

Lua	Quick	Start	Guide

	

	

	

	

	

	

	

	

	

The	easiest	way	to	learn	Lua	programming

	

	

	

	

	

	

	

	

	

	

	

	

Gabor	Szauer

	

	

	

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Lua	Quick	Start	Guide
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in	any	form	or	by	any	means,
without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information	presented.	However,	the
information	contained	in	this	book	is	sold	without	warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing	or	its
dealers	and	distributors,	will	be	held	liable	for	any	damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products	mentioned	in	this	book	by
the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

Commissioning	Editor:	Richa	Tripathi
Acquisition	Editor:	Noyonika	Das
Content	Development	Editor:	Roshan	Kumar
Technical	Editor:	Sushmeeta	Jena
Copy	Editor:		Safis	Editing
Project	Coordinator:	Hardik	Bhinde
Proofreader:	Safis	Editing
Indexer:	Aishwarya	Gangawane
Graphics:	Jason	Monteiro
Production	Coordinator:	Shantanu	Zagade

First	published:	July	2018

Production	reference:	1250718

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78934-322-9

www.packtpub.com

http://www.packtpub.com

	

mapt.io

Mapt	is	an	online	digital	library	that	gives	you	full	access	to	over	5,000	books
and	videos,	as	well	as	industry	leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.	For	more	information,	please	visit	our
website.

https://mapt.io/

Why	subscribe?
Spend	less	time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktP
ub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.	

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About	the	author
Gabor	Szauer	graduated	from	Full	Sail	University	with	a	bachelor's	degree	in
game	development.	He	has	been	making	video	games	professionally	since	2010.
He	has	worked	on	games	for	the	Nintendo	3DS,	Xbox	360,	browser-based
games,	as	well	as	games	for	iOS	and	Android.	Gabor	loves	to	teach,	especially
game	development	and	programming.	He	has	previously	written	the	Game
Physics	Cookbook	and	is	looking	forward	to	producing	much	more	content	for
those	who	want	to	learn.

"Give	someone	a	program,	you	frustrate	them	for	a	day;	teach	them	how	to	program,	you	frustrate	them	for	a	lifetime."
-	David	Leinweber

About	the	reviewer
Jayant	Varma	is	an	author	of	books	on	iOS	development	(Swift,	Objective-C,
and	Xcode);	Bash	&	Lua	was	his	first	book.	He	has	been	the	technical	editor	for
several	Packt	books.	An	academician	at	JCU,	he	mentored	students	for	the	Apple
Swift	Course	at	RMIT.	He	was	the	IT	manager	for	BMW	&	Nissan,	and	as	a
development	manager	for	an	ASX-listed	company,	he	contracted	and	built
several	mobile	apps	for	small-to-large	organizations	in	Australia.	He	has
conducted	workshops	and	spoken	at	meetups	and	events.	He	started	OZApps	and
provides	consulting	and	development	services.

	

	

	

	

	

	

	

	

	

	

	

	

	

Packt	is	searching	for	authors	like
you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.c
om	and	apply	today.	We	have	worked	with	thousands	of	developers	and	tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	for	a	specific	hot	topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

http://authors.packtpub.com

Table	of	Contents

Title	Page

Copyright	and	Credits

Lua	Quick	Start	Guide

Packt	Upsell

Why	subscribe?

PacktPub.com

Contributors

About	the	author

About	the	reviewer

Packt	is	searching	for	authors	like	you

Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Download	the	color	images

Code	in	Action

Conventions	used

Get	in	touch

Reviews

1.	 Introduction	to	Lua
Technical	requirements

What	Lua	is

Source	code	and	binaries

Installing	Lua	on	Windows	10

Installing	Lua	on	macOS

Installing	Lua	on	Linux

Tools	for	Lua

Installing	VS	Code	on	Windows	10

Installing	VS	Code	on	macOS

Installing	VS	Code	on	Linux

Exploring	VS	Code

Hello	World!

Summary

2.	 Working	with	Lua
Technical	requirements

Variables

Creating	variables

Printing	variables

Assigning	variables

Comments

Basic	types

nil

Boolean

number

Finding	a	type

String	types

String	literals

String	length

Concatenate	strings

String	coercion

Escape	characters

Console	input

Scope

Scope	access

Global	scope

Shadowing

Functions

Defining	a	function

Calling	a	function

Function	arguments

Any	number	of	arguments

Returning	a	value

Returning	multiple	values

Operators

Arithmetic	operators

Relational	operators

Logical	operators

Misc	operators

Operator	precedence

Control	structures

if

elseif

else

Nesting	if	statements

Loops

while	loops

Infinite	loops

Breaking	a	loop

Repeat	until	loop

for	loop

Nested	loops

Summary

3.	 Tables	and	Objects
Technical	requirements

Introduction	to	tables

Creating	tables

Storing	values

Table	constructor

Tables	are	references

Arrays

Array	constructor

Arrays	are	one-based

Sparse	arrays

The	size	of	an	array

Multidimensional	arrays

Iterating

Understanding	pairs

Understanding	ipairs

Closures

Iterator	functions

Meta	tables

setmetatable

getmetatable

__index

__newindex

rawget	and	rawset

__call

Operators

Math	operators

Equivalence	operators

Other	operators

Objects

Classes

The	:	operator

Tables	inside	of	objects

Inheritance

Single	inheritance

Multiple	inheritance

Summary

4.	 Lua	Libraries
Technical	requirements

The	global	table

Explicit	variables

Dynamic	variables

Environment

math

Trigonometry

Changing	numbers

Comparing	numbers

Randomness

Constants

Everything	else

File	IO

Opening	a	file

Writing	data

Reading	data

Reading	line	by	line

Reading	bits	of	data

Closing	a	file

Interfacing	with	the	operating	system

Working	with	time

Interacting	with	the	shell

Working	with	files

More	strings

Searching	for	a	substring

Extracting	a	substring

Case	manipulation

Creating	and	loading	modules

Creating	a	module

Loading	and	using	modules

Avoiding	parsing

Executing	files

Summary

5.	 Debugging	Lua
Technical	requirements

The	debug	library

Introspective	information

The	debug.getinfo	return	value

Filtering	the	information

Local	variables

Hooks

Line	("l")

Call	("c")

Return	("r")

Setting	a	counter

Multiple	hooks

Traceback

Debugger.lua

Using	debugger.lua

Error-handling	in	Lua

pcall	and	error

assert

Profiling

The	profile	module

Using	the	profile	module

Integrated	development	environments

LuaEdit

Breakpoints

Locals	and	Watch

Callstack

Decoda

Starting	debugging

Everything	else

Zero	Brane	Studio

Selecting	an	interpreter

Starting	the	debugger

Visual	Studio	Code

Summary

6.	 Embedding	Lua
Technical	requirements

Working	with	the	C	API

The	stack

Pushing	to	the	stack

Querying	the	stack

Reading	from	the	stack

Stack	size

Reading	Lua	variables	from	C

Loading	a	Lua	file

Reading	global	variables

Example

Creating	Lua	variables	from	C

Calling	Lua	functions	from	C

Calling	C	functions	from	Lua

Working	with	tables	in	C

Reading	values	from	a	table

Writing	values	to	a	table

Meta	tables

User	data

Lua	C	API	reference

Summary

7.	 Lua	Bridge
Technical	requirements

API	conventions

Namespaces

Variables

Functions

Properties

Classes

Constructor

Subclass

Member	variables,	properties,	and	functions

Static	variables,	properties,	and	functions

Calling	C	functions	from	Lua

LuaRef

LuaRef	and	tables

Summary

8.	 Next	Steps
Books

Programming	In	Lua

Learning	Game	AI	Programming	with	Lua

LÖVE	for	Lua	Game	Programming

Lua	Game	Development	Cookbook

Game	Development	with	Lua

Beginning	Lua	Programming

Lua	Programming	Gems

Learn	Lua	for	iOS	Game	Development

Game	engines

LÖVE	2D

Defold

Corona

Leadwerks

Gideros

Urho	3D

Polycode

ShiVa

Game	mods

Roblox

Garry's	Mod

World	Of	Warcraft

Natural	Selection	2

Don't	Starve

Hack	'n'	Slash

Scriptable	software

CEGUI

Conky

Premake

Moho

Summary

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface
Lua	is	a	small,	powerful,	and	extendable	programming	language	that	can	be	used
to	learn	to	program,	write	games	and	applications,	or	as	an	embedded	scripting
language.	This	book	is	the	easiest	way	to	learn	Lua;	it	introduces	you	to	the
basics	of	Lua	and	helps	you	understand	the	problems	it	solves.

You	will	work	with	the	basic	language	features,	the	libraries	Lua	provides,	and
powerful	topics	such	as	object-oriented	programming.	Every	aspect	of
programming	in	Lua—variables,	data	types,	functions,	tables,	arrays	and	objects
—is	covered	in	sufficient	detail	for	you	to	get	started.	You	will	also	find	out
about	Lua's	module	system	and	how	to	interface	with	the	operating	system.

After	reading	this	book,	you	will	be	ready	to	use	Lua	as	a	programming
language	to	write	code	that	can	interface	with	the	operating	system,	automate
tasks,	make	playable	games,	and	much	more.	This	book	is	a	solid	starting	point
for	those	who	want	to	learn	Lua	and	then	move	on	to	other	technologies,	such	as
Love2D,	to	make	games.

Who	this	book	is	for
This	book	is	for	developers	who	want	to	get	up	and	running	with	Lua.	This	book
is	ideal	for	programmers	who	want	to	learn	to	embed	Lua	in	their	own
applications,	and	is	also	ideal	for	beginner	programmers	who	have	never	coded
before.	Starting	with	an	introduction	to	the	Lua	language,	you	will	learn	how	to
create	variables	and	use	loops	and	functions.	You	will	learn	advanced	concepts,
such	as	creating	an	object-oriented	class	system	using	only	Lua	tables.	We	look
at	the	standard	Lua	libraries	and	learn	how	to	debug	Lua	code.	We	will	use	Lua
as	an	embedded	scripting	language	and	learn	about	the	Lua	C	API	in	detail.

What	this	book	covers
Chapter	1,	Introduction	to	Lua,	serves	as	an	introduction	to	Lua	by	answering	the
question	what	is	Lua?	Next,	the	chapter	walks	the	reader	through	downloading
and	installing	the	appropriate	Lua	binaries,	as	well	as	Visual	Studio	Code.	Visual
Studio	Code	is	the	code	editor	we	will	be	using	throughout	this	book	to	edit	Lua
files.

Chapter	2,	Working	with	Lua,	is	a	primer	on	the	basics	of	the	Lua	language.	For
those	who	have	not	programmed	before,	this	chapter	teaches	the	basic	concepts
of	programming,	such	as	variables,	loops,	and	functions.	For	the	more
experienced	programmer	reading	the	book,	this	chapter	serves	as	an	introduction
to	Lua's	syntax.

Chapter	3,	Tables	and	Objects,	states	that	the	most	powerful	features	of	Lua	are	its
table	and	meta-table	systems.	Through	these	systems,	the	language	it	self	can	be
extended.	This	chapter	focuses	on	exploring	what	tables	are,	how	they	work,	and
how	they	can	be	used	to	extend	the	language	to	support	concepts	such	as	object-
oriented	programming.

Chapter	4,	Lua	Libraries,	explains	that	Lua	ships	with	a	large	and	mature	standard
library.	This	chapter	explores	the	functionality	provided	by	the	standard
Lua	libraries.	The	functionality	exposed	by	the	standard	libraries	allows	us	to	do
complicated	math,	work	with	files,	and	interface	with	the	operating	system.

Chapter	5,	Debugging	Lua,	explains	that	Lua	provides	us	with	powerful
debugging	facilities	that	allow	us	to	debug	Lua	code	using	Lua	its-self.	This
chapter	explores	how	to	do	this.	In	addition	to	exploring	Lua's	built-in	debug
facilities,	optional	tools	that	offer	an	intuitive	and	standard	debugging	interface
are	covered.

Chapter	6,	Embedding	Lua,	discusses	Lua's	C	API.	This	chapter	covers	all	the	API
functions	required	to	embed	Lua	into	an	existing	application.	Lua	was	designed
to	be	an	embeddable	language,	and	therefore	the	C	API	is	small,	clean,	and
straightforward.	By	the	end	of	the	chapter,	you	will	have	mastered	the	Lua	stack
and	will	be	able	to	work	with	Lua	from	C.

Chapter	7,	Lua	Bridge,	explains	that	even	though	Lua's	C	API	is	simple,	it's
verbose.	Doing	basic	tasks	can	take	a	lot	of	typing.	Lua	Bridge	is	a	third-party
Lua	binding	library	that	aims	to	make	embedding	Lua	in	C	much	easier	and	less
verbose.	All	the	Lua	Bridge	functionality	needed	for	common	tasks	such	as
exposing	functions,	variables,	or	objects	are	covered	in	this	chapter.

Chapter	8,	Next	Steps,	explains	that	by	now,	you	will	have	a	solid	grasp	of	the
basics	of	programming,	Lua,	and	the	Lua	C	API.	This	chapter	focuses	on	what
you	can	do	with	all	this	new-found	knowledge.	Further	books	and	learning
resources	are	provided	in	this	chapter.	In	addition	to	learning	resources,	some
practical	suggestions	such	as	Lua-powered	game	engines	and	games	that	can	be
modified	with	Lua	are	made.

To	get	the	most	out	of	this	book
This	book	assumes	that	the	reader	is	proficient	in	using	a	computer	running
either	Windows,	macOS,	or	Linux.
For	chapters	one	to	five,	no	assumptions	are	made	about	the	readers'
programming	knowledge	or	experience.
Chapters	six	and	seven	assume	beginner	to	novice	familiarity	with	C	or
C++.

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	www.
packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.packtpub.com/su
pport	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box	and	follow	the	onscreen

instructions.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPu
blishing/Lua-Quick-Start-Guide.	In	case	there's	an	update	to	the	code,	it	will	be
updated	on	the	existing	GitHub	repository.

We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Lua-Quick-Start-Guide
https://github.com/PacktPublishing/

Download	the	color	images
We	also	provide	a	PDF	file	that	has	color	images	of	the	screenshots/diagrams
used	in	this	book.	You	can	download	it	here:	http://www.packtpub.com/sites/default/f
iles/downloads/LuaQuickStartGuide_ColorImages.pdf.

http://www.packtpub.com/sites/default/files/downloads/LuaQuickStartGuide_ColorImages.pdf

Code	in	Action
Visit	the	following	link	to	check	out	videos	of	the	code	being	run:
http://bit.ly/2AawDX5

http://bit.ly/2AawDX5

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	database	table	names,	folder	names,
filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and	Twitter
handles.	Here	is	an	example:	"Mount	the	downloaded	WebStorm-10*.dmg	disk	image
file	as	another	disk	in	your	system."

A	block	of	code	is	set	as	follows:

html,	body,	#map	{

	height:	100%;	

	margin:	0;

	padding:	0

}

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the
relevant	lines	or	items	are	set	in	bold:

[default]

exten	=>	s,1,Dial(Zap/1|30)

exten	=>	s,2,Voicemail(u100)

exten	=>	s,102,Voicemail(b100)

exten	=>	i,1,Voicemail(s0)

Any	command-line	input	or	output	is	written	as	follows:

$	mkdir	css

$	cd	css

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"Select	System	info	from	the	Administration	panel."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	feedback:	Email	feedback@packtpub.com	and	mention	the	book	title	in	the
subject	of	your	message.	If	you	have	questions	about	any	aspect	of	this	book,
please	email	us	at	questions@packtpub.com.

Errata:	Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	website	name.	Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a	book,
please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	your	unbiased	opinion	to	make	purchase	decisions,	we	at	Packt	can
understand	what	you	think	about	our	products,	and	our	authors	can	see	your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

https://www.packtpub.com/

Introduction	to	Lua
This	chapter	covers	what	Lua	is	and	how	to	set	up	a	Lua	environment	on	any
operating	system.	Lua	is	not	tied	to	any	operating	system,	so	this	chapter	covers
installing	Lua	for	Windows,	macOS,	and	Linux.	By	the	end	of	this	chapter,	you
will	have	a	fully	functional	Lua	development	environment	set	up,	regardless	of
what	operating	system	you	are	using.	This	will	leave	you	ready	to	start	learning
the	Lua	language.

This	is	what	you	will	learn	in	this	chapter:

What	Lua	is
How	to	install	Lua
Available	Lua	tools
How	to	install	Visual	Studio	Code
How	to	use	Visual	Studio	Code
Write	and	run	a	Hello	World	Lua	application

Technical	requirements
You	will	be	required	to	have	JavaScript	programming	language.	Finally,	to	use
the	Git	repository	of	this	book,	the	user	needs	to	install	Git.

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/Lua-Quick-Start-Guide/tree/master/Chapter01

Check	out	the	following	video	to	see	the	code	in	action:
http://bit.ly/2NGKDty

https://github.com/PacktPublishing/Lua-Quick-Start-Guide/tree/master/Chapter01
http://bit.ly/2NGKDty

What	Lua	is
Lua	is	a	powerful,	fast,	lightweight,	embeddable	scripting	language.	The	Lua
virtual	machine	and	interpreter	are	written	in	C.	As	a	language,	Lua	is	easy	to
learn.	It	contains	21	keywords,	which	makes	the	language	rather	small.	Lua	is
also	easy	to	read	and	understand,	as	its	syntax	makes	it	similar	to	English.	For
example,	consider	the	following	code	snippet:

if	not	hero:IsAlive()	then

	GameOver();

end

This	code	is	easy	to	read,	and	I	bet	you	can	take	an	intuitive	guess	at	what	it
does.	Lua	is	not	only	easy	to	read,	it	is	also	very	powerful.	The	real	power	of
Lua	comes	from	its	extensible	nature.	Programming	constructs	such	as	object-
oriented	programming	(OOP)	can	be	implemented	in	Lua,	even	though	the
language	has	no	native	support	for	objects.

At	the	time	of	writing,	Lua	has	14	versions;	this	book	will	focus	on	Lua	5.2.4.
The	latest	version	is	5.3;	the	main	difference	between	5.2	and	5.3	is	that	5.3
contains	support	for	explicit	integers	and	bitwise	operation.

While	this	book	covers	everything	needed	to	get	started	with	Lua	programming,	it	never	hurts	to	have	more	resources.
The	first	edition	of	Programming	In	Lua	can	be	read	online,	for	free,	at	https://www.lua.org/pil/contents.html.

https://www.lua.org/pil/contents.html

Source	code	and	binaries
Lua	is	open	source	software	published	under	the	MIT	License.	You	can	browse
Lua's	source	code	at	https://www.lua.org/source/.	Additionally,	you	can	download
both	the	source	code	and	reference	manuals	for	Lua	from	https://www.lua.org/ftp/.	

At	the	time	of	writing,	no	pre-built	binaries	are	downloadable	from	the	lua.org
website.	Pre-built	binaries	can	be	found	on	SourceForge	at	https://sourceforge.net/
projects/luabinaries/.	In	this	chapter,	we	will	be	using	SourceForge	to	download
binaries	for	Lua.

https://www.lua.org/source/
https://www.lua.org/ftp/
https://lua.org
https://sourceforge.net/projects/luabinaries/

Installing	Lua	on	Windows	10
Follow	these	steps	to	install	Lua	5.2.4	on	Windows	10.	These	instructions	are
written	for	Windows	10,	but	the	steps	needed	to	install	should	be	similar	on
older	(and	future)	versions	of	Windows	as	well:

1.	 To	download	Lua	5.2.4,	visit	https://sourceforge.net/projects/luabinaries/files/
5.2.4/.

2.	 Click	on	the	Tools	and	Executables	link.
3.	 On	a	32-bit	version	of	Windows,	click	the	lua-5.2.4_Win32_bin.zip	link	to	start

downloading	Lua.	On	a	64-bit	version	of	Windows,	click	the	lua-
5.2.4_Win64_bin.zip	link	to	start	downloading.

4.	 Once	the	file	is	downloaded,	unzip	the	file.	Unzipping	the	downloaded	file
should	create	four	new	files:	lua52.dll,	lua52.exe,	luac52.exe,	and	wlua52.exe.

5.	 Create	a	new	folder	inside	C:\Program	Files,	and	call	this	new	folder	LUA.	Copy
the	four	files	you	just	unzipped	into	this	directory.

6.	 Rename	lua52.exe	to	lua.exe.	If	your	Windows	installation	is	set	up	to	hide
file	extensions,	rename	lua52	to	lua:

https://sourceforge.net/projects/luabinaries/files/5.2.4/

7.	 The	path	to	Lua	needs	to	be	set	up	as	an	environment	variable	in	Windows.
8.	 Right-click	on	the	Start/Windows	menu	button	and	select	the	System

option.
9.	 From	the	System	window,	select	the	Advanced	Settings	option.
10.	 Having	clicked	the	Advanced	Settings	option,	you	should	now	see	the

System	Properties	dialog.	In	this	dialog,	click	on	the	Environment
Variables...	button.

	

11.	 In	the	Environment	Variables	window,	with	the	Path	variable	selected,	click

the	Edit...	button:

12.	 Inside	the	Edit	environment	Variable	window,	click	the	New	button	and
add	C:\Program	Files\LUA	as	a	new	path.	Click	the	OK	button	to	save	changes
and	close	this	window.	You	can	close	all	the	windows	we	have	opened	up
to	this	point.

13.	 Lua	should	now	be	successfully	installed	on	your	computer.	To	verify	the
installation,	you	need	to	launch	a	new	Command	Prompt.	You	can	launch
Command	Prompt	by	right-clicking	the	Windows	Start/Windows	button
and	selecting	the	Command	Prompt	item.

14.	 In	the	newly	opened	Command	Prompt,	type	lua	-v.	If	everything	is	set	up
correctly,	the	command	should	print	out	the	installed	version	of	Lua	(5.2.4):

Installing	Lua	on	macOS
Follow	these	steps	to	install	Lua	5.2.4	on	macOS.	These	instructions	are	written
for	macOS	High	Sierra,	but	the	steps	are	the	same	on	previous	(and	future)
versions	of	macOS	as	well:

1.	 To	download	Lua	5.2.4,	visit	https://sourceforge.net/projects/luabinaries/files/
5.2.4/.

2.	 Click	on	the	Tools	and	Executables	link.
3.	 Click	on	the	lua-4.2.4_MacOS1011_bin.tar.gz	link	to	start	downloading	Lua.

	

4.	 Once	the	zip	file	has	downloaded,	unzip	it.	The	archive	should	contain	two
files,	lua52	and	luac52:

5.	 Create	a	new	folder	in	your	~/Documents	directory,	and	name	this	folder	LUA.
Move	both	lua52	and	luac52	into	this	new	directory:

https://sourceforge.net/projects/luabinaries/files/5.2.4/

6.	 Rename	lua52	to	just	lua.
7.	 Launch	a	Terminal	window.	The	Terminal	app	is	located

at	/Applications/Utilities/Terminal.app.	You	can	also	simply	type	Terminal	into
the	universal	search	on	macOS.

	

8.	 With	the	new	Terminal	window	open,	type	sudo	nano	/etc/paths	and	hit	Enter.
You	will	be	asked	for	your	password;	this	is	the	password	for	your	user
account.	The	password	will	not	show	up	as	you	type	it.	After	the	password
is	entered,	nano	will	open;	nano	is	a	Terminal-based	text	editor.	You	should
see	something	similar	to	the	following	window:

9.	 You	can	navigate	the	type	cursor	with	the	arrow	keys.	Don't	worry	if	your
paths	file	(the	file	we	are	editing)	already	has	text	in	it.	We	will	be	adding	a
new	entry	into	this	file;	where	in	the	file	you	add	the	new	entry	does	not
matter.	On	a	new	line,	type	~Documents/LUA:

10.	 Press	Ctrl	+	X	to	exit	nano.	The	program	will	ask	you	if	you	want	to	save
the	changes	you	have	made	to	the	file.	Press	Y	to	save	changes.

11.	 Nano	will	ask	you	to	confirm	the	filename.	Just	hit	Enter	to	accept	the
default	path.

	

12.	 In	order	for	the	changes	made	in	the	paths	to	take	effect,	you	must	restart
the	Terminal	app.	To	do	this,	right-click	on	the	Terminal	icon	in	your
macOS	dock	and	select	Quit.	Then,	launch	a	new	Terminal	window.

13.	 In	the	new	Terminal	window,	type	lua	-v.	If	everything	is	set	up	correctly,
the	Terminal	should	print	out	the	installed	version	of	Lua	(5.2.4):

Installing	Lua	on	Linux
Follow	these	steps	to	install	Lua	5.2.4	on	Linux.	These	instructions	are	written
for	Ubuntu	Linux	16.04.	The	steps	needed	to	install	Lua	are	the	same	on	Ubuntu
Linux	12.04	and	higher:

1.	 The	entire	installation	of	Lua	can	be	done	using	the	command	line,	with	the
apt	package	manager.

2.	 Open	up	a	new	Terminal	and	type	sudo	apt-get	install	lua5.2:

3.	 Provide	your	password	when	prompted	and	wait	for	the	installation	to
finish:

4.	 Type	lua	-v.	If	everything	is	set	up	correctly,	the	Terminal	should	print	out
the	installed	version	of	Lua	(5.2.4):

Tools	for	Lua
A	programming	language	relies	heavily	on	the	tools	that	support	it.	Lua	files	are
plain	text	files.	This	means	you	can	write	Lua	in	any	text	editor	you	want,
whether	it	is	emacs,	vi,	Sublime	Text,	TextWrangler,	or	just	the	OS-provided
basic	text	editor.

Because	of	the	popularity	of	Lua,	several	IDEs,	such	as	ZeroBrane	Studio,
Decoda,	and	LuaEdit,	have	been	created	for	the	language.	An	IDE	is	an
integrated	development	environment.	An	IDE	comes	with	everything	you
need	to	write,	compile,	and	execute	code.	There	are	a	number	of	advanced	text
editors	that	have	varying	levels	of	support	for	Lua:

Throughout	this	book,	we	will	be	using	Visual	Studio	Code.	VS	Code	is	a	free

text	editor,	which	supports	the	Lua	syntax	with	its	default	installation	and	works
across	multiple	platforms.	The	version	of	VS	Code	used	is	1.9.1,	but	future
versions	should	work	more	or	less	the	same	way.

Installing	VS	Code	on	Windows	10
Setting	up	VS	Code	for	Windows	is	very	straightforward.	The	installer	takes
care	of	everything	for	you.	These	instructions	are	written	for	Windows	10,	but
the	process	should	be	the	same	on	all	versions	of	Windows:

1.	 Go	to	http://code.visualstudio.com/	and	download	the	VS	Code	Code	installer
for	Windows.

	

2.	 Once	downloaded,	launch	the	installer	exe	file.	The	default	options	are	all
valid,	so	you	can	hit	Next	all	the	way	through	the	installer.

3.	 Wait	for	the	installer	to	finish	the	setup	and	exit	the	installer.	There	are	no
further	actions	to	take.

http://code.visualstudio.com/

Installing	VS	Code	on	macOS
These	instructions	are	written	for	OSX	High	Sierra,	but	the	installation	steps
should	be	the	same	on	all	supported	versions	of	OSX:

1.	 Go	to	http://code.visualstudio.com/	and	download	VS	Code	for	macOS.	This
will	download	a	zipped	file	named	VSCode-darwin-stable.zip.

2.	 Double-click	the	zip	file	to	extract	its	contents.	Drag	the	resulting	Visual
Studio	Code.app	file	into	your	Applications	directory.

3.	 Once	Visual	Studio	Code	is	in	the	Applications	directory,	it	is	installed,	and
there	are	no	further	actions	to	take.

http://code.visualstudio.com/

Installing	VS	Code	on	Linux
These	instructions	are	written	for	Ubuntu	Linux	16.04.	The	steps	needed	to
install	Lua	are	the	same	for	Ubuntu	Linux	12.04	and	higher.

1.	 Go	to	http://code.visualstudio.com/	and	download	the	Visual	Studio	Code
installer	.deb	file.	Take	note	of	the	name	of	the	downloaded	file;	the	version
I	am	using	is	named	code_1.9.1-1486597190_amd64.deb.

2.	 Once	downloaded,	launch	a	new	Terminal	window.	Navigate	the	Terminal
to	the	downloads	folder	with	the	following	command:	cd	~/Downloads.

3.	 Next,	install	the	.deb	file	with	the	following	command:	sudo	dpkg	-i
./code_1.9.1-1486597190_amd64.deb.	The	filename	might	be	different	based	on	the
version	of	VS	Code	you	downloaded.

4.	 Fix	any	missing	or	broken	dependencies	with	the	following	command:	sudo
apt-get	install	-f.

5.	 Visual	Studio	Code	is	now	installed,	and	there	are	no	further	actions	to
take.

http://code.visualstudio.com/

Exploring	VS	Code
It's	important	to	be	familiar	with	the	tools	you	use.	While	Visual	Studio	Code	is
primarily	a	text	editor,	it	does	boast	a	rather	large	set	of	IDE-like	features.	VS
Code	can	easily	become	overwhelming	if	you	are	not	familiar	with	using	it.

Visual	Studio	Code	is	a	powerful	text	editor	with	many	advanced	features.	If	you	are	interested	in	learning	more	about
the	editor	than	this	section	covers,	visit	the	online	basics	guide	at	https://code.visualstudio.com/docs/editor/codebas
ics.

Follow	these	steps	to	gain	some	familiarity	and	intuition	with	Visual	Studio
Code:

1.	 When	you	open	up	Visual	Studio	Code,	you	are	greeted	with	either	the	last
open	documents,	the	welcome	page,	or	if	you	have	no	documents	open	and
the	welcome	page	is	disabled,	the	default	window.

2.	 The	icons	on	the	left	side	of	the	screen	make	up	what	is	called	the	View
bar.	Clicking	any	of	the	items	on	the	View	bar	will	cause	a	side	bar	to
become	visible:

3.	 The	first	item	on	the	View	bar	is	the	Explorer.	You	can	use	the	Explorer	to
open	a	folder	and	View	all	of	the	files	in	that	folder	in	one	convenient	list.
We	will	use	this	feature	of	the	editor	throughout	the	next	few	chapters:

https://code.visualstudio.com/docs/editor/codebasics

4.	 The	search	item	on	the	bar	will	let	you	search	for	and	replace	text	in	either
open	documents,	or	documents	inside	of	the	currently	open	folder.

	

5.	 The	GIT	item	on	the	View	bar	will	only	be	available	if	the	currently	open
folder	is	a	git	repository.	VS	Code	has	excellent	git	integration!	While
source	control	solutions	such	as	git	are	outside	the	scope	of	this	book,	using
some	kind	of	source	control	is	highly	recommended:

6.	 The	DEBUG	sidebar	gives	VS	Code	IDE	features	such	as	break	points	and
a	watch	window:

7.	 Finally,	the	EXTENSIONS	item	will	show	you	a	side	bar	that	can	be	used
to	View,	manage,	and	install	new	extensions	in	Visual	Studio	Code:

8.	 To	make	a	new	file,	simply	select	File	>	New	File.
9.	 This	opens	a	new	file,	in	a	new	tab.	This	file	has	no	syntax	highlighting	yet.

To	assign	a	syntax,	click	on	the	Plain	Text	label	in	the	bottom-right	of	the
code	tab,	then	select	Lua	(lua)	from	the	drop-down	menu	that	appears:

10.	 If	at	any	point	you	open	a	file	and	it	does	not	have	proper	syntax
highlighting,	you	can	follow	the	previous	step	to	force	the	file	to	have	Lua
syntax	highlighting.	In	the	previous	step,	we	set	the	syntax	of	the	file
manually.	If	you	save	a	file	with	a	.lua	extension,	the	next	time	the	file	is
opened,	it	will	automatically	use	Lua	syntax	highlighting.

Hello	World!
It	is	common	practice	when	first	learning	a	new	programming	language	to	create
a	Hello	World	program.	This	is	a	simple	program	that	prints	the	words	Hello	World
to	the	screen.	The	goal	of	this	exercise	is	to	write,	compile	(or	interpret),	and	run
a	simple	piece	of	code	to	prove	that	you	can	execute	it.

The	program	will	be	written	using	Visual	Studio	Code,	but	how	will	it	be
executed?	Visual	Studio	Code	provides	an	Integrated	Terminal.	This	is	a
Terminal	that	should	work	the	same	way	regardless	of	what	operating	system
you	are	using.	It's	important	to	note	that	whatever	code	gets	executed	through
this	Terminal	can	also	be	executed	through	the	operating	system	Terminal/shell.

Being	able	to	perform	the	same	steps	regardless	of	operating	system	can	save
time	and	reduce	errors.	For	this	reason,	future	chapters	will	assume	code	will	be
executed	in	VS	Code	instead	of	the	native	Terminal	of	each	operating	system.

The	Lua	interpreter	was	set	up	as	a	global	command	in	the	console	of	your	operating	system.	You	should	be	able	to
execute	any	Lua	file	with	the	command	lua	from	a	console/Terminal.

Follow	these	steps	to	create	a	Hello	World	program,	save	it,	and	execute	it	on
any	platform	(macOS,	Windows	10,	or	Linux):

1.	 Open	Visual	Studio	Code	and	make	a	new	document	with	File	>	New.
2.	 Set	the	syntax	highlighting	of	this	file	to	the	Lua	syntax.	Click	on	the	Plain

Text	label	in	the	bottom	right	of	the	code	tab,	then	select	Lua	(lua)	from	the
drop-down	menu	that	appears:

3.	 In	this	new	file,	type	print	('hello,	world'):

4.	 Save	the	file	to	your	desktop	and	name	it	hello.lua.
5.	 From	the	top	menu	of	Visual	Studio	Code,	select	View	>	Integrated

Terminal.
6.	 On	all	platforms,	if	you	did	not	have	a	folder	open,	the	editor	starts	out	in

your	home	directory.	If	you	did	have	a	folder	open,	the	editor	starts	out	in
the	folder.	Navigate	to	your	desktop	with	the	following	command:	cd
~/Desktop;	the	~/	part	of	the	path	is	shorthand	for	home	directory:

7.	 Now	that	the	Terminal	has	the	desktop	directory	open	(which	is	where

hello.lua	should	be	saved),	you	can	execute	the	Lua	file	with	the	following
command:	lua	hello.lua.	You	should	see	hello,	world	printed	to	the	Terminal.

The	last	step	invoked	the	Lua	binary	from	the	Terminal	of	Visual	Studio	with	the
hello.lua	file	as	an	argument.	This,	in	turn,	launched	the	Lua	runtime,	which
executed	the	file	that	was	provided	as	an	argument.	If	the	Lua	runtime	did	not
launch,	you	may	want	to	review	how	to	set	the	runtime	up	in	the	Tools	for	Lua
section.

Summary
This	chapter	covered	how	to	install	Lua	and	VS	Code.	VS	Code	is	the
development	environment	that	will	be	used	throughout	this	book	to	write	and
execute	Lua	code.	The	integrated	Terminal	in	Visual	Studio	Code	allows	us	to
execute	code	the	same	way	on	all	three	major	platforms:	Windows,	Linux,	and
macOS.

In	the	next	chapter,	we	will	start	to	write	code.	The	basics	of	Lua,	such	as
variables,	loops,	if	statements,	and	functions,	will	be	covered.	The	topics
covered	in	the	next	chapter	are	the	basics	of	programming;	it	is	going	to	be	one
of	the	most	important	chapters	in	this	book.

Working	with	Lua
In	Chapter	1,	Introduction	to	Lua,	you	learned	how	to	set	up	Lua	and	Visual
Studio	Code.	At	the	end	of	the	chapter,	we	created	a	simple	Hello	World
application.	In	this	chapter,	you	will	learn	the	basics	of	Lua	programming.
Topics	such	as	variables,	function	data	types,	and	loops	are	all	going	to	be
covered.	By	the	end	of	this	chapter,	you	should	be	familiar	enough	with	Lua	as	a
language	to	put	together	some	simple	programs.

If	this	is	your	first	time	programming,	the	syntax	of	Lua	can	get	overwhelming	fast.	Many	resources	can	be	found	on	the
official	Lua	site	at	https://www.lua.org/.	For	a	quick	example	of	Lua,	check	out	http://tylerneylon.com/a/learn-lua/.

