
MongoDB
Performance
Tuning

Optimizing MongoDB Databases and
their Applications
—
Guy Harrison
Michael Harrison

MongoDB Performance
Tuning

Optimizing MongoDB Databases
and their Applications

Guy Harrison
Michael Harrison

MongoDB Performance Tuning: Optimizing MongoDB Databases and their
Applications

ISBN-13 (pbk): 978-1-4842-6878-0 			 ISBN-13 (electronic): 978-1-4842-6879-7
https://doi.org/10.1007/978-1-4842-6879-7

Copyright © 2021 by Guy Harrison, Michael Harrison

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484268780. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Guy Harrison
Kingsville, VIC, Australia

Michael Harrison
Derrimut, VIC, Australia

https://doi.org/10.1007/978-1-4842-6879-7

Dedicated to my darling Jenny, who makes my life joyful.

—Guy

Dedicated to Oriana, without whom this book would have
been completed much sooner.

—Mike

v

About the Authors���xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

Part I:� Methods and Tools��� 1

Chapter 1: ��Methodical Performance Tuning�� 3

A Cautionary Tale��� 3

Symptomatic Performance Tuning��� 4

Systematic Performance Tuning�� 5

Anatomy of a Database Request�� 5

The Layers of a MongoDB Database��� 6

Minimizing the Application Workload��� 8

Reducing Physical IO��� 9

Optimizing Disk IO�� 10

Cluster Tuning�� 11

Summary��� 11

Chapter 2: ��MongoDB Architecture and Concepts�� 13

The MongoDB Document Model��� 13

JSON��� 14

Binary JSON (BSON)��� 14

Collections�� 15

MongoDB Schemas�� 16

Table of Contents

vi

The MongoDB Protocol�� 18

Wire Protocol�� 18

MongoDB Drivers�� 19

MongoDB Commands��� 20

The find Command��� 20

The aggregate Command��� 21

Data Manipulation Commands��� 23

Consistency Mechanisms�� 23

Read Preference and Write Concern�� 24

Transactions��� 25

Query Optimization�� 25

MongoDB Architecture��� 26

Mongod��� 26

Storage Engines��� 26

Replica Sets�� 28

Sharding��� 30

Sharding Mechanisms�� 31

Cluster Balancing��� 32

Conclusion��� 32

Chapter 3: ��Tools of the Trade��� 33

Introduction to explain( )�� 33

Getting Started with explain( )�� 35

Alternate Plans��� 38

Execution Statistics�� 38

Using explain( ) to Tune a Query��� 41

Visual Explain Utilities�� 42

The Query Profiler�� 44

The system.profile Collection��� 46

Analyzing Profiling Data��� 47

Tuning with MongoDB Logs��� 50

Server Statistics��� 54

Table of Contents

vii

Examining Current Operations��� 58

Operating System Monitoring�� 61

MongoDB Compass�� 62

Summary��� 64

Part II: �Application and Database Design��� 65

Chapter 4: ��Schema Modelling�� 67

The Guiding Principles��� 68

Linking vs. Embedding��� 69

A Case Study�� 69

Getting All the Data for a Customer�� 73

Fetching All Open Orders�� 74

Top Products��� 76

Inserting New Orders�� 77

Updating Products�� 78

Deleting a Customer��� 79

Case Study Summary��� 80

Advanced Patterns��� 81

Subsetting�� 81

Vertical Partitioning�� 84

The Attribute Pattern�� 86

Summary��� 87

Chapter 5: ��Indexing��� 89

B-Tree Indexes��� 89

Index Selectivity��� 91

Unique Indexes��� 91

Index Scans�� 92

Case-Insensitive Searches��� 94

Compound Indexes�� 95

Compound Index Performance��� 96

Compound Index Key Order�� 97

Table of Contents

viii

Guidelines for Compound Indexes�� 98

Covering Indexes�� 98

Index Merges��� 99

Partial and Sparse Indexes�� 100

Partial Indexes�� 100

Sparse Indexes��� 101

Using Indexes for Sorting and Joining��� 101

Sorting�� 101

Using Indexes for Joins�� 102

Index Overhead�� 102

Wildcard Indexes�� 102

Text Indexes��� 105

Text Index Performance�� 110

Geospatial Indexes��� 113

Geospatial Index Performance��� 117

Geospatial Index Limitations�� 118

Summary��� 119

Part III: �Tuning MongoDB Code��� 121

Chapter 6: ��Query Tuning�� 123

Caching Results��� 123

Optimizing Network Round Trips�� 126

Projections�� 126

Batch Processing�� 128

Avoiding Excessive Network Round Trips in Code�� 129

Bulk Inserts�� 131

Application Architecture��� 131

Choosing an Index vs. a Scan�� 132

Overriding the Optimizer with Hints��� 134

Optimizing Sort Operations�� 136

Picking or Creating the Right Index�� 139

Table of Contents

ix

Filter Strategies��� 141

Not Equals Conditions�� 141

Range Queries�� 144

$OR or $IN Operations�� 145

Array Queries�� 147

Regular Expressions��� 148

$exists Queries��� 150

Optimizing Collection Scans�� 152

Summary��� 153

Chapter 7: ��Tuning Aggregation Pipelines�� 155

Tuning Aggregation Pipelines��� 156

Optimizing Aggregation Ordering��� 159

Automatic Pipeline Optimizations��� 161

Optimizing Multi-collection Joins�� 166

Join Order��� 167

Optimizing Graph Lookups��� 169

Aggregation Memory Utilization��� 171

Sorting in Aggregation Pipelines�� 174

Indexed Aggregation Sorts��� 174

Disk Sorts��� 176

Optimizing Views�� 178

Materialized Views��� 180

Summary��� 183

Chapter 8: ��Inserts, Updates, and Deletes��� 185

Fundamentals�� 185

Filter Optimizations�� 186

Explaining a Data Manipulation Statement�� 186

Index Overhead��� 187

Finding Unused Indexes��� 188

Write Concern��� 189

Table of Contents

x

Inserts�� 190

Batch Processing�� 190

Cloning Data��� 192

Loading from Files�� 195

Updates�� 195

Dynamic Value Bulk Updates�� 195

The multi:true Flag��� 197

Upserts��� 198

Bulk Upsert with $merge�� 199

Delete Optimizations�� 200

Summary��� 201

Chapter 9: ��Transactions��� 203

Transaction Theory��� 203

MongoDB Transactions�� 206

Transaction Limits�� 206

TransientTransactionErrors��� 207

Transactions in the MongoDB Drivers�� 209

The Performance Implications of TransientTransactionErrors�� 212

Transaction Optimization��� 213

Avoiding Transactions��� 214

Ordering of Operations��� 216

Partitioning Hot Documents�� 218

Conclusion��� 220

Chapter 10: ��Server Monitoring�� 221

Host-Level Monitoring�� 222

Network�� 223

CPU��� 225

Memory�� 227

Disk IO�� 227

Table of Contents

xi

MongoDB Server Monitoring�� 228

Compass��� 228

Free Monitoring�� 229

Ops Manager�� 230

Summary��� 233

Part IV: �Server Tuning��� 235

Chapter 11: ��Memory Tuning�� 237

MongoDB Memory Architecture��� 237

Host Memory�� 239

Measuring Memory�� 240

WiredTiger Memory�� 242

Cache Size�� 242

Determining the Optimum Cache Size�� 243

The Database Cache “Hit” Ratio��� 243

Evictions��� 246

Checkpoints�� 248

WiredTiger Concurrency��� 251

Reducing Application Memory Demand��� 252

Document Design��� 252

Indexing�� 253

Transactions��� 253

Summary��� 254

Chapter 12: ��Disk IO�� 255

IO Fundamentals�� 255

Latency and Throughput��� 255

Queuing�� 256

Sequential and Random IO��� 258

Table of Contents

xii

Disk Hardware��� 259

Magnetic Disks (HDD)�� 259

Solid State Drives��� 261

SSD Storage Hierarchy��� 261

Write Performance��� 262

Write Endurance��� 262

Garbage Collection and Wear Levelling�� 263

SATA vs. PCI�� 263

Recommendations for SSDs��� 265

Storage Arrays��� 266

RAID Levels��� 266

The RAID 5 Write Penalty�� 269

Non-volatile Caches in RAID 5 Devices�� 269

Do It Yourself Arrays��� 270

Hardware Storage Arrays��� 271

Cloud Storage�� 272

Disk Devices in MongoDB Atlas�� 273

MongoDB IO��� 273

Temporary File IO�� 274

The Journal��� 276

Datafile IO��� 281

Detecting and Solving IO Problems�� 285

Increasing IO Subsystem Bandwidth��� 288

Dedicated Server with Dedicated Disks��� 288

Storage Arrays�� 289

Cloud Storage��� 289

MongoDB Atlas��� 290

Summary��� 291

Table of Contents

xiii

Chapter 13: ��Replica Sets and Atlas��� 293

Replica Set Fundamentals��� 293

Using Read Preference�� 294

Setting Read Preference��� 296

maxStalenessSeconds��� 297

Tag Sets�� 298

Write Concern�� 300

Journaling�� 300

The Write Concern w Option�� 301

Write Concern and Secondary Reads��� 303

MongoDB Atlas��� 303

Atlas Search��� 304

Atlas Data Lake��� 310

Summary��� 313

Chapter 14: ��Sharding��� 315

Sharding Fundamentals��� 315

Scaling and Sharding��� 316

Sharding Concepts��� 316

To Shard or Not to Shard?�� 317

Shard Key Selection��� 319

Range- vs. Hash-Based Sharding��� 319

Zone Sharding�� 322

Shard Balance�� 324

Rebalancing Shards�� 325

Changing Shard Keys��� 330

Sharded Queries�� 332

Sharded Explain Plans�� 332

Shard Key Lookups��� 334

Accidental Shard Merge��� 335

Table of Contents

xiv

Shard Key Range�� 336

Sorting�� 337

Non-Shard Key Lookups��� 338

Aggregations and Sorts�� 339

Sharded $lookup Operations�� 341

Summary��� 341

�Index�� 343

Table of Contents

xv

About the Authors

Guy Harrison is CTO at ProvenDB, a partner at Toba Capital, and a software professional

with more than 20 years of experience in database design, development, administration,

and optimization. He is the author of Next Generation Databases (Apress) and many

other books and articles on database technology. Guy writes monthly columns for

Database Trends on Applications (dbta.com) on MongoDB and emerging technologies.

He can be found on the internet at http://guyharrison.net.

Michael Harrison is the lead developer at ProvenDB, working intimately with MongoDB

from both an application and a database perspective. He is a coauthor of The MongoDB

Workshop as well as senior developer of dbKoda, an open source development

environment for MongoDB.

https://guyharrison.net

xvii

About the Technical Reviewer

Michael Grayson is a Database Engineer working at Percona

with nearly 15 years of experience with databases and over

6 years of experience with MongoDB. He has spoken at

MongoDB World, SQL PASS Summit, and lots of regional

events (SQL Saturdays, Oracle User Groups, MongoDB User

Groups [MUGs]) about MongoDB and Apache Kafka. He

has previously worked at companies such as Paychex and

Thomson Reuters and holds certifications in both AWS and

Azure. He has a bachelor’s degree from Drexel University.

He lives in the Rochester, NY, area with his wife and four

children and can be found on Twitter at @mikegray831. He

blogs occasionally at https://mongomikeblog.wordpress.com/blog/ but now more

often on the Percona Blog, www.percona.com/blog/.  

https://mongomikeblog.wordpress.com/blog/
http://www.percona.com/blog/

xix

Acknowledgments

We’d like to thank everyone in Apress who helped in the production of this book,

in particular lead editor Jonathan Gennick, coordinating editor Jill Balzano, and

development editor Laura Berendson. We’d also like to thank Michael Grayson for his

thorough technical review.

Guy would like to thank his wife Jenny for her love, support and chocolate. He’d also

like to thank Mike for giving him something to keep him sane during Melbourne’s 112-

day COVID-19 lockdown.

Mike would like to thank Jessica for the love and support, but more importantly, for

providing a steady flow of coffee. Additionally, Mike would like to thank Guy for taking

the lead when creating this title and dragging him along the way.

This book is dedicated to the newest member of the Harrison family: Oriana, without

whom this book would have been completed much earlier.

Guy Harrison

Michael Harrison

Melbourne, Australia

December 2020

xxi

Introduction

When MongoDB emerged in 2009, database technologies were at a crossroads. For

more than 20 years, relational databases such as Oracle, SQL Server, and MySQL had

dominated the database market. These databases, which combined the relational

data model, SQL language, and “ACID” transactions, had been the foundation for

applications that transformed modern business and which powered the Internet

revolution. But by the middle of the first decade of the new century, it was clear that

the relational database was failing to meet the demands of a new breed of always-on,

globally scalable, web applications. These new “Web 2.0” applications demanded new

breeds of database management systems.

By 2010, a plethora of non-relational “NoSQL” systems had emerged – Hadoop,

HBase, Cassandra, and many others. Of these non-relational upstarts, MongoDB has

been by almost any measure the most successful. As we write this, MongoDB ranks as

one of the top five database management systems.1 Of these top five, only MongoDB is

based on 21st-century technologies. The other four (Oracle, MySQL, SQL Server, and

Postgres) all have their origins in the 1980s and 1990s.

MongoDB’s success can be ascribed to many factors – such as alignment with object-

oriented programming paradigms and compatibility with modern DevOps practices. In

the main, MongoDB has thrived because it made life easier for developers. However, in

the past few years, we’ve seen MongoDB graduate from a “by developers for developers”

database to a platform supporting a new generation of mission-critical systems across an

increasingly broad range of enterprises.

As MongoDB has matured and expanded its enterprise footprint, performance

management has become increasingly important. As we know, poorly performing

customer-facing applications can be fatal for today’s online enterprise. For instance,

when the load time for a web page increases from 1 second to 5 seconds, the probability

of a user abandoning the page rises by 90%2 – directly impacting online revenue. And

because databases perform so much disk IO and data crunching, the database is often

the root cause of that poor performance.

1�See https://db-engines.com/en/ranking
2�https://tinyurl.com/yyyeckw8

https://db-engines.com/en/ranking
https://tinyurl.com/yyyeckw8

xxii

Furthermore, in the cloud, performance management is cost management: poorly

performing databases consume unnecessary CPU, memory, and IO resources that

cost real money. A couple of days spent tuning a large-scale MongoDB-based cloud

application could potentially save hundreds of thousands of dollars in hosting fees.

Indeed, we could even argue that performance management is an environmental

imperative. The electricity that powers busy database servers costs more than just

money – it’s also associated with greenhouse gas production. Reducing energy

consumption in the home is a social responsibility; reducing energy consumption in the

data center is as important. A badly tuned MongoDB database is like a poorly tuned car

that backfires and belches smoke: it may get you from A to B, but it will cost you more in

gas and exact a heavier toll on the environment.

This book is our attempt to produce a coherent and comprehensive MongoDB

tuning manual. To that end, we set out with the following objectives:

•	 To provide a methodology for MongoDB performance tuning that

addresses performance issues systematically and efficiently. In

particular, this methodology attempts to address causes before

symptoms.

•	 To address all aspects of MongoDB performance management, from

database design through to the tuning of application code and on to

server and cluster optimization.

•	 To maintain a strong focus on tuning fundamentals. Fundamentals

are usually where the most significant performance gains can be

achieved and – if not addressed – usually limit the benefits gained

through the application of advanced techniques.

�How This Book Is Structured
The chapters of this book fall into the following broad parts:

•	 Chapters 1–3 cover methods and techniques. In these chapters, we

describe a performance tuning methodology that we believe provides

the most effective means of tuning MongoDB databases. We also

offer some background on MongoDB architecture and on the tools

that MongoDB provides for investigating, monitoring, and diagnosing

MongoDB performance.

Introduction

xxiii

•	 Chapters 4 and 5 cover application and database design. Here, we

cover the basics of developing an efficient document model and of

indexing MongoDB collections.

•	 Chapters 6–10 cover the optimization of application code. Tuning

your application code usually offers the most significant database

performance opportunities and should be addressed before

adjusting your server or cluster configuration. We’ll look at how to

optimize MongoDB find() statements, aggregation pipelines, and

data manipulation statements.

•	 Chapters 11–14 discuss the optimization of the MongoDB server

and the hardware on which it runs. We’ll explain how to optimize

memory to avoid IO, how to optimize the IO you can’t prevent, and

finally how to configure an efficient MongoDB cluster.

�Who Should Read This Book
This book is for anyone who is interested in improving the performance of a MongoDB

database or the applications that depend on that database. This includes application

architects, developers, and database administrators.

Although the book presents a coherent and logical ceiling-to-floor approach to

database tuning, not all sections of the book will appeal equally to all readers. For

instance, developers may find the sections on application code more helpful than the

sections on IO optimization. Likewise, database administrators who have no access to

application code will probably find the sections on server optimization more useful.

Each of these groups may choose to skip sections of the book covering aspects of

performance over which they have no control. However, we would emphasize that the

philosophy of this book advocates addressing the root causes of performance issues

before alleviating symptoms. It is assumed in later chapters (Chapter 12, for instance)

that you have performed the activities outlined in earlier chapters (e.g., Chapter 5).

We intend this book to be accessible to those who are relatively new to the MongoDB

database, so we at least briefly explain and define key concepts and MongoDB

architecture. However, some familiarity with MongoDB and the JavaScript programming

language is assumed.

Introduction

xxiv

�Scripts and Sample Data
This book utilizes various scripts to report on MongoDB performance. All

of these scripts are available on GitHub at https://github.com/gharriso/

MongoDBPerformanceTuningBook.

The master script mongoTuning.js provides access to all these scripts from within a

MongoDB shell session. To use these scripts from within a MongoDB shell, simply issue

the Mongo command with the script name as an argument and add the “--shell” option,

for example:

$ mongo --shell mongoTuning.js

MongoDB shell version v4.2.0

connecting to: mongodb://127.0.0.1:27017/?compressors=disabled&gssapi

ServiceName=mongodb

MongoDB server version: 4.2.0

rs0:PRIMARY>

The examples can also be found in our GitHub repository under the Examples folder.

The data that these examples use can be found in the sampleData folder as a compressed

dump file. Instructions on how to load the data can be found in the same folder.

Introduction

https://github.com/gharriso/MongoDBPerformanceTuningBook
https://github.com/gharriso/MongoDBPerformanceTuningBook

PART I

Methods and Tools

3
© Guy Harrison, Michael Harrison 2021
G. Harrison and M. Harrison, MongoDB Performance Tuning, https://doi.org/10.1007/978-1-4842-6879-7_1

CHAPTER 1

Methodical Performance
Tuning
Performance is a critical success factor for any application. If you think about the apps

you use every day, it’s evident that you only use the apps that perform well. Would you

use Google if Google searches took 2 minutes while Bing was almost instantaneous?

Of course not. Indeed, research has shown that about half the population abandons a

website if a page takes longer than 3 seconds to load.1

Application performance can depend on many factors, but the most frequent

avoidable cause of poor performance is the database. Moving data from disk into the

database and then from the database to the application involves the slowest components

of the application infrastructure – the disk drives and the network. It’s therefore critical

that the application code that interacts with the database and the database itself be

tuned for premium performance.

�A Cautionary Tale
Your MongoDB tuning methodology is critical to the ultimate success of your tuning

endeavor. Consider the following cautionary tale.

A significant website backed by a MongoDB database is exhibiting unacceptable

performance. As an experienced MongoDB professional, you are called in to diagnose

the problem. When you look at the critical operating system performance metrics, two

things stick out: both CPU and IO on the replica set primary are high. Both the CPU load

average and the disk IO latencies suggest that the MongoDB system needs more CPU

and IO capacity.

1�https://developers.google.com/web/fundamentals/performance/why-performance-matters

https://doi.org/10.1007/978-1-4842-6879-7_1#DOI
https://developers.google.com/web/fundamentals/performance/why-performance-matters

4

After a quick calculation, you recommend sharding MongoDB to spread the

load across four servers. The dollar cost is substantial, as is the downtime required

to redistribute data across the shards. Nevertheless, something has to be done, so

management approves the expense and the downtime. Following the implementation,

website performance is acceptable, and you modestly take the credit.

A successful outcome? You think so, until

•	 Within a few months performance is again a problem – each shard is

now running out of capacity.

•	 Another MongoDB expert is called in and reports that a single

indexing change would have fixed the original problem with no

dollar cost and no downtime. Furthermore, she notes that the

sharding has actually harmed the performance of specific queries

and recommends de-sharding several collections.

•	 The new index is implemented, following which the database

workload is reduced to one-tenth of that observed during your initial

engagement. Management prepares to sell the now-surplus hardware

on eBay and marks your consulting record with a “do not re-engage”

stamp.

•	 Your significant other leaves you for a PHP programmer, and you end

up shaving your head and becoming a monk.

After months of silent meditation, you realize that while your tuning efforts correctly

focused on the activities consuming the most time within the database, they failed to

differentiate between causes and effects. Consequently, you mistakenly dealt with an

effect – the high CPU and IO rates – while neglecting the cause (a missing index).

�Symptomatic Performance Tuning
The approach outlined above might be called symptomatic performance tuning. As a

performance tuning doctor, we ask the application “Where does it hurt” and then do our

best to relieve that pain.

Symptomatic performance tuning has its place: if you are in “firefighting” mode – in

which an application is virtually unusable because of performance problems – it may be

the best approach. But in general, it can have several undesirable consequences:

Chapter 1 Methodical Performance Tuning

5

•	 We may treat the symptoms, rather than the causes of poor

performance.

•	 We may be tempted to seek hardware-based solutions when

configuration or application changes would be more cost-effective.

•	 We might deal with today’s pain, but fail to achieve a permanent or

scalable solution.

�Systematic Performance Tuning
The best way to avoid mistakenly focusing on a cause rather than an effect is to tune

your database system in a top-down manner. This approach is sometimes referred to as

“tuning by layers,” but we like to call it “systematic performance tuning.”

�Anatomy of a Database Request
To avoid the pitfalls of a symptomatic approach, we need our tuning activities to

follow well-defined stages. These stages are dictated by the reality of how applications,

databases, and operating systems interact. At a very high level, database processing

occurs in “layers” as follows:

	 1.	 Applications send requests to MongoDB in the form of calls to

the MongoDB API. The database responds to these requests with

return codes and arrays of data.

	 2.	 Then, the database must parse the request. The database must

work out what resources the user intends to access, check that the

user is authorized to perform the requested activities, determine

the exact access mechanisms to be employed and acquire relevant

locks and resources. These operations use operating system

resources (CPU and memory) and may create contention with

other concurrently executing database sessions.

	 3.	 Eventually, the database request will need to process (create, read,

or change) some of the data in the database. The exact amount

of data that will need to be processed can vary depending on the

database design (the document schema model and indexes) and

the precise coding of the application request.

Chapter 1 Methodical Performance Tuning

6

	 4.	 Some of the required data will be in memory. The chance that

the data will be in memory will be determined mainly by the

frequency with which the data is accessed and the amount of

memory available to cache the data. When we access database

data in memory, it’s called a logical read.

	 5.	 If the data is not in memory, it must be accessed from disk,

resulting in a physical read. Physical disk IO is by far the most

expensive of all operations. Therefore, the database goes to a lot of

effort to avoid these physical reads. However, some disk activity is

inevitable.

Activity in each of these layers influences the demand placed on the subsequent

layer. For instance, if a request is submitted that somehow fails to exploit an index, it will

require an excessive number of logical reads, which in turn will eventually involve a lot

of physical reads.

Tip I t’s tempting when you see a lot of IO or contention to deal with the symptom
directly by tuning the disk layout. However, if you sequence your tuning efforts so
as to work through the layers in order, you have a much better chance of fixing root
causes and relieving performance at lower layers.

Here are the three steps of systematic performance tuning in a nutshell:

	 1.	 Reduce application demand to its logical minimum by tuning

database requests and by optimizing database design (indexing

and document modelling).

	 2.	 Having reduced demand on the database in the previous step,

optimize memory to avoid as much physical IO as possible.

	 3.	 Now that the physical IO demand is realistic, configure the

IO subsystem to meet that demand by providing adequate IO

bandwidth and evenly distributing the resulting load.

�The Layers of a MongoDB Database
MongoDB – and indeed, almost all database management systems – consists of multiple

layers of code, as shown in Figure 1-1.

Chapter 1 Methodical Performance Tuning

7

Figure 1-1.  The critical layers of a MongoDB application

Chapter 1 Methodical Performance Tuning

8

The first layer of code is the application layer. Although you might think the

application code is not part of the database, it is still executing database driver code and

is an integral part of the database performance picture. The application layer defines

both the data model (schema) and data access logic.

The next layer of code is the MongoDB database server. The database server contains

the code that processes MongoDB commands, maintains indexes, and manages the

distributed cluster.

The next layer is the storage engine. The storage engine is part of the database but is

also a distinct layer of code. In MongoDB, there are multiple options for storage engines,

such as in-memory, RocksDB, and MMAP. However, it is usually represented by the

WiredTiger storage engine. The storage engine, among other things, is responsible for

caching data in memory.

Finally, we have the storage subsystem. The storage subsystem is not part of the

MongoDB codebase: it is implemented in the operating system or storage hardware.

On a simple single-server configuration, it is represented by the filesystem and the disk

device’s firmware.

Tip T he load on each layer of the application stack is determined by the layer
above. It is usually a mistake to tune a lower layer until you are sure that the layers
above are optimized.

�Minimizing the Application Workload
Our first objective is to minimize the application’s demands on the database. We want

the database to satisfy the application’s data requirements with the least possible

processing. In other words, we want MongoDB to work smarter, not work harder.

There are two main techniques we use to reduce application workload:

•	 Tune the application code: This might involve changing application

code – JavaScript, Golang, or Java – so that it issues fewer requests to

the database (by using a client-side cache, for instance). However,

more often this will involve re-writing application MongoDB-specific

database calls such as find() or aggregate().

Chapter 1 Methodical Performance Tuning

9

•	 Tune the database design: The database design is the physical

implementation of the application’s databases. Tuning the database

design might involve modifying indexes or making changes to the

document model used within individual collections.

Chapters 4 through 9 cover in detail the various techniques we can use to minimize

application workload, specifically:

•	 Structuring an application to avoid overloading the database:

Applications can avoid making needless requests of the database

and can be architected to minimize locks, hot spots, and other

contention. The programs that interact with MongoDB can be

designed and implemented to minimize database round trips and

unnecessary requests.

•	 Optimizing the physical database design: This includes indexing

and structuring the document schema model to reduce the work

required to execute MongoDB requests.

•	 Writing efficient database requests: This involves understanding

how to write and optimize find(), update(), aggregate(), and other

commands.

These techniques not only represent the logical place to start in our tuning efforts,

they also represent the techniques that provide the most dramatic performance

improvements. It’s not at all uncommon for application tuning to result in performance

improvements of 100 or even 1000 times: improvements that you rarely see when

optimizing memory or adjusting physical disk layout.

�Reducing Physical IO
Now that the application demand has been minimized, we turn our attention to

reducing the time spent waiting for IO. In other words, before trying to reduce the

time taken for each IO (IO latency), we try to reduce the number of IO requests. As it

turns out, reducing the amount of IO almost always reduces the IO latency anyway, so

attacking the volume of IO first is doubly effective.

Chapter 1 Methodical Performance Tuning

10

Most physical IO in a MongoDB database occurs either because an application

session requests data to satisfy a query or data modification request. Allocating sufficient

memory to the WiredTiger cache and other memory structures is the most important

step toward reducing physical IO. Chapter 11 is dedicated to this topic.

�Optimizing Disk IO
At this point, we’ve normalized the application workload – in particular, the amount

of logical IO demanded by the application. We’ve also configured available memory to

minimize the amount of logical IO that ends up causing physical IO. Now – and only

now – it makes sense to make sure that our disk IO subsystem is up to the challenge.

To be sure, optimizing disk IO subsystems can be a complex and specialized task;

but the basic principles are straightforward:

•	 Ensure the IO subsystem has enough bandwidth to cope with the

physical IO demand. This is determined by the number of distinct

disk devices you have allocated and the types of the disk devices.

•	 Spread your load evenly across the disks you have allocated – the

best way to do this is RAID 0 (striping). The worst way – for most

databases – is RAID 5 or similar, which incurs a hefty penalty on write IO.

•	 In cloud-based environments, you usually don’t have to worry about

the mechanics of striping. However, you will still need to ensure that

the total IO bandwidth you have allocated is sufficient.

The obvious symptom of an overly stressed IO subsystem is excessive delays

responding to IO requests. For example, you may have an IO subsystem capable of

supporting 1000 requests per second, but you may only be able to push it to 500 requests

per second before response time for individual requests degrades. This throughput/

response time trade-off is an essential consideration when configuring IO subsystems.

Chapters 12 and 13 cover the process of optimizing disk IO in detail.

Chapter 1 Methodical Performance Tuning

11

�Cluster Tuning
All of the preceding factors apply equally to single instance MongoDB deployments and

to MongoDB clusters. However, clustered MongoDB involves additional challenges and

opportunities, for instance:

•	 In a standard replica set configuration – in which there is a single

master node and multiple secondary nodes – we need to choose the

trade-off between performance, consistency, and data integrity. The

read concern and write preference parameters control how data is

written and read from secondary nodes. Tweaking these can improve

performance but open up the possibility of data loss during a failover

or the reading of stale data.

•	 In a sharded replica set, there are multiple master nodes, which allow

for greater scalability and better performance for very large databases

with high transaction rates. However, sharding may not be the most

cost-effective way to achieve a performance result and does involve

performance trade-offs. If you do shard, the selection of the shard key

and determining the collections to be sharded are going to be critical

to your success.

We will discuss cluster configuration and tuning in detail in Chapters 13 and 14.

�Summary
When faced with an IO-bound database, it is tempting to deal with the most obvious

symptom – the IO subsystem – immediately. Unfortunately, this usually results in

treating the symptom rather than the cause and is often expensive and, frequently,

ultimately futile. Because problems in one database layer can be caused or cured by

configuration in the higher layer, the most efficient and effective way to optimize a

MongoDB database is to tune upper layers before tuning the lower layers:

	 1.	 Reduce application demand to its logical minimum by optimizing

database requests and by tuning database design (indexing and

document modelling).

Chapter 1 Methodical Performance Tuning

12

	 2.	 Having reduced demand on the database in the previous step,

optimize memory to avoid as much physical IO as possible.

	 3.	 Now that the physical IO demand is realistic, configure the

IO subsystem to meet that demand by providing adequate IO

bandwidth and evenly distributing the resulting load.

Chapter 1 Methodical Performance Tuning

13
© Guy Harrison, Michael Harrison 2021
G. Harrison and M. Harrison, MongoDB Performance Tuning, https://doi.org/10.1007/978-1-4842-6879-7_2

CHAPTER 2

MongoDB Architecture
and Concepts
This chapter aims to equip you with an understanding of MongoDB architecture

and internals referenced in subsequent chapters, which are necessary for MongoDB

performance tuning.

A MongoDB tuning professional should be broadly familiar with these main areas of

MongoDB technology:

•	 The MongoDB document model

•	 The way MongoDB applications interact with the MongoDB database

server through the MongoDB API

•	 The MongoDB optimizer, which is the software layer concerned with

maximizing the performance of MongoDB requests

•	 The MongoDB server architecture, which comprises the memory,

processes, and files that interact to provide database services

Readers who feel thoroughly familiar with this material may wish to skim or skip this

chapter. However, we will be assuming in subsequent chapters that you are familiar with

the core concepts presented here.

�The MongoDB Document Model
As you are no doubt aware, MongoDB is a document database. Document databases are

a family of non-relational databases which store data as structured documents – usually

in JavaScript Object Notation (JSON) format.

https://doi.org/10.1007/978-1-4842-6879-7_2#DOI

14

JSON-based document databases like MongoDB have flourished over the past

decade for many reasons. In particular, they address the conflict between object-oriented

programming and the relational database model which had long frustrated software

developers. The flexible document schema model supports agile development and

DevOps paradigms and aligns closely with dominant programming models – especially

those of modern, web-based applications.

�JSON
MongoDB uses a variation of JavaScript Object Notation (JSON) as its data model, as well

as for its communication protocol. JSON documents are constructed from a small set of

elementary constructs – values, objects, and arrays:

•	 Arrays consist of lists of values enclosed by square brackets (“[“and

“]”) and separated by commas (“,”).

•	 Objects consist of one or more name-value pairs in the format

“name”:“value”, enclosed by braces (“{“and :}”) and separated by

commas (“,”).

•	 Values can be Unicode strings, standard format numbers (possibly

including scientific notation), Booleans, arrays, or objects.

The last few words in the preceding definition are critical. Because values may

include objects or arrays, which themselves contain values, a JSON structure can

represent an arbitrarily complex and nested set of information. In particular, arrays

can be used to represent repeating groups of documents which in a relational database

would require a separate table.

�Binary JSON (BSON)
MongoDB stores JSON documents internally in the Binary JSON (BSON) format. BSON

is designed to be a more compact and efficient representation of JSON data and uses

more efficient encoding for numbers and other data types. For instance, BSON includes

field length prefixes that allow scanning operations to “skip over” elements and hence

improve efficiency.

Chapter 2 MongoDB Architecture and Concepts

15

BSON also provides a number of extra data types not supported in JSON. For

example, a numeric value in JSON could be a Double, Int, Long, or Decimal128 in

BSON. Additional types such as ObjectID, Date, and BinaryData are also commonly

used. However, most of the time, the differences between JSON and BSON are

unimportant.

�Collections
MongoDB allows you to organize “similar” documents into collections. Collections are

analogous to tables in a relational database. Usually, you’ll store only documents with a

similar structure or purpose within a specific collection, though by default the structure

of the documents in a collection is not enforced.

Figure 2-1 shows the internal structure of JSON documents and how documents are

organized into collections.

Figure 2-1.  JSON document structure

Chapter 2 MongoDB Architecture and Concepts

16

�MongoDB Schemas
The MongoDB document model allows for objects that would require many tables in a

relational database to be stored within a single document.

Consider the following MongoDB document:

{

 _id: 1,

 name: 'Ron Swanson',

 address: 'Really not your concern',

 dob: ISODate('1971-04-15T01:03:48Z'),

 orders: [

 {

 orderDate: ISODate('2015-02-15T09:05:00Z'),

 items: [

 { productName: 'Meat damper', quantity: 999 },

 { productName: 'Meat sauce', quantity: 9 }

]

 },

 { otherorders }

]

};

As in the preceding example, a document may contain another subdocument,

and that subdocument may itself contain a subdocument and so on. Two limits will

eventually stop this document nesting: a default limit of 100 levels of nesting and a 16MB

size limit for a single document (including all its subdocuments).

In database parlance, a schema defines the structure of data within a database

object. By default, a MongoDB database does not enforce a schema, so you can store

whatever you like in a collection. However, it is possible to create a schema to enforce the

document structure using the validator option of the createCollection method, as in

the following example:

db.createCollection("customers", {

 "validator": {

 "$jsonSchema": {

 "bsonType": "object",

Chapter 2 MongoDB Architecture and Concepts

17

 "additionalProperties": false,

 "properties": {

 "_id": {

 "bsonType": "objectId"

 },

 "name": {

 "bsonType": "string"

 },

 "address": {

 "bsonType": "string"

 },

 "dob": {

 "bsonType": "date"

 },

 "orders": {

 "bsonType": "array",

 "uniqueItems": false,

 "items": {

 "bsonType": "object",

 "properties": {

 "orderDate": { "bsonType": "date"},

 "items": {

 "bsonType": "array",

 "uniqueItems": false,

 "items": {

 "bsonType": "object",

 "properties": {

 "productName": {

 "bsonType": "string"

 },

 "quantity": {

 "bsonType": "int"

 }

 }

 }

Chapter 2 MongoDB Architecture and Concepts

18

 }

 }

 }

 }

 }

 }

 },

 "validationLevel": "strict",

 "validationAction": "warn"

});

The validator is in the JSON schema format – which is an open standard that allows

for JSON documents to be annotated or validated. A JSON schema document will

generate warnings or errors if a MongoDB command results in a document that does not

match the schema definition. JSON schemas can be used to define mandatory attributes,

restrict other attributes, and define the data types or data ranges that a document

attribute can adopt.

�The MongoDB Protocol
The MongoDB protocol defines the communication mechanism between the client

and the server. Although the fine details of the protocol are outside the scope of our

performance tuning efforts, it is important to understand the protocol, since many of the

diagnostic tools will display data in the MongoDB protocol format.

�Wire Protocol
The protocol for MongoDB is also known as the MongoDB wire protocol. This is the

structure of the MongoDB packets which are sent to and received from the MongoDB

server. The wire protocol runs over a TCP/IP connection – by default over port 27017.

The actual packet structure of the wire protocol is beyond our scope, but the essence

of each packet is a JSON document containing a request or a response. For instance, if

we send a command to MongoDB from the shell like this:

db.customers.find({FirstName:'MARY'},{Phone:1}).sort({Phone:1})

Chapter 2 MongoDB Architecture and Concepts

19

then the shell will send a request across the wire protocol that looks something like

this:

{ "find" : "customers",

 "filter" : { "FirstName" : "MARY" },

 "sort" : { "Phone" : 1.0 },

 "projection" : { "Phone" : 1.0},

 "$db" : "mongoTuningBook",

 "$clusterTime" : { "clusterTime" : {

 "$timestamp" : { "t" : 1589596899, "i" : 1 } },

 "signature" : { "hash" : { "$binary" : { "base64" :]

 "4RGjzZI5khOmM9BBWLz6y9xLZ9w=", "subType" : "00" } },

 "keyId" : 6826926447718825986 } },

 "lsid" : { "id" : { "$binary" : { "base64" :

 "JI3lUrOMRQm0Y6Pr3iQ8EQ==", "subType" : "04" } } } }

�MongoDB Drivers
A MongoDB driver translates requests from a programming language into wire protocol

format. Each driver can have subtle syntax differences. For instance, in NodeJS the

preceding MongoDB shell request is subtly different:

 const docs = await db.collection('customers').

 find({'FirstName': 'MARY'},

 {'Phone': 1}).

 sort({Phone: 1}).toArray();

Because NodeJS is a JavaScript platform, the syntax is still similar to the MongoDB

shell. But in other languages, the differences can be more marked. For instance, here is

the same query in the Go language:

 collection := client.Database("MongoDBTuningBook").

 Collection("customers")

 filter := bson.D{{"FirstName", "MARY"}}

 findOptions := options.Find()

 findOptions.SetSort(map[string]int{"Phone": 1})

 findOptions.SetProjection(map[string]int{"Phone": 1})

Chapter 2 MongoDB Architecture and Concepts

20

 cursor, err := collection.Find(ctx, filter, findOptions)
 var results []bson.M

 cursor.All(ctx, &results)

However, regardless of the syntax required by a MongoDB driver, the MongoDB

server always receives packets which are in the standard wire protocol format.

�MongoDB Commands
Logically MongoDB commands break down into the following categories:

•	 Query commands, such as find() and aggregate(), which return

information from the databases

•	 Data manipulation commands, such as insert(), update(), and

delete(), which modify data within the database

•	 Data definition commands, such as createCollection() and

createIndex(), which define the structure of data in the database

•	 Administration commands, such as createUser() and

setParameter(), which control the operations of the database

Database performance management is mainly concerned with the overhead and

throughput of query and data manipulation statements. However, administration and

data definition commands include some of the “tools of the trade” that we use to resolve

performance problems (see Chapter 3).

�The find Command
The find command is the workhorse of MongoDB data access. It has a quick and easy

syntax and has a flexible and powerful filtering capability. The find() command has the

following high-level syntax:

db.collection.find(
 {filter},

 {projection})

 sort({sortCondition}),
 skip(skipCount),

 limit(limitCount)

Chapter 2 MongoDB Architecture and Concepts

21

The preceding syntax is shown for the Mongo shell; the syntax for language-specific

drivers can vary slightly.

The key parameters to the find() command are as follows:

•	 Filter is a JSON document that defines the documents to be returned.

•	 Projection defines the attributes from each document which will be

returned.

•	 Sort defines the order in which documents will be returned.

•	 Skip allows some initial documents in the output to be skipped.

•	 Limit restricts the total number of documents to be returned.

In the wire protocol, a find() command returns just the first batch of documents

(usually 1000), and subsequent batches are fetched by a getMore command. The

MongoDB drivers generally handle getMore processing statements on your behalf, but

you can vary the batch size to optimize performance in many cases (see Chapter 6).

�The aggregate Command
find() can perform a wide variety of queries, but it lacks many of the capabilities of the

relational database’s SQL command. For instance, a find() operation cannot join data

from multiple collections and cannot aggregate data. When you need more functionality

than find(), you will generally turn to aggregate().

At a high level, the syntax for aggregate is deceptively simple:

db.collection.aggregate([pipeline]);

where pipeline is an array of instructions to the aggregate command. Aggregate

supports more than two dozen pipeline operators, and most are beyond the scope of this

book. However, the most commonly used operators are

•	 $match, which filters documents within a pipeline using a syntax

similar to the find() command

•	 $group, which aggregates multiple documents into a smaller

aggregated set

•	 $sort, which sorts documents within the pipeline

Chapter 2 MongoDB Architecture and Concepts

22

•	 $project, which defines the attributes to be returned from each

document

•	 $unwind, which returns one document for each element in an array

•	 $limit, which restricts the number of documents to be returned

•	 $lookup, which joins documents from another collection

Here’s an example of aggregate that uses most of these operations to return a count

of movie views by category:

db.customers.aggregate([

 { $unwind: "$views" },

 { $project: {

 "filmId": "$views.filmId"

 }

 },

 { $group:{ _id:{ "filmId":"$filmId" },

 "count":{$sum:1}

 }

 },

 { $lookup:

 { from: "films",

 localField: "_id.filmId",

 foreignField: "_id",

 as: "filmDetails"

 }

 },

 { $group:{ _id:{

 "filmDetails_Category":"$filmDetails.Category"},

 "count":{$sum:1},

 "count-sum":{$sum:"$count"}

 }

 },

Chapter 2 MongoDB Architecture and Concepts

23

 { $project: {

 "category": "$_id.filmDetails_Category" ,

 "count-sum": "$count-sum"

 }

 },

 { $sort:{ "count-sum":-1 }},

]);

Aggregation pipelines can be hard to write and hard to optimize. We’ll look in detail

at aggregation pipeline optimization in Chapter 7.

�Data Manipulation Commands
insert(), update(), and delete() allow documents to be added, changed, or removed

from a collection.

Both update() and delete() take a filter argument that defines the documents to be

processed. The filter condition is identical to that from the find() command.

Optimization of the filter condition is usually the most important factor when

optimizing updates and deletes. Their performance is also affected by the configuration

of write concern (see the following section).

Here is an example of insert, update, and delete commands:

db.myCollection.insert({_id:1,name:'Guy',rating:9});

db.myCollection.update({_id:1},{$set:{rating:10}});

db.myCollection.deleteOne({_id:1});

We discuss the optimization of data manipulation statements in Chapter 8.

�Consistency Mechanisms
All databases have to make trade-offs between consistency, availability, and

performance. Relational databases like MySQL are regarded as strongly consistent

databases because all users always see a consistent view of data. Non-relational

databases such as Amazon Dynamo are often called weakly consistent or eventually

consistent databases because users are not guaranteed to see such a consistent view.

Chapter 2 MongoDB Architecture and Concepts

24

MongoDB is – within limitations – strongly consistent by default, although it can be

made to behave like an eventually consistent database through the configuration of write

concern and read preference.

�Read Preference and Write Concern
A MongoDB application has some control over the behavior of read and write

operations, providing a degree of tunable consistency and availability.

•	 The write concern setting determines when MongoDB regards a

write operation as having completed. By default, write operations

complete once the primary has received the modification.

Consequently, if the primary should fail irrecoverably, then data

might be lost.

•	 However, if the write concern is set to “majority”, then the database

will not complete the write operation until a majority of secondaries

receive the write. We can also set the write concern to wait until all

secondaries or a specific number of secondaries receive the write

operation.

•	 Write concern can also determine if write operations proceed to the

on-disk journal before being acknowledged. This is true by default.

•	 The read preference determines where a client sends read requests.

By default, read requests are sent to the primary. However, the client

driver can be configured to send read requests to the secondary

by default, to a secondary only if the primary is not available, or to

whichever server is “nearest.” The later setting is intended to favor

low latency over consistency.

The default settings for the read preference and write concern result in MongoDB

behaving as a strictly consistent system: everybody will see the same version of a

document. Allowing reads to be satisfied from a secondary node results in a more

eventually consistent behavior.

Read preference and write concern have definite performance impacts that we will

discuss in Chapters 8 and 13.

Chapter 2 MongoDB Architecture and Concepts

25

�Transactions
Although MongoDB started its life as a non-transactional database, since version 4.0

it has been possible to perform atomic transactions across multiple documents. For

instance, in this example we atomically reduce the balance of one account by 100 and

increment another account by the same amount:

session.startTransaction();

mycollection.update({userId:1},{$inc:{balance:100}});

mycollection.update({userId:2},{$inc:{balance:-100}});

session.commitTransaction();

The two updates will either both succeed or both fail.

In practice, coding transactions require some error handling logic, and the design

of transactions can significantly affect performance. We discuss these considerations in

Chapter 9.

�Query Optimization
Like most databases, MongoDB commands represent a logical request for data, rather

than a series of instructions for retrieving that data. For instance, a find() operation

specifies the data that will be returned, but does not explicitly specify the indexes or

other access methods to be employed in retrieving the data.

