messaging.

This library introduces a set communication pattern that decides how the message transport
will be handled. The following table shows valid combinations of socket types and it should be
used as guidance for later recipes:

First side of the
socket

Second side of
the socket

Description

ZMQ_PUB ZMQ_SUB This pattern facilitates one-sided communication
from one publisher to many subscribers.

ZMQ_REQ ZMQ_REP In this pattern, each message from the request side
is paired with a message from the reply side.

ZMQ_REQ ZMQ_ROUTER The router prepends the identity information of the
request side to the message and can send out the
message to any of the peers. It consumes the first
message to get the destination identity.

www.it-ebooks.info

http://www.it-ebooks.info/

Sounds and Networking

322

First side of the
socket

Second side of
the socket

Description

ZMQ_DEALER ZMQ_REP In this pattern, when the dealer is connected to
more than one reply side, it sends messages in a
round-robin fashion.

ZMQ_DEALER ZMQ_ROUTER This pattern can be viewed as a standard socket
connection. You can send out as many requests
as you want and you may receive more than one
message from the router part. Be careful with the
peer identifier message at the router side.

ZMQ_DEALER ZMQ_DEALER This pattern can be used to load-balance message
transfer on both sides of the communication.

ZMQ_ROUTER ZMQ_ROUTER This combination is close to the peer-to-peer
message sending pattern. Both sides can decide
which peer will obtain the message.

ZMQ_PUSH ZMQ_PULL The push-pull combination represents the pipeline
or pattern. You can connect many pull sides to one
push side. All pull sides will receive messages in a
round-robin fashion.

ZMQ_PAIR ZMQ_PAIR This combination is also called the exclusive pair
pattern, where it can connect only one peer at
each side. This is used mostly for interthread
communication.

Creating a basic client-server architecture
If you have ever tried to make even a simple client-server application, you'll know that
there are many issues for the programmer to solve. These problems are concurrency,
flow control, reconnection, blocking, communication architecture, scalability, and much
more. Even a simple demo application with a request-reply pattern can easily fail without
proper precautions.

Fortunately, there's a ZeroMQ library that introduces a few network communication design
patterns to make your application design much simpler.

In this recipe, you'll learn how to create simple request-reply applications, which you can
later promote to simple HTTP web servers or file transferring applications. It all depends
on your imagination.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

323

Getting ready
One of the available communication patterns is called request-reply, which connects two
nodes in a strict manner. You can send one message and you'll always get exactly one reply.
After this, the whole process is repeated.

It might not seem obvious, but this design pattern is used fairly often even in applications you
use today such as web browsers, FTP, network tool ping, and many others.

This pattern is easily adaptable in many applications because it emulates the most common
form of communication between two people. First, you need to ask something. Eventually,
you'll get your answer. The following diagram illustrates this design pattern:

Hello World

REP
Server

Client
REQ

How to do it…
This recipe will be divided into server and client parts to make understanding a bit easier.
Each part should be in its separate file so that you can run them at the same time. You can
even run them from different computers. However, be sure to include all the necessary files
on both sides along with the Lua language interpreter.

The server part
This part of the communication application will wait for a request and replies with a message.

1. First, you'll need to include the LuaZMQ library namespace with the following line
of code:
local zmq = require 'zmq'

2. Now, you can initialize the context object for the ZeroMQ library and use it to define
the kind of network socket you'll be using. In this case, the server path will use the
zmq.ZMQ_REP constant that corresponds to the reply part.
local context = assert(zmq.context())
local socket = assert(context.socket(zmq.ZMQ_REP))

www.it-ebooks.info

http://www.it-ebooks.info/

Sounds and Networking

324

3. This will prepare the socket object that can be used to prepare one side of the
network communication:
assert(socket.bind('tcp://*:12345'))

4. After this step, your application will expect network communication over the TCP/
IP protocol at the network service port 12345. Of course, you can change the port
number to suit your needs, but be sure to change the port number on the client side
as well.

5. From this point, you can use the socket.recv function to actually receive a message
but that would introduce blocking, so your server application would wait idly until the
request arrives. This is not always desirable. Therefore, there's a poll object to handle
situations like this.