By	the	end	of	this	chapter,	you	will	will	have	a	solid	understanding	of	the
following:

Using	variables
Data	types
Working	with	functions
Operators
Code	blocks
Variable	scope
Code	flow

https://www.lua.org/
http://tylerneylon.com/a/learn-lua/

Technical	requirements
You	will	be	required	to	have	JavaScript	programming	language.	Finally,	to	use
the	Git	repository	of	this	book,	the	user	needs	to	install	Git.

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/Lua-Quick-Start-Guide/tree/master/Chapter02

Check	out	the	following	video	to	see	the	code	in	action:
http://bit.ly/2LDVPd0

https://github.com/PacktPublishing/Lua-Quick-Start-Guide/tree/master/Chapter02
http://bit.ly/2LDVPd0

Variables
Variables	are	labels	that	provide	a	descriptive	name	for	some	data	that	a	program
can	read	or	modify.	You	can	literally	think	of	a	variable	as	a	label.

For	example,	let's	assume	there	are	a	number	of	jars	containing	different	colored
jam.	How	do	you	know	what	flavor	a	specific	jar	contains?	Hopefully,	there	is	a
label	on	the	jar	that	is	descriptive	of	its	content.

The	labels	on	the	jar	can	change	over	time.	For	example,	a	jar	might	contain
strawberry	jam,	but	after	that's	gone	it	might	be	filled	with	peach	jam.	When	the
contents	of	the	jar	changes,	a	different	label	can	be	used	to	describe	what's	in	it.
Variables	work	in	a	similar	fashion.

Creating	variables
To	create	a	variable,	you	need	to	do	two	things:

Declare	the	variable
Assign	a	value	(data)	to	the	variable

As	an	example,	let's	make	a	variable,	foo,	and	assign	it	the	value	bar.	The	code	to
do	this	would	be:

foo	=	"bar"

That	single	line	of	code	declares	a	variable	and	assigns	a	string	value	to	the
variable.	If	you	break	it	into	several	parts,	the	actual	line	of	code	consists	of	the
following	pieces:

Why	are	there	quote	marks	around	bar?	What	is	a	string	value?	These	questions	will	be	answered	in	the	coming	two
sections,	Basic	types	and	String	types.

Printing	variables
How	can	you	tell	what	the	value	of	a	variable	is?	One	way	is	to	print	the	value
out	to	the	console.	To	print	the	value	of	a	variable,	you	first	type	the	keyword
print,	then	the	name	of	the	variable	between	parentheses	().	The	full	syntax	is:

print	(<variable>)

For	example,	we	can	check	the	value	assigned	to	foo	with	the	following	code:

foo	=	"bar"

print	(foo)

The	first	line	of	code	creates	a	variable	named	foo	and	assigns	it	the	string	value
"bar".	The	second	line	prints	the	value	of	the	foo	variable.	This	means	bar	will	be
printed	to	the	console:

Where	does	the	print	keyword	come	from?	What's	a	keyword?	Why	do	we	use	parentheses	when	using	print?	These
questions	will	be	answered	in	the	Functions	section	of	this	chapter.

Assigning	variables
Since	a	variable	is	just	a	description	of	the	underlying	data,	the	data	can	change.
For	example,	if	you	have	a	variable	named	time,	you	would	expect	its	value	to
change	every	second.	At	any	point,	you	can	use	the	assignment	operator	=	to
assign	a	new	value	to	a	variable.

This	code	snippet	explores	this	by	creating	a	single	variable,	color,	and	assigning
it	three	different	values.	The	value	of	color	is	printed	after	each	assignment:

color	=	"red"

print	(color)

color	=	"green"

print	(color)

color	=	"blue"

print	(color)

The	output	from	this	program	should	look	like	this:

Comments
In	Lua,	any	time	you	see	--,	the	rest	of	that	line	is	considered	a	comment.
Comments	are	there	to	help	you	read	and	understand	code,	but	they	are	never
executed.	This	example	demonstrates	how	comments	are	used:

foo	=	"bar"

--	print	(foo)

--	The	above	statement	never	prints

--	because	it	is	commented	out.

Basic	types
In	the	last	section,	you	were	introduced	to	the	concepts	of	a	variable	and	a	value.
This	section	explores	the	concept	of	what	a	value	is.	Every	value	has	a	data	type,
which	intuitively	describes	what	kind	of	data	the	value	holds.	Lua	supports	eight
basic	value	types:

nil:	The	absence	of	data.	This	type	represents	literal	nothingness.	If	a
certain	piece	of	data	is	invalid	or	unknown,	nil	is	usually	the	best	way	to
represent	that	it	is	invalid	or	unknown.
Boolean:	A	value	of	true	or	false.	A	Boolean	value	is	binary	and	can	only
ever	be	in	one	of	two	states,	true	or	false.
number:	A	number	can	represent	any	real	number:	0,	-1,	5,	or	even
decimals	such	as	3.14159265359.
string:	A	string	is	an	array	of	characters.	When	declaring	a	string	literal,	it
must	be	"enclosed	within	quotation	marks."
function:	A	function	is	some	code	that	is	referred	to	by	a	name	and	can	be
executed	any	time.
table:	A	table	contains	information	using	key-value	pairs.	Tables	will	be
covered	in	depth	in	Chapter	3,	Tables	and	Objects.
userdata:	Complex	data	structures	defined	in	the	C	programming	language.
thread:	Threads	can	be	used	to	execute	code	in	parallel.	Instead	of	your
code	running	one	set	of	commands,	it	can	run	several	sets	of	commands	at
the	same	time.

This	section	will	explore	the	nil,	Boolean,	and	number	types.	The	string	and
function	types	will	get	their	own	sections	in	this	chapter.	The	table	type	is	so
important	it	will	have	its	own	chapter.

Lua	uses	loose,	implicit	types.	That	means	a	variable	can	have	any	type.	Once	a	variable	is	assigned	a	type,	it	can	be
assigned	any	other	type.	For	example,	it	is	valid	to	assign	a	number	to	a	variable	that	holds	a	string.	After	the
assignment,	the	variable	will	simply	hold	a	number.

nil
A	nil	value	represents	the	absence	of	data.	If	you	try	to	access	a	variable	that	has
not	been	created	yet,	its	value	will	be	nil.	If	you	are	done	using	a	variable,	you
should	assign	it	to	be	nil.	This	code	first	prints	nil	because	nothing	is	assigned	to
the	variable	foo.	Then,	the	string	bar	is	assigned,	and	after	this	the	code	prints	bar.
Finally,	nil	is	assigned	back	to	the	variable.	The	last	time	the	variable	is	printed,
it	will	print	nil	again:

print	(foo)	--	will	print:	nil

foo	=	"bar"

print	(foo)	--	will	print:	bar

foo	=	nil

print	(foo)	--	will	print:	nil

Boolean
A	boolean	variable	can	have	one	of	two	values:	true	or	false.	Booleans	are	often
used	to	control	the	flow	of	code	and	express	logic.	This	code	assigns	the
Boolean	value	of	true	to	the	variable	foo,	then	prints	this	value:

foo	=	true

print	("The	value	of	foo	is:")

print	(foo)

A	more	useful	example	of	a	Boolean	is	to	obtain	it	from	some	kind	of	logical
operation,	for	example,	to	check	whether	five	is	greater	than	three	or	not.	This
code	demonstrates	how	to	do	this:

result	=	5	>	3

print	("Is	5	>	3?")

print	(result)

number
Lua	does	not	know	the	difference	between	a	whole	number	and	a	decimal.	All
numbers	are	simply	real	numbers.	Sometimes,	especially	when	working	with
grids,	you	might	need	only	whole	numbers.	If	that	is	the	case,	Lua	has	a	built-in
function	to	round	down,	math.floor,	or	to	round	up,	math.ceil.	This	is	how	they	can
be	used:

pi	=	3.1415

three	=	math.floor(3.1415)

five	=	math.ceil(4.145)

print	(pi)	--	will	print:	3.1415

print	(three)	--	will	print:	3

print	(five)	--	will	print:	5

Using	functions	might	look	foreign	right	now,	but	don't	worry,	they	will	be	covered	in	detail	later	in	the	chapter.

Basic	arithmetic	operations	such	as	adding,	subtracting,	multiplying,	or	dividing
can	be	performed	on	integers.	We	will	cover	arithmetic	operations	in	detail	later
on	in	the	chapter,	but	for	now,	let's	take	a	look	at	something	simple,	adding	two
numbers:

five	=	3	+	2

print	(five)	--	will	print	5

print	(2	+	2)	--	will	print	4

print	(five	+	1)	--	will	print	6

Finding	a	type
There	is	one	very	important	function	built	into	Lua,	type.	This	function	will
return	the	type	of	a	variable	as	a	string.	Let's	take	a	look	at	this	function	in
action:

var1	=	true

var2	=	3.145

var3	=	nil

var4	=	type(var1)

var5	=	type(type(var2))

print	(type(var1))	--	boolean

print	(type(var2))	--	number

print	(type(var3))	--	nil

print	(var4)	--	boolean

print	(var5)	--	string

Because	the	type	function	returns	a	string,	the	result	can	be	assigned	to	a	variable,
like	so:

var4	=	type(var1)

Or,	the	result	can	be	passed	directly	to	a	function	such	as	print,	like	so:

print	(type(var1))

The	type	of	the	type	of	something	type(type(var2)),	as	represented	by	var5,	will
always	be	a	string.	This	is	because,	as	stated	before,	type	returns	a	string.

String	types
A	string	is	an	array	of	characters.	Strings	can	represent	words,	sentences,	or	even
whole	books.	In	this	section,	we	will	cover	how	to	perform	the	following	string
operations:

How	to	get	the	length	of	a	string
How	to	concatenate	two	strings	into	a	single	new	string
The	coercion	of	other	types	into	strings
String	escape	characters

Additionally,	this	section	will	cover	how	to	read	input	from	the	console.	You
already	know	how	to	print	information	to	the	console;	applications	will	become
much	more	interactive	once	you	can	also	read	input	from	the	console.

String	literals
A	string	literal	must	be	written	between	quotes.	The	following	line	of	code
demonstrates	a	string	literal.	This	example	does	not	do	anything	since	the	literal
is	a	value	that	is	never	assigned	to	a	variable:

"hello,	world"

Without	being	assigned	to	a	variable,	this	string	can't	be	printed.	String	literals
don't	have	to	be	assigned	to	a	variable	to	be	useful;	they	can	be	passed	directly	to
a	function	such	as	print.	The	following	code	demonstrates	both	of	these	cases:

print	("Print	a	string	literal,	used	in	place")

message	=	"Print	a	string	assigned	to	a	variable"

print(message)

String	length
There	are	two	ways	to	get	the	length	of	a	string,	either	using	the	string.len()
function,	or	by	placing	a	#	symbol	in	front	of	the	string.	Both	methods	work	the
same	way,	and	they	both	return	a	number	value.	This	number	can	be	assigned	to
a	variable	or	used	in	its	place.	You	can	call	either	method	on	a	variable,	or
directly	on	a	string.	The	following	code	demonstrates	all	of	these	concepts:

hello	=	"hello,	world"

--	Assign	length	to	variables

count_hash	=	#hello;

count_func	=	string.len(hello)

print	("The	string:")

print	(hello)

--	Print	the	variables	assigned	at	the	top

print	("Has	a	length	of:")

print	(count_hash)

print(count_func)

--	Use	string	literals,	in	place

print	(#"hello,	world")

print	(string.len("hello,	world"))

Concatenate	strings
Two	strings	can	be	concatenated	by	placing	a	..	symbol	between	them.	It	is	very
important	to	have	at	least	one	space	on	both	the	left	and	right	of	the	..	symbol.
Concatenating	two	strings	results	in	a	new	string,	which	can	be	stored	in	a
variable	or	used	in	its	place.	Any	combination	of	variables	and	literals	can	be
concatenated,	as	the	following	code	demonstrates:

name	=	"Mike"

color	=	"Blue"

--	Concatenate	three	strings

print	("Jill	"	..	"likes"	..	"	Red")

--	Concatenate	a	variable	and	a	strings

print	("Jack	dislikes	"	..	color)

--	Concatenate	two	variables	and	a	string

print	(name	..	"	likes	"	..	color)

--	Concatenate	only	variables

print	(name	..	color)

--	Assign	result	to	variable

message	=	name	..	"	likes	"	..	color

print	(message)

String	coercion
String	coercion	is	a	fancy	way	of	asking	Lua	to	automatically	convert	data	types
to	string	representations	of	the	data.	For	example,	a	string	and	an	integer	can	be
combined	to	form	a	new	string	like	the	following:

pi	=	3.14

message	=	"The	rounded	value	of	pi	is:	"	..	pi

print(message)

print("Nine:	"	..	9)

String	coercion	also	works	the	other	way	around!	Adding	a	string	that	contains
only	numbers	to	a	number	is	valid	addition:

eleven	=	"10"	+	1

print	(eleven)

print	(7	+	"01")	--	8

Escape	characters
Strings	need	to	be	within	quotes,	but	what	happens	when	you	need	to	put	quotes
inside	the	string?	Lua	doesn't	care	if	a	string	uses	single	or	double	quotes,	so
long	as	the	symbol	at	the	start	and	end	of	the	string	matches,	so	technically	this
code	would	be	valid:

message	=	'he	said	"bye"	and	left'

print	(message)

However,	this	is	not	desirable.	As	a	convention,	only	double	quotes	will	be	used
to	represent	a	string	throughout	this	book.	To	include	a	double	quote	within	a
string,	the	character	must	be	escaped.	Escaping	a	character	means	the	character
will	be	treated	as	part	of	the	string,	rather	than	a	Lua	instruction.	To	escape	a
character,	place	a	\	in	front	of	it,	like	so:

message	=	"he	said	\"bye\"	and	left"

print	(message)

There	are	actually	several	escape	characters	that	can	be	used	when	working	with
strings.	The	most	often	used	escape	characters	are:

\n:	Newline,	moves	the	cursor	down	one	line
\t:	Horizontal	tab,	tabs	over	on	the	current	line
\\:	Backslash,	you	have	to	escape	the	escape	symbol
\":	Double	quote,	needed	to	include	a	quote	in	a	string

The	full	list	of	supported	escape	symbols	for	Lua	can	be	found	online	at	https://www.lua.org/pil/2.4.html.

https://www.lua.org/pil/2.4.html

Console	input
Doing	interesting	things	with	code	usually	requires	some	kind	of	input	from	a
user.	Input	from	the	console	can	be	obtained	with	the	io.read()	function.	Unlike
the	functions	used	previously,	nothing	goes	inside	the	parentheses	of	this	one.
The	function	will	read	one	line	of	input	from	the	user	when	the	user	presses
Enter.	The	function	returns	this	line	of	text	as	a	string,	which	can	be	stored	in	a
variable.	The	following	example	demonstrates	this:

print	("Please	enter	your	name:")

name	=	io.read()

print	("Hello	"	..	name)

Scope
Like	many	other	programming	languages,	Lua	implements	the	concept	of	scope
for	anything	that	can	be	named	(like	a	variable).	A	scope	defines	where	in	the
program	a	variable	can	be	used.	Scopes	are	limited	to	the	chunks	they	appear	in.
A	chunk	is	just	a	section	of	code.	Some	languages	call	chunks	blocks	because
they	are	represented	by	blocks	of	code.

Every	Lua	file	that	is	executed	is	a	chunk.	This	chunk	can	contain	other,	smaller
chunks.	Think	of	it	as	a	hierarchical	relationship.	Such	a	relationship	could	be
visualized	as	follows:

You	can	create	a	local	chunk	in	a	file	by	using	the	do	keyword.	The	chunk	ends
with	the	end	keyword.	The	following	bit	of	code	demonstrates	how	to	create	a
local	chunk	in	a	file:

--	main	file	chunk	is	anywhere	in	the	file

do

		--	local	chunk

end

do

		--	a	different	local	chunk

end

As	mentioned	earlier,	scope	refers	to	visibility.	A	chunk	can	access	any	variables
declared	in	its	parent	chunk,	but	none	of	the	variables	available	in	any	child
chunks.	To	demonstrate	this,	consider	the	following	variable	declarations	in
different	chunks:

For	now,	ignore	the	syntax.	In	this	example,	the	local	chunk	can	see	the	variables
dog,	cat,	and	fish.	However,	the	file	chunk	cannot	see	the	fish	variable,	only	dog
and	cat.	Similarly,	the	global	chunk	can	only	see	the	dog	variable.	This	diagram
would	be	expressed	in	code	like	so:

--	Dog	is	accessable	in	the	global	chunk

dog	=	"This	is	a	dog"

--	Cat	is	accessable	in	the	file	chunk

--	The	local	keyword	makes	cat	local	to	the	file

local	cat	=	"This	is	a	cat"

do	--	Do	/	end	will	be	discussed	next

				--	Fish	is	in	a	local	chunk,	in	this	example

				--	that	means	local	to	the	do/end	block

				local	fish	=	"This	is	a	fish"

end

More	information	on	scope	as	it	refers	to	computer	science	can	be	found	online	at	http://lua-users.org/wiki/ScopeTuto
rial.

Lua	supports	a	few	different	types	of	chunk;	this	section	will	explore	the	do/end
chunk	properties	in	detail.

http://lua-users.org/wiki/ScopeTutorial

Scope	access
Chunks	are	all	about	scope!	You	can	access	any	variable	defined	outside	of	a
scope	from	within	the	scope.	Think	of	a	scope	like	a	one-way	window	in	a	room;
from	the	inside	you	can	see	out,	but	from	the	outside	you	can't	see	in:

foo	=	7	--	global	scope

do

				local	bar	=	8	--	local	scope

				print	("foo:	"	..	foo)

				print	("bar:	"	..	bar)

end

However,	you	can't	access	a	variable	local	to	a	scope	outside	of	that	scope:

foo	=	7	--	global

do

				local	bar	=	8	--	local

end

print	("foo:	"	..	foo)

print	("bar:	"	..	bar)	--	error!

--	bar	was	declared	local	to	the	do/end	chunk

--	it	is	trying	to	be	printed	at	the	file	or

--	global	chunk	level,	where	it	does	not	exist

The	same	access	pattern	is	also	true	for	multiple	nested	chunks:

foo	=	7	--	global

do

				local	bar	=	8	--	local

				do

						local	x	=	9	--	nested	local

						--	can	access	foo,	bar	and	x

				end

				--	can	access	foo	and	bar

end

--	can	only	access	foo

Global	scope
Notice	in	the	last	few	examples	the	use	of	the	local	keyword.	If	you	omit	the
local	keyword,	the	variable	is	considered	to	be	in	global	scope.	Without	the	local
keyword,	the	variable	is	global,	no	matter	what	chunk	it	is	in:

foo	=	7	--	global

do

				bar	=	8	--	global

end

print	("foo:	"	..	foo)

print	("bar:	"	..	bar)

The	global	scope	is	interesting.	It	is	not	tied	directly	to	a	Lua	file.	The	local
keyword	can	be	used	outside	any	do/end	chunks	to	make	a	variable	local	to	the
file	it	is	loaded	from:

foo	=	7	--	global,	can	be	accesssed	from	any	loaded	lua	file

local	x	=	9	--	local	to	the	.lua	file	being	executed

do

				local	bar	=	8	--	local	to	the	current	do/end	chunk

end

Shadowing
You	can	give	a	variable	local	to	a	chunk	the	same	name	as	a	global	variable.	If
you	were	to	do	this,	then	print	the	variable	inside	the	chunk,	what	would
happen?	The	value	of	the	variable	inside	the	chunk	would	print.

This	is	called	variable	shadowing.	If	the	same	variable	name	is	used	in	different
scopes,	the	variable	closest	to	the	scope	you	are	using	it	in	will	be	used.	The
following	code	example	demonstrates	this	concept:

message	=	"global-scope"

--	This	should	print:	global-scope

print	("message:	"	..	message)

do

				--	Shadow	the	message	variable

				local	message	=	"local-scope"

				--	This	print	uses	the	variable	declared	

				--	in	this	block	(shadowing).	Should	print:	local-scope

				print	("message:	"	..	message)

end

--	The	variable	that	was	declared	in	the	local	scope

--	of	the	above	block	is	gone.	message	now	holds

--	the	global	scope	again.	Should	print:	global-scope

print	("message:	"	..	message)

Functions
A	function	is	essentially	a	named	chunk	of	code.	Unlike	other	chunks,	the
contents	of	a	function	are	not	automatically	executed	when	the	file	is	loaded.
When	a	file	is	first	loaded,	functions	are	simply	defined.	Once	a	function	has
been	defined,	you	can	execute	the	function	by	calling	it.	Because	a	function	is	a
named	chunk,	you	can	call	a	function	as	many	times	as	you	want.	The	same
scope	rules	apply	to	functions	as	to	do/end	blocks.

Read	more	about	functions	online	at	https://www.lua.org/pil/5.html.

https://www.lua.org/pil/5.html

Defining	a	function
A	function	declaration	starts	with	the	function	keyword.	After	the	function
keyword,	you	provide	the	function	name.	The	name	of	the	function	follows	the
same	naming	rules	as	the	name	of	a	variable.		

After	the	name	of	your	function,	you	have	to	provide	a	list	of	parameters.
Parameters	are	variable	names	enclosed	in	parentheses	().	The	list	of	parameters
may	be	empty	if	a	function	needs	no	parameters,	in	which	case	only	opening	and
closing	parentheses	are	given—().

Once	you	have	declared	the	list	of	parameters,	you	may	write	the	body	of	the
function.	The	function	body	is	a	chunk	of	code,	so	like	other	chunks	you	need	to
close	the	body	with	the	end	keyword.	The	following	code	demonstrates	a	simple
function:

function	PrintSomething()

		text1	=	"hello"

		text2	=	"world"

		print	(text1	..	",	"	..	text2)

end

This	function	definition	can	be	broken	down	into	the	following	parts:

Calling	a	function
Once	a	function	is	declared,	it	can	be	executed	by	calling	it.	To	call	a	function,
simply	type	its	name,	followed	by	parentheses.	For	example,	to	read	input	from
the	console,	you	call	io.read().	The	following	snippet	demonstrates	how	to
declare	and	call	your	own	function:

print	('about	to	declare	the	PrintSomething	function');

function	PrintSomething()	--	declare	the	function

		print	('hello,	world')

end

print	('the	PrintSomething	function	is	declared');

print	('calling	the	PrintSomething	function');

PrintSomething();	--	call	the	function

print	('called	the	PrintSomething	function');

Function	arguments
Functions	can	take	arguments.	An	argument	is	some	data	that	will	be	passed	into
the	function.	You	have	passed	arguments	to	the	print	function	before;	it	takes	a
single	string	argument.	Calling	print	with	an	argument	looks	like	this:	print
('hello,	world').

When	you	declare	a	function,	you	can	place	one	or	more	variable	names	inside
the	parentheses	that	are	used	during	the	function	declaration.	These	variables	are
the	function	arguments;	they	have	a	scope	local	to	the	function.

The	following	function	takes	in	two	numbers	and	adds	them	together:

--	Declare	the	function,	takes	two	arguments

function	AddAndPrint(x,	y)

		local	result	=	x	+	y;

		print	(x	..	"+"	..	y	..	"="	..	result)

end

--	Call	the	function	a	few	times

AddAndPrint(2,	3)

AddAndPrint(4,	5)

AddAndPrint(6,	7)

Any	number	of	arguments
Unlike	other	programming	languages,	in	Lua	you	don't	have	to	provide	the	same
number	of	arguments	as	a	function's	declaration	has.	For	example,	adding	more
arguments	than	is	declared	will	simply	ignore	the	extra	arguments:

--	Declare	the	function,	takes	two	arguments

function	AddAndPrint(x,	y)

		local	result	=	x	+	y;

		print	(x	..	"+"	..	y	..	"="	..	result)

end

--	Call	the	function	a	few	times

AddAndPrint(2,	3,	7)	--	Will	print	2+3=5

AddAndPrint(4,	5,	8,	9,	10)	--	Will	print	4+5=9

AddAndPrint(6,	7,	11,	12,	14)	--	Will	print	6+7=13

On	the	other	hand,	if	you	add	less	arguments	than	the	declaration	has,	the
missing	variables	will	get	a	value	of	nil:

--	Declare	the	function,	takes	two	arguments

function	PrintValues(x,	y)

		print	("x:	"	..	tostring(x)	..	",	y:	"	..	tostring(y))

end

--	Call	the	function	a	few	times

PrintValues(3,	4)	--	will	print	x:	3,	y:	4

PrintValues(1)	--	will	print	x:	1,	y:	nil

PrintValues()	--	will	print	x:	nil,	y:	nil

In	this	code	listing,	x	and	y	are	passed	to	a	tostring	function	before	being
concatenated	to	the	string	that	will	print.	The	tostring	function	is	built	into	Lua;	it
needs	to	be	called	to	avoid	the	error	generated	when	attempting	to	concatenate
nil	to	a	string.

Returning	a	value
Functions	don't	just	take	input,	they	can	also	return	some	output	to	the	calling
code.	This	is	done	through	a	return	value.	When	a	function	returns	a	value,	it	can
be	called	as	part	of	an	expression	or	as	a	standalone	statement.

If	a	function	is	called	as	a	part	of	an	expression,	its	return	value	can	be	assigned
to	a	variable,	or	used	wherever	a	variable	could	be	used.	The	following	code
demonstrates	this	concept:

--	declare	the	function

function	AddTwo(x)

		result	=	x	+	2

		print	(x	..	"	+	2	=	"	..	result)

		return	result

end

AddTwo(3)	--	calls	as	statement

nine	=	7	+	AddTwo(5)	--	Call	as	expression

print	("adding	two	"	..	AddTwo(3))	--	Call	as	expression

When	a	function	hits	a	return	statement,	it	returns	whatever	data	follows	and
stops	executing.	If	you	have	code	after	your	return	statement,	that	code	will	not
execute,	for	example:

--	Declare	the	function

function	SquareIt(number)

		result	=	number	*	number

		print	("this	will	print")	--	WILL	PRINT!

		do

				return	result

		end

		print	("this	will	not	print")	--	WILL	NOT	PRINT

end

--	Call	the	function

four	=	SquareIt(2)	--	Will	print:	this	will	print

print(four)	--	Will	print:	4

Why	is	the	return	value	inside	of	a	do/end	block?	In	Lua,	the	return	keyword	is	only	valid	when	followed	by	the	end
keyword.	Without	the	do/end	block	around	the	return	statement,	this	code	would	not	compile,	because	following	a	return
with	a	print	statement	is	not	valid.

Returning	multiple	values
Lua	has	a	unique	feature	that	many	traditional	languages	don't,	multiple	return
values.	This	feature	allows	one	function	to	return	multiple	values.	To	return
multiple	values,	assign	the	result	of	the	function	to	a	list	of	variables	separated
by	commas.

For	example,	you	could	write	a	function	that	takes	a	number	for	an	argument	and
returns	both	the	squared	and	cubed	values	of	that	number:

--	Declare	the	function

function	SquareAndCube(x)

		squared	=	x	*	x

		cubed	=	x	*	x	*	x

		return	squared,	cubed

end

--	Call	the	function

s,	c	=	SquareAndCube(2)

print	("Squared:	"	..	s)	--	will	print:	Squared:	4

print	("Cubed:	"	..	c)	--	will	print:	Cubed:	8

Like	with	function	arguments,	the	number	of	values	a	function	returns	does	not
have	to	match	the	number	of	variables	it	is	assigned	to.	What	happens	if	you
return	two	values,	but	try	to	assign	them	to	three	variables?	The	extra	variables
will	have	a	default	value	of	nil:

s,	c,	q	=	SquareAndCube(2)	--	Call	the	same	function

print	("Squared:	"	..	s)	--	will	print:	Squared:	4

print	("Cubed:	"	..	c)	--	will	print:	Cubed:	8

print	("Quartic:	"	..	tostring(q))	--	will	print:	Quartic:	nil

Similarly,	you	can	return	two	values	and	try	to	assign	them	to	a	single	variable.
In	this	case,	the	first	value	is	assigned	and	the	rest	of	the	variables	are	discarded.
The	following	code	demonstrates	this:

square	=	SquareAndCube(2)	--	Call	the	same	function

--	rest	of	results	are	discarded

print	("Squared:	"	..	square)	--	will	print:	Squared:	4

Operators
Operators	such	as	addition	+,	string	concatenation	..,	and	even	the	assignment
operator	=	have	been	used	throughout	this	book.	Let's	take	some	time	to	cover	in
detail	what	operators	are	and	how	they	work.	Operators	fall	into	one	of	the
following	categories:

Arithmetic	operators	do	math.
Relational	operators	always	return	a	Boolean	value:	true	or	false.
Relational	operators	are	used	to	compare	the	relationship	between	two
things,	for	example,	by	checking	whether	one	number	is	smaller	than
another	number.
Logical	operators	express	complex	relations	such	as	and/or.	For	example,
logical	operations	can	be	used	to	check	whether	a	number	is	less	than	seven
AND	greater	than	two.
Misc	operators:	All	other	operators,	such	as	assignment,	fall	into	this
category.

Operators	can	be	unary	or	binary.	A	unary	operation	works	on	only	one
operand.	For	example,	the	minus	sign	(-)	is	the	unary	negation	operator.	It
returns	the	negative	value	of	a	number:

x	=	-7	--	negation	operator	applied	to	the	constant	7

y	=	-x	--	negation	operator	applied	to	the	x	variable

--	x:	-7,	y:	7

A	binary	operator	on	the	other	hand	operates	on	two	operands.	The	binary
subtraction	operator	also	uses	the	minus	sign	(-),	but	it	is	a	completely	different
operator	from	its	unary	counterpart.	An	example	of	the	binary	subtraction
operator	would	be:

x	=	7	-	3	--	Operand	1	is	the	constant	7,	Operand	2	is	the	constant	3

y	=	x	-	1	--	Operand	1	is	the	variable	x,	Operand	2	is	the	constant	1

z	=	x	-	y	--	Operand	1	is	the	variable	x,	Operand	2	is	the	variable	y

Most	operators	will	be	binary,	that	is,	they	will	work	on	two	operands.

Arithmetic	operators
Arithmetic	operators	do	math;	these	operators	work	on	numbers	to	perform
addition,	subtraction,	multiplication,	and	division.	Operators	to	find	the
remainder	of	a	division,	negate	a	number,	or	raise	a	number	to	a	power	are	also
available	in	Lua.	The	negation	operator	uses	a	minus	sign	and	is	a	unary
operator;	otherwise,	all	other	arithmetic	operators	are	binary	operators	(that	is,
they	work	on	two	operands).

The	addition	operator	(+)	adds	two	operands	together:

x	=	7	+	10

y	=	x	+	3

z	=	x	+	y

The	subtraction	operator	(-)	will	subtract	the	second	operand	from	the	first:

x	=	8	-	3

y	=	10	-	x

z	=	x	-	y

The	multiplication	operator	(*)	will	multiply	the	given	operands:

x	=	2	*	2

y	=	x	*	3

z	=	x	*	y

The	division	operator	(/)	will	divide	the	numerator	(first	operand)	by	the
denominator	(second	operand):

x	=	20	/	10

y	=	5	/	x

z	=	x	/	y

The	modulus	operator	(%)	returns	the	remainder	of	an	integer	division.	This
means	both	the	numerator	(first	operand)	and	denominator	(second	operand)	are
cast	to	be	integers,	divided,	and	the	result	is	returned.	Numbers	are	cast	to
integers,	not	rounded.	This	means	that	any	decimal	numbers	are	discarded,	so
5.1,	5.5,	and	5.9	would	all	simply	become	5.	Here	is	an	example:

x	=	5	%	2	--	result	is	1

y	=	5.7	%	2	--	5.7	is	treated	as	5,	result	is	1.

z	=	5.3	%	2.9	--	result	is	1

Why	is	the	result	of	5	%	2	simply	1?	Two	divides	into	five	evenly	twice,	with	a	remainder	of	1.	The	modulus	operator
returns	the	remainder	of	this	division.

The	negation	operator	(-)	negates	a	number.	This	is	the	only	unary	arithmetic
operator.	Here	is	an	example:

x	=	-5	--	x	=	-5

y	=	-x	--	y	=	5

y	=	-y	--	y	=	-5

The	exponent	operator	(^)	will	take	the	base	(first	operand)	and	raise	it	to	the
power	of	the	exponent	(second	operand):

x	=	10	^	2

y	=	x	^	2

z	=	3	^	3

Lua	only	offers	partial	support	for	the	exponent	operator.	An	explanation	of	why	this	decision	was	made	is	available
online	at	https://www.lua.org/pil/3.1.html.

https://www.lua.org/pil/3.1.html

Relational	operators
Relational	operators	compare	two	things	(usually	numbers)	and	always	evaluate
to	a	Boolean	result.	These	operators	are	used	to	answer	questions	such	as	is	10
less	than	20?	Relational	operators	test	for	equality,	inequality,	and	which	of	two
arguments	is	less	than	or	greater	than	the	other.

The	equality	operator	(==)	checks	whether	the	values	of	the	two	operands	are
equal	or	not.	If	they	are	equal,	the	operator	evaluates	to	true,	otherwise	it
evaluates	to	false.	Here	are	examples:

x	=	2	==	2	--	true

y	=	2	==	3	--	false

z	=	"nine"	==	9	--	false

The	inequality	operator	(~=)	checks	whether	the	values	of	the	two	operands	are
equal	or	not.	If	they	are	NOT	equal,	the	operator	evaluates	to	true,	otherwise	it
evaluates	to	false.	Here	is	an	example:

x	=	2	~=	2	--	false

y	=	2	~=	3	--	true

z	=	"nine"	~=	9	--	true

The	greater	than	operator	(>)	checks	whether	the	first	operand	is	greater	than	the
second	operand.	If	it	is,	the	operator	evaluates	to	true,	otherwise	to	false.	Here	is
an	example:

x	=	4	>	5	--	false

y	=	4	>	4	--	false

z	=	4	>	3	--	true

The	greater	than	or	equal	to	operator	(>=)	checks	whether	the	first	operand	is
greater	than	or	equal	to	the	second	operand.	If	it	is,	the	operator	evaluates	to	true,
otherwise	to	false.	Here	is	an	example:

x	=	4	>=	5	--	false

y	=	4	>=	4	--	true

z	=	4	>=	3	--	true

The	less	than	operator	(<)	checks	whether	the	first	operand	is	less	than	the
second	operand.	If	it	is,	the	operation	evaluates	to	true,	otherwise	to	false.	Here	is

an	example:

x	=	3	<	2	--	false

y	=	3	<	3	--	false

z	=	3	<	4	--	true

The	less	than	or	equal	to	operator	(<=)	checks	whether	the	first	operand	is	less
than	or	equal	to	the	second	operand.	If	it	is,	the	operation	evaluates	to	true,
otherwise	to	false.	Here	is	an	example:

x	=	3	<=	2	--	false

y	=	3	<=	3	--	true

z	=	3	<=	4	--	true

Logical	operators
Logical	operators	test	the	relationship	of	two	statements.	Logical	operators	work
a	little	differently	in	Lua	than	in	other	languages.	In	Lua,	anything	not	false	is
considered	to	be	true.	Only	two	values	represent	false	for	a	logical	operator,	the
constant	value	of	false	and	nil;	anything	else	is	true.

Logical	operators	in	Lua	do	not	evaluate	to	a	Boolean	result;	rather	they	evaluate	to	one	of	the	provided	operands.