As a result, the MongoDB code must determine the most efficient way to process

data requests. The MongoDB optimizer is the MongoDB code that makes these

determinations. The decision that the optimizer makes for each command is referred to

as the query plan.

When a new query or command is sent to MongoDB, the optimizer performs the

following steps:

	 1.	 The optimizer looks for a matching query in the MongoDB plan

cache. A matching query is one in which all of the filter and

operation attributes match, even if the values do not. Such queries

are said to have the same query shape. For instance, if you issue

the same query against the customers collection for different

customer names, MongoDB will consider these to have the same

query shape.

Chapter 2 MongoDB Architecture and Concepts

26

	 2.	 If the optimizer cannot find a matching query, then the optimizer

will consider all the possible ways of executing the query. The

query that has the lowest number of work units will be successful.

Work units are specific operations that MongoDB must perform –

correlating mostly with the number of documents that must be

processed.

	 3.	 MongoDB will select the plan that has the lowest number of work

units, use that plan to execute the query, and store that query plan

in the plan cache.

In practice, MongoDB tends to use index-based plans whenever possible and will

usually choose the index that is the most selective (see Chapter 5).

�MongoDB Architecture
You can do a lot of performance optimization without any reference to MongoDB

architecture. However, if we do our job well and completely optimize the workload,

eventually the limiting factor on performance will become the database server itself. At

this point, we need to understand the MongoDB architecture if we want to optimize its

internal efficiency.

�Mongod
In a simple MongoDB implementation, a MongoDB client sends wire protocol messages

to the MongoDB daemon process mongod. For instance, if you install MongoDB on

your laptop, a single mongod process will respond to all of the MongoDB wire protocol

requests.

�Storage Engines
A storage engine abstracts database storage from the underlying storage medium and

format. For instance, one storage engine might store data in memory, while another

might be designed to store data in cloud object stores, while a third might store data on a

local disk.

Chapter 2 MongoDB Architecture and Concepts

27

MongoDB can support multiple storage engines. Initially, MongoDB shipped with a

relatively simple storage engine which stored data as memory-mapped files. This storage

engine was known as the MMAP engine.

In 2014 MongoDB acquired the WiredTiger storage engine. WiredTiger has many

advantages over MMAP and became the default storage engine from MongoDB 3.6. We’ll

be focusing predominantly on WiredTiger within this book.

WiredTiger provides MongoDB with a high-performance disk access layer which

includes caching, consistency, and concurrency management and other modern data

access facilities.

Figure 2-2 illustrates the architecture of a simple MongoDB deployment.

Figure 2-2.  Simple MongoDB deployment architecture

Chapter 2 MongoDB Architecture and Concepts

28

�Replica Sets
MongoDB achieves fault tolerance through the use of replica sets.

A replica set consists of a primary node together with two or more secondary nodes.

The primary node accepts all write requests which are propagated synchronously or

asynchronously to the secondary nodes.

The primary node is selected by an election involving all available nodes. To be

eligible to become primary, a node must be able to contact more than half of the

replica set. This approach ensures that if a network partition splits a replica set into two

partitions, only one of the partitions will attempt to elect a primary. The RAFT protocol1

is used to determine which node becomes the primary, with the objective of minimizing

any data loss or inconsistencies following the failover.

The primary node stores information about document changes in a collection within

its local database called the Oplog. The primary will continuously attempt to apply these

changes to secondary instances.

Members within a replica set communicate frequently via heartbeat messages. If

a primary finds it is unable to receive heartbeat messages from more than half of the

secondaries, then it will renounce its primary status, and a new election will be called.

Figure 2-3 illustrates a three-member replica set and shows how a network partition

leads to a change of primary.

1�https://en.wikipedia.org/wiki/Raft_(computer_science)

Chapter 2 MongoDB Architecture and Concepts

https://en.wikipedia.org/wiki/Raft_(computer_science)

29

MongoDB replica sets primarily exist to support high availability – allowing a

MongoDB cluster to survive a failure in an individual node. However, they can also

provide performance advantages or disadvantages.

Figure 2-3.  MongoDB replica set election

Chapter 2 MongoDB Architecture and Concepts

30

If the MongoDB write concern is greater than 1, then every MongoDB write operation

(inserts, updates, and deletes) will need to be confirmed by more than one member of

the cluster. This will result in a cluster which performs more slowly than a single node

cluster. On the other hand, if the read preference is set to allow reads from secondary

nodes, then read performance might be improved by spreading the read load across

multiple servers. We’ll discuss the performance impact of read preference and write

concern in Chapter 13.

�Sharding
While replica sets exist primarily to support high availability, MongoDB sharding is

intended to provide scale-out capabilities. “Scaling out” allows us to increase database

capacity by adding more nodes to a cluster.

In a sharded database cluster, selected collections are partitioned across multiple

database instances. Each partition is referred to as a “shard.” This partitioning is based

on a shard key value; for instance, you could shard on a customer identifier, customer

ZIP code or birth date. Selection of a particular shard key can have positive or negative

impacts on your performance; in Chapter 14, we’ll cover how to optimize shard keys.

When operating on a particular document, the database determines which shard should

contain the data and sends the data to the appropriate node.

A high-level representation of the MongoDB sharding architecture is shown in

Figure 2-4. Each shard is implemented by a distinct MongoDB server, which in most

respects is unaware of its role in the broader sharded server (1). A separate MongoDB

server – the config server (2) – contains the metadata which is used to determine how

data is distributed across shards. A router process (3) is responsible for routing client

requests to the appropriate shard server.

Chapter 2 MongoDB Architecture and Concepts

31

To shard a collection, we choose a shard key, which are one or more indexed

attributes that will be used to determine the distribution of documents across shards.

Note that not all collections need be sharded. Traffic for unsharded collections will be

directed to a single shard.

�Sharding Mechanisms
Distribution of data across shards can be either range-based or hash-based. In range-

based partitioning, each shard is allocated a specific range of shard key values.

MongoDB consults the distribution of key values in the index to ensure that each shard

is allocated approximately the same number of keys. In hash-based sharding, keys are

distributed based on a hash function applied to the shard key.

See Chapter 14 for more details of range- and hash-based sharding.

Figure 2-4.  MongoDB sharding

Chapter 2 MongoDB Architecture and Concepts

32

�Cluster Balancing
When hash-based sharding is implemented, the number of documents in each shard

tends to remain balanced under most scenarios. However, in a range-based sharding

configuration, it is very easy for the shards to become unbalanced, especially if the shard

key is based on a continuously increasing value such as an auto-incrementing primary

key ID.

For this reason, MongoDB will periodically assess the balance of shards across the

cluster and perform rebalance operations if needed.

�Conclusion
In this chapter, we’ve briefly reviewed the key architectural elements of MongoDB that

are essential prerequisites for MongoDB performance tuning. Most readers will already

be broadly familiar with the concepts covered in this chapter, but it’s always good to be

sure that you have the fundamentals of MongoDB covered.

The best place to learn more about any of these topics is the MongoDB

documentation set – available online at https://docs.mongodb.com/.

In the next chapter, we’ll deep dive into the essential tools provided with MongoDB

that should be your constant companions during your tuning endeavors.

Chapter 2 MongoDB Architecture and Concepts

https://docs.mongodb.com/

33
© Guy Harrison, Michael Harrison 2021
G. Harrison and M. Harrison, MongoDB Performance Tuning, https://doi.org/10.1007/978-1-4842-6879-7_3

CHAPTER 3

Tools of the Trade
They say a tradesman is only as good as his or her tools. Luckily, you don’t need

expensive or hard-to-find tools to tune a MongoDB application or database. However,

you should be thoroughly familiar with the tools that MongoDB makes available to you

free of charge within the MongoDB server.

In this chapter, we’ll review the components that make up the essential toolkit for

MongoDB performance tuning, in particular:

•	 The explain() method, which reveals the steps that MongoDB

undertakes when executing a command

•	 The profiler, which allows you to capture and analyze the workload

on the MongoDB server

•	 The commands that reveal the global state of the MongoDB server –

ServerStatus() and CurrentOp() in particular

•	 The graphical MongoDB Compass tool, which provides a user-

friendly graphical alternative to the mostly command-line utilities

listed previously

�Introduction to explain( )
The explain() method allows you to examine query plans. It’s an essential tool for

tuning MongoDB performance.

For almost all operations, there is more than one way for MongoDB to retrieve and

process the documents involved. When MongoDB prepares a statement for execution,

it must decide which approach will be fastest. The process of determining this “optimal”

path to the data is the process of query optimization, which we introduced in Chapter 2.

https://doi.org/10.1007/978-1-4842-6879-7_3#DOI

34

For instance, consider the following query:

db.customers.

 find(

 {

 FirstName: "RUTH",

 LastName: "MARTINEZ",

 Phone: 496523103

 },

 { Address: 1, dob: 1 }

).

 sort({ dob: 1 });

For this example, suppose there are indexes on FirstName, LastName, Phone, and

dob. These indexes give MongoDB the following choices for resolving the query:

•	 Scan the entire collection looking for documents matching the name

and phone number filter conditions, and then sort those documents

by dob.

•	 Use the index on FirstName to find all the “RUTH”s, then filter

those documents based on LastName and Phone, and then sort the

remainder on dob.

•	 Use the index on LastName to find all the “MARTINEZ”s, then filter

those documents based on FirstName and Phone, and then sort the

remainder on dob.

•	 Use the index on Phone to find all documents with a matching phone

number. Then eliminate any who are not RUTH MARTINEZ, and

then sort by dob.

•	 Use the index on dob to sort the documents in order of date of birth,

and then eliminate documents that don’t match the query criteria.

Each of these approaches will return the correct results, but each will have different

performance characteristics. It’s the job of the MongoDB optimizer to decide which

approach will be quickest.

The explain() method reveals the query optimizer’s decision and – in some cases –

lets you examine its reasoning.

Chapter 3 Tools of the Trade

35

�Getting Started with explain( )
To examine the optimizer’s decisions, we use the explain() method of the collection

object and pass a find(), update(), insert(), or aggregate() operation to that method.

For instance, to explain the query we introduced earlier, we could issue this command1:

var explainCsr=db.customers.explain().

 find(

 {

 FirstName: "RUTH",

 LastName: "MARTINEZ",

 Phone: 496523103

 },

 { Address: 1, dob: 1 }

).

 sort({ dob: 1 });

var explainDoc=explainCsr.next();

explain() emits a cursor that returns a JSON document containing information

about the query’s execution. Because it’s a cursor, we need to fetch the explain output by

calling next() after we call explain().

The part of the explain output that is most important initially is the winningPlan

section, which we can extract like this:

mongo> printjson(explainDoc.queryPlanner.winningPlan);

{

 "stage": "PROJECTION_SIMPLE",

 "transformBy": {

 "Address": 1,

 "dob": 1

 },

 "inputStage": {

 "stage": "SORT",

 "sortPattern": {

1�It’s also possible to place the explain() operation last: db.collection.find().explain()
instead of db.collection.explain().find(). However, the former syntax is deprecated and not
recommended.

Chapter 3 Tools of the Trade

36

 "dob": 1

 },

 "inputStage": {

 "stage": "SORT_KEY_GENERATOR",

 "inputStage": {

 "stage": "FETCH",

 "filter": {

 "$and": [

 <snip>

]

 },

 "inputStage": {

 "stage": "IXSCAN",

 "keyPattern": {

 "Phone": 1

 },

 "indexName": "Phone_1",

 "isMultiKey": false,

 "multiKeyPaths": {

 "Phone": []

 },

 "isUnique": false,

 "isSparse": false,

 "isPartial": false,

 "indexVersion": 2,

 "direction": "forward",

 "indexBounds": {

 "Phone": [

 "[496523103.0, 496523103.0]"

]

 }

 }

 }

 }

 }

}

Chapter 3 Tools of the Trade

37

It’s still pretty complex – and we removed some stuff to simplify it. However, you

can see it lists the multiple stages of query execution with the input to each stage (the

previous step) nested as inputStage. In order to decipher the output, you start with the

most deeply nested inputStage – reading the JSON from the inside out – to get the plan.

If you prefer, you can use the mongoTuning.quickExplain function from our utility

scripts to print out the steps in the order in which they are executed:

Mongo Shell>mongoTuning.quickExplain(explainDoc)

1 IXSCAN Phone_1

2 FETCH

3 SORT_KEY_GENERATOR

4 SORT

5 PROJECTION_SIMPLE

This script prints the execution plan in a very concise format. Here’s an explanation

of each step:

	 1.	 IXSCAN Phone_1: MongoDB uses the Phone_1 index to find

documents with a matching value for the Phone attribute.

	 2.	 FETCH: MongoDB filters out documents returned from the index

that don’t have the correct values for FirstName and LastName.

	 3.	 SORT_KEY_GENERATOR: MongoDB extracts dob values from the

FETCH operation in preparation for the subsequent SORT operation.

	 4.	 SORT: MongoDB sorts the documents based on the values of dob.

	 5.	 PROJECTION_SIMPLE: MongoDB emits the address and dob

attributes into the output stream (these were the only attributes

requested by the query).

There’s a wide variety of possible execution plans, and we’ll look at a lot of them in

the subsequent chapters.

Getting familiar with the possible execution steps that MongoDB can employ is

essential to understanding what MongoDB is doing. You can find an explanation of

the different steps on this books Github repository at https://github.com/gharriso/

MongoDBPerformanceTuningBook/blob/master/ExplainPlanSteps.md. You’ll also find a

wealth of information within the MongoDB documentation at https://docs.mongodb.

com/manual/reference/explain-results/.

Chapter 3 Tools of the Trade

https://github.com/gharriso/MongoDBPerformanceTuningBook/blob/master/ExplainPlanSteps.md
https://github.com/gharriso/MongoDBPerformanceTuningBook/blob/master/ExplainPlanSteps.md
https://docs.mongodb.com/manual/reference/explain-results/
https://docs.mongodb.com/manual/reference/explain-results/

38

The sheer number of explain() operations might seem daunting, but most of the

time, you’ll be dealing with combinations of a few fundamental procedures, such as

•	 COLLSCAN: The entire collection scanned without utilizing an index

•	 IXSCAN: The use of an index to find documents (see Chapter 5 for

details on indexing)

•	 SORT: The sorting of documents without the use of an index

�Alternate Plans
explain() can tell you not just which plan was used but which other plans were rejected.

The rejected plans are found within the array rejectedPlans within the queryPlanner

section. Here, we use quickExplain to examine one of the rejected plans:

Mongo> mongoTuning.quickExplain

 (explainDoc.queryPlanner.rejectedPlans[1])

1 IXSCAN LastName_1

2 IXSCAN Phone_1

3 AND_SORTED

4 FETCH

5 SORT_KEY_GENERATOR

6 SORT

7 PROJECTION_SIMPLE

This rejected plan merged two indexes – one on LastName and one on Phone – to

retrieve the results. Why was it rejected? The first time this query was executed, the

MongoDB query optimizer estimated the amount of work required to execute each of the

candidate plans. The plan with the lowest work estimate – generally the plan that has to

process the smallest number of documents – wins. queryPlanner.rejectedPlans lists

the rejected plans.

�Execution Statistics
If you pass the argument “executionStats" to explain(), then explain() will execute

the entire request and report on the performance of each step in the plan. Here’s an

example of using executionStatistics:

Chapter 3 Tools of the Trade

39

var explainObj = db.customers.

 explain('executionStats').

 find(

 {FirstName: "RUTH",

 LastName: "MARTINEZ",

 Phone: 496523103},

 { Address: 1, dob: 1 }

).sort({ dob: 1 });

var explainDoc = explainObj.next();

The execution statistics are included in the executionStages section of the resulting

plan document:

mongo> explainDoc.executionStats

{

 "executionSuccess": true,

 "nReturned": 1,

 "executionTimeMillis": 0,

 "totalKeysExamined": 1,

 "totalDocsExamined": 1,

 "executionStages": {

 "stage": "PROJECTION_SIMPLE",

 "nReturned": 1,

 "executionTimeMillisEstimate": 0,

 "works": 6,

 "advanced": 1,

 "needTime": 3,

 "needYield": 0,

 "saveState": 0,

 "restoreState": 0,

 "isEOF": 1,

 "transformBy": {

 "Address": 1,

 "dob": 1

 },

Chapter 3 Tools of the Trade

40

 "inputStage": {

 "stage": "SORT",

// Many, many more lines of output

 }}

}

Note  In order to obtain the execution statistics, explain("executionStats")
will fully execute the MongoDB statement concerned. This means that it may take
much longer to complete than a simple explain() and place significant load on
the MongoDB server.

The executionSteps subdocument contains overall execution statistics – such as

executionTimeMillis – as well as an annotated execution plan in the executionStages

document. executionStages is structured just like winningPlan, but it has statistics for

each step. There are a lot of statistics, but perhaps the most significant ones are

•	 executionTimeMillisEstimate: Number of milliseconds consumed

executing the step concerned

•	 keysExamined: Number of index keys read by the step

•	 docsExamined: Number of documents read by the step

It’s hard to read the executionSteps document – so we wrote mongoTuning.

executionStats() to print out the steps and key statistics in the same format as the

mongoTuning.quickExplain script:

mongo> mongoTuning.executionStats(explainDoc);

1 COLLSCAN (ms:10427 docs:411121)

2 SORT_KEY_GENERATOR (ms:10427)

3 SORT (ms:10427)

4 PROJECTION_SIMPLE (ms:10428)

Totals: ms: 12016 keys: 0 Docs: 411121

We’ll use this function in the next section to tune a MongoDB query.

Chapter 3 Tools of the Trade

41

�Using explain( ) to Tune a Query
Now that we’ve learned how to use explain(), let’s run through a short example

showing how to use it to tune a query. Here is the explain command for the query we

want to tune:

mongo> var explainDoc=db.customers.

 explain('executionStats').

 find(

 { Country: 'United Kingdom',

 'views.title': 'CONQUERER NUTS' },

 { City:1,LastName: 1, phone: 1 }

).

 sort({City:1, LastName: 1 });

This query – against a hypothetical Netflix-style customer database – generates a list

of customers in the United Kingdom who have watched the film Conqueror Nuts.

Let’s use mongoTuning.executionStats to extract the execution statistics:

Mongo> mongoTuning.executionStats(explainDoc);

1 COLLSCAN (ms:12 docs:411121)

2 SORT_KEY_GENERATOR (ms:12)

3 SORT (ms:12)

4 PROJECTION_SIMPLE (ms:12)

Totals: ms: 253 keys: 0 Docs: 411121

The COLLSCAN step – a full scan of the entire collection – comes first and examines

411,121 documents. It only takes 253 milliseconds (about one-fourth of a second), but maybe

we can do better. There’s also a SORT in there, and we’d like to see if we can avoid the sort

using an index. So let’s create an index that has the attributes from the filter clause (Country

and views.title) and the attributes from the sort operation (City and LastName):

db.customers.createIndex(

 { Country: 1, 'views.title': 1,

 City: 1, LastName: 1 },

 { name: 'ExplainExample' }

);

Chapter 3 Tools of the Trade

42

Now when we generate the executionStats, our output looks like this:

1 IXSCAN (ExplainExample ms:0 keys:685)

2 FETCH (ms:0 docs:685)

3 PROJECTION_SIMPLE (ms:0)

Totals: ms: 2 keys: 685 Docs: 685

With the new index in place, the query returns almost instantaneously, and the

number of documents (keys) examined has reduced from 411,121 to 685. We’ve reduced

the amount of data accessed by 97% and improved the execution time by several orders

of magnitude. Note also that there is no longer a SORT step – MongoDB was able to use

the index to return documents in sorted order without an explicit sort.

Explain itself doesn’t tune queries, but without explain() you’ll have only the

vaguest indication as to what MongoDB is up to. Therefore, we’ll use explain extensively

throughout the book when optimizing MongoDB queries.

�Visual Explain Utilities
There’s plenty of options for visualizing explain output without having to read through

mountains of JSON output or using our utility scripts. Visual explain utilities can be

beneficial, though in our experience it remains essential to be able to debug raw explain

output and to be able to get explains from the command line.

MongoDB Compass is MongoDB’s own graphical user interface utility. Figure 3-1

shows how MongoDB Compass can display a visual representation of explain output.

Chapter 3 Tools of the Trade

43

Figure 3-2 shows visual explain output in the open source dbKoda product.2

2�Full Disclosure: Both Mike and Guy worked on the dbKoda product.

Figure 3-1.  Visual explain output in MongoDB Compass

Chapter 3 Tools of the Trade

44

Other GUIs for MongoDB also include visual options for displaying explain output.

Remember, while these tools can help with visualizing the output of the explain()

command, it’s up to you to be able to interpret the output and take appropriate tuning

action!

�The Query Profiler
explain() is a great tool to tune an individual MongoDB query, but can’t tell you which

queries in an application might need tuning. For instance, in the example we gave in

Chapter 1, we described an application in which IO was overloaded as a result of a single

missing index. How do we find the statements that are generating that IO and from there

identify the index required? This is where the MongoDB profiler comes in.

The MongoDB profiler allows you to collect information about the commands that

are being run on the database. Where explain() will enable you to determine how a

single command is being executed, the profiler will give you a higher-level view of what

commands are running and which commands might require tuning.

By default, the query profiler is disabled and can be configured individually on each

database. The profiler can be set to one of three levels:

Figure 3-2.  Visual explain output in dbKoda

Chapter 3 Tools of the Trade

45

•	 0: A setting of 0 means that profiling is disabled for the database. This

is the default level.

•	 1: The profiler will only collect information about commands that

take longer than slowms to complete.

•	 2: The profiler will collect information for all commands, whether

they complete faster than slowms or not.

Profiling is controlled by the db.setProfilingLevel() command.

setProfilingLevel has the following syntax:

db.setProfilingLevel(level,

 {slowms:slowMsThreshold,

 sampleRate:samplingRate});

setProfilingLevel takes the following arguments:

•	 Level corresponds to the three levels (0, 1, or 2) outlined in the

preceding text. 0 disables tracing, 1 sets tracing for statements that

consume more than the slowms threshold, while 2 sets tracing for all

statements.

•	 slowMsThreshold sets the millisecond execution threshold for level 1

tracing.

•	 samplingRate determines a random sampling level. For instance, if

samplingRate is set to 0.5, then half of all statements will be traced.

Note T he query profiler cannot be used on sharded instances. If
setProfilingLevel is issued against a sharded cluster, it will only set the
values of slowms and samplerate that determine which operations will be
written to the MongoDB log.

You can check the current level of tracing with the db.getProfilingStatus()

command.

In the following example, we check the current profiling level, then set profiling so

that it captures all statements that consume more than 2 milliseconds of execution time,

and finally, we check the current profiling level again to observe our new configuration:

Chapter 3 Tools of the Trade

46

mongo>db.getProfilingStatus();

{

 "was": 0,

 "slowms": 20,

 "sampleRate": 1

}

mongo>db.setProfilingLevel(1,{slowms:2,sampleRate:1});

{

 "was": 0,

 "slowms": 20,

 "sampleRate": 1,

 "ok": 1

}

mongo>db.getProfilingStatus();

{

 "was": 0,

 "slowms": 2,

 "sampleRate": 1

}

�The system.profile Collection
Profiling information is stored in the system.profile collection. system.profile is a

circular collection – the collection is fixed in size, and when that size is exceeded, older

entries are removed to make way for new entries. The default size for system.profile is

only 1MB, so you may wish to increase its size. You can do this by stopping profiling,

dropping the collection, and recreating it with a larger size, as in this example:

mongo>db.setProfilingLevel(0);

{

 "was": 1,

 "slowms": 2,

 "sampleRate": 1,

 "ok": 1

}

mongo >db.system.profile.drop();

Chapter 3 Tools of the Trade

47

true

mongo >db.createCollection(

 "system.profile",

 {capped: true, size:10485760 }); // 10MB

{

 "ok": 1

}

mongo >db.setProfilingLevel(1);

{

 "was": 0,

 "slowms": 2,

 "sampleRate": 1,

 "ok": 1

}

�Analyzing Profiling Data
Our general approach for profiling is as follows:

	 1.	 Turn on profiling with an appropriate slowms level, sampleRate,

and system.profile collection size.

	 2.	 Allow a representative workload to act upon the database.

	 3.	 Turn off profiling and analyze the results.

Note  We don't generally want profiling turned on all the time as it can impose a
significant performance burden upon the database.

To analyze data within system.profile, we can issue MongoDB find() or

aggregate() statements against that collection. There’s a lot of useful information held

in system.profile, but it can be confusing and difficult to analyze. There are a large

number of attributes to examine, and in some scenarios, a single statement’s execution

statistics might be spread across multiple entries in the collection.

Chapter 3 Tools of the Trade

48

To get an accurate picture of the burden that specific statements impose on the

database, we need to aggregate the data for all statements that are equivalent in

structure, even if they are not exactly identical in text. Such statements are said to have

the same query shape. So, for instance, the following two queries are probably from the

same piece of code and will have the same tuning solution:

db.customers.find({"views.filmId":987}).sort({LastName:1});

db.customers.find({"views.filmId":317}).sort({LastName:1});

However, since each execution of this statement will have a separate entry in the

system.profile collection, we need to aggregate statistics across all of those executions.

We can do that by aggregating all statements that have the same value for the system.

profile attribute queryHash.

There’s also a further complication for statements that process a lot of data. For

instance, a query that pulls more than 1000 documents will have an entry for the initial

query and also entries for each getMore operation that fetches each successive batch

of data. Luckily, each getMore operation will share a cursorId attribute with its parent

operation so we can aggregate on that attribute as well.

Listing 3-1 shows an aggregation pipeline that performs the necessary aggregations

to list the statements that are consuming the most time in the database.3

Listing 3-1.  Aggregating statistics from system.profile

db.system.profile.aggregate([

 { $group:{ _id:{ "cursorid":"$cursorid" },

 "count":{$sum:1},

 "queryHash-max":{$max:"$queryHash"} ,

 "millis-sum":{$sum:"$millis"} ,

 "ns-max":{$max:"$ns"}

 }

 },

 { $group:{ _id:{"queryHash":"$queryHash-max" ,

 "collection":"$ns-max" },

 "count":{$sum:1},

3�The query in Listing 3-1 is included within our tuning script as mongoTuning.profileQuery().

Chapter 3 Tools of the Trade

49

 "millis":{$sum:"$millis-sum"}

 }

 },

 { $sort:{ "millis":-1 }},

 { $limit: 10 },

]);

Here’s the output from this aggregation:

{ "_id": { "queryHash": "14C08165", "collection": "MongoDBTuningBook.

customers" }, "count": 17, "millis": 6844 }

{ "_id": { "queryHash": "81BACDE0", "collection": "MongoDBTuningBook.

customers" }, "count": 13, "millis": 3275 }

{ "_id": { "queryHash": "1215D594", "collection": "MongoDBTuningBook.

customers" }, "count": 13, "millis": 3197 }

{ "_id": { "queryHash": "C05DC5D9", "collection": "MongoDBTuningBook.

customers" }, "count": 14, "millis": 2821 }

{ "_id": { "queryHash": "B3A7D0DB", "collection": "MongoDBTuningBook.

customers" }, "count": 12, "millis": 2525 }

{ "_id": { "queryHash": "F7B164E4", "collection": "MongoDBTuningBook.

customers" }, "count": 12, "millis": 43 }

We can see that the query with queryHash “14C08165” consumed the most time

during our tuning run. We can get details about this query by looking for entries in the

system.profile collection with a matching hash value:

mongo>db.system.profile.findOne(

... { queryHash: '14C08165' },

... { ns: 1, command: 1, docsExamined: 1,

... millis: 1, planSummary: 1 }

...);

{

 "ns": "MongoDBTuningBook.customers",

 "command": {

 "find": "customers",

 "filter": {

 "Country": "Yugoslavia"

 },

Chapter 3 Tools of the Trade

50

 "sort": {

 "phone": 1

 },

 "projection": {

 },

 "$db": "MongoDBTuningBook"

 },

 "docsExamined": 101,

 "millis": 31,

 "planSummary": "IXSCAN { Country: 1, views.title: 1, City: 1, LastName:

1, phone: 1 }"

}

This query is included in our mongoTuning package within the function

mongoTuning.getQueryByHash.

This query retrieves the command, execution time, documents examined, and

an execution plan summary for a given queryHash. system.profile includes a lot of

additional attributes, but the limited set earlier should be enough to get started with your

optimization efforts. A probable next step would be to generate full execution plans for

that command – including executionStats – and determine if a better execution plan

could be achieved (hint: we may want to do something about the sort operation).

Remember: explain() can help you tune an individual command, while the profiler

can help you find commands that need tuning. You are now well equipped to identify

and optimize problematic MongoDB commands.

�Tuning with MongoDB Logs
The query profiler isn’t the only way to find out what queries are running behind the

scenes. Command executions can also be found within the MongoDB logs. The location

of these logs depends on your server configuration. You can usually determine your log

file location with the following command:

db.getSiblingDB("admin").

 runCommand({ getCmdLineOpts: 1 }).parsed.systemLog;

Chapter 3 Tools of the Trade

51

Let’s assume that we have pushed our logs to a file, using the --logpath parameter

such as in the following example:

User> mongod --port 27017 --dbpath ./data --logpath ./mongolog.txt

We can view our logs with operating system commands like tail or even with a

text editor of choice. However, if we run a query and then look in our log file, we might

not see any log entries recording the query execution. This is because, by default,

only commands which exceed the slow operations threshold will be logged. This slow

operations threshold is the same as the slowms parameter we introduced in the previous

section on the query profiler.

There are two ways we can ensure that our executed query will show up in the log file:

	 1.	 We can reduce the value of slowms using the db.

setProfilingLevel command. If db.setProfilingLevel is set

to 0, then commands meeting the slowms criteria will be written

to the logs. For instance, if we issue db.setProfilingLevel(0,

{slowms: 10}), any command that takes more than 10

milliseconds to execute will be output to the logs.

	 2.	 We can use the db.setLogLevel command to force logging of all

queries of a specified type.

db.setLogLevel can be used to control the verbosity of the log output. The

command has the following syntax:

db.setLogLevel(Level,Component)

where

•	 Level is the verbosity of logging from 0 to 5. Generally, a level of 2 is

sufficient for command monitoring.

•	 Component controls the type of log messages affected. The following

components are relevant here:

•	 query: Logs all find() commands

•	 write: Logs update, delete, and insert statements

•	 command: Records other MongoDB commands, including

aggregate

Chapter 3 Tools of the Trade

52

Normally, you would set the verbosity back to 0 when you had completed your

testing – otherwise, you may generate an unacceptable level of log output.

Now that we know how to show our commands in the log, let’s see it in action!

Let’s set the logLevel to catch find() operations, issue the find(), and then restore

the logging level:

mongo> db.setLogLevel(2,'query')

mongo> db.listingsAndReviews.find({name: "Ribeira Charming Duplex"}).

cancellation_policy;

Moderate

mongo> db.setLogLevel(0,'query');

Finally, let’s have a look through our log file to view our operation. In this example,

we use grep to get the logs from our file, but you can also open the file in an editor:

$ grep -i "Ribeira" /var/log/mongodb/mongo.log

2020-06-03T07:14:56.871+0000 I COMMAND [conn597] command sample_

airbnb.listingsAndReviews appName: "MongoDB Shell" command: find {

find: "listingsAndReviews", filter: { name: "Ribeira Charming Duplex"

}, lsid: { id: UUID("01885ece-c731-4549-8b4f-864fe527888c") }, $db:

"sample_airbnb" } planSummary: IXSCAN { name: 1 } keysExamined:1

docsExamined:1 cursorExhausted:1 numYields:0 nreturned:1 queryHash:01AEE5EC

planCacheKey:4C5AEA2C reslen:29543 locks:{ ReplicationStateTransition: {

acquireCount: { w: 1 } }, Global: { acquireCount: { r: 1 } }, Database: {

acquireCount: { r: 1 } }, Collection: { acquireCount: { r: 1 } }, Mutex: {

acquireCount: { r: 1 } } } storage:{} protocol:op_msg 0ms

Your log location may be different and – especially on Windows – the commands you

use to filter the log may be different.

Let’s break down the key elements of the log record, skipping some of the fields that

are not particularly interesting. The first few elements are about the log itself:

•	 2020-06-03T07:14:56.871+0000: The timestamp of this log

•	 COMMAND: The category of this log

Next, we have some command-specific information:

Chapter 3 Tools of the Trade

53

•	 airbnb.listingsAndReviews: The namespace – database and

collection – of the command. This attribute can be useful for finding

commands that are specific to a database or collection.

•	 command: find: The type of command that was executed, for

example, find, insert, update, or delete.

•	 appName: "MongoDB Shell": The type of connection that executed

this command; this is useful for filtering a particular driver or the

shell.

•	 filter: { name: "Ribeira Charming Duplex" }: The filter

provided to the command.

Then we have some more specific information about how the command was

executed:

•	 planSummary: IXSCAN: The most significant part of the execution

plan. You may remember from our discussion on explain() that

IXSCAN indicates that an index scan was used to resolve the query.

•	 keysExamined:1 docsExamined: 1 ... nreturned:1: Statistics

relating to the command execution.

•	 0ms: The execution time. In this case, the execution time was less

than one millisecond, so it was rounded down to 0.

Along with these critical metrics, the log entry contains additional information on

locking and storage that you may need in more specific use cases. You may be thinking

that reading these logs is quite awkward compared to some of the other tools in this

chapter, and you would be right. Even with the search and filter tools provided by a text

editor, parsing these logs can be cumbersome.

One way to reduce the burden of the log format is to use the log management tools

provided as part of the mtools utility kit. Mtools includes mlogfilter, which allows you to filter

and subset log records, while mplotqueries creates graphical representations of log data.

You can learn more about mtools at https://github.com/rueckstiess/mtools.

Chapter 3 Tools of the Trade

https://github.com/rueckstiess/mtools

54

�Server Statistics
So far, we have analyzed individual query execution with explain() and examined

the queries running on a given database with the MongoDB profiler. To zoom out even

further, we can ask MongoDB for high-level information about server activity across

all databases, queries, and commands. The command to retrieve this information is

db.serverStatus(). This command generates a large number of metrics including

operation counters, queue information, index usage, connections, disk IO, and memory

utilization.

The db.serverStatus() command is a quick and powerful way to get a lot of

high-level information about your MongoDB server. db.serverStatus() can help you

identify performance problems or even just get a deeper understanding of what other

factors may be at play when you are tuning. If you can’t work out why a given query is

running so slowly, a quick check of the CPU and memory usage may provide a vital clue.

When tuning your application, you may not always have exclusive use of a database. In

these cases, it is crucial that you gain a high-level understanding of the external factors

affecting server performance.

Usually, this would be where we go through the output of the command in detail.

However, db.serverStatus() outputs so much data (almost 1000 lines) that it can be

overwhelming (and often impractical) to try and analyze the raw output. Usually, you

will be looking for a specific value or a subset of values rather than examining every

single metric that the server has recorded. As you can see from the extremely truncated

output in the following, there’s also a lot of extraneous information that might not be

directly relevant to our performance tuning efforts:

mongo> db.serverStatus()

{

 "host" : "Mike-MBP-3.modem",

 "version" : "4.2.2",

 "process" : "mongod",

 "pid" : NumberLong(3750),

 "uptime" : 474921,

 "uptimeMillis" : NumberLong(474921813),

 "uptimeEstimate" : NumberLong(474921),

 "localTime" : ISODate("2020-05-13T22:04:10.857Z"),

 "asserts" : {

Chapter 3 Tools of the Trade

55

 "regular" : 0,

 "warning" : 0,

 "msg" : 0,

 "user" : 2,

 "rollovers" : 0

 },

 ...

 945 more lines here.

 ...

 "ok" : 1,

 "$clusterTime" : {

 "clusterTime" : Timestamp(1589407446, 1),

 "signature" : {

 "hash" : BinData(0,"AAAAAAAAAAAAAAAAAAAAAAAAAAA="),

 "keyId" : NumberLong(0)

 }

 },

 "operationTime" : Timestamp(1589407446, 1)

}

Due to the overwhelming nature of db.serverStatus() output, it is unusual to

simply execute the command and then scroll to the relevant data. Instead, it is often

more useful to extract only the specific values you are searching for or to aggregate the

data into a more easily parsed format.

For example, to fetch just the counts of various high-level commands that have been

executed, you could do the following:

mongo> db.serverStatus().opcounters

{

 "insert" : NumberLong(3),

 "query" : NumberLong(1148),

 "update" : NumberLong(15),

 "delete" : NumberLong(11),

 "getmore" : NumberLong(0),

 "command" : NumberLong(2584)

}

Chapter 3 Tools of the Trade

56

The following top-level categories from db.serverStatus() are often useful:

•	 connections: Statistics relating to connections within the server

•	 opcounters: Totals of command executions

•	 locks: Counters relating to internal locks

•	 network: Summary of network traffic into and out of the server

•	 opLatencies: Time taken in read and write commands and
transactions

•	 wiredTiger: WiredTiger storage engine statistics

•	 mem: Memory utilization

•	 transactions: Transaction statistics

•	 metrics: Miscellaneous metrics, including counts of aggregation
stages and specific individual commands

We can use these high-level categories and the nested documents within to drill into
statistics of interest. For instance, we can drill into the WiredTiger cache size like this:

mongo> db.serverStatus().wiredTiger.cache["maximum bytes configured"]
1073741824

However, there are two problems with using db.serverStatus() in this way. Firstly,
these counters don’t tell us much about what’s happening on the server right now,
making it difficult to identify which of the metrics may be impacting the performance of
our application. Secondly, this method assumes that either you know which metrics to
look for or are iterating through the metrics one at a time looking for clues.

If you are using MongoDB Atlas or Ops Manager, these two problems will likely
be solved for you as these tools calculate rates for essential metrics and display them
graphically. However, it is best to understand how to get these metrics from the
command line, since you never know what type of MongoDB configuration you may be
working with in the future.

The solution to our first problem – the need to get statistics for a recent period – is
to take two samples over a given interval and calculate the difference between them.
For example, let’s create a simple helper function that will use two samples to find the
number of find operations that ran in a ten-second interval:

mongo> var sample = function() {
... var sampleOne = db.serverStatus().opcounters.query;

Chapter 3 Tools of the Trade

57

... sleep(10000); // Wait for 10000ms (10 seconds)

... var sampleTwo = db.serverStatus().opcounters.query;

... var delta = sampleTwo - sampleOne;

... print(`There were ${delta} query operations during the sample.`);

... }
mongo> sample()
There were 6 query operations during the sample.

Now we can easily see what operations were running during our sample period,
and we can divide the number of operations by our sample period to figure out the
rate of operations per second. Although this works, it would be better to build a helper
function to fetch all the server status data and calculate the rates of change across all
of the metrics of interest. We’ve included just such a general-purpose script within the
mongoTuning package.

mongoTuning.keyServerStats takes two samples of serverStatus across a time
period of interest and prints some key performance metrics. Here, we print some
statistics of interest over a 60-second interval:

rs1:PRIMARY> mongoTuning.keyServerStats(60000)
{
 "netKBInPS" : "743.4947",
 "netKBOutPS" : 946.0005533854167,
 "intervalSeconds" : 60,
 "queryPS" : "2392.2833",
 "getmorePS" : 0,
 "commandPS" : "355.4667",
 "insertPS" : 0,
 "updatePS" : "118.4500",
 "deletePS" : 0,
 "docsReturnedPS" : "0.0667",
 "docsUpdatedPS" : "118.4500",
 "docsInsertedPS" : 0,
 "ixscanDocsPS" : "118.4500",
 "collscanDocsPS" : "32164.4833",
 "scansToDocumentRatio" : 484244,
 "transactionsStartedPS" : 0,
 "transactionsAbortedPS" : 0,
 "transactionsCommittedPS" : 0,
 "transactionAbortPct" : 0,

Chapter 3 Tools of the Trade

58

 "readLatencyMs" : "0.4803",
 "writeLatencyMs" : "7.0247",
 "cmdLatencyMs" : "0.0255",

We’ll see examples of using the mongoTuning script in later chapters.
The raw amount of data output from db.serverStatus() may seem intimidating now. But

don’t worry, you only need to know a dozen or so key metrics to understand how MongoDB is
performing, and by using helper functions like the ones included in our mongoTuning package,
you can easily examine just those relevant statistics. In later chapters, we will see how to
leverage db.serverStatus() metrics to tune MongoDB server performance.

�Examining Current Operations
Another useful tool when tuning performance in MongoDB is the db.currentOp()
command. This command works as you might imagine – it returns information about
operations that are currently running on the database. Even if you are not currently
running any operations against your database, the command may still return an
extensive list of background operations.

Currently executing operations will be listed in an array called inprog. Here, we count
the number of operations and view (truncated) details for the first operation in the list:

mongo> db.currentOp().inprog.length
7
mongo> db.currentOp().inprog[0]
 {
 "type" : "op",
 "host" : "Centos8:27017",
 "desc" : "conn557",
 "connectionId" : 557,
 "client" : "127.0.0.1:44036",
 "clientMetadata" : {
 /* Info about the OS and client driver */
 },
 "active" : true,
 "currentOpTime" : "2020-06-08T07:05:12.196+0000",
 "effectiveUsers" : [
 {
 "user" : "root",

Chapter 3 Tools of the Trade

59

 "db" : "admin"
 }
],
 "opid" : 27238315, /* Other ID info */
 },
 "secs_running" : NumberLong(0),
 "microsecs_running" : NumberLong(35),
 "op" : "update",
 "ns" : "ycsb.usertable",
 "command" : {
 "q" : {
 "_id" : "user5107998579435405958"
 },
 "u" : {
 "$set":{"field4":BinData(0,"O1sxM..==")
 }
 },
 "multi" : false,
 "upsert" : false
 },
 "planSummary" : "IDHACK",
 "numYields" : 0,
 "locks" : {
 /* Lots of lock statistics */
 },
 "waitingForFlowControl" : false,
 "flowControlStats" : {
 "acquireCount" : NumberLong(1),
 "timeAcquiringMicros" : NumberLong(1)
 }
 }

We can see in the preceding output that there are seven operations running. If we
examine one of these entries as in the preceding example, we are presented with a lot of
information about the currently executing process.

As with db.serverStatus(), there is a lot of information in the output, and it may at
first glance appear to be too much. But there are a few parts of the output that are critical:

Chapter 3 Tools of the Trade

60

•	 microsecs_running tells us how long the operation has been in
progress.

•	 ns is the namespace – database and collection – that the operation is
working with.

•	 op shows us the type of operation in progress, and command shows us
the command that is currently being executed.

•	 planSummary lists what MongoDB thinks is the most important
element in the execution plan.

In a tuning situation, we may only care about operations being sent as part of our
application. Fortunately for us, the currentOp() command supports an additional
parameter to help us filter out the operations we don’t care about.

If you are trying to identify only the operations running on a given collection, we
can pass in a filter for ns (namespace) and only operations that match this filter will be
output:

> db.currentOp({ns: "enron.messages"})
{
 "inprog" : [
 {
 "type" : "op",
 "host" : "Centos8:27017",
 "desc" : "conn213",
 "connectionId" : 213,
 "client" : "1.159.98.235:52456",
 "appName" : "MongoDB Shell",
 "clientMetadata" : {
. . .
 "op" : "getmore",
 "ns" : "enron.messages",
. . .
}

We can also filter on a specific type of operation by passing in a filter for the op field
or combine multiple field filters to answer questions such as “What insert operations are
currently running on a specific collection?”:

> db.currentOp({ns: "enron.messages", op: "getmore"})

Chapter 3 Tools of the Trade

61

There are also two special operators we can pass into the filter for db.currentOp. The
first option is $all. As you might imagine, if $all is set to true, the output will include
all operations, including system and idle connection operations. Here, we count the
number of total operations, including idle operations:

mongo> db.currentOp({$all: true}).inprog.length
25

Another option is $ownOps. If $ownOps is set to true, only operations for the user
executing the db.currentOp command will be returned. As you can see in the following
example, these options can help reduce the number of operations returned:

mongo> db.currentOp({$ownOps: true}).inprog.length
1
> db.currentOp({$ownOps: false}).inprog.length
7

After identifying a troublesome, resource-intensive, or long-running operation using
currentOp, you may want to terminate that operation. You can use the opid field from
currentOp to determine the process to be killed and then use db.killOp to terminate
that operation.

For example, let’s say we’ve identified a very long-running query that is using
excessive resources and causing performance issues for other operations. We can use
currentOp to identify this query and db.killOp to terminate it:

mongo> db.currentOP({$ownOps: true}).inprog[0].opid
69035
mongo> db.killOp(69035)
{ "info" : "attempting to kill op", "ok" : 1 }
mongo> db.currentOp({$ownOps: true, opid: 69035})
{ "inprog" : [], "ok" : 1 }

After issuing killOp, we can see that operation is no longer running.

�Operating System Monitoring
The commands we’ve looked at so far illuminate the internal state of the MongoDB

server or cluster. However, it’s possible that a performance problem is being caused not

because of excessive resource consumption within the cluster, but insufficient resource

availability on the system hosting the MongoDB processes.

Chapter 3 Tools of the Trade

62

As we saw in Chapter 2, a MongoDB cluster may be implemented by multiple
Mongo processes, and these processes may be distributed across multiple machines.
Furthermore, a MongoDB process might be sharing machine resources with other
processes and workloads. This is particularly true when MongoDB is running in a
containerized or virtualized host.

Operating system monitoring is a big topic, and we can only scratch the surface here.
However, the following considerations apply across all operating systems and types:

•	 To effectively utilize CPU resources, it’s perfectly fine to have CPU
utilization approaching 100%. However, the CPU run queue – the
number of processes waiting for CPU to become available – should
be kept as low as possible. We want MongoDB to be able to get CPU
resources when required.