6. First you need to create a poll object:
local poll = zmq.poll()

7. Now you can assign a function to the poll, which will be used after you receive
a message:
poll.add(socket, zmq.ZMQ_POLLIN, function(socket)
 local result = assert(socket.recvAll())
 print('Received a message: '..result)
 assert(socket.send('This is a reply to: '..result))
end)

8. This will print a received message and sends a reply to the Request side. For this to
work, you'll have to start polling with the following lines:
local timeout = 500 -- 500ms
while (true) do
 poll.start(timeout)
end

9. Notice that there's a timeout variable that contains a time in milliseconds to wait
before doing other things. The whole process of waiting and replying is repeated
indefinitely until you decide to break the cycle.

10. Lastly, you need to close a socket object after use with a single line of code:
socket.close()

This concludes the server part of this recipe.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

325

The client part
The client code is very similar to the server part. The only difference is in the type of socket and
instead of using the bind function to listen for connection, you'll be using the connect function:

local zmq = require 'zmq'
local context = assert(zmq.context())
local socket = assert(context.socket(zmq.ZMQ_REQ))
assert(socket.connect("tcp://localhost:12345"))

local len = assert(socket.send("Test message"))
if len and len > 0 then
 local poll = zmq.poll()
 poll.add(socket, zmq.ZMQ_POLLIN, function(s)
 print(assert(socket.recvAll()))
 end)
 poll.start()
end
socket.disconnect()

There are a few more notable differences. A function to start polling, poll.start(), is used
without parameters to define a timeout. This means that the client-side application will wait
indefinitely until it gets a reply. After reply, it'll close the connection and quit.

How it works…
This recipe uses the request-reply pattern, where the communication starts with a request
and it's followed with a single reply. Other operations regarding message transport are
blocked. However, this communication pattern is bound only to a single pair of requests and
reply peers. Therefore, you can connect the request side to many peers to send a request
to all of them and get a reply from each one.

By using the socket.bind function, you'll create a listening part of the socket and it'll accept
connections on your host. This function accepts an endpoint string that consists of three
parts: a transport protocol, a host address, and a port number:

transport://address:port

A port number is omitted with interthread communication transports. Currently, ZeroMQ
supports four types of transports, which are listed in the following table:

Transport names Description
tcp This is a unicast transport over TCP
ipc This is an inter-process communication transport with socket files

(Unix-like systems only)

www.it-ebooks.info

http://www.it-ebooks.info/

Sounds and Networking

326

Transport names Description
inproc This is an in-process or inter-thread communication transport over

shared memory area
pgm or egm This is a reliable multicast transport that uses PGM

Similarly, there's a socket.connect function to establish a network connection to the peer.
Do note that the bind and connect functions are non-blocking. Therefore, code execution will
continue until it reaches the send or recv functions. Connection and reconnection handling
is processed in the background.

There are two functions used to send and receive messages. To send a message, just call a
function socket.send, which accepts at least one argument as a string value. This string will
be sent to the other side of the communication. A message can be received with the socket.
recv or socket.recvAll function. The key difference between these two functions is that
socket.recv will receive only one message. The other function, socket.recvAll, can
receive even multiple parts of a message and glues them together into one string. This is useful
mainly when transferring large data over a network. Sending multiple parts of one message
can be done with the socket.send function, while adding a second argument with the zmq.
ZMQ_SNDMORE flag. This flag signals the ZeroMQ library that there is more data to be sent. The
following sample code shows the usage pattern for multipart messages:

socket.send('Part one', zmq.ZMQ_SNDMORE)
socket.send('Part two', zmq.ZMQ_SNDMORE)
socket.send('The last part of a message')

There's a more elegant solution to send multiple parts of a message. You can use the
socket.sendMultipart function, where you can place all parts into a single table
and send them in one shot.

socket.sendMultipart({
 'Part one',
 'Part two',
 'The last part of a message'
})

This is especially useful for the router socket type where the peer identifier is sent as a part at
the beginning of a message.

The polling object helps to determine when the connection line is ready to receive or send
data. Polling in general will effectively block code execution until the line is ready for specified
I/O operation. When transferring a lot of messages, it's better to use polling even for sending
data. You can achieve this by adding another polling function as follows:

poll.add(socket, zmq.ZMQ_POLLOUT, function(s)
 -- user code to send a message
end)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

327

The polling function will always receive one parameter containing the socket object specific to
the connection.

Polling must be started with the poll.start function, otherwise it will have no effect.
You can set up a timeout value by adding a numerical argument to the poll.start function.
The timeout value is expected to be in milliseconds.

You don't have to worry about the message queuing problem as the ZeroMQ library solves this
in its separate thread.