The	and	operator	returns	its	first	operand	if	that	operand	is	false	and	the	second
operand	if	the	first	operand	was	true.	Here	is	an	example:

x	=	true	and	false	--	value	is	false

y	=	false	and	false	--	value	is	false

z	=	true	and	true	--	value	is	true

w	=	7	and	1	--	value	is	1

The	or	operator	(or)	returns	its	second	operand	if	it	is	not	false,	otherwise	it	will
return	the	first	operand.	Here	is	an	example:

x	=	true	or	false	--	value	is	true

y	=	false	or	false	--	value	is	false

z	=	true	or	true	--	value	is	true

w	=	7	or	1	--	value	is	7

The	and/or	operators	both	use	shortcut	evaluation.	This	means	that	the	second
operand	is	only	evaluated	if	needed.	This	is	important	when	the	operands	are
functions.	Here	is	an	example:

function	TrueFunction()

		print	("returning	true")

		return	true

end

function	FalseFunction()

		print	("returning	false")

		return	false

end

x	=	FalseFunction()	and	TrueFunction()

This	statement	only	evaluates	the	false	function.	Only	returning	false	is	printed.
But	if	we	changed	the	line	that	assigns	x	to	be	the	following:

x	=	TrueFunction()	and	FalseFunction()

x	=	TrueFunction()	and	FalseFunction()

After	changing	the	line,	both	functions	will	evaluate,	and	both	returning	true	and
returning	false	will	be	printed.	Shortcut	evaluation	can	make	bugs	difficult	to
spot;	for	this	reason,	try	to	avoid	functions	as	operands	when	using	logical
operators.

The	logical	not	operator	is	a	unary	operator.	It	reverses	the	logical	state	of	its
operand.	Provided	with	a	value	that	is	false,	this	operator	will	evaluate	to	true.
Provided	with	a	value	that	is	true,	the	operator	evaluates	to	false.	Here	is
an	example:

x	=	not	true	--	false

y	=	not	true	or	false	--	false

z	=	not	not	false	--	false

w	=	not	(7	+	1)	--	false

Misc	operators
The	miscellaneous	operators	presented	here	do	not	fit	into	any	of	the	previous
groups.	These	operators	are	Lua	constructs.

The	assignment	operator	(=)	changes	the	value	of	a	variable.	This	operator	has
been	used	many	times	up	until	this	point.	The	assignment	operator	allows	for
multiple	assignment.	All	of	the	following	are	valid:

x	=	2

y,	z	=	4,	"hello"

The	string	concatenation	operator	(..)	will	combine	two	strings	into	a	single
string.	This	operator	was	covered	in	the	String	types	section	of	this	chapter.	As	a
reminder,	the	syntax	is:

hello	=	"hello,"

world	=	"	world"

print	(hello	..	world)

Finally,	the	length	operator	(#)	is	a	unary	operator	that	will	return	the	length	of	a
string	or	a	table.	The	use	of	this	operator	for	strings	has	already	been	covered.
The	syntax	of	this	operator	is	as	follows:

print	("Enter	a	word:	")

word	=	io.read();

print	(word	..	"	has	"	..	#word	..	"	letters!")

Operator	precedence
Much	like	math,	Lua	has	the	concept	of	operator	precedence.	In	math,	5	+	2	*	10
equals	25	because	multiplication	happens	before	addition.	Lua	behaves	the	same
way;	it	even	uses	parentheses	to	prioritize	one	group	of	equations	before	another.
To	see	this	in	action,	try	running	the	following	code	snippet:

print	(5	+	2	*	10)	--	prints	25

print	((5	+	2)	*	10)	--	prints	70

Take	note	of	how	the	output	is	different;	this	is	because	Lua	follows
mathematical	precedence	for	arithmetic	operators.	Order	of	precedence	is	listed
in	this	table	from	higher	priority	(first	row)	to	lower	priority	(last	row):

^

not # -	(unary)

* / %

+ -

..

< > <= >= ~= ==

and

or

Control	structures
Control	structures	are	used	to	make	decisions	in	code;	they	control	the	path	of
code	based	on	a	Boolean	value.	Lua	provides	the	if	statement	for	this	purpose.
An	if	statement	is	followed	by	a	Boolean	condition,	which	in	turn	is	followed	by
a	then/end	chunk.	The	chunk	is	only	executed	when	the	Boolean	condition
evaluates	to	true.

The	most	basic	syntax	of	an	if	statement	is	as	follows:

if
A	logical	control	structure	always	starts	with	an	if	statement.	As	described
previously,	an	if	statement	consists	of	the	if	keyword,	a	Boolean	expression,	and
a	then/end	chunk.	The	then/end	chunk	is	only	executed	when	the	Boolean
condition	evaluates	to	true.	The	following	code	sample	demonstrates	the	basic
use	of	an	if	statement:

print	("Enter	your	name")

name	=	io.read()

if	#name	<=	3	then

				print	("that's	a	short	name,	"	..	name)

end

elseif
You	might	want	to	make	a	more	complicated	decision	than	a	simple	if	statement
allows.	For	example,	you	may	want	to	do	one	thing	if	the	length	of	a	string	is
less	than	three,	but	another	thing	if	the	length	of	a	string	is	greater	than	three
AND	less	than	six!	This	can	be	achieved	with	the	elseif	statement.

Unlike	other	languages,	there	is	no	space	between	else	and	if;	it's	one	keyword:	elseif.

An	elseif	must	always	follow	an	if.	Syntactically,	an	elseif	statement	is	followed
by	a	Boolean	condition	which	is	then	followed	by	a	then/end	block.	The	elseif
statement	follows	the	body	of	the	then	block	of	an	if	statement,	but	goes	before
the	end	statement.	The	following	code	demonstrates	the	syntax	of	an	elseif
statement:

print	("Enter	your	name")

name	=	io.read()

if	#name	<=	3	then

				print	("that's	a	short	name,	"	..	name)

elseif	#name	<=	6	then

				print	(name	..	"	is	an	average	length	name")

end

You	can	add	as	many	elseif	statements	to	one	if	statement	as	you	want.	The
following	code	example	demonstrates	this:

print	("Enter	a	number")

x	=	io.read()

if	x	==	"0"	then

				print	("input	is	0!")

elseif	x	==	"1"	then

				print	("input	is	1!")

elseif	x	==	"2"	then

				print	("input	is	2!")

elseif	x	==	"3"	then

				print	("input	is	3!")

end

else
What	happens	when	none	of	the	if	or	elseif	statements	evaluate	to	true?	No
chunk	of	code	is	executed.	But,	you	might	want	some	chunk	of	code	to	execute
when	none	of	the	if/elseif	arguments	are	true.	This	is	what	the	else	statement
does.	It	executes	a	chunk	of	code	when	none	of	the	statements	tested	by	the
preceding	if/elseif	tests	were	true.

Syntactically,	the	else	statement	is	just	an	else/end	chunk.	The	else	statement
always	comes	last,	as	demonstrated	by	the	following	code:

print	("Enter	your	name")

name	=	io.read()

if	#name	<=	3	then

				print	("that's	a	short	name,	"	..	name)

elseif	#name	<=	6	then

				print	(name	..	"	is	an	average	length	name")

else

				print	("that's	a	long	name,	"	..	name)

end

There	can	be	only	one	else	statement,	and	it	must	be	at	the	end	of	your	if/elseif
logic.	An	else	does	not	have	to	follow	an	elseif;	it	could	simply	follow	an	if:

print	("Enter	a	number")

x	=	io.read()

if	x	%	2	==	0	then

				print	(x	..	"	is	even")

else

				print	(x	..	"	is	odd")

end

Nesting	if	statements
if/elseif/else	statements	control	the	execution	of	chunks	of	code.	Like	chunks,	if
statements	can	be	nested.	The	same	rule	for	scope	applies	to	nested	if	statements
as	it	does	to	nested	chunks.	The	following	code	demonstrates	the	use	of	nested	if
statements:

print	("Enter	a	number")

x	=	io.read()

if	x	==	"6"	then

				print	("x	is	six!")

				print	("Enter	another	number")

				local	y	=	io.read()

				--	Nested	if	statement	begins	here

				if	y	==	"6"	then

								print	("y	is	also	six!")

				elseif	y	==	"5"	then

								print	("y	is	one	less	than	x")

				else

								print	("x	is	6,	but	y	is	not!")

				end

				--	Nested	if	statement	ends	here

else	

				print	("x	is	not	6!"	..	x)

end

Loops
A	chunk	of	code	can	be	repeated	multiple	times	by	using	a	loop.	Lua	provides
three	types	of	loop,	the	while,	repeat,	and	for	loops.	Each	loop	type	will	be	covered
in	depth,	but	the	rest	of	the	book	will	mainly	use	the	for	loop.

while	loops
Syntactically,	a	while	loop	starts	with	the	while	keyword,	followed	by	a	Boolean
condition	and	a	do/end	chunk.	The	loop	will	keep	executing	the	chunk	of	code	so
long	as	the	Boolean	condition	evaluates	to	true:

x	=	10	--	Initialize	a	"control"	variable

while	x	>	0	do	--	Boolean	condition:	x	>	0

				print	("hello,	world")

				x	=	x	-	1	--	Decrement	the	"control"	variable

end

Infinite	loops
One	of	the	dangers	of	loops	is	an	infinite	loop.	You	get	into	an	infinite	loop
when	the	condition	of	the	loop	never	evaluates	to	false.	Because	the	condition
keeps	being	true,	the	loop	goes	on	forever.	The	following	code	snippet
demonstrates	a	simple	infinite	loop:

while	true	do

				print	("forever")

end

A	more	real-life	example	of	an	infinite	loop	would	look	like	this:

x	=	10	--	Initialize	a	"control"	variable

while	x	>	0	do	--	Boolean	condition:	x	>	0

				print	("hello,	world")

				x	=	x	+	1	--	Decrement	the	"control"	variable

end

This	loop	will	run	forever,	since	the	value	of	x	keeps	increasing	and	will	never
reach	0.

If	you	encounter	an	infinite	loop,	force	stop	the	execution	of	the	program	in	any	terminal	with	the	keyboard	shortcut	Ctrl
+	C,	which	kills	the	current	process.

Breaking	a	loop
A	loop	might	need	to	exit	mid-execution,	before	the	loop	condition	could
evaluate	to	false.	Or,	perhaps	there	is	a	certain	branch	of	logic	that	should	exit	a
loop	in	case	of	an	error.	At	any	point	during	the	loop's	execution,	the	break
keyword	stops	the	execution	of	a	loop	immediately,	as	the	following	code
snippet	demonstrates:

x	=	0

while	x	<	10	do	--	Execute	10	times!

				print	("x	is	"	..	x)

				if	x	==	5	then

								--	This	stops	the	loop	execution	at	5

								break

				end

				x	=	x	+	1

end

This	code	should	loop	from	0	to	9	and	print	out	the	value	of	x	at	each	step.
However,	when	x	is	5,	the	loop	breaks.	Because	of	this	break,	this	code	only
outputs	0	through	5.

If	you	are	coming	to	Lua	from	another	language,	you	might	expect	to	see	a	continue	statement.	Lua	does	not	implement
continue.

The	return	statement	also	breaks	a	loop;	it	also	halts	execution	of	the	current
function.	The	break	statement	stops	the	loop	and	executes	what	comes	after	it.
The	return	statement	on	the	other	hand	stops	the	entire	function;	the	loop
executing	will	stop	and	nothing	in	the	rest	of	the	function	will	execute.	For
example,	see	the	following	code	sample:

function	Foo()	--	Declare	Foo

				local	x	=	0

				while	x	<	10	do

								if	x	==	5	then

												break	--	Stop	executing	the	while	loop

								end	--	end	if	x	==	5

								x	=	x	+	1

				end	--	end	while	x	<	10

				--	This	print	statement	will	execute

				print	("x	is	"	..	x)

				local	y	=	0

				while	y	<	10	do

				while	y	<	10	do

								if	y	==	5	then

												return	y	--	Stop	executing	the	function

								end	--	end	if	y	==	5

								y	=	y	+	1

				end	--	end	while	y	<	10

		--	This	print	statement	will	NOT	execute,	because	of	the	return	statement

				print	("y	is	"	..	y)

end	--	end	function	Foo

--	Call	the	function	Foo

Foo()

In	this	code,	x	is	printed	because	the	break	statement	stops	the	loop	execution,
but	lets	the	function	finish	executing.	However,	y	is	not	printed	because	the	return
statement	stops	the	function	from	executing.

Repeat	until	loop
A	repeat	until	loop	is	slightly	different	from	a	while	loop.	When	using	a	while
loop,	the	initial	expression	is	evaluated	first,	so	the	following	code	would	not
execute	the	chunk	of	code	belonging	to	the	loop:

while	false	do

		print	("Not	going	to	print")

end

This	happens	because	the	Boolean	condition	of	the	loop	is	evaluated	before	the
chunk	of	code	is	executed.	A	repeat	until	loop	works	the	opposite	way.	The
chunk	of	the	repeat	loop	is	executed	first,	then	the	condition	is	evaluated.	This
guarantees	that	a	repeat	until	loop	will	execute	its	chunk	at	least	once.

Syntactically,	the	repeat	until	loop	begins	with	the	repeat	keyword,	followed	by
the	chunk	of	code	to	loop.	The	chunk	ends	with	the	until	keyword,	which	is
followed	by	the	logical	expression	to	evaluate	which	determines	if	the	loop
should	execute	or	not.	The	following	piece	of	code	demonstrates	a	repeat	until
loop	that	executes	once	but	never	actually	loops:

x	=	10

repeat

		print	("Repeat	loop")

until	x	>	2

for	loop
Lua	has	two	flavors	of	the	for	loop,	the	numeric	for	and	a	generic	for.	The
generic	for	is	used	to	iterate	over	collections	and	will	be	covered	in	Chapter	3,
Tables	and	Objects.	For	now,	let's	focus	on	the	numeric	for	loop.

Syntactically,	a	numeric	for	loop	consists	of	the	for	keyword,	three	expressions,
and	a	do/end	chunk.	The	three	expressions	are	the	initial	expression,	final
expression,	and	step	expression.	Each	expression	is	separated	by	a	comma.	The
format	for	the	loop	looks	like	this:

for	variable	=	initial_exp,	final_exp,	step_exp	do

		--	Chunk

end

The	result	of	the	intial	expression	should	be	numeric;	it	will	be	assigned	to	a
variable	local	to	the	for	loop.	The	loop	will	increment	or	decrement	this	variable
so	long	as	it	is	not	equal	to	the	final	expression.	The	variable	is	incremented	or
decremented	by	the	value	of	the	step	expression.

For	example,	the	following	code	loops	from	0	to	10.	The	loop	increments	the
counter	by	one	on	each	iteration	and	prints	out	the	value	of	the	counter:

for	i	=	0,	10,	1	do

				print	(i)

end

You	don't	have	to	increment	the	loop	by	one	every	iteration.	The	step	expression
can	be	any	number	you	wish.	If	we	set	the	step	expression	to	two,	it	will
increment	by	2	on	each	iteration:

for	i	=	0,	10,	2	do

				print	(i)

end

A	numeric	for	loop	does	not	have	to	count	up;	it	can	count	down.	To	count
down,	set	the	initial	expression	to	be	greater	than	the	final	expression	and	the
step	expression	to	be	negative.	Like	counting	up,	the	step	expression	can	be	any
number:

for	i	=	10,	0,	-1	do

for	i	=	10,	0,	-1	do

				print	(i)

end

Counting	up	by	one	is	a	very	common	use	case	for	loops,	so	common	that	Lua
provides	a	nifty	shorthand	for	it	with	the	for	loop.	If	you	provide	only	an	initial
expression	and	final	expression,	Lua	will	assume	you	want	to	count	up	by	one
and	that	the	step	expression	is	one:

for	i	=	0,	10	do

				print	(i)

end

Nested	loops
Much	like	control	structures,	loops	operate	on	a	chunk	of	code.	Also,	similar	to
control	structures,	loops	can	be	nested.	You	can	nest	different	types	of	loops
within	each	other.	The	same	scope	rules	apply	to	nesting	loops	as	to	everything
else	so	far.

If	you	have	a	break	statement,	it	will	only	break	one	loop,	the	innermost	loop
closest	to	the	statement.	The	following	piece	of	code	demonstrates	breaking	out
of	nested	loops:

for	i	=	0,	10	do

				local	j	=	0

				while	j	<	10	do

								print	("j:	"	..	j)	--	Will	never	be	>	2

								if	j	==	2	then

												print	("j	is:	"	..	j	..	",	i	is:"	..	i)

												break

								end

								j	=	j	+	1

				end

end

Summary
This	chapter	covered	a	lot	of	topics,	such	as	variables,	data	types,	functions,
operators,	code	blocks,	scope,	and	code	flow.	All	of	these	concepts	are	the	basic
building	blocks	of	Lua.	These	concepts	are	very	important	to	programming,	so
you	may	need	to	come	back	to	this	chapter.

In	Chapter	3,	Tables	and	Objects,	we	will	cover	tables	and	objects.	An	alternate
syntax	of	the	for	loop	will	be	covered	that	can	be	used	to	easily	iterate	over
tables	or	arrays.

Tables	and	Objects
The	only	data	structure	provided	by	Lua	is	the	table.	As	discussed	in	Chapter	2,
Working	with	Lua,	the	table	is	one	of	the	built-in	data	types	Lua	provides.	Tables
are	powerful	enough	to	implement	other	data	structures,	such	as	lists,	queues,	or
stacks.

Lua	is	not	object-oriented;	the	language	does	not	have	support	for	objects.
However,	using	tables	and	meta-tables,	an	object	system	can	be	implemented
from	the	ground	up.	By	the	end	of	this	chapter,	you	will	have	implemented	an
object	system	in	Lua.

This	chapter	will	cover	the	following	topics:

Introduction	to	tables
Arrays
Iterating
Meta	tables
Objects
Inheritance

Technical	requirements
You	will	be	required	to	have	JavaScript	programming	language.	Finally,	to	use
the	Git	repository	of	this	book,	the	user	needs	to	install	Git.

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/Lua-Quick-Start-Guide/tree/master/Chapter03

Check	out	the	following	video	to	see	the	code	in	action:
http://bit.ly/2JUofdV

https://github.com/PacktPublishing/Lua-Quick-Start-Guide/tree/master/Chapter03
http://bit.ly/2JUofdV

Introduction	to	tables
Tables	are	the	only	data	structure	available	in	Lua.	The	table	data	structure	is
powerful	enough	to	implement	other	data	structures.	Tables	can	also	be	used	to
extend	the	Lua	language	with	a	class	system,	or	even	a	mixin	system,	which	is
an	alternative	to	class-based	composition.	So,	what	is	a	table?

Tables	are	basically	a	dictionary	or	array.	A	table	is	a	key-value	pair.	If	the	keys
to	the	table	are	numeric,	the	table	represents	an	array.	If	the	keys	are	non-
numeric	or	mixed,	the	table	is	a	dictionary.	Anything	can	be	used	as	a	key	in	a
table,	other	than	nil.	Anything,	including	nil,	can	be	a	value.

Creating	tables
A	table	in	Lua	is	created	with	the	curly	brace	{}	symbols.	After	a	table	is	created,
it	needs	to	be	assigned	to	a	variable.	If	you	don't	assign	the	table	to	a	variable,
you	won't	be	able	to	refer	to	it.	The	following	code	creates	a	new	table	and
assigns	it	to	the	tbl	variable.	The	code	then	prints	out	the	type	of	the	tbl	variable,
which	should	be	a	table:

tbl	=	{}	--	Creates	table,	assigns	it	to	tbl	variable

print("The	type	of	a	table	is:	"	..	type(tbl))

Storing	values
Tables	store	values;	a	table	is	a	relational	data	structure.	This	makes	the	table
similar	to	a	dictionary	in	other	languages.	To	store	a	variable	in	a	table,	use	the
following	syntax:

table[key]	=	value

The	following	example	demonstrates	how	to	make	a	table,	store	a	value	with	the
key	x,	and	how	to	retrieve	that	value:

tbl	=	{}

tbl["x"]	=	20

i	=	"x"

print	(tbl["x"])

print	(tbl[i])

The	key	of	a	table	can	be	any	type	(even	another	table!),	except	for	nil.	This
makes	the	following	code	valid—hard	to	read,	but	valid:

tbl	=	{}

tbl["x"]	=	10

tbl[10]	=	"x"

print	("x:	"	..	tbl["x"])

print	("10:	"	..	tbl[10])

If	you	use	a	string	key	for	a	table,	you	can	access	it	with	the	dot	syntax.	This
syntax	allows	you	to	access	the	same	data,	but	is	easier	to	type.	The	dot	syntax
feels	more	natural	than	braces.

The	following	code	declares	the	x	variable	using	a	string	key,	then	retrieves	the
value	of	x	using	a	string	literal,	a	string	stored	in	a	variable,	and	finally	the	dot
syntax.	Next,	the	sample	code	declares	the	y	variable	using	the	dot	syntax:

tbl	=	{}

tbl["x"]	=	20

i	=	"x"

print	(tbl["x"])

print	(tbl[i])

print	(tbl.x)

tbl.y	=	10

print	("x	+	y:	"	..	tbl.x	+	tbl.y)

print	(tbl["y"])

print	(tbl.y)

One	last	thing	to	note	about	storing	values	in	tables	is	the	default	value.	Just	like
global	variables,	if	you	don't	assign	a	value	to	a	key	in	a	table,	the	default	value
is	nil.	The	following	code	demonstrates	this:

tbl	=	{}

--	z	is	never	added	to	the	table!

print	(tostring(tbl["z"]))	--	nil

print	(tostring(tbl.z))	--	nil

Table	constructor
If	you	know	the	values	stored	in	a	table	at	the	time	of	creating	the	table,	you	can
use	the	table	constructor	to	assign	the	values.	Just	write	the	key/variable	pairs	as
assignment	statements	between	the	curly	braces	that	define	the	table.	By	not
including	strings,	the	keys	are	assumed	to	be	strings:

colors	=	{	

		red	=	"#ff0000",	

		green	=	"#00ff00",	

		blue	=	"#0000ff"

}

print	("red:	"	..	colors.red)

print	("green:	"	..	colors["green"])

print	("blue:	"	..	colors.blue)

Non-string	keys	can	be	used	if	the	bracket	notation	is	followed	within	the
constructor.	The	following	code	shows	valid	ways	to	declare	table	elements	in
the	table	constructor:

colors	=	{	r	=	"#ff0000",	["g"]	=	"#00ff00",	[3]	=	"#0000ff"}

print	("red:	"	..	colors.r)

print	("green:	"	..	colors.g)

print	("blue:	"	..	colors[3])

Tables	are	references
The	last	thing	to	know	about	tables	before	moving	on	to	the	next	section	is	that
they	are	stored	by	reference,	not	value!	This	is	very	important:	integers	and	other
primitive	types	are	assigned	by	value,	tables	are	assigned	by	reference.	What
does	this	mean?

If	you	assign	one	variable	to	another	variable	by	value,	each	variable	has	its	own
copy.	This	means	you	can	edit	both	variables	independently.	Here	is	an	example:

x	=	10	--	y	assigned	10	by	value

y	=	x	--	y	assigned	the	value	of	x	(10)	by	value

x	=	15	--	x	assigned	15	by	value

print	(x)	--	15

print	(y)	--	10

When	you	assigned	a	variable	by	reference,	however,	multiple	variables	might
hold	the	same	reference.	If	you	assign	the	same	reference	to	multiple	variables,
changing	one	variable	will	change	the	data	referenced	by	all	variables.	This	can
cause	subtle	bugs	to	appear	in	your	code.	The	following	code	demonstrates	this:

a	=	{}	--	a	is	assigned	a	table	reference

b	=	a	--	b	references	the	same	table	as	x

b.x	=	10	--	also	creates	a.x,	a	and	b	reference	the	same	table

a.y	=	20	--	also	creates	b.y,	a	and	b	reference	the	same	table

a.x	=	30	--	also	changes	b.x,	a	and	b	reference	the	same	table

--	Even	tough	we	assigned	different	variables	to	a.x	and	b.x

--	because	the	variables	reference	the	same	table,	they	should

--	both	have	the	same	value

print	("a.x:	"	..	a.x)	--	prints	a.x:	30

print	("b.x:	"	..	b.x)	--	print	b.x:	30

print	("a.y:	"	..	a.y)	--	printx	a.y:	20

print	("b.y:	"	..	b.y)	--	prints	b.y:	20

a	=	nil	--	a	no	longer	references	the	table

b	=	nil	--	nothing	references	the	table	after	this

Take	note	of	the	last	two	lines.	Both	variables	a	and	b	are	set	to	nil.	When	a	table
is	not	referenced	by	any	variable,	it	becomes	eligible	for	garbage	collection.
Garbage	collection	is	the	mechanism	in	Lua	by	which	memory	is	freed,	so	that	it
can	be	re-used	later.	Once	a	table	is	no	longer	needed,	all	references	to	that	table

should	be	made	nil.

Arrays
An	array	is	a	contiguous	chunk	of	memory;	some	programming	languages
guarantee	that	the	memory	will	be	contiguous.	In	Lua,	an	array	might	use	a
linear	chunk	of	memory	if	the	following	apply:

The	table	has	only	numeric	indices
The	numeric	indices	start	from	one
At	least	half	of	the	indices	are	not	nil

How	tables	are	implemented	is	dependent	on	the	internals	of	Lua.	This	is	not	something	you	usually	have	to	concern
yourself	with,	but	if	you	are	interested,	the	topic	is	described	in	detail	at	http://www.lua.org/doc/jucs05.pdf.

For	now,	assume	that	an	array	is	defined	as	a	table	that	is	indexed	only
numerically,	starting	with	index	1.	By	this	definition,	the	following	code
demonstrates	how	to	use	a	table	as	an	array:

arr	=	{}

arr[1]	=	"x"

arr[2]	=	"y"

arr[3]	=	"z"

for	i	=	1,3	do

				print(arr[i])

end

http://www.lua.org/doc/jucs05.pdf

Array	constructor
Tables	in	Lua	have	a	constructor,	which	will	index	the	table	as	an	array.	To	use
this	constructor,	you	need	to	enter	values	without	keys	in	the	curly	braces	that
create	the	table.	The	first	value	will	be	given	a	key	of	1,	and	each	subsequent
value	will	have	an	index	one	higher	than	the	last:

arr	=	{	"monday",	"tuesday",	"wednesday"	}

for	i=1,3	do

				print	(arr[i])

end

Arrays	are	one-based
Lua	has	one-based	arrays.	This	means	the	language	assumes	that	the	first
element	of	the	array	will	occupy	index	1.	This	is	in	contrast	to	languages	such	as
C	or	Java,	in	which	arrays	start	at	index	0.	The	default	array	constructor	places
the	first	element	of	the	array	in	index	1,	as	follows:

vector	=	{	"x",	"y",	"z"	}

print	(tostring(vector[0]))	--	nil,	the	array	starts	at	1

print	(vector[1])	--	first	element,	x

print	(vector[2])	--	second	element,	y

print	(vector[3])	--	third	element,	z

Lua	is	a	very	forgiving	language.	You	can	absolutely	assign	any	value	to	any
index.	This	means,	if	you	really	want	to,	you	can	explicitly	place	a	value	in
index	0	as	follows:

vector	=	{	[0]	=	"x",	"y",	"z",	"w"	}

print	(vector[0])	--	element	before	first,	x

print	(vector[1])	--	first	element,	y

print	(vector[2])	--	second	element,	z

print	(vector[3])	--	third	element,	w

Putting	elements	in	index	0,	while	possible,	goes	against	Lua	convention.	Doing
so	will	introduce	subtle,	hard-to-track	bugs.	An	example	of	one	of	these	bugs
will	be	presented	later	in	this	section	when	we	discuss	finding	the	size	of	an
array.	Avoid	using	index	0	and	stick	to	the	Lua	convention.

Sparse	arrays
Arrays	can	be	sparse,	meaning	an	array	can	have	a	hole	in	it.	Elements	can	be
assigned	to	index	1	and	2	of	an	array,	leaving	3	and	4	blank	and	then	assigning
elements	5	and	6.	Any	hole	in	the	array	will	have	a	default	value	of	nil,	as	the
following	code	segment	demonstrates:

arr	=	{	}

arr[1]	=	"x"

arr[2]	=	"y"

--	arr[3]	is	nil	by	default

--	arr[4]	is	nil	by	default

arr[5]	=	"z"

arr[6]	=	"w"

for	i=1,6	do

				print	(tostring(arr[i]))

end

This	implies	that	setting	the	value	of	an	existing	index	to	nil	will	introduce	a
hole	in	the	array.	These	holes	can	sometimes	cause	unexpected	issues.

The	size	of	an	array
Just	as	you	are	able	to	find	the	length	of	a	string	with	the	#	operator,	you	can	find
the	length	of	an	array	as	well.	This	is	because	the	#	operator	gives	back	the	size
of	a	table.	We	can	use	this	operator	to	loop	through	an	array	that	has	a	dynamic
size,	for	example,	such	as	the	following	code	snippet:

arr	=	{	"a",	"b",	"c",	"d",	"e",	"f",	"g"	}

length	=	#arr	

print	("array	length:	"	..	length)

for	i=1,#arr	do

		print	(arr[i])

end

The	length	operator	#	will	only	count	array	elements	starting	from	index	1.	This
means	if	you	use	index	0,	it	will	not	be	counted	towards	the	number	of	elements
in	the	array:

arr	=	{	}

arr[0]	=	"x"	--	not	counted	towards	length

arr[1]	=	"y"

arr[2]	=	"z"

length	=	#arr	--	length	=	2!

print	("array	length:	"	..	length)

Trying	to	find	the	length	of	a	sparse	array	is	tricky.	The	#	considers	an	array	over
if	it	finds	two	nil	values	one	after	the	other.	For	example,	in	this	code,	the	length
of	the	array	is	incorrectly	reported	as	2:

arr	=	{	}

arr[1]	=	"x"

arr[2]	=	"y"

--	Skipping	3	&	4,	at	least	2	nils	after	each	other	end	the	array

arr[5]	=	"z"	--	not	counted	towards	length

arr[6]	=	"w"	--	not	counted	towards	length

length	=	#arr	--	length	=	2,	which	is	WRONG!

print	("array	length:	"	..	length)

Because	of	this	unintuitive	behavior,	using	the	#	operator	to	find	the	length	of	an
array	is	considered	to	be	unreliable.	A	better	way	of	finding	the	length	of	an
array	will	be	covered	later	in	this	chapter,	in	the	Iterating	section.

The	behavior	of	the	length	operator	is	documented	in	the	Lua	5.2	manual	under	section	3.4.6	-	The	Length	Operator,
found	online	at	https://www.lua.org/manual/5.2/manual.html.

https://www.lua.org/manual/5.2/manual.html

Multidimensional	arrays
Some	languages	such	as	C#	have	native	support	for	multidimensional	arrays;
Lua	does	not.	You	can	create	a	multidimensional	array	in	Lua	by	creating	an
array	of	arrays	(really	a	table	of	tables).	Doing	so	means	you	have	to	declare
every	element	of	an	array	to	be	a	new	row	in	the	matrix	or	another	array.	You
can	achieve	this	as	follows:

num_rows	=	4

num_cols	=	4

matrix	=	{}	--	create	new	matrix

for	i=1,num_rows	do

		matrix[i]	=	{}	--	create	new	row

		for	j=1,num_cols	do

				matrix[i][j]	=	i	*	j	--	Assign	value	to	row	i,	column	j

		end

end

Once	you	have	a	matrix	with	several	rows	created,	you	can	use	double	brackets
to	access	elements	within	the	matrix.	The	following	piece	of	code	shows	this:

num_rows	=	4

num_cols	=	4

values	=	{	'A',	'B',	'C',	'D',

											'E',	'F',	'G',	'H',

											'I',	'J',	'K',	'L',

											'M',	'N',	'O',	'P'}

value	=	1

matrix	=	{}	--	create	new	matrix

for	i=1,num_rows	do

		matrix[i]	=	{}	--	create	new	row

		for	j=1,num_cols	do

				--	current	element:	row	i,	column	j

				--	assign	current	value	to	element

				matrix[i][j]	=	values[value]	--	assign	element	to	column

				value	=	value	+	1	--	move	to	next	letter

		end

end

--	print	some	elements

print	(matrix[1][1])

print	(matrix[2][4])

print	(matrix[3][4])

Iterating
In	Lua,	you	can	iterate	over	all	elements	of	a	table	or	an	array	using	the	generic
for	loop.	The	generic	for	is	similar	to	the	numeric	for	loop	discussed	in	the	last
chapter,	but	with	subtle	differences	in	syntax.

The	generic	for	loop	consists	of	the	for	keyword	followed	by	a	variable	list,
followed	by	the	in	keyword,	followed	by	an	expression	list,	and	finally	a	do-end
chunk.	The	code	looks	like	the	following:

The	first	variable	in	the	variable	list	is	the	control	variable.	On	each	iteration,	the
for	loop	evaluates	the	expressions	in	the	list	and	assigns	their	results	to	the
variable	list.	The	loop	keeps	executing	while	the	control	variable	is	not	nil.

The	expression	list	of	a	for	loop	usually	consists	of	a	single	iterator	function.
Lua	provides	several	built-in	iterators	for	different	tasks.	This	section	will
explore	how	the	pairs	iterator,	which	has	a	key	and	a	value,	is	used	to	iterate	a
table	and	how	the	ipairs	iterator,	which	has	an	index	and	a	value,	is	used	to
iterate	an	array.

Understanding	pairs
The	pairs	iterator	function	is	provided	by	Lua;	it	is	used	to	iterate	over	a	table.
The	pairs	function	returns	two	variables—let's	call	them	k	and	v.	The	k	variable
will	contain	the	key	being	iterated	over	and	the	v	variable	will	contain	the	value.
v	can	be	nil,	but	k	cannot.	The	following	code	demonstrates	using	pairs	to	iterate
over	a	simple	table:

vector	=	{	x	=	34,	y	=	22,	z	=	56	}

for	k,	v	in	pairs(vector)	do

		print	("key:	"	..	k	..	",	value:	"	..	v)

end

Understanding	ipairs
The	ipairs	iterator	is	used	to	iterate	over	arrays.	ipairs	returns	two	variables—let's
call	them	i	and	v.	The	i	variable	will	hold	the	index	of	the	element	being	iterated
over,	v	will	hold	the	value	of	the	element.	The	following	code	demonstrates
using	ipairs	to	iterate	over	an	array:

days	=	{	"monday",	"tuesday",	"wednesday",	"thursday",	"friday",	"saturday",	"sunday"	}

for	i,	v	in	ipairs(days)	do

		print	("index:	"	..	i	..	",	value:	"	..	v)

end

Closures
Closures	capture	the	enclosing	state	of	a	chunk.	A	great	example	of	this	is
having	a	function	that	returns	an	anonymous	function.	The	anonymous	function
can	see	the	local	variables	of	the	enclosing	function.	However,	because	the
anonymous	function	is	returned,	it	can	outlive	the	existing	function.

When	returning	an	anonymous	function,	it	creates	a	closure.	This	closure
captures	its	enclosing	state	(visible	chunks).	This	mechanism	lets	you	access	the
state	of	the	enclosing	function,	even	though	that	function	is	no	longer	executing.
This	description	may	sound	confusing,	but	the	code	for	it	is	pretty
straightforward:

function	NextNumber()

		--	local	to	the	NextNumber	function

		local	currentNumber	=	0

		return	function	()	--	anonymous	function

				--	Because	this	anonymous	function	is

				--	created	inside	the	NextNumber	function

				--	it	can	see	all	members	of	NextNumber

				--	this	function	will	remember	the	state

				--	of	NextNumber,	creating	a	closure!

				currentNumber	=	currentNumber	+	1

				return	currentNumber

		end

end

--	Assign	the	anonymous	function	to	the	variable	next

next	=	NextNumber()

--	At	this	point,	NextNumber	has	finished	executing.

print	(next())	--	call	anonymous	function	using	next

print	(next())	--	call	anonymous	function	using	next

print	(next())	--	call	anonymous	function	using	next

--	currentNumber	does	not	exist	in	a	global	context!

print	(currentNumber)	--	will	print	nil

The	NextNumber	function	in	this	example	is	often	called	a	factory.	The	function	is
called	a	factory	because	every	time	you	call	the	function,	it	produces	a	new
closure.	You	can	then	call	the	resulting	function.