•	 MongoDB processes – and in particular the WiredTiger cache –
should be fully contained in real system memory. Performance will
degrade rapidly if MongoDB processes or memory is “swapped out”
to disk.

•	 Disk service times should stay within the expected ranges for the
disk device concerned. The expected service times differ between
disks – particularly between Solid State Disks and older magnetic
disks. However, disk response times should generally be below 5ms.

Most serious MongoDB clusters run on the Linux operating system. On Linux, the
command-line utilities vmstat and iostat can retrieve high-level statistics.

On Microsoft Windows, the graphical task manager and resource monitor utility can
perform some of the same functionality.

Whichever means you employ, make sure that you maintain awareness of operating
system resource utilization as you examine server statistics. For instance, it may well
be that increasing the WiredTiger cache size is indicated from an examination of db.
serverStatus(), but if there is not enough free memory to support such an increase,
then you may actually see performance decrease as you increase the cache size.

In Chapter 10, we’ll look more closely at monitoring operating system resources.

�MongoDB Compass
Understanding how to tune using nothing more than the MongoDB shell is an important

skill. But it’s not the only way.

Chapter 3 Tools of the Trade

63

MongoDB Compass is the official GUI (graphical user interface) for MongoDB, and it
encapsulates many of the commands we’ve looked at here – plus some more advanced
functionality. It presents these tools in an easy-to-use interface. MongoDB Compass is
free and is a handy tool to have alongside the shell when performance tuning.

However, it is important to remember that the further removed you become from
your core tools (the database methods we have learned in the preceding text), the less
likely you are to understand what’s going on under the hood. We won’t walk through
every part of Compass in this book, but we will take a brief look at how it can wrap and
display the other tools we’ve learned in this chapter. You can download MongoDB
Compass at www.mongodb.com/products/compass.

We saw how MongoDB Compass can show graphical explain plans earlier (see
Figure 3-1).

MongoDB Compass will also allow you to more easily interpret the server
information we retrieved from db.serverStatus(). In Compass, when you have a
cluster selected, you can simply swap to the “Performance” tab at the top of the window.
Compass will automatically start collecting and graphing key information about your
server. Information about current operations will also be displayed. Figure 3-3 shows the

MongoDB Compass Performance tab.

Figure 3-3.  Visual serverStatus in MongoDB Compass

Chapter 3 Tools of the Trade

http://www.mongodb.com/products/compass

64

�Summary
This chapter aimed to familiarize you with tools that can be leveraged across the

broadest possible set of conditions when tuning the performance of your MongoDB

application. Of course, we can’t cover every possible tool or method in a single chapter,

and not every technique described in this chapter will be a fit for every problem. These

utilities and techniques may sometimes just act as a starting point and should not be

depended on to solve or immediately identify any problem.

The explain() method will allow you to view, analyze, and improve how an

operation will execute on the server. Examining explain() output is the first step when

you believe a query needs improving. The query profiler identifies which queries might

need tuning. The two tools used together allow you to find and fix most problematic

queries and commands within your MongoDB server.

If your server is running slowly or you’re unsure where to begin, the serverStatus()

command can provide you with high-level insight into sever performance.

With currentOp(), you can see in real time exactly what operations are running

on a given namespace, identify long-running transactions, and even kill problematic

operations.

Now that we have equipped our toolbox, we can learn the underlying principles

and methodologies to use them to good effect. As we said at the start of this chapter, a

tradesman is only as good as their tools, but the tools are useless without the knowledge

to use them.

Chapter 3 Tools of the Trade

PART II

Application and
Database Design

67
© Guy Harrison, Michael Harrison 2021
G. Harrison and M. Harrison, MongoDB Performance Tuning, https://doi.org/10.1007/978-1-4842-6879-7_4

CHAPTER 4

Schema Modelling
In databases, the schema defines the internal structure or organization of the data. In

relational databases like MySQL or Postgres, the schema is implemented as tables and

columns.

MongoDB is often described as a schema-free database, but this is somewhat

misleading. By default, MongoDB does not enforce any particular document structure,

but all MongoDB applications will implement some sort of document model. It’s

therefore more accurate to describe MongoDB as supporting flexible schemas.

In MongoDB, a schema is implemented by the collections – which generally

represent sets of similar documents – and the structure of the documents within those

collections.

The performance limits of a MongoDB application are largely determined by

the document model that the application implements. The amount of work that an

application needs to do to retrieve or process information is primarily dependent on

how that information is distributed across multiple documents. In addition, the size

of documents will determine how many documents MongoDB can cache in memory.

These and many other trade-offs will determine how much physical work the database

will have to do to satisfy a database request.

Although MongoDB does not have the equivalent of the expensive and time-

consuming SQL ALTER TABLE statement, it remains very difficult to make fundamental

changes to a document model once it has been established and deployed in production.

Choosing the correct data model is, therefore, a critical early task in the design of your

application.

You could fill up a book on the topic of data modelling, and indeed some have. In

this chapter, we’ll try to cover the core tenants of data modelling from a performance

perspective.

https://doi.org/10.1007/978-1-4842-6879-7_4#DOI

68

�The Guiding Principles
Ironically, schema modelling with MongoDB flexible schemas can actually be harder

than in the fixed schemas of the relational database.

In relational database modelling, you model the data logically, eliminating

redundancy until you achieve the third normal form. Simplistically, third normal form

is achieved when every element in a row is dependent on the key, the whole key and

nothing but the key.1 You then introduce redundancy through denormalization to

support performance objectives. The resulting data model usually remains roughly in

third normal form but with some slight modifications to support critical queries.

You could model MongoDB documents into third normal form, but it would almost

always be the wrong solution. MongoDB is designed around the idea that you should

include almost all relevant information within a single document – not spread it across

multiple entities as you would in the relational model. Therefore, instead of creating a

model based on the structure of the data, you create a model based on the structure of

your queries and updates.

Here are the key objectives of MongoDB data modelling:

•	 Avoid joins: MongoDB supports a simple join capability using the

aggregation framework (see Chapter 7). However, in contrast to a

relational database, joins are expected to be an exception, not the

rule. Aggregation-based joins are unwieldy, and it’s more typical for

data to be joined within the application code. In general, we try to

ensure that our critical queries can find all the data they need within

a single collection.

•	 Manage redundancy: By encapsulating relevant data into a single

document, we create a problem of redundancy – we may have more

than one place in the database where a certain data element can be

found. For instance, consider a products collection and an orders

collection. The orders collection will probably include product

names within the order details. If we need to change a product name,

we’ll have to change it in multiple places. This will make that update

operation potentially very time-consuming.

1�In honor of the creator of the relational model Edgar Codd, we would often say “the key, the
whole key and nothing but the key, so help me Codd!”

Chapter 4 Schema Modelling

69

•	 Beware of the 16MB limit: MongoDB has a 16MB limit on the size of

an individual document. We need to make sure that we never try to

embed so much information that we risk exceeding that limit.

•	 Maintain consistency: MongoDB does support transactions

(see Chapter 9), but they require special programming and have

significant constraints. If we want to atomically update sets of

information, it can be advantageous to include those data elements

in a single document.

•	 Monitor memory: We want to ensure that most operations on

MongoDB documents occur in memory. However, if we make our

documents very large by embedding lots of information, then we

reduce the number of documents that can fit in memory and might

increase IO. Therefore, we want to keep documents small when we

can.

�Linking vs. Embedding
There are a wide variety of MongoDB schema design patterns, but they all involve

variations of these two approaches:

•	 Embedding everything in a single document.

•	 Linking collections using pointers to data in other collections. This is

roughly equivalent to using a relational database’s third normal form

model.

�A Case Study
There’s much room for compromise between the linking and embedding approaches

and a lot of non-performance-related reasons for choosing one over the other (atomic

updates and the 16M document limit, for instance). Nevertheless, let’s look at how

the two extremes compare from a performance point of view – at least for a specific

workload.

Chapter 4 Schema Modelling

70

For this case study, we will model the classic “Orders” schema. An Orders schema

includes orders, details about the customer that created the order, and the products that

comprise the order. In a relational database, we’d diagram this schema as in Figure 4-1.

If we were to model this schema using only the linking paradigm, we would create a

collection for each of the four logical entities. They might look something like this:

mongo>db.customers.findOne();

{

 "_id" : 3,

 "first_name" : "Danyette",

 "last_name" : "Flahy",

 "email" : "dflahy2@networksolutions.com",

 "Street" : "70845 Sullivan Center",

 "City" : "Torrance",

 "DOB" : ISODate("1967-09-28T04:42:22Z")

}

mongo>db.orders.findOne();

Figure 4-1.  Orders-products schema in relational form

Chapter 4 Schema Modelling

71

{

 "_id" : 1,

 "orderDate" : ISODate("2017-03-09T16:30:16.415Z"),

 "orderStatus" : 0,

 "customerId" : 3

}

mongo>db.lineitems.findOne();

{

 "_id" : ObjectId("5a7935f97e9e82f6c6e77c2b"),

 "orderId" : 1,

 "prodId" : 158,

 "itemCount" : 48

}

mongo>db.products.findOne();

{

 "_id" : 1,

 "productName" : "Cup - 8oz Coffee Perforated",

 "price" : 56.92,

 "priceDate" : ISODate("2017-07-03T06:42:37Z"),

 "color" : "Turquoise",

 "Image" : "http://dummyimage.com/122x225.jpg/cc0000/ffffff"

}

In an embedded design, we would place absolutely all information relating to an

order into a single document, as follows:

{

 "_id": 1,

 "first_name": "Rolando",

 "last_name": "Riggert",

 "email": "rriggert0@geocities.com",

 "gender": "Male",

 "Street": "6959 Melvin Way",

 "City": "Boston",

 "State": "MA",

 "ZIP": "02119",

Chapter 4 Schema Modelling

72

 "SSN": "134-53-2882",

 "Phone": "978-952-5321",

 "Company": "Wikibox",

 "DOB": ISODate("1998-04-15T01:03:48Z"),

 "orders": [

 {

 "orderId": 492,

 "orderDate": ISODate("2017-08-20T11:51:04.934Z"),

 "orderStatus": 6,

 "lineItems": [

 {

 "prodId": 115,

 "productName": "Juice - Orange",

 "price": 4.93,

 "itemCount": 172,

 "test": true

 },

Each customer has their own document, and inside that document, there are an

array of orders. Inside each order is an array of the products included in the order (line

items) and all the information about a product contained within that line item.

In our example schema, there are 1000 customers, 1000 products, 51,116 orders, and

891,551 line items. The following indexes are defined:

OrderExample.embeddedOrders {"_id":1}

OrderExample.embeddedOrders {"email":1}

OrderExample.embeddedOrders {"orders.orderStatus":1}

OrderExample.customers {"_id":1}

OrderExample.customers {"email":1}

OrderExample.orders {"_id":1}

OrderExample.orders {"customerId":1}

OrderExample.orders {"orderStatus":1}

OrderExample.lineitems {"_id":1}

OrderExample.lineitems {"orderId":1}

OrderExample.lineitems {"prodId":1}

Chapter 4 Schema Modelling

73

Let’s take a look at some typical operations that we might execute against these

schemas and compare the performance for the two extremes.

�Getting All the Data for a Customer
It’s a straightforward task to get all the data for a customer when all the information is

embedded in a single document. We can get all the data from the embedded version

with a query like this:

db.embeddedOrders.find({ email: 'bbroomedr@amazon.de' })

With an index on email, this query completes in less than a millisecond.

Life is much harder with the four-collection version. We need to use an aggregation

or custom code to achieve the same result, and we need to be sure we have indexes on

the $lookup join conditions (see Chapter 7). Here’s the aggregation:

db.customers.aggregate(

 [

 {

 $match: { email: 'bbroomedr@amazon.de' }

 },

 {

 $lookup: {

 from: 'orders',

 localField: '_id',

 foreignField: 'customerId',

 as: 'orders'

 }

 },

 {

 $lookup: {

 from: 'lineitems',

 localField: 'orders._id',

 foreignField: 'orderId',

 as: 'lineitems'

 }

 },

Chapter 4 Schema Modelling

74

 {

 $lookup: {

 from: 'products',

 localField: 'lineitems.prodId',

 foreignField: '_id',

 as: 'products'

 }

 }

]

)

Not surprisingly, the aggregation/join takes way longer than the embedded solution.

Figure 4-2 illustrates the relative performance – the embedded model was able to deliver

more than ten times more reads per second.

�Fetching All Open Orders
In a typical order processing scenario, we want to retrieve all the orders that are in an

incomplete state. In our example, these orders are identified by orderStatus=0.

Figure 4-2.  Time taken to perform 500 customer lookups, including all order details

Chapter 4 Schema Modelling

75

In the embedded case, we can get customers with open Orders like this:

db.embeddedOrders.find({"orders.orderStatus":0})

That does give us all customers with at least one open order, but if we only want to

retrieve orders that are open, we are going to need to use the aggregation framework:

db.embeddedOrders.aggregate([

 { $match:{ "orders.orderStatus": 0 }},

 { $unwind: "$orders" },

 { $match:{ "orders.orderStatus": 0 }},

 { $count: "count" }

]);

You might wonder why we have duplicate $match statements in our aggregation.

The first $match gets us customers with open orders, while the second $match gets us

the orders themselves. We don’t need the first to get the right results, but it does improve

performance (see Chapter 7).

It’s far easier to get these orders in the linked data model:

db.orders.find({orderStatus:0}).count()

Not surprisingly, the simpler linked query gets the better performance. Figure 4-3

compares the performance of the two solutions.

Figure 4-3.  Time taken to get a count of open orders

Chapter 4 Schema Modelling

76

�Top Products
Most companies want to identify bestselling products. For the embedded model, we
need to unwind the line items and aggregate by product name:

db.embeddedOrders.aggregate([
 { $unwind: "$orders" },
 { $unwind: "$orders.lineItems" },
 { $project: { "lineitems": "$orders.lineItems" }},
 { $group:{ _id:{ "prodId":"$lineitems.prodId" ,
 " productName":"$lineitems.productName" },
 " itemCount-sum":{$sum:"$lineitems.itemCount"}} },
 { $sort:{ "lineitems_itemCount-sum":-1 }},
 { $limit: 10 },
]);

In the linked model, we also need to use aggregate, with $lookup joins between line
items and products to get the product names:

db.lineitems.aggregate([
 { $group:{ _id:{ "prodId":"$prodId" },
 "itemCount-sum":{$sum:"$itemCount"} }
 },
 { $sort:{ "itemCount-sum":-1 }},
 { $limit: 10 },
 { $lookup:
 { from: "products",
 localField: "_id.prodId",
 foreignField: "_id",
 as: "product"
 }
 },
 { $project: {
 "ProductName": "$product.productName" ,
 "itemCount-sum": 1 ,
 "_id": 1
 }
 },

]);

Chapter 4 Schema Modelling

77

Despite having to perform a join, the linked data model performs best. We only have

to join after we get the top ten products, while in the embedded design we have to scan

all of the data in the collection. Figure 4-4 compares the two approaches. The embedded

data model took about twice as long as the linked data model.

�Inserting New Orders
In this example workload, we looked at inserting a new order for an existing customer.
In the embedded case, this is simply done by using a $push operation into the customer
document:

db.embeddedOrders.updateOne(
 { _id: o.order.customerId },
 { $push: { orders: orderData } }
);

In the linked data model, we have to insert into the line items collection and the
orders collection:

var rc1 = db.orders.insertOne(orderData);
var rc2 = db.lineItems.insertMany(lineItemsArray);

You might think that the single update would easily outperform the multiple
inserts required by the linked model. But actually, the update is a quite expensive
operation – especially if there’s not enough spare space in the collection to fit the new
data. The linked inserts – though more numerous – are simpler operations because
they don’t require finding the matching document to update. Consequently, the linked
model outperformed the embedded model for this example. Figure 4-5 compares the

performance for 500 order inserts.

Figure 4-4.  Time taken to retrieve the top ten products

Chapter 4 Schema Modelling

78

�Updating Products
What if we want to update the name of a product? In the embedded case, the product

names are embedded into the line items themselves. We update the names of all the

products in a single operation in MongoDB using the arrayFilters operator. Here, we

update the name of product 193:

db.embeddedOrders.update(

 { 'orders.lineItems.prodId':193 },

 { $set: { 'orders.$[].lineItems.$[i].productName':

 'Potatoes - now with extra sugar' } },

 { arrayFilters: [{ 'i.prodId': { $eq: 193 } }], multi: true });

Of course, in the linked model, we can use a very simple update to the products

collection:

db.products.update(

 { _id: 193 },

 { $set: { productName: 'Potatoes - now with extra sugar' } }

);

The embedded model requires us to touch many more documents than in the linked

model. Consequently, ten product code price updates took hundreds of times longer in

the embedded data model. Figure 4-6 illustrates the performance.

Figure 4-5.  Time to insert 500 orders

Chapter 4 Schema Modelling

79

�Deleting a Customer
If we want to delete all data for a single customer in the four-collection model, we need

to iterate through line items, orders, and customers collections. The code would look

something like this:

db.orders.find({customerId:customerId},{_id:1}).forEach((order)=>{

 db.lineitems.deleteMany({orderId:order._id});

});

db.orders.deleteMany({customerId:1});

db.customers.deleteOne({_id:1});

Of course, in the embedded case, things are a lot easier:

db.embeddedOrders.deleteOne({_id:1});

The linked example performs very poorly – Figure 4-7 compares the performance for

deleting 50 customers.

Figure 4-6.  Time to update ten product names

Figure 4-7.  Time to delete 50 customers

Chapter 4 Schema Modelling

80

�Case Study Summary
We’ve looked at quite a few scenarios, and we wouldn’t blame you if your head was

spinning slightly. So let’s aggregate all our performance data into one chart. Figure 4-8

combines the results from our six examples.

Figure 4-8.  Performance of linked vs. embedded models

Chapter 4 Schema Modelling

81

As you can see while the embedded model is pretty good at fetching all the data for

a single customer or for deleting a customer, it’s not superior to the linked alternative in

other situations.

Tip T he answer to the question “What is the best data model for my application”
is – and always has been – “it depends.”

The embedded model provides many advantages when reading all of the related

data for an entity, but it is generally not the fastest model for updates and for aggregate

queries. Which model works best for you will depend on which aspects of your

application’s performance are most critical. But remember, it’s hard to change the data

model once your application is deployed, so any time you spend getting your data model

right early in the application design process will probably pay off.

Also, remember that very few applications use an “all or nothing” approach. The

best outcomes are usually achieved when we mix linking and embedding approaches to

maximize the critical operations for the application.

�Advanced Patterns
In the previous section, we looked at the two extremes of MongoDB data modelling:

embedding everything vs. linking everything. In real life, you are likely to undertake a

combination of both techniques to get the best balance between the trade-offs involved

in each approach. Let’s look at some of the modelling patterns that combine both

approaches.

�Subsetting
As we saw in the previous section, the embedded model has significant performance

advantages when retrieving all data for an entity. However, there are two big risks that we

need to be aware of:

•	 In a typical master-detail model – customers and their orders, for

instance – the number of detail documents has no specific limit. But

in MongoDB, a document must be no more than 16MB in size. So

the embedded model can break if there are a large number of detail

documents. For instance, our biggest customers might order so many

products that we can’t fit all the orders in a single 16MB document.

Chapter 4 Schema Modelling

82

•	 Even if we are sure that the 16MB won’t be exceeded, the effect on

MongoDB memory might be undesirable. The number of documents

that can fit into memory decreases as the average document size

increases. Lots of large documents – potentially full of “old” data –

might degrade the cache and reduce performance. We’ll talk more

about this in Chapter 11.

•	 One of the most common solutions to this conflict is a hybrid

strategy, sometimes called subsetting.

•	 In the subsetting pattern, we embed a limited number of detail

documents in the master document and store the remaining details

in another collection. For instance, we might keep just the most

recent 20 orders for each customer in the customers collection and

the rest in an orders collection.

•	 Figure 4-9 illustrates the concept. Each customer has the most recent

20 orders embedded, with all orders available within the orders

collection.

Chapter 4 Schema Modelling

83

If we imagine that our application displays the most recent orders for each customer

on a customer lookup page, then we can see the benefits of this model. Not only have

we avoided hitting the 16M document size limit, but we can now populate this customer

lookup page from a single document.

However, the solution does come at a cost. In particular, we now have to shuffle

orders in the embedded orders array every time we add or modify an order. Each update

would need to perform additional manipulation of the embedded orders. The following

code implements the shuffle of customers data in the hybrid design:

Figure 4-9.  A hybrid “bucket” data model

Chapter 4 Schema Modelling

84

 let orders=db.hybridCustomers.

 findOne({'_id':customerId}).orders;

 orders.unshift(newOrder); // add new order

 if (orders.length>20)

 orders.pop(); // Remove the order

 db.hybridCustomers.update({'_id':customerId},

 {$set:{orders:orders}});

The resulting overhead can be significant. Figure 4-10 shows the impact of the hybrid

model when fetching customers and most recent orders and when updating customers

with new orders. Read performance was significantly improved, but the update rate was

almost halved.

�Vertical Partitioning
It generally makes sense to put everything relating to an entity in a single document. As

we’ve seen previously, we can embed the multiple details relating to an entity in a JSON

array, avoiding what would have required a join operation in a SQL database.

Figure 4-10.  The hybrid model can improve read performance, but slow down
updates

Chapter 4 Schema Modelling

85

However, sometimes we can get benefits from splitting the details for an entity across

multiple collections so that we can reduce the amount of data fetched in each operation.

This approach is similar to the hybrid data model in that it reduces the size of the core

document, but it is applied to top-level attributes, not just to arrays of details.

For instance, imagine that in each customer record we include a high-resolution

photograph of the customer. These infrequently accessed images increase the overall

size of the collection, degrading the time taken to perform collection scans (see Chapter 6).

They also reduce the number of documents that can be held in memory which might

increase the amount of IO required (see Chapter 11).

In this scenario, we can get a performance advantage if we store the binary photos in

a separate collection. Figure 4-11 illustrates the arrangement.

Figure 4-11.  Vertical partitioning

Chapter 4 Schema Modelling

86

�The Attribute Pattern
If we have documents that include a large number of attributes of the same data

type, and we know that we are going to be performing lookups using a many of these

attributes, then we can reduce the number of indexes we need by using the attribute

pattern.

Consider the following weather data:

{

 "timeStamp" : ISODate("2020-05-30T07:21:08.804Z"),

 "Akron" : 35,

 "Albany" : 22,

 "Albuquerque" : 22,

 "Allentown" : 31,

 "Alpharetta" : 24,

 <data for another 300 cities>

}

If we know that we will be supporting queries that search for specific values for a

city (find all measurements over 100 degrees in Akron, for instance), then we have a

problem. We can’t possibly create enough indexes to support all the queries. A better

organization would be to define name:value pair for each city.

Here’s how the preceding data would look like in the attribute pattern:

{

 "timeStamp" : ISODate("2020-05-30T07:21:08.804Z"),

 "measurements" : [

 {

 "city" : "Akron",

 "temperature" : 35

 },

 {

 "city" : "Albany",

 "temperature" : 22

 },

 {

 "city" : "Albuquerque",

Chapter 4 Schema Modelling

87

 "temperature" : 22

 },

 {

 "city" : "Allentown",

 "temperature" : 31

 },

 <data for another 300 cities>

}

We now have the option to define a single index on measurements.city, rather than

attempting the impossible task of creating hundreds of indexes which would have been

needed in the first design.

In some cases, you can use wildcard indexes rather than the attribute pattern – see

Chapter 5. Nevertheless, the attribute pattern provides a flexible way to provide fast

access to arbitrary data items.

�Summary
Although MongoDB supports very flexible schema modelling, your data model design

remains absolutely critical to application performance. The data model determines the

amount of logical work that MongoDB needs to perform to satisfy database requests and

can be very difficult to change once deployed to production.

The two “meta-patterns” in MongoDB modelling are embedding and linking.

Embedding involves including all information about a logical entity in a single

document. Linking involves storing related data in separate collections in a manner

reminiscent of relational databases.

Embedding improves read performance by avoiding joins but can create challenges

involving data consistency, update performance, and the 16MB document limit. Most

applications mix embedding and linking judiciously to achieve a “best of both worlds”

solution.

Chapter 4 Schema Modelling

89
© Guy Harrison, Michael Harrison 2021
G. Harrison and M. Harrison, MongoDB Performance Tuning, https://doi.org/10.1007/978-1-4842-6879-7_5

CHAPTER 5

Indexing
An index is a database object with its own storage that provides a fast access path into a

collection. Indexes exist primarily to enhance performance, so understanding and using

indexes effectively is of paramount importance when optimizing MongoDB performance.

�B-Tree Indexes
The B-tree (“balanced tree”) index is MongoDB’s default index structure. Figure 5-1

shows a high-level overview of the B-tree index structure.

Figure 5-1.  B-tree index structure

https://doi.org/10.1007/978-1-4842-6879-7_5#DOI

90

The B-tree index has a hierarchical tree structure. At the top of the tree is the header

block. This block contains pointers to the appropriate branch block for any given range

of key values. The branch block will usually point to the appropriate leaf block for a

more specific range or, for a larger index, point to another branch block. The leaf block

contains a list of key values and pointers to the location of documents on disk.

Examining Figure 5-1, let’s imagine how MongoDB would traverse this index. Should

we need to access the record for “BAKER”, we would first consult the header block. The

header block would tell us that key values starting with A through K are stored in the

left-most branch block. Accessing this branch block, we find that key values starting with

A through D are stored in the left-most leaf block. Consulting this leaf block, we find the

value “BAKER” and its associated disk location, which we would then use to get to the

document concerned.

Leaf blocks contain links to both the previous and the next leaf block. This allows us

to scan the index in either ascending or descending order and allows range queries using

$gt or $lt operators to be processed using the index.

B-tree indexes have the following advantages over other indexing strategies:

•	 Because each leaf node is at the same depth, performance is very

predictable. In theory, no document in the collection will be more

than three or four IOs away.

•	 B-trees offer excellent performance for large collections because the

depth is at most four (one header block, two levels of branch blocks,

and one level of leaf block). Generally, no document will take more

than four IOs to locate. In fact, because the header block will almost

always already be in memory, and branch blocks usually are in

memory, the actual number of physical disk reads is mostly only one

or two.

•	 The B-tree index supports range queries as well as exact lookups.

This is possible because of the links to the previous and next leaf

blocks.

The B-tree index provides flexible and efficient query performance. However,

maintaining the B-tree when changing data can be expensive. For instance, consider

inserting a document with the key value “NIVEN” into the collection shown in Figure 5-1.

To insert the document, we must add a new entry into the “L-O” block. If there is free space

within this block, then the cost is substantial, but perhaps not excessive. But what happens

if there is no free space in the block?

Chapter 5 Indexing

91

If there is no free space within a leaf block for a new entry, then an index split is

required. A new block is allocated, and half of the entries in the existing block moved

into the new block. Additionally, there is a requirement to add a new entry in the branch

block pointing to the newly created leaf block. If there is no free space in the branch

block, then the branch block must also be split.

These index splits are an expensive operation: new blocks are allocated, and index

entries moved from one block to another. For this reason, indexes significantly slow

down insert, update, and delete operations.

Caution  Indexes speed up data retrieval, but impose a burden on insert, update,
and delete operations.

�Index Selectivity
The selectivity of an index is a measure of how many documents are associated with a

particular index key value. Attributes or indexes are selective if they have a large number

of unique values and few duplicate values. For instance, a dateOfBirth attribute will be

very selective (a large number of possible values with relatively few duplicates), while

a gender attribute will not be selective (a small number of possible values with a high

number of duplicates).

Selective indexes are more efficient than non-selective indexes because they point

more directly to specific values. Consequently, MongoDB will try to use the most

selective index.

�Unique Indexes
A unique index is one that prevents any duplicate values for the attributes that make up

the index. If you try to create a unique index on a collection that contains such duplicate

values, you will receive an error. Similarly, you will also receive an error if you try and

insert a document that contains duplicate unique index key values.

A unique index is typically created in order to prevent duplicate values rather than to

improve performance. However, unique indexes are usually very efficient – they point to

exactly one document and are therefore very selective.

All MongoDB collections have a built-in implicit unique index – on the “_id”

attribute.

Chapter 5 Indexing

92

�Index Scans
As well as being able to find specific values, indexes can also optimize partial string

matches and data ranges. These index scans are possible because the B-tree index

structure contains links to both the previous and the next leaf block. These links allow us

to scan the index in either ascending or descending order.

For instance, consider this query which retrieves all customers born between two

dates:

db.customers. find({

 $and: [

 { dateOfBirth: { $gt: ISODate('1980-01-01T00:00:00Z') } },

 { dateOfBirth: { $lt: ISODate('1990-01-01T00:00:00Z') } }

]

});

If there is an index on dateOfBirth, we can use that index to find the customers

concerned. MongoDB will navigate to the index entry for the lower date and then scan

through the index until it reaches an index entry where the dateOfBirth is greater than

the higher date. The links between leaf blocks allow this scanning to occur efficiently.

If we examine the IXSCAN step in the explain() output for this query, we can see an

indexBounds entry that shows how the index was used to scan between two values:

"inputStage" : {

 "keyPattern" : {

 "dateOfBirth" : 1},

 "indexName" : "dateOfBirth_1",

 . . .

 "direction" : "forward",

 "indexBounds" : {

 "dateOfBirth" : [

 "(new Date(315532800000),

 new Date(631152000000))"

]

 }

 }

Chapter 5 Indexing

93

Index scans are also executed when we do a partial match on a string condition. For

instance, in the following query, the index on LastName is scanned for all entries where

the name is greater than or equal to “HARRIS” and less than or equal to HARRIT. In

practice, this only matches the names HARRIS and HARRISON, but from MongoDB’s

perspective, it’s the same as scanning between a high and low value.

mongo> var explainObj=db.customers.explain('executionStats')

 .find({LastName:{$regex:/^HARRIS(.*)/}});

mongo> mongoTuning.executionStats(explainObj);

1 IXSCAN (LastName_1 ms:0 keys:1366)
2 FETCH (ms:0 docs:1365)

Totals: ms: 4 keys: 1366 Docs: 1365

Index scans are not always a good thing. If the range is extensive, then the index scan

might be worse than not using an index at all. In Figure 5-2, we see if the range of values

is wide (in this example, as wide as all possible values), then it’s better to do a collection

scan, instead of an index lookup. However, if the range is narrow, then the index gives

better performance. We’ll talk more about optimizing index range scans in Chapter 6.

Figure 5-2.  Index scan performance and scan breadth

Chapter 5 Indexing

94

�Case-Insensitive Searches
It’s not uncommon to search for text strings where you’re not sure of the capitalization.

For instance, if we don’t know if a surname has been entered as “SMITH” or “Smith”,

we might do a case-insensitive search like this (the “i” following the regular expression

specifies a case-insensitive match):

mongo> var e=db.customers.explain('executionStats')

 .find({LastName:/^SMITH$/i},{}) ;
mongo> mongoTuning.quickExplain(e);

1 IXSCAN LastName_1

2 FETCH

You might be pleasantly surprised to see that an index is used to resolve the query – so

perhaps MongoDB indexes can be used for case-insensitive searches? Alas, not really. If we

get executionStats, we see that although the index was used, it scanned all 410,000 keys.

Yes, the index was used to find matching names, but the entire index had to be scanned.

mongo> var e=db.customers.explain('executionStats')

 .find({LastName:/^SMITH$/i},{}) ;

mongo> mongoTuning.executionStats(e);

1 IXSCAN (LastName_1 ms:8 keys:410071)

2 FETCH (ms:8 docs:711)

Totals: ms: 293 keys: 410071 Docs: 711

If you want to do case-insensitive searches, then there is a trick you can use. First,

create an index with a case-insensitive collation sequence. This is done by specifying

a collation sequence with a strength of 1 or 2 (level 1 ignores both case and diacritics –

special characters such as umlauts, etc.):

db.customers.createIndex(

 { LastName: 1 },

 { collation: { locale: 'en', strength: 2 } }

);

Now, if you also specify the same collation in your query, the query will return results

irrespective of case. For instance, a query on “SMITH” now returns “Smith” as well:

Chapter 5 Indexing

95

mongo> db.customers.

... find({ LastName: 'SMITH' }, { LastName: 1,_id:0 }).

... collation({ locale: 'en', strength: 2 }).

... limit(1);

{

 "LastName": "Smith"

}

And if we look at the executionStats, we see that the index is now correctly

retrieving just the documents that match the criteria (in this case, there are 700-odd

“Smiths” and “SMITHS):

 mongo> var e = db.customers.

... explain('executionStats').

... find({ LastName: 'SMITH' }).

... collation({ locale: 'en', strength: 2 });

mongo> mongoTuning.executionStats(e);

1 IXSCAN (LastName_1 ms:0 keys:711)

2 FETCH (ms:0 docs:711)

Totals: ms: 2 keys: 711 Docs: 711

�Compound Indexes
A compound index is simply an index comprising more than one attribute. The most

significant advantage of a compound index is that it is usually more selective than a

single key index. The combination of multiple attributes will point to a smaller number

of documents than indexes composed of singular attributes. A compound index that

contains all of the attributes contained within the find() or $match clauses will be

particularly effective.

If you frequently query on more than one attribute within a collection, then creating

a compound index for these attributes is an excellent idea. For instance, we may query

the customers collection by LastName and FirstName. In that case, we would probably

want to create a compound index including both LastName and FirstName.

Chapter 5 Indexing

96

Using such an index, we could rapidly find all customers matching a given LastName

and FirstName combination. Such an index will be far more effective than an index on

LastName alone or separate indexes on LastName and FirstName.

If a compound index could only be used when all of its keys appeared a find() or

$match, then compound indexes would probably be of pretty limited use. Luckily, a

compound index can be used effectively providing any of the initial or leading attributes

are requested in the query. Leading attributes are those that are specified earliest in the

index definition.

�Compound Index Performance
In general, you’ll see index performance improve as you add more attributes to the

index – providing that those attributes are included in the queries filter condition.

For instance, consider the following query:

db.people.find(

 {

 "LastName" : "HENNING",

 "FirstName" : "ALBERTO",

 dateOfBirth: ISODate("1953-12-23T00:00:00Z")

 },

 { _id: 0, Phone: 1 }

);

We are retrieving a customer phone number by providing FirstName, LastName, and

dateOfBirth.

Figure 5-3 shows how the number of document accesses decreases as we add

attributes to the index. Without an index, we must scan all 411,121 documents. Indexing

on LastName alone reduced this to 6918 documents – effectively all the “HENNING”s in

the collection. Adding FirstName got the number of documents down to 15. By adding

dateOfBirth, we were down to two accesses: one to read the index entry, and from

there, we read the document within the collection to get the telephone number. Our

final optimization is to add the telephone number (“tel”) attribute to the index. Now we

don’t have to access the collection at all – everything we need is in the index.

Chapter 5 Indexing

97

�Compound Index Key Order
One of the great things about compound indexes is that they can support queries that

don’t include all of the keys in the index. A compound index can be used, providing that

some of the leading attributes are included in the query.

For instance, an index specified as {LastName:1, FirstName:1, dateOfBirth:1}

can be used to optimize queries on LastName alone or on LastName and FirstName.

However, it would not be effective when optimizing queries against FirstName alone or

on dateOfBirth. For the index to be useful, at least one of the first or leading keys must

appear in the query.

Tip  Compound indexes can be used to accelerate queries that include any or all
of the leading (first) keys in the index expression. However, they cannot optimize a
query that does not at least include the first key in the index expression.

Figure 5-3.  Compound index performance (logarithmic scale)

Chapter 5 Indexing

98

�Guidelines for Compound Indexes
The following guidelines will help in deciding when to use compound indexes and how

to determine which attributes to include and in which order:

•	 Create a compound index for attributes in a collection which appear

together in a find() or $match condition.

•	 If attributes sometimes appear on their own in a find() or $match

condition, place them at the start of the index.

•	 A compound index is more useful if it also supports queries where

not all attributes are specified. For instance, createIndex({"LastNa

me":1,"FirstName":1}) is more useful than createIndex({"FirstN

ame":1,"LastName":1}) because queries against LastName only are

more likely to occur than queries against FirstName only.

•	 The more selective an attribute is, the more useful it will be at the

leading end of the index. However, note that WiredTiger index

compression can radically shrink indexes. Index compression is most

effective when leading columns are less selective. This might mean

that such an index is smaller and therefore more likely to fit into

memory. We’ll talk some more about this in Chapter 11.

�Covering Indexes
A covering index is one that can be used to completely resolve a query. Similarly, a query

that can be entirely resolved by an index is called a covered query.

We saw an example of a covering index in Figure 5-3. An index on LastName,

FirstName, dateOfBirth, and Phone was used to resolve the query without any need

to retrieve data from the collection. Covering indexes are a powerful mechanism for

optimizing queries. Because the index is usually far smaller than the collection, a query

that does not need to bring documents from the collection into memory is highly

memory and IO efficient.

Chapter 5 Indexing

99

�Index Merges
Earlier, we emphasized that creating a compound index on all the conditions in a query

is generally most effective.

So, for instance, in a query such as the following:

db.iotData.find({a:1,b:1})

we probably want an index on {a:1,b:1}. However, if this collection has a lot of

attributes and queries have a lot of possible combinations, then it might be impractical

to create all the compound indexes we need.1

However, if we have an index on a and another index on b, MongoDB can perform an

intersection of the two indexes. The resulting plan looks like this:

1 IXSCAN a_1

2 IXSCAN b_1

3 AND_SORTED

4 FETCH

The AND_SORTED step indicates that an index intersection has been performed.

Index intersections for $and conditions are unusual. However, MongoDB will

frequently perform an index merge for $or conditions. So, for instance, in this query:

db.iotData.find({$or:[{a:100},{b:100}]});

MongoDB will by default merge the two indexes:

1 IXSCAN a_1

2 IXSCAN b_1

3 OR

4 FETCH

5 SUBPLAN

The OR and SUBPLAN steps are indicative of an index merge.

Note  For $and conditions, a compound index is superior to an index merge.
However, for an $or condition, an index merge is often the best solution.

1�This might be a job for the “attribute” schema pattern which we discussed in Chapter 4.

Chapter 5 Indexing

100

�Partial and Sparse Indexes
As we will see in Chapter 11, optimal MongoDB performance is generally achieved

when all data is held in memory. However, for very large collections, it might be hard

for MongoDB to hold all of an index in memory. And in some cases, we only want to use

the index to scan for recent or active information. In these scenarios, we might want to

create a partial or sparse index.

�Partial Indexes
A partial index is one which is only maintained for a subset of information. For example,

suppose we have a database of tweets and are looking for the most retweeted tweet from

our account:

db.tweets.

 find({ 'user.name': 'Mean Magazine Bot' }, { text: 1 }).

 sort({ retweet_count: -1 }).

 limit(1);

An index on user.name and retweet_count will do the trick, but it will be a pretty big

index. Since most tweets are not retweeted, we could create a partial index just on those

tweets that have been retweeted:

db.tweets.createIndex(

 { 'user.name': 1, retweet_count: 1 },

 { partialFilterExpression: { retweet_count: { $gt: 0 } } }

);

This index will be unhelpful when we look for tweets that have never been retweeted,

but providing that’s not what we are trying to do, the partial index will be much smaller

and more memory efficient than a full index.

Note that in order to take advantage of this index, we will need to specify a filter

condition in our query that ensures that MongoDB knows that all the data we need is in

the index. In our current example, we could add a condition on retweet_count:

db.tweets.find(

 { 'user.name': 'Mean Magazine Bot',

 retweet_count: { $gt: 0 } },

Chapter 5 Indexing

101

 { text: 1 }

).

 sort({ retweet_count: -1 }).
 limit(1);

�Sparse Indexes
Sparse indexes are similar to partial indexes in that they don’t index all the documents in

the collection. Specifically, a sparse index doesn’t include documents that don’t contain

the indexed attributes.

Most of the time, a sparse index is just as good as a normal index and might be

significantly smaller. However, a sparse index cannot support an $exists:true search

on the indexed attribute:

mongo> var exp=db.customers.explain()
 .find({updateFlag:{$exists:false}});
mongo> mongoTuning.quickExplain(exp);

1 COLLSCAN

However, the sparse index can search for $exists:true:

mongo> var exp=db.customers.explain()
 .find({updateFlag:{$exists:true}});
mongo> mongoTuning.quickExplain(exp);

1 IXSCAN updateFlag_1
2 FETCH

�Using Indexes for Sorting and Joining
Indexes can be used to support returning data in sorted order and can also be used to

support joins between multiple collections.

�Sorting
MongoDB can use an index to return data in sorted order. Because each leaf node

contains links to the subsequent leaf node, MongoDB can scan index entries in sorted

order, returning data without having to explicitly sort the data. We’ll look at using indexes

to support sorts in Chapter 6.

Chapter 5 Indexing

102

�Using Indexes for Joins
MongoDB can join data within multiple collections using the $lookup and $graphLookup

operators in the aggregation framework. For any joins of non-trivial size, these joins

should be supported by index lookups to avoid exponential degradation as joins’ sizes

increase. This topic is covered in detail in Chapter 7.

�Index Overhead
Although indexes can dramatically improve query performance, they do reduce the

performance of insert, update, and delete operations. All of a collection’s indexes will

normally be modified when a document is inserted or deleted, and an index must also

be amended when an update changes any attribute which appears in the index. Index

maintenance during inserts, updates, and deletes often represents the majority of the

work MongoDB must do during these operations.

It is therefore important that all our indexes contribute to query performance since

these indexes will otherwise needlessly degrade insert, update, and delete performance.

In particular, you should be especially careful when creating indexes on frequently

updated attributes. A document can only be inserted or deleted once but may be

updated many times. Indexes on heavily updated attributes or on collections that have a

very high insert/delete rate will, therefore, exact a particularly high cost.

In Chapter 8, we’ll look in detail at index overhead and at ways of identifying indexes

that might not be pulling their weight.

�Wildcard Indexes
Wildcard indexes are a particularly high-overhead index type.

A wildcard index is an index that is created on every attribute in a subdocument. So,

for instance, let’s say we had some data that looks like this:

{

 "_id" : 1,

 "data" : {

 "a" : 1728,

 "b" : 6740,

 "c" : 6481,

Chapter 5 Indexing

103

 "d" : 2066,

 "e" : 3173,

 "f" : 1796,

 "g" : 8112

 }

}

Queries might be issued against any one of the attributes in the data subdocument.

Furthermore, there may be new attributes added by the application that we can’t

anticipate. To optimize performance, we need to create a separate index on each

attribute:

db.mycollection.createIndex({"data.a":1});

db.mycollection.createIndex({"data.b":1});

db.mycollection.createIndex({"data.c":1});

db.mycollection.createIndex({"data.d":1});

db.mycollection.createIndex({"data.e":1});

db.mycollection.createIndex({"data.f":1});

db.mycollection.createIndex({"data.g":1});

Too many indexes! But even this won’t work unless I know for sure what the attribute

will be. What happens if an attribute “h” is created?

This is the sort of scenario in which wildcard indexes come to the rescue.2

As the name suggests, we can create a wildcard index by specifying a wildcard

placeholder within an attribute expression, for instance:

db.mycollection.createIndex({"data.$**":1});

This statement creates an index on every attribute in the data document: even if new

attributes are created by an application after the index is created.

That’s great! But obviously, there is a cost. Let us see how wildcard indexes perform

for insert, find, update, and delete statements when compared to

•	 No indexes at all

•	 A single index on a single attribute

•	 Separate indexes on all the attributes

2�This is also a case where the attribute pattern introduced in Chapter 4 might be indicated.

Chapter 5 Indexing

104

For find operations, we see that wildcard indexes perform just as well as single

attribute indexes – regardless of how many indexes we’ve created, an index provides fast

access to relevant data. Figure 5-4 illustrates the results.

Although wildcard indexes have a similar profile to regular indexes, they have a very

different overhead when we look at update, delete, and insert operations.

Figure 5-5 shows the time taken to perform insert, update, and delete operations

when we have wildcard indexes, separate indexes on each attribute, a single index on a

single attribute, or no indexes at all.

As we expect, we see a much higher overhead for multiple indexes than for a single

index. However, we also see that a wildcard index imposes an overhead at least as great

as that creating an individual index on every attribute.

Figure 5-4.  Wildcard indexes vs. other approaches for find operations

Chapter 5 Indexing

105

Warning D on't create a wildcard index out of laziness. The overhead of wildcard
indexes is high, and they should only be used when an alternative strategy is not
available.

If some of the attributes are never searched, then the wildcard index will add an
overhead that will not be worthwhile. As always, only create indexes that are necessary:
all indexes impact on performance and wildcard indexes even more so.

Wildcard indexes are a really useful addition to your indexing arsenal. However,
don’t use them just as a programming shortcut: they impose significant overhead on
insert, update, and delete performance and should only be used when the attributes to
be indexed are unpredictable.

�Text Indexes
It’s become standard in modern applications for users to be given the ability to perform
a freeform search of items, such as a list of movies, shopping items, or rental properties.
Users don’t want to fill in a complex form to specify which attributes to search and

certainly don’t want to learn MongoDB find() syntax.

Figure 5-5.  Overhead of wildcard indexes compared with traditional indexes

Chapter 5 Indexing

106

To build these sorts of applications, you may need to take a few search terms and

then search large text fields across many thousands of documents to find the best

possible match. This is where text indexes are useful.

When tuning or creating text indexes, it’s important to understand how MongoDB

will interpret that index and further how that index will impact queries.