Sending messages to many hosts at once
There might be a case when you'd like to send a single message to multiple hosts at the same
time. A typical example of such a situation can be a chat application. The ZeroMQ library solves
this problem with the Publisher-Subscriber model, which is similar to a well-known multicast.
Multiple types of messages can be divided into topics identified by a simple string value.

Do note that with the Publisher-Subscriber model, you can send messages only from the
publisher to the subscriber, not the other way round.

Getting ready
For this recipe, you'll be using one publisher part and at least one subscriber. You can run
more subscriber instances to see the effect of this network model.

How to do it…
This recipe will be divided into two parts, one for the publisher and the other for the subscriber.

The publisher part
Let's take a look at the publisher recipe:

1. First you'll need to prepare the ZeroMQ socket for the publisher:
local zmq = require 'zmq'
local context = assert(zmq.context())
local socket = assert(context.socket(zmq.ZMQ_PUB))
assert(socket.bind("tcp://*:12345"))

2. Notice that now you're using a different type of socket identified by the
zmq.ZMQ_PUB constant.

www.it-ebooks.info

http://www.it-ebooks.info/

Sounds and Networking

328

3. In the next step, you need to set up message polling for sending. In the publisher
mode, you need to send the topic name first:
local poll = zmq.poll()
local topic = 'demo'
poll.add(socket, zmq.ZMQ_POLLOUT, function(socket)
 assert(socket.sendMultipart({topic, 'Hello everyone!'}))
end)

4. This time, you'll be using polling for the message output to keep up with your
network bandwidth.

5. In the final part of the publisher, you'll be sending messages over and over in a loop.
However, you'd be sending hundreds or thousands of messages per second. It's
better to limit the message output to a reasonable one message per second.
local lastTime = os.clock()
while true do
 local newTime = os.clock()
 if (newTime-lastTime) >= 1 then
 lastTime = newTime
 poll.start()
 end
end
socket.close()

The subscriber part
In this part, you'll be using a socket with the zmq.ZMQ_SUB type identifier. Other code parts
are almost identical to the previous code samples:

local zmq = require 'zmq'
local context = assert(zmq.context())
local socket = assert(context.socket(zmq.ZMQ_SUB))
assert(socket.connect("tcp://localhost:12345"))

1. The cool part starts with using socket options to subscribe to the specific topics:
local topic = 'demo'
socket.options.subscribe = topic

2. You can subscribe to additional topics by using the subscribe socket option
multiple times. Refer to the following code, for instance:
socket.options.subscribe = 'topic1'
socket.options.subscribe = 'topic2'

3. There is an option to unsubscribe as well.
socket.options.unsubscribe = 'topic2'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

329

4. If you subscribe to the topic with an empty string, it means you need to subscribe to
all topics.

5. After this, you need to prepare polling functions to receive messages from all the
subscribed topics:
local poll = zmq.poll()
poll.add(socket, zmq.ZMQ_POLLIN, function(s)
 local topic = assert(socket.recv())
 local result = assert(socket.recvAll())
 print(topic, result)
end)

Do note that you need to use the socket.recv function to obtain
only the topic name. Otherwise, the socket.recvAll function will
merge the topic name and the message into one string. This way you
can differentiate messages from different topics.

6. In the final step, you'll need to prepare a loop for message polling and cleanup.
while (true) do
poll.start()
end

socket.disconnect()

How it works…
This recipe uses the one-directional pattern that's very close to radio transmission. It can be
viewed as if you were sending messages at different frequencies and people can tune-in to
specific kinds of messages they like. Transmissions occur for connected peers only, so there's
no wasted bandwidth. However, if you connect later to the publisher, you'll always miss the
first few messages. It's just like a radio. You won't get your lottery winning numbers if you
connect too late. Similarly, if there are too many messages in transmission, you'll miss some
of them. This behavior is controlled by the so-called high watermark or HWM in short and it's
interpreted as the maximum amount of messages. You can adjust HWM values for sending or
receiving using the socket option, as shown in the following code:

socket.options.rcvhwm = 1000
socket.options.sndhwm = 1000

Each message sent from the publisher must contain a topic name, otherwise the subscriber
will not get any message.

Similarly, the subscriber can be connected to many publishers with different topics. The topic
name is received in the first part of a multipart message.