Iterator	functions
Closures	can	be	used	to	create	a	custom	iterator.	In	this	section,	you	will	build	a
custom	iterator	that	will	walk	through	an	array,	returning	only	the	value	stored	in
each	index,	not	the	index	itself.	The	first	time	the	iterator	encounters	a	nil
variable,	it	will	terminate.	This	custom	iterator	will	work	with	the	generic	for
loop.	A	generic	for	loop	holds	on	to	three	variables:

The	iterator	function,	this	is	your	closure
An	invariant	state
A	control	variable,	the	first	variable	returned	by	the	iterator	function

When	a	generic	for	executes,	it	evaluates	the	expressions	after	the	in	keyword.
These	expressions	should	result	in	the	three	values	kept	by	the	for:	the	iterator
function,	the	invariant	state,	and	the	initial	value	for	the	control	variable.	If	only
one	item	is	returned	(in	this	case,	an	iterator	function),	the	other	two	variables
get	nil	values:

days	=	{	"monday",	"tuesday",	"wednesday",	"thursday"	}

function	walk(array)

		local	index	=	0

		return	function()

				index	=	index	+	1

				return	array[index]

		end

end

for	day	in	walk(days)	do

		print	(day)

end

The	walk	function	in	this	code	is	the	iterator	factory.	It	takes	an	array	and	returns
a	closure.	This	closure	returns	every	sequential	index	of	the	array	argument.
Once	a	nil	value	is	returned,	the	generic	for	loop	stops	executing.	The	array
argument	and	index	variable	in	this	code	are	both	local	to	the	walk	function.	This
means	once	you	execute	the	initial	walk	function,	the	local	variables	of	that
function	are	only	accessible	to	the	closure	created	by	the	function.

Meta	tables
In	Lua,	meta	tables	can	be	used	to	modify	the	behavior	of	tables.	Any	table	can
be	made	into	a	meta	table,	and	any	table	can	have	a	meta	table.	Even	meta	tables
can	have	their	own	meta	tables.	Meta	tables	change	the	behavior	of	tables	using
meta	methods.	These	meta	methods	are	functions	with	a	specific	name	that
affect	how	a	table	behaves.

First,	create	a	table	named	meta.	For	now,	this	is	a	normal	table.	This	table	will
have	a	function	named	__add.	__add	is	a	reserved	function	name.	The	__add	function
will	take	two	arguments.

The	left	argument	will	be	a	table	with	a	field	called	value,	the	right	argument	will
be	a	number:

meta	=	{	}	--	Creates	table

meta.__add	=	function(left,	right)	--	adds	meta	method

				return	left.value	+	right	--	left	is	assumed	to	be	a	table.

end

Next,	make	a	table	called	container.	The	container	table	will	have	a	variable
called	value,	with	a	value	of	5:

container	=	{

		value	=	5

}

Try	to	add	the	number	4	to	the	container	table;	Lua	will	throw	a	syntax	error.
This	is	because	you	can't	add	a	number	to	a	table.	The	code	that	causes	the	error
looks	like	the	following:

result	=	container	+	4	--	ERROR

print	("result:	"	..	result)

By	adding	a	meta	table	to	the	container	table,	which	has	an	__add	meta	method,
we	can	make	this	code	work.	The	setmetatable	function	is	used	to	assign	a	meta
table.	The	code	to	make	this	all	work	looks	like	this:

setmetatable(container,	meta)	--	Set	meta	table

result	=	container	+	4	--	Works!

print	("result:	"	..	result)

When	Lua	tries	to	add	anything	to	a	table,	it	checks	whether	the	table	has	a	meta
table.	If	the	table	does	have	a	meta	table,	and	that	meta	table	has	an	__add	meta
method,	it	is	executed	for	the	addition.	This	means	the	following	line	of	code:

result	=	container	+	4

Is	actually	executed	as:

result	=	meta.__add(container,	4)

Meta	tables	are	perhaps	the	most	powerful	feature	of	Lua;	however	,this	concept	can	quickly	become	confusing.	You	can
read	more	about	meta	tables	at	the	following	website:	http://lua-users.org/wiki/MetamethodsTutorial.

http://lua-users.org/wiki/MetamethodsTutorial

setmetatable
When	you	create	a	new	table,	Lua	does	not	give	it	a	meta	table.	That	is,	by
default	a	table	will	have	a	nil	value	for	its	meta	table.	You	can	assign	a	meta
table	to	a	table	using	the	setmetatable	method.	This	method	takes	two	arguments,
both	are	tables.	The	first	argument	is	the	target	table,	the	second	argument	is	the
new	meta	table.

You	can	of	course	set	any	table	to	be	a	meta	table	of	any	other	table.	You	can
even	self-assign	a	meta	table,	like	the	following:

container	=	{

		value	=	5,

		__add	=	function(l,	r)

				return	l.value	+	r.value

		end

}

setmetatable(container,	container)	

result	=	container	+	container

print	("result:	"	..	result)

In	this	example,	the	container	table	has	an	__add	method.	Setting	the	container
table	to	be	its	own	meta	table	makes	the	following	statement:

result	=	container	+	container

Execute	as	if	it	were	actually	written	like	this:

result	=	container.__add(container.value,	container.value)

getmetatable
Complementary	to	the	setmetatable	method,	you	can	retrieve	the	meta	table	of	a
table	using	the	getmetatable	method.	getmetatable	takes	only	one	argument,	a	table.
If	the	table	provided	has	a	meta	table,	the	meta	table	will	be	returned,	otherwise
getmetatable	will	return	nil:

x	=	{}

y	=	{}

z	=	{}

setmetatable(y,	z)

print	(getmetatable(x))

print	(getmetatable(y))

This	will	print	nil	for	x,	as	it	has	no	meta	table,	and	some	large,	random	number
for	y.	This	large,	random-looking	number	is	the	unique	ID	for	table	z.

__index
When	you	try	to	access	a	nonexistent	field	in	a	table,	the	result	is	nil.	However,
if	the	table	being	accessed	has	a	meta	table	and	that	meta	table	has	an	__index
meta	method,	the	meta	method	will	be	called.

There	are	two	tables,	x	and	y.	Neither	table	has	a	hello	key,	but	both	tables	try	to
print	this	key.	In	both	instances,	the	print	statement	will	result	in	nil:

x	=	{

		foo	=	"bar"

}

y	=	{	}

print	(x.foo)	--	bar

print	(x.hello)	--	nil

print	(y.foo)	--	nil

print	(y.hello)	--	nil

To	fix	this,	create	a	meta	table	with	an	__index	meta	method.	_index	takes	two
arguments.	The	first	argument	is	the	table	that	is	being	indexed,	the	second
argument	is	the	key.

The	following	code	creates	two	meta	tables,	z	and	w;	both	have	an	__index	meta
method.	Table	z	uses	this	meta	method	to	return	a	variable	found	in	itself,	while
w	manually	checks	the	key	and	returns	some	inline	string.	Table	x	is	assigned	the
z	meta	method,	table	y	is	assigned	the	w	meta	method:

x	=	{

		foo	=	"bar"

}

y	=	{	}

z	=	{

		hello	=	"world	z",

		__index	=	function(table,	key)	

				return	z[key]

		end

}

w	=	{

		__index	=	function(table,	key)	

				if	key	==	"hello"	then

						return	"inline	world"

				end

				return	nil

		end

		end

}

setmetatable(x,	z)

setmetatable(y,	w)

print	(x.foo)	--	bar

print	(x.hello)	--	world	z

print	(y.foo)	--	nil

print	(y.hello)	--	inline	world

In	this	code,	when	printing	x.foo,	the	foo	field	of	the	x	table	is	printed.	When
printing	x.hello,	Lua	sees	that	table	x	does	not	have	a	hello	field,	but	it	does	have
a	meta	table	and	that	meta	table	has	an	__index	function.	Lua	then	passes	table	x
and	hello	as	the	arguments	to	the	__index	function	of	the	meta	table,	which	returns
the	hello	field	of
table	z.

When	printing	y.foo,	Lua	sees	that	table	y	does	not	have	a	hello	field,	but	it	does
have	a	meta	table	with	an	__index	meta	method.	The	__index	meta	method	of	table
w	is	called,	with	table	y	and	foo	as	arguments.	This	meta	method	only	returns	a
value	if	the	key	provided	is	hello.	Since	the	key	provided	is	not	hello,	the	__index
meta	method	returns	nil.

__newindex
The	__newindex	meta	method	is	complementary	to	the	__index	meta	method.	Where
__index	is	used	to	retrieve	values	from	missing	keys	in	a	table,	__newindex	is	used	to
assign	values	to	missing	keys.	The	__newindex	method	takes	three	arguments:

The	table	that	is	being	operated	on
The	missing	key
The	value	being	assigned

Here	is	an	example	of	using	the	__newindex	meta	method:

x	=	{	}

y	=	{	}

z	=	{

		__index	=	function(table,	key)

				return	z[key]

		end,

		__newindex	=	function(table,	key,	value)	

				z[key]	=	value

		end

}

setmetatable(x,	z)

setmetatable(y,	z)

x.foo	=	"bar"

print	(x.foo)	

print	(y.foo)

print	(z.foo)

In	this	example,	both	tables	x	and	y	have	meta	table	z.	The	z	meta	table	has	an
__index	meta	method,	which	searches	for	a	key	within	z	whenever	a	nonexistent
key	is	accessed.	It	also	has	a	__newindex	meta	method,	which	sets	a	new	key	value
pair	in	the	z	meta	table	if	x	or	y	don't	have	the	key	present	already.

When	executing	the	line	x.foo	=	"bar",	Lua	sees	that	x	does	not	have	a	foo
member,	but	it	does	have	a	meta	table	with	the	__newindex	meta	method	present.
Lua	then	calls	the	__newindex	meta	method	of	the	meta	table	(z),	which	assigns	the
key	value	pair	to	table	z.

When	printing	the	foo	key	of	either	table	x	or	y,	the	__index	meta	method	of	their

meta	table,	z,	is	invoked,	returning	the	foo	value	stored	in	z.

rawget	and	rawset
Even	if	a	table	has	an	__index	or	__newindex	meta	method,	values	in	that	table	can
still	be	set	directly.	These	meta	methods	can	be	bypassed	with	the	rawset	and
rawget	functions,	which	set	and	get	the	values	of	a	table	directly.

rawget	takes	two	arguments,	the	table	being	accessed	and	the	key	being	retrieved.
It	has	the	following	signature:

rawget(table,	key)

rawset	takes	three	arguments,	the	table	being	accessed,	the	key	being	set,	and	the
value	being	set.	It	has	the	following	signature:

rawset(table,	key,	value)

To	demonstrate	how	this	works,	let's	use	the	previous	sample	code	to	set	the	foo
member	of	table	x	directly:

x	=	{	}

y	=	{	}

z	=	{

		__index	=	function(table,	key)

				return	z[key]

		end,

		__newindex	=	function(table,	key,	value)	

				z[key]	=	value

		end

}

setmetatable(x,	z)

setmetatable(y,	z)

x.foo	=	"bar"	--	Sets	"bar"	in	z

rawset(x,	"foo",	"raw")	--	Sets	"raw"	in	x	directly!

print	(x.foo)	--	raw,	lives	in	x

print	(y.foo)	--	bar,	lives	in	z

__call
The	__call	meta	method	lets	a	table	be	used	as	a	function.	In	some	languages,	this
construct	is	referred	to	as	a	functor;	in	Lua	it's	called	a	functable.

The	__call	meta	method	has	a	variable	number	of	arguments.	The	first	argument
is	the	table	being	treated	as	a	function;	this	is	followed	by	any	number	of
arguments	that	the	functable	actually	takes.	Let's	see	this	in	action:

tbl	=	{

		__call	=	function(table,	val1,	val2)

				return	"Hello,	from	functor:	"	..	(val1	+	val2)

		end

}

setmetatable(tbl,	tbl)

message	=	tbl(2,	3);	--	Calling	the	table	like	a	function!

print	("message:	"	..	message)

You	can	pass	less	arguments	to	the	functable;	any	arguments	not	present	will
simply	receive	a	nil	value.	You	can	also	pass	more	arguments	to	the	functable;
additional	arguments	are	simply	dropped.	Functables	are	an	easy	way	to	couple
state	with	a	function.

Operators
Lua	also	provides	meta	methods	for	a	number	of	operators,	such	as	addition	or
subtraction.	Often,	these	meta	methods	might	be	performed	on	two	separate
tables.	The	rules	for	which	tables	a	meta	method	is	executed	on	are	as	follows:

If	the	left-hand	side	of	the	expression	has	a	meta	method,	but	the	right-hand
side	doesn't,	the	meta	method	of	the	left-hand	side	is	used
If	the	right-hand	side	of	the	expression	has	a	meta	method,	but	the	left-hand
side	doesn't,	the	meta	method	of	the	right-hand	side	is	used
If	both	sides	of	the	expression	have	meta	methods,	the	meta	method	of	the
left-hand	side	is	used

Math	operators
All	of	the	following	are	binary	mathematical	operators.	The	meta	method	for
each	of	these	operators	takes	two	arguments,	the	left-	and	the	right-hand	side	of
the	equation.	Each	of	the	functions	takes	the	following	general	form:

meta	=	{

		__<method>	=	function(left,	right)

				--	Do	stuff

		end

}

Here	are	the	names	and	a	brief	description	of	each	binary	mathematical	meta
method:

__add:	Addition,	when	writing	"table	+	object"	or	"object	+	table"
__sub:	Subtraction,	when	writing	"table	-	object"	or	"object	-	table"
__mul:	Multiplication,	when	writing	"table	*	object"	or	"object	*	table"
__div:	Division,	when	writing	"table	/	object"	or	"object	/	table"
__mod:	Modulo,	when	writing	"table	%	object"	or	"object	%	table"
__pow:	Involution,	when	writing	"table	^	object"	or	"object	^	table"

Equivalence	operators
There	are	three	meta	methods	used	to	compare	objects	for	equality.	For	these
meta	methods	to	work,	both	tables	must	have	the	same	comparison	meta
method!	Each	of	these	meta	methods	takes	two	arguments,	the	tables	being
compared:

__eq:	Check	for	equality,	when	table1	==	table2	is	evaluated
_lt:	Check	for	less	than,	when	table1	<	table2	is	evaluated
__le:	Check	for	less	than	or	equal	to,	when	table1	<=	table2	is	evaluated

The	__eq	meta	method	checks	equality;	for	example,	the	expression	table1	==
table2	is	actually	evaluated	as	getmetatable(table1).__eq(table1,	table2).	But,	this	_eq
meta	method	is	also	used	to	check	for	inequality.	The	expression	table1	~=	table2
is	evaluated	as	not	(a	==	b),	which	can	be	expanded	into	not
getmetatable(table1).__eq(table1,	table2).

The	__lt	operator	checks	whether	one	argument	is	less	than	the	other	one.	The
__lt	meta	method	is	also	used	to	check	for	greater	than	by	simply	swapping	the
arguments	when	the	expression	is	evaluated.	The	less	than	or	equal	to	operator
also	uses	the	same	logic	to	check	for	greater	than	or	equal	to	tests.

Other	operators
There	are	a	few	miscellaneous	meta	methods	that	might	be	useful.	These	misc
meta	methods	are	mainly	focused	around	string-like	operations:

__tostring:	Expected	to	return	a	string	representation	of	a	table.	Takes	a
single	argument,	the	table	being	converted	to	a	string.
__len:	Expected	to	return	the	length	of	the	table	when	writing	#table.	Takes	a
single	argument,	the	table	whose	length	we	are	trying	to	find.
__concat:	Expected	to	concatenate	two	tables	when	writing	table1	..	table2.
This	function	does	not	have	to	return	a	string,	but	for	the	sake	of
consistency	it	probably	should.	This	function	takes	two	arguments,	the
tables	being	concatenated.

Objects
Many	programming	languages	support	the	concept	of	Object-Oriented
Programming	(OOP).	OOP	is	a	methodology	that	couples	data	(variables)	and
logic	(functions)	into	one	cohesive	unit	(object).	While	Lua	is	not	an	object-
oriented	language,	it	does	provide	all	the	facilities	to	allow	us	to	implement	an
object	system.

The	class	is	a	core	construct	in	OOP.	The	class	is	a	single	template	from	which
multiple	objects	can	be	built.	A	common	analogy	is	to	compare	a	class	to	the
blueprint	of	a	house.	The	blueprint	defines	the	dimensions	and	layout	of	a	house,
and	many	houses	can	be	produced	from	a	single	blueprint.

Even	though	many	houses	can	be	made	from	the	same	blueprint,	they	are
independent	of	each	other.	If	one	home	owner	adds	a	room	to	a	house,	it	will	not
affect	any	other	houses.	But,	if	a	room	is	added	to	the	blueprint	of	that	house,	all
future	houses	will	have	that	room.

Some	languages,	such	as	C++	and	Java,	provide	native	support	for	classes,	but
Lua	does	not.	Instead,	in	Lua	a	clever	use	of	meta	tables	can	create	a	class
system.	Meta	tables	can	create	a	prototype-based	object	system	similar	to	what	is
found	in	JavaScript	or	Action	Script.

Classes
A	class	is	the	template	or	blueprint	that	object	instances	are	built	from.	A	class
defines	variables	and	functions	that	every	object	made	from	that	class	is
guaranteed	to	have.	Each	object,	however,	has	its	own	copy	of	these	variables,
independent	of	each	other.

For	example,	if	we	have	a	class	to	represent	the	enemies	in	a	game,	we	can
assume	that	each	enemy	has	some	health,	an	attack	value,	and	some	defense
value.	This	is	pretty	easy	to	code	up:

Enemy	=	{	}

Enemy.health	=	200

Enemy.attack	=	4

Enemy.defense	=	20

This	Enemy	table	will	serve	as	the	blueprint	for	all	enemy	objects.	So,	how	can	you
create	new	objects	from	this	blueprint?	In	OOP	terms,	a	constructor	is	needed.	A
constructor	is	a	function	that	instantiates	a	new	object	from	a	class.	In	Lua,	this
constructor	is	just	a	function	that	does	some	special	things;	by	convention,	this
function	is	usually	called	new.	For	the	enemy	class,	it's	going	to	be	Enemy.new.

The	constructor	for	the	enemy	object	will	need	to	take	two	arguments.	The	first
argument	is	the	actual	Enemy	table;	the	constructor	needs	to	know	that	this	is	the
class	being	used	to	instantiate	the	new	object.	The	second	argument	is	an
optional	table,	which	represents	the	object	to	create.	If	no	table	is	provided,	a
new	table	(object)	will	be	created.

The	constructor	needs	to	assign	the	object	instance's	meta	table	to	be	the	Enemy
table.	Once	the	meta	table	is	set,	assign	the	__index	meta	method	to	be	the	same	as
the	__index	meta	method	of	the	Enemy	table:

--	By	convention,	the	first	argument	should	be	names	self.

--	The	reason	for	this	will	be	explained	later	in	this	section

Enemy.new	=	function	(self,	object)	

				object	=	object	or	{}	--	Use	provided	table,	or	create	new	one

				setmetatable(object,	self)	--	Assign	meta	table

				self.__index	=	self

				return	object

end

This	code	sets	the	new	object's	meta	table	to	be	the	Enemy	table.	After	the	meta
table	is	set,	the	__index	meta	method	of	the	object	to	be	the	Enemy	table	as	well.
Whenever	a	field	is	accessed	on	the	new	object,	if	that	field	does	not	exist,	it	will
return	the	Enemy	table's	copy	of	that	field.

The	constructor,	Enemy.new,	can	be	called	like	any	other	function.	The	first
argument	is	mandatory,	but	the	second	argument	is	optional.	The	following	code
creates	three	objects	from	the	Enemy	class.	Two	of	the	three	objects	have	unique
health	values:

grunt	=	Enemy.new(Enemy)	--	Health	is	stored	in	"Enemy"

miniBoss	=	Enemy.new(Enemy)	--	Health	is	stored	in	"Enemy"

boss	=	Enemy.new(Enemy,	{	health	=	500,	defense	=	100	})	--	Health	is	stored	in	"boss"

miniBoss.health	=	250	--	Health	is	now	stored	in	"miniBoss"

--	grunt	does	not	have	a	health	variable,	so	the	enemy	table	health	is	returned	

print	("grunt	health:	"	..	grunt.health)	

--	miniBoss	has	a	health	variable,	it	was	created	in	the	above	assignment

print	("mini	boss	health:	"	..	miniBoss.health)

--	boss	also	has	a	health	variable,	so	the	boss	table	health	is	returned

print	("boss	health:	"	..	boss.health)

Objects,	by	definition,	combine	state	and	logic.	So	far,	the	Enemy	class	only
contains	state.	The	following	code	adds	a	hit	function	to	the	Enemy	class.	This
function	would	be	called	whenever	the	player	hits	an	enemy,	causing	damage.
As	such,	the	function	will	take	two	arguments.	The	first	argument	is	the	table
that	represents	the	enemy	being	attacked	(in	this	case,	grunt	or	boss)	and	the
second	argument	is	how	much	damage	is	being	done:

--	By	convention,	the	first	argument	should	be	names	self

--	The	reason	for	this	will	be	explained	later	in	this	section

Enemy.hit	=	function(self,	damage)

				damage	=	damage	-	self.defense

				if	damage	<	0	then

								damage	=	0

				end

				self.health	=	self.health	-	damage

end

Even	though	the	hit	function	is	a	field	inside	the	Enemy	table,	we	never	reference
Enemy.health	directly.	Instead,	we	use	the	first	argument	of	the	function,	self,	to
determine	which	enemy	to	attack.	This	is	because	the	Enemy	table	is	a	class	not	an
instance.	The	Enemy	instances	are	grunt	or	boss.	The	first	argument	to	this
function	is	expected	to	be	an	enemy	instance.

The	following	code	snippet	shows	how	we	can	use	the	new	hit	function.	Because

the	function	belongs	to	the	Enemy	table,	we	call	Enemy.hit.	Unlike	the	constructor,
the	first	argument	to	the	function	is	an	instance	of	the	Enemy	table	not	the	table
itself:

print	("Hero	attacks	both	boss	and	grunt")

Enemy.hit(boss,	50)

Enemy.hit(grunt,	55)

print	("grunt	health:	"	..	grunt.health)

print	("boss	health:	"	..	boss.health)

The	enemy	table	only	set	its	__index	meta	method	not	the	__newindex	meta	method.
This	means	before	the	hit	function	executes,	grunt.health	actually	returns	the
health	field	stored	in	the	Enemy	table.	But	the	hit	function	contains	the	following
piece	of	code:

self.health	=	self.health	-	damage

When	the	function	is	called	self	is	a	reference	to	grunt,	a	new	field	named	health
is	added	to	grunt.	After	that	line	of	code	executes,	grunt	will	have	its	own	health
field	and	no	longer	return	Enemy.health.	This	all	works	because	the	__index	meta
method	is	set,	but	the	__newindex	meta	method	is	not.

While	the	code	presented	in	this	section	has	been	object-oriented,	the	syntax	has
not.	Lua	actually	provides	some	syntax	sugar	for	working	with	objects.	The	next
section	talks	about	Lua's	syntactic	sugar	for	OOP	programming	and	the	self
argument.

The	:	operator
In	the	previous	section,	you	implemented	some	object-oriented	principles	by
building	an	enemy	class,	instantiating	several	enemies	and	calling	some	methods
on	the	enemy	instances.	While	all	of	the	code	was	technically	correct,	each
enemy	instance	had	to	be	passed	to	the	function	stored	in	the	enemy	class.

Lua	provides	some	syntactic	sugar	for	calling	functions	on	objects,	the	colon	(:)
operator.

This	operator	automatically	provides	the	first	argument	to	a	function.	This	first
argument,	by	convention,	is	called	self.	You	can	call	this	first	argument	whatever
you	want,	but	following	convention	will	make	your	code	easy	to	read	and
maintain.

The	following	bit	of	code	demonstrates	how	the	colon	operator	is	used	in
comparison	to	the	dot	operator:

Vector	=	{	

		x	=	0,	

		y	=	1,	

		z	=	0

}

Vector.new	=	function	(self,	object)	

				object	=	object	or	{}	--	Use	provided	table,	or	create	new	one

				setmetatable(object,	self)	--	Assign	meta	table

				self.__index	=	self

				return	object

end

Vector.print	=	function(self)

				print("x:"	..	self.x	..	",	y:	"	..	self.y	..	",	z:	"	..	self.z)

end	

--	same	as	Vector.new(Vector,	nil)

velocity	=	Vector:new()	

--	Same	as	Vector.new(Vector,	{x=20,z=10})

momentum	=	Vector:new({x	=	20,	z	=	10})

--	Using	the	dot	syntax,	the	print	method	of	the

--	Vector	class	is	called,	and	the	object	instance

--	is	passed	as	it's	first	variable	(self)

Vector.print(velocity)

Vector.print(momentum)

--	Using	the	colon	syntax,	the	print	method	can	be

--	called	on	instances	of	the	Vector	class.	The	colon

--	called	on	instances	of	the	Vector	class.	The	colon

--	operator	will	fill	in	the	first	variable	(self),	with

--	the	object	instance	it	is	being	called	on

velocity:print()

momentum:print()

The	colon	syntax	makes	calling	the	function	more	convenient.	Remember,
before	this	operator,	each	function	had	to	be	called	on	the	Enemy	table	with	the
first	argument	being	the	Enemy	table,	like	the	following:

grunt	=	Enemy.new(Enemy)

boss	=	Enemy.new(Enemy,	{	health	=	500,	defense	=	100	})

Using	the	colon	syntax,	that	is	no	longer	needed.	Because	the	Enemy	table	is	on
the	left-hand	side	of	the	colon,	it	will	automatically	be	provided	as	the	first
variable,	in	this	case	named	self.	The	previous	code	could	be	rewritten	as
follows:

grunt	=	Enemy:new()	--	self	=	Enemy

boss	=	Enemy:new({	health	=	500,	defense	=	100	})	--	self	=	Enemy

Using	the	colon	operator	makes	calling	member	functions	simpler	as	well.
Before	using	the	colon	operator,	the	hit	function	had	to	be	called	on	the	Enemy
class,	with	the	first	argument	being	the	instance	of	the	class	to	affect:

Enemy.hit(boss,	50)

Enemy.hit(grunt,	55)

The	colon	operator	provides	whatever	is	on	its	left	side	as	the	first	argument	to
the	function	being	called.	This	makes	it	possible	to	call	methods	on	objects
instead	of	the	class:

boss:hit(50)

grunt:hit(55)

This	code	works	because	boss:hit(50)	is	just	syntactic	sugar	for	Enemy.hit(boss,	50).
How	does	Lua	know	that	the	Enemy	table	has	a	hit	function,	not	the	boss	table?
Because	the	boss	table's	__index	meta	method	points	at	Enemy.	When	Lua	sees	that
boss.hit(boss,	50)	is	invalid	but	boss	has	an	__index	meta	method,	it	tries	to	call	the
function	using	the	meta	method.

Tables	inside	of	objects
The	object	system	described	only	works	if	a	class	contains	values;	it	falls	apart
when	the	class	contains	a	reference	(like	a	table).	This	happens	because	tables
are	passed	by	reference	not	value.	When	the	__index	meta	function	returns	a	table
contained	in	a	class,	there	is	no	new	copy	of	that	table,	just	a	reference	that	is
shared	among	every	instance	of	the	class.	The	following	code	demonstrates	this:

Character	=	{

				alive	=	true

}

Character.position	=	{

		x	=	10,	y	=	20,	z	=	30

}

Character.new	=	function(self,	object)

		object	=	object	or	{}

		setmetatable(object,	self)

		self.__index	=	self

		return	object

end

player1	=	Character:new()

player2	=	Character:new()

player1.position.x	=	0

player2.position.y	=	10

print	("Player	1,	position:	("	

..	player1.position.x	..	",	"	..	player1.position.y	

..	",	"	..	player1.position.z	..	")")

print	("Player	2,	position:	("	

..	player2.position.x	..	",	"	..	player2.position.y	

..	",	"	..	player2.position.z	..	")")

if	player1.position	==	player2.positon	then

		print	("Player	1	and	2	have	the	same	position	reference");

else

		print	("Player	1	and	2	have	unique	positon	tables");

end

print	("Table	id:")

print	("Player	1:	"	..	tostring(player1.position))

print	("Player	2	:"	..	tostring(player2.position))

This	can	be	fixed	by	making	sure	that	each	instance	of	the	Character	class	has	a
unique	copy	of	the	position	table.	The	best	place	to	add	this	table	is	in	the
constructor,	before	the	__index	meta	method	is	assigned.	That	is,	the	new	function
must	assign	per	instance	member	tables	before	setting	the	meta	table	of	an

object.	This	code	fixes	the	problem	with	the	previous	code	sample:

Character.new	=	function(self,	object)

		object	=	object	or	{}

		--	Assign	per	instance	variables	after	the	object	is	valid

		--	but	before	setting	the	meta	table!	Copy	all	members	of

		--	the	new	table	by	value!

		object.position	=	{}

		object.position.x	=	Character.position.x

		object.position.y	=	Character.position.y

		object.position.z	=	Character.position.z

		setmetatable(object,	self)

		self.__index	=	self

		return	object

end

Inheritance
A	key	concept	in	OOP	is	inheritance.	Inheritance	allows	one	class	to	inherit
functionality	from	another	class.	The	class	being	inherited	from	is	the	parent
class,	the	class	that	inherits	is	the	child	class.	Another	way	to	say	this	is	that	the
child	class	derives	from	the	parent	class.

The	child	class	can	access	all	the	variables	and	functions	of	its	parent	class.	In
addition	to	access,	the	child	class	can	provide	its	own	implementation	for	any
function	inherited	from	the	parent	class.	The	child	class	re-implementing	a
function	of	a	parent	class	is	known	as	function	overriding.

Inheritance	does	not	have	to	be	linear.	Single	inheritance	allows	one	object	to
inherit	functionality	from	only	one	direct	ancestor.	Multiple	inheritance	allows
one	child	class	to	have	multiple	parent	classes.

Multiple	inheritance	has	some	inherent	problems.	One	of	the	biggest	problems	of
multiple	inheritance	is	the	diamond	problem.	The	diamond	problem	involves
having	two	base	classes,	let's	say	class	A	and	class	B.	Both	classes	implement	a
function	named	foo.	When	the	child	class	tries	to	access	foo,	should	it	access	the
inherited	function	from	class	A	or	from	class	B?

Single	inheritance
When	using	single	inheritance,	any	class	can	inherit	functionality	from	only	one
super	class.	To	implement	single	inheritance,	create	a	new	class	through	an
existing	constructor.	This	can	be	a	bit	confusing,	so	let's	see	an	example.

Start	by	creating	an	Animal	class;	this	will	be	the	base	class:

Animal	=	{

		sound	=	""

}

Animal.new	=	function(self,	object)

				object	=	object	or	{}

				setmetatable(object,	self)

				self.__index	=	self

				return	object

end

Animal.MakeSound	=	function(self)

				print(self.sound)

end

Not	every	animal	is	going	to	make	the	same	sound.	Create	two	new	classes,	dog
and	cat,	that	extend	Animal:

--	Dog	is	a	class,	not	an	object	(instance)

Dog	=	Animal:new()

Dog.sound	=	"woof"

--	Cat	is	a	class,	not	an	Object	(instance)

Cat	=	Animal:new()

Cat.sound	=	"meow"

Cat.angry	=	false

Cat.MakeSound	=	function(self)

				if	self.angry	then

								print("hissss)

				else

								print(self.sound)

				end

end

In	this	code,	Dog	is	a	new	class,	not	an	instance	of	the	Animal	class.	This	can	be	a
bit	tricky	at	first,	as	the	syntax	is	similar.	Dog	simply	overrides	the	sound	variable.
Cat	also	extends	Animal.	But	Cat	provides	its	own	implementation	of	MakeSound,
which	lets	the	cat	make	different	sounds.

Regardless	of	whether	an	animal	is	a	Cat	or	a	Dog,	we	can	treat	them	both	as

an	Animal.	We	know	that	every	object	that	is	a	Cat	or	a	Dog	is	also	an	Animal.	And	we
know	that	every	Animal	has	a	MakeSound	function.	The	following	code	generates
some	animals	and	has	them	all	make	sounds:

animals	=	{	Cat:new(),	Dog:new(),	Cat:new()	}

animals[1].angry	=	true

for	i,v	in	ipairs(animals)	do

				--	The	current	animal	is	stored	in	the	v	variable.

				--	It	doesn't	matter	if	the	animal	is	a	Dog	or	a	Cat

				--	Both	Dog	and	Cat	extend	Animal,	which	is	guaranteed	to	contain	a	MakeSound

function.

				v:MakeSound()

end

Multiple	inheritance
Multiple	inheritance	gets	messy;	languages	such	as	Java	and	C#	don't	actually
support	it.	Multiple	inheritance	also	tends	to	lead	to	deep,	complicated	class
hierarchies.	These	complex	hierarchies	make	multiple	inheritance	hard	to	debug.
The	rest	of	this	book	will	use	single	inheritance,	avoiding	the	intricacies	of
multiple	inheritance.

Interested	in	implementing	multiple	inheritance?	An	implementation	guide	can	be	found	online	at	https://www.lua.org/p
il/16.3.html.

https://www.lua.org/pil/16.3.html

Summary
In	this	chapter,	you	learned	how	to	use	tables.	Tables	are	the	only	data	structure
available	in	Lua;	they	are	Lua's	most	powerful	feature.	We	looked	at	how	to
implement	a	fully	working	object	system	using	tables.	This	kind	of	extension	to
the	language	itself	is	what	makes	Lua	so	powerful.

Lua	Libraries
In	Chapter	3,	Tables	and	Objects,	you	learned	how	to	use	one	of	Lua's	most
powerful	features:	tables.	This	chapter	will	build	on	that	knowledge	by
introducing	the	global	table,	some	of	Lua's	built-in	modules,	and	how	to	create
custom	modules.	By	the	end	of	this	chapter,	you	should	be	able	to	put	classes
into	modules	to	make	them	as	reusable	as	possible.	

In	this	chapter,	we	will	cover	the	following	topics:

The	global	table	
The	Lua	math	library
The	Lua	file	IO	library	
Interfacing	with	the	operating	system
More	strings
Creating	and	loading	modules

Technical	requirements
You	will	be	required	to	have	JavaScript	programming	language.	Finally,	to	use
the	Git	repository	of	this	book,	the	user	needs	to	install	Git.

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/Lua-Quick-Start-Guide/tree/master/Chapter04

Check	out	the	following	video	to	see	the	code	in	action:
http://bit.ly/2v5rObE

https://github.com/PacktPublishing/Lua-Quick-Start-Guide/tree/master/Chapter04
http://bit.ly/2v5rObE

The	global	table
The	one	thing	you	really	need	to	understand	about	Lua	is	that	just	about
everything	in	it	is	a	table.	Global	variables	in	Lua	(variables	not	declared	local)
live	in	an	invisible,	global	table.	This	table	is	exposed	as	_G.	This	global	table	is
just	like	any	other	table	in	Lua;	you	can	perform	the	exact	same	operations	on	it.
This	section	will	explore	two	methods	of	working	with	the	functionality	of	the
global	table.

Explicit	variables
The	loose,	typed	nature	of	variables	in	Lua	can	be	great	for	prototyping	games
quickly,	but	it	can	also	lead	to	a	lot	of	bugs!	For	example,	consider	the	following
code:

five21	=	521	--	Variable	name	ends	with	a	1

for	i=1,1000	do

		if	i	==	five21	then

				five2l	=	"Five	Twenty	One"	--	ERROR!	Variable	name	ends	with	an	l

				break

		end

end

print("value:	"	..	five21)

Can	you	spot	the	problem?	During	the	first	assignment,	the	five21	variable	ends
with	a	1,	but	in	the	second	assignment	it	ends	with	a	lower	case	l.	Characters
such	as	0	and	O,	1	and	l,	or	I	and	l	can	lead	to	easy	typos	depending	on	the	font
being	used.

You	can	fix	these	types	of	typos	using	explicit	variable	declaration.	Set	the
__newindex	and	__index	metamethods	of	the	global	table	to	track	whether	a	variable
being	used	has	been	declared	or	not.	This	implies	that	you	will	need	to	create	a
function	to	declare	variables,	and	a	table	to	track	all	declared	variables.