MongoDB uses a method called suffix stemming to build a search index.

Suffix stemming involves finding a common element (prefix) at the start of each

word which forms the root of a search tree. Each divergent suffix “stems” off into its own

node that may stem further. This process creates a tree that can be efficiently searched

from the root (the most common shared element) down to the leaf node, with the path

from the root to the leaf node forming a complete word.

For example, suppose we have the words “finder,” “finding,” and “findable”

somewhere in our documents. By using suffix stemming, we could find a common root

in these words of “find,” and then the suffixes stemming from this term would be “er,”

“ing,” and “able.”

MongoDB uses this same method. When you create a text index on a given field,

MongoDB will parse the text contained in that field and create an index entry for

each unique stemmed term generated in a given document. This will be repeated for

each indexed field and each document until all specified fields in that collection have

complete text indexes.

Understanding the theory is great, but sometimes the best way to understand how

text indexes work is to start interacting with them, so let’s create a new text index. The

command is very simple, using the same syntax as for creating any other type of index. You

simply specify the field to create the index for, with the type of the index specified as "text":

> db.listingsAndReviews.createIndex({description: "text"})

{

Chapter 5 Indexing

107

 "createdCollectionAutomatically" : false,

 "numIndexesBefore" : 4,

 "numIndexesAfter" : 5,

 "ok" : 1

}

The text index is created as easily as that. As with our other indexes, we can create a

text index on multiple attributes:

> db.listingsAndReviews.createIndex({summary: "text", space: "text"})

{

 "createdCollectionAutomatically" : false,

 "numIndexesBefore" : 4,

 "numIndexesAfter" : 5,

 "ok" : 1

}

Although you can create a text index on multiple indexes, you can only have one

text index on any collection. Therefore, if you run the two commands above one after

another, you will receive an error.

Note  You can only have one text index per collection. Therefore, to create a new
text index or compound index containing a text index, you will have to first drop the
old index using db.collection.dropIndex("index_name").

We can also create compound indexes, including a mix of text and traditional

indexes:

> db.listingsAndReviews.createIndex({summary: "text", beds: 1})

{

 "createdCollectionAutomatically" : false,

 "numIndexesBefore" : 4,

 "numIndexesAfter" : 5,

 "ok" : 1

}

Chapter 5 Indexing

108

Another important aspect when creating text indexes is to specify the weight for

each field. The weight of a field refers to how important that field is relative to the other

indexed fields. This will be used by MongoDB when determining which results to return

to use in $text queries. Weight can be specified as an option when creating your text

index.

> db.listingsAndReviews.createIndex({summary: "text", description: "text"},

{weights: {summary: 3, description: 2}})

{

 "createdCollectionAutomatically" : false,

 "numIndexesBefore" : 4,

 "numIndexesAfter" : 5,

 "ok" : 1

}

Now that we have a text index on our collection, we can access it using the $text

operator. The $text takes a $search operator which accepts a list of words (usually split

by whitespace):

> db.listingsAndReviews.findOne({$text: {$search: "oven kettle and

microwave"}}, {summary: 1})

{

 "_id" : "6785160",

 "summary" : "Large home with that includes a bedroom with TV ,

hanging and shelf space for clothing, comfortable double bed and air

conditioning. Additional private sitting room includes sofa, kettle, bar

fridge and toaster. Exclusive use of large bathroom with shower, bath,

double sinks and toilet. LGBTQI friendly"

}

It is often useful when using text indexes to also project the score a given document

generated during the text search. You can accomplish this using a $meta projection

displaying the textScore field. You will usually want to sort on this projection as well, to

ensure that you get the most relevant search results first.

mongo> db.listingsAndReviews.

... find(

... { $text: { $search: 'oven kettle and microwave' } },

Chapter 5 Indexing

109

... { score: { $meta: 'textScore' }, summary: 1 }

...).

... sort({ score: { $meta: 'textScore' } }).

... limit(3);

{

 "_id": "25701117",

 "summary": "Totally refurbished penthouse apartment ...",

 "score": 3.5587606837606836

}

{

 "_id": "13324467",

 "summary": "Everything, absolutely EVERYTHING NEW and ... ",

 "score": 3.5549853372434015

}

Two other important methods you may wish to use when searching text indexes

are exclusion and exact matching. Exclusions are marked using the – symbol, and exact

matches are marked using double quotes. For example, the query

> db.listingsAndReviews.find(

 {$text: {$search:

 "\"luggage storage\" kettle and -microwave"}})

would search the index for an exact match of the phrase “luggage storage” and

documents excluding the phrase “microwave.” Using text indexes in this way can be

incredibly powerful, particularly across large text heavy datasets. However, there are

some limitations of text indexes to keep in mind:

•	 Specifying sparse for a text index has no effect. Text indexes are

always sparse.

•	 If your compound index contains a text index, it cannot contain

multi-key or geospatial fields. You will have to create separate indexes

for these special index types.

•	 As mentioned in the example of creating a text index earlier, you can

only create a single text index per collection. Additional text index

creation will throw an error.

Chapter 5 Indexing

110

�Text Index Performance
With conventional indexes, you have the ability to resolve a query using a collection

scan instead of the index. However, without a text index, you cannot perform full-text

searches at all. Consequently, you don’t have much choice about the use of a full-text

index.

However, there are some performance characteristics of full-text indexes that you

should bear in mind. Firstly, you should be aware that MongoDB will perform an index

scan for every term in the search criteria. For instance, here we search on five unique

words and consequently perform five text index scans:

mongo> var exp = db.bigEnron.

... explain('executionStats').

... find({ $text: { $search:

 'Confirmation Rooms Credit card tax email ' } },

... { score: { $meta: 'textScore' }, body: 1 }).

... sort({ score: { $meta: 'textScore' } }).

... limit(3);

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (body_text ms:229 keys:53068)

2 IXSCAN (body_text ms:764 keys:217480)

3 IXSCAN (body_text ms:748 keys:229382)

4 IXSCAN (body_text ms:1376 keys:398325)

5 IXSCAN (body_text ms:362 keys:108996)

6 IXSCAN (body_text ms:181 keys:93970)

7 TEXT_OR (ms:494636 docs:843437)

8 TEXT_MATCH (ms:494709)

9 TEXT (body_text ms:494746)

10 SORT_KEY_GENERATOR (ms:494795)

11 SORT (ms:495015)

12 PROJECTION_DEFAULT (ms:495072)

Consequently, as shown in Figure 5-6, the more search terms we have, the more time

it takes for the text search.

Chapter 5 Indexing

111

Note  MongoDB text index performance is directly proportional to the number of
terms in the search. Where necessary, limit the number of search terms to keep
response time manageable.

Note that even if you search for an exact phrase, you’ll still be performing one scan

for each word in the phrase, because the index itself has no idea about how words are

used in sequence. If you are searching for a long exact text phrase, you could be better off

performing a regular expression query and a full collection scan. For instance, this query

looks for the text “are you going to be at the game tonight”:

mongo> var exp = db.bigEnron.

... explain('executionStats').

 find({ $text: {

 $search: '"are you going to be at the game tonight"' } });

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (body_text ms:354 keys:62838)

2 IXSCAN (body_text ms:2136 keys:515760)

3 IXSCAN (body_text ms:146 keys:39721)

Figure 5-6.  Text index performance vs. the number of search terms

Chapter 5 Indexing

112

4 OR (ms:2767)

5 FETCH (ms:379793 docs:563201)

6 TEXT_MATCH (ms:383409)

7 TEXT (body_text ms:383517)

Totals: ms: 414690 keys: 618319 Docs: 563201

MongoDB performs three index scans (only the words “game,” “going,” and “tonight”

are considered worth scanning for). A full collection scan completed in less than half the

elapsed time:

mongo> var exp = db.bigEnron.

... explain('executionStats').

 find({body:/are you going to be at the game tonight/});

mongo> mongoTuning.executionStats(exp);

1 COLLSCAN (ms:102289 docs:2897816)

Totals: ms: 145925 keys: 0 Docs: 2897816

Tip  If you are searching for an exact phrase, you might be better off doing
a collection scan–based conventional query – MongoDB text indexes are not
designed for efficient multi-word phrase searches.

Here are some additional important performance considerations with text indexes:

•	 Due to the stemming method described earlier, text indexes can be

very large and can take a long time to create.

•	 MongoDB recommends having enough memory on your system

to keep the text index in memory, because otherwise there may be

significant IO involved during the search.

When using a sort in your query, you will not be able to leverage the text index for

determining order, even in compound text indexes. Keep this in mind when sorting text

query results.

Text indexes are incredibly powerful and serve a wide array of modern applications,
but take care when relying on them or you may find your $text queries becoming an
annoying performance bottleneck.

Chapter 5 Indexing

113

MongoDB Atlas provides the ability to use the popular Lucene platform for text
search. This facility has many advantages over MongoDB’s internal text searching
capability.

�Geospatial Indexes
Today’s location-aware applications typically need to perform searches across map data.
These searches could include searching for rental properties in a region, finding nearby
venues, or even categorizing photos by the location captured. Many devices today
are passively capturing vast amounts of location data everywhere we go. This is often
referred to as geospatial data: data about locations on Earth.

MongoDB provides both methods for querying this data as well as specific index
types to optimize the queries.

Here is an example of some geospatial data:

{
 "_id" : ObjectId("578f6fa2df35c7fbdbaed8c4"),
 "recrd" : "",
 "vesslterms" : "",
 "feature_type" : "Wrecks - Visible",
 "chart" : "US,U1,graph,DNC H1409860",
 "latdec" : 9.3547792,
 "londec" : -79.9081268,
 "gp_quality" : "",
 "depth" : "",
 "sounding_type" : "",
 "history" : "",
 "quasou" : "",
 "watlev" : "always dry",
 "coordinates" : [
 -79.9081268,
 9.3547792
]

}

The data itself can be quite simple, although you would likely store large amounts of

metadata along with the coordinates. The preceding data is in a legacy format, with the data

represented as a simple coordinate pair. MongoDB also supports the GeoJSON format.

Chapter 5 Indexing

114

{

 "_id" : ObjectId("578f6fa2df35c7fbdbaed8c4"),

 "recrd" : "",

 "vesslterms" : "",

 "feature_type" : "Wrecks - Visible",

 "chart" : "US,U1,graph,DNC H1409860",

 "latdec" : 9.3547792,

 "londec" : -79.9081268,

 "gp_quality" : "",

 "depth" : "",

 "sounding_type" : "",

 "history" : "",

 "quasou" : "",

 "watlev" : "always dry",

 "location" : {

 "type" : "Point",

 "coordinates" : [

 -79.9081268,

 9.3547792

]

 }

}

The GeoJSON format specifies the type of data along with the values themselves,

either a single point or an array of many coordinate pairs. GeoJSON allows you to define

more complex spatial information such as lines and polygons, but for the purposes of

this chapter, we will focus on simple point data in legacy format.

Here is a geospatial query that might be executed to find documents within a certain

radius of the target point using the $near operator:

> db.shipwrecks.find(

... {

... coordinates:

... { $near :

... {

... $geometry: { type: "Point",

Chapter 5 Indexing

115

 coordinates: [-79.908, 9.354] },

... $minDistance: 1000,

... $maxDistance: 10000

... }

... }

... }

...).limit(1).pretty();

{

 "_id" : ObjectId("578f6fa2df35c7fbdbaed8c8"),

 "recrd" : "",

 "vesslterms" : "",

 "feature_type" : "Wrecks - Submerged, dangerous",

 "chart" : "US,U1,graph,DNC H1409860",

 "latdec" : 9.3418808,

 "londec" : -79.9103851,

 "gp_quality" : "",

 "depth" : "",

 "sounding_type" : "",

 "history" : "",

 "quasou" : "depth unknown",

 "watlev" : "always under water/submerged",

 "coordinates" : [

 -79.9103851,

 9.3418808

]

}

In the preceding example, a matching geospatial index for this query already exists.

In the case of the $near operator, a geospatial index is required to run the query. If you

attempted to run this query without an index, MongoDB would return an error:

Error: error: {

 "ok" : 0,

Chapter 5 Indexing

116

 "errmsg" : "error processing query: ns=sample_geospatial.shipwrecks

limit=1Tree: GEONEAR field=coordinates maxdist=10000 isNearSphere=0\nSort:

{}\nProj: {}\n planner returned error :: caused by :: unable to find index

for $geoNear query",

 "code" : 291,

 "codeName" : "NoQueryExecutionPlans"

}

In fact, almost all geospatial operators require an appropriate geospatial index.

In the execution plan for this query, we would see the following stage for the first

time – “GEO_NEAR_2DSPHERE”:

mongo> var exp=db.shipwrecks.explain('executionStats').

... find(

... {

... coordinates:

... { $near :

... {

... $geometry: { type: "Point",
 coordinates: [-79.908, 9.354] },

... $minDistance: 1000,

... $maxDistance: 10000

... }

... }

... }

...).limit(1);
mongo> mongoTuning.executionStats(exp);

1 IXSCAN (coordinates_2dsphere ms:0 keys:12)
2 FETCH (ms:0 docs:0)

3 IXSCAN (coordinates_2dsphere ms:0 keys:18)
4 FETCH (ms:0 docs:1)

5 GEO_NEAR_2DSPHERE (coordinates_2dsphere ms:0)
6 LIMIT (ms:0)

Totals: ms: 0 keys: 30 Docs: 1

This indicates we are using a 2dsphere index to help us query this geospatial data.

There are two distinct types of geospatial indexes that you may create in MongoDB:

Chapter 5 Indexing

117

•	 2dsphere: Used to index data that exists on a sphere like the Earth

•	 2d: Used to index data that exists on a two-dimensional plane like a

traditional map

Which index you choose to use will depend on the context of the data itself. Be

careful when selecting your index type. You may be able to use a 2d index on spherical

data; however, the results will be warped. Think of the example of two points on opposite

sides of a map; these two points may be very close on a sphere but very far on a two-

dimensional plane.

To create a geospatial index, you simply specify the 2dsphere or 2d index type as

the value, with the key being the field containing the location data, either as legacy

coordinate data or GeoJSON data:

> db.shipwrecks.createIndex({"coordinates" : "2dsphere"})

Warning  If you attempt to create a geospatial index on a field that does not
contain appropriate data in the form of GeoJSON objects or coordinate pairs,
MongoDB will return an error. So check your data before creating this index.

�Geospatial Index Performance
When discussing methods for ensuring your indexes are improving your performance,

geospatial indexes are an outlier. Because you must have these indexes (with the

exception of the $geoWithin operator), they do not necessarily grant performance

boost to your queries as much as allow them to function. This makes improving your

geospatial query performance a more challenging task, rather than creating or tuning the

matching index; here are a few aspects you can consider in regard to geospatial indexes:

•	 Unlike its fellow geospatial operators, $geoWithin can be used

without a geospatial index. Adding a matching index is the easiest

way to improve the performance of $geoWithin.

•	 $near and $nearSphere will automatically sort results by distance
(nearest to furthest), so if you add a sort() operation to your query,
the initial sort is wasted. If you are planning on sorting your results,

Chapter 5 Indexing

118

you may improve performance by using $geoWithin or the $geoNear
aggregation stage, which does not sort the results automatically.

•	 When using the $near, $nearSphere, or $geoNear operators, leverage
the minDistance and maxDistance parameters wherever possible.
This will limit the number of documents examined by MongoDB. In
the case of a query with many data points nearby, this may not affect
performance. However, if there are no matching values nearby, a
query within maxDistance might conceivably search the entire world!

Geospatial metadata is being added to more and more data, from images to browser
logs. It is increasingly likely that somewhere in a production dataset, you may have
some geospatial data. As with other index types, you should still consider whether the
overhead of maintaining the index is worth the performance increase. If you don’t
expect the application to query the geospatial data, then a geospatial index may not be
beneficial.

�Geospatial Index Limitations
With both the 2dsphere and 2d index types, it is not possible to create a covered query.
Due to the nature of geospatial operators, the documents must be examined to satisfy
the query, so don’t expect to create covered queries simply by creating a geospatial
index.

Additionally, when working with a sharded collection (which will be covered in
Chapter 14), the geospatial index cannot be used as the shard key, you won’t be able to
shard by GeoJSON or coordinate data. If, however, you wish to have a geospatial index
on a sharded collection, you can still create it given the shard key references a different
field than the index. It is also worth noting that, as was the case with text indexes, both 2d
and 2dsphere indexes are always sparse.

The 2d index type cannot be used with more advanced GeoJSON data; it only
supports legacy coordinate pairs.

MongoDB does allow you to create multiple geospatial indexes on a single collection.
Be careful creating subsequent geospatial indexes, however, as this will affect the
behavior of geospatial aggregations, and may even break existing application code. For
example, if multiple geospatial ndexes exist for a query using the $geoNear aggregation
pipeline stage, you must specify the key you wish to use. If multiple 2dsphere or 2d
indexes exist on that collection and no key is specified, the aggregation will be unsure

which index to use, causing the aggregation to fail.

Chapter 5 Indexing

119

Note  If you have at most one 2d index and one 2dsphere index, you will not
receive an error. Instead, the query will attempt to use the 2d index if it exists; if no
2d index is found, it will attempt to use a 2dsphere index.

In practice, it is unlikely you will create many different geospatial indexes on a single

collection. As always, think carefully about what queries you are likely to encounter

before creating indexes.

�Summary
In this chapter, we have learned what indexes are, how they work, and why they are

critical. Many times, correctly identifying and creating indexes that match your queries

will give you the most “bang for your buck” to improve performance. Additionally, we

have learned about some more specific indexes to help with geospatial or text queries.

However, as we also learned in this chapter, indexes are not a universal band-aid for

all performance problems. In some cases, an index poorly used can reduce performance.

It is crucial to think about the expected load coming from your application or users and

the structure of the data before deciding what sort of indexing to implement.

Indexes may be one of your most robust methods for improving MongoDB

performance, but don’t be lazy when creating them; a little bit of time spent on proper

indexing will save you a lot of time tuning down the track.

Chapter 5 Indexing

PART III

Tuning MongoDB Code

123
© Guy Harrison, Michael Harrison 2021
G. Harrison and M. Harrison, MongoDB Performance Tuning, https://doi.org/10.1007/978-1-4842-6879-7_6

CHAPTER 6

Query Tuning
In almost all applications, the majority of database time is spent in data retrieval. A

document can only be inserted or deleted once, but will typically be read many times

between updates, and even updates must retrieve the data before performing their work.

Therefore, much of our MongoDB tuning efforts focus on finding data and in particular

the find() statement, which is the workhorse of MongoDB data retrieval.

�Caching Results
Back in the dim dark days when Guy worked primarily with SQL-based databases, a wise

man once told him “the fastest SQL statement is the one you never send to the database.”

In other words, don’t send requests to the database if you can avoid it. Even the simplest

request involves a network round trip, and maybe an IO – so never interact with the

database unless you absolutely have to.

This principle applies equally to MongoDB. We often ask the database for the same

information more than once – even when we know that the information does not change.

For instance, consider the following simple function:

function recordView(customerId,filmId) {

 let filmTitle=db.films.findOne({_id:filmId},{Title:1}).Title;

 db.customers.update({_id:customerId},

 {$push:{views:{filmId,title:filmTitle,

 viewDate:new ISODate()}}});

}

We look up the film title in the films collection – fair enough. But the film titles never

change, and on any given day, some films will be viewed many times. So why go back to

the database to get the film title for a film we have already processed?

https://doi.org/10.1007/978-1-4842-6879-7_6#DOI

124

This admittedly more complicated code caches film titles in local memory. We never

ask the database for a film title a second time:

var cacheDemo={};

cacheDemo.filmCache={};

cacheDemo.getFilmId=function(filmId) {

 if (filmId in cacheDemo.filmCache) {

 return(cacheDemo.filmCache[filmId]);

 }

 else

 {

 let filmTitle=db.films.findOne({_id:filmId},

 {Title:1}).Title;

 cacheDemo.filmCache[filmId]=filmTitle;

 return(filmTitle);

 }

};

cacheDemo.recordView= function(customerId,filmId) {

 let filmTitle=cacheDemo.getFilmId(filmId);

 db.customers.update({_id:customerId},

 {$push:{views:{filmId,title:filmTitle,

 viewDate:new ISODate()}}});

}

The cached implementation is much faster. Figure 6-1 shows the elapsed time for

executing each function 1000 times with random inputs.

Chapter 6 Query Tuning

125

Caching is particularly suitable for small, frequently accessed collections that

contain static “lookup” values.

Here are some considerations to keep in mind when implementing caching:

•	 Caches consume memory on the client program. In many

environments, memory is abundant, and the tables considered for

caching relatively small. However, for large collections and memory-

constrained environments, the implementation of a caching strategy

could actually degrade performance by contributing to memory

shortages in the application layer or client.

•	 When caches are relatively small, sequential scanning (i.e., examining

each entry in the cache from the first entry to the last) will probably

result in adequate performance. However, if the cache is larger, the

sequential scan may start to degrade performance. To maintain good

performance, it may be necessary to implement advanced search

techniques such as hashing or binary chop. In our preceding example,

the cache was effectively indexed by film ID and would, therefore,

remain efficient regardless of the number of films involved.

•	 If the collection being cached is updated during program execution,

then the changes may not be reflected in your cache unless you

implement some sophisticated synchronization mechanism. For this

reason, local caching is best performed on static collections.

Figure 6-1.  Performance improvements from simple caching

Chapter 6 Query Tuning

126

Tip  Caching frequently accessed data from small or medium-sized static
collections can be very effective in improving program performance. However,
beware of memory utilization and program complexity issues.

�Optimizing Network Round Trips
One of the reasons that databases are often the slowest part of an application is that

they have to move data across a network link. Every time an application accesses some

data from the database, that data has to travel across a network. In extreme cases (such

as when your database is in a cloud server on another continent), that distance can be

thousands of miles.

Network transmission takes time – usually far more time than is expended in CPU

cycles. So reducing network transmissions – or network round trips – is fundamental to

reducing query time.

We like to think of network transmissions as a rowboat crossing a river. We have a

certain number of people on one side of the river, and we want to get them across to

the other side in a boat. The more people we can get into the boat in each crossing,

the fewer round trips we have to make and the sooner we’ll get them all across. If the

people represent documents and the boat represents a single network packet, then the

same logic applies to database network traffic: our aim is to pack the greatest number of

documents into each network packet.

There are two fundamental ways of “packing documents into network packets:

•	 By making each document as small as possible

•	 By making sure that network packets have no empty space

�Projections
Projections allow us to specify the attributes that should be included in the results of

a query. MongoDB programmers often don’t bother to specify projections, because

applications typically just discard the unwanted data anyway. But the impact on network

round trips can be massive. Consider this query:

db.customers.find().forEach((customer)=>{

Chapter 6 Query Tuning

127

 if (customer.LastName in results)

 results[customer.LastName]++;

 else

 results[customer.LastName]=1;

});

We are getting a count of customer surnames. Notice that the only attribute we use

from the customers collection is LastName. So we can add a projection to ensure that

only the LastName is included in the results:

db.customers.find({},{LastName:1,_id:0}).forEach((customer)=>{

 if (customer.LastName in results)

 results[customer.LastName]++;

 else

 results[customer.LastName]=1;

});

Over a slow network, the performance difference is amazing – the projection

increased throughput by ten times. Even when we run the query on the same host as

the database server (thus reducing the round trip time), the performance difference is

still significant. Figure 6-2 illustrates the performance improvements gained simply by

adding a projection.

Figure 6-2.  Using projections to reduce network overhead

Chapter 6 Query Tuning

128

Tip I nclude projections in find() operations whenever fetching bulk data.
Projections reduce the amount of data that MongoDB needs to transfer across the
network and can, therefore, reduce network round trips.

�Batch Processing
The number of documents that are included in each network packet in response to

a query is managed automatically by MongoDB. Batches are limited to the BSON

document size of 16MB, but since network packets are much smaller than this, this

limitation is usually unimportant. However, by default, MongoDB will only return 101

documents in the initial batch, which means that sometimes data might be split over two

network transmissions when one would be sufficient.

When retrieving data using a cursor, you can specify the number of rows fetched

in each operation using the batchSize clause. For instance, in the following we have a

cursor where the variable batchSize controls the number of documents retrieved from

the MongoDB database in each network request:

 var myCursor=db.millions.find({},{n:1,_id:0})
 .batchSize(batchsize);
 while (myCursor.hasNext()) {
 myCursor.next();
 count+=1;

 }

Note that the batchSize operator doesn’t actually change the amount of data

returned to the program – it just controls the number of documents retrieved in each

network round trip. This all happens “under the hood” from your program’s point of view.

The effectiveness of modifying batchSize depends a lot on the underlying driver

implementation. In the MongoDB shell, the default batchSize is already set as high as

it can go. However, in the NodeJS driver, batchSize is set to a default of 1000. As a result,

adjusting batchSize in a NodeJS program might give you a performance boost.

In Figure 6-3, we see the effect of manipulating batchSize for a query retrieving rows

from a remote database using the NodeJS driver. Settings of batchSize below 1000 made

performance worse – sometimes much worse! But settings greater than 1000 did improve

performance.

Chapter 6 Query Tuning

129

Note that if you repeat this experiment using the MongoDB shell, you’ll see

no performance improvement as you increase batchSize. Each driver and client

implements batchSize somewhat differently. The node driver uses a default size of 1000,

while the Mongo shell uses a much higher value.

Warning A djusting batchSize is just as likely to degrade performance than
to improve it. Only increase batchSize if you are pulling a very large number of
small documents across a slow network, and always test to make sure that you
are getting a performance improvement.

�Avoiding Excessive Network Round Trips in Code
batchSize() helps us reduce network overhead transparently in the MongoDB driver.

But sometimes the only way to optimize your network round trips is to tweak your

application logic. For instance, consider this logic:

for (i = 1; i < max; i++) {

 //console.log(i);

 if ((i % 100) == 0) {

 cursor = useDb.collection(mycollection).find({

Figure 6-3.  Effect of changing batchSize on query performance in NodeJS

Chapter 6 Query Tuning

130

 _id: i

 });

 const doc = await cursor.next();

 counter++;

 }

}

We are pulling out every hundredth document from a MongoDB collection. If the

collection is large, then that will be a lot of network round trips. In addition, each of these

requests will be satisfied by an index lookup, and the sum of all those index lookups will

be high.

Alternatively, we could pull the entire collection across in one operation and then

extract the documents we want.

const cursor = useDb.collection(mycollection).find()

 .batchSize(10000);

for (let doc = await cursor.next();

 doc != null;

 doc = await cursor.next()) {

 if (doc._id % divisor === 0) {

 counter++;

 }

}

Intuitively, you might think that the second approach would take much longer. After

all, we are now retrieving 100 times more documents from MongoDB, right? But because

the cursor pulls across thousands of documents in each batch (under the hood), the

second approach is actually a lot less network-intensive. If the database is located across

a slow network, then the second approach will be much faster.

In Figure 6-4, we see the performance of the two approaches for a local server (e.g.,

on Guy’s laptop) vs. a remote (Atlas) server. When the Mongo server was on Guy’s laptop,

the first approach was a little faster. But when the server was remote, pulling all the data

across in a single operation was far faster.

Chapter 6 Query Tuning

131

�Bulk Inserts
Just as we want to pull data out of MongoDB in batches, we also want to insert in

batches – at least if we have lots of data to insert. Although the optimization principles

are the same, the implementation is quite different. Since the MongoDB server or driver

can’t possibly know how many documents you are going to insert, it’s up to you to

structure your code to explicitly insert in bulk. We’ll look at the principles and practices

for bulk insert in Chapter 8.

�Application Architecture
Remember our analogy of the rowboat and the river? Making sure the rowboat has a

full load is how we reduce the number of trips across the river. However, the width of

the river is something we usually can’t control. But in an application, the distance that

we have to travel is something we can control. The “distance” between the application

server and the database server is the primary factor determining how much time is

elapsed in each network round trip.

Therefore, the closer the application code is to the database server, the less time will

be consumed in network overhead. Whenever you can, you should endeavor to locate

the application server in the same data center, or even in the same network rack, as the

database server.

Figure 6-4.  Optimizing network round trips in client code

Chapter 6 Query Tuning

132

Tip  Keep your application code as close to your database server as possible. The
further the distance between the two, the higher the average network latency for
database requests.

When we take advantage of a cloud-based MongoDB Atlas server, optimizing the
location of our application code might seem problematic. However, we do have a lot of
control over the locations of Atlas databases, and we’ll look at this in detail in Chapter 13.

�Choosing an Index vs. a Scan
So far, we have looked at how to reduce the amount of time consumed in network traffic. Now
let’s look at how we can reduce the amount of work required in the MongoDB server itself.

The most important tool we have at our disposal for query tuning is indexing.
Chapter 5 was dedicated to indexing, and we spent a lot of time in that chapter learning
how to create the best indexes possible.

However, an index might not always be the best option for your query.
If you are reading an entire book, you don’t start by jumping to the index and then

switching between each index entry and the book section it refers to. That would be silly
and extremely time-consuming. You read a book by starting at the first page and reading
subsequent pages in order. If you want to find a specific item in a book, that’s when you
use the index.

The same logic applies to MongoDB queries – if you are reading an entire collection,
you don’t want to use an index. If you are reading a small number of documents, then
an index is preferred. But at what point does the index become more effective than the
collection scan? For instance, should I use an index if I’m reading half the collection?

The answer is – unfortunately – it depends. Some of the factors which affect the
“break-even” point for indexed retrieval are

•	 Caching effects: Index retrievals tend to get very good hit rates in
WiredTiger cache, while full collection scans generally get a much
poorer hit rate. But if all of the collection is in the cache, then a
collection scan will perform closer to index speeds.

•	 Document size: Most of the time, a document will be retrieved
in a single IO, so the size of the document doesn’t affect index
performance that much. However, larger documents mean larger
collections which will push up the amount of IO needed for the
collection scan.

Chapter 6 Query Tuning

133

•	 Data distribution: If documents in the collection are stored in the
order of the indexed attribute (which can happen if documents
are inserted in key order), then the index may need to access fewer
blocks to retrieve all documents for a given key value and therefore
experience a much higher hit rate. Data that is stored in sorted order
is sometimes referred to as highly clustered.

Figure 6-5 shows the elapsed time for indexed scans and collection scans for
clustered and unclustered data, plotted against the percentage of the collection being
retrieved. In one test, the data was loaded into the collection in sorted order, favoring an
index lookup. In another test, the data was effectively in random order.

For randomly distributed data, a collection scan completed more quickly than an index
scan if more than about 8% of the collection was retrieved. However, if the data was highly

clustered, the index scan outperformed the collection scan up to almost the 95% mark.

Figure 6-5.  Index and collection scan performance plotted against percent of
collection accessed (logarithmic scale)

Chapter 6 Query Tuning

134

Although it’s not really possible to specify a “one-size-fits-all” cutoff point for index

retrieval, the following statements are generally valid:

•	 If all documents or a large proportion of documents in the collection

need to be accessed, then a full collection scan will be the quickest

access path.

•	 If a single document is to be retrieved from a large collection, then an

index based on that attribute will offer the quicker retrieval path.

•	 Between these two extremes, it may be difficult to predict which

access path will be quicker.

Note T here is no "one-size-fits-all" break-even point for indexed vs. collection
scan accesses. If only a few documents are being accessed, then the index will be
preferred. If almost all the documents are being accessed, then the full collection
scan will be preferred. In between these two extremes, your "mileage" will vary.

�Overriding the Optimizer with Hints
The MongoDB optimizer uses a combination of heuristics – rules – and “experiments”

when deciding the optimum access path. It will usually try a few different plans before

settling on a plan for a specific query “shape.” However, the optimizer is biased in favor

of using indexes when they exist. So, for instance, the following query retrieves every

document in the collection, because there are no customers born in the 1800s! However,

even though all the documents are being retrieved, MongoDB chooses an indexed path.

mongo> var exp=db.customers.explain('executionStats').

 find({dateOfBirth:{

 $gt:new Date("1900-01-01T00:00:00.000Z")}});

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (dateOfBirth_1 ms:16 keys:411121)

2 FETCH (ms:53 docs:411121)

Totals: ms: 805 keys: 411121 Docs: 411121

Chapter 6 Query Tuning

135

The execution plan shows that the IXSCAN step retrieves all 411,121 rows of the

collection: the use of an index was not ideal in this case.

We can change force this query to use a collection scan by adding a hint. If we

append .hint({$natural:1}), we instruct MongoDB to perform a collection scan to

resolve the query:

mongo> var exp=db.customers.explain('executionStats').

... find({dateOfBirth:{

 $gt:new Date("1900-01-01T00:00:00.000Z")}}).

... hint({$natural:1});

mongo> mongoTuning.executionStats(exp);

1 COLLSCAN (ms:16 docs:411121)

Totals: ms: 383 keys: 0 Docs: 411121

We can also use a hint to specify the index that we want MongoDB to use. For

instance, in this query we see that MongoDB has chosen an index on Country:

mongo> var exp=db.customers.explain('executionStats').

... find({Country:'India',

 dateOfBirth:{$gt:new Date("1990-01-01T00:00:00.000Z") }});

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (Country_1 ms:0 keys:41180)

2 FETCH (ms:7 docs:41180)

Totals: ms: 78 keys: 41180 Docs: 41180

If we think that MongoDB has chosen the wrong index, then we can specify the index

key in the hint that we want MongoDB to use. Here, we force the use of an index on

dateOfBirth:

mongo> var exp=db.customers.explain('executionStats').

... find({Country:'India',

 dateOfBirth:{$gt:new Date("1990-01-01T00:00:00.000Z")

}}).hint({dateOfBirth:1});

mongo>

Chapter 6 Query Tuning

136

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (dateOfBirth_1 ms:6 keys:63921)

2 FETCH (ms:13 docs:63921)

Totals: ms: 143 keys: 63921 Docs: 63921

Using hints in application code is not best practice. A hint might prevent a query

from taking advantage of new indexes when they are added to the database and might

prevent optimizations introduced by MongoDB as new versions of the server are

introduced. However, if all else fails, a hint might be the only way to coerce MongoDB

into using the correct index or forcing MongoDB to use a collection scan.

Warning  Consider the use of hints in queries as a last resort. A hint may prevent
MongoDB from taking advantage of new indexes or responding to changes in data
distribution.

�Optimizing Sort Operations
If a query includes a sort directive and there is no index on the sorted attributes,

MongoDB must fetch all of the data and then sort the resulting data in memory. Until all

of the rows are sorted, the first row from the query cannot be returned – because we can’t

identify the first document in the sorted result until we’ve sorted all of the documents.

For this reason, a non-index sort is often referred to as a blocking sort.

A blocking sort might actually be faster than an index sort if you want the entire

sorted set of data. However, using the index gets you the first few documents almost

immediately, and in many applications, the user wants to see the first “page” of sorted

data quickly and may never page through the entire set. In these cases, an index sort is

very desirable.

Furthermore, a blocking sort will fail if it runs out of memory. You might get an error

like this with a blocking sort1:

1�You can allocate more memory for the sort using internalQueryExecMaxBlockingSortBytes –
we’ll discuss this parameter in Chapter 7. From MongoDB 4.4 onward, you can also perform a
“disk sort” by adding the allowDiskUse() modifier to your query.

Chapter 6 Query Tuning

137

Executor error during find command: OperationFailed: Sort operation used

more than the maximum 33554432 bytes of RAM. Add an index, or specify a

smaller limit.

A find() operation that specifies a sort() option and which performs a blocking

sort will show a SORT_KEY_GENERATOR step followed by a SORT step in the execution plan:

mongo> var plan=db.customers.explain()

 .find().sort({dateOfBirth:1});

mongo> mongoTuning.quickExplain(plan);

1 COLLSCAN

2 SORT_KEY_GENERATOR

3 SORT

If we create an index on the sort criteria, then we’ll just see an IXSCAN and FETCH:

mongo> var plan=db.customers.explain()

 .find().sort({dateOfBirth:1});

mongo> mongoTuning.quickExplain(plan);

1 IXSCAN dateOfBirth_1

2 FETCH

If we have a query that performs a filter and then a sort, then we will need to have an

index on both the filter condition and the sort condition – in that order.

For instance, if we have a query like this:

Mongo> db.customers.find({Country:'Japan'})

 .sort({dateOfBirth:1});

we might initially be happy to see that the plan is resolved using the index:

mongo> var plan=db.customers.explain()

 .find({Country:'Japan'}).sort({dateOfBirth:1});

mongo> mongoTuning.quickExplain(plan);

1 IXSCAN dateOfBirth_1

2 FETCH

Chapter 6 Query Tuning

138

However, that index only supported the sort. If we want the index to support the sort

and the query filter, then we need to create an index like this:

db.customers.createIndex({Country:1,dateOfBirth:1});

Tip T o create an index that supports both a filter and a sort, create the index with
the filter conditions first, followed by the sort attributes.

Using an index to return documents in a specific order is not always the best option.

If you are looking for the first few documents, then the indexed will work better than the

blocking sort. However, if you need all the documents returned in sorted order, then the

blocking sort may be superior.

Figure 6-6 shows how an index radically reduces the response time to retrieve the

first sorted document, but actually degrades the time required to get the last sorted

document in the collection.

Figure 6-6.  Effect of an index on sorting when retrieving all documents or only the
first document (note the logarithmic scale)

Chapter 6 Query Tuning

139

Tip U sing an index to optimize a sort is a good strategy if you are only interested
in the first few documents from the sort. When you need all the documents
returned in sorted order, then a blocking (non-indexed) sort will usually be faster.

If you are going to to do a blocking sort on a large amount of data, you may need to

allocate more memory for the sort. You can do this by adjusting the internal parameter

internalQueryExecMaxBlockingSortBytes. For instance, to set the sort memory size to

100MB, you could issue the following command:

db.getSiblingDB("admin").
 �runCommand({ setParameter: 1, internalQueryExecMaxBlockingSortBytes:

1001048576 });

Be aware, however, that increasing this limit will allow MongoDB to load that much

extra data into memory, utilizing more overall system resources. The query itself may

also take longer to execute if the server does not have sufficient free memory. This is

discussed in further depth in Chapter 11.

�Picking or Creating the Right Index
As we saw in the last chapter and earlier in this chapter, probably the most effective tool

for query optimization is indexing. When looking at a query – at least one that doesn’t

fetch all or most of the collection – our first question is usually “do I have the right index

to support this query?”

As we’ve seen, indexes can perform three levels of optimization for a query:

	 1.	 An index can quickly locate the matching documents for a filter

condition.

	 2.	 An index can avoid a blocking sort.

	 3.	 A covering index can resolve a query without involving any

collection access at all.

Therefore, the ideal index for any query would be one that

	 1.	 Includes all the attributes of the filter condition

	 2.	 Then includes the attributes of the sort() criteria

	 3.	 And then – optionally – all the attributes in the projection clause

Chapter 6 Query Tuning

140

Of course, adding all the attributes in a projection is only practical if only a few

attributes are projected.

Tip A perfect index for a query will contain all the attributes from the filter
condition, all the attributes from any sort conditions, and – only if practical – the
attributes included in the queries projection.

If you have such a perfect index, you’ll see an IXSCAN followed by PROJECTION_

COVERED in the execution plan. Here’s an example of a perfectly covered query that

includes an index-supported sort:

mongo>db.customers.createIndex(

 {Country:1,'views.title':1,LastName:1,Phone:1},

 {name:'CntTitleLastPhone_ix'});

mongo> var exp = db.customers.

... explain('executionStats').

... find(

... { Country: 'Japan', 'views.title': 'MUSKETEERS WAIT' },

... { Phone: 1, _id: 0 }

...).

... sort({ LastName: 1 });

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (CntTitleLastPhone_ix ms:0 keys:770)

2 PROJECTION_COVERED (ms:0)

In the following example, there is no projection specified in the query, so we can’t

expect to see PROJECTION_COVERED. Instead, we have a FETCH operation – but note

that the number of rows handled in the FETCH is exactly the same as the number of

documents in the IXSCAN – this indicates that the index retrieved all the documents we

needed.

mongo> var exp = db.customers.

... explain('executionStats').

... find(

Chapter 6 Query Tuning

141

... { Country: 'Japan', 'views.title': 'MUSKETEERS WAIT' }

...).

... sort({ LastName: 1 });

mongo>

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (CntTitleLastPhone_ix ms:0 keys:770)

2 FETCH (ms:0 docs:770)

Totals: ms: 3 keys: 770 Docs: 770

Tip I f the number of documents processed in the FETCH step is the same as
the number of documents processed in the IXSCAN, then the index successfully
retrieved all the documents required.

�Filter Strategies
In this section, we’ll discuss strategies for some specific filter scenarios, such as those

involving “not equals” and range queries.

�Not Equals Conditions
From time to time, you’ll be issuing filter conditions based on a $ne (not equals)

condition. You might initially be pleased to find that MongoDB will use an index to

resolve this sort of query. For instance, in the following query, we retrieve all emails

except those originating from “Eric Bass”:

mongo> var exp = db.enron_messages.

... explain('executionStats').

... find({ 'headers.From': { $ne: 'eric.bass@enron.com' } });

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (headers.From_1 ms:251 keys:481269)

2 FETCH (ms:4863 docs:481268)

Chapter 6 Query Tuning

142

Totals: ms: 6432 keys: 481269 Docs: 481268

MongoDB can use an index to satisfy a not equals condition. If we look at the raw

execution plan, we can see how MongoDB uses the index. The indexBounds section

shows that we scan the index from the lowest key value through to the required value

and then scan again from that value to the maximum key value in the index.

mongo> exp.queryPlanner.winningPlan;

{

 "stage": "FETCH",

 "inputStage": {

 "stage": "IXSCAN",

 "keyPattern": {

 "headers.From": 1

 },

 "indexName": "headers.From_1",

 . . .

 "direction": "forward",

 "indexBounds": {

 "headers.From": [

 "[MinKey, \"eric.bass@enron.com\")",

 "(\"eric.bass@enron.com\", MaxKey]"

]

 }

 }

}

This sort of “not equals” index scan can be effective if the not equals condition

matches a small proportion of the collection, but if not, then we might be using the index

to retrieve the bulk of the collection. And as we saw earlier, this can be very ineffective.

Indeed, for the query we just examine, we would have been better off doing a collection

scan:

mongo> var exp = db.enron_messages.

... explain('executionStats').

... find({'headers.From': {$ne:'eric.bass@enron.com'}}).

... hint({ $natural: 1 });

Chapter 6 Query Tuning

143

mongo> var exp = exp.next();

mongo> mongoTuning.executionStats(exp);

1 COLLSCAN (ms:9 docs:481908)

Totals: ms: 377 keys: 0 Docs: 481908

Figure 6-7 compares the performance for the not exists index scan and collection

scan. Remember, your results will depend on how frequently the not equals value occurs

in your collection. However, you may often find that MongoDB chooses an index when a

collection scan would have been preferred.

Hint  Beware of index-supported $ne queries. They resolve to multiple index
range scans which might be less effective than a collection scan.

Figure 6-7.  Sometimes a $ne index scan can be much worse than a collection scan

Chapter 6 Query Tuning

144

�Range Queries
We saw earlier how a $ne condition is resolved by index range scans. The B-tree index

is designed to support such scans, and MongoDB will gladly use such an index scan

whenever possible. But again, it might not be the best solution if the range covers the

majority of the data in the index.

In the following example, the iotData collection has 1,000,000 documents and the

attribute “a” takes a value between 0 and 1000. Even if we construct a range query that

will find every document, MongoDB will by default use an index:

mongo> var exp=db.iotData.explain('executionStats').

 find({a:{$gt:0}});

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (a_1 ms:83 keys:1000000)

2 FETCH (ms:193 docs:1000000)

Totals: ms: 2197 keys: 1000000 Docs: 1000000

When scanning such a broad range range, we’d be far better off using a collection

scan:

mongo> var exp=db.iotData.explain('executionStats').

 find({a:{$gt:990}}).hint({$natural:1});

mongo> mongoTuning.executionStats(exp);

1 COLLSCAN (ms:1 docs:1000000)

Totals: ms: 465 keys: 0 Docs: 1000000

However, if the range spans a smaller number of values, then the index is the best

option:

mongo> var exp=db.iotData.explain('executionStats').

 find({a:{$gt:990}});

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (a_1 ms:0 keys:10434)

2 FETCH (ms:1 docs:10434)

Totals: ms: 23 keys: 10434 Docs: 10434

Chapter 6 Query Tuning

145

Figure 6-8 illustrates these results. When a range scan covers all or most of the data,

then a collection scan will be faster than an index scan. However, for a narrow range of

data, the index scan is superior.

Tip  Only use indexes for relatively narrow range scans of collection data. If the
majority of the collection is being accessed, use a collection scan.

�$OR or $IN Operations
An $or query against a single indexed attribute will be resolved in the same way as an

$in query. So, for instance, these two queries are effectively equivalent:

db.enron_messages.

 find({ 'headers.To': { $in: ['ebass@enron.com',

 'eric.bass@enron.com']

 } });

db.enron_messages.find({

 $or: [

 { 'headers.To': 'ebass@enron.com' },

Figure 6-8.  Index range scan performance

Chapter 6 Query Tuning

146

 { 'headers.To': 'eric.bass@enron.com' }

]

});

However, when an $or condition references multiple attributes, things get more

interesting. If all the conditions are indexed, then MongoDB will usually perform an

index scan on each of the indexes concerned and then merge the results:

mongo> var exp=db.enron_messages.explain('executionStats').

 find({

... $or: [

... { 'headers.To': 'eric.bass@enron.com' },

... { 'headers.From': 'eric.bass@enron.com' }

...]