If you subscribe to the topic with an empty string value, it'll subscribe to all the available topics.

www.it-ebooks.info

http://www.it-ebooks.info/

Sounds and Networking

330

Communication between threads
Communication between threads can be tedious to get right. With a ZeroMQ library, you can
easily reuse the previous code to move from the network to interprocess communication merely
by changing the transport protocol in the connection string. The LuaZMQ library incorporates
simple thread control capabilities but you're free to use any libraries to manage threads.

Note that the Lua language contains coroutines to achieve cooperative multitasking, except
that everything is processed in a single thread relying on explicit scheduling. It means that
only one CPU core is used by your application.

This recipe will give you basic insight in to parallel processing of information in the Lua language.

You'll be sending the well known filling text Lorem ipsum to the reply side and it'll append
dolor sit amet in the end. The resulting text will be sent back to the request side and
displayed on the screen.

Getting ready
You can view this recipe as a simple mashup of the request-reply model into one Lua script,
while the request part is processed in parallel to the reply part.

How to do it…
In this case, the whole thread code for the request part will be stored in a string variable that
will be processed in another thread:

local req = [[
 local name = unpack(arg)
 local socket,msg = assert(context.socket(zmq.ZMQ_REQ))
 local result, msg = assert(socket.connect("inproc://test1"))
 local poll = zmq.poll()

 poll.add(socket, zmq.ZMQ_POLLIN, function(socket)
 local result = socket.recvAll()
 if result then
 print(name, string.format("Recieved data: %q", result))
 end
 end)

 socket.send("Lorem ipsum")
 poll.start()
 socket.close()
]]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

331

As you can see, there's not a single line that would explicitly say that this code will be
processed in a thread.

1. You can move on to the Reply part. The following code will look incredibly similar
to the code from previous recipes. This is a good example of the ZeroMQ library's
versatility:
local zmq = require 'zmq'
local context, msg = assert(zmq.context())
local socket,msg = assert(context.socket(zmq.ZMQ_REP))
local result, msg = assert(socket.bind("inproc://test1"))
local poll = zmq.poll()

poll.add(socket, zmq.ZMQ_POLLIN, function(socket)
 local result = socket.recvAll()
 if result then
 print("Reply part",
 string.format("Recieved data: %q", result))
 socket.send(result.." dolor sit amet")
 end
end)

2. The only difference is the transport used. Instead of using the TCP transport protocol,
there's an in-process communication transport.

3. The next steps will consist of starting a new thread with the Request part. The main
thread with the reply part will wait until it gets a request to reply. You can create
a new thread with the context.thread function, which expects at least one
parameter with the thread code in a single string. You can add another parameter
that will be added into the thread global argument list.
local thread = context.thread(req, 'Request part')
poll.start()

4. The last two lines will ensure that the main thread will wait until the thread
closes properly. Without this, you'd get thread abortion, which is sometimes
called Parent thread kills its children. It sounds horrible as it's
a sign of bad application design.
thread.join()
socket.close()

www.it-ebooks.info

http://www.it-ebooks.info/

Sounds and Networking

332

How it works…
This recipe uses inproc or in-process transport to communicate with the request-reply
pattern. Almost every aspect of communication remains the same except that the ZeroMQ
library uses the shared memory region to transfer messages between threads. This works
exceptionally well even without tedious synchronization routines. By using the push-pull
socket types instead of request-reply, you can easily create a distributed processing system
with a few lines of code or even combine it with the pgm transport protocol to achieve
distributed computing on more than one computer.

Threads are created with the context.thread function, where the first argument is always
a thread code. LuaZMQ will create a new independent Lua state that shares only the context
object. The context object is thread-safe; therefore, it can be shared among all threads.

Optionally, you can add numerical or string variables, which will be available to the thread
code via the global arg variable. This emulates a situation where you execute the Lua script
with arguments.

The only tricky part is thread management. Before closing your main process, it should always
wait for its threads to finish up using the thread.join function.