This	is	a	bit	unintuitive,	but	it's	another	example	of	how	powerful	Lua	is.	First,
create	the	table	that	will	store	a	list	of	variables	that	have	been	declared,	and	set
the	meta	table	for	_G:

_G.declared	=	{}

setmetatable(_G,	_G)

Next,	create	the	Declare	function.	This	will	simply	set	a	flag	in	the	declared	table
to	true:

_G.Declare	=	function(k,	v)	

				_G.declared[k]	=	true

end

The	__index	metamethod	of	_G	should	only	return	values	if	the	key	being	retrieved

is	present	in	the	declared	table.	Here,	use	rawget	to	avoid	a	recursive	call:

_G.__index	=	function(t,	k)

				if	not	_G.declared[k]	then

								print	("Can't	read	undeclared	variable:	"	..	k)

								return	nil

				end

				return	rawget(t,	k)

end

Similarly,	the	__newindex	metamethod	must	first	check	whether	a	variable	has	been
declared.	If	so,	this	function	uses	rawset	to	add	the	new	key	to	the	global	table:

_G.__newindex	=	function(t,	k,	v)	

		if	not	_G.declared[k]	then

						print	("Can't	write	undeclared	variable:	"	..	k)

		else

						rawset(t,	k,	v)

		end

end

The	following	code	demonstrates	how	to	use	the	preceding	changes	in	the	global
table:

Declare("x")	--	Declare	in	_G

Declare("y")	--	Declare	in	_G

x	=	21

y	=	22

print	(x	..	",	"	..	y)

z	=	5	--	Can't	add	to	_G	if	not	declared

print	(z)

local	w	=	19	--	Local	to	the	file,	not	in	_G

print	("w:	"	..	w)

The	preceding	code	declares	variables	x	and	y,	putting	both	keys	into	the
declared	table.	Next,	it	assigns	values	to	the	variables	that	invoked	the	_newindex
metamethod.	Because	the	variables	have	been	declared,	they	are	allowed	to	be
set,	otherwise	an	error	would	occur.	After	that,	the	print	statement	invokes	the
__index	metamethod,	which	retrieves	the	variables.

When	a	value	is	assigned	to	z,	the	__newindex	metamethod	sees	that	this	variable
was	not	declared	and	prints	a	warning.	Because	the	variable	is	not	declared,
trying	to	print	the	value	of	z	also	results	in	an	expected	error.	The	w	variable	is
created	local	to	the	current	Lua	file;	it	will	not	be	recorded	in	the	global	table	_G.

Dynamic	variables
Because	the	global	table	is	just	a	table,	it	can	be	indexed	dynamically.	You	can
concatenate	strings	to	index	the	global	table	using	the	square	bracket	notation.
For	example,	the	following	three	lines	of	code	all	do	the	same	thing:

foo	=	"bar"

_G.foo	=	"bar"

_G["foo"]	=	"bar"

In	the	preceding	code	example,	the	last	line	indexes	the	global	environment	with
a	string.	The	following	code	demonstrates	how	to	index	the	global	table	using
dynamic	strings:

value1	=	'x'

value2	=	'y'

value3	=	'z'

for	i	=	1,3	do

				print	("value"	..	i	..	":	"	..	_G["value"	..	i])

end

Environment
Lua	provides	an	easy	and	powerful	method	to	set	the	global	environment	per
function.	This	means	that	any	variables	without	the	local	modifier	will	be
recorded	in	the	environment	of	the	function,	rather	than	in	the	global	table.	This
can	be	achieved	by	setting	the	_ENV	variable	inside	a	function.

The	_ENV	variable,	by	default,	points	to	_G.	This	means	any	new	variable	will	be
registered	in	_G.	But	if	you	declare	_ENV	to	be	a	new	table,	for	example,	variables
will	be	registered	to	it	instead	of	_G:

function	SayHelloCustomEnv()

				local	_ENV	=	{print=print}

				foo	=	"hello"

				local	bar	=	"world"

				print(foo	..	"	"	..	bar)

end

function	SayHelloDefaultEnv()

				foo	=	"hello"

				local	bar	=	"world"

				print(foo	..	"	"	..	bar)

end

--	foo	and	bar	are	not	in	_G

SayHelloCustomEnv1();

print	(foo)

print	(bar)

--	foo	is	declared	in	_G

SayHelloDefaultEnv();

print(foo)

print(bar)

In	the	preceding	code,	this	line	is	extremely	important:

local	_ENV	=	{print=print}

First,	note	that	_ENV	is	declared	to	be	local!	If	you	don't	declare	it	as	such,	_ENV	for
ALL	functions	will	be	overwritten.	You	don't	want	that.

Second,	_ENV	is	not	set	to	an	empty	table,	it's	set	to	{print=print}.	This	is	important.
Normally,	print	lives	in	_G.	But,	the	function	will	not	be	able	to	access	_G
anymore.	This	also	means	that	you	can	replace	any	global	function	with	a

custom	one.	For	example:

function	MyPrint(str)

				print("printing:	"	..	str)

end

function	SayHelloCustomEnv()

				local	_ENV	=	{print=print}

				foo	=	"hello"

				local	bar	=	"world"

				print(foo	..	"	"	..	bar)

end

--	foo	and	bar	are	not	in	_G

SayHelloCustomEnv();

print	(foo)

print	(bar)

math
At	some	point,	you	are	likely	going	to	need	to	change	some	numbers	around.	
Many	mathematical	functions	such	as	sine	or	cosine	are	provided	by	Lua.	To
better	understand	the	provided	functions,	this	section	will	review	Lua's	math
library.

The	official	math	library	documentation	is	online	here:	https://www.lua.org/manual/5.2/manual.html#pdf-math

https://www.lua.org/manual/5.2/manual.html#pdf-math

Trigonometry
Some	interactive	applications	such	as	games	rely	heavily	on	trigonometry.
Trigonometry	is	used	to	figure	out	the	distance	between	two	points,	to	render	a
world,	and	much	more.	Lua	provides	the	following	trig	functions.	Remember,	all
of	these	functions	return	radians,	not	degrees:

math.acos(v):	returns	the	inverse	cosine	of	a	number	in	radians
math.asin(v):	returns	the	inverse	sine	of	a	number	in	radians
math.atan(v):	returns	the	inverse	tangent	of	a	number	in	radians;	v	is	assumed
to	be	x	/	y
math.atan(x,	y):	returns	the	inverse	tangent	of	a	number	in	radians
math.cos(v):	returns	the	cosine	of	a	number	in	radians
math.sin(v):	returns	the	sine	of	a	number	in	radians
math.tan(v):	returns	the	tangent	of	a	number	in	radians

Changing	numbers
Sometimes,	it's	useful	to	convert	numbers,	and	for	this	there	are	four	conversion
functions.	There	are	functions	to	convert	between	degrees	and	radians,	to	get	the
absolute	value	of	an	integer,	and	to	round	a	floating	point	number	to	an	integer.

math.deg(v)	converts	a	number	from	radians	to	degrees
math.rad(v)	converts	a	number	from	degrees	to	radians
math.abs(v)	returns	the	absolute	value	of	the	provided	number
math.tointeger(v):	if	v	is	convertible	to	an	integer,	an	integer	is	returned,
otherwise	nil

Comparing	numbers
There	are	three	comparison	type	functions.	Two	functions	return	the	min	and
max	of	a	pair	of	numbers,	and	the	ult	function	treats	both	arguments	as	unsigned
integers.

math.max(x,	y)	returns	the	smaller	number	of	x	or	y
math.min(x,	y)	returns	the	larger	number	of	x	or	y
math.ult(x,	y)	returns	true	if	x	is	less	than	y,	where	both	x	and	y	are	treated	as
unsigned	integers

Randomness
Lua	provides	a	pseudo-random	number	generator.	This	means	a	program	will
generate	the	same	random	number	on	every	run,	unless	the	random	number	is
seeded.	The	random	function	can	be	called	with	the	following	arguments:

math.random():	with	no	arguments	generates	a	real	number	between	0	and	1
math.random(max):	generates	integer	numbers	between	1	and	max
math.random(min,	max):	generates	integer	numbers	between	min	and	max

When	generating	a	random	number,	min	and	max	must	be	integer	values.	If	the
numbers	provided	are	not	integers,	Lua	will	cast	the	numbers	to	be	integers	by
discarding	the	decimal	part.

To	get	a	random	sequence	of	numbers	each	time	an	application	is	run,	the
random	number	generator	must	be	seeded.	Seeding	the	random	number
genreator	means	it	will	return	pseudo-random	numbers,	starting	with	a	different
number	each	time.

For	this	to	work,	the	seed	must	be	unique	each	time.	To	get	a	mostly	unique
number,	use	the	current	time	from	the	operating	system.	This	should	result	in
unique	random	numbers	each	time	an	application	is	run:

math.randomseed(v):	seeds	random	with	the	value	of	v
os.time():	returns	the	number	of	seconds	since	epoch

Random	only	needs	to	be	seeded	once,	at	the	beginning	of	the	application.	The
following	code	implements	a	simple	number-guessing	game:

math.randomseed(os.time())

print	("Guess	a	number	between	10	and	100!")

number	=	math.random(10,	100)

--	print	("Random:	"	..	number)

repeat

				local	guess	=	tonumber(io.read())

				if	guess	~=	nil	then

								if	guess	==	number	then

												print	("You	guessed	the	number.")

												break

								elseif	guess	<	number	then

												print	("Too	low,	guess	again.")

												print	("Too	low,	guess	again.")

								else

												print	("Too	high,	guess	again.")

								end

				end

until	false

Constants
Lua	provides	some	standard	constants.	These	constants	include	of	the	value	for
PI	(positive	infinity),	the	largest	number	an	integer	can	hold,	and	the	smallest
number	an	integer	can	hold:

math.pi:	the	value	of	pi
math.huge:	represents	positive	infinity
math.mininteger:	represents	the	smallest	integer	(non-decimal)	number
math.maxinteger:	represents	the	largest	integer	(non-decimal)	number

Everything	else
There	are	a	number	of	useful	math-related	functions	Lua	offers	that	do	not	fit
into	any	of	the	preceding	categories.	These	functions	are	listed	here,	in	no
particular	order:

math.ceil(v):	rounds	v	up	to	the	nearest	integer
math.floor(v):	rounds	v	down	to	the	nearest	integer
math.fmod(x,	y):	returns	the	remainder	of	the	division	x	/	y
math.modf(v):	returns	two	values,	the	integer	part	of	v	and	the	factoral	part	of
v

math.sqrt(v):	returns	the	square	root	of	v
math.type(variable):	returns	the	strings	integer,	float,	or	nil

File	IO
At	some	point,	programs	will	need	to	work	with	persistent	data.	This	section
explores	writing	and	reading	data	to	and	from	the	hard	drive.	Lua	provides
facilities	to	read	and	write	files	through	its	io	library.	A	file	doesn't	have	to
contain	textual	data;	you	can	store	data	as	a	binary	representation.	Reading	and
writing	binary	data	with	Lua	is	also	possible.

Opening	a	file
When	writing	to	a	file	or	reading	from	a	file,	that	file	needs	to	be	opened	first.
Lua	provides	the	io.open	function	to	open	files.	On	success,	the	io.open	function
will	return	a	file	handle.	On	failure,	it	will	return	nil:

file	=	io.open("my_file.txt");	--	Opens	existing	file	in	read	only	mode

The	preceding	line	of	code	will	open	a	file	in	read-only	mode.	What	if	you	want
to	write	to	a	file?	The	io.open	function	takes	an	optional	second	argument,	which
is	a	string.	This	optional	second	argument	controls	the	mode	in	which	the	file
will	be	opened.	Valid	values	are	as	follows:

"r":	Read-only	mode	will	let	you	read	the	file,	but	not	write	to	it.	This	is	the
default	mode	for	opening	the	file.	If	the	file	does	not	exist,	nil	is	returned.
"w":	Write	mode	will	create	a	new	file	if	the	specified	file	name	does	not
exist.	If	the	specified	file	name	exists,	it	will	be	overwritten!	Allows	writing
to	the	file	only.
"a":	Append	mode	opens	an	existing	file,	or	creates	a	new	one.	If	the	file
already	exists,	its	contents	remain	unchanged	and	we	write	data	to	the	end
of	the	file.	Allows	writing	to	the	file	only.
"r+":	Read	and	write	mode	for	an	existing	file.	This	mode	will	open	an
existing	file	and	allow	us	to	read	from	and	write	to	it.	If	the	file	already
exists,	its	contents	will	be	overwritten!	If	the	file	does	not	exist,	the
function	returns	nil.
"w+":	The	same	as	"w",	except	this	mode	allows	us	to	read	from	the	file	as
well.
"a+":	The	same	as	"a",	except	this	mode	allows	us	to	read	from	the	file	as
well.

If	you	want	to	open	an	existing	file	for	reading	and	writing,	call	io.open,	like	so:

file	=	io.open("my_file.txt",	"r+");	--	Opens	existing	file	in	read/write	mode

The	file	handle	returned	by	io.open	is	a	Lua	object.	as	such,	the	colon	operator
will	be	used	to	call	methods	on	this	object.	The	methods	of	the	file	handle	can
read,	write,	and	close	the	file.

Writing	data
Writing	data	to	a	file	is	done	with	the	write	function	of	the	file	handle.	This
function	will	write	whatever	arguments	are	passed	to	it	into	the	file.	The
following	code	creates	a	data.txt	file,	if	one	does	not	exist,	or	replaces	the
contents	of	the	existing	file:

file	=	io.open("data.txt",	"w")

file:write("foo")

file:write("bar")

After	running	the	previous	code,	a	data.txt	file	would	contain	the	foobar	string.
Looking	at	the	code,	it's	reasonable	to	expect	"foo"	and	"bar"	to	be	on	separate
lines.	By	default,	the	write	function	does	not	add	any	newline	characters.	You
have	to	add	line	breaks	manually,	like	so:

file	=	io.open("data.txt",	"w")

file:write("foo",	"\n")	

--	file:write("foo\n")	--	would	also	work

file:write("bar")

The	write	function	will	take	any	data	type	as	an	argument,and	will	take	any
number	of	arguments.	The	following	code	demonstrates	different	ways	of
concatenating	strings	being	written	to	a	file.	The	file	being	written	is	something
you	might	see	being	saved	as	data	for	a	game:

--	Create	function	to	save	character	data

function	SaveCharacterData(name,	power,	team)

		file	=	io.open("data.txt",	"w")

		file:write("name	"	..	name	..	"\n")	--	We	can	concatenate	with	..

		file:write("attack	",	power,	"\n")	--	or	use	a	comma	seperated	list

		file:write("team	"	..	team,	"\n")	--	we	can	even	mix	&	match!

end

--	Call	the	function

SaveCharacterData("gwen",	20,	"blue")

Reading	data
There	are	three	prominent	ways	to	read	a	file:	either	as	a	huge	blob	of	text,	line
by	line,	or	one	number/string	at	a	time.	Reading	line	by	line	and	one	bit	of	data
at	a	time	are	relevant	to	this	book.

Reading	line	by	line
The	file	handle	returned	by	io.open	has	a	lines	member	function.	This	function
will	return	an	iterator	that	can	be	used	to	retrieve	every	line	of	the	file	using	a
loop.	The	following	code	demonstrates	how	to	read	an	entire	file,	one	line	at	a
time:

file	=	io.open("data.txt")

lines	=	file:lines()

print("Contents	of	file:");

for	line	in	lines	do

		print("\t"	..	line)

end

Reading	bits	of	data
The	file	handle	provides	a	read	method	that	can	be	used	to	read	in	only	as	much
data	as	needed.	The	read	method	takes	one	argument,	which	is	a	format	string,	or
a	number.	In	case	the	argument	is	a	number,	that	number	represents	how	many
characters	of	text	to	read.	The	following	list	contains	all	of	the	valid	arguments
for	read:

"*n"	reads	a	number;	this	is	the	only	format	that	returns	a	number	instead	of
a	string.
"*a"	reads	the	whole	file,	starting	at	the	current	position.	At	the	end	of	the
file,	it	returns	the	empty	string.
"*l"	reads	the	next	line	(skipping	the	end	of	the	line),	returning	nil	at	the	end
of	the	file.	This	is	the	default	format.
Providing	any	integer	number,	(IE:	2)	reads	a	string	with	up	to	that	number
of	characters,	returning	nil	at	the	end	of	the	file.	If	the	number	is	zero,	it
reads	nothing	and	returns	an	empty	string,	or	nil	at	the	end	of	the	file.

In	the	code	sample	for	writing	data,	the	SaveCharacterData	function	writes	the
following	text	to	a	file:

name	gwen

attack	20

team	blue

To	parse	this	data	back	into	Lua,	you	will	need	to	call	read	two	times	for	every
line.	The	first	read	will	retrieve	and	discard	the	identifier	of	the	line,	such	as	"name"
(including	the	space).	The	second	call	to	read	will	read	and	store	our	relevant
data.	The	following	code	demonstrates	this:

hero	=	{}

f	=	io.open("data.txt")

f:read(5)	--	read	in	"name	"	and	discard	it

hero.name	=	f:read()	--	Reads	to	end	of	line,	store	name

f:read(7)	--	read	in	"attack	"	and	discard	it

hero.health	=	f:read("*n")	--	read	the	next	number

f:read(6)	--	read	in	"team	"	and	discard	it

hero.team	=	f:read("*l")	--	Same	as	reading	in	the	name

print	("hero")

print	("\tname:	"	..	hero.name)

print	("\tname:	"	..	hero.name)

print	("\thealth:	"	..	hero.health)

print	("\tteam:	"	..	hero.team)

Closing	a	file
Once	you	are	done	working	with	a	file,	close	the	file.	Not	closing	the	file	is
considered	a	resource	leak,	which	can	lead	to	issues	until	you	restart	your
computer.	Closing	a	file	is	simple,	just	call	the	close	member	function	on	the	file
handle.	For	example:

local	file	=	io.open("data.txt",	"w")

file:write("foo",	"\n")

file:write("bar")

file:close()	--	THIS	IS	NEW!	Don't	forget	to	close!

Interfacing	with	the	operating	system
Lua	runs	on	many	operating	systems,	and	as	an	embedded	language	can	run	just
about	anywhere.	The	os	package	provides	functionality	to	interface	with	the
underlying	operating	system	in	a	uniform	way.

Working	with	time
The	first	function	to	know	when	working	with	time	is	os.clock.	This	function
returns	the	number	of	seconds	that	have	elapsed	since	the	Lua	program	started
running.	Code	tends	to	run	pretty	fast,	but	the	following	code	should	print	out
two	different	time	stamps:

print	("Time:	"	..	os.clock())

for	i=1,1000,1	do

		--	Just	spin

end

print	("Time:	"	..	os.clock())

Seconds	is	a	very	granular	measure	of	time.	os.date	can	be	used	to	retrieve	less-
granular	bits	of	time.	This	function	takes	a	format	string	as	an	argument,	and
returns	the	formatted	time	as	a	string.

The	arguments	for	os.date	are	the	same	as	the	arguments	for	the	strftime	function	in	C.	A	full	list	of	arguments	is	online
here:	http://www.cplusplus.com/reference/ctime/strftime/

For	example,	printing	out	the	current	time	in	24-hour,	hour:minute	format	would
be	done	like	so:

print	("The	time	is:	"	..	os.date("%H:%M"))

The	os.difftime	function	will	return	the	difference	between	two	times,	provided	in
seconds.	This	function	can	be	used	to	measure	how	long	a	piece	of	code	takes	to
execute.	The	following	example	code	times	a	simple	loop.	The	result	will	likely
be	0,	as	it	only	takes	a	few	milliseconds	to	execute	a	simple	loop:

local	startTime	=	os.clock()

for	i=1,100000,1	do

		--	Do	stuff

end

local	endTime	=	os.clock()

local	totalTime	=	os.difftime(startTime,	endTime)	

print	("The	above	loop	took:	"	..	totalTime	..	"	seconds")

http://www.cplusplus.com/reference/ctime/strftime/

Interacting	with	the	shell
One	of	the	things	that	makes	Lua	powerful	as	a	scripting	language	is	its	ability	to
interact	with	the	operating	system	through	a	shell/terminal.	os.execute	takes	a
string	and	returns	a	status	code.	Whatever	the	provided	string	is	will	be	executed
as	a	shell	command.	The	return	value	is	whatever	the	running	program	returned.	

If	Lua	is	running	embedded	in	a	program,	or	is	on	an	OS	with	no	shell/terminal,
the	os.execute	command	will	return	0.	You	can	test	if	the	current	Lua	environment
has	a	shell	by	calling	os.execute	with	no	arguments.	If	a	non-zero	value	is
returned,	a	shell	is	available.	If	zero	is	returned,	there	is	no	shell	or	terminal.

The	code	here	tries	to	pull	from	git.	Using	os.execute,	Lua	could	be	used	to
leverage	automate	a	build	pipeline:

os.execute("git	pull")

Operating	systems	have	some	kind	of	environment	variables.	For	example,	the
PATH	variable	is	present	on	Windows,	Linux,	and	macOS.	Lua	can	access
environmental	variables	using	the	os.getenv	function.	The	code	here	prints	out	the
value	of	the	PATH	variable:

print(os.getenv("PATH"))

Working	with	files
Lua	can	create,	rename,	and	delete	files.	We've	already	seen	how	to	create	files
in	the	File	IO	section	of	this	chapter.	You	can	use	io.open	to	create	a	new	file:

local	file	=	io.open("new_file.txt",	"a")

file:close()

Files	can	be	renamed	with	the	os.rename	function.	This	function	takes	two
arguments:	the	path	to	the	file	to	be	renamed	and	the	path	to	the	final,	renamed
version	of	the	file.	The	code	here	renames	the	file	created	in	the	last	sample:

os.rename("new_file.txt",	"renamed_file.txt")

Files	can	be	deleted	with	the	os.remove	function.	This	function	takes	the	path	of	a
file	to	delete.	To	remove	the	previously	renamed	file,	you	would	have	to	use	the
following	code:

os.remove("renamed_file.txt")

Lua	can	not	natively	create,	rename,	enumerate	or	delete	folders,	like	it	can	files.
All	of	these	functions,	however,	do	exist	in	each	operating	system.	Lua	can	use
os.execute	to	perform	these	actions.	For	example,	you	could	make	a	directory	on
any	platform,	like	so:

os.execute("mkdir	new_folder")

More	strings
Chapter	2,	Working	With	Lua	provided	several	methods	to	work	with	strings.	All
of	these	methods	where	a	part	of	Lua's	string	library.	This	section	is	going	to
discuss	some	additional,	more	advanced	methods	to	deal	with	strings.

https://cdp.packtpub.com/lua_quick_start_guide/wp-admin/post.php?post=25&action=edit

Searching	for	a	substring
Sometimes,	you	may	have	a	large	string	(such	as	the	contents	of	a	file)	and	need
to	find	out	if	it	contains	a	smaller	substring.	This	can	be	done	with	the
string.substring	function.	This	function	takes	two	variables:	the	large	string	to
search	and	a	smaller	string	to	look	for.	On	success,	it	returns	a	number,	which	is
the	index	at	which	the	substring	first	appears.	On	failure,	the	function	returns	nil:

local	sentence	=	"The	quick	brown	fox"

local	word	=	"quick"

local	index	=	string.find(sentence,	word)

print	("substring	found	at	index:	"	..	index)

The	second	argument	is	interesting;	it	doesn't	just	have	to	be	a	string.	The	second	argument	to	string.substring	can	be
a	pattern,	which	results	in	regex	like	searching.	For	more	info,	check	out	http://lua-users.org/wiki/PatternsTutorial

http://lua-users.org/wiki/PatternsTutorial

Extracting	a	substring
The	string.sub	function	takes	three	arguments:	the	string,	a	start	index,	and	a	stop
index.	The	stop	index	is	inclusive.	This	function	will	return	a	substring	between
the	two	indices	passed.	The	last	argument	is	optional;	if	an	end	index	is	not
provided,	string.sub	will	just	return	everything	to	the	end	of	the	string:

local	sentence	=	"The	quick	brown	fox"

local	word	=	"quick"

local	start	=	string.find(sentence,	word)

start	=	start	+	#word	+	1

local	result	=	string.sub(sentence,	start)

print("Who	was	quick?")

print	("the	"	..	result)

All	of	the	functions	in	the	string	library	are	implemented	with	respect	to	the	:
operator.	This	means	that	the	preceding	code	could	be	re-written	as	follows:

local	sentence	=	"The	quick	brown	fox"

local	word	=	"quick"

local	start	=	sentence:find(word)

start	=	start	+	#word	+	1

local	result	=	sentence:sub(start)

print("Who	was	quick?")

print	("the	"	..	result)

Case	manipulation
Lua	provides	two	functions	for	case	manipulation:	upper	and	lower.	As	you	would
expect,	these	functions	transform	a	string	to	be	upper	case	or	lower	case.	Like	all
string	functions,	these	functions	are	written	to	work	using	the	colon	notation.
The	code	here	demonstrates	how	these	functions	are	used:

local	sentence	=	"A	rose	is	a	Rose	is	a	ROSE"

print	(sentence)

print(string.upper(sentence))

print(string.lower(sentence))

--	OR,	use	:	notation

print(sentence:upper())

print(sentence:lower())

Creating	and	loading	modules
Modules	allow	Lua	code	to	be	split	across	multiple	files.	The	codebase	of	any
non-trivial	application	is	going	to	get	large,	and	having	modules	allows	the	code
to	be	organized	and	keeps	it	maintainable.	When	doing	OOP,	each	class	can	be
its	own	module.	Keeping	every	class	in	its	own	file	will	keep	your	projects	easy
to	navigate	and	maintain.

Lua	has	several	ways	of	creating	and	loading	modules.	Only	one	method	is	discussed	here.	Read	more	about	how
modules	work	at	http://lua-users.org/wiki/ModulesTutorial

http://lua-users.org/wiki/ModulesTutorial

Creating	a	module
A	module	is	just	a	normal	Lua	table;	a	module	file	is	a	Lua	file	which	returns	a
table.	For	us,	this	means	returning	an	anonymous	table.	We	are	going	to	create	a
new	file,	character.lua,	and	declare	a	character	class	in	this	file.	The	definition	of
the	character	class	is	as	follows:

--	It's	important	that	the	table	retuned	be	local!

local	character	=	{}

character.health	=	20

character.strength	=	5

character.name	=	""

character.new	=	function	(self,	object)	

				object	=	object	or	{}	--	Use	provided	table,	or	create	new	one

				local	provided	=	""

				if	type(object)	==	"string"	then

								provided	=	object

								object	=	{}

				end

				setmetatable(object,	self)	--	Assign	meta	table

				self.__index	=	self

				if	provided	~=	""	then

								object.name	=	provided

				end

				return	object

end

character.attack	=	function(self,	other)	

				print	(self.name	..	"	attacks	"	..	other.name)

				other.health	=	other.health	-	self.strength

				if	other.health	<	1	then

								print	("\t"	..	other.name	..	"	is	dead")

				else	

								print	("\t"	..	other.name	..	"	has	"	..	other.health	..	"	health	left")

				end

end

return	character

The	previous	code	creates	a	table	local	to	the	file	and	returns	it.	This	table	has
five	variables;	three	of	them	are	values	and	two	are	functions.	This	module
represents	character	class,	which	has	a	health,	a	name,	and	some	strength.	The
attack	function	will	decrease	the	health	of	whatever	character	is	being	attacked,
and	print	out	some	information.

The	constructor	is	similar	to	that	seen	in	previous	chapters,	except	it	does	a	type

The	constructor	is	similar	to	that	seen	in	previous	chapters,	except	it	does	a	type
check	on	the	second	argument.	This	allows	the	constructor	to	clone	a	character
object,	or	to	provide	a	name	as	a	constructor	argument.

Loading	and	using	modules
You	can	load	Lua	modules	with	the	require	function.	The	require	function	takes
one	argument,	which	is	the	name	of	the	file	being	loaded	(without	the	.lua
extension).	The	require	function	should	return	a	table	that	can	then	be	used	as	any
other	table.

The	require	function	searches	for	the	given	file	in	several	specific	folder	paths.
These	paths	are	stored	as	a	string	in	the	global	variable,	package.path.	The	default
path	on	windows	looks	like	this:

?;?.lua;c:\windows\?;/usr/local/lua/?/?.lua

This	string	contains	multiple	search	paths,	each	separated	by	a	semicolon	(;).
The	?	charter	gets	replaced	by	the	filename	provided	to	the	require	function.	So,
for	example,	if	you	called	require("character"),	Lua	would	look	for	the	following
files:

./character

./character.lua

c:\windows\character.lua

/usr/local/lua/character/character.lua

If	multiple	files	exist	(namely,	both	./character.lua	and	C:\windows\character.lua),
only	the	first	one	is	loaded.	If	you	call	require	on	the	same	file	twice,	the	module
is	only	loaded	one	time,	avoiding	duplicate	work.

Let's	explore	how	to	use	the	character	module	created	in	the	last	section.	First,
make	a	new	file,	game.lua,	in	the	same	directory	as	"character.lua".	This	file	should
contain	the	following	code:

--	load	the	character	module	into	a	table	named	character

Character	=	require	("character")

--	Create	a	new	hero,	which	is	a	charcter

gwen	=	Character:new("gwen")

gwen.strength	=	10

--	Create	a	new	enemy,	also	a	character

orc	=	Character:new("orc")

--	Run	game	logic

gwen:attack(orc)

gwen:attack(orc)

orc:attack(gwen)

gwen:attack(orc)

The	preceding	code	loads	the	character	module	from	character.lua	into	a	table
named	Character.	The	loaded	Character	table	is	a	class	that	can	be	used	to	create
new	objects.	The	code	creates	two	character	objects	and	runs	a	simulated	turn-
based	fight.

There	are	two	major	advantages	to	making	something	like	a	game	character	class
into	a	module.	First,	there	is	less	code	in	game.lua	and	other	files.	Second,	the
Character	class	is	now	reusable.	You	can	now	use	the	character	class	in	multiple
files,	or	even	multiple	projects.

Avoiding	parsing
Being	able	to	simply	load	Lua	tables	is	a	powerful	mechanism.	If	you	format
save	data	as	a	valid	Lua	file,	it	can	be	loaded	back	as	a	module.	Using	this
feature	of	Lua,	you	can	avoid	having	to	write	code	that	parses	a	text	file.

Let's	explore	this	concept	by	first	saving	some	data	to	disk.	The	following
function	saves	a	simple	object	containing	a	level,	health,	and	number	of	lives	to
a	file	named	save.lua:

function	Save(level,	health,	lives)

				file	=	io.open("save.lua",	"w")

				file:write("return	{	\n")

				file:write("\tlevel	=	",	level,	",",	"\n")

				file:write("\thealth	=	",	health,	",",	"\n")

				file:write("\tlives	=	",	lives,	"\n")

				file:write("}")

				file:close()

end

Save(20,	10,	2)

Because	save.lua	is	a	module,	you	can	load	the	save	data	with	a	single	call	to
require,	like	so:

gameData	=	require("save")

print("Loaded:")

print("\tlevel:	"	..	gameData.level)

print("\thealth:	"	..	gameData.health)

print("\tlives:	"	..	gameData.lives)

Executing	files
The	require	function	only	loads	a	file	one	time.	When	dealing	with	modules,	this
feature	is	a	great	way	to	avoid	loading	duplicate	code.	But,	when	trying	to	load
data,	the	require	function	will	not	re-load	data.	Loading	the	same	Lua	file
multiple	times	can	be	done	using	the	dofile	function.	Both	dofile	and	require	load
a	file	and	execute	the	code	within,	but	with	two	major	differences:

dofile:	will	re-load	a	given	file	every	time	it	is	called
dofile:	does	not	search	package.path;	instead,	it	loads	the	file	name	given
assuming	the	path	provided	is	relative	to	the	current	file	path

Let's	modify	the	previous	code	sample	to	save	some	data,	load	it,	save	some	new
data,	and	then	re-load	the	data.	The	code	needs	to	change	to	this:

Save(20,	10,	2)

gameData	=	dofile("save.lua")

print("Loaded:")

print("\tlevel:	"	..	gameData.level)

print("\thealth:	"	..	gameData.health)

print("\tlives:	"	..	gameData.lives)

Save(10,	10,	5)

gameData	=	dofile("save.lua")

print("Loaded:")

print("\tlevel:	"	..	gameData.level)

print("\thealth:	"	..	gameData.health)

print("\tlives:	"	..	gameData.lives)

Summary
In	this	chapter,	you	learned	how	to	use	modules	in	Lua.	Some	of	the	built-in
modules	for	working	with	files,	doing	math,	and	interacting	with	the	operating
system	were	covered.	Next,	creating	your	own	modules	was	discussed,	as	well
as	guidance	on	different	ways	to	load	Lua	source	files.

Debugging	Lua
In	the	last	chapter,	you	learned	how	to	use	some	of	Lua's,	built-in	modules	and
how	to	create	your	own	module.	At	this	point,	you	know	most	of	the	libraries
and	concepts	Lua	has	to	offer.	This	chapter	will	help	you	understand	what	to	do
when	unintended	bugs	creep	into	your	code.

Some	of	the	properties	that	make	Lua	extremely	powerful	also	make	it	easy	to
introduce	unintended	bugs.	Sometimes,	even	the	simplest	of	bugs	can	take	a
significant	amount	of	effort	to	fix.	Lua	provides	powerful	debug	libraries	that
help	make	these	bugs	easier	to	track	down	and	resolve.	In	addition	to	debug
libraries,	a	number	of	great	external	tools	also	exist.

In	this	chapter,	we	are	going	to	cover	the	following	topics:

The	debug	library
Error-handling	in	Lua
Profiling	
Integrated	development	environments

Technical	requirements
You	will	be	required	to	have	JavaScript	programming	language.	Finally,	to	use
the	Git	repository	of	this	book,	the	user	needs	to	install	Git.

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/Lua-Quick-Start-Guide/tree/master/Chapter05

Check	out	the	following	video	to	see	the	code	in	action:
http://bit.ly/2LBB8OU

https://github.com/PacktPublishing/Lua-Quick-Start-Guide/tree/master/Chapter05
http://bit.ly/2LBB8OU

The	debug	library
Lua's	debug	library	is	not	a	debugger.	Rather,	it	is	all	the	building	blocks	needed
to	implement	a	debugger.	One	thing	to	remember	when	writing	code	against	the
debug	library	is	it's	going	to	be	slow.	On	top	of	running	your	existing	code,	some
extra	work	has	to	be	done	to	enable	debugging.	All	code	related	to	the	debug
library	is	found	in	the	debug	table	(module).

The	debug	library	provides	hooks	and	introspective	functions.	Hooks	let	you
hook	into	the	runtime	to	trace	what's	happening	with	the	program.	Introspective
functions,	on	the	other	hand,	let	you	inspect	various	aspects	of	the	running	code.
These	aspects	involve	local	variables,	the	scope	of	chunks,	and	so	on.

Introspective	information
Lua	provides	the	debug.getinfo	function	to	inspect	the	currently	running	code.	This
function	takes	one	of	two	arguments,	either	a	function	or	an	integer.	When	the
argument	is	an	integer,	getinfo	will	look	the	specified	number	of	steps	up	the
callstack.	For	example,	let's	assume	you	have	the	following	code:

function	one()	

		print	("one")

end

function	two()

		one()

		print("two")

end

function	three()

		two()

		print("three")

		debug.getinfo(1)

end

Providing	an	argument	of	1	will	inspect	the	function	calling	debug.getinfo,	or
function	three.	Providing	2	will	go	one	more	function	up	the	callstack,	inspecting
function	two.	Or,	providing	3	will	look	even	further	up	the	callstack	and	inspect
function	one.