... });

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (headers.From_1 ms:0 keys:640)

2 IXSCAN (headers.To_1 ms:0 keys:832)

3 OR (ms:0)

4 FETCH (ms:0 docs:1472)

5 SUBPLAN (ms:0)

Totals: ms: 3 keys: 1472 Docs: 1472

MongoDB retrieves data from both of the index scans and then combines them

(eliminating duplicates) in the OR stage of the execution plan.

However, this only works if all the attributes are indexed. If we add an unindexed

condition to the $or, MongoDB reverts to a collection scan:

mongo> var exp=db.enron_messages.explain('executionStats').

 find({

... $or: [

... { 'headers.To': 'eric.bass@enron.com' },

... { 'headers.From': 'eric.bass@enron.com' },

... {"X-To": "EBASS@ENRON.COM"}

...]

... });

Chapter 6 Query Tuning

147

mongo> mongoTuning.executionStats(exp);

1 COLLSCAN (ms:69 docs:481908)

2 SUBPLAN (ms:69)

Totals: ms: 873 keys: 0 Docs: 481908

Tip T o fully optimize an $or query, index all the attributes in the $or array.

The $nor operator, which returns documents that satisfy neither of the conditions,

will generally not take advantage of indexes.

�Array Queries
MongoDB provides rich query operations against array elements, and these are capable

of being resolved efficiently through indexes. For instance, the following query looks for

emails addressed to Jim Schwieger and Thomas Martin2:

mongo> var exp = db.enron_messages.explain('executionStats').find({

... 'headers.To': {

... $eq: ['jim.schwieger@enron.com',

 'thomas.martin@enron.com']

... }

... });

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (headers.To_1 ms:0 keys:2130)

2 FETCH (ms:1 docs:2128)

Totals: ms: 10 keys: 2130 Docs: 2128

The same index can support this query, which finds all emails where Thomas and

Jim are recipients, including those with additional recipients:

mongo> var exp = db.enron_messages.

... find({

2�This is arguably not a very clever query, since the email addresses would have to occur in exactly
the order specified.

Chapter 6 Query Tuning

148

... 'headers.To': {

... $all: ['jim.schwieger@enron.com',

 'thomas.martin@enron.com']

... }

... }).

... explain('executionStats');

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (headers.To_1 ms:0 keys:2128)

2 FETCH (ms:1 docs:2128)

Totals: ms: 11 keys: 2128 Docs: 2128

The same index can support $elemMatch queries. However, the $size operator,

which finds arrays with a specific number of elements, does not benefit from an index on

the array:

mongo> var exp = db.enron_messages.

... explain('executionStats').

... find({

... 'headers.To': { $size: 1 }});

mongo> mongoTuning.executionStats(exp);

1 COLLSCAN (ms:788 docs:481908)

Note  MongoDB indexes can be used to search for elements of an array.

�Regular Expressions
Regular expressions allow us to perform advanced matches on strings. So, for instance,

the following query uses a regular expression to find customers with the string “HARRIS”

in their LastName:

mongo> var exp=db.customers.explain('executionStats').

 find({LastName:/HARRIS/});

mongo>

Chapter 6 Query Tuning

149

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (LastName_1 ms:9 keys:410071)

2 FETCH (ms:12 docs:1365)

Totals: ms: 273 keys: 410071 Docs: 1365

Although this query is functional, it’s not efficient. We actually scanned all 410,000

index entries because the regular expression could theoretically include last names such

as “MACHARRISON”. If what we are actually trying to do is match only names beginning

with HARRIS (such as HARRIS and HARRISON), then we should use the “^” regular

expression to indicate that the string is to match the first characters of the target. If we do

this, then the index scan is efficient – only 1366 index entries are scanned:

mongo> var exp=db.customers.explain('executionStats').

 find({LastName:/^HARRIS/});

mongo>

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (LastName_1 ms:0 keys:1366)

2 FETCH (ms:0 docs:1365)

Totals: ms: 3 keys: 1366 Docs: 1365

Tip T o perform efficient index-supported regular expression searches, make sure
that the regular expression is anchored to the start of the target string with the "^"
operator.

Regular expressions are often used to perform case-insensitive searches. For

instance, this query searches for the surname “Harris” no matter how it is spelled. The

trailing “i” in the regular expression specifies a case-insensitive search:

mongo> var e = db.customers.

... explain('executionStats').

... find({ LastName: /^Harris$/i }, {});

mongo> mongoTuning.executionStats(e);

Chapter 6 Query Tuning

150

1 IXSCAN (LastName_1 ms:4 keys:410071)

2 FETCH (ms:6 docs:635)

Totals: ms: 282 keys: 410071 Docs: 635

As we explained in Chapter 5, this sort of case-insensitive query can only be efficient

if the index involved is case-insensitive – see the section in Chapter 5 on case-insensitive

indexes for more details.

Tip T o perform efficient case-insensitive index searches, you must create a
case-insensitive index as outlined in Chapter 5.

�$exists Queries
Queries that use an $exists operation can take advantage of an index:

mongo> var exp=db.customers.explain('executionStats').

 find({updateFlag: {$exists:true}});

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (updateFlag_1 ms:11 keys:411121)

2 FETCH (ms:32 docs:411121)

Totals: ms: 525 keys: 411121 Docs: 411121

However, note that this can be a particularly expensive operation since MongoDB

will scan through the index to find all entries that contain the key:

"indexBounds": {

 "updateFlag": [

 "[MinKey, MaxKey]"

]

 }

You might be better off seeking a particular value for the column:

mongo> var exp=db.customers.explain('executionStats').

Chapter 6 Query Tuning

151

 find({updateFlag:true});

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (updateFlag_1 ms:0 keys:1)

2 FETCH (ms:0 docs:1)

Totals: ms: 0 keys: 1 Docs: 1

Alternatively, you could consider creating a sparse index that only indexes

documents where the value exists:

mongo> db.customers.createIndex({updateFlag:1},{sparse:true});

{

 "createdCollectionAutomatically": false,

 "numIndexesBefore": 1,

 "numIndexesAfter": 2,

 "ok": 1

}

mongo> var exp=db.customers.explain('executionStats').find({

... updateFlag: {$exists:true}});

mongo>

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (updateFlag_1 ms:0 keys:1)

2 FETCH (ms:0 docs:1)

Totals: ms: 0 keys: 1 Docs: 1

The disadvantage of the sparse index is that it cannot be used to find documents

where the attribute is not present:

mongo> var exp=db.customers.explain('executionStats').

 find({updateFlag: {$exists:false}});

mongo> mongoTuning.executionStats(exp);

1 COLLSCAN (ms:10 docs:411121)

Totals: ms: 295 keys: 0 Docs: 411121

Chapter 6 Query Tuning

152

Tip A n $exists:true lookup can be optimized by a sparse index on the attribute
concerned. However, such an index cannot optimize an $exists:false query.

�Optimizing Collection Scans
Our emphasis on indexing in MongoDB query tuning tends to skew our thinking – we

are at risk of falling into the trap of thinking that the only good way to execute a query is

via an index lookup.

Yet, we’ve seen many examples in this chapter of queries where the index access

was less efficient than a collection scan. So if a collection scan is unavoidable, are there

options for optimizing these scans?

The answer is yes! If you find that you have an unavoidable collection scan and you

need to improve the performance of the scan, then the primary technique is to make the

collection smaller.

One way to reduce the collection size is to move large, infrequently accessed

elements to another collection. We looked at this vertical partitioning technique in

Chapter 4.

Sharding a collection can improve the performance of collection scans by allowing

multiple clusters to collaborate on the scan. We discuss aspects of sharding performance

in Chapter 14.

It’s also possible that a collection that is subjected to a lot of updates and deletes

has become bloated over time. MongoDB will try to reuse empty space created when

documents are deleted or shrink in size, but it won’t release space allocated back to disk,

and it’s possible that your collection is bigger than it needs to be. Generally, WiredTiger

reuses space effectively, but in some extreme circumstances, you might consider

running the compact command to recover wasted space.

Be aware that the compact command blocks operations on the database containing

the collection concerned, so you can only issue a compact command during a downtime

window.

Chapter 6 Query Tuning

153

�Summary
In this chapter, we’ve looked at how to optimize MongoDB queries involving the find()

command, which is the workhorse of MongoDB data access.

The best way to avoid data access overhead is to avoid unnecessary data accesses – we

discussed how to cache data on the client side to achieve this.

Network overhead can be reduced by using projections, exploiting batch processing,

and avoiding unnecessary network round trips in code.

Indexes can be incredibly effective in query optimization but mostly when a subset

of collection data is being retrieved. We looked at how hints can be used to force

MongoDB to use the index you choose or to perform a collection scan.

Indexes can be used to optimize sort operations, particularly when you are trying to

optimize for the first documents in the sort. If you are trying to optimize for the entire set

of sorted results, a collection scan might be indicated.

Collection scan performance is ultimately determined by the size of the collection,

and we looked at a few strategies for shrinking a collection if a collection scan is

unavoidable.

Chapter 6 Query Tuning

155
© Guy Harrison, Michael Harrison 2021
G. Harrison and M. Harrison, MongoDB Performance Tuning, https://doi.org/10.1007/978-1-4842-6879-7_7

CHAPTER 7

Tuning Aggregation
Pipelines
When getting started with MongoDB, most developers will begin with the basic

CRUD operations (Create-Read-Update-Delete) that they are familiar with from other

databases. insert, find, update, and delete operations will indeed form the backbone

of most applications. However, in almost all applications, complex data retrieval

and manipulation requirements will exist that exceed what is possible with the basic

MongoDB commands.

The MongoDB find() command is versatile and easy to use, but the aggregation

framework allows you to take it to the next level. Aggregation pipelines can do anything

a find() operation can do and much more. As MongoDB themselves like to say in blogs,

marketing materials, and even on T-shirts: aggregate is the new find.

Aggregation pipelines allow you to simplify your application code by reducing logic

that might otherwise require multiple find operations and complex data manipulation.

When leveraged correctly, a single aggregation can replace many queries and their

associated network round trip times.

As you may recall from earlier chapters, an essential part of tuning your application

is to ensure that as much work as possible takes place on the database. Aggregation

allows you to take data transformation logic that would usually sit on the application

and move it to the database. A properly tuned aggregation pipeline can consequently

massively outperform alternative solutions.

However, with all the added benefits that using aggregations brings, it also creates

a new set of tuning challenges. In this chapter, we will make sure you have all the

knowledge required to leverage and tune aggregation pipelines.

https://doi.org/10.1007/978-1-4842-6879-7_7#DOI

156

�Tuning Aggregation Pipelines
In order to effectively tune aggregation pipelines, we must first be able to effectively

identify which aggregations are in need of tuning and what aspects can be improved. As

with find() queries, the explain() command is our best friend here. As you may recall

from earlier chapters, to examine the execution plan of a query, we add the .explain()

method after the collection name. For example, to explain a find(), we might use the

following command:

db.customers.

 explain().

 find(

 { Country: 'Japan', LastName: 'Smith' },

 { _id: 0, FirstName: 1, LastName: 1 }

).

 sort({ FirstName: -1 }).

 limit(3);

We can explain an aggregation pipeline in the same way:

db.customers.explain().aggregate([

 { $match: {

 Country: 'Japan',

 LastName: 'Smith',

 } },

 { $project: {

 _id: 0,

 FirstName: 1,

 LastName: 1,

 } },

 { $sort: {

 FirstName: -1,

 } },

 { $limit: 3 }]);

However, there are significant differences between the execution plan from a find()

command and one from an aggregate().

Chapter 7 Tuning Aggregation Pipelines

157

When running the explain() against a standard find command, we can see

information about the execution by looking at the queryPlanner.winningPlan object.

The explain() output for an aggregation pipeline is similar but also critically

different. Firstly, the queryPlanner object we are previously used to now resides within a

new object, which resides within an array called stages. The stages array contains each

of the aggregation stages as individual objects. For example, the aggregation we looked

at earlier would have the following simplified explain output:

{

 "stages": [

 {"$cursor": {

 "queryPlanner": {

 // . . .

 "winningPlan": {

 "stage": "PROJECTION_SIMPLE",

 // . . .

 "inputStage": {

 "stage": "FETCH",

 // . . .

 "inputStage": {

 "stage": "IXSCAN",

 . . .

 } } },

 "rejectedPlans": []

 } } },

 { "$sort": {

 "sortKey": {

 "FirstName": -1

 },

 "limit": 3

 } }],

 . . .

}

Chapter 7 Tuning Aggregation Pipelines

158

Inside the execution plan for an aggregation pipeline, the queryPlanner stage reveals

the initial data access operations required to bring data into the pipeline. This will

usually represent the operation that supports an initial $match operation or – if there is

no $match condition specified – a collection scan to retrieve all data from the collection.

The stages array shows information about each subsequent step in the aggregation

pipeline. Note that MongoDB can merge and reorder aggregation stages during

execution so these stages might not match the stages you have in your raw pipeline

definition – more on this in the next section.

We’ve written a helper script to simplify the interpretation of aggregation

execution plans within our tuning script package.1 The method mongoTuning.

aggregationExecutionStats() will provide a top-level summary of the time taken by

each step. Here’s an example of using aggregationExecutionSteps:

mongo> var exp = db.customers.explain('executionStats').aggregate([

... { $match:{

... "Country":{ $eq:"Japan" }}

... },

... { $group:{ _id:{ "City":"$City" },

... "count":{$sum:1} }

... },

... { $sort:{ "_id.City":-1 }},

... { $limit: 10 },

...]);

mongo> mongoTuning.aggregationExecutionStats(exp);

1 IXSCAN (Country_1_LastName_1 ms:0 keys:21368 nReturned:21368)

2 FETCH (ms:13 docsExamined:21368 nReturned:21368)

3 PROJECTION_SIMPLE (ms:15 nReturned:21368)

4 $GROUP (ms:70 returned:31)

5 $SORT (ms:70 returned:10)

Totals: ms: 72 keys: 21368 Docs: 21368

1�See the introduction for information on how to use the tuning package.

Chapter 7 Tuning Aggregation Pipelines

159

�Optimizing Aggregation Ordering
An aggregation is constructed from a series of stages, represented by an array of

documents which are executed in order from first to last. The output from each stage is

passed to the next stage for processing, with the initial input being an entire collection.

The sequential nature of these stages is the reason aggregations are referred to as

pipelines: data flows through the pipes, being filtered and transformed at each stage

until finally exiting the pipeline as a result. The easiest way to optimize these pipelines

is to reduce the amount of data as early as possible; this will reduce the amount of work

done by each successive step. It logically follows that the stages in your aggregation that

will perform the most work should operate on as little data as possible, with as much

filtering as possible being performed in earlier stages.

Tip  When constructed aggregation pipelines, filter early and filter often! The
earlier data is removed from a pipeline, the lower the overall data processing load
for MongoDB.

MongoDB will automatically resequence the order of operations in a pipeline to

optimize performance – we’ll see an example of some optimizations in the next section.

However, for complex pipelines, you may need to set the order yourself.

One such case where automatic reordering is not possible is aggregations using

$lookup. The $lookup stage allows you to join two collections. If you’re joining two

collections, you may have a choice between filtering before or after the join, and in this

case, it is very important to try and reduce the size of the data before the join operation,

because for each document that is passed into a lookup operation, MongoDB must

attempt to find a matching document in a separate collection. Every document we can

filter out before the lookout will reduce the number of lookups that need to occur. It’s an

obvious but critical optimization.

Let’s look at an example aggregation which generates a “top 5” list of product

purchases:

db.lineitems.aggregate([

 { $group:{ _id:{ "orderId":"$orderId" ,"prodId":"$prodId" },

 "itemCount-sum":{$sum:"$itemCount"} } },

 { $lookup:

Chapter 7 Tuning Aggregation Pipelines

160

 { from: "orders", localField:"_id.orderId",

 foreignField: "_id", as:"orders"

 } },

 { $lookup:

 { from: "customers", localField:"orders.customerId",

 foreignField: "_id", as:"customers"

 } },

 { $lookup:

 { from: "products", localField:"_id.prodId",

 foreignField: "_id", as:"products"

 } },

 { $sort:{ "count":-1 }},

 { $limit: 5 },

],{allowDiskUse: true});

This is quite a big aggregation pipeline. In fact, without the allowDiskUse:true flag, it

will generate an out of memory error; we will cover why this error occurs later in the chapter.

Note that we join orders, customers, and products before we sort the results and

limit the output. As a result, we have to perform all three join lookups for each lineItem.

We could – and should – position the $sort and $limit directly after the $group

operation:

db.lineitems.aggregate([

 { $group:{ _id:{ "orderId":"$orderId" ,"prodId":"$prodId" },

 "itemCount-sum":{$sum:"$itemCount"} } },

 { $sort:{ "count":-1 }},

 { $limit: 5 },

 { $lookup:

 { from: "orders", localField:"_id.orderId",

 foreignField: "_id", as:"orders"

 } },

 { $lookup:

 { from: "customers", localField:"orders.customerId",

 foreignField: "_id", as:"customers"

 } },

 { $lookup:

Chapter 7 Tuning Aggregation Pipelines

161

 { from: "products", localField:"_id.prodId",

 foreignField: "_id", as:"products"

 } }

],{allowDiskUse: true});

The difference in performance is striking. By moving the $sort and $limit a few lines

earlier, we have created a much more efficient and scalable solution. Figure 7-1 illustrates

the performance improvement obtained by moving $limit earlier in the pipeline.

Tip T ake care to sequence aggregation pipelines to eliminate documents earlier
rather than later. The earlier data is eliminated from a pipeline, the less work will
be required in later pipelines.

�Automatic Pipeline Optimizations
MongoDB will perform some optimizations on aggregation pipelines to improve

performance. The exact optimizations change from release to release, and when running

an aggregation through a driver or the MongoDB shell, there is no obvious sign that

optimization has occurred. In fact, the only way for you to be certain is to check the

query plan using explain(). If you are surprised to see that your aggregation explain

does not match what you just sent to MongoDB, do not be alarmed. That’s the optimizer

doing its job.

Figure 7-1.  Effect of moving limit clause earlier in a $lookup pipeline

Chapter 7 Tuning Aggregation Pipelines

162

Let’s run a few aggregations and observe how MongoDB decides to improve the

pipeline using explain(). Here is a very badly constructed aggregation pipeline:

> var explain = db.listingsAndReviews.explain("executionStats").

 aggregate([

 {$match: {"property_type" : "House"}},

 {$match: {"bedrooms" : 3}},

 {$limit: 100},

 {$limit: 5},

 {$skip: 3},

 {$skip: 2}

]);

You can probably guess what is going to happen here. The multiple $match, $limit,

and $skip stages, when placed one after another, can be merged into a single stage

without altering the result. The two $match stages can be merged using $and. The result

of two $limit stages is always the smaller limit value, and the effect of two $skips is

the sum of $skip values. Although the results from the pipeline are unchanged, we

can observe the effect of optimization in the query plan. Here is a simplified view of

our merged stages outputted from our mongoTuning.aggregationExecutionStats

command:

1 COLLSCAN (ms:0 docsExamined:525 nReturned:5)

2 LIMIT (ms:0 nReturned:5)

3 $SKIP (ms:0 returned:0)

Totals: ms: 1 keys: 0 Docs: 525

As you can see, MongoDB has merged the six steps from our pipeline into just three

operations.

There are a few other smart merges that MongoDB can perform on your behalf.

If you have a $lookup stage where you immediately $unwind the joined documents,

MongoDB will merge the $unwind into the $lookup. For example, this aggregation joins a

user with their blog comments:

> var explain = db.users.explain("executionStats").aggregate([

 { $lookup: {

 from: "comments",

Chapter 7 Tuning Aggregation Pipelines

163

 as: "comments",

 localField: "email",

 foreignField: "email"

 }},

 { $unwind: "$comments"}

]);

The $lookup and $unwind will become a single stage in the execution, which will

eliminate the creation of large joined documents that will immediately be unwound into

smaller documents. The execution plan will look like the following snippet:

> mongoTuning.aggregationExecutionStats(explain);

1 COLLSCAN (ms:9 docsExamined:183 nReturned:183)

2 $LOOKUP (ms:4470 returned:50146)

Totals: ms: 4479 keys: 0 Docs: 183

Similarly, $sort and $limit stages will be merged, allowing the $sort to only

maintain the limited number of documents instead of its entire input. Here is an

example of such an optimization. The query

> var explain = db.users.explain("executionStats").

 aggregate([

 { $sort: {year: -1}},

 { $limit: 1}

]);

> mongoTuning.aggregationExecutionStats(explain);

will result in a single stage in the explain output:

1 COLLSCAN (ms:0 docsExamined:183 nReturned:183)

2 SORT (ms:0 nReturned:1)

Totals: ms: 0 keys: 0 Docs: 183

Chapter 7 Tuning Aggregation Pipelines

164

There is another important optimization that does not involve merging or moving

stages in your pipeline. If your aggregation only requires a subset of document attributes,

MongoDB may add a projection to remove all unused fields. This reduces the size of

the datasets passing through the pipeline. For example, the following aggregation only

actually uses two fields – Country and City:

mongo> var exp = db.customers.

... explain('executionStats').

... aggregate([

... { $match: { Country: 'Japan' } },

... { $group: { _id: { City: '$City' } } }

...]);

MongoDB inserts a projection into the execution plan to eliminate all unneeded

attributes:

mongo> mongoTuning.aggregationExecutionStats(exp);

1 IXSCAN (Country_1_LastName_1 ms:4 keys:21368 nReturned:21368)

2 FETCH (ms:12 docsExamined:21368 nReturned:21368)

3 PROJECTION_SIMPLE (ms:12 nReturned:21368)

4 $GROUP (ms:61 returned:31)

Totals: ms: 68 keys: 21368 Docs: 21368

So, we now know MongoDB will effectively add and merge stages to improve your

pipeline. There are also some cases where the optimizer will reorder your stages. The

most important of these is reordering of $match operations.

If a pipeline contains a $match after a stage that will project new fields into the

document (such as $group, $project, $unset, $addFields, or $set) and if the $match

stage does not require the projected fields, MongoDB will move that $match stage earlier

in the pipeline. This reduces the number of documents that must be processed in later

stages.

For instance, consider this aggregation:

var exp=db.customers.explain("executionStats").aggregate([

 { '$group': {

 '_id': '$Country',

Chapter 7 Tuning Aggregation Pipelines

165

 'numCustomers': {

 '$sum': 1

 } } },

 { '$match': {

 '$or': [

 { '_id': 'Netherlands' },

 { '_id': 'Sudan' },

 { '_id': 'Argentina' }] } }

]);

Prior to MongoDB 4.0, MongoDB would perform the exact steps specified in the

pipeline – perform a $group operation, and then use $match to eliminate countries other

than those specified. This is wasteful, especially since we have an index on Country

which could be used to rapidly find the documents required.

However, in modern versions of MongoDB, the $match operation will be relocated

prior to the $group operation, reducing the number of documents that need to be

grouped and allowing the index to be used. Here is the resulting execution plan:

mongo> mongoTuning.aggregationExecutionStats(exp);

1 IXSCAN (Country_1_LastName_1 ms:1 keys:13720 nReturned:13717)

2 PROJECTION_COVERED (ms:1 nReturned:13717)

3 SUBPLAN (ms:1 nReturned:13717)

4 $GROUP (ms:20 returned:3)

The MongoDB automatic optimizations are one of the unsung heroes of recent

MongoDB releases, improving performance without requiring any work on your part.

Understanding how these optimizations work should empower you to make good

decisions when creating your aggregations as well as understand anomalies in the

execution plans

For more information on exactly what will occur in the optimization for any

given MongoDB release, refer to the official documentation at http://bit.ly/

MongoAggregatePerf.

Chapter 7 Tuning Aggregation Pipelines

http://bit.ly/MongoAggregatePerf
http://bit.ly/MongoAggregatePerf

166

�Optimizing Multi-collection Joins
One of the really significant capabilities provided only by the aggregation framework

is the ability to merge data from multiple collections. The most significant and mature

capability is found in the $lookup operator, which allows a join between two collections.

In Chapter 4, we experimented with some alternative schema designs, some of

which would frequently require joins to assemble information. For instance, we created

a schema in which customers and orders were held in separate collections. In this case,

we’d use $lookup to join the customer data and order data like this:

db.customers.aggregate([

 { $lookup:

 { from: "orders",

 localField: "_id",

 foreignField: "customerId",

 as: "orders"

 }

 },

]);

This statement embeds an array of orders within each customer document. The _id

attribute in the customer document is matched to the customerId attribute in the orders

collection.

It’s not too challenging to construct a join using $lookup, but there are some definite

potential issues concerning join performance. Because the $lookup function is executed

once for each document in the source data, it’s essential that the $lookup be quick. In

practice, this means that the $lookup should be supported by an index. In the preceding

case, we would need to be sure that there is an index on the customerId attribute within

the orders collection.

Unfortunately, the explain() command doesn’t help us to determine if the join is

efficient or that an index has been used. For instance, here is the explain output (using

mongoTuning.aggregationExecutionStats) from the preceding operation:

1 COLLSCAN (ms:10 docsExamined:411121 nReturned:411121)

2 $LOOKUP (ms:5475 returned:411121)

The explain output tells us that we used a collection scan to perform the initial

retrieval of customers, but doesn’t show us if we used an index within the $lookup stage.

Chapter 7 Tuning Aggregation Pipelines

167

However, if you don’t have a supporting index, you will almost certainly notice the

performance degradation that results. Figure 7-2 shows how performance degrades as

more and more documents are involved in a join. With an index, join performance is

efficient and predictable. Without an index, join performance degrades steeply as more

documents are added to the join.

Figure 7-2.  $lookup performance – indexed vs. non-indexed

Tip A lways create an index on the foreignField attributes in a $lookup,
unless the collections are of trivial size.

�Join Order
When joining collections, we sometimes have a choice of the order in which we join. For

instance, this query joins from customers to orders:

db.customers.aggregate([

 { $lookup:

 { from: "orders",

 localField: "_id",

 foreignField: "customerId",

Chapter 7 Tuning Aggregation Pipelines

168

 as: "orders"
 }
 },
 { $unwind: "$orders" },
 { $count: "count" },
]);

The following query returns the same data, but joins from orders to customers:

db.orders.aggregate([
 { $lookup:
 { from: "customers",
 localField: "customerId",
 foreignField: "_id",
 as: "customer"
 }
 },
 { $count: "count" },
]);

These two queries have very different performance characteristics. Although there
are indexes to support the $lookup operations in each query, the join from orders to
customers results in far more $lookup calls – simply because there are more orders than
customers. Consequently, joining from orders to customers takes much longer than the

reverse. Figure 7-3 shows the relative performance.

Figure 7-3.  Join order and $lookup performance

Chapter 7 Tuning Aggregation Pipelines

169

When deciding upon the join order, follow these guidelines:

	 1.	 You should try to reduce the amount of data to be joined as much

as possible before the join. So if one of the collections is to be

filtered, that collection should come first in the join order.

	 2.	 If you only have an index to support one of the two join orders,

then you should use the join order that has the supporting index.

	 3.	 If the preceding two criteria are met for both join orders, then

you should try to join from the smallest collection to the largest

collection.

Tip  When all else is equal, join from a small collection to a large collection, rather
than from a large collection to a smaller one.

�Optimizing Graph Lookups
Graph databases such as Neo4J specialize in traversing graphs of relationships – such

as those you might find in a social network. Many non-graph databases have been

incorporating Graph Compute Engines to perform similar tasks. Using older versions

of MongoDB, you may have been forced to fetch large amounts of graph data across the

network and run some computation on the application level. The process would have

been slow and cumbersome. Luckily for us, since MongoDB 3.4, we can perform simple

graph traversal using the $graphLookup aggregation framework stage.

Imagine you have data stored in MongoDB that represents a social network. In this

network, a single user is connected to a large number of other users as friends. These

sorts of networks are a common use of graph database. Let’s run through an example

using the following sample data:

db.getSiblingDB("GraphTest").socialGraph.findOne();

{

 "_id" : ObjectId("5a739cda0c31c5f5afcff87f"),

 "person" : 561596,

 "name" : "User# 561596",

 "friends" : [

Chapter 7 Tuning Aggregation Pipelines

170

 94230,

 224410,

 387968,

 406744,

 707890,

 965522,

 1189677,

 1208173

]

}

Using an aggregation pipeline with the $graphLookup stage, we can expand our

social network for an individual user. Here’s an example pipeline:

db.socialGraph.aggregate([

 {$match:{person:1476767}},

 {$graphLookup: {

 from: "socialGraph",

 startWith: [1476767],

 connectFromField: "friends",

 connectToField: "person",

 maxDepth: 2,

 depthField: "Depth",

 as: "GraphOutput"

 }

 },{$unwind:"$GraphOutput"}

], {allowDiskUse: true});

What we are doing here is starting with person 1476767 and then following the

elements of the friends array out to two levels, essentially finding “friends of friends.”

Increasing the value of the maxDepth field exponentially increases the amount of data

we must cope with. You can think of each level of depth as requiring a sort of self-join

into the collection. For each document in the initial dataset, we read the collection to

find a friend; then for each document in that dataset, read the collection to find those

friends; and so on. We stop once we have hit maxDepth connections.

It’s clear that if each self-join requires a collection scan, the performance is going to

degrade rapidly as we increase the depth of the network. Consequently, it is important to

Chapter 7 Tuning Aggregation Pipelines

171

ensure there is an index available for MongoDB to use while traversing the connections.

That index should be on the connectToField attribute.

Figure 7-4 illustrates the performance of a $graphLookup operation with and without

an index. Without an index, performance degrades rapidly as we increase the depth of

the operation. With an index, the graph lookup is far more scalable and efficient.

Tip  When performing $graphLookup operations, ensure you have an index on
the connectToField attribute.

�Aggregation Memory Utilization
When performing aggregations in MongoDB, there are two important limits to

remember that apply to all aggregations regardless of what stages the pipeline is

constructed from. Alongside these are some specific limitations that will need to be

considered when tuning your application. The two limits that you will always have to

keep in mind are the document size limit and the memory usage limit.

Figure 7-4.  $graphLookup performance with or without indexing

Chapter 7 Tuning Aggregation Pipelines

172

In MongoDB, the size limit for a single document is 16MB. This is true for

aggregations as well. When performing aggregations, if any of the output documents

can exceed this limit, then an error will be thrown. This may not be a problem when

performing simple aggregations. However, when grouping, manipulating, unwinding,

and joining documents across multiple collections, you will have to consider the

growing size of the output documents. An important distinction here is that this limit

only applies to documents in the result. For example, if a document exceeds this limit

during the pipeline, but is reduced below the limit before the end, no error will be

thrown. In addition, MongoDB combines some operations internally to avoid the limit.

For instance, if a $lookup returns an array that is larger than the limit, but that $lookup is

followed immediately by an $unwind, a document size error will not be issued.

The second limit to keep in mind is the memory usage limit. At each stage in

the aggregation pipeline, there is a memory limit by default of 100MB. If this limit is

exceeded, MongoDB will produce an error.

MongoDB does provide a way for getting around this limit during aggregations. The

allowDiskUse option can be used to remove this limit for almost all stages. As you may

have guessed, when set to true, this allows MongoDB to create a temporary file on disk

to hold some data while aggregating, bypassing the memory limit. You may have noticed

this in some of the previous examples. Here is an example of setting this limit to true in

one of our previous aggregations:

db.customers.aggregate([

 { '$group': {

 '_id': '$Country',

 'numCustomers': {

 '$sum': 1

 } } },

 { '$match': {

 '$or': [

 { '_id': 'Netherlands' },

 { '_id': 'Sudan' },

 { '_id': 'Argentina' }] } }

],{allowDiskUse:true});

Chapter 7 Tuning Aggregation Pipelines

173

As we said, the allowDiskUse option will bypass the limit for almost all stages.

Unfortunately, there are still a few stages that are limited to 100MB even with

allowDiskUse set to true. The two accumulators $addToSet and $push will not spill to

disk, because these accumulators could add huge amounts of data into the next stage if

not properly optimized.

There is currently no obvious work around for these three limited stages, meaning

you will have to optimize the query and pipeline itself to ensure you do not run into this

limit and receive an error from MongoDB.

To avoid hitting these memory limits, you should think about how much data you

actually need to fetch. Ask yourself if you’re using all the fields being returned from

the query, and could the data be represented more succinctly? Removing unnecessary

attributes from intermediary documents is an easy and powerful way to reduce memory

use.

If all else fails or if you want to avoid the performance drag when data spills to disk,

you could try increasing the internal memory limits for these operations. These memory

limits are controlled by undocumented parameters of the form “internal*Bytes”. The

three most important of these are

•	 internalQueryMaxBlockingSortMemoryUsageBytes: The maximum

memory available to a $sort (see the next section for more details)

•	 internalLookupStageIntermediateDocumentMaxSizeBytes: The

maximum memory available to a $lookup operation

•	 internalDocumentSourceGroupMaxMemoryBytes: The maximum

memory available to a $group operation

You can adjust these parameters using the setParameter command. For instance, to

increase sort memory, you could issue this command:

db.getSiblingDB("admin").

 runCommand({ setParameter: 1,

 internalQueryMaxBlockingSortMemoryUsageBytes: 1048576000 });

We’ll discuss this further in the next section in the context of sort optimization. Be

very careful when adjusting memory limits, however, since you might hurt the overall

performance of your MongoDB cluster if you exceed the memory capacity of its server.

Chapter 7 Tuning Aggregation Pipelines

174

�Sorting in Aggregation Pipelines
We looked at optimizing sorting within find() operations in Chapter 6. Sorts in

aggregation pipelines differ from sorts in a couple of significant ways:

	 1.	 An aggregation can exceed the memory limit for a blocking sort

by performing a “disk sort.” In a disk sort, excess data is written to

and from disk during the sort operation.

	 2.	 Aggregations might not be able to take advantage of indexed

sorting options unless the sort is very early in the pipeline.

�Indexed Aggregation Sorts
Similarly to find(), aggregations are able to use an index to resolve a sort and thus avoid

high memory utilization or a disk sort. However, this usually can only occur if the $sort

occurs early enough the pipeline to be rolled into the initial data access operation.

For instance, consider this operation in which we sort some data and add a field:

mongo> var exp=db.baseCollection.explain('executionStats').

... aggregate([

... { $sort:{ d:1 }},

... {$addFields:{x:0}}

...],{allowDiskUse: true});

mongo> mongoTuning.aggregationExecutionStats(exp);

1 IXSCAN (d_1 ms:97 keys:1000000 nReturned:1000000)

2 FETCH (ms:500 docsExamined:1000000 nReturned:1000000)

3 $ADDFIELDS (ms:3316 returned:1000000)

Totals: ms: 3358 keys: 1000000 Docs: 1000000

There is an index on the sorted attribute, and we are able to use that index to

optimize the sort. However, if we move the $addFields operation before the sort, then

the aggregation is unable to utilize the index, and a costly “disk sort” occurs:

mongo> var exp=db.baseCollection.explain('executionStats').

... aggregate([

... {$addFields:{x:0}},

Chapter 7 Tuning Aggregation Pipelines

175

... { $sort:{ d:1 }},

...],{allowDiskUse: true});

mongo> mongoTuning.aggregationExecutionStats(exp);

1 COLLSCAN (ms:16 docsExamined:1000000 nReturned:1000000)

2 $ADDFIELDS (ms:1164 returned:1000000)

3 $SORT (ms:12125 returned:1000000)

Totals: ms: 12498 keys: 0 Docs: 1000000

Figure 7-5 compares the performance of the two aggregations. By moving the sort to

the start of the aggregation pipeline, a costly disk sort was avoided and elapsed time was

significantly reduced.

Tip  Move sorts that have a supporting index as early in the aggregation pipeline
as possible to avoid an expensive disk sort.

Figure 7-5.  Disk sort vs. indexed sort in an aggregation pipeline

Chapter 7 Tuning Aggregation Pipelines

176

�Disk Sorts
If there is no index supporting a sort and the sort exceeds the 100MB limit, then you will

receive a QueryExceededMemoryLimitNoDiskUseAllowed error:

mongo>var exp=db.baseCollection.

... aggregate([

... { $sort:{ d:1 }},

... {$addFields:{x:0}}

...],{allowDiskUse: false});

2020-08-22T15:36:01.890+1000 E QUERY [js] uncaught exception: Error:

command failed: {

 "operationTime" : Timestamp(1598074560, 3),

 "ok" : 0,

 "errmsg" : "Error in $cursor stage :: caused by :: Sort exceeded

memory limit of 104857600 bytes, but did not opt in to external sorting.",

 "code" : 292,

 "codeName" : "QueryExceededMemoryLimitNoDiskUseAllowed",

If it’s possible to use an index to support this sort as outlined in the previous section,

then that is usually the best solution. However, in complex aggregation pipelines,

this won’t always be possible since the data to be sorted may be the result of previous

pipeline stages. In this case, we have two options:

	 1.	 Use a “disk sort” by specifying allowDiskUse:true.

	 2.	 Increase the global limit for blocking sorts by changing the

internalQueryMaxBlockingSortMemoryUsageBytes parameter.

Changing MongoDB default memory parameters should only be undertaken with

extreme care, since there is a risk of causing memory starvation on the server, which

could make global performance worse. However, 100MB is not a lot of memory in today’s

world, and so increasing the parameter may be the best option. Here, we increase the

maximum sort memory to 1GB:

mongo>db.getSiblingDB("admin").

... runCommand({ setParameter: 1,

internalQueryMaxBlockingSortMemoryUsageBytes: 1048576000 });

Chapter 7 Tuning Aggregation Pipelines

177

{

 "was" : 104857600,

 "ok" : 1,

…

Figure 7-6 shows how performance is improved for the example query when we

increased internalQueryMaxBlockingSortMemoryUsageBytes to avoid a disk sort.

Another thing to think about with disk sorts is scalability. If you set diskUsage:true,

then you can rest assured that your query will run even if there is not enough memory

to complete the sort. However, when the query switches from memory sort to disk sort,

performance will suddenly degrade. In a production context, it might seem like your

application suddenly “hits a wall.”

Figure 7-7 shows how the switch to a disk sort results in a sudden jump in execution

time, compared with the relatively linear trend when there is sufficient memory to

support the sort.

Figure 7-6.  Disk sort vs. memory sort in aggregation

Chapter 7 Tuning Aggregation Pipelines

178

Tip  Disk sorts in aggregation pipelines are expensive and slow. You may wish to
increase the default memory limit for aggregation sorting if you want to improve
the performance of large aggregation sorts.

�Optimizing Views
If you have worked with SQL databases before, you are probably familiar with the

concept of views. In MongoDB, a view is a sort of synthetic collection that contains the

results of an aggregation pipeline. From a query perspective, views look and feel just like

a normal collection, except that they are read-only.

The main advantage of creating a view is to simplify and unify application logic by

storing complex pipeline definitions in the database.

Figure 7-7.  How disk sorts in aggregation affect scalability

Chapter 7 Tuning Aggregation Pipelines

179

When it comes to performance, it is important to understand that when a view

is created, the result is not stored in memory or copied into a new collection. When

you query a view, you are still querying the original collection. MongoDB will take

the aggregation pipeline defined for the view and then append your additional query

parameters, creating a new pipeline. This gives the appearance of querying the view, but

under the hood, a complex aggregation pipeline is still being issued.

Consequently creating a view will not give you a performance advantage when

compared to executing the pipeline that defines the view.

Because a view is essentially just an aggregation against a collection, our methods for

optimizing a view are the same as for any aggregation. If your view is performing poorly,

optimize the pipeline that defines the view using the techniques described earlier in this

chapter.

When writing queries against a view, bear in mind that indexes on the underlying

collection cannot generally be exploited when executing queries against the view. For

instance, consider this view which aggregates product codes by order count:

db.createView('productTotals', 'lineitems', [

 { $group: {

 _id: { prodId: '$prodId' },

 'itemCount-sum': { $sum: '$itemCount' }

 }

 },

 { $project: {

 ProdId: '$_id.prodId',

 OrderCount: '$itemCount-sum',

 _id: 0

 }

 }]);

We can use this view to find totals for a particular product code:

mongo> db.productTotals.find({ ProdId: 83 });

{

 "ProdId": 83,

 "OrderCount": 460051

}

Chapter 7 Tuning Aggregation Pipelines

180

However, even if there were an index on prodId within the lineItems collection, the

index will not be used when querying from the view. Even though we are only asking for

a single product code, MongoDB will aggregate data from all products before returning

results.

Although it’s far more tedious, this aggregation pipeline will use an index on ProdId

and consequently will return data much faster:

db.lineitems.aggregate(

 [{ $match: { prodId: 83 }},

 { $group: {

 _id: { prodId: '$prodId' },

 'itemCount-sum': { $sum: '$itemCount' } }

 },

 { $project: {

 ProdId: '$_id.prodId',

 OrderCount: '$itemCount-sum',

 _id: 0

 }

 }

]);

Tip  Views can't always take advantage of indexes on the underlying collection
when resolving queries. If you are querying from a view for attributes that are
indexed in the underlying collection, you might get better performance from
bypassing the view and querying the underlying collection directly.

�Materialized Views
As we have discussed, MongoDB views do not improve query performance and, in some

cases, might actually hurt performance by suppressing indexes. Even if the view only

contains a few documents, it can still take a long time to query because the data needs to

be reconstructed every time the view is queried.

Chapter 7 Tuning Aggregation Pipelines

181

Materialized views offer a solution here – especially when a view returns small

amounts of aggregated information from large source collections. A materialized view is

a collection that contains the documents that would be returned by a view definition, but

stores the view results in the database so that the view doesn’t have to be executed every

time you read the data.

In MongoDB, we can use the $merge or $out aggregation operator to create a

materialized view. $out completely replaces a target collection with the results of an

aggregation. $merge provides a sort of “upsert” into an existing collection, allowing for

incremental changes to the target. We’ll look a bit more at $merge in Chapter 8.

To create a materialized view, we simply run an aggregation pipeline that might

usually be used to define a view, but, as the final step of that aggregation, we use $merge

to output the resulting documents into a collection. By running this aggregation pipeline,

we can create a new collection that reflects an aggregation of the data in another

collection at the time of execution. Unlike a view, however, this collection may be much

smaller, allowing for improved performance.

Let’s look at an example of this. Here’s a complex pipeline that creates a summary of

sales by product and city:

db.customers.aggregate([
 { $lookup:
 { from: "orders",

 localField: "_id",

 foreignField: "customerId",

 as: "orders" } },

 { $unwind: "$orders" },
 { $lookup:
 { from: "lineitems",

 localField: "orders._id",

 foreignField: "orderId",

 as: "lineItems" } },

 { $unwind: "$lineItems" },
 { $group:{ _id:{ "City":"$City" ,
 "lineItems_prodId":"$lineItems.prodId" },

 "count":{$sum:1},

 "lineItems_itemCount-sum":{$sum:"$lineItems.itemCount"} } },
 { $project: {
 "CityName": "$_id.City" ,

Chapter 7 Tuning Aggregation Pipelines

182

 "ProductId": "$_id.lineItems_prodId" ,

 "OrderCount": "$lineItems_itemCount-sum" ,

 "_id": 0

 } }]);

If we add the following $merge operation to that pipeline, then we’ll create a

collection salesByCityMV that contains the outputs of the aggregation:2

{$merge:
 { into:"salesByCityMV"}}

Figure 7-8 shows the execution time for querying from the materialized view as

compared to querying from a normal view. As you can see, the performance of the

materialized view is far superior. This is because the bulk of the work has already been

completed by the time the final find query was sent.

There is one obvious weakness to this method: the materialized view becomes out

of date the second data changes in the original collection. It becomes the responsibility

of the application or database administrator to ensure the materialized view is refreshed

at intervals that make sense. For example, a materialized view might contain access

sales records for the previous day. The aggregation could be run at midnight each night,

ensuring that the data was correct for each new day.

2�Merge has a lot of extra options for dealing with existing data that we’ll discuss in Chapter 8.

Figure 7-8.  Materialized view vs. direct view

Chapter 7 Tuning Aggregation Pipelines

183

Tip  For complex aggregations where speed of the query is more important that
absolute point in time accuracy, a materialized view offers a powerful way to
provide quick access to aggregation output.

When creating materialized views, ensure that the refresh of the view is not going to

be run more often than the queries on that view. The database still has to use resources

to create the view, so there is little reason to refresh a materialized view each hour that

may only be queried once a day.

If the source table is updated infrequently, you could arrange for the refresh of the

materialized view to occur automatically whenever an update is detected. The MongoDB

Change Stream facility allows you to listen for changes in a collection. When the change

notification is received, you could trigger the rebuild of the materialized view.

We’ll look at some more uses of the $merge operator in Chapter 8.

�Summary
MongoDB created an incredibly powerful method to construct complex queries with the

aggregation framework. Over the years, they have expanded this framework to support

a wider range of use cases and even to take responsibility for some data transformation

that may have previously occurred on the application level. If the past is any indication,

the aggregate command will grow over time to accommodate more and more complex

functionality. With all this in mind, if you wish to create an advanced and performant

MongoDB application, you should be leveraging everything that aggregate has to offer.

But with the great power of aggregation pipelines comes the great responsibility to

ensure that the pipelines are optimized. In this chapter, we have outlined some of the key

performance concerns you will want to keep in mind as you create your aggregations.

Filtering and stage order will allow you to minimize data flowing through

your pipeline. Indexing relevant fields for $lookup and $graphLookup will ensure

quick retrieval of the relevant documents. You will also need to ensure you use the

allowDiskUse option when fetching large results to avoid hitting memory limits or alter

those memory limits to avoid expensive “disk sorts.”