www.it-ebooks.info

http://www.it-ebooks.info/

333

Index
A
A* algorithm

used, for solving pathfinding
problem 288-294

absolute mouse position
using 47

affine transformations
URL 137

artificial intelligence 281, 282
assert function

used, for handling errors 19, 20
audio subsystem

initializing 312-314

B
background music

playing 317-319
beginContact callback 263
bitmap fonts

loading 89, 90
using 89-91

blending
additive blending 125
alpha blending 126-128
functions 128, 129
setting up 124-129
subtractive blending 126

blitting 64
Box2D

URL 255
using, with Lua 242-245

bullets
setting up 257-259

bumpmapping
about 192-196
fragment shader 198-202
vertex shader code 196, 197
working 202-204

buttons, window controls
click button 230
momentary button 230
toggle button 230

C
client-server architecture

client part 325
creating 322, 323
inproc 326
ipc 325
pgm or egm 326
server part 323, 324
tcp 325
working 325-327

colors
using 64-69

cursor
manipulating 69-72

D
digital sound processing (DSP) 314
display lists

modes 150
using 149-151

distance joint 271
draw function 220
D* searching algorithm 295
dynamic objects

creating 249-251

www.it-ebooks.info

http://www.it-ebooks.info/

334

E
endContact callback 264
endianness 57
errors, handling

with assert 19, 20
with pcall 19, 20
with xpcall 19, 20

event types, LuaSDL 39

F
floating-point numbers

URL 135
format specifiers, OpenGL 76
fragment (pixel) shader

sampler types 169
writing 167-172

friction joint 279
functions, text rendering 94
fuzzy logic

fuzzy set 299
linguistic variable 301
rule 301, 302
solver 304
usage 304, 305
used, for decision making 295-299
working 306-309

G
game engine

basic file structure, preparing 3-6
gear joint 276, 277
gl.BindVertexArray function 174
gl.BufferData function 153
gl.CopyImageSubData function 179
gl.DisableVertexArray function 175
gl.DrawArrays function 175
gl.EnableVertexAttribArray function 175
GLEW

using, with OpenGL extensions 78, 79
gl.GenBuffers function 173
gl.GenVertexArrays function 173
gl.GetUniformLocation function 161
gl.IsSupported function 157
GLSL shaders

extension names, URL 157

fragment shader 156
geometry shader 156
loading 156-160
Tessellation control shader 156
Tessellation evaluation shader 156
using 156-160
vertex shader 156

graphics mode
initializing, with OpenGL 72-75

H
highlights

applying, in scene 180-184
fragment shader 186-191
vertex shader 185

High Precision Event Timer (HPET) 47
high watermark (HWM) 329

I
images, loading

directly to surface 80
with RWop 80
with SDL_image 79-81

immediate mode
primitives, drawing 110, 111

input events
processing, with LuaSDL 36, 37

ipairs function
extending, for using in sparse arrays 14, 15

ipairs_sparse function 15
isPrintable function 237

K
keyboard input

modifier keys 42, 43
normal keys 42
using 41-44

Kronos
URL 75

L
libSDL

flags 54
window, creating 52-55

www.it-ebooks.info

http://www.it-ebooks.info/

335

libSDL 1.2
LuaSDL, obtaining for 30, 31

lighting
setting up 145-149

Lua
about 2
binary files, URL 21
Box2D, using with 242-245
C++ class, accessing with Lutok2 25-28
module, creating in C/C++ 22, 23
state, initializing 22
using, with existing projects written

in C/C++ 21-29
using, with OpenGL extensions 78, 79
variables, passing from 25
variables, passing from C/C++ 24

LuaGL
URL 110

Lua modules
creating 15, 16
form of object 16
form of singleton object 17
table as interface, returning 16
working 18

LuaSDL
associative array, used for event

handling 38, 39
if-then-else chain, used for event

handling 37
libraries source files, URL 30
obtaining, for libSDL 1.2 30, 31
used, for designing main application

loop 31-34
used, for processing input events 36-40

Lutok2
source code, URL 21
used, for accessing C++ class from

Lua 25-29

M
main application loop

designing, with LuaSDL 31-34
materials

setting up 142-145
matrix manipulation library

URL 206

maxMotorTorque property 269
maze

generating 285
pathfinding algorithm, creating 282-285
solving 286, 287

messages, sending to multiple hosts
about 327-329
publisher part 327, 328
steps 329
subscriber part 328, 329

modding support 1
modes, text rendering

blended 94
shaded 94
solid 94

motor joint 277, 278
mouse joint 278, 279

N
neighbours function 288
network communication

ZeroMQ, using 319-322
NormalMap Online

URL 192

O
object collision

beginContact callback 263
detecting 262, 263
endContact callback 264
filtering, setup 265, 266
postSolve callback 264, 265
preSolve callback 264

object joints
distance joint 271
friction joint 279
gear joint 276, 277
motor joint 277
mouse joint 278
prismatic joint 270, 271
pulley joint 274
revolute joint 268, 269
rope joint 272
setting up 267, 268
weld joint 272, 273

www.it-ebooks.info

http://www.it-ebooks.info/

336

wheel joint 275, 276
working 280

object properties
density 254
fixed rotation 253
friction 254
movement damping 253
object gravity scale 253
object mass 254
object sleeping 253
restitution property 254
rotational inertia 254
setting up 252

objects
continual force 256
identity matrix 137
impulses 256
moving 130-137, 255
object velocity information 256
rotating 130-137
rotation matrix 138
scaling 130-137
translation matrix 137
working 257