The	debug.getinfo	return	value
No	matter	what	the	argument,	the	debug.getinfo	function	will	return	a	table.	This
table	will	contain	information	about	the	function	being	inspected.	When	called
with	an	integer,	the	return	table	will	contain	the	following	fields/variables:

source:	Where	the	function	is	defined.	This	will	contain	the	name	of	the	file
that	a	function	is	defined	in.
short_src:	A	short	textual	version	of	the	function,	up	to	60	characters.
linedefined:	The	first	line	of	the	source	file	where	the	function	was	defined.
lastlinedefined:	The	last	line	in	the	source	file	where	the	function	was
defined.
what:	If	the	function	is	a	"Lua"	or	a	"C"	function,	the	appropriate	string	will	be
returned.
name:	Lua's	best	guess	at	the	name	of	the	function.	In	Lua,	functions	can	be
assigned	to	multiple	variables,	so	the	name	really	is	a	guess	most	of	the
time.
namewhat:	What	the	name	field	is:	a	"global"	variable,	a	"local"	variable,	a
"method",	a	"field",	or	unknown	("").
nups:	The	number	of	up	values	for	the	function.
activelines:	The	number	of	lines	a	function	contains.	White	spaces	and
comments	are	ignored.
func:	The	actual	function;	you	can	call	this.

Filtering	the	information
The	debug.info	function	is	pretty	slow,	and	this	happens	mostly	because	of	all	the
data	it	has	to	collect.	To	speed	up	the	function	enough,	there	is	an	optional
second	argument	that	will	filter	out	what	variables	are	present	in	the	return	table.
The	second	argument	is	a	string,	and	it	can	have	any	of	the	following	variables:

"n":	Filters	name	and	what	the	name	represents	(namewhat)
"f":	Filters	func
"S":	Filters	source,	short_src,	what,	linedefined,	and	lastlinedefined
"l":	Filters	currentline
"L":	Filters	activelines
"u":	Filters	nup

You	can	combine	multiple	filters	in	the	filter	string.	For	example,	to	get	name	and	what	you	would	do:	debug.info(1,
"nS")

Local	variables
The	local	variables	of	any	function	can	be	inspected	with	the	debug.getlocal
function.	This	function	takes	two	arguments:	first	a	stack	level	(the	same	as
debug.getinfo),	and	then	a	variable	index.	Variables	are	indexed	in	the	order	they
appear.	If	either	argument	is	out	of	range,	the	debug.getlocal	function	will	return
nil.	Otherwise,	it	will	return	the	name	and	value	of	the	current	variable.

For	example,	the	following	code	prints	the	local	variables	of	its	calling	function:

function	DebugLocals()

		local	info	=	debug.getinfo(2,	"n")

		print	("Local	variables	of:	"	..	info.name)

		local	idx	=	1

		while	true	do

				local	name,	val	=	debug.getlocal(2,	idx)

				if	name	==	nil	then

						break

				end

				print	("	"	..	name	..	"	=	"	..	tostring(val))

				idx	=	idx	+	1

		end

end

function	DoSomething(val1,	val2)

		local	sum	=	val1	+	val2

		local	difference	=	val1	-	val2

		local	result	=	sum	*	difference

		DebugLocals();

		return	result;

end

DoSomething(3,	4)

DoSomething(9,	3)

Hooks
Lua	provides	hooks	to	monitor	an	application	running	in	real	time.	An	event
handler	function	can	be	registered	to	be	executed	every	time	an	event	or	hook
happens.	There	are	four	types	of	events	that	can	be	hooked	into:

line:	called	every	time	a	line	of	code	is	executed
call:	called	every	time	a	new	function	is	called
return:	called	every	time	a	function	returns
counter:	called	every	x	number	of	instructions,	where	the	caller	specifies	x.

To	register	for	line,	call	or	return,	call	debug.sethook	with	a	handler	function	and	the
first	letter	of	the	event	being	hooked	into.	For	example,	registering	for	call
events	would	look	like	this:	debug.sethoof(function,	"c").	The	event	handler
function	should	take	one	argument	in	all	cases,	except	for	the	line	event,	when	it
should	take	two.	The	first	argument	will	always	be	a	string	describing	the	event.
The	optional	second	argument	for	line	will	be	the	line	number	being	executed.

Once	a	hook	has	been	set,	it	can	be	cleared	by	calling	the	debug.sethook	function	with	no	arguments.

Line	("l")
The	first	type	of	debug.sethook	event	is	the	line	event.	This	event	is	going	to	fire
every	time	a	line	of	code	is	being	executed.	If	you've	ever	used	a	debugger	that
supports	breakpoints,	this	is	the	functionality	that	could	be	used	to	implement
breakpoints.

To	subscribe	to	the	line	event,	provide	the	debug.sethook	function	with	two
arguments,	the	even	handler	and	the	string	"l".	The	handler	function	needs	to
take	two	arguments.	The	first	argument	is	going	to	be	a	string,	with	the	"line"
value.	The	second	argument	is	going	to	be	an	integer;	this	is	the	line	number
being	executed:

function	VectorLength(x,	y,	z)

		local	dot	=	x	*	x	+	y	*	y	+	z	*	z

		if	dot	==	0	then

				return	nil

		end

		return	math.sqrt(dot)

end

function	trace(event,	line)

		print("event:	"	..	event)

		print	("			executing:	line	"	..	line)

end

debug.sethook(trace,	"l")

local	x	=	3

local	y	=	5

local	z	=	1

local	len	=	VectorLength(x,	y,	z)

print	("length:	"	..	len)

Call	("c")
The	next	events	debug.sethook	can	hook	into	are	function	calls.	These	events	fire
every	time	a	function	is	called.	The	event	handler	only	needs	to	take	one
argument,	a	string.	The	value	of	this	string	will	always	be	"call".	To	subscribe	to
function	call	events,	provide	debug.sethook	with	two	arguments:	the	handler
function,	and	the	"c"	string.	Function	callback	hooks	become	much	more
powerful	when	combined	with	the	info	obtained	from	debug.getinfo.	The
following	code	demonstrates	this:

function	PrintV(x,	y,	z)

		local	out	=	"("	..	x	..	","

		out	=	out	..	",	"	..	y

		out	=	out	..	",	"	..	z	..	")"

		return	out

end

function	MagnitudeSq(x,	y,	z)

		local	magSq	=	x	*	x	+	y	*	y	+	z	*	z

		return	magSq;

end

function	trace(event)

		local	info	=	debug.getinfo(2)

		if	info.what	==	"Lua"	then

				print	("event:	"	..	event)

				print	("	function:	"	..	info.name)

				print	("	defined	on:	"	..	info.linedefined)

		end

end

debug.sethook(trace,	"c")

local	mSq	=	MagnitudeSq(9,	2,	6)

print	("Sqr	mag:	"	..	mSq)

PrintV(9,2,6)

Return	("r")
The	final	type	of	hook	is	a	return	hook.	Return	hooks	get	executed	every	time	a
function	returns,	that	is,	when	the	return	keyword	is	encountered.	To	subscribe	to
a	return	event,	provide	debug.sethook	with	two	arguments:	the	handler	function,
and	the	"r"	string.

The	handler	function	takes	only	one	argument,	a	string	constant	with	the	"return"
value.	This	callback	is	similar	to	the	function	callback:

function	Normalize(x,	y,	z)

		local	dot	=	x	*	x	+	y	*	y	+	z	*	z

		if	dot	==	0	then

				return	nil

		end

		local	len	=	math.sqrt(dot)

		return	{

				x	=	x	/	len,

				y	=	y	/	len,

				z	=	z	/	len

		}

end

function	trace(event)

		local	info	=	debug.getinfo(2)

		if	info.what	==	"Lua"	then

				print	("event:	"	..	event)

				print	("	function:	"	..	info.name)

				print	("	defined	on:	"	..	info.linedefined)

		end

end

debug.sethook(trace,	"r")

local	norm	=	Normalize(9,	2,	6)

Setting	a	counter
So	far,	the	syntax	of	debug.sethook	has	been	the	following:

debug.sethook(<handler	function>,	<"l"	|	"c"	|	"r">

No	matter	the	event,	the	function	always	took	two	arguments.
The	debug.sethook	function	has	an	optional,	third	argument:	count.	Providing	a
count	will	fire	a	"count"	event	on	every	time	the	specified	number	of	instructions
have	happened.

Multiple	hooks
Multiple	hooks	can	be	specified	by	adding	a	space	and	another	letter	to
debug.sethook.	For	example,	you	could	subscribe	to	every	possible	event,	like	so:

debug.sethook(trace,	"l	c	r",	1)

When	subscribing	to	multiple	hooks,	remember	the	callback's	second	argument
is	nil,	except	for	the	line	event.	Check	for	nil	as	appropriate.	The	following	code
demonstrates	how	to	do	this:

function	trace(event,	line)

		local	info	=	debug.getinfo(2)

		if	info.what	==	"Lua"	then

				print	("event:	"	..	event)

				print	("	function:	"	..	info.name)

				print	("	defined	on:	"	..	info.linedefined)

				if	line	~=	nil	then

						print	("	called	from:	"	..	line)

				end

		end

end

Traceback
Sometimes,	you	need	to	know	the	call	stack	of	the	currently	executing	code.
This	can	be	useful	for	understanding	how	to	recreate	a	bug,	following	code	flow,
or	just	to	better	understand	how	your	code	works	as	a	whole.	At	any	point,	you
can	get	the	current	call	stack	with	the	debug.traceback	function.	To	visually	see
where	in	the	code	you	are,	just	pass	the	result	of	this	function	to	print,	like	so:

		print(debug.traceback())

Debugger.lua
Before	moving	on,	let's	take	a	look	at	an	external	debugger	solution,	one	not
built	into	Lua.	dbeugger.lua	is	one	such	solution;	it	is	a	debugger	written	in	Lua.
You	should	grab	a	copy	of	the	debugger.lua	file	from	https://github.com/slembcke/debu
gger.lua.

To	use	debugger.lua,	you	first	have	to	include	the	module	in	your	source	file.	This
is	just	a	standard	call	to	require,	for	example:

local	debug	=	require("debugger")

The	module	that	was	just	included	is	a	functable.	That	is,	it	can	be	called	as	a
function.	To	set	a	breakpoint,	at	any	point	in	your	code,	just	write	debug().
Whenever	one	of	these	debug()	commands	is	hit,	the	flow	of	execution	will	be
given	to	the	debugger.	You	can	use	the	following	console	commands	to	debug:

<enter>:	re-run	the	last	command
c:	continue	execution
s:	step	forward	by	one	line	(into	functions)
n:	step	forward	to	the	next	line	(skipping	over	functions)
p:	execute	the	expression	and	print	the	result
f:	step	forward	until	exiting	the	current	function
u:	move	up	the	stack	by	one	frame
d:	move	down	the	stack	by	one	frame
t:	print	the	stack	trace
l:	print	the	function	arguments,	locals,	and	upvalues
q:	quit	the	program

https://github.com/slembcke/debugger.lua

Using	debugger.lua
Lets	take	a	look	at	an	example	of	using	debugger.lua.	Consider	the	following
buggy	code:

local	debug	=	require("debugger")

function	BuggyAdditionFunction(x1,	x2)

		local	sum	=	x1	*	x2

		debug()

		return	sum

end

local	add	=	BuggyAdditionFunction(2,	3)

print(add)

Here,	BuggyAdditionFunction	multiplies	the	two	arguments	instead	of	adding	them
together.	Notice	the	debug()	command	before	the	function	returns.	When	this
command	is	hit,	control	in	the	console	will	be	given	to	the	debugger.	Type	l	and
hit	Enter	to	print	the	local	variables.	Doing	so,	it's	easy	to	see	that	sum	is	wrong
and	needs	to	be	fixed.	

Error-handling	in	Lua
Lua	does	not	officially	support	exceptions.	But,	a	similar	mechanism	can	be	built
with	pcalls,	or	protected	calls.	An	exception	halts	the	flow	of	code	in	case	of	an
error,	and	returns	control	to	the	caller	right	away.	Furthermore,	some	kind	of
error	code	is	likely	provided	to	the	caller.	This	method	of	raising	errors
immediately	should,	in	theory,	allow	callers	to	handle	unsafe	code	gracefully.

Much	like	debugger.lua,	third-party	Lua	modules	for	profiling	already	exist.	Unsurprisingly,	one	of	the	best	modules	for
profiling	is	profile.lua.	You	can	learn	more	about	profile.lua	and	download	it	here:	https://bitbucket.org/itraykov
/profile.lua

https://bitbucket.org/itraykov/profile.lua

pcall	and	error
Lua's	most	efficient	way	to	handle	errors	is	pcall,	or	protected	call.	The	pcall
function	takes	only	one	argument,	the	function	to	be	called.	Optionally,	if	the
function	takes	arguments,	they	should	also	be	passed	to	pcall	as	additional
arguments.	On	success,	it	returns	true	and	all	of	the	values	the	function	would
normally	return.	On	failure,	it	returns	false,	and	any	error	messages	that	need	to
be	returned	as	well.

When	an	error	happens,	the	error	function	can	be	used	to	stop	the	execution	of
the	current	method.	The	error	function	expects	only	one	argument	(and	even
that's	optional):	an	error	message.	This	message	can	be	a	string,	but	doesn't	have
to	be.	The	error	message	can	be	any	valid	value.	The	code	here	shows	a	simple
use	for	pcall		and	error:

function	Normalize(x,	y,	z)	

		local	dot	=	x	*	x	+	y	*	y	+	z	*	z

		if	dot	==	0	then

				error("Can't	normalize	zero	vector")

		end

		local	len	=	math.sqrt(dot);

		return	x	/	len,	y	/	len,	z	/	len

end

local	ok,	x,	y,	z	=	pcall(Normalize,	0,	0,	0)

if	not	ok	then

		print	("Error	occured	normalizing	vector")

		print	("Error	message:	"	..	x)

else

		print	("Vector	normalized")

end

assert
Errors	raised	with	pcall	do	not	interfere	with	the	stability	of	the	program.	When
an	error	can	be	recovered	from,	it	should	be	handled	with	pcall.	But,	if	an	error	is
catastrophic,	it	should	be	handled	with	assert.	Unlike	pcall,	assert	assumes	an
error	is	not	recoverable	and	will	simply	kill	the	program.

The	assert	function	takes	two	arguments,	a	test	value	and	a	string.	If	the	test
value	evaluates	to	false	or	nil,	assert	will	kill	the	program.	If	the	test	value
evaluates	to	anything	else,	it	is	returned.	The	second	argument	is	a	string.	This
string	will	be	printed	out	as	the	reason	that	the	program	has	failed	executing.	The
normalize	example	can	be	re-written	to	use	an	assertion,	like	so:

function	Normalize(x,	y,	z)	

		local	dot	=	x	*	x	+	y	*	y	+	z	*	z

		assert(dot	~=	0,	"Can't	normalize	zero	vector")

		local	len	=	math.sqrt(dot);

		return	x	/	len,	y	/	len,	z	/	len

end

local	x,	y,	z	=	Normalize(0,	0,	0)

print("normalized	vector")

Profiling
Not	all	Lua	debugging	is	about	errors.	Sometimes,	debugging	is	more
optimization	work.	In	order	to	tell	what	part	of	your	code	is	running	slow,	or	to
detect	any	code	hot	spots,	you	have	to	profile	your	code.	Profiling	code	means
measuring	how	long	something	took	to	execute,	or	how	many	times	something
has	executed.	We	can	use	Lua's	debug	library	to	build	a	simple	profiler.

The	profile	module
We	will	implement	the	profiler	as	a	new	module.	Create	a	new	file,	profiler.lua,
and	declare	the	profiler	table.	This	table	will	contain	four	other	tables:	one	table
for	the	names	of	every	function,	one	for	the	number	of	times	a	function	is	called,
one	for	the	total	time	spent	on	the	function,	and	one	for	timing	the	functions.

The	key	to	each	of	these	tables	is	going	to	be	a	function	object:

local	profiler	=	{}

profiler.names	=	{	}

profiler.counts	=	{	}

profiler.times	=	{	}

profiler.timers	=	{	}

The	profiler	module	will	have	two	important	public	functions:	start	and	stop.
These	functions	will	start	and	stop	the	profiler,	respectively.	The	profiler	module
will	have	an	internal	function,	private_hook.	The	start	and	stop	functions	just	set
and	clear	the	private_hook	function	as	a	debug	hook.	The	debug	hook	will	fire	for
both	call	and	return	events:

profiler.start	=	function()

		debug.sethook(profiler.private_hook,	"c	r")

end

profiler.stop	=	function()

		debug.sethook()

end

Once	the	profiler	is	done	profiling,	there	needs	to	be	a	way	to	collect	and	review
the	data	it	collected.	This	is	where	the	dump	function	of	the	profiler	comes	in.	This
function	will	look	trough	all	the	records	in	the	profiler	and	print	out	their	values:

profiler.dump	=	function()

		for	k,	v	in	pairs(profiler.names)	do

				local	out	=	"function	"	..	v

				out	=	out	..	"	was	called	"

				out	=	out	..	profiler.counts[k]

				out	=	out	..	"	times	and	took	"

				out	=	out	..	profiler.times[k]

				out	=	out	..	"	seconds	to	execute"

				print(out)

		end

end

Finally,	let's	take	a	look	at	how	the	private_hook	function	works.	This	function
does	all	of	the	actual	profiling	work.	The	explanation	of	this	function	is	going	to
be	broken	up	into	a	few	sections	of	code	here.	First,	the	function	needs	to	get	the
debug	info	of	its	caller,	that	is,	two	levels	up	the	stack.	If	the	caller	was	not	Lua,
or	if	the	calling	function	is	profiler.stop,	the	private_hook	function	needs	to	stop
execution:

profiler.private_hook	=	function(event)

		local	info	=	debug.getinfo(2,	"fSn")

		if	info.what	~=	"Lua"	then

				return

		end

		local	f	=	info.func

		if	f	==	profiler.stop	then

				return

		end

Next,	we	handle	the	event	when	a	function	call	is	seen	for	the	first	time.	We
know	if	this	is	the	first	time	a	function	is	called	if	it	is	not	in	the	profiler.names
table.	Additionally,	we	need	to	check	and	make	sure	the	current	event	is	a	call
event.	If	both	of	these	conditions	are	true,	default	values	need	to	be	added	to	the
profiler.names,	profiler.counts,	profiler.times,	and	profiler.timers	tables:

		if	profiler.names[f]	==	nil	and	event	==	"call"	then

				profiler.names[f]	=	info.name

				profiler.counts[f]	=	1

				profiler.times[f]	=	0.0

				profiler.timers[f]	=	os.clock()

On	the	other	hand,	if	the		profiler.names[f]	table	already	contains	the	function,	we
know	some	profiling	work	has	to	be	done.	The	profiler	needs	to	do	different
work	based	on	the	event	being	processed:

If	the	event	is	a	call	event,	the	number	of	times	the	function	has	been	called
needs	to	be	increased,	and	the	timer	for	the	function	needs	to	be	set.
If	the	event	is	a	return	event,	the	time	between	the	call	event	and	now	needs
to	be	calculated,	and	added	to	the	total	running	time	of	the	function:

elseif	profiler.names[f]	~=	nil	then

				if	event	==	"call"	then

						profiler.counts[f]	=	profiler.counts[f]	+	1

						profiler.timers[f]	=	os.clock()

				elseif	event	==	"return"	then

						local	t	=	profiler.times[f];

						local	d	=	os.difftime(

								profiler.timers[f],

								os.clock()

)

						profiler.times[f]	=	t	+	d

						profiler.times[f]	=	t	+	d

				end

		end

end	--	End	private_hook	function

Finally,	finish	up	the	module	by	returning	the	profiler	table:

return	profiler

Using	the	profile	module
The	profiler	module	we	just	created	is	straightforward	and	easy	to	use.	First,	you
need	to	include	the	actual	profiler	module.	Whenever	you	want	to	start	recording
functions,	call	profiler.start().	Calling	profiler.stop()	will	stop	the	profiler	from
collecting	further	information.	To	see	all	of	the	information	that	the	profiler	has
collected,	call	profiler.dump().	The	following	code	provides	a	simple	example	of
how	to	use	the	profiler	module:

profiler	=	require("profiler")

profiler.start()

function	Normalize(x,	y,	z)	

		local	dot	=	

		assert(dot	~=	0,	"Can't	normalize	zero	vector")

		local	len	=	math.sqrt(2);

		return	x	/	len,	y	/	len,	z	/	len

end

local	x,	y,	z	=	Normalize(7,	8,	9)

print("normalized	vector")

local	x,	y,	z	=	Normalize(6,	7,	4)

print("normalized	vector")

local	x,	y,	z	=	Normalize(2,	9,	5)

print("normalized	vector")

profiler.stop()

profiler.dump()

Integrated	development
environments
So	far,	we	have	covered	how	to	use	the	built-in	features	of	Lua	to	debug	code.
To	make	debugging	easier,	several	integrated	development	environments,	or
IDEs,	for	Lua	exist.	An	IDE	is	an	external	application	that	can	be	used	to	run
your	Lua	code.	Typically,	IDEs	provide	syntax	highlighting,	and	sometimes
code	auto-completion,	visual	breakpoints,	call	stacks,	and	watch	windows.	This
section	will	cover	how	to	use	three	of	the	most	popular	Lua	IDEs.

LuaEdit
LuaEdit	is	a	simple	Lua	editor	that	offers	a	visual	studio-like	interface	with
similar	functionality	and	hotkeys.	This	IDE	features	breakpoints,	a	call	stack
view,	and	a	watch	view.	LuaEdit	provides	all	the	functionality	one	would	look
for	in	a	fully	featured	IDE.	The	only	downside	is	that	LuaEdit	is	Windows-only.
You	can	download	LuaEdit	here:	http://luaedit.sourceforge.net

http://luaedit.sourceforge.net

Breakpoints
The	most	powerful	feature	of	LuaEdit	is	being	able	to	set	breakpoints.	To	set	a
breakpoint,	click	in	the	gutter	next	to	the	line	numbers.	A	red	dot	will	appear;
this	is	a	breakpoint	that	is	now	set	as	shown	in	the	next	screenshot.	You	can
click	the	green	arrow	or	press	F5	to	start	debugging.	The	program	will	run	until
a	breakpoint	is	hit.	You	can	quit	the	debugger	any	time	by	clicking	the	blue
square,	or	hitting	Shift	+	F5:

As	you	can	see	in	the	previous	screenshot,	once	a	breakpoint	is	hit,	the	line	you
are	on	will	turn	yellow.	You	can	use	the	buttons	next	to	run	&	stop	to	step	over
the	current	line,	step	into	the	function	that	is	on	the	current	line,	or	to	step	out	of
the	current	function.	Keyboard	shortcuts	for	all	of	these	also	exist:	they	are	F11,
F10,	and	Shift	+	F11,	respectively.

Locals	and	Watch
There	are	two	important	windows	that	can	be	opened	from	Debug	|	Window,	and
they	are	"Watch"	and	"Locals".	Both	the	Watch	and	Locals	windows	are	visible	in	the
screenshot	here:

The	"Locals"	window	automatically	shows	the	local	variables	of	the	currently
executing	function.	It's	very	useful	for	debugging.	The	Watch	window	works
similarly,	except	you	must	provide	the	name	of	each	variable	to	watch.	To	do	so,
double-click	on	the	first	empty	item's	name,	and	type	the	name	of	the	variable	to
watch.

Callstack
The	Callstack	window	can	be	found	under	Debug"	|"	Windows,	and	is	shown	in
the	following	screenshot:

The	Call	Stack	window	shows	the	current	stack	of	your	program.	Every	time	a
function	is	called,	it	is	put	on	the	Call	Stack.	Using	this	window	you	can	trace
the	program's	execution	from	the	entry	point	of	Lua	to	the	currently	executing
function.

Decoda
Decoda	is	a	free	and	open	source	Lua	IDE,	similar	to	LuaEdit.	Decoda	was
originally	developed	for	the	game	Natural	Selection	II.	Since	then,	it	has	become
open	source.	Decoda	offers	syntax	highlighting,	auto	completion,	breakpoints,
watch	windows,	and	call	stack	viewing.	Unlike	other	IDEs,	Decoda	patches
itself	into	any	executable	running	a	standard	Lua	distribution.	This	makes	the
IDE	usable	with	applications	that	have	no	native	support	for	it.

Like	LuaEdit,	Decoda	is	a	Windows-only	program.	You	can	learn	more	about
Decoda	and	download	it	here:	https://unknownworlds.com/decoda/.

https://unknownworlds.com/decoda/

Starting	debugging
To	start	debugging	with	Decoda,	click	on	Edit	|	Start	Debugging	or	hit	F5.	When
debugging	code	with	Decoda,	you	have	to	specify	a	run	time.	This	is	a	.exe	file
for	Decoda	to	hook	into.	If	you're	running	vanilla	Lua,	this	would	be	lua.exe	or
lua52.exe.	You	can	also	configure	any	command-line	arguments	and	the	working
directory	on	this	screen,	as	shown	here:

Everything	else
Decoda	supports	the	same	set	of	debug	features	as	LuaEdit.	In	fact,	it	even	uses
the	same	keyboard	shortcuts:

The	preceding	screenshot	shows	a	breakpoint	being	set,	the	call	stack,	a	watch
window,	and	the	breakpoints	window.	You	can	find	all	of	these	windows	under
the	"Window"	menu	item.	If	you	are	not	familiar	with	how	these	windows	or
breakpoints	work,	return	to	the	LuaEdit	section	of	this	chapter.

Zero	Brane	Studio
Zero	Brane	Studio	offers	the	standard	set	of	debug	tools	that	LuaEdit	and
Decoda	perform.	It	can	set	breakpoints,	and	has	a	call	stack	and	a	watch
window.	The	big	thing	that	sets	Zero	Brane	apart	is	its	cross	platform.	The	Zero
Brane	IDE	is	written	in	Lua	and	works	on	Windows,	macOS,	and	Linux.	You
can	download	Zero	Brane	Studio	here:	https://studio.zerobrane.com

https://studio.zerobrane.com

Selecting	an	interpreter
Zero	Brane	Studio	supports	many	Lua	interpreters	for	different	development
environments.	You	can	see	all	of	the	interpreters	Zero	Brane	Studio	supports
from	the	Project	|	Lua	Interpreter	menu.	The	following	screenshot	shows	all	of
the	available	interpreters	as	well:

To	run	the	code	that	is	provided	in	this	book,	you	should	use	the	Lua	5.2
interpreter	option.

Starting	the	debugger
Because	Zero	Brane	Studio	is	written	in	Lua	and	is	cross-platform,	it	can't
automatically	hook	into	an	interpreter	like	LuaEdit	or	Decoda	can.	Instead,	Zero
Brane's	debug	facilities	rely	on	a	Luamodule,	much	like	debug.lua	discussed
earlier	in	this	chapter.	To	enable	debugging	in	Zero	Brane	Studio,	you	need	to
include	the	following	line	of	code	at	the	start	of	your	program:

require("mobdebug").start()

Breakpoints	will	not	work	until	that	code	is	executed.	After	that	line	of	code	has
executed,	you	should	be	able	to	debug	in	Zero	Brane	using	tools	similar	to	those
provided	by	LuaEdit	and	Decoda.

Visual	Studio	Code
Visual	Studio	Code	does	not	have	native	support	for	Lua	Debugging.	There	are
some	plugins	available,	such	as	Lua	Debug,	that	enable	debugging	of	Lua	files,
but	they	tend	to	be	Windows-only	or	require	other	dependencies.	At	the	time	of
writing,	Lua	Debug	is	the	most	stable	and	powerful	debugger	available	in	Visual
Studio	Code.	You	can	download	it	here:	https://marketplace.visualstudio.com/items?i
temName=actboy168.lua-debug.

https://marketplace.visualstudio.com/items?itemName=actboy168.lua-debug

Summary
In	this	chapter,	you	learned	how	to	use	Lua's	built-in	functionality	to	gather
debug	information	on	the	currently	running	program.	Next,	error-handling
within	Lua	was	covered.	Finally,	we	discussed	how	to	use	external	programs,
IDEs,	to	write	and	debug	Lua	faster.	After	having	read	this	chapter,	you	should
be	ready	to	use	Lua	in	a	production	environment.

Embedding	Lua
So	far,	we	have	been	using	Lua	as	a	standalone	language.	We	did	this	by	using
the	Lua	interpreter,	which	is	the	lua52	program	we	renamed	lua	in	Chapter	1,
Introduction	to	Lua.	The	Lua	interpreter	itself	is	written	in	C.	In	this	chapter,	we
will	explore	some	of	the	same	methods	used	to	create	the	interpreter.

Lua	as	a	language	was	designed	with	C	interoperability	in	mind.	You	can	use
Lua	as	a	standalone	language	or	as	an	embedded	scripting	language.	Many
games	and	other	applications	utilize	Lua	as	a	scripting	language—we	will	see
some	examples	of	this	in	the	next	chapter.

In	this	chapter,	we're	going	to	focus	on	some	of	the	common	tasks	involved	in
embedding	Lua	into	any	C	or	C++	application.	While	we	are	only	focusing	on
the	C	API,	Lua	can	be	embedded	into	many	languages	using	the	same	API.

This	chapter	assumes	you	already	have	some	working	knowledge	of	C	or	C++.	This	chapter	is	not	intended	to	be	an
introduction	to	C.	As	such,	it	only	focuses	on	the	Lua	C	API.

By	the	end	of	this	chapter,	you	will	be	able	to	do	the	following:

Understand	the	Lua	C	API
Understand	the	Lua	stack
Create	Lua	variables	from	C
Call	Lua	functions	from	C
Call	C	functions	from	Lua

Technical	requirements
You	will	be	required	to	have	JavaScript	programming	language.	Finally,	to	use
the	Git	repository	of	this	book,	the	user	needs	to	install	Git.

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/Lua-Quick-Start-Guide/tree/master/Chapter06

Check	out	the	following	video	to	see	the	code	in	action:
http://bit.ly/2LC8Xzn

https://github.com/PacktPublishing/Lua-Quick-Start-Guide/tree/master/Chapter06
http://bit.ly/2LC8Xzn

Working	with	the	C	API
The	Lua	C	API	is	efficient	and	lightweight.	There	are	a	few	important	header
files	we	need	to	be	familiar	with	before	writing	any	C	code.	These	files	are	the
following:

lua.h:	Provides	all	the	functions	needed	to	work	with	Lua.	All	functions	in
this	file	are	prefixed	with	lua_.
luaxlib.h:	Uses	the	public	API	exposed	in	lua.h	to	provide	higher	levels	of
abstraction	for	common	tasks.	All	functions	in	this	file	are	prefixed	with
luaL_.
lualib.h:	Provides	the	standard	Lua	libraries.	All	functions	in	this	file	are
also	prefixed	with	luaL_.

Lua	does	not	allocate	any	global	memory.	Instead	it	stores	all	of	its	states	in	a
structure	called	lua_State.	This	structure	contains	everything	that	the	Lua	runtime
needs	to	operate.	Putting	a	mutex	lock	around	your	lua_State	object	is	a	fast	and
easy	way	to	make	sure	any	Lua	instance	is	thread	safe.	It's	perfectly	valid	to
create	multiple	states	and	therefore	multiple	Lua	runtimes	in	one	application,
though	the	use	cases	for	this	are	scarce.

To	create	a	new	Lua	state,	call	the	luaL_newstate()	function,	which	will	return	a
pointer	to	a	lua_State	structure.	This	pointer	needs	to	be	passed	to	all	future	Lua
API	calls—this	is	how	Lua	knows	what	runtime	it	is	working	with.	After	your
program	is	done	running,	destroy	the	state	with	the	lua_close(lua_State*)	function.

When	you	create	a	new	Lua	state,	the	standard	Lua	libraries	are	not
automatically	loaded.	This	can	be	problematic	as	Lua	programmers	will	expect,
as	a	minimum,	that	the	standard	Lua	libraries	will	be	available.	You	can	load	the
standard	libraries	with	the	luaL_openlibs(lua_State*)	function.

The	code	that	follows	demonstrates	how	to	set	up	and	destroy	an	embedded	Lua
runtime:

#include	"lua.h"

#include	"lauxlib.h"

#include	"lualib.h"

int	main(int	argc,	char**	argv)	{

int	main(int	argc,	char**	argv)	{

		//	First,	create	a	new	lua	state

		lua_State	*L	=	luaL_newstate();

		//	Next,	load	all	the	standard	libraries

		luaL_openlibs(L);

		//Write	code	that	interacts	with	the	Lua	runtime	here

		//	Finally,	destory	the	lua	state

		lua_close(L);

		return	0;

}

Lua	does	not	add	#ifdef	__cplusplus	or	extern	"C"	decorations	to	it's	code.	This	means	Lua	can	be	compiled	as	C	or	as
C++	code.	Since	C++	mangles	function	names,	make	sure	to	link	to	the	right	version	of	the	library.

The	stack
Lua	and	C	are	fundamentally	different	languages.	They	handle	everything
differently,	such	as	memory	management,	types,	and	even	function	calls.	This
poses	a	problem	when	trying	to	integrate	the	two:	how	can	we	communicate
between	these	two	languages?	This	is	where	the	Lua	stack	comes	in.

The	Lua	stack	is	an	abstract	stack	that	sits	between	C	and	the	Lua	runtime.	It's	a
Last	In	First	Out	(LIFO)	stack.	The	idea	is,	both	C	and	Lua	know	the	rules	of
the	stack	and	so	long	as	they	both	obey	the	rules,	they	can	coexist	and
communicate.

In	general,	you	can	think	of	the	stack	as	a	shared	data	storage	mechanism.	The
way	it	normally	works	is	that	you	push	some	values	onto	the	stack	in	C.	Then,
you	call	a	Lua	function	and	hand	control	over	to	the	Lua	runtime.	The	runtime
pops	the	values	off	the	stack,	and	the	function	in	question	does	its	work	and
pushes	the	return	value	back	on	the	stack.	Control	is	then	handed	back	to	C,
which	pops	the	return	value	off	the	stack.

The	following	diagram	demonstrates	this	flow:

Pushing	to	the	stack
The	first	step	in	working	with	the	Lua	stack	is	usually	to	push	some	data	onto	it.
The	Lua	C	API	provides	several	functions	to	push	different	types	of	data	onto
the	stack.	The	following	functions	can	be	used	to	push	data:

	lua_pushnil(lua_State*):	Pushes	nil	onto	the	stack
	lua_pushboolean(lua_State*,	bool):	Pushes	a	Boolean	value	onto	the	stack
lua_pushnumber(lua_State*,	lua_Number):	Pushes	a	double	onto	the	stack
lua_pushinteger(lua_State*,	lua_Integer):	Pushes	a	signed	integer	onto	the	stack
lua_pushstring	(lua_State*,	const	char*):	Pushes	a	NULL	terminated	string	onto
the	stack

When	you	push	a	string	onto	the	stack,	Lua	creates	its	own	copy	of	that	string.
As	soon	as	the	push	operation	is	finished,	you	can	modify	or	even	free	the	copy
of	the	string	you	have.

The	stack	is	not	infinite.	Before	pushing	data	onto	the	stack,	it's	a	good	idea	to
check	whether	there	is	actually	room	for	the	data	or	not.	To	check	how	much
room	the	stack	has,	you	can	use	the	int	lua_checkstack(lua_State*,	int)	function.
The	function	takes	two	arguments:	the	Lua	state	and	the	number	of	items	you
want	to	add	to	the	stack.	If	there	is	enough	room,	the	function	returns	true	(1).	If
there	is	not	enough	room,	the	function	returns	false	(0).	This	function	may
actually	grow	the	stack	if	needed.