In the next chapter, we will cover the C, U, and D of CRUD – Create, Update, and

Delete – and consider the optimization of data manipulation statements such as insert,

update, and delete.

Chapter 7 Tuning Aggregation Pipelines

185
© Guy Harrison, Michael Harrison 2021
G. Harrison and M. Harrison, MongoDB Performance Tuning, https://doi.org/10.1007/978-1-4842-6879-7_8

CHAPTER 8

Inserts, Updates, and
Deletes
In this chapter, we look at issues relating to the performance of data manipulation

statements. These statements (insert, update, and delete) alter the information

contained within your MongoDB database.

Even in transaction processing environments, most database activity is related

to data retrieval. You have to find data in order to change or delete it, and even insert

operations often involve queries to obtain lookup keys or to embed data held in other

collections. For this reason, the majority of your tuning efforts typically involve query

optimization.

Nevertheless, there are some data manipulation–specific optimizations available in

MongoDB, and we will cover them in this chapter.

�Fundamentals
The overhead of all data manipulation statements is directly affected by the following

factors:

•	 The efficiency of any filter conditions clause included in the

statement

•	 The amount of index maintenance that has to be performed as a

result of the statement

https://doi.org/10.1007/978-1-4842-6879-7_8#DOI

186

�Filter Optimizations
A lot of the overhead involved in modifying and removing documents is incurred

locating the documents to be processed. Delete and update statements usually contain

a filter clause which identifies the documents to be deleted or updated. The obvious first

step in optimizing the performance of these statements is to optimize these filter clauses,

using the principles discussed in previous chapters. In particular, consider creating

indexes on attributes contained in the filter condition.

Tip  If an update or delete statement contains a filter condition, ensure that the
filter condition is optimized using the principles outlined in Chapter 6.

�Explaining a Data Manipulation Statement
It’s perfectly possible and definitely desirable to use explain() on data manipulation

statements. For delete and update commands, explain() will reveal how MongoDB

will find the documents to be processed. For instance, here we see an update that will

use a collection scan to find the rows to process:

mongo> var exp=db.customers.explain().

 update({viewCount:{$gt:50}},

 {$set:{discount:10}},{multi:true});

mongo> mongoTuning.quickExplain(exp);

1 COLLSCAN

2 UPDATE

You can also safely use the executionStats mode of explain(). Although

executionStats does execute the statement concerned and will report on the number of

documents that would be modified, it does not actually modify any documents.

In the following example, explain() reports that 45 documents would match the

filter condition and be updated:

mongo> var exp=db.customers.explain('executionStats').

... update({viewCount:{$gt:50}},

... {$set:{discount:10}},{multi:true});

Chapter 8 Inserts, Updates, and Deletes

187

mongo> mongoTuning.executionStats(exp);

1 COLLSCAN (ms:29 docs:411121)

2 UPDATE (ms:31 upd:45)

Totals: ms: 385 keys: 0 Docs: 411121

�Index Overhead
Although indexes can dramatically improve query performance, they do reduce the

performance of updates, inserts, and deletes. All of a collection’s indexes will normally

be updated when a document is inserted or deleted, and an index must also be amended

when an update changes any attribute which appears in the index.

It is therefore important that all our indexes contribute to query performance since

these indexes will otherwise needlessly degrade update, insert, and delete execution.

In particular, you should be especially careful when creating indexes on frequently

updated attributes. A document can only be inserted or deleted once but may be

updated many times. Indexes on heavily updated attributes or on collections that have a

very high insert/delete rate will, therefore, exact a particularly high cost.

Figure 8-1 illustrates the effect on indexes on insert and delete performance. It shows

how the amount of time taken to insert and then delete 100,000 documents changed as

more indexes were added to a collection.

Chapter 8 Inserts, Updates, and Deletes

188

Tip  Indexes always add to the overhead of insert and delete statements and
may add to the overhead of update statements. Avoid over-indexing, especially on
columns which are frequently updated.

�Finding Unused Indexes
It’s common for the query tuning process to result in a lot of index creation, and

sometimes there may be indexes that become redundant and unused. You can take a

look at index utilization by using the $indexStats aggregation command:

mongo>db.customers.aggregate([

... { $indexStats: {} },

... { $project: { name: 1,

 'accesses.ops': 1 } }]);

Figure 8-1.  Effect of indexes on insert/delete performance

Chapter 8 Inserts, Updates, and Deletes

189

{ "name" : "LastName_1_FirstName_1",

 "accesses" : { "ops" : NumberLong(2068) } }

{ "name" : "_id_", "accesses" : { "ops" : NumberLong(1442414) } }

{ "name" : "updateFlag_1", "accesses" : { "ops" : NumberLong(0) } }

From this output, we can see that the updateFlag_1 index has not contributed to

any operations since the last time the MongoDB server was started. We might want to

consider removing that index. However, keep in mind if the server was restarted recently

or this index supports a periodic query which last occurred before the restart, this

operation counter may be misleading.

Tip P eriodically use $indexStats to identify any unused or underutilized
indexes. These indexes might be slowing down data manipulation without
accelerating queries.

There are some exceptions to this guideline:

•	 A unique index might exist purely to prevent duplicate values being

created and therefore serves a purpose even if it does not contribute

to query performance.

•	 A Time To Live (TTL) index might similarly be in place to purge old

data, rather than to accelerate queries.

�Write Concern
When manipulating data in a cluster, write concern controls how many members in the

cluster must acknowledge the operation before returning control to the application.

Specifying a level of write concern greater than 1 will usually increase latency and reduce

throughput, but will result in more reliable writes since it eliminates the possibility of a

lost write if a single replica set node fails. We’ll discuss write concern in detail in Chapter 13.

You should generally not sacrifice data integrity in order to obtain a performance

improvement. Nevertheless, it is worth remembering that writeConcern has a direct

effect on the performance of data manipulation statements. Figure 8-2 shows the effect

of different writeConcern settings when inserting 100,000 documents. We’ll discuss this

in greater detail in Chapter 13.

Chapter 8 Inserts, Updates, and Deletes

190

Warning A djusting writeConcern can improve performance, but it may come
at the expense of data integrity or safety. Don't adjust writeConcern to improve
performance unless you are fully aware of these trade-offs.

�Inserts
Getting data into a MongoDB database is a necessary prerequisite to getting the data out,

and inserting data is susceptible to a variety of bottlenecks and tuning opportunities.

�Batch Processing
In Chapter 6, we looked at how we can use batch processing to optimize fetching data

from a MongoDB server. We use batch processing to ensure that we don’t perform

unnecessary network round trips, by making sure that each network transmission has a

“full” load. If we use a batch size of 1000, we do 100 times fewer network transmissions

than if we use a batch size of 10.

Figure 8-2.  Effect of writeConcern on insert performance

Chapter 8 Inserts, Updates, and Deletes

191

The same principle applies to inserting data. We want to make sure that we push

data to MongoDB in batches so that we don’t perform unnecessary network round trips.

Unfortunately, while MongoDB can automatically send us batches of information when

we issue a find(), it’s up to us to construct the batches for an insert.

For instance, consider the following code:

myDocuments.forEach((document)=>{
 db.batchInsert.insert(document);
});

For each document in myDocuments, we issue a MongoDB insert statement. If there

are 10,000 documents, we will issue 10,000 MongoDB calls and therefore 10,000 network

round trips. This will perform very badly.

It would be much better to insert all of the documents in a single database call. This

could be simply done by issuing an insertMany command:

db.batchInsert.insertMany(db.myDocuments.find().toArray());

This performs much better. In a simple test case, it returns in under 10% of the time

taken for the “one-at-a-time” method.

However, we can’t always insert data all at once. If we have a streaming application

or if the amount of data to be inserted is massive, we might not be able to accumulate the

data all in memory before inserting. In this case, we can use a MongoDB bulk operation.

A bulk object is created by a collection method. You can insert into the bulk object

incrementally and then issue the execute method of the bulk object to push the batch

into the database. The following code performs this task for the array of data used in the

previous examples. Data is inserted in batches of 1000:

var bulk = db.batchInsert.initializeUnorderedBulkOp();
var i=0;
myDocuments.forEach((document)=>{
 bulk.insert(document);
 i++;

 if (i%1000===0) {

 bulk.execute();
 bulk = db.batchInsert.initializeUnorderedBulkOp();
 }

});

bulk.execute;

Chapter 8 Inserts, Updates, and Deletes

192

Figure 8-3 shows the relative performance of “one-at-a-time” inserts, “all-at-once”

inserts, and batch inserts.

Tip N ever insert non-trivial data volumes one document at a time. Always use
batch inserts when possible to reduce network overhead.

�Cloning Data
From time to time, you may wish to copy – or clone – data from one set of documents in a

collection into the same collection or another collection.

For instance, in an ecommerce application, you might implement a “repeat order”

button – which would copy all the line items from one order into a new order.

We might implement such a facility using logic like this:

function repeatOrder(orderId) {

 let newOrder = db.orders.findOne({ _id: orderId },

 { _id: 0 });

 let orderInsertRC = db.orders.insertOne(newOrder);

 let newOrderId = orderInsertRC.insertedId;

 let newLineItems = db.lineitems.

Figure 8-3.  Performance improvements gained by batch insert (10,000
documents)

Chapter 8 Inserts, Updates, and Deletes

193

 find({ orderId: orderId },

 { _id: 0 }).toArray();

 for (let li = 0; li < newLineItems.length; li++) {

 newLineItems[li].orderId = newOrderId;

 }

 db.lineItems.insertMany(newLineItems);

 return newOrderId;

}

This function retrieves the existing line items, modifies then with the new order Id,

and then inserts the items back into the collection.

If there are a lot of line items, then the biggest bottleneck involved will be the

network latency involved in pulling the line items out of the database and then pushing

those line items into the new order.

From MongoDB 4.4 onward, we can employ an alternative technique involving an

aggregation framework pipeline to clone the data. This approach has the advantage of

not needing to move the data outside of the database – the cloning takes place within

the database server without any network overhead. The $merge operator allows us to

perform inserts based on the output of an aggregation pipeline.

Here’s an example of the aggregation alternative:

function repeatOrder(orderId) {

 let newOrder = db.orders.findOne({ _id: orderId }, { _id: 0 });

 let orderInsertRC = db.orders.insertOne(newOrder);

 let newOrderId = orderInsertRC.insertedId;

 db.lineitems.aggregate([

 {

 $match: {

 orderId: { $eq: orderId }

 }

 },

 {

 $project: {

 _id: 0,

 orderId: 0

 }

Chapter 8 Inserts, Updates, and Deletes

194

 },

 { $addFields: { orderId: newOrderId } },

 {

 $merge: {

 into: 'lineitems'

 }

 }

]);

 return newOrderId;

}

This function uses the $merge pipeline operator to push the output of the pipeline

back into the collection. Figure 8-4 compares the performance of the two approaches –

over 500 data cloning operations, the elapsed time was roughly halved by using the

aggregation $merge approach.

The MongoDB $out aggregation operator offers similar functionality to $merge,

although it cannot insert back into the source collection and – as we’ll see later in this

chapter – has fewer options for performing upsert-type merges.

Figure 8-4.  Accelerating data cloning using an aggregation $merge pipeline (500
documents)

Chapter 8 Inserts, Updates, and Deletes

195

Tip  When inserting bulk data which is derived from data in a collection, use the
aggregation framework $out and $merge operators to avoid moving data across
the network.

�Loading from Files
MongoDB provides the mongoimport and mongorestore commands to load data from

JSON or CSV files or from the output of mongodump.

Regardless of the method you are using, the most significant factor in this sort of data

load is generally network latency. It is almost always faster to compress a file, move it

across the network to the MongoDB server host, decompress, and then run the import

than to import directly from another server.

In the case of MongoDB Atlas, you are unable to move files directly onto the Atlas

servers. However, you might find that creating a virtual machine in the same region and

staging the load from that machine provides a significant performance boost.

�Updates
A document can only be inserted or deleted once but can be updated many times.

Therefore, update optimization is an essential aspect of MongoDB performance tuning.

�Dynamic Value Bulk Updates
From time to time, you may need to update multiple rows in a collection in which the

value to be set is dependent on other attributes in the document or on values inside

another collection.

For instance, let’s imagine we wanted to insert a “view count” into our video streaming

customers collection. The value to be set is different for each customer, so we might

retrieve each customer document and then update the same customer document using

the number of elements in the views array. The logic might look something like this:

db.customers.find({}, { _id: 1, views: 1 }).

 forEach(customer => {

Chapter 8 Inserts, Updates, and Deletes

196

 let updRC=db.customers.update(

 { _id: customer['_id'] },

 { $set: { viewCount: customer.views.length } }

);

});

This solution is easy to code but performs poorly: we have to pull a lot of data across

the network, and we must issue as many update statements as we have customers.

However, before MongoDB 4.2, this was probably the best solution available.

However, starting with MongoDB 4.2, we have the ability to embed aggregation

framework pipelines within an update statement. These pipelines allow us to set a value

that is derived from, or dependent on, other values in the document. For instance, we

could populate the viewCount attribute with this single statement:

db.customers.update(

 {},

 [{ $set: { viewCount: { $size: '$views' } } }],

 {multi: true});

Figure 8-5 compares performance for the two approaches. The aggregation pipeline

reduced execution time by about 95%.

Figure 8-5.  Using an aggregation pipeline vs. multiple updates (about 411,000
documents)

Chapter 8 Inserts, Updates, and Deletes

197

Tip  Consider using embedded aggregation pipelines in update statements when
you need to dynamically update data based on existing values.

�The multi:true Flag
The MongoDB update command accepts a multi parameter, which determines whether

multiple documents will be updated within the operation. When multi:false is set,

then MongoDB will stop processing as soon as a single document is updated.

The following example shows an update statement that is issued without the multi flag:

mongo> var exp = db.customers.

... explain('executionStats').

... update({ flag: true }, { $set: { flag: false } });

mongo> mongoTuning.executionStats(exp);

1 COLLSCAN (ms:1 docs:9999)

2 UPDATE (ms:1 upd:1)

Totals: ms: 10 keys: 0 Docs: 9999

MongoDB scans through the collection until it finds a matching value and then

performs the update. Once that single document is found, the scan ends.

If we know that there is only one value to be updated, but include the multi:true

anyway, we’ll see this execution plan:

mongo> var exp = db.customers.

... explain('executionStats').

... update({ flag: true }, { $set: { flag: false } },

... {multi:true});

mongo> mongoTuning.executionStats(exp);

1 COLLSCAN (ms:35 docs:411119)

2 UPDATE (ms:35 upd:1)

Totals: ms: 368 keys: 0 Docs: 411119

Chapter 8 Inserts, Updates, and Deletes

198

The number of documents updated is the same, but the number of document

processed is much higher (411,000 vs. 999). As a result, the statement takes a lot longer to

run. The update continues to scan the collection after the initial update, looking for more

eligible documents.

Tip D on't set multi:true if you know you are only going to update a single
document. If there is an index or collection scan involved, MongoDB may perform
unnecessary work looking for additional documents to update.

�Upserts
Upserts allow you to issue a single statement that will perform an update if a matching

document exists or an insert otherwise. Upserts can improve performance when you

are trying to merge documents into a collection, and you don’t want to have to explicitly

check for the document’s existence.

For instance, if we are loading data into a collection but don’t know if we need to

insert or replace, we might implement logic something like this:

 db.source.find().forEach(doc => {

 let matchingDocs = db.target.count({ _id: doc['_id'] });

 if (matchingDocs === 0) {

 db.target.insert(doc);

 inserts++;

 } else {

 db.target.update({ _id: doc['_id'] }, doc,

 { multi: false });

 updates++;

 }

 });

We look for a matching value, and if found, perform an update; otherwise, perform

an insert.

Upsert allows us to combine the insert and update operations into a single operation

and removes the need to check for a matching value first. Here’s the upsert logic:

Chapter 8 Inserts, Updates, and Deletes

199

 db.source.find().forEach(doc => {

 let returnCodes = db.target.update({ _id: doc['_id'] }, doc,

 {upsert: true});

 inserts += returnCodes.nUpserted;

 updates += returnCodes.nModified;

 });

The new logic is simpler and also reduces the number of database commands that

need to be processed. Over a remote network connection, the upsert solution is much

faster. Figure 8-6 compares the performance of the two results.

Tip  Use upsert instead of conditional insert/update statement if you are unsure
whether to insert or update a document.

�Bulk Upsert with $merge
The solutions compared in Figure 8-6 insert or update a single document at a time. As

we’ve seen, single document processing takes longer than bulk processing, so it would

be better if we are able to insert or update multiple documents in a single operation.

Figure 8-6.  Upsert performance compared to find/insert/update (10,000
documents)

Chapter 8 Inserts, Updates, and Deletes

200

Starting with MongoDB 4.2, we can use the $merge aggregation operator to do this,

providing that our input data is already in a MongoDB collection. $merge operates a lot

like upsert, allowing us to update documents if there is a match or insert a document

otherwise. The logic from the previous section could be implemented in a single $merge

operation with the following statement:

db.source.aggregate([{$merge:

 { into:"target",

 on: "_id",

 whenMatched:"replace",

 whenNotMatched:"insert"}}]);

The aggregation pipeline is amazingly faster. As well as reducing the number of

MongoDB statements that have to be executed and allowing for bulk processing, the

aggregation pipeline also avoids moving data across the network. Figure 8-7 shows the

performance improvement can be achieved with $merge.

�Delete Optimizations
Like inserts, deletes must amend all the indexes that exist for a collection. For that

reason, deletes from heavily indexed collections can often become a serious issue for

systems that deal with large amounts of transitory streaming data.

Figure 8-7.  Multiple upserts vs. a single $merge statement (10,000 documents)

Chapter 8 Inserts, Updates, and Deletes

201

In this scenario, it might be useful to “logically” delete the documents concerned

by setting a delete flag. The delete flag can be used to indicate to the application that

the documents should be ignored. These documents could be physically removed

periodically in a maintenance window.

If you pursue this “logical delete” strategy, then you need to make the delete flag

an attribute within all indexes and include the delete flag in all queries against that

collection.

�Summary
In this chapter, we’ve looked at how to optimize data manipulation statements – insert,

update, and delete.

Data manipulation throughput is heavily dependent on the number of indexes

on a collection. The indexes you used to speed up your queries slow down your data

manipulation statements, so make sure every index pays its way.

Update and delete statements accept filter conditions, and the principles for

optimizing these filter conditions are identical to those for find() and aggregation

$match operations.

When inserting, make sure you are inserting in batches, and – wherever possible –

using aggregation pipelines if inserting data from another collection. Aggregation

pipelines can also massively improve bulk update operations that are dependent on data

already inside MongoDB.

Chapter 8 Inserts, Updates, and Deletes

203
© Guy Harrison, Michael Harrison 2021
G. Harrison and M. Harrison, MongoDB Performance Tuning, https://doi.org/10.1007/978-1-4842-6879-7_9

CHAPTER 9

Transactions
Transactions are new in MongoDB but have existed in SQL databases for more than

30 years. Transactions are used to maintain consistency and correctness in database

systems that are subjected to concurrent changes issued by multiple users.

Transactions generally result in improved consistency at the cost of reduced

concurrency. Therefore, transactions have a large bearing on database performance.

This chapter is not intended as a tutorial on transactions. To learn how to program

transactions, see the MongoDB manual section on transactions.1 In this chapter, we will

concentrate on maximizing transaction throughput and minimizing transaction wait times.

�Transaction Theory
Databases generally meet requirements of consistency using two major architectural

patterns: ACID transactions and Multi-Version Concurrency Control (MVCC).

The ACID transaction model was developed in the 1980s. ACID transactions should be

•	 Atomic: The transaction is indivisible – either all the statements in

the transaction are applied to the database, or none are applied.

•	 Consistent: The database remains in a consistent state before and

after transaction execution.

•	 Isolated: While multiple transactions can be executed by one or

more users simultaneously, one transaction should not see the effects

of other in-progress transactions.

•	 Durable: Once a transaction is saved to the database (typically by the

COMMIT command), its changes are expected to persist even if there

is a failure of operating system or hardware.

1�https://docs.mongodb.com/manual/core/transactions/

https://doi.org/10.1007/978-1-4842-6879-7_9#DOI
https://docs.mongodb.com/manual/core/transactions/

204

The easiest way to implement ACID consistency is with locks. Using lock-based

consistency, if a session is reading an item, no other session can modify it, and if

a session is modifying an item, no other session can read it. However, lock-based

consistency can lead to unacceptably high contention and low concurrency.

To provide ACID consistency without excessive locking, modern database systems

almost universally adopted the Multi-Version Concurrency Control (MVCC) model. In the

MVCC model, multiple copies of data are tagged with timestamps or change identifiers

that allow the database to construct a snapshot of the database at a given point in time.

In this way, MVCC provides for transaction isolation and consistency while maximizing

concurrency.

For example in MVCC, if a database table is subjected to modifications between the

time a session starts reading the table and the time the session finishes, the database

will use previous versions of table data to ensure that the session sees a consistent

version. MVCC also means that until a transaction commits other sessions do not

see the transaction’s modifications – other sessions look at older versions of the data.

These older copies of data are also used to roll back transactions that do not complete

successfully.

Figure 9-1 illustrates the MVCC model. A database session initiates a transaction at

time t1 (1). At time t2, the session updates a document (2): this results in a new version

of that document being created (3). At about the same time a second database session

queries the document, but because the transaction from the first session has not yet

been committed, they see the previous version of the document (4). After the first

session commits the transaction (5), the second database session will read from the

modified version of the document (6).

Chapter 9 Transactions

205

Figure 9-1.  Multi-Version Consistency Control

Chapter 9 Transactions

206

�MongoDB Transactions
You may have used transactions in other databases – MySQL, PostgreSQL, or another

SQL database – and have a reasonable understanding of these basic principles.

MongoDB transactions resemble SQL database transactions superficially; however,

under the hood, the implementation is significantly different.

The two important differences between transactions in a SQL database and

MongoDB are

•	 Initially - prior to MongoDB 4.4 - MongoDB did not maintain

multiple versions of blocks on disk to support MVCC. Instead, blocks

were held in WiredTiger cache memory.

•	 MongoDB does not use blocking locks to prevent conflicts between

transactions. Instead, it issues TransientTransactionErrors to abort

transactions that might cause conflicts.

�Transaction Limits
MongoDB uses the MVCC mechanism outlined in Figure 9-1 to ensure that transactions

see independent and consistent representations of the database. This snapshot isolation

ensures transactions see a consistent view of data and that sessions do not observe

uncommitted transactions. This MongoDB isolation mechanism is referred to as the

snapshot read concern.

Most relational databases that implement an MVCC system use disk-based “before

image” or “rollback” segments to store the data required to create these database

snapshots. In these databases, the “age” of the snapshot is limited only by the amount of

disk space available on disk.

However, the initial MongoDB implementation relied on copies of data held in the

WiredTiger memory-based cache. As a result, MongoDB could not reliably maintain

snapshots of data for long-running transactions. To avoid memory pressure on

WiredTiger memory, transactions are limited to 60 seconds’ duration by default. This

limit can be modified by changing the transactionLifetimeLimitSeconds parameter.

In MongoDB 4.4, snaphot data can be written to disk, but the default transaction time

limit remains 60 seconds.

Chapter 9 Transactions

207

�TransientTransactionErrors
Almost without exception, relational databases like PostgreSQL or MySQL use locks

to implement transactional consistency. Figure 9-2 illustrates how this works. When

a session modifies a row in a table, it places a lock on that row to prevent concurrent

modifications. If a second session tries to modify the same row, it has to wait until the

lock is released when the original transaction commits.

Many developers are familiar with the blocking locks of relational databases and

may assume that MongoDB does the same thing. However, MongoDB’s approach is

completely different. In MongoDB, when the second session attempts to modify a

document modified in another transaction, it does not wait for a lock to be released.

Instead, it receives a TransientTransactionError event. The second session must then

retry the transaction (ideally after the first transaction completes).

Figure 9-2.  Locks in relational database transactions

Chapter 9 Transactions

208

Figure 9-3 illustrates the MongoDB paradigm. When a session updates a document,

it does not lock it. However, if a second session tries to modify the document in a

transaction, a TransientTransactionError is issued.

It’s up to the application to determine what to do about a

TransientTransactionError, but the recommended approach is simply to retry the

transaction until it eventually succeeds.

Here is some code that illustrates the TransientTransactionError paradigm. The

code snippet creates two sessions, each within its own transaction. We then attempt to

update the same document within each transaction.

var session1=db.getMongo().startSession();

var session2=db.getMongo().startSession();

var session1Collection=session1.getDatabase(db.getName())

 .transTest;

var session2Collection=session2.getDatabase(db.getName())

 .transTest;

session1.startTransaction();

Figure 9-3.  MongoDB TransientTransactionErrors

Chapter 9 Transactions

209

session2.startTransaction();

session1Collection.update({_id:1},{$set:{value:1}});

session2Collection.update({_id:1},{$set:{value:2}});

session1.commitTransaction();

session2.commitTransaction();

When the second update statement is encountered, MongoDB issues an error:

mongo>session1Collection.update({_id:1},{$set:{value:1}});

WriteCommandError({

 "errorLabels" : [

 "TransientTransactionError"

],

 "operationTime" : Timestamp(1596785629, 1),

 "ok" : 0,

 "errmsg" : "WriteConflict error: this operation conflicted

with another operation. Please retry your operation or multi-document

transaction.",

 "code" : 112,

 "codeName" : "WriteConflict",

�Transactions in the MongoDB Drivers
From MongoDB 4.2 onward, the MongoDB drivers hide transientTransationErrors

from you, by automatically retrying the transaction. For instance, you can run

multiple copies of this NodeJS code simultaneously, without encountering any

TransientTransactionErrors:

async function myTransaction(session, db, fromAcc,

 toAcc, dollars) {

 try {

 await session.withTransaction(async () => {

 await db.collection('accounts').

 updateOne({ _id: fromAcc },

 { $inc: { balance: -1*dollars } },

Chapter 9 Transactions

210

 { session });

 await db.collection('accounts').

 updateOne({ _id: toAcc },

 { $inc: { balance: dollars } },

 { session });

 }, transactionOptions);

 } catch (error) {

 console.log(error.message);

 }

}

The NodeJS driver – and drivers for other languages such as Java, Python, Go, and

so on – automatically handles any TransientTransactionErrors and resubmits any

aborted transactions. However, the errors are still being issued by the MongoDB server,

and you can see them recorded in the MongoDB log:

~$ grep -i 'assertion.*writeconflict' \

 /usr/local/var/log/mongodb/mongo.log \

 |tail -1|jq

{

 "t": {

 "$date": "2020-08-08T14:04:47.643+10:00"

 },

 …

 "msg": "Assertion while executing command",

 "attr": {

 "command": "update",

 "db": "MongoDBTuningBook",

 "commandArgs": {

 "update": "transTest",

 "updates": [

 {

 "q": {

 "_id": 1

 },

Chapter 9 Transactions

211

 "u": {

 "$inc": {

 "value": 2

 }

 },

 "upsert": false,

 "multi": false

 }

],

 /* Other transaction information */

 },

 "error": "WriteConflict: WriteConflict error: this operation conflicted

with another operation. Please retry your operation or multi-document

transaction."

 }

}

In the NodeJS driver, you can also log server-level debug messages2 to see the

aborted transactions that are going on under the hood. When a transaction aborts under

the hood, you’ll see the following message in the output stream:

[DEBUG-Server:20690] 1596872732041 executing command [{"ns":"admin.$cmd","

cmd":{"abortTransaction":1,"writeConcern":{"w":"majority"}},"options":{}}]

against localhost:27017 {

 type: 'debug',

 message: 'executing command [{"ns":"admin.$cmd","cmd":{"abortTran

saction":1,"writeConcern":{"w":"majority"}},"options":{}}] against

localhost:27017',

 className: 'Server',

 pid: 20690,

 date: 1596872732041

}

Other drivers may provide similar methods for viewing transaction retries.

2�See https://docs.mongodb.com/drivers/node/fundamentals/logging

Chapter 9 Transactions

https://docs.mongodb.com/drivers/node/fundamentals/logging

212

At a global level, the retries are visible in the db.serverStatus counter

transactions.totalAborted. We can use the following function to examine the number

of transactions started, aborted, and committed:

function txnCounts() {

 var ssTxns = db.serverStatus().transactions;

 print(ssTxns.totalStarted + 0, 'transactions started');

 print(ssTxns.totalAborted + 0, 'transactions aborted');

 print(ssTxns.totalCommitted + 0, 'transactions committed');

 print(Math.round(ssTxns.totalAborted * 100 /

 ssTxns.totalStarted) + '% txns aborted');

}

mongo> txnCounts();

203628 transactions started

167989 transactions aborted

35639 transactions committed

82% txns aborted

�The Performance Implications
of TransientTransactionErrors
The retries that result from TransientTransactionErrors are expensive – they involve

not just discarding any work done in the transaction so far but also reverting database

state back to the start of the transaction. It is the impact of transaction retries more than

anything else that makes MongoDB transactions expensive. Figure 9-4 shows that as the

percentage of transaction aborts increases, the elapsed time for transactions degrades

rapidly.

Chapter 9 Transactions

213

Note T he MongoDB transactional model involves aborting transactions that are in
conflict with other transactions. These aborts are expensive operations that are the
primary bottleneck on MongoDB transactional performance.

�Transaction Optimization
Given that TransientTransactionError retries have such a severe effect on transaction

performance, it follows that we need to do whatever is possible to minimize these retries.

There are a couple of strategies that we can employ:

•	 Avoid a transaction altogether.

•	 Order operations to minimize the number of conflicting operations.

•	 Partition “hot” documents that are subject to high levels of write

conflict.

Figure 9-4.  Performance impact of aborted transactions

Chapter 9 Transactions

214

�Avoiding Transactions
It’s possible that you don’t need to use MongoDB transactions to achieve a transactional

outcome. For instance, consider this transaction, which transfers funds between

branches in a hypothetical banking application:

 try {

 await session.withTransaction(async () => {

 await db.collection('branches').

 updateOne({ _id: fromBranch },

 { $inc: { balance: -1*dollars } },

 { session });

 await db.collection('branches').

 updateOne({ _id: toBranch },

 { $inc: { balance: dollars } },

 { session });

 }, transactionOptions);

 } catch (error) {

 console.log(error.message);

 }

It certainly seems like a candidate for transactions – the two update statements

should both succeed or fail as a unit. However, if the number of branches is relatively

small – small enough to fit into a single document – then we could store all the balances

in an embedded array within a single document, something like this:

mongo> db.embeddedBranches.findOne();

{

 "_id": 1,

 "branchTotals": [

 {

 "branchId": 0,

 "balance": 101208675

 },

 {

 "branchId": 1,

 "balance": 98409758

Chapter 9 Transactions

215

 },

 {

 "branchId": 2,

 "balance": 99407654

 },

 {

 "branchId": 3,

 "balance": 98807890

 }

]

}

We could then atomically move data between branches using a relatively simple

update statement. Our new “transaction” would look like this:

try {

 let updateString =

 `{"$inc":{

 "branchTotals.`+fromBranch+`.balance":`+dollars+`,

 "branchTotals.`+toBranch +`.balance":`+dollars+`}}`;

 let updateClause = JSON.parse(updateString);

 await db.collection('embeddedBranches').updateOne(

 {_id: 1 }, updateClause);

} catch (error) {

 console.log(error.message);

}

We’ve reduced four statements down to just one, and we’ve completely eliminated

any chance of TransientTransactionErrors. Figure 9-5 compares the performance –

the non-transactional method was more than 100 times faster than the transactional

approach.

Chapter 9 Transactions

216

Tip T here may be alternative application strategies to MongoDB transactions,
and these may perform better than a formal transaction, especially if there is a
high chance of write conflicts.

�Ordering of Operations
Transactions by their very nature will issue more than one operation to the MongoDB

database. It may be that some of these operations are more likely to create write conflicts

than other operations. In these scenarios, it is possible that changing the order of

operations might give you a performance advantage.

For example, consider the following transaction:

 await session.withTransaction(async () => {

 await db.collection('txnTotals').

 updateOne({ _id: 1 },

 { $inc: { counter: 1 } },

 { session });

 await db.collection('accounts').

 updateOne({ _id: fromAcc },

 { $inc: { balance: -1*dollars } },

 { session });

Figure 9-5.  MongoDB transaction vs. embedded array

Chapter 9 Transactions

217

 await db.collection('accounts').

 updateOne({ _id: toAcc },

 { $inc: { balance: dollars } },

 { session });

 }, transactionOptions);

This transaction transfers funds between two accounts, but first, it updates a global

“transaction counter.” Every transaction that tries to issue this transaction will attempt to

update this counter, and many will encounter TransientTransactionError retries as a

result.

If we move the contentious statement to the end of the transaction, then the chance

of a TransientTransactionError will be reduced, since the window for conflict will be

reduced to the final few moments in the execution of the transaction. The modified code

looks like this – we simply moved the txnTotals update to the end of the transaction:

 await session.withTransaction(async () => {

 await db.collection('accounts').

 updateOne({ _id: fromAcc },

 { $inc: { balance: -1*dollars } },

 { session });

 await db.collection('accounts').

 updateOne({ _id: toAcc },

 { $inc: { balance: dollars } },

 { session });

 await db.collection('txnTotals').

 updateOne({ _id: 1 },

 { $inc: { counter: 1 } },

 { session });

 }, transactionOptions);

Figure 9-6 provides an example of the effect of changing the transaction order for the

example transaction. Placing the “hot” operation last reduced contention and improved

transaction execution time significantly.

Chapter 9 Transactions

218

Tip  Consider placing “hot” operations – those likely to encounter
TransientTransactionErrors – last in your transactions to reduce the
conflict time window.

�Partitioning Hot Documents
TransientTransactionErrors occur when multiple transactions try to modify a

particular document. These “hot” documents become transaction bottlenecks. In

some cases, we might be able to relieve the bottleneck by partitioning the data in the

document into multiple distinct documents.

For instance, consider the transaction we looked at in the previous section. This

transaction updated a transaction counter document:

 await db.collection('txnTotals').

 updateOne({ _id: 1 },

 { $inc: { counter: 1 } },

 { session });

This is a perfect example of a “hot” document – a document that every single

transaction wants to update. If we really need to keep some sort of running total like

this within a transaction, we could split the totals up across multiple documents. For

instance, this alternative syntax splits the totals across ten documents:

Figure 9-6.  Effect of reordering operations in a transaction

Chapter 9 Transactions

219

 let id=Math.floor(Math.random()*10);

 await db.collection('txnTotals').

 updateOne({ _id: id },

 { $inc: { counter: 1 } },

 { session });

Of course, if we want to get a grand total, we’ll need to aggregate the data from the

ten sub-totals, but that’s a small price to pay to improve our transactional performance.

Figure 9-7 shows the performance improvements gained from this partitioning. We

reduced average transaction time by almost 90% by partitioning the hot document.

Tip  Consider partitioning "hot" documents – those updated simultaneously by
multiple transactions – into multiple documents.

Figure 9-7.  Partitioning a "hot" document to improve transaction time

Chapter 9 Transactions

220

�Conclusion
Transactions are an essential requirement for many applications, and the introduction of

transaction support in MongoDB 4.0 was a big step forward for MongoDB.

Unfortunately, unlike many other MongoDB new features, transactions do not

inherently improve performance. By introducing contention between sessions,

transactions by their very nature reduce concurrency and therefore reduce throughput

and increase response time.

The MongoDB transactional architecture does not make use of the blocking

locks employed by most SQL databases. Rather, it aborts transactions that attempt to

simultaneously modify a document. These aborts and retries are handled “under the

hood” by the MongoDB drivers. Nevertheless, transaction aborts and retries are a critical

performance drag on MongoDB transactions and should be the focus of your transaction

tuning efforts.

In this chapter, we looked at a couple of ways of reducing contention and therefore

improving transactional throughput:

•	 We can sometimes avoid transactions altogether, for instance, by

embedding data that must be updated atomically within a single

document.

•	 We can reduce the window of opportunity for transaction aborts by

moving high-contention operations to the end of a transaction.

•	 We can partition “hot” documents into multiple documents, thereby

reducing the contention for data in those documents.

Chapter 9 Transactions

221
© Guy Harrison, Michael Harrison 2021
G. Harrison and M. Harrison, MongoDB Performance Tuning, https://doi.org/10.1007/978-1-4842-6879-7_10

CHAPTER 10

Server Monitoring
So far, we’ve been concentrating on managing performance by optimizing application

code and database design. In an ideal world, this is where we start our tuning efforts,

by optimizing the application we make MongoDB work smarter, not harder. We reduce

the amount of effort MongoDB has to do to achieve a task by optimizing our schema,

application code, and indexes.

However, there may come a time when you’ve done all the practical application

tuning possible. Furthermore, there are occasions where you don’t have the luxury of

being able to rework application code at all – when you are working with a third-party

application, for instance.

Now is the time to look at your server configuration and ensure that the server is

optimized for the application workload. This server-side tuning ideally occurs in four

phases:

•	 Ensuring that there is sufficient memory and CPU on the server host

to support the workload

•	 Ensuring that there is sufficient and correctly configured memory to

reduce IO demand

•	 Optimizing disk IO to ensure that disk requests return without

excessive latency

•	 Ensuring that the cluster configuration is optimized to avoid delays in

cluster coordination and to maximize cluster resources

These topics are the subject of the next four chapters of this book. In this chapter,

we’ll look at the basics of monitoring server performance and some useful tools for

assisting in this process.

https://doi.org/10.1007/978-1-4842-6879-7_10#DOI

222

�Host-Level Monitoring
All MongoDB servers run within an operating system which is in turn hosted within

some hardware platform. In today’s world of virtual machines, containers, and cloud

infrastructure, the hardware topology might be obscured. But even when you cannot

directly observe the underlying hardware, you can observe the operating system

container that provides the raw resources which support your MongoDB servers.

At the most fundamental level, the operating system provides four essential

resources:

•	 Network bandwidth, which allows data to be transferred in and out

of the machine

•	 CPU, which allows for the execution of program code

•	 Memory, which allows for fast access to impermanent data

•	 Disk IO, which allows massive amounts of data to be stored

permanently

There are a wide variety of tools to help you monitor host utilization, both

commercial and free. In our experience, it is best to understand how to use the built-in

performance utilities, since these will always be available.

On Linux, you should be familiar with the following commands:

•	 top

•	 uptime

•	 vmstat

•	 iostat

•	 netstat

•	 bwm-ng

On Windows, you can use the resource monitor application for a graphical view and

get raw statistics from the PowerShell Get-Counter command.

Chapter 10 Server Monitoring

223

�Network
The network is responsible for transmitting data from your server to your application

and between the servers that comprise your cluster.

We’ve looked at the role of network round trips in Chapter 6, and we’ll talk more

about network traffic in the context of cluster optimization in Chapter 13.

It’s unusual for the network interfaces within a MongoDB server to be a bottleneck –

the network bottleneck is more commonly found in the many network hops between the

server and various clients. That is to say, the amount of data that can be processed by the

MongoDB server is usually less than the amount of data that can be transferred through

a typical network interface. You can monitor the amount of traffic transferring through

the network interface with the bwm-ng command:

bwm-ng v0.6.2 (probing every 5.200s), press 'h' for help

 input: /proc/net/dev type: rate

iface Rx Tx Total

 ===

 lo: 0.00 B/s 0.00 B/s 0.00 B/s

 eth0: 173.52 KB/s 8.84 MB/s 9.01 MB/s

virbr0: 0.00 B/s 0.00 B/s 0.00 B/s

 total: 173.52 KB/s 8.84 MB/s 9.01 MB/s

The network interfaces in modern servers are generally 10 or 100 Gigabit Ethernet

cards, and the chance that these cards are limiting the amount of data that can be

transferred between client and server is small. However, if you have an older server

using something less than a 10GbE card, then upgrading your network card is a cheap

optimization.

However, while the network interface on the server is unlikely to be a problem, the

network between client and server is likely to contain a variety of routers and switches

with disparate performance characteristics. Furthermore, the distance between

client and server creates latency that cannot be avoided. The network round trip time

between an application and MongoDB server is very often a limiting factor on overall

performance.

You can measure the round trip time between two servers by using a command like

ping or traceroute. Here, we measure the network latency to three widely dispersed

replica set members:

Chapter 10 Server Monitoring

224

$ traceroute mongors01.eastasia.cloudapp.azure.com --port=27017 -T

traceroute to mongors01.eastasia.cloudapp.azure.com (23.100.91.199), 30

hops max, 60 byte packets

 1 * * *

 . . .

18 * * 23.100.91.199 (23.100.91.199) 118.392 ms

$ traceroute mongors02.japaneast.cloudapp.azure.com --port=27017 -T

traceroute to mongors02.japaneast.cloudapp.azure.com (20.46.164.146), 30

hops max, 60 byte packets

 1 * * *

 . . .

19 * 20.46.164.146 (20.46.164.146) 128.611 ms

$ traceroute mongors03.koreacentral.cloudapp.azure.com --port=27017 -T

traceroute to mongors03.koreacentral.cloudapp.azure.com (20.194.1.136), 30

hops max, 60 byte packets

 1 * * *

 . . .

26 * * *

27 20.194.1.136 (20.194.1.136) 152.857 ms

It can also be useful to measure the time taken to respond to a very simple MongoDB

command such as rs.isMaster(). When we run rs.isMaster() from a shell on the

server host, we see a minimal delay:

mongo> var start=new Date();

mongo> var isMaster=rs.isMaster();

mongo> print ('Elapsed time', (new Date())-start);

Elapsed time 14

When we run rs.isMaster() from a remote host, the elapsed time is several

hundred milliseconds longer as a result of network latency:

mongo> var start=new Date();

mongo> var isMaster=rs.isMaster();

mongo> print (‘Elapsed time’, (new Date())-start);

Elapsed time 316

Chapter 10 Server Monitoring

225

If your network latency is unreasonably high – more than a couple of 100ms – then

you might check your network configuration. Your network administrator or ISP might

need to be involved in tracking down the cause of the delay.

However, in a complex network topology, the cause of the network latency might be

outside of your control. In general, the best ways to deal with network latency are

•	 Move your application workload “closer” to your database server.

Application servers should ideally be in the same region, data center,

or even in the same rack as your MongoDB servers.

•	 Reduce the number of network round trips in your application. We

discussed ways of optimizing network round trips in Chapters 6 and 8.

Tip N etwork latencies of more than a few 100ms are a cause of concern.
Investigate your network hardware and topology, and consider moving your
application code "closer" to your MongoDB server. In either case, make sure you
are minimizing network round trips using the techniques discussed earlier in this
book.

�CPU
CPU bottlenecks often cause poor performance. The MongoDB server process consumes

CPU when parsing requests, accessing data in the cache, and for a myriad of other

purposes.

When investigating CPU utilization, it’s understandable that most people start

with the CPU percent busy metric. However, this metric is only useful when the CPU

utilization is under 100%. Once the CPU utilization hits 100%, the much more important

metric is the run queue.

The run queue – sometimes called load average – reflects the average number of

processes that want to use a CPU, but must wait while some other process is currently

monopolizing the CPU. The run queue is a better measure of CPU load than CPU

percent busy because even when the CPUs are fully utilized, the demand for CPU can

still increase and hence the run queue can still grow. Large run queues are almost always

associated with poor response time.

Chapter 10 Server Monitoring

226

We like to think of CPUs and run queues as analogous to a supermarket checkout.

Even when all the checkouts are busy, you’ll still get out of the supermarket quickly,

providing that there are not large queues in front of the checkouts. It’s when the queues

start to grow that you start to worry.

Figure 10-1 illustrates the relationship between run queue, CPU percent busy, and

response time. As the workload increases, all three measures increase. However, CPU

percent busy maxes out at 100%, while the run queue and response time continue to

increase in a highly correlated fashion. The run queue is, therefore, your best measure of

CPU utilization.

Ideally, the run queue should not exceed about two times the number of CPUs on

your system. For instance, in Figure 10-1, the host system had four CPUs; therefore, run

queues of about 8–10 represented maximum CPU utilization.

Tip  "CPU run queue" or "load average" is the best single metric of CPU load. The
run queue should stay below about two times the number of CPUs available on the
system.

Figure 10-1.  Relationship between run queue, CPU percent busy, and response
time

Chapter 10 Server Monitoring

227

To get run queue values on Linux, you can issue the uptime command:

$ uptime

 06:38:39 up 42 days … load average: 12.77, 3.66, 1.37

The command reports the average run queue length (load average) over the last 1, 5,

and 15 minutes.

On Windows, you can issue the following Get-Counter command from a PowerShell

prompt:

PS C:\Users\guy> Get-Counter '\System\Processor Queue Length' -MaxSamples 5

Timestamp CounterSamples

--------- --------------

29/08/2020 1:32:20 PM \\win10\system\processor queue length :

 4

29/08/2020 1:32:21 PM \\win10\system\processor queue length :

 1

�Memory
All computer applications use memory to store data being processed. Databases are

particularly heavy users of memory because they typically cache data in memory to

avoid performing excessive disk IO.

We’ve dedicated the next chapter to MongoDB memory management. Please check

out Chapter 11 to learn more about memory monitoring in general and MongoDB

memory management specifically.

�Disk IO
Disk IO is so central to database performance that we have allocated Chapters 12 and

13 to this topic. We’ll cover all aspects of disk IO performance management in those

chapters.

Chapter 10 Server Monitoring

228

�MongoDB Server Monitoring
The db.serverStatus() command is the ultimate source for most of the raw metrics you

need to understand MongoDB server performance. We introduced db.serverStatus()

in Chapter 3. However, raw numbers can be challenging to interpret, and so there are a

variety of tuning tools that present the information in a more readily consumable format.