OpenGL
attributes 73, 74
used, for initializing graphics mode 72-75
using 109

OpenGL extensions
using, with GLEW 78, 79
using, with Lua 78, 79

OpenGL information
extensions list, obtaining 78
graphic card name, obtaining 77
graphic card vendor, obtaining 77
obtaining 76-8
version, obtaining 77

orthogonal camera
orthogonal mode 140
setting up 139-142
working 141, 142

P
pathfinding algorithm

creating, for maze 282-284
issue, solving with A* algorithm 288-294

working 288
pcall function

used, for handling errors 19, 20
perspective camera

perspective mode 140
setting up 139-142
working 141, 142

physics engine
vector scaling, selecting 247-249

physics simulation
about 242
dynamic-time step 261, 262
fixed-time step 261
running 259, 260

postSolve callback 264
preSolve callback 264
primitives

drawing, in immediate mode 110, 111
line loops, drawing 116
lines, drawing 113, 114
line strips, drawing 115
points, drawing 111, 112
polygons, drawing 123
quads, drawing 121
quad strips, drawing 122, 123
triangle fans, drawing 119, 120
triangles, drawing 117, 118
triangle strips, drawing 118
working 124

prioritized queue
creating 10-13

prismatic joint 270
propagateSignal function 223
pulley joint 274

Q
queue

creating 8-10
prioritized queue, creating 10-14

R
relative mouse position

using 44-46
revolute joint 268, 269
rope joint 272

www.it-ebooks.info

http://www.it-ebooks.info/

337

rounding error 135
rover-design pattern

used, for creating texture atlas 99-102

S
scene

highlights, applying 180-185
shadows, applying 181-185

SDL_image
used, for loading images 79-81

shaders
about 156
uniform variables, using with 160, 161

shadows
applying, in scene 180-184

shadow samplers 171
shadow surface 55
sound samples

playing 314-317
sparse arrays

ipairs function, extending 14
stack

creating 7, 8
static objects

creating 249-251
stencil test

used, for displaying window part 224-229
surfaces

creating 55-61
manipulating 61-64
object structure 55
pixel format structure 56

T
text

displaying 96-99
texture

atlas, creating with rover-design
pattern 99-102

creating 81-88
parameters 83-84
render buffer, with color attachment 178
render buffer, with depth

attachment 178-180
rendering to 177

textureSize function 170
threads

communication between 330-332
Reply part 331

tile-based environments
heuristic function 295
pathfinding, with obstacles 288-294

tiles
using, in game 102-107

tilesets
about 102
using, in game 102-107

timers
using 47-50

TrueType fonts
loading 92-95
using 92-95

U
uniforms 156
uniform variables

reading from 162, 163
using, with shaders 160, 161
writing into 161, 162

V
vector math

using 245-247
vector scaling

selecting, for physics engine 247, 248
vertex array objects (VAO) 172
vertex buffer objects (VBO) 151
vertex buffers

about 153
setting up 151-154
used, for drawing primitives 172
vertex colors 173
vertex positions 173
vertex texture coordinates 174, 175
working 176

vertex shader
writing 163-166

www.it-ebooks.info

http://www.it-ebooks.info/

338

W
weld joint 272, 273
wheel joint 275
window

content, scrolling 224-229
creating, in libSDL 52-54
drawing 206-210
moving 212-216
part, displaying with stencil test 224-229
working 211

window controls
buttons 230
creating 229-231
edit box 232, 236
interaction 229
working 236-239

window hierarchy
child window, rendering 218-220
event propagation 220-223
using 216, 217

X
xpcall function

used, for handling errors 19, 20

Z
ZeroMQ

about 311
used, for network communication 319-322

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying

Lua Game Development Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Learning Windows 8
Game Development
ISBN: 978-1-84969-744-6 Paperback: 244 pages

Learn how to develop exciting tablet and PC games for
Windows 8 using practical, hands-on examples

1. Use cutting-edge technologies like DirectX
to make awesome games.

2. Discover tools that will make game
development easier.

3. Bring your game to the latest touch-enabled
PCs and tablets.

Game Development
with SlimDX
ISBN: 978-1-78216-738-9 Paperback: 150 pages

A fast-paced and practical guide on game development
using SlimDX

1. Harness the power of DirectInput and XInput to
detect and respond to user input from keyboard,
mouse, and joysticks/gamepads while adding the
allimportant interactivity to your games.