Querying	the	stack
Lua	references	elements	in	the	stack	using	indices.	The	bottom	element	of	the
stack	is	index	1;	the	indices	grow	towards	the	top	of	the	stack	where	the	last
element	was	added.	Lua	can	also	index	the	stack	in	reverse.	An	index	of	-1	refers
to	the	top	of	the	stack,	-2	to	the	element	right	below	the	top,	and	so	on:

Using	indices,	you	can	check	the	type	of	any	element	on	the	stack.	The	functions
listed	here	can	be	used	to	query	the	type	of	element	on	the	stack.	They	all	return
true	(1)	or	false	(0).	Each	function	takes	a	Lua	state	for	its	first	argument	and	a
stack	index	for	its	second:

int	lua_isnumber(lua_State*,	int):	Checks	whether	the	element	at	the	provided
index	is	a	number
int	lua_isstring(lua_State*,	int):	Checks	whether	the	element	at	the	provided
index	is	a	string
int	lua_isboolean(lua_State*,	int):	Checks	whether	the	element	at	the	provided
index	is	a	Boolean
int	lua_istable(lua_State*,	int):	Checks	whether	the	element	at	the	provided
index	is	a	table
int	lua_isnil(lua_State*,	int):	Checks	whether	the	element	at	the	provided
index	is	nil

There	is	a	similar	function,	int	lua_type(lua_State*,	int),	which	returns	an
enumeration	value	with	the	type	of	object.	This	function	can	be	useful	when
used	in	a	switch	statement	or	something	similar.	The	following	are	valid
enumeration	values	that	the	function	could	return:

LUA_TNUMBER:	Represents	a	Lua	number
LUA_TSTRING:	Represents	a	Lua	string
LUA_TBOOLEAN:	Represents	a	Lua	Boolean

LUA_TTABLE:	Represents	a	Lua	table
LUA_TNIL:	Represents	nil

Reading	from	the	stack
Lua	provides	several	functions	to	retrieve	values	from	the	stack.	The	most
common	functions	are	listed	here.	The	first	argument	to	each	of	these	functions
is	the	Lua	state,	and	the	second	argument	is	an	integer,	the	index	of	the	element
being	read:

int	lua_toboolean(lua_State*,	int):	Returns	true	(1)	or	false	(0).
lua_Number	lua_tonumber(lua_State*,	int):	Returns	a	double.
lua_Integer	lua_tointeger(lua_State*,	int):	Returns	an	integer.
const	char*	lua_tostring(lua_State*,	int,	size_t*):	Returns	a	pointer	to	the
internal	Lua	string.	The	last	parameter	is	optional;	if	it's	not	NULL,	the	size	of
the	string	will	be	written	to	it.
size_t	lua_objlen(lua_State*,	int):	Returns	the	same	value	as	the	#	operator	in
Lua.

When	calling	lua_tostring,	the	function	returns	the	pointer	to	an	internal	string.
The	return	value	is	const,	to	remind	you	that	you	should	not	modify	this	value!
As	soon	as	the	value	is	popped	off	the	stack,	that	string	might	no	longer	exist.	It's
a	bad	idea	to	hold	on	to	the	return	value	of	this	function—instead,	make	a	copy
and	store	it.

Stack	size
You	can	get	the	index	of	the	top	element	of	the	Lua	stack	with	the	int
lua_gettop(lua_State*)	function.	The	value	this	function	returns	will	be	the	index	of
the	top	element	on	the	Lua	stack.

You	can	set	the	top	element	(size)	of	the	stack	with	lua_settop(lua_State*,	int).
This	function	returns	nothing.	The	second	argument	is	the	element	that	should	be
the	index	of	the	new	top	element	on	the	stack.	This	function	effectively	resizes
the	stack.	

If	the	requested	stack	size	with	lua_settop	is	smaller	than	the	previous	size,	all
elements	above	the	new	top	are	simply	discarded.	If	the	requested	stack	size	is
greater	than	the	previous	one,	all	new	elements	will	be	filled	with	nil.

There	is	a	lua_pop(lua_State*,	int)	macro	defined	in	lua.h,	which	is	a	handy	shortcut.	This	function	will	pop	some
elements	off	the	stack,	simply	discarding	them.	The	second	argument	of	the	function	is	how	many	elements	to	remove.

Reading	Lua	variables	from	C
It's	very	easy	to	read	and	write	Lua	variables	from	C.	Because	of	this,	Lua	is
often	used	as	a	configuration	language	or	to	save	and	load	the	state	of	a	program.
The	Lua	runtime	will	parse	and	interpret	files	for	you,	removing	the	need	for
manual	parsing.	And	the	syntax	of	Lua	lends	itself	very	well	to	these	kinds	of
tasks.	In	this	section,	we're	going	to	explore	how	to	read	Lua	variables	that	are
used	as	configuration	data.

Loading	a	Lua	file
To	read	a	Lua	variable	in	C,	you	will	need	to	load	the	Lua	file	with	int
luaL_loadfile(lua_State*,	const	char*).	The	resulting	chunk	will	then	need	to	be
executed	with	lua_pcall(lua_State*,	int,	int,	int,	int).	After	the	Lua	chunk	is
loaded	and	executed,	any	variables	it	declared	can	be	read.	The	lua_pcall	function
will	be	described	in	more	detail	in	the	Calling	Lua	functions	from	C	section	of
this	chapter.

The	luaL_loadfile	function	returns	0	on	success,	or	one	of	the	following
enumerations	on	failure:	LUA_ERRSYNTAX,	LUA_ERRMEM,	LUA_ERRFILE.	The	first	argument	to
the	function	is	the	Lua	state	to	work	with,	the	second	is	the	file	path	to	load.	The
resulting	Lua	chunk	is	added	to	the	Lua	stack.

The	lua_pcall	function	is	intended	to	execute	Lua	chunks,	which	are	most	often
functions.	This	function	will	return	0	on	success	and	an	error	code	if	it	fails.	In
addition,	if	the	function	fails,	an	error	message	will	be	pushed	onto	the	stack.	

The	first	argument	of	lua_pcall	is	the	Lua	state	to	operate	on.	The	second
argument	is	the	number	of	arguments	the	chunk	being	called	expects.	This
argument	is	only	used	when	calling	Lua	functions	and	should	match	the	number
of	function	parameters.	When	executing	a	chunk	that	is	loaded	from	a	file	(or	a
string),	this	argument	should	be	0.

The	third	argument	of	lua_pcall	is	the	number	of	results	the	chunk	is	expected	to
return.	The	number	specified	here	is	the	number	of	items	lua_pcall	will	leave	on
the	stack.	If	there	is	a	number	here,	you	are	responsible	for	reading	and
removing	those	values	from	the	stack.	When	loading	a	simple	file	chunk,	this
value	can	be	0.	Some	files	(such	as	modules)	return	a	table	or	multiple	values.	In
those	cases,	the	value	should	not	be	0.

The	fourth	and	final	argument	of	lua_pcall	is	the	error	handler.	A	value	of	0	tells
Lua	to	push	the	error	message	onto	the	stack	if	lua_pcall	fails.

Reading	global	variables
Reading	a	global	variable	is	done	in	three	steps.	You	have	to	use	the	name	of	the
variable	to	push	its	value	onto	the	stack.	Once	on	the	stack,	the	value	can	be	read
by	C.	After	you	have	the	value	in	C,	clean	up	the	stack	by	removing	the	old
copy.	

You	can	push	a	global	variable	onto	the	stack	by	name	using	the	lua_getglobal
(lua_State*,	const	char	*)	function.	The	first	argument	of	lua_getglobal	is	the	Lua
state.	The	second	argument	is	the	name	of	the	variable	to	push	it	onto	the	stack.
This	function	does	not	return	anything.

The	lua_getglobal	function	uses	the	name	of	a	global	variable	to	leave	its	value	on
the	stack.	To	read	the	value	in	C,	you	have	to	use	one	of	the	lua_to	functions	such
as	lua_tonumber	or	lua_tostring.	These	functions	were	discussed	in	the	Reading	from
the	stack	section	of	this	chapter.	Once	you	have	the	value	of	the	variable	in	C,
clean	up	the	stack	by	calling	lua_pop.

Example
Let's	see	a	simple	example	of	how	to	read	variables	from	Lua	into	C.	Consider
the	use	case	where	we	create	a	game	character.	We	want	to	store	the	attributes	of
that	character	in	an	external	configuration	file	to	allow	for	easy	editing.	The
attributes	file	will	look	something	like	this:

class	=	"Warrior"

attack	=	56

defense	=	43

Reading	the	configuration	values	in	C	would	involve	creating	a	new	Lua	state,
loading	the	Lua	file,	pushing	each	variable	onto	the	stack,	reading	and	storing
the	values,	and	finally	popping	all	of	the	values	off	the	stack.	The	following	code
demonstrates	how	to	do	this:

#include	"lua.h"

#include	"lauxlib.h"

#include	"lualib.h"

#include	<string.h>

int	main(int	argc,	char**	argv)	{

				lua_State	*L	=	luaL_newstate();

				luaL_openlibs(L);

				//	Load	the	file	"hero.lua"

				int	result	=	luaL_loadfile(L,	"hero.lua");

				if	(result	!=	0)	{	

								printf("Could	not	load	hero.lua,	exiting");

								lua_close(L);

								return	-1;	

				}

				//	Execute	the	loaded	Lua	chunk

				result	=	lua_pcall(L,	0,	0,	0);

				if	(result	!=	0)	{	

								const	char*	error	=	lua_tostring(L,	-1);

								printf("Error	loading	hero.lua,	exiting.\n");

								printf("Error	message	%s",	error);

								lua_close(L);

								return	-1;	

				}

				int	stack_base	=	lua_gettop(L);

				//	Push	character	attributes	onto	stack

				lua_getglobal(L,	"class");	//	Index	1

				lua_getglobal(L,	"attack");	//	Index	2

				lua_getglobal(L,	"defense");	//	Index	3

				//	Read	the	value	of	each	new	thing	on	the	stack

				//	Read	the	value	of	each	new	thing	on	the	stack

				const	char*	class_p	=	lua_tostring(L,	stack_base	+	1);

				char	class_sz[32];

				strcpy(class_sz,	class_p);

				int	attack	=	lua_tointeger(L,	stack_base	+	2);

				int	defense	=	lua_tointeger(L,	stack_base	+	3);

				//	Clean	up	the	stack

				lua_pop(L,	3);

				//	Do	something	with	the	values

				printf("Character	is	%s	with	%d	attack	and	%d	defense\n",	class_sz,	attack,

defense);

				//	Close	Lua	&	clean	up

				lua_close(L);

				return	0;

}

The	preceding	sample	code	gets	the	base	index	of	the	stack	before	anything	is	pushed	to	it	and	then	reads	values	using
offsets	from	that	base	index.	You	should	never	assume	that	the	stack	is	empty—don't	hard	code	indices.	Instead,	always
use	indices	relative	to	a	known	offset.

Creating	Lua	variables	from	C
Communicating	with	Lua	is	one	way.	In	addition	to	reading	Lua	variables	from
C,	you	can	also	create	Lua	variables	from	C.	The	process	for	doing	so	is	simple:
you	push	a	value	onto	the	stack,	then	tell	the	Lua	runtime	to	assign	that	value	to
a	variable	by	name.

To	create	a	variable,	use	the	lua_setglobal	(lua_State*,	const	char*)	function.	This
function	returns	nothing.	Its	first	argument	is	the	Lua	state	to	work	on,	the
second	argument	is	the	name	of	the	global	variable	to	assign.	This	function	will
pop	the	top	value	off	the	stack	and	assign	it	to	the	name	of	the	variable	specified.

Let's	take	the	example	from	the	last	section	and	reverse	it.	This	time,	the
variables	for	class,	attack,	and	defense	are	going	to	be	created	in	C	and	printed
out	in	Lua.	The	C	code	will	push	all	values	onto	the	stack,	then	use	lua_setglobal
to	assign	them	to	variables.	After	the	variables	are	set	up,	a	Lua	file	should	be
loaded	and	executed:

#include	"lua.h"

#include	"lauxlib.h"

#include	"lualib.h"

int	main(int	argc,	char**	argv)	{

				lua_State	*L	=	luaL_newstate();

				luaL_openlibs(L);

				//	Push	values

				lua_pushstring(L,	"Warrior");

				lua_pushnumber(L,	56);

				lua_pushnumber(L,	43);

				//	Assign	from	top	of	stack,	IE	reverse	order

				lua_setglobal(L,	"defense");

				lua_setglobal(L,	"attack");

				lua_setglobal(L,	"class");

				//	Load	the	file	"printinfo.lua"

				int	result	=	luaL_loadfile(L,	"printinfo.lua");

				if	(result	!=	0)	{	

								printf("Could	not	load	hero.lua,	exiting");

								lua_close(L);

								return	-1;	

				}

				//	Execute	the	loaded	Lua	chunk

				result	=	lua_pcall(L,	0,	0,	0);

				if	(result	!=	0)	{	

								const	char*	error	=	lua_tostring(L,	-1);

								printf("Error	loading	hero.lua,	exiting.\n");

								printf("Error	loading	hero.lua,	exiting.\n");

								printf("Error	message	%s",	error);

								lua_close(L);

								return	-1;	

				}

				lua_close(L);

				return	0;

}

Next,	the	printinfo.lua	file	will	be	responsible	for	printing	out	all	of	these	values.
Notice	the	variables	class,	attack,	and	defense	are	never	created	in	Lua.	They	can
be	referenced	because	they	were	created	in	C:

print	("Charater	is	"	..	class	..	"	with	"	..	attack	..	"	attack	and	"	..	defense	..	"

defense");

Calling	Lua	functions	from	C
The	method	for	calling	Lua	functions	from	C	has	already	been	covered	in	the
Loading	a	Lua	file	section	of	this	chapter—it's	lua_pcall.	This	time	around,	we
will	be	using	the	second	and	third	arguments	of	the	function.	As	a	reminder,	the
second	argument	is	the	number	of	arguments	on	the	stack	for	Lua	to	consume,
and	the	third	argument	is	the	number	of	values	we	expect	Lua	to	leave	on	the
stack	for	us.

Let's	make	an	example	function	in	Lua	that	takes	two	numbers	and	returns	a
linear	index	into	a	matrix.	Only	the	Lua	code	will	know	the	width	of	the	matrix.
The	Lua	code	for	finding	this	linear	index	will	look	something	like	this:

num_columns	=	7

function	GetIndex(row,	col)

				return	row	*	num_columns	+	col

end

The	preceding	Lua	function	expects	two	variables	to	be	on	the	stack:	row	and	col.
It	will	leave	one	value	on	the	stack.	Next,	let's	create	a	C	wrapper	function	that
has	a	similar	name	and	signature.	This	wrapper	function	is	expected	to	run	in	a
valid	Lua	context	that	has	loaded	the	Lua	file	with	the	function	already	defined
in	the	preceding	code:

int	LinearIndex(lua_State*L,	int	row,	int	col)	{

				//	Push	the	GetIndex	function	on	the	stack

				lua_getglobal(L,	"GetIndex");

				//	Stack:	function	(GetIndex)

				

				//	Push	the	row	variable	on	the	stack

				lua_pushnumber(L,	row);

				//	Stack:	function	(GetIndex),	int	(row)

				//	Push	the	col	variable	on	the	stack

				lua_pushnumber(L,	col);

				//	Stack:	function	(GetIndex),	int	(row),	int	(col)

				//	Pop	two	arguments	off	the	stack	(row	&	col)

				//	Call	the	function	on	the	top	of	the	stack	(GetIndex)

				//	Leave	one	value	on	the	stack

				lua_pcall(L,	2,	1,	0);

				//	Stack:	int	(return	value	of	GetIndex)

				//	Remove	the	result	of	GetIndex	from	the	stack

				int	result	=	lua_tointeger(L,	-1);

				lua_pop(L,	1);

				//	Stack:	empty

				return	result;

}

Calling	C	functions	from	Lua
Because	functions	in	C	and	Lua	work	so	differently,	exposing	a	C	function	to
Lua	can	get	a	bit	tricky.	All	C	functions	that	Lua	can	call	must	follow	the
signature	of	lua_CFunction,	which	is	defined	in	lua.h	as	the	following:

typedef	int	(*lua_CFunction)	(lua_State	*L);

This	function	takes	only	one	argument,	the	lua_State.	The	return	value	of	the
function	is	an	integer.	This	integer	is	the	number	of	elements	that	the	function
pushed	onto	the	stack	as	return	values.

Lua	has	multiple	stacks—each	C	function	called	from	Lua	has	its	own	stack	and	does	not	share	the	global	stack.

Let's	take	for	example	a	simple	C	function	that	returns	the	magnitude	of	a	three-
dimensional	vector.	In	C,	the	code	for	doing	so	might	look	something	like	the
following:

double	Vec3Magnitude(double	x,	double	y,	double	z)	{

				double	dot	=	x	*	x	+	y	*	y	+	z	*	z;

				if	(dot	==	0.0)	{

								return	0.0;

				}

				return	sqrt(dot);

}

The	preceding	function	can't	be	exposed	to	Lua	directly	because	it	doesn't	follow
the	lua_CFunction	signature.	There	are	two	ways	to	expose	this	function,	either	to
re-write	it	or	to	write	a	wrapper	function	for	it.	Both	approaches	are	similar.	The
following	is	a	rewritten	example:

int	LuaVec3Magnitude(lua_State*	L)	{

				double	x	=	lua_tonumber(L,	3);

				double	y	=	lua_tonumber(L,	2);

				double	z	=	lua_tonumber(L,	1);

				lua_pop(L,	3);

				double	dot	=	x	*	x	+	y	*	y	+	z	*	z;

				if	(dot	==	0.0)	{

								lua_pushnil(L);

				}

				else	{

								lua_pushnumber(L,	sqrt(dot));

				}

				return	1;

}

The	preceding	function	can	be	called	from	Lua.	Before	being	called,	it	must	be
registered.	Registering	a	function	means	it	first	needs	to	be	pushed	onto	the
stack	with	the		lua_pushcfunction	function.	Next,	the	function	on	the	stack	needs	to
be	assigned	to	a	variable	with	lua_setglobal.	The	code	that	follows	registers
the	LuaVec3Magnitude	function	to	be	available	in	Lua:

lua_pushcfunction(L,	LuaVec3Magnitude);

lua_setglobal(L,	"Vec3Magnitude");

After	the	LuaVec3Magnitude	function	is	registered	as	Vec3Magnitude	in	Lua,	it	can	be
called	at	any	time.

Rewriting	a	function	is	not	always	possible,	but	you	can	still	write	a	wrapper
function.	For	example,	we	could	create	a	function	called	LuaWrapperVec3Magnitude
that	interfaces	with	Lua,	but	instead	of	doing	the	work	of	Vec3Magnitude,	it	just
calls	the	Vec3Magnitude	function.	Then,	we	can
expose	LuaWrapperVec3Magnitude	as	Vec3Magnitude	to	Lua.

The	following	code	demonstrates	this:

int	LuaWrapperVec3Magnitude(lua_State*	L)	{

				double	x	=	lua_tonumber(L,	3);

				double	y	=	lua_tonumber(L,	2);

				double	z	=	lua_tonumber(L,	1);

				lua_pop(L,	3);

				//	Call	the	original	function	so	it	is	responsible	

				//	for	doing	the	actual	work

				double	result	=	Vec3Magnitude(x,	y,	z);

				if	(dot	==	0.0)	{

								lua_pushnil(L);

				}

				else	{

								lua_pushnumber(L,	result);

				}

				return	1;

}

//	Code	to	expose	the	wrapper	function:

lua_pushcfunction(L,	LuaWrapperVec3Magnitude);

lua_setglobal(L,	"Vec3Magnitude");

Working	with	tables	in	C
Up	until	now,	we	have	only	been	working	with	basic	Lua	types	and	functions.
Lua's	C	API	also	allows	us	to	work	with	tables.	A	new	table	can	be	created	with
the	lua_newtable	(lua_State*)	function.	This	function	returns	nothing	and	only	takes
the	Lua	state	as	an	argument.	The	lua_newtable	function	will	create	an	empty	table
and	leave	it	on	top	of	the	stack.	Once	the	table	is	on	the	stack,	it's	up	to	you	to
assign	it	to	a	variable.	For	example,	the	following	code	creates	a	table	named
"vector"	that	has	global	scope:

lua_newtable(L);

lua_setglobal(L,	"vector");

The	C	API	for	working	with	tables	can	get	a	little	verbose.	There	are	a	few
libraries	that	address	this	and	aim	to	reduce	the	amount	of	code	you	have	to
actually	type.	One	such	library,	Lua	Bridge,	will	be	discussed	in	Chapter	7,	Lua
Bridge.

After	the	table	is	created,	you	will	be	able	to	get	and	set	values	to	and	from	the	table.	However,	to	do	so,	the	table	will
need	to	be	on	the	stack.	You	can	retrieve	tables	to	be	on	the	stack,	just	like	any	other	variable	type,	by	using
lua_getglobal.

Reading	values	from	a	table
Fields	from	a	table	can	be	retrieved	with	the	lua_gettable	(lua_State*,	int)
function.	This	function	returns	nothing;	its	first	argument	is	the	Lua	state	to	work
on.	Typically,	accessing	a	table	in	Lua	involves	both	the	table	and	a	key,	for
example:	tbl[key].	Using	lua_gettable,	the	table	(tbl)	is	expected	to	be	at	the	index
specified	by	the	second	variable.	The	key	(key)	is	expected	to	be	on	the	top	of
the	stack.	The	following	code	demonstrates	how	to	retrieve	the	value	of	the	key	x
from	a	table	named	vector:

lua_getglobal(L,	"vector");

lua_pushstring(L,	"x");

lua_gettable(L,	-2);

Since	retrieving	a	variable	is	so	common,	Lua	provides	a	handy	shortcut
function,	lua_getfield	(lua_State*,	int,	const	char*).	This	helper	function	avoids
having	to	push	the	name	of	the	key	onto	the	stack,	and	instead	takes	it	as	the
third	argument.	The	second	argument	is	still	the	index	of	the	table	on	the	stack.
The	preceding	example	could	be	rewritten	with	lua_getfield	like,	as	follows:

//	Push	vector	to	the	top	of	the	stack

lua_getglobal(L,	"vector");

//	The	index	-1	refers	to	vector,	which	is	on	top	of	the	stack

//	Leaves	the	value	of	x	on	the	top	of	the	stack

lua_getfield(L,	-1,	"x");

//	The	stack	has	2	new	values	(vector	&	x)on	it	that	will	need	to	be	cleaned	up	at	some

point

You	might	have	noticed	that	the	preceding	code	passes	a	negative	index	to
lua_getfield.	Recall	from	the	Querying	the	stack	section	of	this	chapter	that
positive	numbers	index	the	stack	from	the	bottom	up,	while	negative	numbers
index	the	stack	from	the	top	down.	

Passing	-1	in	the	previous	code	works	because	the	lua_getglobal	function	call	will
leave	the	"vector"	table	on	the	top	of	the	stack.	At	this	point,	we	don't	know	(or
care)	how	large	the	stack	is,	just	that	the	top	element	is	the	table	"vector".	After
calling	lua_getfield,	the	value	of	"x"	is	on	the	top	of	the	stack.

Writing	values	to	a	table
Lua	offers	the	lua_settable	(lua_State*,	int)	function	to	set	fields	in	a	table.	The
function	returns	nothing.	Its	first	argument	is	the	Lua	state	to	work	on	and	the
second	argument	is	the	index	of	a	table	on	the	stack.

The	value	being	set	is	expected	to	be	on	top	of	the	stack,	and	the	key	to	set	it	to
is	expected	to	be	just	below	that.	lua_settable	will	pop	both	the	key	and	value	off
the	stack,	but	it	will	leave	the	table	on	the	stack.

For	example,	the	Lua	code	vector["y"]	=	7	could	be	written	with	this	API	as
follows:

//	Push	vector	onto	the	stack

lua_gettable(L,	"vector");

//	Push	y	onto	the	stack

lua_pushstring(L,	"y");

//	Push	7	onto	the	stack

lua_pushnumber(L,	7);

//	The	stack	has	three	new	variables	on	it

//	The	index	of	7	is	-1

//	The	index	of	"y"	is	-2

//	The	index	of	"vector"	is	-3

//	Call	lua_settable	on	the	"vector"	table	at	index	-3

lua_settable(L,	-3);

//	lua_settable	will	pop	the	key	("y")	and	value	(7)	off	the	stack

//	Only	one	item	is	left	on	the	stack,	the	"vector"	table

//	The	item	left	on	the	stack	should	be	cleaned	up	at	some	point

Lua	also	offers	the	lua_setfield	(lua_State*,	int,	const	char*)	function	which	avoids
the	need	to	push	the	key	onto	the	stack.	The	first	two	arguments	are	the	same	as
lua_settable.	The	third	argument	is	the	key	of	what	is	being	set.

The	value	of	what	is	being	set	is	expected	to	be	at	the	top	of	the	stack.	The
lua_setfield	function	will	pop	the	value	off	the	stack,	much	like	lua_settable	does.

The	preceding	code	sample	can	be	rewritten	to	use	lua_setfield	as	follows:

//	Push	"vector"	onto	the	stack

lua_gettable(L,	"vector");

//	Push	7	onto	the	stack

lua_pushnumber(L,	7);

//	Call	lua_setfield	on	the	"vector"table	at	index	-2

lua_setfield(L,	-2,	"y");

//	lua_setfield	will	pop	the	value	(7)	off	the	stack

//	Only	one	item	is	left	on	the	stack,	the	"vector"	table

Meta	tables
You	can	both	test	whether	a	table	has	a	meta	table	and	retrieve	the	said	meta
table	with	the	int	lua_getmetatable	(lua_State*,	int)	function.	The	first	argument	to
this	function	is	the	Lua	state	it	affects,	and	the	second	argument	is	the	index	of	a
table	on	the	stack.	If	the	table	at	the	specified	index	has	no	meta	table,	the
lua_getmetatable	function	returns	0	and	does	not	push	anything	onto	the	stack.	If
the	table	at	the	specified	index	does	have	a	meta	table,	the	lua_getmetatable
function	will	return	1	and	push	the	meta	table	onto	the	stack.

You	can	assign	a	meta	table	to	an	existing	table	with	the	int	lua_setmetatable
(lua_State*,	int)	function.	This	function	takes	the	Lua	state	it	affects	as	its	first
argument,	and	the	index	of	a	table	on	the	stack	as	the	second.	It	expects	the	top
of	the	stack	to	be	the	meta	table	and	will	pop	it	off	the	stack.	If	it	can	assign	the
meta	table,	the	function	will	return	1.	Otherwise,	if	an	error	occurs,	the	function
will	return	0.

User	data
Lua	has	a	special	data	type	called	userdata.	Userdata	can	store	arbitrary	C	data
structures	as	Lua	data—it's	just	some	arbitrary	amount	of	memory.	Userdata	can
have	meta	tables,	which	enables	us	to	extend	the	type	using	the	same	mechanism
we	would	use	to	extend	tables.	Like	tables,	userdata	is	compared	by	reference,
not	by	value.

To	create	a	new	block	of	userdata	memory,	use	the	void*	lua_newuserdata
(lua_State*,	size_t)	function.	The	first	argument	of	this	function	is	the	Lua	state	to
work	on,	and	the	second	argument	is	the	number	of	bytes	to	reserve	for	user
data.	The	function	returns	a	pointer	to	the	block	of	memory	that	Lua	has
reserved	for	this	user	data.

A	three-dimensional	vector	might	be	stored	in	userdata	like	as	follows:

struck	Vec3	{

				float	x,	y,	z;

}

int	make_up_vector(lua_State	*L)	{

				Vec3*	newVec	=	(Vev3*)lua_newuserdata(L,	sizeof(Vec3));

				newVec->x	=	0;

				newVec->y	=	1;

				newVec->z	=	0;

				//	The	new	user	data	is	on	the	stack

				return	1;

}

User	data	can	be	retrieved	using	the	lua_touserdata	function.	This	function	returns
a	pointer	to	the	user	data	memory.	It's	first	argument	is	the	Lua	state	to	work	on,
and	the	second	argument	is	the	index	on	the	stack	at	which	the	user	data	is
expected	to	be.	If	you	modify	the	pointer	returned	by	the	user	data,	you	are
modifying	the	actual	value	of	the	user	data.	The	following	code	sample	shows
how	to	use	the	lua_touserdata	function:

int	lua_vec3_cross	(lua_State	*L)	{

				Vec3*	a	=	(Vec3*)lua_touserdata(L,	-2);

				Vec3*	b	=	(Vec3*)lua_touserdata(L,	-1);

				float	dot	=	a->x	*	b->x	+	a->y	*	b->y	+	a->z	*	b->z;

				lua_pushnumber(L,	dot);

				return	1;

}

}

Lua	C	API	reference
By	now,	you	have	probably	noticed	that	working	with	the	Lua	stack	can	get	a	bit
confusing.	Some	functions	push	and	pop	values	onto	the	stack	and	others	don't.
You	can	find	out	how	each	function	manipulates	the	stack	by	reading	through
the	Lua	reference	manual,	available	at:	https://www.lua.org/manual/5.2/.

If	you	scroll	down	the	manual	page	a	bit,	every	Lua	function	is	listed.	Clicking
on	any	of	the	C	API	functions	will	show	the	signature	of	the	function,	a
description	of	how	the	function	works,	and	some	stack	information.	The	manual
page	for	the	lua_setfield	function	as	follows:

The	stack	information	is	called	out	in	the	upper	right	of	the	function.	There	are
always	three	entries	in	this	information	box.	The	first	one	is	how	many	elements
the	function	removes	from	the	stack,	the	second	number	is	how	many	elements
the	function	adds	to	the	stack,	and	the	third	entry	describes	how	the	function
handles	errors.	Valid	values	for	this	third	entry	are	the	following:

-:	The	function	will	not	raise	any	errors
m:	The	function	may	raise	memory-related	errors
e:	The	function	can	raise	any	error
v:	The	function	may	raise	an	error	on	purpose

https://www.lua.org/manual/5.2/

Summary
In	this	chapter,	we	covered	how	to	use	the	C	API	to	embed	Lua	into	C
applications.	This	allowed	us	to	call	Lua	functions	from	C,	call	C	functions	from
Lua,	and	to	interact	between	the	two	languages.	At	the	core	of	this	Lua	to	C
interaction	is	the	Lua	stack.	The	only	drawback	to	Lua's	C	API	is	that	it	can	be
rather	verbose	at	times.	In	Chapter	7,	Lua	Bridge,	we	will	cover	how	to	use	Lua
Bridge,	a	Lua	binding	framework	that	removes	a	lot	of	the	verbose	boilerplate
code.

Lua	Bridge
The	Lua	C	API	is	verbose	and	it	can	sometimes	be	a	bit	complicated	to	navigate.
Furthermore,	if	you	are	programming	in	C++,	the	API	doesn't	really	fit	into	the
OOP	idiom.	There	are	a	few	binding	libraries	that	try	to	bridge	this	gap.	One	of
the	most	intuitive	and	easy-to-use	libraries	out	there	is	Lua	Bridge.	You	can	get
Lua	Bridge	from	GitHub	at	https://github.com/vinniefalco/LuaBridge.

Lua	Bridge	is	a	C++	API.	When	using	Lua	Bridge,	you	have	to	use	a	C++	compiler.

Lua	Bridge	focuses	on	letting	the	user	create	object-oriented	Lua	bindings	in	an
intuitive	and	easy	manner.	In	fact,	using	Lua	Bridge,	you	can	create	a	fairly
complex	Lua	class	with	far	less	code	than	if	you	were	writing	it	using	the	Lua	C
API	alone.	One	of	the	nice	features	of	Lua	Bridge	is	the	concept	of	a
namespace.	A	namespace	is	just	a	container	table	that	all	variables	are
registered	in,	like	a	module.	Because	of	this	namespace	concept,	Lua	Bridge	will
never	allocate	global	variables	directly.

The	Lua	Bridge	reference	manual	can	be	found	online,	at	http://vinniefalco.github.io/LuaBridge/Manual.html.

By	the	end	of	this	chapter,	you	will	be	able	to	do	the	following:

Understand	the	Lua	Bridge	API
Use	Lua	Bridge	to	expose	C++	classes
Instantiate	C++	classes	in	Lua
Call	C++	functions	from	Lua
Access	Lua	variables	through	LuaRef	objects
Call	Lua	functions	using	LuaRef	objects

https://github.com/vinniefalco/LuaBridge
http://vinniefalco.github.io/LuaBridge/Manual.html

Technical	requirements
You	will	be	required	to	have	JavaScript	programming	language.	Finally,	to	use
the	Git	repository	of	this	book,	the	user	needs	to	install	Git.

The	code	files	of	this	chapter	can	be	found	on	GitHub:
https://github.com/PacktPublishing/Lua-Quick-Start-Guide/tree/master/Chapter07

Check	out	the	following	video	to	see	the	code	in	action:
http://bit.ly/2JUm2iE

https://github.com/PacktPublishing/Lua-Quick-Start-Guide/tree/master/Chapter07
http://bit.ly/2JUm2iE

API	conventions
Most	functions	that	are	used	to	register	classes	or	data	in	the	Lua	Bridge	API
return	some	kind	of	class.	This	is	done	with	the	intention	of	allowing	functions
to	be	chained.	Chaining	functions	means	using	the	result	of	one	function	and
calling	another	function	on	it.

For	example,	a	member	function	of	an	object	might	return	the	object,	so	a
different	function	can	be	called	without	storing	the	actual	object	as	a	variable.
Consider	the	following	class:

class	Foo	{

public:

		//	Assume	foo	is	a	singleton

		static	Foo*	GetInstance();	

		Foo*	DoWork();

		Foo*	PrintResults();

};

In	the	preceding	code,	the	GetInstance,	DoWork,	and	PrintResults	functions	all	return	a
pointer	to	the	object	that	they	were	called	on.	This	lets	us	get	the	object,	do	some
work	on	it,	and	print	the	result	of	that	work	with	only	one	line	of	code,	as
follows:

Foo::GetInstance()->DoWork()->PrintResults();

Lua	Bridge	does	something	very	similar.	A	typical	class	definition	using	Lua
Bridge	usually	looks	like	the	following	code:

getGlobalNamespace(L).beginNamespace("Math").beginClass<Vector>("Vector")

To	make	the	code	samples	easier	to	read,	we	will	indent	chained	function	calls.
The	preceding	line	of	code	can	be	indented	as	follows:

getGlobalNamespace(L)

				.beginNamespace("Math")

								.beginClass<Vector>("Vector")

Namespaces
Everything	inside	Lua	Bridge	must	be	declared	within	a	namespace.	These
namespaces	have	no	connection	to	C++	namespaces,	and	within	Lua,	they	are
just	tables.	The	concept	of	a	namespace	is	similar	to	the	concept	of	a	Lua	module
being	loaded	as	a	table.

A	global	namespace	exists,	and	you	can	register	functions,	variables,	and	classes
to	that	namespace,	but	it's	considered	bad	practice.	You	can	get	the	global
namespace	with	the	following	call:

getGlobalNamespace(lua_State*)

Once	you	have	the	global	namespace,	you	can	create	your	own	namespace	inside
it	with	the	beginNamespace(const	char*)	call.	This	function	takes	a	string	with	the
name	of	the	namespace	as	an	argument.	Once	you	are	done	working	with	the
namespace,	you	must	close	it	with	the	endNameSpace()	call.	If	you	want	to	add	more
classes	in	different	parts	of	the	code	in	a	namespace,	it	can	be	opened	multiple
times.	The	following	code	sample	demonstrates	this:

getGlobalNamespace(L)

				.beginNamespace("foo")

						//	Add	things	to	foo

				.endNamespace()

//	More	code

getGlobalNamespace(L)

				.beginNamespace("foo")

						//	Add	more	things	to	foo

				.endNamespace()

If	you	were	to	make	a	variable	named	bar	inside	the	preceding	foo	namespace,
accessing	the	bar	variable	would	require	using	the	namespace	as	follows:

print("bar:	"	..	foo.bar)

Variables
The	simplest	data	to	register	within	a	namespace	is	a	variable.	Variables	can	be
registered	with	the	addVariable	(char	const*,	T*,	bool	isWritable)	function.	This
function	is	templated,	meaning	that	any	type	of	variable	can	be	added	using	the
function.	The	first	argument	to	this	function	is	the	name	that	Lua	will	call	the
variable,	the	second	is	a	pointer	to	the	C++	variable.	The	third	argument	is
optional.	When	set	to	true	(the	default	value),	the	variable	can	be	read	from	and
written	to,	and	when	set	to	false,	the	variable	becomes	read-only.