�Compass
MongoDB Compass (Figure 10-2) is the official GUI for working with MongoDB and is

available for free at mongodb.com. Although the Compass performance dashboard is

relatively simple, it can be a useful getting started point. If you’ve downloaded MongoDB

community edition, you probably already have Compass.

Figure 10-2.  MongoDB Compass monitoring

Chapter 10 Server Monitoring

229

�Free Monitoring
MongoDB also provides a simple way to access a cloud-based performance dashboard

for any MongoDB server. Similar to the Compass dashboard, the Free Monitoring

dashboard (Figure 10-3) provides a minimal view on performance but serves as a free

and straightforward way to get a summary of MongoDB performance.

Free Monitoring is available for community edition servers from version 4.0

onward. The server host firewall must allow access to http://cloud.mongodb.com/

freemonitoring.

Figure 10-3.  MongoDB Free Monitoring

Chapter 10 Server Monitoring

http://cloud.mongodb.com/freemonitoring
http://cloud.mongodb.com/freemonitoring

230

To enable Free Monitoring, simply log in to your MongoDB server and run db.

enableFreeMonitoring(). If all goes well, you’ll be provided with an URL that points to

your monitoring dashboard:

rsUser:PRIMARY> db.enableFreeMonitoring()

{

 "state" : "enabled",

 �"message": "To see your monitoring data, navigate to the unique

URL below. Anyone you share the URL with will also be able to

view this page. You can disable monitoring at any time by running

db.disableFreeMonitoring().",

 �"url" : "https://cloud.mongodb.com/freemonitoring/cluster/

WZFEDJBMA23QISXQDEDXACFWGB2OWQ7H",

 "userReminder" : "",

 "ok" : 1,

 "operationTime" : Timestamp(1599995708,

�Ops Manager
MongoDB Ops Manager (often referred to just as “Ops Man”) is MongoDB’s

commercial platform for managing, monitoring, and automating MongoDB server

operations (Figure 10-4). Ops Man can be deployed alongside your existing servers

or be used to create new infrastructure. Along with the automation and deployment

capabilities, Ops Man also offers a performance monitoring dashboard for all

registered deployments.

Chapter 10 Server Monitoring

231

�MongoDB Atlas

If you’ve created a cluster on MongoDB’s Atlas database-as-a-service platform, you’ll

have access to a graphical monitoring interface which is very similar to MongoDB Ops

Manager. The Atlas dashboard (Figure 10-5) provides the ability to configure metrics and

select time windows for generating activity graphs. Premium clusters (M10 and above)

will also have access to real-time monitoring.

Figure 10-4.  MongoDB Ops Manager

Chapter 10 Server Monitoring

232

�Third-Party Monitoring Tools

There are also a wide variety of free and commercial monitoring tools that offer strong

support for MongoDB. Some of the most popular are

•	 Percona specializes in open source database software and services.

As well as offering their own distribution of MongoDB, they offer the

Percona Monitoring and Management platform, which provides real-

time and historical performance monitoring of MongoDB servers.

•	 Datadog is a popular monitoring platform that offers diagnostics for

all elements of an application stack. They offer a dedicated module

for MongoDB.

Figure 10-5.  MongoDB Atlas monitoring

Chapter 10 Server Monitoring

233

•	 SolarWinds acquired VividCortex in 2019. The VividCortex product

for MongoDB offered a somewhat unique monitoring solution for

MongoDB that used low-level instrumentation to enable high-

granularity tracing of MongoDB performance.

�Summary
We’ve argued throughout this book that you should optimize your workload and

database design before changing hardware or server configuration. However, once you

have a well-tuned application, it’s time to monitor and tune your server.

The operating system provides four critical resources to the MongoDB server –

network, CPU, memory, and disk IO. In this chapter, we looked at monitoring and

understanding CPU and memory. In the next two chapters, we’ll dig deep into memory

and disk IO.

In Chapter 3, we reviewed the essential tools for MongoDB tuning. Graphical

monitoring can supplement these tools by providing better visualization and historical

trending. MongoDB provides free graphical monitoring in the Compass desktop GUI and

the cloud-based Free Monitoring dashboard. More extensive monitoring can be found in

MongoDB’s commercial offerings: MongoDB Atlas and MongoDB Ops Manager. Many

commercial monitoring tools also offer insight into MongoDB performance.

Chapter 10 Server Monitoring

PART IV

Server Tuning

237
© Guy Harrison, Michael Harrison 2021
G. Harrison and M. Harrison, MongoDB Performance Tuning, https://doi.org/10.1007/978-1-4842-6879-7_11

CHAPTER 11

Memory Tuning
In the earlier chapters of this book, we looked at techniques for reducing the workload

demands on the MongoDB server. We considered options for structuring and indexing

our datasets and tuning our MongoDB requests to minimize the amount of data that has

to be processed in response to a work request. Maybe 80% of the performance gains from

performance tuning come from these application-level optimizations.

However, at some point, our application schema and code is as optimized as it is ever

going to be, and the demands we are placing on the MongoDB server are reasonable.

Our priority now is to ensure that MongoDB can respond quickly to our requests. When

we send a data request to MongoDB, the most critical factor becomes is the data in

memory or does it have to be fetched from disk?

Like all databases, MongoDB uses memory to avoid disk IO. A read from memory

typically takes about 20 nanoseconds. A read from a very fast Solid State Disk takes about

25 microseconds – 1000 times as long. A read from a magnetic disk might take 4–10

milliseconds – that’s another 2000 times slower! So MongoDB – like all databases – is

architected to avoid disk IO whenever possible.

�MongoDB Memory Architecture
MongoDB supports a variety of pluggable storage engines, each of which utilizes

memory differently. Indeed, there is even an in-memory storage engine which stores

active data only in memory. However, in this chapter, we are going to focus solely on the

default WiredTiger storage engine.

When using the WiredTiger storage engine, the bulk of the memory consumed by

MongoDB is usually the WiredTiger cache.

https://doi.org/10.1007/978-1-4842-6879-7_11#DOI

238

MongoDB allocates additional memory based on workload demand. You can’t

directly control the amount of additional memory allocated, although workload and

some server configuration parameters do influence the total amount of memory

allocated. The most significant memory allocations are associated with sorting and

aggregation operations – we looked at these in Chapter 7. Every connection to MongoDB

also requires memory.

Within the WiredTiger cache, memory is allocated to caching collection and index

data, for snapshots supporting transaction Multi-Version Consistency Control (see

Chapter 9), and to buffer the WiredTiger write-ahead log.

Figure 11-1 illustrates the significant components of MongoDB memory.

Figure 11-1.  MongoDB memory architecture

Chapter 11 Memory Tuning

239

�Host Memory
Although configuring MongoDB memory is a big topic, from an operating system

perspective, memory management is very simple. Either there is some free memory

available, and everything is fine, or there is not enough free memory and things are

awful.

When physical free memory is exhausted, then attempts to allocate memory will

result in existing memory allocations “swapping out” to disk. Since the disk is many

hundreds of times slower than memory, memory allocations suddenly take many orders

of magnitude longer to satisfy.

Figure 11-2 shows how response time suddenly declines when memory runs out.

Response time remains stable as free memory decreases, but as soon as memory is

exhausted and disk-based swap is involved, response time degrades suddenly and

significantly.

Figure 11-2.  Memory, swap, and response time

Chapter 11 Memory Tuning

240

Tip  When server memory is over-utilized, then memory may be swapped to
disk. On a MongoDB server, this almost always indicates that there is insufficient
memory for the MongoDB memory configuration.

While we don’t want to see memory over-allocation and swapping, we also don’t

want to see massive amounts of unallocated memory. Unused memory serves no useful

purpose – it’s probably better to allocate that memory to the WiredTiger cache than to

allow it to be unused.

�Measuring Memory
On Linux systems, you can use the vmstat command to show available memory:

$ vmstat -s

 16398036 K total memory

 10921928 K used memory

 10847980 K active memory

 3778780 K inactive memory

 1002340 K free memory

 4236 K buffer memory

 4469532 K swap cache

 0 K total swap

 0 K used swap

 0 K free swap

The most critical counters here are active memory – which represents memory

currently allocated to a process and used swap, which indicates how much memory

has been swapped to disk. If active memory is approaching total memory, you may be

about to experience a memory shortage. Used swap should generally be zero, though

it’s possible after a memory shortage has been resolved for swap to contain inactive

memory for some time.

On Windows, you can measure memory using the resource monitor application or

issue the following command from a PowerShell prompt:

PS C:\Users\guy> systeminfo |Select-string Memory

Chapter 11 Memory Tuning

241

Total Physical Memory: 16,305 MB

Available Physical Memory: 3,363 MB

Virtual Memory: Max Size: 27,569 MB

Virtual Memory: Available: 6,664 MB

Virtual Memory: In Use: 20,905 MB

The db.serverStatus() command provides details of how much memory MongoDB

is using. The following script prints out a top-level summary of memory utilization:1

mongo>function memory() {

... let serverStats = db.serverStatus();

... print('Mongod virtual memory ', serverStats.mem.virtual);

... print('Mongod resident memory', serverStats.mem.resident);

... print(

... 'WiredTiger cache size',

... Math.round(

... serverStats.wiredTiger.cache

 ['bytes currently in the cache'] / 1048576

...)

...);

... }

mongo>memory();

Mongod virtual memory 9854

Mongod resident memory 8101

WiredTiger cache size 6195

The report tells us that MongoDB had allocated 9.8GB of virtual memory, 8.1GB

of which was currently actively allocated to physical memory. The difference between

virtual and resident memory often represents memory that has been allocated, but not

yet used.

Of the 9.8GB of memory allocated, 6.1GB is assigned to the WiredTiger cache.

1�This script in included within our tuning scripts as mongoTuning.memoryReport().

Chapter 11 Memory Tuning

242

�WiredTiger Memory
The vast majority of MongoDB production deployments use the WiredTiger storage

engine. And for those deployments, the largest chunk of memory will be the WiredTiger

cache. In this chapter, we’ll discuss only the WiredTiger storage engine, since while other

storage engines exist, they are nowhere near as widely deployed as WiredTiger.

The WiredTiger cache has a massive effect on server performance. Without the

cache, every data read would be a disk read. The cache typically reduces the number

of disk reads by more than 90% and consequently allows for orders of magnitude

improvements in throughput.

�Cache Size
By default, the WiredTiger cache will be set to either 50% of total memory minus 1GB

or to 256MB, whichever is largest. So, for instance, on a 16GB server, you would expect

a default size of 7GB ((16/2) – 1). The remaining memory is left available for sort and

aggregation areas, connection memory, and operating system memory.

The default WiredTiger cache size is a useful starting point, but rarely the optimal

value. If other workloads are running on the same host, it may be too high. Conversely,

on a large memory system dedicated to MongoDB, it may be too low. Given the

importance of the WiredTiger cache to performance, you should be ready to adjust the

cache size to meet your needs.

Tip T he default WiredTiger cache size is a useful starting point, but rarely
the optimum value. Determining and setting the optimal value will usually be
worthwhile.

The mongod configuration parameter wiredTigerCacheSizeGB controls the

maximum size of the cache. In the MongoDB configuration file, this is represented by the

storage/WiredTiger/engineConfig/cacheSizeGB path. For instance, to set the cache

size to 12GB, you would specify the following in your mongod.conf file:

storage:

 wiredTiger:

 engineConfig:

 cacheSizeGB: 12

Chapter 11 Memory Tuning

243

You can adjust the size of the WiredTiger cache on a running server. The following

command adjusts the cache size to 8GB:

 db.getSiblingDB('admin').runCommand({setParameter: 1,

 wiredTigerEngineRuntimeConfig: 'cache_size=8G'});

�Determining the Optimum Cache Size
A cache that is too small can result in an increase in IO, which can degrade performance.

On the other hand, increasing the cache size beyond the available operating system

memory can lead to swapping and even more disastrous performance degradation.

Increasingly, MongoDB is deployed in cloud containers where the amount of available

memory can be adjusted dynamically. Even so, memory is often the most expensive

resource in a cloud environment, and so “throwing more memory” at the server without

evidence is undesirable.

So, how do we determine the correct amount of cache memory? There is no

definitive method of determining if more cache memory will lead to better performance,

but we do have a few indicators that might guide us. The two most important are

•	 The cache “hit” ratio

•	 The eviction rate

�The Database Cache "Hit" Ratio
The database cache hit ratio is a somewhat notorious metric with a long history.

Simplistically, the cache hit ratio describes how often you find a block of data you want

in memory:

	
CacheHitRatio Number of IO requests that were satisfied in t

=
 hhe cache

Total IO requests

	

The cache hit ratio represents the proportion of block requests that are satisfied by

the database cache without requiring a disk read. Each “hit” – when the block is found in

memory – is a good thing, since it avoids a time-consuming disk IO. Therefore, it seems

intuitively obvious that a high buffer cache hit ratio is also a good thing.

Chapter 11 Memory Tuning

244

Unfortunately, while the cache hit ratio clearly measures something, it’s not always

or even usually true that a high cache hit ratio is indicative of a well-tuned database. In

particular, poorly tuned workloads often read the same data blocks over and over again;

these blocks are almost certainly in memory, so the most grossly inefficient operations

ironically tend to generate very high Cache Hit Ratios. An Oracle DBA Connor McDonald

famously created a script that could generate any desired hit ratio, essentially by reading

the same blocks over and over again. Connor’s script performs no useful work but can

achieve an almost perfect hit ratio.

Tip T here is no "correct" value for the cache hit ratio – high values are just as
likely to be the result of poorly tuned workloads as the result of well-tuned memory
configuration.

That having all been said, for a well-tuned workload (one with a sound schema

design, appropriate indexes, and optimized aggregation pipelines), observing the

WiredTiger hit ratio can give you an idea of how well your WiredTiger cache is sustaining

your MongoDB workload demand.

Here’s a script to calculate the hit rate:

mongo> var cache=db.serverStatus().wiredTiger.cache;

mongo> var missRatio=cache['pages read into cache']*100/cache['pages

requested from the cache'];

mongo> var hitRatio=100-missRatio;

mongo> print(hitRatio);

99.93843137484377

This calculation returns the cache hit rate since the server was last started. To

calculate the rate over a shorter period of time, you can use the following command from

our tuning scripts:

mongo> mongoTuning.monitorServerDerived(5000,/cacheHitRate/)

{

 "cacheHitRate": "58.9262"

}

This shows that the cache hit ratio over the preceding 5 seconds was 58%.

Chapter 11 Memory Tuning

245

Providing our workload is well tuned, a low cache hit ratio suggests that increasing

the WiredTiger cache might improve performance.

Figure 11-3 shows how various cache sizes affected the miss rate and throughput. As

we increase the size of the cache, our hit rate increases and throughput also increases.

The low initial hit rate, therefore, was an indication that increasing the cache size might

increase throughput.

As we increase the size of the cache, we might see an increase in the hit rate and an

increase in throughput. The key word in the last sentence is might: some workloads will

see little or no benefit from an increased cache size, either because all the data needed

is already in memory or because some of the data is never re-read and therefore can’t

benefit from caching.

As imperfect as it is, the WiredTiger miss rate is a crucial health metric for many

MongoDB databases.

Figure 11-3.  WiredTiger cache size (MB), miss rates, and throughput

Chapter 11 Memory Tuning

246

To quote the Mongodb manual:

Performance issues may indicate that the database is operating at capacity
and that it is time to add additional capacity to the database. In particular,
the application's working set should fit in the available physical memory.

A high cache hit ratio is the best indicator we have that the working set does fit into

memory.

Tip P roviding your workload is tuned, a low WiredTiger cache hit rate may be an
indication that the WiredTiger cache size should be increased.

�Evictions
Caches generally can’t hold everything in memory. Typically, caches try to keep the most

frequently accessed documents in memory by keeping only the most recently accessed

pages of data in the cache.

Once the cache reaches its maximum size, making room for new data requires that

old data be removed – evicted – from the cache. The pages of data that are removed are

generally the Least Recently Used (LRU) pages.

MongoDB doesn’t wait until the cache is completely full before performing evictions.

By default, MongoDB will try and keep 20% of the cache free for new data and will start

to restrict new pages from coming into cache when the free percentage hits 5%.

If a data item in cache has not been modified, then eviction is almost instantaneous.

However, if a block of data has been modified, then it cannot be evicted until it is

written to disk. These disk writes take time. For this reason, MongoDB tries to keep the

percentage of modified – “dirty” – blocks under 5%. If the percentage of modified blocks

hits 20%, then operations will be blocked until the target value is achieved.

The MongoDB server allocates dedicated threads to eviction processing – by default,

four eviction threads are allocated.

�Blocking Evictions

When the number of clean blocks or dirty blocks hits the higher threshold values, then

sessions that try to bring new blocks into the cache will be required to perform an

eviction before the read operation can complete.

Chapter 11 Memory Tuning

247

Because “urgent” evictions can block operations, you want to make sure that the

eviction configuration is avoiding this scenario. These “blocking” evictions are recorded

in the WiredTiger parameter “page acquire eviction blocked”:

db.serverStatus().wiredTiger["thread-yield"]["page acquire eviction blocked"]

These blocking evictions should be kept relatively rare. You can calculate the overall

ratio of blocking evictions to overall evictions as follows:

mongo> var wt=db.serverStatus().wiredTiger;

mongo> var blockingEvictRate=wt['thread-yield']['page acquire eviction

blocked'] *100 / wt['cache']['eviction server evicting pages'];

mongo>

mongo> print(blockingEvictRate);

0.10212131891589296

You can calculate the ratio over a smaller time period using our tuning script:

mongo> mongoTuning.monitorServerDerived(5000,/evictionBlock/)

{

 "evictionBlockedPs": 0,

 "evictionBlockRate": 0

}

If the blocking eviction rate is significant, it might indicate a more aggressive eviction

policy is warranted. Either start evictions earlier or apply more threads to the eviction

process. It is possible to change WiredTiger eviction configuration values, but it’s a risky

procedure, partially because although you can set the values, you cannot directly retrieve

the existing values.

For instance, the following command set the eviction thread counts and targets to

their published default values:

mongo>db.adminCommand({

... setParameter: 1,

... wiredTigerEngineRuntimeConfig:

... `eviction=(threads_min=4,threads_max=4),

... eviction_dirty_trigger=5,eviction_dirty_target=1,

... eviction_trigger=95,eviction_target=80`

... });

Chapter 11 Memory Tuning

248

If evictions appeared to be problematic, we could try increasing the number of

threads or changing the threshold values to promote a more or less aggressive eviction

processing regime.

Tip I f there is a high rate of "blocking" evictions, then a more aggressive eviction
policy might be warranted. But be very cautious when adjusting WiredTiger internal
parameters.

�Checkpoints
When an update or other data manipulation statement changes data in the cache, it is

not immediately reflected in the datafiles that represent the durable representation of

the document. A representation of the data change is written to a sequential write-ahead

journal. These sequential journal writes can be used to recover the data in the case of a

server crash, and the sequential writes involved are much faster than the random writes

that would be required to keep the datafiles in absolute sync with the cache.

However, we don’t want the cache to move too far in advance of the datafiles –

partially because it will increase the time to recover the database in the case of a server

crash. For this reason, MongoDB periodically ensures that the datafiles are synchronized

with the changes in the cache. These checkpoints involve writing out the modified “dirty”

blocks to disk. By default, checkpoints occur every 60 seconds.

Checkpoints are IO-intensive – depending on the size of the cache and the amount of

dirty data in the cache, many gigabytes of information might have to be flushed to disk.

As a result, checkpoints generally cause noticeable slowdowns in throughput – especially

for data manipulation statements.

Figure 11-4 illustrates the impact of checkpoints – every 60 seconds; there is

a sudden drop in throughput when checkpoints occur. The result is a “sawtooth”

performance pattern.

Chapter 11 Memory Tuning

249

This sawtooth performance profile may or may not be of concern. However, there

are a few options for changing the impacts of checkpoints. The following settings are

relevant:

•	 The eviction_dirty_trigger and eviction_dirty_target

settings – discussed in the previous section – control how many

modified blocks are allowed in the cache before eviction processing

kicks in. These can be adjusted to reduce the number of modified

blocks in the cache, reducing the amount of data that must be written

to disk during a checkpoint.

•	 The eviction.threads_min and eviction.threads_max settings

specify how many threads will be dedicated to eviction processing.

Allocating more threads to evictions will accelerate the rate of

eviction processing, which could, in turn, leave fewer blocks in the

cache to flush during a checkpoint.

Figure 11-4.  Checkpoints can create uneven performance

Chapter 11 Memory Tuning

250

•	 The checkpoint.wait setting can be adjusted to increase or reduce

the time between checkpoints. If a high value is set, then the

probability is that eviction processing will end up writing most of the

blocks to disk before the checkpoint occurs, and the overall impact of

the checkpoints might be reduced. However, it’s also possible that the

overhead of these delayed checkpoints will be massive.

There is no one correct setting for checkpointing, and sometimes the impact of

checkpointing can be counter-intuitive. For instance, the overhead of checkpointing can

be greater when you have a large WiredTiger cache. This is because the default eviction

policies for modified blocks are set to a percentage of the WiredTiger cache – the greater

the cache size, the more “lazy” the eviction processor will become.

However, if you are willing to experiment, you might be able to establish a lower

checkpoint overhead by adjusting the time between checkpoints and the aggressiveness

of eviction processing. For instance, here we adjust checkpoints to occur every 5

minutes, increase the eviction thread count, and lower the target threshold for dirty

block evictions:

db.adminCommand({

 setParameter: 1,

 wiredTigerEngineRuntimeConfig:

 `eviction=(threads_min=10,threads_max=10),

 checkpoint=(wait=500),

 eviction_dirty_trigger=5,

 eviction_dirty_target=1`

 });

We want to make it absolutely clear that we are not recommending the preceding

settings, nor are we recommending you modify these parameters at all. However, if you

are concerned that checkpoints are creating unpredictable response times, these settings

might be helpful.

Tip  Checkpoints write out modified pages to disk every one minute by default.
If you are experiencing a dip in performance on a one-minute cycle, you might
consider adjusting – carefully – the WiredTiger checkpoint and dirty eviction
policies.

Chapter 11 Memory Tuning

251

�WiredTiger Concurrency
Reading and writing data in the WiredTiger cache requires that a thread obtain a read

or write “ticket.” By default, there are 128 of these tickets available. db.serverStatus()

reports on the number of tickets available in the wiredTiger.concurrentTransactions

section:

mongo> db.serverStatus().wiredTiger.concurrentTransactions

{

 "write": {

 "out": 7,

 "available": 121,

 "totalTickets": 128

 },

 "read": {

 "out": 28,

 "available": 100,

 "totalTickets": 128

 }

}

In the preceding example, 28 of 128 read tickets are in use, and 7 of 128 write tickets.

Given the short duration of most MongoDB operations, 128 tickets are

usually adequate – if there are more than 128 concurrent operations, a bottleneck

elsewhere in the server or operating system is likely – either queuing for CPU or

queuing for MongoDB internal locks. However, these ticket counts can be increased

by adjusting the parameters wiredTigerConcurrentReadTransactions and

wiredTigerConcurrentWriteTransactions. For instance, to increase the number of

concurrent readers to 256, we could issue the following command:

db.getSiblingDB("admin").

 �runCommand({ setParameter: 1, wiredTigerConcurrentReadTransactions: 256

});

However, be careful when increasing the number of concurrent readers, as higher

values may overwhelm available hardware resources.

Chapter 11 Memory Tuning

252

�Reducing Application Memory Demand
As we emphasized earlier, the best tuning outcomes occur when you tune your

application design and workload before tuning your hardware and server configuration.

You can often get a performance improvement by adding memory to a server that is

experiencing a high IO overhead. However, memory is not free, whereas creating an

index or adjusting some code costs you nothing – at least in dollar terms.

We covered the key application tuning principles in the first ten chapters of this

book. However, it’s worth recapping on a few here, with respect to how they affect

memory consumption.

�Document Design
The WiredTiger cache stored complete document copies, not just the parts of the

document you are interested in. So, for instance, if you have a document which looks like

this:

{

 _id: 23,

 Ssn: 605-21-9090,

 Name: 'Guy Harrison',

 Address: '89 InfiniteLoop Drive, Cupertino, CA 9000',

 HiResScanOfDriversLicense : BinData(0,"eJy0kb2O1UAMhV ……… ==")

}

the document is fairly small, except for a massive binary representation of the users’

driver’s licenses. The WiredTiger cache will need to store all the high-resolution scans

of driver’s license in the cache, whether you ask for them or not. Therefore, to maximize

memory, you may wish to adopt the vertical partitioning design pattern introduced in

Chapter 4. We could put the driver’s license scans in a separate collection which would

only be loaded into the cache when needed, rather than whenever an SSN record is

accessed.

Tip R emember, the larger the document size, the fewer documents can be stored
in the cache. Keeping documents small improves cache efficiency.

Chapter 11 Memory Tuning

253

�Indexing
Indexes offer a fast path to selected data, but also help with memory as well. When we

search for data using a full collection scan, all documents are loaded into the cache

regardless of whether the document matches the filter criteria. Therefore, indexed

lookups help keep the cache relevant and effective.

Indexes also reduce the memory required by sorts. We saw in Chapters 6 and 7 how

to avoid disk sorts using indexes. However, if we perform lots of memory sorts, then

we are going to require operating system memory (outside of the WiredTiger cache) to

perform these sorts. Indexed sorts don’t have the same sort of memory overhead.

Tip I ndexes help reduce memory demand by introducing only required
documents into the cache and by reducing the memory overhead of sorts.

�Transactions
We saw in Chapter 9 how MongoDB transactions use snapshots of data to ensure that

sessions do not read from uncommitted versions of documents. Prior to MongoDB 4.4,

these snapshots are held in the WiredTiger cache and reduce the amount of memory

available for other purposes.

Consequently, prior to MongoDB 4.4, adding transactions to your application will

increase the amount of memory required in your WiredTiger cache. Furthermore,

if you adjust the transactionLifetimeLimitSeconds parameter to allow for longer

transactions, you will increase the memory pressure even more. From MongoDB 4.4

onwards, snapshots are stored to disk as “durable history” and the memory impact of

long transactions is less significant.

Chapter 11 Memory Tuning

254

�Summary
Like all databases, MongoDB uses memory primarily to avoid disk IO. If possible, you

should tune your application workload before tuning memory, since changes to schema

design, indexing, and queries will all change the memory demands of your application.

In a WiredTiger implementation, MongoDB memory consists of the WiredTiger

cache – primarily used to cache frequently accessed documents – and operating system

memory which is used for a variety of purposes, including connection data and sort

areas. Whatever your memory footprint, make sure it never exceeds the operating system

memory limit; otherwise, some of this memory may be swapped out to disk.

The most significant tuning knob you have available is the WiredTiger cache size. It

defaults to a little under one-half of operating system memory and can be increased in

many cases, especially if there is abundant free memory on your server. The “hit rate” in

the cache is one indicator that might suggest a need to increase memory.

The cache and other areas of memory serve to avoid disk IO, but eventually, some

disk IO has to occur for the database to do its work. In the next chapter, we will consider

how to measure and optimize necessary disk IO.

Chapter 11 Memory Tuning

255
© Guy Harrison, Michael Harrison 2021
G. Harrison and M. Harrison, MongoDB Performance Tuning, https://doi.org/10.1007/978-1-4842-6879-7_12

CHAPTER 12

Disk IO
In the preceding chapters, we’ve done everything we possibly could to avoid disk

IO. By optimizing our database design and tuning queries, we minimized the workload

demand and consequently reduced the logical IO demand on MongoDB. Optimizing

memory reduced the amount of that workload that translated into disk activity. If you’ve

applied the practices in the previous chapters, then your physical disk demand has been

minimized: now it’s time to optimize the disk subsystem to meet that demand.

Reducing IO demand should almost always come before disk IO tuning. Disk

tuning is often expensive in terms of time, money, and database availability. It may

involve buying expensive new disk devices and performing time-consuming data

reorganizations that result in reduced availability and performance. If you attempt these

things before tuning workload and memory, then you may be unnecessarily optimizing

the disks for an unrealistic demand.

�IO Fundamentals
Before we look at how MongoDB performs disk IO operations and at the various types

of IO systems that you might deploy, it’s worthwhile reviewing some of the fundamental

concepts that apply to any disk IO system and any database system.

�Latency and Throughput
Disk devices have two fundamental characteristics that concern us from a performance

point of view: latency and throughput.

https://doi.org/10.1007/978-1-4842-6879-7_12#DOI

256

Latency describes the time it takes to retrieve a single item of information from the disk.

For a spinning disk drive, this is the time it takes to rotate the disk platter into the correct

position (rotational latency), plus the time it takes to move the read/write head into position

(seek time) plus the time taken to transfer the data from the disk to the server. For Solid State

Disks, there is no mechanical seek time or rotational latency, just the transfer time.

IO throughput describes the number of IOs that can be performed by the disk devices

in a given unit of time. Throughput is generally expressed in terms of IO operations per

second, often abbreviated as IOPS.

For a single disk device – and especially for an SSD – throughput and latency are

intimately related. The throughput is directly determined by the latency – if each IO takes

one-thousandth of a second, then the throughput should be 1000 IOPS. However, when

multiple devices are combined into a logical volume, the latency and throughput have

a less direct relationship. Furthermore, in magnetic disks, the throughput for sequential

reads is much higher than for random reads.

For most database servers, data is stored on multiple disk devices and “striped” across

the disks concerned. In this case, IO bandwidth is a function of the types of IO operations

(random vs. sequential), service time, and the number of disks. For instance, a perfectly

striped disk array containing ten disks with 10ms service times would have a random IO

bandwidth of approximately 1000 IOPS (100 IOPS for each disk times ten disks).

�Queuing
The service time for disk devices remains fairly predictable when the disk is idle and

awaiting requests. The service time will vary somewhat depending on the disk’s internal

cache and – for a magnetic disk – the distance that the read/write head needs to move

to acquire the relevant data. But in general, the response time will be within the range

quoted by the disk manufacturer.

However, as the number of requests increases, some requests will have to wait while

other requests are serviced. As the request rate increases, eventually a queue forms. Just

as in a busy supermarket, you soon find you are spending more time in the queue than

actually being serviced.

Because of queuing, disk latency increases sharply as a disk system approaches full

capacity. When the disk becomes 100% busy, any additional requests simply increase

the length of the queue and service time increases without any consequent increase in

throughput.

Chapter 12 Disk IO

257

The lesson here is that latency increases as we increase the throughput of a disk.

Figure 12-1 illustrates the typical relationship between throughput and latency:

increasing throughput is usually associated with increasing latency. Eventually, no more

throughput can be achieved; at this point, any increase in the request rate increases

latency without increasing throughput.

Figure 12-1.  Latency vs. throughput

Note  Latency and throughput are correlated: increasing the throughput or
demand on disk devices will usually result in an increase in latency. To minimize
latency, it may be necessary to run disks at less than maximum throughput.

If an individual disk has a limit on its maximum IOPS, then achieving a higher IO

throughput rate will require deploying more physical disks. Unlike latency calculations –

which are governed by the relatively complex queuing theory calculations – the calculation

for the number of disk devices required is simple. If an individual disk can perform 100

IOPS while delivering acceptable latency and we believe we need to deliver 500 IOPS, then

we are likely to need at least five disk devices.

Chapter 12 Disk IO

258

Tip T he throughput of an IO system is primarily determined by the number of
physical disk devices it contains. To increase IO throughput, increase the number of
physical disks in disk volumes.

However, it’s not always possible to determine the “comfortable” IO rate – the

IO rate that delivers acceptable service time – for a disk device. Disk vendors specify

the minimum latency – that which can be achieved with no contention for the disk –

and the maximum throughput – that which can be achieved while ignoring service

time constraints. Almost by definition, the quoted throughput for a disk device is the

throughput that can be achieved when the disk is 100% busy. In order to determine the

IO rate that can be achieved while obtaining service times that are near the minimum,

you will want to aim for IO rate lower than those quoted by the vendors. The exact

variance depends on how you balance response time vs. throughput in your application

and on the type of drive technologies you use. However, throughputs over 50–70% of the

vendor’s quoted maximum usually result in response times that are several times higher

than the vendor’s published minimums.

�Sequential and Random IO
For the purposes of database workloads, IO operations can be categorized across two

dimensions: read vs. write IO and sequential vs. random IO.

Sequential IO occurs when blocks of data are read in sequence. For instance, when

we read all the documents in a collection using a collection scan, we are performing

sequential IO. Random IO accesses pages of data in an arbitrary order. For instance,

when we retrieve a single document from a collection following an index lookup, we are

performing a random IO.

Table 12-1 shows how database IO maps to these two dimensions.

Chapter 12 Disk IO

259

�Disk Hardware
In this section, we’ll review the various hardware components that comprise a storage

subsystem from individual magnetic or SSD disks through to hardware and cloud-based

storage arrays.

�Magnetic Disks (HDD)
Magnetic disk or hard disk drive (HDD) has been a ubiquitous component of mainstream

computer equipment for generations of IT professionals. First introduced in the 1950s, the

fundamental technology has remained remarkably constant: one or more platters contain

magnetic charges that represent bits of information. These magnetic charges are read and

written by an actuator arm, which moves across the disk to a specific position on the radius

of the platter and then waits for the platter to rotate to the appropriate location. The time

taken to read an item of information is the sum of the time taken to move the head into

position (seek time), the time taken to rotate the item into place (rotational latency), and

the time taken to transmit the item through the disk controller (transfer time). Figure 12-21

illustrates the core architecture of a magnetic disk device.

Table 12-1.  Categories of database IO

Read Write

Random Reading individual documents

using an index

Writing data from the cache to disk

following an eviction (see Chapter 11)

Sequential Reading all the documents in a collection

using a full collection scan

Scanning index entries in order to avoid a

disk sort

Writing to the WiredTiger Journal or

Oplog

Bulk loading data into the database

1�Wikipedia: http://en.wikipedia.org/wiki/Hard_disk_drive

Chapter 12 Disk IO

http://en.wikipedia.org/wiki/Hard_disk_drive

260

This architecture has a few implications that we should be aware of with respect to

database workloads. Although random accesses are very slow – since we must wait for

the disk head to move into position – sequential reads and writes can be quite fast, since

the read head can remain in position while the sequential data rotates beneath it. This

has some implications when we compare HDD and SSD write performance a bit later.

Moore’s Law – first articulated by Intel founder Gordon Moore – observes that

transistor density doubles every 18–24 months. In its broadest interpretation, Moore’s

Law reflects the exponential growth that is commonly observed in almost all electronic

components – influencing CPU speed, RAM, and disk storage capacity.

While this exponential growth is observed in almost all electronic aspects of

computing – including hard disk densities – it does not apply to mechanical technologies

such as those underlying magnetic disk IO. For instance, had Moore’s Law been in effect

for the rotation speed of disk devices, magnetic disks today should be rotating 20 million

times faster than in the early 1960s – in fact, they are rotating only eight times faster.

Figure 12-2.  Hard disk drive architecture

Chapter 12 Disk IO

261

�Solid State Drives
Solid State Drives (SSDs) store data in semiconductor cells and have no moving parts.

They offer far lower latencies for data transfer since there is no wait for the mechanical

movement of the disk or actuator arm that is required in magnetic disk devices.

Note I t's common to refer to Solid State Devices as "disks" even though they
have no spinning disk component.

However, it was only in the past 10–15 years that Solid State Disks became cheap

enough to become an economical choice for database systems. Even now, magnetic

disks offer far cheaper storage per GB than SSDs, and for some systems, magnetic disk or

a combination of SSD and magnetic disk will offer the best price/performance mix.

The performance differences between SSDs and magnetic disks are more

complex than simply fast reads. Just as the fundamental architecture of magnetic

disk favors certain IO operations, the architecture of SSDs favors different types of

IO. Understanding how an SSD handles the different types of operations helps us make

the best decision for SSD deployment.

Note I n the following discussion, we'll concentrate on flash-based SSD
technologies, since this technology is almost universally used in database systems.
However, there are also DRAM-based SSD devices that have a higher cost and
superior performance.

�SSD Storage Hierarchy
SSDs have a three-level hierarchy of storage. Individual bits of information are stored

in cells. In a single-level cell (SLC) SSD, each cell stores only a single bit. In a multi-

level cell (MLC), each cell may store two or more bits of information. MLC SSD devices

consequently have greater storage densities, but lower performance and reliability.

Cells are arranged in pages – typically 4K in size – and pages into blocks of between

128K and 1M.

Chapter 12 Disk IO

262

�Write Performance
The page and block structure is particularly significant for SSD performance because of

the special characteristics of write IO in flash technology. Read operations, and an initial

write, require only a single page IO. However, changing the contents of a page requires

an erase and over-write of a complete block. Even the initial write is significantly slower

than a read, but the block erase operation is particularly slow – around two milliseconds.

Figure 12-3 shows the approximate times for a page seek, initial page write, and

block erase.

�Write Endurance
Write IO has another consequence in SSDs: after a certain number of writes, a cell may

become unusable. This write endurance limit differs between drives but is typically

between 10,000 cycles for a low-end MLC device and up to 1,000,000 cycles for a high-

end SLC device.

Figure 12-3.  SSD performance characteristics

Chapter 12 Disk IO

263

�Garbage Collection and Wear Levelling
Enterprise SSD manufacturers go to great efforts to avoid the performance penalty of the

erase operation and the reliability concerns raised by write endurance. Sophisticated

algorithms are used to ensure that erase operations are minimized and that writes are

evenly distributed across the device.

In an Enterprise SSD, erase operations are avoided through the use of free lists and

garbage collection. During an update, the SSD will mark the block to be modified as

invalid and copy the updated contents to an empty block, retrieved from a “free list.”

Later, garbage collection routines will recover the invalid block, placing it on a free list for

subsequent operations. Some SSDs will maintain storage above the advertised capacity

of the drive to ensure that the free list does not run out of empty blocks for this purpose.

Wear levelling is the algorithm that ensures that no particular block is subjected to a

disproportionate number of writes. It may involve moving the contents of “hot” blocks to

blocks from the free list and eventually marking overused blocks as unusable.

�SATA vs. PCI
SSDs are typically deployed in one of three form factors:

•	 SATA- or SAS-based flash drives are packaged in the same form factor

as other magnetic HDDs that attach using the traditional SAS or SATA

connectors. An example of this can be seen in Figure 12-4.

•	 PCI-based SSDs such as the one in Figure 12-5 connect directly to the

PCIe interface on the computer motherboard. The NVMe, or non-

volatile memory express, specification describes how SSDs should

attach to the PCIe and so these types of disks are often referred to as

NVMe SSDs.

•	 Flash storage servers present multiple SSDs within a rack-mounted

server with multiple high-speed network interface cards.

Chapter 12 Disk IO

264

Figure 12-4.  SSD drives in SATA and mSATA format2

2�Wikipedia: https://tinyurl.com/y4tfn3n7

Chapter 12 Disk IO

https://tinyurl.com/y4tfn3n7

265

SATA or SAS flash drives are substantially cheaper than PCI. However, the SATA

interface was designed for slower devices with millisecond latencies and, therefore,

imposes significant overhead on Solid State Drive service times. PCI-based devices can

interface directly with the server and provide the most optimal performance.

�Recommendations for SSDs
We’ve covered a lot of hardware internals in the last few pages, and you might be
wondering how to apply these to your MongoDB deployment. We can summarize the
implications of magnetic disk and SSD architectures as follows:

•	 Wherever possible, you should use SSD-based storage for MongoDB
databases. Only if you have massive amounts of “cold” – rarely
accessed – data would magnetic disk be suitable.

Figure 12-5.  SSD with PCIe/NVMe connector3

3�Wikipedia: https://tinyurl.com/y6dr2tm5

Chapter 12 Disk IO

https://tinyurl.com/y6dr2tm5

266

•	 If you are mixing storage technologies, bear in mind that HDD is
cheaper by the GB, but more expensive by the IOPS. In other words,
you’ll spend more money trying to achieve a given IO per second rate
with HDD and spend more money trying to achieve a certain amount
of GB storage with SSD.

•	 PCI-based SSDs (NVMe) are faster than SATA-based SSDs, and single-

level cell (SLC) SSDs are faster than multi-level cell (MLC) SSDs.

�Storage Arrays
We don’t usually configure a production MongoDB instance to write directly to a single

device. Rather, MongoDB accesses multiple disks that are combined into a logical

volume or storage array.

�RAID Levels
RAID – originally an acronym for Redundant Array of Inexpensive Disks4 – defines a

variety of striping and redundancy schemes. The term “RAID array” typically refers to a

storage device comprising a number of physical disk devices which can be attached to a

server and accessed as one or more logical devices.

There are three levels of RAID commonly provided by storage vendors:

•	 RAID 0 is referred to as “striping” disks. In this configuration, a

logical disk is constructed from multiple physical disks. The data

contained on the logical disk is spread evenly across the physical

disk, and hence random IOs are also likely to be spread evenly. There

is no redundancy built into this configuration, so if a disk fails, the

data on it will have to be recovered from a backup.

•	 RAID 1 is referred to as disk “mirroring.” In this configuration, a

logical disk is comprised of two physical disks. In the event that one

physical disk fails, processing can continue using the other physical

4�Changed later on by disk vendors to Redundant Array of Independent Disks; RAID systems are
usually anything but inexpensive.

Chapter 12 Disk IO

267

disk. Each disk contains identical data and writes are processed

in parallel, so there should be little or no negative effects on write

performance. Reads can occur from either of the disk pairs, so read

throughput should be increased.

•	 In RAID 5, a logical disk is comprised of multiple physical disks. Data

is arranged across the physical devices in a similar way to disk striping

(RAID 0). However, a certain proportion of the data on the physical

devices is parity data. This parity data contains enough information to

derive data on other disks should a single physical device fail.

Lower RAID levels (2–4) have similar characteristics to RAID 5, but are rarely

encountered in practice. RAID 6 is similar to RAID 5 but has more redundancy: two disks

can fail simultaneously without data loss.

It’s common to combine RAID 0 and RAID 1 (usually called RAID 10 or RAID 0+1).

Such striped and mirrored configurations offer protection against hardware failure,

together with the benefits of IO striping. RAID 10 is sometimes referred to as the SAME

(Stripe And Mirror Everything) strategy.

Figure 12-6 illustrates the various raid levels.

Chapter 12 Disk IO

268

Figure 12-6.  RAID levels

Chapter 12 Disk IO

269

You can implement RAID using directly attached disk devices using Logical Volume

Management (LVM) software provided with Linux and Windows. More commonly, RAID

is configured within hardware storage arrays. We’ll look at both of these shortly.

�The RAID 5 Write Penalty
RAID 5 provides the most economical architecture for delivering fault-tolerant storage

with IO distributed across multiple physical disks. Consequently, it’s popular both

among storage vendors and MIS departments. However, it’s a very dubious configuration

for database servers.

Both RAID 0 and RAID 5 improve the performance of concurrent random reads

by spreading the load across multiple devices. However, RAID 5 degrades write IO,

since, during a write, both the source block and the parity block must be read and then

updated – four IOs in total. This degradation becomes even more extreme if a disk fails

since all disks must be accessed in order to rebuild a logical view of the failed disk.

From a performance point of view, RAID 5 offers few advantages and very significant

drawbacks. The write penalty incurred by RAID 5 will generally degrade the performance

of checkpoints, evictions, and journal IO. RAID 5 should only ever be considered for

databases that are predominantly read-only. Even for a read-intensive database such

as a data warehouse, RAID 5 can still result in disastrous performance when large

aggregations are performed: the temporary file IO will be severely degraded and even

apparently read-only performance significantly affected.

Caution T he write penalty of RAID 5 renders it unsuitable for most databases.
Even apparently read-only databases can be degraded by RAID 5 when temporary
file IO occurs.

�Non-volatile Caches in RAID 5 Devices
The write penalty associated with RAID 5 devices can be reduced by the use of a non-

volatile cache. The non-volatile cache is a memory store with a battery backup, which

ensures that the data in the cache is not lost in the event of a power failure. Because the

data in the cache is protected against loss, it is permissible for the disk device to report

that the data has been written to disk as soon as it is stored into the cache. The data can

be written down to the physical disk at a later point in time.

Chapter 12 Disk IO

270

Battery-backed caches can improve the performance of writes immensely, especially

when the application requests confirmation that the data written has actually been

committed to disk – which MongoDB almost always does. Such caches are very common

in RAID devices, partially because they help to alleviate the overhead of disk writes in

a RAID 5 configuration. With a large enough cache, the RAID 5 writes overhead can

be practically eliminated for bursts of write activity. However, if the write activity is

sustained over time, then the cache will fill up with modified data, array performance

will then reduce to that of the underlying disks and a substantial and sudden drop in

performance may occur. The effect is quite remarkable – an abrupt and drastic reduction

in disk throughput and massive degradation in service times.

�Do It Yourself Arrays
If you have multiple devices directly attached to your host server, you may wish to stripe

and/or mirror them yourself. The procedure varies a little bit from system to system, but

on most Linux systems, you can use the mdadm command.

Here, we create a stripe volume /dev/md0 from two raw devices /dev/sdh and /dev/

sdi. The –level=0 parameter indicates a RAID 0 device.

[root@Centos8 etc]# # Make the array
[root@Centos8 etc]# mdadm --create --verbose /dev/md0 --level=0
 --name=raid1a --raid-devices=2 /dev/sdh /dev/sdi

mdadm: chunk size defaults to 512K

mdadm: Defaulting to version 1.2 metadata

mdadm: array /dev/md0 started.