2. Make the most of Direct2D, DirectSound,
XAudio2, and Direct3D to make your game
worlds come to life on the screen.

3. A practical guide packed with example code
and quick instructions on game development
with SlimDX.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Game Development
with Three.js
ISBN: 978-1-78216-853-9 Paperback: 118 pages

Embrace the next generation of game development
and reach millions of gamers online with the Three.js
3D graphics library

1. Develop immersive 3D games that anyone can
play on the Internet.

2. Learn Three.js from a gaming perspective,
including everything you need to build beautiful
and high-performance worlds.

3. A step-by-step guide filled with game-focused
examples and tips.

Learning Unity Android
Game Development
ISBN: 978-1-78439-469-1 Paperback: 338 pages

Learn to create stunning Android games using Unity

1. Leverage the new features of Unity 5 for the
Android mobile market with hands-on projects
and real-world examples.

2. Create comprehensive and robust games using
various customizations and additions available in
Unity such as camera, lighting, and sound effects.

3. Precise instructions to use Unity to create an
Android-based mobile game.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Basics of Game Engine
	Introduction
	Preparing a basic file structure for the game engine
	Making a stack
	Making a queue
	Making a prioritized queue
	Extending ipairs for use in sparse arrays
	Creating Lua modules
	Handling errors with pcall, xpcall, and assert
	Using Lua with existing projects written
in C/C++
	Getting LuaSDL for libSDL 1.2
	Designing the main application loop with LuaSDL

	Chapter 2: Events
	Introduction
	Processing input events with LuaSDL
	Using the keyboard input
	Using the relative mouse position
	Using the absolute mouse position
	Using timers

	Chapter 3: Graphics – Common Methods
	Introduction
	Creating a window in libSDL
	Creating surfaces
	Surfaces manipulation
	Using colors
	Cursor manipulation
	Initializing the graphics mode with OpenGL
	Getting OpenGL information
	Using OpenGL extensions with GLEW and Lua
	Loading images with SDL_image
	Creating textures
	Loading and using bitmap fonts
	Loading and using TrueType fonts
	Displaying the text
	Creating texture atlas with the rover-design pattern
	Using tiles and tilesets in the game

	Chapter 4: Graphics – Legacy Method with OpenGL 1.x–2.1
	Introduction
	Drawing primitives in immediate mode
	Setting up blending
	Moving, rotating, and scaling objects
	Setting up the orthogonal and perspective cameras
	Setting up materials
	Setting up lighting
	Using display lists
	Setting up vertex buffer

	Chapter 5: Graphics – Modern Method with OpenGL 3.0+
	Introduction
	Loading and using GLSL shaders
	Using uniform variables with shaders
	Writing a vertex shader
	Writing a fragment (pixel) shader
	Drawing primitives by using vertex buffers
	Rendering to texture
	Applying highlights and shadows in
the scene
	Bumpmapping

	Chapter 6: The User Interface
	Introduction
	Drawing a simple window
	Moving the window
	Using the window hierarchy
	Showing the part of the window with the stencil test and window content scrolling
	Window controls and interaction

	Chapter 7: Physics and Game Mechanics
	Introduction
	Using Box2D with Lua
	Using vector math
	Choosing the correct vector scaling for the physics engine
	Creating static and dynamic objects
	Setting up object properties
	Moving objects
	Setting up bullets
	Running the physics simulation
	Detecting object collision
	Setting up object collision filtering
	Setting up object joints

	Chapter 8: Artificial Intelligence
	Introduction
	A simple pathfinding algorithm for a maze
	Pathfinding for tile-based environments
with obstacles
	Using a fuzzy logic for decision making

	Chapter 9: Sounds and Networking
	Introduction
	Initializing the audio subsystem
	Playing sound samples
	Playing background music
	Network communication with ZeroMQ
	Creating a basic client-server architecture
	Sending messages to many hosts at once
	Communication between threads

	Index