The	following	code	demonstrates	how	to	register	a	variable	with	Lua	Bridge:

int	bar;

getGlobalNamespace(L)

				.beginNamespace("foo")

								.addVariable("bar",	&bar)

				.endNamespace()

Functions
Global	functions	can	be	registered	with	Lua	Bridge	as	well.	These	functions
don't	need	to	have	the	same	signature	as	lua_CFunction;	as	Lua	Bridge	will
generate	the	required	glue	code.	Functions	can	be	exposed	with	the	addFunction
function.	This	function	takes	two	arguments.	The	first	one	is	the	Lua-side	name
of	the	function,	and	the	second	is	a	pointer	to	the	function.	The	following	code
demonstrates	how	to	do	this:

int	bar()	{

				return	2;

}

getGlobalNamespace(L)

				.beginNamespace("foo")

								.addFunction("bar",	bar)

				.endNamespace()

It	is	also	possible	to	register	functions	written	against	the	Lua	C	API	that	match
the	signature	of	lua_CFunction.	You	will	most	often	do	this	if	you	need	to	port
some	legacy	code	over,	in	order	to	use	Lua	Bridge.	Adding	these	functions
works	almost	the	same;	the	only	difference	is	that	the	name	of	the	function	to
add	these	types	of	functions	is	addCFunction.	The	following	code	demonstrates	how
to	do	this:

int	bar(lua_State*	L)	{

				lua_pushnumber(L,	2);

				return	1;

}

getGlobalNamespace(L)

				.beginNamespace("foo")

								.addCFunction("bar",	bar)

				.endNamespace()

Properties
A	property	is	a	mix	between	a	function	and	a	variable.	Properties	are	similar	to
C#'s	getter/setter	system.	To	Lua,	a	property	looks	like	a	normal	variable,	but
every	time	that	variable	is	read,	a	function	is	called.	Similarly,	every	time	the
variable	is	changed,	a	function	is	called.	These	are	getter/setter	functions.	If	a
property	has	a	getter	function	but	no	setter,	it	is	effectively	read-only.

A	property	can	be	added	with	the	addProperty	(char	const*,	TG	(T::*)	()	const,	void
(T::*)	function.	This	function	takes	three	arguments.	The	first	one	is	the	Lua
name	for	the	variable,	and	the	second	and	third	arguments	are	getter	and	setter
functions,	respectively.	The	addProperty	function	has	an	overloaded	version	that
only	takes	a	getter	function.	The	following	code	demonstrates	how	to	use
properties:

int	bar;

int	get_bar	()	const	{	

				//	Potentially	do	some	error	checking?

				return	bar;	

}

void	set_bar	(int	b)	{	

				bar	=	b;	

}

getGlobalNamespace(L)

				.beginNamespace("foo")

								.addProperty("bar",	get_bar,	set_bar)

								.addProperty("bar_readonly",	get_bar)

				.endNamespace()

Classes
The	beginClass/endClass	functions	can	be	used	to	expose	classes	to	Lua.	The	class
type	must	be	provided	as	a	template	argument	to	the	beginClass	function.	You	can
call	beingClass/endClass	multiple	times	for	the	same	class,	and	on	each	call,	new
methods	and	variables	can	be	added.	Suppose	that	a	class	named	Vec3	exists,	to
represent	a	3D	vector.	It	can	be	exposed	to	Lua	using	Lua	Bridge,	as	follows:

class	Vec3	{	};

getGlobalNamespace(L)

				.beginNamespace("Math")

								.beginClass<Vec3>("Vec3")

								.endClass()

				.endNamespace()

To	create	a	new	object,	just	call	the	name	of	the	class	as	a	function.	For	example,
the	preceding	code	can	create	a	new	Vec3	with	the	following	code:

local	vector	=	Math.Vec3()

Constructor
Lua	Bridge	only	supports	a	single	constructor.	Overloaded	constructors	are	not
possible	to	declare	with	Lua	Bridge.	A	constructor	can	be	added	with
the	addConstructor	function.	The	function	signature	of	the	constructor	must	be
specified	as	a	template	argument,	since	a	class	may	have	multiple	overloaded
constructors.	The	following	code	shows	a	C++	class	with	three	constructors,	but
only	the	one	that	takes	three	floats	is	exposed	to	Lua:

class	Vec3	{

		public:

				Vec3();

				Vec3(const	Vec3&	other);

				Vec3(float	x,	float	y,	float	z);

}

getGlobalNamespace(L)

				.beginNamespace("Math")

						.beginClass<Vec3>("Vec3")

								.addConstructor<void	(*)	(float,	float,	float)>()

						.endClass()

				.endNamespace();

Subclass
Classes	can	be	subclassed	using	Lua	Bridge.	The	base	class	does	not	need	to	be
exposed	to	Lua,	only	the	subclass	does.	Subclasses	can	be	exposed	to	Lua
Bridge	using	the	deriveClass	method.	Unlike	beginClass,	deriveClass	should	only	be
called	once.	Because	of	the	loosely	typed	nature	of	Lua	and	the	limitations
placed	on	deriveClass,	it's	usually	better	to	expose	classes	with	beginClass,	instead.
For	the	sake	of	completeness,	the	following	code	sample	illustrates	how	to
use	deriveClass:

class	Foo	{

				int	x;

				int	y;

}

class	Bar	:	public	Foo	{

				int	x;

};

getGlobalNamespace(L)

				.beginNamespace("Sample")

								.beginClass<Foo>("Foo")

								.endClass()

								.deriveClass<Bar,	Foo>("Bar")

								.endClass()

				.endNameSpace();

Member	variables,	properties,	and
functions
Adding	variables,	properties,	and	functions	to	a	class	in	Lua	Bridge	is	done	in
the	same	fashion	as	adding	any	of	these	things	to	a	namespace.	The	functions
are	addData,	addFunction,	and	addProperty.	None	of	these	functions	require	any
template	data,	but	the	data	they	point	to	does	have	to	be	scoped	to	the	class	it
belongs	to.	The	following	code	sample	shows	how	to	use	these	methods:

class	Vec3	{

		public:

				float	x,	y,	z;

		float	Magnitude()	const;

		void	Normalize();

}

getGlobalNamespace(L)

				.beginNamespace("Math")

								.beginClass<Vec3>("Vec3")

												.addData("x",	&Vec3::x)

												.addData("y",	&Vec3::y)

												.addData("z",	&Vec3::z)

												.addProperty("Magnitude",	&Vec3::Magnitude)

												.addFunction("Normalize",	&Vec3::Normalize)

								.endClass()

				.endNameSpace();

Static	variables,	properties,	and
functions
Static	variables,	properties,	and	functions	can	be	added	in	the	same	way	that
member	variables,	properties,	and	functions	can.	The	function	calls	to	do	so
are	addStaticData,	addStaticProperty,	and	addStaticFunction.

The	following	code	sample	shows	how	to	use	all	three	of	these	functions:

class	Vec3	{

		public:

				static	Vec3	zero;

				

				static	Vec3	get_upvector()	{

								return	Vec3(0,	1,	0);

				}

				static	Vec3	Cross(Vec3	v1,	Vec3	v2);

}

getGlobalNamespace(L)

				.beginNamespace("Math")

								.beginClass<Vec3>("Vec3")

												.addStaticData("Zero",	&Vec3::zero,	false)

												.addStaticProperty("Up",	&Vec3::get_upvector)

												.addStaticFunction("Cross",	&Vec3::Cross)

								.endClass()

				.endNameSpace();

Calling	C	functions	from	Lua
All	of	the	code	that	we	have	written	so	far	has	been	about	exposing	C	to	Lua
using	Lua	Bridge.	Any	C	function	exposed	through	Lua	Bridge	can	be	called
from	Lua.	If	a	function	is	in	a	namespace	and	not	a	class,	it	is	called	with	the	dot
syntax:	Math.Sqrt(16).	But,	if	a	function	is	in	a	class,	it	needs	to	be	called	with	the
colon	syntax:	vector:Normalize().	The	following	code	shows	how	to	expose	a	C
function	to	Lua	and	how	to	call	it	from	Lua.

The	C	code	needs	to	declare	the	appropriate	vector	3	class,	a	Normalize	member
function,	and	a	global	dot	product	function.	Next,	the	Register	function	exposes	all
of	these	functions	to	Lua,	using	Lua	Bridge:

class	Vec3	{

		public:

				float	x,	y,	z;

				

				float	Normalize()	{

								float	dot	=	x	*	x	+	y	*	y	+	z	*	z;

								if	(dot	==	0)	{

												return	0;

								}

								return	sqrt(dot);

				}

}

float	Dot(Vec3	a,	Vec3	b)	{

				return	a.x	*	b.x	+	a.y	*	b.y	+	a.z	*	b.z;

}

void	Register(lua_State*	L)	{

				getGlobalNamespace(L)

						.beginNamespace("Math")

										.beginClass<Vec3>("Vec3")

														.addData("x",	&Vec3::x)

														.addData("y",	&Vec3::y)

														.addData("z",	&Vec3::z)

														.addFunction("Normalize",	&Vec3::Normalize)

										.endClass()

										.addFunction("Dot",	Dot)

						.endNameSpace();

}

The	Lua	file	can	create	new	vectors,	and	can	then	set	the	x,	y,	or	z	members	of
each	vector.	Then,	the	Dot	and	Normalize	functions	can	be	called.	The	following
code	sample	does	this:

local	a	=	Math.Vec3()

local	b	=	Math.Vec3()

local	b	=	Math.Vec3()

a.x	=	7

b.x	=	3

print	("Dot:	"	..	Dot(a,	b));

print	("Normalize	both");

a:Normalize()

b:Normalize()

print	("Dot:	"	..	Dot(a,	b));

LuaRef
Lua	Bridge	is	not	just	a	one-way	street,	after	all,	it	is	a	bridge.	To	read	Lua
values	in	C,	Lua	Bridge	provides	the	LuaRef	class.	A	LuaRef	variable	can	hold	any
value	that	a	Lua	variable	can.	The	getGlobal(lua_State*,	const	char*)	function	will
return	any	global	Lua	variable	as	a	LuaRef	value.	Consider	the	following	Lua
code:

foo	=	"Hello,	world"

bar	=	42

debug	=	function()

				print	(foo	..	"	&	"	..	bar)

end

These	variables	can	be	retrieved	in	C	or	C++	by	using	the	getGlobal	function.	A
LuaRef	object	can	even	be	called	as	a	function,	if	it	is	assigned	to	one.	The
following	code	demonstrates	this:

LuaRef	foo	=	getGlobal(L,	"foo");

LuaRef	bar	=	getGlobal(L,	"bar");

LuaRef	debug	=	getGlobal(L,	"debug");

bar	=	57;

debug();

LuaRef	variables	have	a	cast<T>	member	function	that	will	convert	a	given	LuaRef
value	into	whatever	it	is	being	cast	to.	The	following	code	sample	demonstrates
this:

LuaRef	foo	=	getGlobal(L,	"foo");

printf("foo:	%s	\n",	foo.cast<const	char*>());

LuaRef	and	tables
A	LuaRef	variable	can	point	to	any	type	of	data—even	a	table!	When	a	LuaRef
variable	points	to	a	table,	it	can	be	indexed	very	naturally	using	brackets	([]).
Consider	the	following	Lua	code:

velocity	=	{

				x	=	7,

				y	=	0,

				units	=	"miles"

}

velocity.debug	=	function()

				print	(velocity.x	..	",	"	..	velocity.y	..	"	"	..	units	..	"	/	hour")

end

We	can	access,	and	even	change,	any	variable	located	in	the	velocity	table	by
using	a	LuaRef	object.	The	following	code	sample	demonstrates	this:

LuaRef	v	=	getGlobal(L,	"velocity");

v["y"]	=	6

v["units"]	=	"km"

v["debug"]();

Summary
In	this	chapter,	we	covered	how	to	use	a	Lua	binding	library,	Lua	Bridge.	Lua
Bridge	fits	into	a	C++	workflow	better	than	the	Lua	C	API	does.	Because	of	its
clever	use	of	templates,	Lua	Bridge	is	far	less	verbose	than	the	equivalent	Lua	C
API	code.	Doing	more	in	a	smaller	amount	of	space	is	always	productive!

In	the	next	chapter,	we	will	take	a	look	at	where	to	go	from	here,	covering	more
Lua	resources	and	some	tips	on	where	to	apply	your	Lua	knowledge.

Next	Steps
This	last	chapter	is	going	to	focus	on	looking	ahead	at	where	to	go	next.	By	now,
you	should	have	a	fairly	strong	grasp	of	the	Lua	language	and	some	of	its	more
advanced	features.	But	how	can	you	apply	all	this	knowledge	and,	just	as
importantly,	where	can	you	go	to	learn	more?	These	are	the	questions	this
chapter	focuses	on.	This	chapter	will	include	information	on	the	following:

Books	written	about	Lua
Game	engines	powered	by	Lua
Games	that	can	be	modified	with	Lua
Software	that	can	be	scripted	using	Lua

Books
There	are	many	books	written	about	Lua.	Some	focus	on	using	the	language	as	a
standalone	tool,	others	on	how	to	use	the	language	in	an	embedded	scripting
environment.	Here	is	a	list	of	additional	book	resources	in	no	particular	order.

Programming	In	Lua
Ierusalimschy,	Roberto.	Programming	in	Lua,	4th	edition.	Lua.Org,	2016.

ISBN13:	9788590379867

Programming	in	Lua	(PIL)	is	written	by	the	creators	of	Lua.	The	book	takes	an
example-based	approach	to	teaching—many	of	the	non	trivial	concepts	in	the
book	are	explained	with	real	world	code	samples.	The	first	edition	of
Programming	in	Lua	is	available	online,	for	free.

Learning	Game	AI	Programming
with	Lua
Young,	David.	Learning	Game	AI	Programming	with	Lua:	Leverage	the	Power
of	Lua	Programming	to	Create	Game	AI	That	Focuses	on	Motion,	Animation,
and	Tactics.	Packt	Publishing,	2014.

ISBN	13:	9781783281336

This	book	focuses	on	learning	to	program	game	AI	in	a	Lua	sandbox
environment.	The	sandbox	is	a	great	example	of	how	to	build	a	3D	game
framework	in	C++	and	embed	Lua	as	a	scripting	language.	By	using	Lua,	this
book	avoids	requiring	low-level	engine	code	and	allows	the	reader	to	focus	on
AI.

LÖVE	for	Lua	Game	Programming
Akinlaja,	Damilare	Darmie.	LÖVE	For	Lua	Game	Programming.	Packt
Publishing,	2013.

ISBN	13:	9781782161608

This	book	follows	a	tutorial	approach	with	examples	and	step-by-step
instructions	to	help	explain	the	key	concepts	of	the	LÖVE	framework	as	well	as
everything	you	need	to	know	about	game	development	using	the	Lua
programming	language.	The	book	is	a	great	introduction	to	the	LÖVE
framework	for	anyone	interested	in	game	development.

Lua	Game	Development	Cookbook
Kašuba	Mário.	Lua	Game	Development	Cookbook.	Packt	Publishing,	2015.

ISBN	13:	9781849515504

The	Lua	Game	Development	Cookbook	contains	over	70	recipes	for	creating
games	using	Lua.	The	book	covers	a	wide	array	of	topics	such	as	2D	game
development,	3D	game	development,	UI	development,	game	physics,	audio,	and
AI.	By	the	end	of	the	book,	you	will	have	all	the	knowledge	required	to	make
complete	games	using	Lua.

Game	Development	with	Lua
Schuytema,	P.	and	Manyen,	M.	Game	Development	with	Lua.	Charles	River
Media,	2005.

ISBN	13:	9781584504047

Game	Development	with	Lua	focuses	on	how	to	use	Lua	as	a	game	scripting
language	effectively.	The	book	focuses	heavily	on	embedding	Lua	into	a	C/C++
game	engine,	with	the	goal	of	being	able	to	rapidly	prototype	games.	Some
common	use	cases,	such	as	using	Lua	to	build	GUI	systems,	event	handling,	and
AI	state	machines,	are	also	covered.

Beginning	Lua	Programming
Jung,	K.	and	Brown,	A.	Beginning	Lua	Programming.	Wrox	Press,	2007.

ISBN	13:	978-0470069172

Aimed	at	those	new	to	programming,	Beginning	Lua	Programming	assumes	no
prior	programming	knowledge.	The	book	focuses	on	teaching	Lua	trough
lengthy,	practical	examples	with	a	conversational	tone.	Both	the	Lua	language
and	the	Lua	C	API	are	covered.	One	of	the	more	unique	topics	the	book	covers
is	how	to	use	Lua	for	modifying	and	serving	HTML	pages.

Lua	Programming	Gems
Figueiredo,	L.	H.;	Celes,	W.;	Ierusalimschy,	R.,	eds.	Lua	Programming	Gems.
Lua.org,	2008.

ISBN	13:	9788590379843

Lua	Programming	Gems	is	a	collection	of	articles	that	capture	some	Lua	best
practices	as	well	as	clever	solutions	to	difficult	problems.	The	book	contains
gems	related	to	both	game	and	non-game	contexts.	Algorithms,	data	structures,
and	design	patterns	are	all	covered	in	an	easy	to	follow,	comprehensive	style.

Learn	Lua	for	iOS	Game
Development
Varma,	Jayant.	Learn	Lua	for	iOS	Game	Development.	Apress,	2012.

ISBN	13:	9781430246626

Learn	Lua	for	iOS	Game	Development	aims	to	introduce	Lua	as	an	alternative
for	Objective	C.	The	book	has	a	very	detailed	section	on	the	Gideros	framework,
which	streamlines	many	common	tasks	for	game	development	like	scene
management	and	loading	textures.	The	book	also	has	a	very	detailed	section	on
the	math	essential	to	making	games.

Game	engines
Because	of	its	embeddable	nature	and	lightweight	runtime,	Lua	is	a	great	fit	for
game	technology.	Many	game	engines	and	frameworks	use	Lua	as	an	embedded
scripting	language,	making	game	development	quick	and	easy.	Here	is	a	list	of
game	engines	that	offer	support	for	Lua	as	an	embedded	scripting	language.

LÖVE	2D
LÖVE	2D	is	a	free,	open	source	game	framework	available	at	https://love2d.org.

Love	is	a	very	powerful	2D	framework	for	making	games	with	Lua.	It	is	built	on
top	of	SDL,	making	both	cross-platform	support	and	gamepad	support	very
reliable.	Love	is	a	very	small	and	easy	to	use	framework,	it's	well	suited	for	both
beginners	and	professionals	alike.	Love	has	a	Wiki,	which	serves	as	a	getting
started	guide—it	is	online	at	https://love2d.org/wiki/Main_Page.

https://love2d.org
https://love2d.org/wiki/Main_Page

Defold
Defold	is	a	free	lightweight	2D	game	engine	from	King,	available	at	https://www.d
efold.com.

Defold	provides	you	with	everything	you	need	to	make	a	game.	It	has	a	full-
featured	editor	which	offers	tools	for	creating	UI,	animation,	authoring	physics,
designing	levels,	and	much	more.	The	engine	offers	fast,	live	iteration	through
code	hot	reloading.	Hot	reloading	code	means	whenever	you	make	a	code
change,	it	can	be	hot	loaded	without	having	to	restart	the	game.	Defold	offers	a
large	number	of	tutorials	for	learning	the	engine;	these	tutorials	are	online	at	http
s://www.defold.com/tutorials/getting-started/.

https://www.defold.com
https://www.defold.com/tutorials/getting-started/

Corona
Corona	is	a	free	game	engine	available	at	https://coronalabs.com.

Corona	offers	very	fast	iteration	times	with	a	live	rebuild	option.	This	means	you
can	build	and	deploy	an	application	once,	and	see	changes	happen	live	on	a
device	as	you	are	making	them.	Corona	is	unique	because	it	is	not	only	a	game
engine,	but	also	a	publishing	and	user	acquisition	service.	There	are	several
books	for	getting	started	with	Corona,	like	Corona	SDK	Hotshot,	by	Flanagan,
Nevin	or	Corona	SDK	Mobile	Game	Development:	Beginner's	Guide
by	Fernandez,	Michelle;	both	books	are	published	by	Packt	Publishing.

https://coronalabs.com

Leadwerks
Leadwerks	is	an	easy-to-use	3D	game	engine	available	at	https://www.leadwerks.com.

Learwerks	focuses	on	ease	of	use	and	ease	of	learning.	It	is	a	very	approachable
3D	game	engine	for	those	just	starting	out	making	games.	Leadwerks	provides	a
marketplace	for	purchasing	both	3D	and	2D	assets.	There	is	a	very	active
community	on	the	Leadwerks	forums	at	https://www.leadwerks.com/community/.

https://www.leadwerks.com
https://www.leadwerks.com/community/

Gideros
Gideros	is	a	free,	open	source	game	framework	available	at	http://giderosmobile.co
m.

Gideros	comes	with	all	the	tools	you	need	to	deploy	a	game,	such	as	a
lightweight	IDE,	players	for	desktop	and	mobile	devices,	a	texture	packer,	and	a
font	creator;	there	are	also	third-party	tools.	Gideros	uses	an	object-oriented
approach	to	game	creation—it	provides	a	simple	Lua	class	system.	The	core
framework	can	be	extended	using	plugins,	which	are	written	in	native	code	such
as	C++,	Java,	or	Objective	C.	You	can	try	Gideros	live	and	online	at	http://gidero
smobile.com/code/.

http://giderosmobile.com
http://giderosmobile.com/code/

Urho	3D
Urho	3D	is	a	free,	open	source	game	engine	available	at	https://urho3d.github.io.

Urho	is	written	in	C++,	with	bindings	to	Lua	and	LuaJIT.	The	Lua	API	provided
by	Urho	exposes	almost	everything	that	the	C++	API	does.	The	engine	is	written
with	a	focus	on	3D	games,	but	2D	games	can	easily	be	developed	using	Urho	as
well.	A	good	way	to	learn	Urho	3D's	Lua	API	is	by	browsing	the	official
samples	at	https://github.com/urho3d/Urho3D/tree/master/bin/Data/LuaScripts.

https://urho3d.github.io
https://github.com/urho3d/Urho3D/tree/master/bin/Data/LuaScripts

Polycode
Polycode	is	a	free,	open	source	framework	for	making	games	and	interactive
applications.	It	is	available	from	http://polycode.org.

Polycode	is	well	suited	to	making	both	2D	and	3D	games	as	well	as	non-game
applications.	The	framework	provides	an	IDE	for	both	world	editing	and	writing
Lua	code.	Polycode	runs	on	all	major	platforms.	The	Polycode	website	has	a
section	for	learning	how	to	use	the	framework	at	http://polycode.org/learn/.

http://polycode.org
http://polycode.org/learn/

ShiVa
ShiVa	is	a	commercial	3D	game	engine	available	at	https://www.shiva-engine.com.

ShiVa	provides	all	of	the	features	one	would	expect	from	a	modern	3D	game
engine	such	as	resource	management,	scene	management,	physics,	UI,	a	terrain
system,	and	more.	It	is	a	cross-platform	game	engine,	with	the	editor	being
available	on	macOS,	Windows,	and	Linux.	To	learn	more	about	using	the
engine,	check	out	Learning	ShiVa3D	Game	Development	by	Wade	Tracy,
published	by	Packt	publishing.

https://www.shiva-engine.com

Game	mods
Lua's	highly	flexible	and	easy-to-embed	nature	makes	it	appealing	not	only	for
game	engines,	but	games	as	well.	Several	games	provide	a	very	large,
comprehensive	Lua	API	with	the	intention	of	allowing	hobbyists	to	modify	and
extend	the	base	game.	Often	these	mods	lack	official	documentation,	but	they
tend	to	have	a	large	active	community	to	make	up	for	it.

Roblox
Roblox	is	not	exactly	a	game;	it's	a	platform	for	building	games.	However,
Roblox	resembles	a	game	more	than	an	engine,	which	is	why	it's	listed	as	a
game.	Roblox	allows	users	to	create	and	share	games	using	Roblox	Studio.	It
exposes	programming	through	Lua,	which	exposes	an	object-oriented	Lua	API.

You	can	get	started	with	Roblox	development	at	http://robloxdev.com/learn-roblox/c
oding-scripts.

http://robloxdev.com/learn-roblox/coding-scripts

Garry's	Mod
Garry's	Mod	is	a	physics	sandbox	game	which	started	out	as	a	mod	for	Half	Life
2.	In	the	version	9	release,	Lua	scripting	was	added.	Players	can	script	weapons,
vehicles,	entities,	NPCs,	and	much	more	using	Lua.	Scripted	mods	even	work	in
multiplayer	sessions.

To	get	started	with	the	Garry's	Mod	Lua	API,	check	out	the	official	tutorials
available	online	at	https://wiki.garrysmod.com/page/Beginner_Tutorial_Intro.

https://wiki.garrysmod.com/page/Beginner_Tutorial_Intro

World	Of	Warcraft
World	of	Warcraft	(WOW)	is	a	massively	multiplayer	online	role	playing
game	developed	by	Blizzard	Entertainment.	WOW	exposes	a	subset	of	Lua	5.1,
allowing	players	to	customize	the	game	interface.	

The	recommended	book	about	writing	Lua	interfaces	for	WOW	is	Beginning
Lua	with	World	of	Warcraft	Add-ons	by	Paul	Emmerich,	published	by	Apress.

Natural	Selection	2
Natural	Selection	2	is	a	mix	between	a	first-person	shooter	and	a	real-time
strategy	game	developed	by	Unknown	Worlds	Entertainment.	The	game	was
designed	to	be	very	easy	to	mod.	Lua	is	not	only	used	as	an	extension	to	mod	the
game,	but	much	of	the	official	game	is	written	in	Lua	as	well.	This	lets	players
go	in	and	modify	the	base	game	very	easily.

Learn	more	about	modding	for	Natural	Selection	2	at	the	Unknown	Worlds	Wiki
at	https://wiki.unknownworlds.com/ns2/Modding.

https://wiki.unknownworlds.com/ns2/Modding

Don't	Starve
Don't	Starve	is	a	survival	sandbox	game	developed	by	Klei	Entertainment.	Much
of	the	game	is	written	in	Lua,	which	makes	the	game	easy	to	mod.	User	can
create	custom	items,	characters,	scenarios,	world	objects	and	more	using	Lua
5.1.	Don't	Starve	and	its	multiplayer	version	Don't	Starve	Together	both	have	a
very	large	and	active	modding	community.

To	get	started	with	modding	Don't	Starve,	check	out	the	modding	section	on
Klei's	forum	at	https://forums.kleientertainment.com/files/category/5-modding-tools-tutor
ials-examples/.

https://forums.kleientertainment.com/files/category/5-modding-tools-tutorials-examples/

Hack	'n'	Slash
Hack	'n'	Slash,	developed	by	Double	Fine	Productions,	uses	Lua	scripting	as	a
core	game	mechanic.	This	mechanic	makes	the	gameplay	rather	open	ended,
while	the	game	itself	does	have	an	end	goal.	Hack	'n'	Slash	is	built	on	top	of	the
Moai	SDK—all	of	the	game's	Lua	code	can	be	edited.

Get	the	game	at	https://store.steampowered.com/app/246070/Hack_n_Slash/.

https://store.steampowered.com/app/246070/Hack_n_Slash/

Scriptable	software
Lua	is	particularly	well	suited	to	be	used	as	an	embedded	scripting	language.
Many	existing	software	packages	leverage	Lua	to	provide	users	with	the	ability
to	the	base	of	the	software.	All	of	the	software	listed	below	can	be		extended
using	Lua.

CEGUI
Crazy	Eddie's	GUI	(CEGUI)	is	a	user	interface	system	written	in	C++,	often
used	for	video	games.	CEGUI	offers	a	Lua	backend	scripting	module,	which
allows	user	interfaces	to	be	built	using	Lua.	The	CEGUI	library	is	easy	to
embed,	and	the	Lua	API	it	exposes	allows	for	Lua	to	issue	callbacks	to	the
application	that	is	embedding	it.

The	website	is	http://cegui.org.uk.

http://cegui.org.uk

Conky
Conky	is	a	desktop	system	monitor	written	for	the	X	Window	System.	Conky	is
available	on	Linux,	Free	BSD,	and	Open	BSD.	Conky	can	be	extended	with	Lua
to	offer	and	display	information	that	is	otherwise	not	available	to	the	base
software.

The	website	is	https://github.com/brndnmtthws/conky.

https://github.com/brndnmtthws/conky

Premake
Premake	is	used	to	generate	build	files	for	IDEs	such	as	Visual	Studio,	X	Code,
Mono	Develop,	Code::Blocks,	and	more.	Premake	makes	managing	cross-
platform	projects	easier	by	removing	the	need	to	manually	update	build	files	for
every	platform's	IDE;	instead	it	generates	these	files	for	you.	Premake	files	that
define	how	a	project	should	be	structured	are	just	Lua	files.

The	website	is	https://premake.github.io.

https://premake.github.io

Moho
Moho	is	vector-based	2D	animation	software	developed	by	Smith	Micro
Software.	Most	of	the	tools	Moho	offers	are	all	scripted	in	Lua.	Users	can	extend
the	software	and	create	custom	tools	using	Lua.	Documentation	for	the	Moho
Lua	API	is	online	at	http://mohoscripting.com.

The	website	is	https://my.smithmicro.com/anime-studio-debut.html.

http://mohoscripting.com
https://my.smithmicro.com/anime-studio-debut.html

Summary
	This	book	tried	to	cover	everything	you	need	to	program	in	Lua.	We	started
with	setting	up	Lua	and	the	tools	needed	to	run	it.	Next,	we	covered	all	of	the
information	needed	to	program	in	Lua,	from	basic	concepts	such	as	loops	to
advanced	concepts	such	as	object	oriented	programming.	Embedding	Lua	as	a
scripting	language	and	using	Lua	Bridge	to	reduce	the	amount	of	code	needed	to
embed	Lua	was	also	discussed.	Finally,	this	last	chapter	provided	some	guidance
on	where	to	go	next	to	learn	more	about	Lua	and	some	applications	that	can	be
used	with	your	Lua	knowledge.

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:

Embedded	Systems	Architecture
Daniele	Lacamera

ISBN:	978-1-78883-250-2

Participate	in	the	design	and	definition	phase	of	an	embedded	product
Get	to	grips	with	writing	code	for	ARM	Cortex-M	microcontrollers
Build	an	embedded	development	lab	and	optimize	the	workflow
Write	memory-safe	code
Understand	the	architecture	behind	the	communication	interfaces
Understand	the	design	and	development	patterns	for	connected	and
distributed	devices	in	the	IoT
Master	multitask	parallel	execution	patterns	and	real-time	operating
systems

Embedded	Linux	Development	Using	Yocto	Project	Cookbook	-	Second
Edition

https://www.packtpub.com/application-development/embedded-systems-architecture
https://www.packtpub.com/virtualization-and-cloud/embedded-linux-development-using-yocto-project-cookbook-second-edition

Alex	González

ISBN:	978-1-78839-921-0

Optimize	your	Yocto	Project	setup	to	speed	up	development	and	debug
build	issues
Use	Docker	containers	to	build	Yocto	Project-based	systems
Take	advantage	of	the	user-friendly	Toaster	web	interface	to	the	Yocto
Project	build	system
Build	and	debug	the	Linux	kernel	and	its	device	trees
Customize	your	root	filesystem	with	already-supported	and	new	Yocto
packages
Optimize	your	production	systems	by	reducing	the	size	of	both	the	Linux
kernel	and	root	filesystems
Explore	the	mechanisms	to	increase	the	root	filesystem	security
Understand	the	open	source	licensing	requirements	and	how	to	comply	with
them	when	cohabiting	with	proprietary	programs
Create	recipes,	and	build	and	run	applications	in	C,	C++,	Python,	Node.js,
and	Java

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	that	you	bought	it	from.	If	you	purchased	the	book	from	Amazon,	please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	readers	can	see	and	use	your	unbiased	opinion	to	make	purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	take	a	few	minutes	of	your	time,	but	is	valuable	to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	Title Page
	Copyright and Credits
	Lua Quick Start Guide

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Code in Action
	Conventions used

	Get in touch
	Reviews

	Introduction to Lua
	Technical requirements
	What Lua is
	Source code and binaries
	Installing Lua on Windows 10
	Installing Lua on macOS
	Installing Lua on Linux

	Tools for Lua
	Installing VS Code on Windows 10
	Installing VS Code on macOS
	Installing VS Code on Linux
	Exploring VS Code

	Hello World!
	Summary

	Working with Lua
	Technical requirements
	Variables
	Creating variables
	Printing variables
	Assigning variables

	Comments
	Basic types
	nil
	Boolean
	number
	Finding a type

	String types
	String literals
	String length
	Concatenate strings
	String coercion
	Escape characters
	Console input

	Scope
	Scope access
	Global scope
	Shadowing

	Functions
	Defining a function
	Calling a function
	Function arguments
	Any number of arguments
	Returning a value
	Returning multiple values

	Operators
	Arithmetic operators
	Relational operators
	Logical operators
	Misc operators
	Operator precedence

	Control structures
	if
	elseif
	else
	Nesting if statements

	Loops
	while loops
	Infinite loops
	Breaking a loop
	Repeat until loop
	for loop
	Nested loops

	Summary

	Tables and Objects
	Technical requirements
	Introduction to tables
	Creating tables
	Storing values
	Table constructor
	Tables are references

	Arrays
	Array constructor
	Arrays are one-based
	Sparse arrays
	The size of an array
	Multidimensional arrays

	Iterating
	Understanding pairs
	Understanding ipairs
	Closures
	Iterator functions

	Meta tables
	setmetatable
	getmetatable
	__index
	__newindex
	rawget and rawset
	__call
	Operators
	Math operators
	Equivalence operators
	Other operators

	Objects
	Classes
	The : operator
	Tables inside of objects

	Inheritance
	Single inheritance
	Multiple inheritance

	Summary

	Lua Libraries
	Technical requirements
	The global table
	Explicit variables
	Dynamic variables
	Environment

	math
	Trigonometry
	Changing numbers
	Comparing numbers
	Randomness
	Constants
	Everything else

	File IO
	Opening a file
	Writing data
	Reading data
	Reading line by line
	Reading bits of data
	Closing a file

	Interfacing with the operating system
	Working with time
	Interacting with the shell
	Working with files

	More strings
	Searching for a substring
	Extracting a substring
	Case manipulation

	Creating and loading modules
	Creating a module
	Loading and using modules
	Avoiding parsing
	Executing files

	Summary

	Debugging Lua
	Technical requirements
	The debug library
	Introspective information
	The debug.getinfo return value
	Filtering the information

	Local variables
	Hooks
	Line ("l")
	Call ("c")
	Return ("r")
	Setting a counter
	Multiple hooks

	Traceback
	Debugger.lua
	Using debugger.lua

	Error-handling in Lua
	pcall and error
	assert

	Profiling
	The profile module
	Using the profile module

	Integrated development environments
	LuaEdit
	Breakpoints
	Locals and Watch
	Callstack

	Decoda
	Starting debugging
	Everything else

	Zero Brane Studio
	Selecting an interpreter
	Starting the debugger

	Visual Studio Code

	Summary

	Embedding Lua
	Technical requirements
	Working with the C API
	The stack
	Pushing to the stack
	Querying the stack
	Reading from the stack
	Stack size

	Reading Lua variables from C
	Loading a Lua file
	Reading global variables
	Example

	Creating Lua variables from C
	Calling Lua functions from C
	Calling C functions from Lua
	Working with tables in C
	Reading values from a table
	Writing values to a table
	Meta tables

	User data
	Lua C API reference
	Summary

	Lua Bridge
	Technical requirements
	API conventions
	Namespaces
	Variables
	Functions
	Properties
	Classes
	Constructor
	Subclass
	Member variables, properties, and functions
	Static variables, properties, and functions

	Calling C functions from Lua
	LuaRef
	LuaRef and tables
	Summary

	Next Steps
	Books
	Programming In Lua
	Learning Game AI Programming with Lua
	LÖVE for Lua Game Programming
	Lua Game Development Cookbook
	Game Development with Lua
	Beginning Lua Programming
	Lua Programming Gems
	Learn Lua for iOS Game Development

	Game engines
	LÖVE 2D
	Defold
	Corona
	Leadwerks
	Gideros
	Urho 3D
	Polycode
	ShiVa

	Game mods
	Roblox
	Garry's Mod
	World Of Warcraft
	Natural Selection 2
	Don't Starve
	Hack 'n' Slash

	Scriptable software
	CEGUI
	Conky
	Premake
	Moho

	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