[root@Centos8 etc]# # create a filesystem on the array
[root@Centos8 etc]# mkfs -t xfs /dev/md0
meta-data=/dev/md0 isize=512 agcount=16, agsize=1047424

blks

 = sectsz=4096 attr=2,

 ...

[root@Centos8 etc]# # Mount the array
[root@Centos8 etc]# mkdir /mnt/raid1a
[root@Centos8 etc]# mount /dev/md0 /mnt/raid1a
Filesystem Type 1K-blocks Used Available Use% Mounted on

/dev/md0 xfs 67002404 501408 66500996 1% /mnt/raid1a

Chapter 12 Disk IO

271

If we created multiple RAID 0 devices, we could combine them using RAID 1 to

create a RAID 10 configuration.

�Hardware Storage Arrays
Many MongoDB databases use directly attached storage devices – the server which runs

the mongod instance has complete and exclusive access to the storage devices which are

directly attached to the server using SATA, SAS, or PCIe interfaces. However, it’s at least

as common for storage and IO to be provided by an external storage device often referred

to as a storage array.

A storage array provides shared access to a pool of devices which are normally

structured in some sort of RAID configuration to provide high availability. There is often

a non-volatile memory cache which ensures that data in the cache is still written to disk

even in the event of a power failure.

A storage array connects to the server over a local – usually dedicated – network

interface and provides the server with a block device that provides all the functionality of

a directly attached disk drive.

There’s a wide variety of storage array configurations provided by various hardware

vendors. For a MongoDB server, the critical considerations for storage arrays are as

follows:

•	 No matter how good the hardware storage arrays internal

configuration, you are adding network latency to each IO request.

When compared to optimized direct-attached IO, a hardware storage

array may have higher latency.

•	 The internal configuration of the storage array matters –

recommendations regarding HDD vs. SSD, PCI vs. SATA, and SLC vs.

MLC all apply to hardware storage arrays.

•	 Hardware storage array vendors will generally try to convince you

that their RAID 5 configuration is more economical than RAID 10.

However, decades of experience in database IO argue against this

point – RAID 5 is a false economy which will generally increase the

cost of IOPS, even if it lowers the dollar cost per GB of storage.

Chapter 12 Disk IO

272

Tip  When considering an IO subsystem, remember that you have to pay for IOPS
as much as GB of storage. RAID 5 might seem more cost-effective per GB, but will
make it much harder – and ultimately more expensive – to achieve a desired write
IO rate.

�Cloud Storage
In a cloud environment, the underlying hardware architecture is normally obscured.

Instead, the cloud vendor provides a variety of block store devices, each of which is

associated with specific latency and throughput service levels.

Table 12-2 describes some of the volume types available on the Amazon AWS cloud.

Google Cloud Platform (GCP) and Microsoft Azure offer very similar offerings.

Table 12-2.  Amazon AWS volume types

Volume Type Description

General Purpose
SSD

These volumes are based on commodity SSDs, and the IO limits depend on

the amount of GB storage requested. The number of SSDs used to provision

the volume is determined by the amount of storage requested. A 100 GB

volume provides a 300 IOPS baseline.

Provisioned IOPS
SSD

These SSD volumes provide a specific IO level independent of the amount

of storage provisioned. Under the hood, this implies that the number of SSD

devices is determined by the IO requirement, not the storage requested.

Throughput
Optimized HDD

High-performance magnetic disk volumes optimized for sequential reads and

write operations.

Cold HDD Cheap magnetic disks optimized for low cost of storage.

Instance Store Instance store – or ephemeral disks – are HDD, SATA SSD, or NVMe SSD

devices that are directly attached to the physical machine hosting the EC2

VM. Ephemeral NVMe disks are the fastest of all device types, but as with

all ephemeral disks, data is lost in the event of an instance failure, so these

should not be used for MongoDB datafiles.

Chapter 12 Disk IO

273

Our guiding principle for optimizing IO is to provision disks based on IO rates,

not storage capacities. Therefore, if provisioning a cloud-based VM for a MongoDB

installation, you would generally choose a provisioned IOPS SSD disk type. In AWS this

would mean choosing a provisioned IOPS SSD, in GCP the SSD persistent disk (pd-ssd)

type, and in Azure premium SSD disks.

Each of the preceding disk types is implemented from disks in external disk arrays

attached to the virtual machines by dedicated networks. If you need the very high

performance of a directly attached device, such as an NVMe-attached SSD, you can

consider the AWS Nitro configuration which offers high-speed directly attached disk

devices in a high-performance EC2 virtual machine.

Tip  When configuring a cloud-based VM for a MongoDB server, use provisioned
IOPS SSDs (Amazon), premium SSD disks (GCP), or SSD persistent disks (GCP).
Choose your devices based on the required IO capacity, not on the storage
capacity.

�Disk Devices in MongoDB Atlas
When configuring a MongoDB Atlas cluster, you configure the maximum IOPS required

for the cluster. Behind the scenes, Atlas attaches provisioned SSD devices with the

required IOPS capacity from the cloud platform you have selected.

�MongoDB IO
Now that we have reviewed the performance characteristics of various types of storage

devices, let us take a look at how MongoDB uses these devices.

In a standard configuration of MongoDB with WiredTiger as the storage engine,

MongoDB performs three major types of IO operations:

•	 Temporary file IO involves reads and writes to the “_tmp” directory

within the dbPath directory. These IOs occur when a disk sort or disk-

based aggregation operation occurs. We discussed these operations

in Chapters 7 and 11. These IOs are generally sequential read and

write operations.

Chapter 12 Disk IO

274

•	 Datafile IO occurs when WiredTiger reads from and writes to
collection and index files in the dbPath directory. Reads and writes
to index files tend to be random accesses (though index scans can be
sequential), while reads and writes to collection files may be random
or sequential.

•	 Journal file IO occurs as the WiredTiger storage engine writes to the
“write-ahead” journal file. These are sequential write IOs.

Figure 12-7 illustrates the various types of MongoDB IO.

�Temporary File IO
Temporary file IO occurs when a MongoDB aggregation request cannot be performed in

memory, and the allowDiskUse clause has been set to true. In this case, excess data will

be written to temporary files in the “_tmp” directory within the dbPath directory.

Figure 12-7.  MongoDB IO architecture

Chapter 12 Disk IO

275

For example, here we see that there are three disk sorts in progress, each writing to a

unique file in the _tmp directory:

$ ls -l _tmp

total 916352

-rw-------. 1 mongod mongod 297770960 Sep 26 05:19 extsort-sort-executor.3

-rw-------. 1 mongod mongod 223665943 Sep 26 05:19 extsort-sort-executor.4

-rw-------. 1 mongod mongod 99258259 Sep 26 05:19 extsort-sort-executor.5

The amount of IO read and written to these files is not directly exposed in db.

serverStatus() or from monitoring tools so it can easily “fall under the radar.” Indeed,

practically the only place that you might find evidence of disk sorts is in the MongoDB

log and only then if you have set the slow query setting (see Chapter 3):

[root@Centos8 mongodb]# tail mongod.log |grep '"usedDisk"'|jq

{

 <snip>

 "msg": "Slow query",

 "attr": {

 "type": "command",

 "ns": "SampleCollections.baseCollection",

 "appName": "MongoDB Shell",

 "command": {

 "aggregate": "baseCollection",

<snip>

 "planSummary": "COLLSCAN",

 "keysExamined": 0,

 "docsExamined": 1000000,

 "hasSortStage": true,

 "usedDisk": true,

<snip>

 "protocol": "op_msg",

 "durationMillis": 28011

 }

}

Chapter 12 Disk IO

276

When this IO becomes extreme, it can disrupt IO to the datafiles and the journal. So

as well as creating slow aggregation pipelines, disk sorts can easily create a generalized

performance bottleneck.

If you suspect that IO to temporary files is an issue, you should consider increasing

the internalQueryMaxBlockingSortMemoryUsageBytes configuration parameter. This

change may allow these operations to be satisfied within memory and avoid IO to the

_tmp directory.

Alternatively, because these IOs are to temporary files only, you might consider

locating the “_tmp” directory on a fast volatile medium. This might be a dedicated SSD or

a cloud-based ephemeral disk. As we discussed in a previous section, in a cloud-hosted

VM, you can usually configure fast, directly attached disks which do not persist across

VM restarts. These devices may be suitable for the “_tmp” directory.

Unfortunately, in the current implementation of MongoDB, it is not possible to map

“_tmp” directly to a dedicated device. Your only option would be to map everything else

to dedicated devices – this is possible, but probably impractical in most cases. See section

“Splitting Up Datafiles Across Multiple Devices” later in this chapter for the procedure.

�The Journal
When MongoDB changes a document image in the WiredTiger cache, the modified

“dirty” copy is not written to disk immediately. The modified pages are only written to

disk when a checkpoint occurs. We discussed checkpoints in the previous chapter.

To ensure that data is not lost in the event of a server failure, WiredTiger writes all

changes to a journal file. The journal file is an example of the write-ahead log (WAL)

pattern, which has been common in database systems for many decades. The advantage

of a write-ahead log is that it can be written to sequentially, and for most devices

(particularly magnetic disk), sequential writes can achieve greater throughput than

random writes.

MongoDB exposes WiredTiger journal statistics through the “log” sub-section of the

“WiredTiger” section within db.serverStatus() output:

rs1:PRIMARY> db.serverStatus().wiredTiger.log

{

 "busy returns attempting to switch slots" : 1318029,

 "force archive time sleeping (usecs)" : 0,

 "log bytes of payload data" : 83701979208,

Chapter 12 Disk IO

277

 "log bytes written" : 97884903040,

 ...

 "log sync operations" : 415082,

 "log sync time duration (usecs)" : 47627625426,

 "log sync_dir operations" : 936,

 "log sync_dir time duration (usecs)" : 331288246,

 ...

}

Within this section, the following statistics are the most useful:

•	 log bytes written: The amount of data written to the journal.

•	 log sync operations: The number of log “sync” operations. A sync

occurs when journal information held in memory is flushed to disk.

•	 log sync time duration (μsecs): The number of microseconds spent

in sync operations.

By monitoring these metrics, we can determine the rate of data writes to the

journal and the delay incurred when flushing that data to disk. The time spent in flush

operations is particularly relevant since MongoDB sessions must wait for these flushes to

occur.

The following command calculates the average journal sync time since the server

has been started:

rs1:PRIMARY> var journalStats = db.serverStatus().wiredTiger.log;

rs1:PRIMARY> var avgSyncTimeMs =

... journalStats['log sync time duration (usecs)'] / 1000 /

 journalStats['log sync operations'];

rs1:PRIMARY> print('Journal avg sync time (ms)', avgSyncTimeMs);

Journal avg sync time (ms) 114.07684435539662

The average log sync time is probably the most sensitive measure of journal disk

contention. However, the expected time does depend on the nature of the workload.

In the case of small document updates, we’d expect the log sync time to be very short,

since the average amount of data to be written is small. On the other hand, bulk loading

of massive documents might result in a higher average time. Nevertheless, we generally

don’t feel comfortable with sync times over 100ms, and the preceding sync time of

114ms probably demands attention.

Chapter 12 Disk IO

278

Within our tuning script (see Chapter 3), we calculate some journal-related statistics,

all of which start with “log”. For instance, in the following example, we retrieve journal

statistics over a 5-second period:

rs1:PRIMARY> mongoTuning.monitorServerDerived(5000,/^log/)

{

 "logKBRatePS": "888.6250",

 "logSyncTimeRateMsPS": "379.9926",

 "logSyncOpsPS": "6.2000",

 "logAvgSyncTime": "61.2891"

}

In this example, we see that the server is writing about 888KB of journal data per

second and flushes that data to disk about six times per second, and each flush takes

about 61ms.

Unfortunately, there’s no “right” value for the log sync time. Workloads that perform the

same logical amount of work can result in very different journal activity depending on the

amount of work that is “batched” into each statement. For instance, consider this update:

db.iotData.find({ _id: { $lt: limit } }, { _id: 1 }).

 forEach(id => {

 var rc = db.iotData.update(

 { _id: id['_id'] },

 { $inc: { a: 1 } },

 { multi: false }

);

 });

This statement generates a lot of individual updates and hence a large number of

small journal writes. However, the following statement performs the same work but in a

single statement. It results in fewer journal writes, but each journal write is larger.

 db.iotData.update(

 { _id: { $lt: limit } },

 { $inc: { a: 1 } },

 { multi: true }

);

Chapter 12 Disk IO

279

Figure 12-8 illustrates the effect. A single bulk update results in fewer journal writes

but with each write operation taking longer. Note that the total amount of journal time

taken was lowest for the bulk update.

Figure 12-8.  Bulk updates result in fewer, but larger journal sync writes

Note T he average journal "sync" time is your best indication of the IO contention
for journal writes. However, the average time is heavily dependent on workload,
and there is no "correct" value for this latency.

�Moving the Journal to a Dedicated Device

Because the IO to the journal is fundamentally different in nature to the IO to the other

datafiles, and because database modifications usually have to wait on journal writes to

complete, in some circumstances, you might want to mount the journal on a dedicated

high-speed device. This procedure involves mounting a new external disk device and

moving the journal files to that device.

Chapter 12 Disk IO

280

Here’s an example in which we move the journal files to a dedicated device located

on /dev/sde:

$ # go to the dbpath directory

$ cd /var/lib/mongodb

$ # Stop the Mongod service

$ service mongod stop

Redirecting to /bin/systemctl stop mongod.service

$ # Mount /dev/sde as the new journal device

$ # and copy existing journal files into it

$ mv journal OldJournal

$ mkdir journal

$ mount /dev/sde journal

$ cp -p OldJournal/* journal

$ # Set permissions including selinux

$ chown -R mongod:mongod journal

$ chcon -R -u system_u -t mongod_var_lib_t journal

$ service mongod start

Redirecting to /bin/systemctl start mongod.service

You would also need to make sure that this new device was mounted permanently,

by adding the appropriate entry to /dev/fstab.

Moving the journal file is not an activity to be undertaken lightly, and you

should only do so if you have very strong motivation to optimize write performance.

Nevertheless, the effect can be significant. In Figure 12-9, we compare journal latency

when mounted on external HDD or SSD compared to the default in which the journal is

placed on the same filesystem as the datafiles.

Moving the journal file to a dedicated magnetic disk increased the average time

taken to write log entries. However, moving the journal to a dedicated high-speed device

reduced the average sync time significantly.

Chapter 12 Disk IO

281

Tip  Because the journal IO is fundamentally different in nature to datafile IO, it
can be worthwhile moving the journal to a dedicated high-speed device.

�Datafile IO
For most databases, reads greatly outnumber writes. Even when a system is update-

intensive, data has to be read before it can be written. Only when a workload consists

almost entirely of bulk inserts does write performance become the dominant factor.

In the previous chapter, we discussed at length the role of the WiredTiger cache in

avoiding disk reads. If a document can be found in the cache, it does not need to be

read from disk, and for a typical workload, more than 90% of documents reads can be

expected to be found in the cache.

However, when data cannot be found in the cache, it must be read from disk. Read

IO into the cache is recorded in the following two statistics within the wiredTiger.cache

section of db.serverStatus() output:

•	 application threads page read from disk to cache count: This

records the number of reads from disk into the WiredTiger cache.

Figure 12-9.  Effect of moving the journal file to a dedicated device

Chapter 12 Disk IO

282

•	 application threads page read from disk to cache time (usecs):

This records the number of microseconds spent moving data from

disk to cache.

The average time taken to read a page from disk to cache is a good indicator of IO

subsystem health. We can calculate this as follows from db.serverStatus():

mongo> var cache=db.serverStatus().wiredTiger.cache;

mongo> var reads=cache

 ['application threads page read from disk to cache count'];

mongo> var time=cache

 ['application threads page read from disk to cache time (usecs)'];

mongo> print ('avg disk read time (ms):',time/1000/reads);

avg disk read time (ms): 0.10630484187820192

While the average time to read a page into the cache is definitely dependent on your

hardware configuration and somewhat dependent on workload, this is one metric where

we have a good basis for rules of thumb. If the time exceeds the normal read time for a

disk device, then something is wrong!

Generally, your average disk to cache read time should be less than 10ms – even if

you are using a magnetic disk. If your disk subsystem is on Solid State Disk devices, then

the average read time should generally be below 1ms.

Tip I f the average time taken to load a page from disk to cache exceeds 1–2ms,
then your IO subsystem may be overloaded. If you are using magnetic disk, then
average times approaching 10ms may be expected.

�Datafile Writes

As we discussed in Chapter 11, WiredTiger writes to the datafiles asynchronously, and

most of the time, the application does not need to wait for these writes. As discussed

earlier, the application will normally wait only for the write to the journal to complete.

However, should write IO become a bottleneck, then the eviction process will block

operations until the cache is sufficiently cleared of dirty (modified) data. These waits are

hard to monitor, but we did discuss options in Chapter 11 for optimizing checkpoint and

eviction processing in an attempt to reduce these waits.

Chapter 12 Disk IO

283

Writes from cache to disk are recorded in the WiredTiger.cache sections of the db.

serverStatus() output in the following metrics:

•	 application threads page write from cache to disk count: The

number of writes from the cache to disk

•	 application threads page write from cache to disk time (usecs):
The time spent writing from cache to disk

However, while we can calculate an average write time from these metrics, it’s

harder to interpret the result. A page read from the disk should generally be predictable,

but writes to disk can vary in size markedly, and, therefore, you may see variations in

the average write time based on workload fluctuations. It is, therefore, best to use the

average read time as your primary indicator of datafile IO health.

�Splitting Up Datafiles Across Multiple Devices

The normal practice for disk layout is to place all the datafiles on a single filesystem

backed by a disk array which is configured as RAID 10 – striped and mirrored. However,

in some cases, it might be worth mapping specific elements of the datafiles to dedicated

devices.

For instance, your server might contain a database that consists of very large

quantities of “cold” archived data, together with smaller quantities of very “hot” data

which is subject to frequent modifications. It might be economical and sensible to host

the cold data on cheap magnetic disk and the hot data on premium SSDs.

Splitting datafiles across multiple devices is possible. However, it’s a lot easier

if it is planned for during initial database creation. The directoryPerDB and

directoryForIndexes configuration parameters result in each database’s datafiles

being stored in their own directory and with indexes and collection files in separate

subdirectories.

Here’s an example of a configuration file in which these two parameters are set:

Where and how to store data.

storage:

 dbPath: /mnt/mongodb/mongoData/rs1

 directoryPerDB: true

 journal:

 enabled: true

Chapter 12 Disk IO

284

 wiredTiger:

 engineConfig:

 cacheSizeGB: 16

 directoryForIndexes: true

The dbPath directory for this server looks something like this:

├── _tmp
├── admin
│ ├── collection
│ │ ├── 13--419801202851022452.wt
│ │ ├── 21--419801202851022452.wt
│ │ └── 23--419801202851022452.wt
│ └── index
│ ├── 14--419801202851022452.wt
│ ├── 22--419801202851022452.wt
│ ├── 24--419801202851022452.wt
│ └── 25--419801202851022452.wt
├── config
│ ├── collection
│ │ ├── 17--419801202851022452.wt
│ │ ├── 19--419801202851022452.wt
│ │ └── 34--419801202851022452.wt
│ └── index
│ ├── 18--419801202851022452.wt
│ ├── 20--419801202851022452.wt
│ ├── 35--419801202851022452.wt
│ └── 36--419801202851022452.wt
├── diagnostic.data
│ └── metrics.2020-10-04T07-12-03Z-00000
├── journal
│ ├── WiredTigerLog.0000000014
│ ├── WiredTigerPreplog.0000000014
│ └── WiredTigerPreplog.0000000015
├── sizeStorer.wt
└── storage.bson

Chapter 12 Disk IO

285

As you can see, each database now has its own directory with subdirectories for the

collection and index files. To shift a database to a dedicated device, we can follow the

same procedure we used earlier to move journal files to a dedicated device. For instance,

if we had a database that contained infrequently accessed archives, we could mount it on

a cheap HDD rather than on the fast SSDs that might back the rest of the server.

�Detecting and Solving IO Problems
As you’ve seen by now, there’s a lot of variation in IO subsystem types, in MongoDB IO

operations, and in the workloads that create IO. Now that we’ve reviewed each of these

dimensions, it’s time to confront the two key questions of IO tuning:

	 1.	 How do I know if my IO subsystem is overloaded?

	 2.	 What can I do about an overloaded IO subsystem?

We’ve already reviewed a few symptoms of IO overloading. For instance, we saw that

the average time to read a page of data from disk into cache should not exceed 1–2ms

(for SSD-based IO).

We can also look to operating system statistics for evidence of IO overload. You may

remember from earlier in this chapter, an IO subsystem that is overloaded will exhibit

queuing. This queuing is visible from operating system commands.

In Linux, we can use the iostat command to view disk statistics. Here, we look at

aggregate statistics for the sdc device (which is the device hosting the MongoDB dbPath

directory on this server)5:

iostat -xm -o JSON sdc 5 2 |jq

 {

 "avg-cpu": {

 "user": 45.97,

 "nice": 0,

 "system": 3.63,

 "iowait": 1.81,

5�You may need to install the sysstat package to enable the iostat command.

Chapter 12 Disk IO

286

 "steal": 0,

 "idle": 48.59

 },

 "disk": [

 {

 "disk_device": "sdc",

 "r/s": 0.4,

 "w/s": 49.2,

 "rkB/s": 15.2,

 "wkB/s": 2972,

 "rrqm/s": 0,

 "wrqm/s": 0.4,

 "rrqm": 0,

 "wrqm": 0.81,

 "r_await": 15.5,

 "w_await": 42.55,

 "aqu-sz": 2.08,

 "rareq-sz": 38,

 "wareq-sz": 60.41,

 "svctm": 0.87,

 "util": 4.32

 }

]

 }

In this output, the aqu-sz statistic indicates the length of the disk queue. Higher

values indicate longer queues and are an indication that the device is overloaded. The

r_await statistic indicates the average time to service a read IO requests in milliseconds.

Values above 10ms may indicate that the device is either overloaded or underconfigured.

In the case of a network-attached device, it may indicate that the network transit time is

excessive.

In Windows, raw performance counters are available from PowerShell:

PS C:\Users\guy> Get-Counter -Counter '\\win10\physicaldisk(_total)\% disk

time'

Chapter 12 Disk IO

287

Timestamp CounterSamples

--------- --------------

4/10/2020 4:11:56 PM \\win10\physicaldisk(_total)\% disk time :

 0.201584556251408

PS C:\Users\guy> Get-Counter -Counter '\\win10\physicaldisk(_total)\current

disk queue length'

Timestamp CounterSamples

--------- --------------

4/10/2020 4:12:24 PM \\win10\physicaldisk(_total)\current disk queue

length :

 0

Tip  Your best indication of a disk IO bottleneck is higher than usual average wait
times for reading pages into the WiredTiger cache. At the operating system level,
high queue lengths are also an indication of trouble.

When an IO bottleneck is indicated, there are two remedies:

	 1.	 Reduce the demand on the IO subsystem.

	 2.	 Increase the bandwidth of the IO subsystem.

The first option – reducing the demand on the IO subsystem – has been the subject

of almost every previous chapter of this book. Creating indexes, optimizing schemas,

tuning aggregations, and so on all work to reduce the amount of logical IO requests

and consequently to reduce the demand on the physical IO subsystem. Configuring the

WiredTiger cache serves to reduce the amount of logical IO that turns into physical IO.

The focus of this chapter is on optimizing physical IO. However, before you do any

restructuring of your IO subsystem, make absolutely sure that you’ve done everything

to reduce demand. In particular, can you spare any more memory for the WiredTiger

cache? Is there a single query that is dominating IO that could be optimized? If not, then

time to consider increasing the IO subsystem capacity.

Chapter 12 Disk IO

288

�Increasing IO Subsystem Bandwidth
In the “old days” – when databases ran on dedicated hardware devices – the solution to

an IO subsystem bottleneck was relatively simple: add more disks or get faster disks. This

is still the fundamental solution, though it may be obscured by the layers of abstraction

provided by disk arrays, cloud storage devices, and so on.

Let’s consider the measures you can take to increase IO bandwidth, depending on

the nature of your hardware platform.

�Dedicated Server with Dedicated Disks
If your MongoDB server is hosted on a dedicated server with directly attached disks,

then you have the following options:

•	 If your directly attached disks are multi-level cell (MLC) SSDs or

(shudder) magnetic disks, then you should consider replacing them

with high-speed single-level cell (SLC) devices. SLC devices can have

significantly lower latency than MLC devices, particularly for write

operations. Cheap MLC devices can often exhibit poor sustained

write throughput due to simplistic garbage collection algorithms.

•	 You might also consider using NVMe/PCI-attached SSDs in

preference to SATA- or SAS-based devices.

•	 If your server has free slots for additional disks, you can add

additional devices and either stripe the data across all of the disks

or segment your IO by relocating your journal file or datafiles to

dedicated devices as discussed in the earlier sections.

Each of these operations involves data movement and significant downtime. So

if there is an easier alternative (such as adding more RAM to the server), you should

definitely make sure that you’ve exhausted these options.

Tip  On a dedicated server with directly attached devices, you can consider
replacing slower SSDs or HDD with high-performance devices or attach more
devices and distribute your data across the additional devices.

Chapter 12 Disk IO

289

�Storage Arrays
If your IO services are provided by a storage array and you are experiencing an IO

bottleneck, then you should check the following:

•	 What sort of devices are inside the array? Some storage arrays mix

magnetic disk and SSD to provide economies of storage. However,

such hybrid arrays provide unpredictable performance, especially for

database workloads. If possible, your storage array should contain

only high-speed SSDs.

•	 Are there enough devices in the array? The maximum IO bandwidth

for the array will be determined by the number of devices in the

array. Most arrays allow additional devices to be added without

downtime: this might be the easiest way to increase the IO capacity of

the array.

•	 What RAID level is being used in the array? For database workloads,

RAID 10 (“Stripe And Mirror Everything) is almost always the correct

RAID level and RAID 5 or 6 is almost always the wrong level. Be very

skeptical if a vendor tries to tell you that their RAID 5 has some sort of

magical technology that avoids the RAID 5 write penalty – RAID 5 is

almost always bad news for database workloads.

Tip  For a database server which relies on IO from a storage array, ensure that
the devices used are high-speed SSDs, that there are enough SSDs to meet the IO
requirements, and that the RAID configuration is RAID 10 and never RAID 5 or RAID 6.

�Cloud Storage
If your server is running in a cloud environment such as AWS, Azure, or GCP, then the

usual way to increase IO bandwidth is to reconfigure the virtual disk. You can change the

type and provisioned IOPS for any of the attached disks with just a few clicks. In some

cases, a reboot of the VM will be required to implement the change.

Chapter 12 Disk IO

290

Figure 12-10 shows just how easy it is to resize an AWS volume. Here, we modify the

maximum IOPS for a EBS volume attached to a EC2 virtual machine.

�MongoDB Atlas
It’s even easier to change the IO levels for an Atlas-based server. The Atlas console allows

you to choose the IOPS level that you require. No reboot of the server is required, though

a series of primary step-downs will occur as the changes are migrated through the

replica set. The interface for configuring IO in Atlas can be seen in Figure 12-11.

Figure 12-10.  Changing the IOPS for an AWS volume

Chapter 12 Disk IO

291

Tip  For cloud-based MongoDB servers on AWS, Azure, GCP, or Atlas, changing IO
bandwidth can be done with a couple of clicks, sometimes without downtime!

�Summary
Once you’ve made all reasonable efforts to avoid physical IO – by reducing workload

and optimizing memory – it’s time to configure the IO subsystem so that it can meet the

resulting IO demand.

The delay for an individual IO is referred to as latency or service time and is typically

measured in milliseconds. The amount of IO that can be done in a unit of time is referred

to as throughput and is usually expressed in IO operations per second (IOPS).

There’s an inverse relationship between latency and throughput – the higher the

throughput, the worse the latency. Be aware that even if you succeed in pushing more

work through your database, you may be causing unacceptable delays for individual

transactions.

Figure 12-11.  Adjusting IO for an Atlas server

Chapter 12 Disk IO

292

The best way of detecting a disk bottleneck is to measure the average time taken

to read a page off disk into the WiredTiger cache. If this average is greater than a few

milliseconds, then there is room for improvement.

Solid State Disks (SSDs) provide far lower latencies than magnetic disks. Within

SSDs, single-level cell (SLC) devices are better than multi-level cell (MLC) devices, and

NVMe-attached devices are better than those attached via SATA or SAS interfaces.

Throughput is generally achieved by using multiple disk devices and striping data

across the devices. Throughput goals can only be achieved if you acquire enough disks to

meet the aggregate IO demand. Alternatively, you can mount the journal file or specific

database directories directly on dedicated devices.

The two most popular ways of configuring disk arrays are RAID 5 and SAME (Stripe

And Mirror Everything) (RAID 10). RAID 5 imposes a very heavy penalty on write

performance and is not recommended even for primarily read-only databases. SAME is

the technique of choice on performance grounds.

Chapter 12 Disk IO

293
© Guy Harrison, Michael Harrison 2021
G. Harrison and M. Harrison, MongoDB Performance Tuning, https://doi.org/10.1007/978-1-4842-6879-7_13

CHAPTER 13

Replica Sets and Atlas
So far, we have considered performance tuning singleton MongoDB servers – servers

that are not part of a cluster. However, most production MongoDB instances are

configured as replica sets, since only this configuration provides sufficient high

availability guarantees for modern “always-on” applications.

None of the tuning principles we have covered in previous chapters are invalidated

in a replica set configuration. However, replica sets provide us with some additional

performance challenges and opportunities which are covered in this chapter.

MongoDB Atlas provides us with an easy way to create cloud-hosted, fully managed

MongoDB clusters. As well as offering convenience and economic advantages,

MongoDB Atlas contains some unique features that involve performance opportunities

and challenges.

�Replica Set Fundamentals
We introduced replica sets in Chapter 2. A replica set following best practice consists of

a primary node together with two or more secondary nodes. It is recommended to use

three or more nodes, with an odd number of total nodes. The primary node accepts all

write requests which are propagated synchronously or asynchronously to the secondary

nodes. In the event of a failure of a primary, an election occurs to which a secondary

node is elected to serve as the new primary and database operations can continue.

In a default configuration, the performance impact of a replica set is minimal. All

read and write operations will be directed to the primary, and while there will be a small

overhead incurred by the primary in transmitting data to secondaries, this overhead is

rarely critical.

https://doi.org/10.1007/978-1-4842-6879-7_13#DOI

294

However, if a higher degree of fault tolerance is required, then write performance can

be sacrificed by requiring writes to complete on one or more secondaries before being

confirmed. This is controlled by the MongoDB write concern parameter. Additionally, the

MongoDB read preference parameter can be configured to allow secondaries to service

read requests, potentially improving read performance.

Note  In order to clearly illustrate the relative effects of read preference and write
concern, we've used a replica set with widely geographically distributed nodes – in
Hong Kong, Seoul, and Tokyo, with application workloads originating in Sydney.
This configuration has much higher latencies than are typical but allows us to show
the relative effects of various configurations more clearly.

�Using Read Preference
By default, all reads are directed to the primary node. However, we can set a read

preference which directs the MongoDB drivers to direct read requests to secondary

nodes. There are a couple of reasons why reading from secondaries might be preferable:

•	 The secondary nodes are likely to be less busy than the primary and,

therefore, able to respond more quickly to read requests.

•	 By directing reads to secondary nodes, we reduce load on the

primary, possibly increasing the write throughput of the cluster.

•	 By spreading read requests across all the nodes of the cluster, we

improve overall read throughput since we are taking advantage of the

otherwise idle secondaries.

•	 We might be able to reduce network latency by directing read

requests to a secondary which is “nearer” to us – in terms of network

latency.

These advantages need to be balanced against the possibility of reading “stale” data.

In a default configuration, only the master is guaranteed to have up-to-date copies of all

information (though we can change this by adjusting write concern as described in the

next section). If we read from a secondary, we might get out-of-date information.

Chapter 13 Replica Sets and Atlas

295

Warning  Secondary reads may result in stale data being returned. If this is
unacceptable, either configure write concern to prevent stale reads or use the
default primary read concern.

Table 13-1 summarizes the various read preference settings.

If you have decided to route reads to a non-primary node, secondaryPreferred or

nearest are the recommended settings. secondaryPreferred is generally better than

secondary, because it allows reads to fall back to the primary if no secondaries are

available. When there are multiple secondaries to choose from and some are “further

away” (have greater network latencies), then nearest will route requests to the “closest”

node – secondary or non-secondary.

Figure 13-1 provides an example of the effect of read preference settings on queries

issued from different locations. Queries were issued from each of the nodes hosting a

replica set member (Tokyo, Hong Kong, and Seoul) and from a remote node in Sydney

which was not part of the replica set. Except when queries were issued directly on the

primary, secondaryPreferred reads were faster than primary reads. However, the

nearest read preference always resulted in the best read performance.

Table 13-1.  Read preference settings

Read Preference Effect

primary This is the default. All reads are directed to the replica set primary.

primaryPreferred Direct reads to the primary, but if no primary is available, direct reads

to a secondary.

secondary Direct reads to a secondary.

secondaryPreferred Direct reads to a secondary, but if no secondary is available, direct

reads to the primary.

nearest Direct reads to the replica set member with the lowest network round

trip time to the calling program.

Chapter 13 Replica Sets and Atlas

296

Tip  Secondary reads will usually be faster than primary reads. The nearest
read preference can help pick the replica set node with the lowest network latency.

�Setting Read Preference
Read preference can be set at the connection level or at the statement level.

To set it when connecting to MongoDB, you can add the preference to the MongoDB

URI. Here, we set the readPreference to secondary:

mongodb://n1,n2,n3/?replicaSet=rs1&readPreference=secondary

Figure 13-1.  Effect of read preference on read performance (reading 411,000
documents)

Chapter 13 Replica Sets and Atlas

297

To set the read preference for a specific statement, include the read preference

within the options document associated with each command. For instance, here, we set

the read preference to nearest for a find command in NodeJS:

const client = await mongo.MongoClient.connect(myMongoDBURI);

const collection=client.db('MongoDBTuningBook').

 collection('customers');

const options={'readPreference': mongo.ReadPreference.NEAREST};

await collection.find({}, options).forEach((customer) => {

 count++;

 });

});

See your MongoDB driver documentation for guidance in setting read preference in

your programming language.

�maxStalenessSeconds
maxStalenessSeconds can be added to a read preference to control the tolerable

lag in data. When picking a secondary node, the MongoDB driver will only consider

those nodes who have data within maxStalenessSeconds seconds of the primary. The

minimum value is 90 seconds.

For instance, this URL specified a preference for secondary nodes, but only if their

data timestamps are within 5 minutes (300 seconds) of the primary:

mongodb://n1,n2,n3/?replicaSet=rs1\

 &readPreference=secondary&maxStalenessSeconds=300

Tip  maxStalenessSeconds can protect you from seriously out-of-date data
when using secondary read preferences.

Chapter 13 Replica Sets and Atlas

298

�Tag Sets
Tag sets can be used to fine-tune read preference. Using tag sets, we can direct queries to

specific secondaries or sets of secondaries. For instance, we could nominate a node as a

business intelligence server and another node for web application traffic.

Here, we apply “location” and “role” tags to the three nodes in our replica set:

mongo> conf = rs.conf();

mongo> conf.members.forEach((m)=>{print(m.host);});

mongors01.eastasia.cloudapp.azure.com:27017

mongors02.japaneast.cloudapp.azure.com:27017

mongors03.koreacentral.cloudapp.azure.com:27017

mongo> conf.members[0].tags={"location":"HongKong","role": "prod" };

mongo> conf.members[1].tags={"location":"Tokyo","role":"BI" };

mongo> conf.members[2].tags={"location":"Korea","role": "prod" };

mongo> rs.reconfig(conf);

{

 "ok": 1,

 ...

}

We can now use either of the tags in a read preference string:

db.customers.

 find({ Phone: 40367898 }).

 readPref('secondaryPreferred', [{ role: 'prod' }]);

If we want to set up a specific secondary as a read-only server for analytics, tag sets

are a perfect solution.

We can also use tag sets to distribute workload evenly across the nodes in a server.

For instance, consider a scenario in which we are reading data from three collections in

parallel. With the default read preference, all the reads will be directed to the primary.

If we choose secondaryPreferred, then we might get more nodes participating in the

work, but it’s still possible that all the requests will go to the same node. However, with

tag sets, we can direct each query to a different node.

For instance, here we direct a query to Hong Kong:

Chapter 13 Replica Sets and Atlas

299

db.getMongo().setReadPref('secondaryPreferred', [{

 "location": "HongKong"

}]);

db.iotData1.aggregate(pipeline, {

 allowDiskUse: true

});

Queries against collections iotData2 and iotData3 could similarly be directed

to Korea and Japan. Not only does this allow every node in the cluster to participate

simultaneously, it also helps with cache effectiveness – since each node is responsible

for a specific collection, all of that node’s cache can be dedicated to that collection.

Figure 13-2 shows elapsed time for three simultaneous queries against different

collections using various read preferences. Using secondaryPreferred improved

performance, but the best performance was achieved when tag sets were used to

distribute load across all nodes.

Figure 13-2.  Using tag sets to distribute work across all nodes in a cluster

Chapter 13 Replica Sets and Atlas

300

Tip  Tag sets can be used to direct read requests to specific nodes. You can use
tag sets to nominate nodes for special purposes such as analytics or to distribute
read workload more evenly across all nodes in the cluster.

�Write Concern
Read preference helps MongoDB decide which server should service a read request.

Write concern tells MongoDB how many servers should be involved in a write request.

By default, MongoDB considers a write request complete when the change has made

its way into the journal file of the primary. Write concern allows you to vary this default.

Write concern takes three settings:

•	 w controls how many nodes should receive the write before the write

operation can complete. w can be set to a number or to “majority”.

•	 j controls whether write operations require a journal write before

completing. It is set to true or false.

•	 wtimeout specifies the amount of time allowed to achieve the write

concern before returning an error.

�Journaling
If j:false is specified, then a write is considered complete provided it is received by the

mongod server. If j:true is specified, then the write is considered complete once it is

written to the write-ahead journal that we discussed in Chapter 12.

Running without journaling is considered reckless since it allows for a loss of data

if the mongod server crashes. However, some configurations allow for such data loss

anyway. For instance, in a w:1,j:true scenario, data might be lost if a server dies

and fails over to a secondary which has not yet received the write. In this case, setting

j:false might give an increase in throughput without an unacceptable increase in the

chance of data loss.

Chapter 13 Replica Sets and Atlas

301

�The Write Concern w Option
The w option controls how many nodes in the cluster must receive a write before the write
operation completes. The default setting of 1 requires that only the primary receives the
write. Higher values require the write to propagate to a larger number of nodes.

The w:"majority" setting requires that a majority of nodes receive the write
operation before the write completes. w:"majority" is a sensible default for systems in
which data loss is deemed unacceptable. If the majority of nodes have the update, then
in any single-node failure or network partition scenario, the newly elected primary will
have access to that data.

Of course, the impact of writing to multiple nodes has a performance overhead.
You might imagine that your data is being written to multiple nodes simultaneously.
However, the write is made to the primary and only then propagated to the other nodes
through the replication mechanism. If there is already a significant replication lag, then
the delay may be much higher than expected. Even if the replication lag is minimal, the
replication can only commence after the initial write has succeeded, so the performance
lag is always greater than w:1.

Figure 13-3 shows the sequence of events for a write concern of {w:2,j:true}. Only
after the write is received on the primary and synced to the journal will it be transmitted
via replication to a secondary. The write must then sync to the journal on the secondary
nodes before the write operation can complete. These operations occur sequentially, not
in parallel. In other words, the replication delay is added onto the primary write delay,

rather than occurring at the same time.

Figure 13-3.  Sequence of events for w:2, j:true write concern

Chapter 13 Replica Sets and Atlas

302

Figure 13-4 shows the time taken to insert 50,000 documents with various levels of

write concern. Higher levels of write concern result in significantly lower throughput.

Your setting for write concern should be determined by fault tolerance concerns,

not by write performance. However, it’s important to realize that higher levels of write

concern have potentially significant performance impacts.

Tip  Higher levels of write concern can result in a significant slowdown in write
throughput. However, lower levels of write concern may result in data loss in the
event of server failure.

Figure 13-4.  Effect of write concern on write throughput

Chapter 13 Replica Sets and Atlas

303

As we can see, w:0 provides the absolute best performance. However, a write

with w:0 can succeed even if the data doesn’t make it to the MongoDB server. Even a

transitory network failure might result in a loss of data. In almost all circumstances, w:0

is just too unreliable.

Warning A write concern of w:0 might result in a performance boost, but at the
cost of completely unreliable data writes.

�Write Concern and Secondary Reads
Although higher levels of write concern slow down modification workloads, there may

be a pleasant side effect if your overall application performance is read-dominated. If

the write concern is set to write to all members of the cluster, then secondary reads will

always return the correct data. This might allow you to use secondary reads even if you

cannot tolerate stale queries.

However, be aware that if you manually set the write concern the number of nodes in

the cluster, any failures in the cluster may result in reads timing out.

Warning  Setting w to the number of nodes in the cluster will result in secondary
reads always returning up-to-date data. However, write operations might fail if a
node is unavailable.

�MongoDB Atlas
MongoDB Atlas is MongoDB’s fully managed database-as-a-service (DBaaS) offering.

Using Atlas, you can create and configure MongoDB replica sets and sharded clusters

from a web interface without having to configure your own hardware or virtual

machines. Atlas takes care of most of database operational considerations including

backups, version upgrades, and performance monitoring. Atlas is also available in the

three major public clouds: AWS, Azure, and Google Cloud.

Chapter 13 Replica Sets and Atlas

304

When it comes to deploying a MongoDB cluster, Atlas offers a lot of convenience by

handling much of the dirty work behind the scenes. However, as well as the operational

advantages, Atlas boasts additional features not available for other deployment types.

These features include advanced sharding and query options that can be highly

appealing when creating a new cluster.

Although implementing these options may be as simple as clicking a button, it is

essential to remember that they can also require careful planning and design to meet

their full potential. In the following, we will go through a number of these Atlas features

along with their performance implications.

�Atlas Search
Atlas Search (formerly known as Atlas Full-Text Search) is a feature built upon Apache

Lucene to provide a more powerful text search functionality. Although all versions of

MongoDB support text indexes (see Chapter 5), the Apache Lucene integration provides

far more powerful text search capabilities.

The strength of Apache Lucene is provided through analyzers. Simply put, analyzers

will determine how your text index is created. You can create a custom analyzer, but

Atlas provides built-in options that will cover the majority of use cases.

Choosing an appropriate analyzer during index creation is one of the easiest ways to

improve the results of your Atlas Search queries.

Note  When we talk about improving the performance of text search, we are not
always referring to query speed. Some analyzers may improve the "performance"
of a query by providing more relevant scoring results, but may also lead to slower
queries.

The five prebuilt analyzers include

•	 Standard: All words are converted to lowercase and punctuation is

ignored. Additionally, the standard analyzer can correctly interpret

special symbols and acronyms and will discard joining words like

“and” to provide better results. The standard analyzer creates index

entries for each “word” and is the most commonly useful index type.

Chapter 13 Replica Sets and Atlas

305

•	 Simple: As you might guess, the simple analyzer is like the standard

analyzer but with less advanced logic when determining a “word”

for each index entry. All words are converted to lowercase. A simple

analyzer will create an entry by finding a word between any two

characters that are not a letter. Unlike the standard analyzer, the

simple analyzer will not handle joining words.

•	 Whitespace: If the simple analyzer is a dumbed-down version of the

standard analyzer, the whitespace analyzer takes this even further.

Words will not be converted to lowercase, and entries are created

for any string divided by a whitespace character with no additional

handling of punctuation or special characters.

•	 Keyword: The keyword analyzer takes the entire value of the field as

a single entry, requiring exact matches to return the result in a query.

This is the most specific analyzer provided.

•	 Language: The language analyzer is where Lucene is particularly

powerful, as it provides a series of presets for each language you

might encounter. Each preset will create index entries based on the

typical structure of text written in that language.

When creating Atlas Search indexes, there is no single best analyzer to choose, and

making a choice will not be about query speed alone. You will have to consider the shape

of your data and the type of queries users are likely to send.

Let’s look at an example based upon a property rental marketplace dataset. In

this dataset, large amounts of text data exist in various attributes. Names, addresses,

descriptions, and property metadata are all stored as strings for each listing, along with

reviews and comments.

Each of these attributes is best suited to different types of search indexes based on

which analyzer most fits the matching query. Descriptions and comments may best be

served by a language index which interprets language-specific semantics. Property types

like “house” or “apartment” match a keyword analyzer best as we want exact matches.

Other fields are probably indexed correctly by the standard analyzer or may not need

indexing at all.

Another factor to consider when selecting an analyzer will be the size of the index

created. Figure 13-5 is a comparison of index size for each analyzer on a small text field

(property name) and a large text field (property description).

Chapter 13 Replica Sets and Atlas

306

Although these results will vary greatly depending on the text data itself, this chart

primarily indicates two things.

Firstly, a smaller text field will produce little to no variation in index size (and thus

the time taken to scan that index). This makes sense, since a smaller number of words or

characters can be subdivided into a smaller number of ways and are less likely to require

complex rules to create the index.

Secondly, on larger, more complex text data, the size of the index can vary

significantly between analyzer types. Sometimes a larger index will be a good thing,

providing superior results and performance. However, it’s still something worth

considering when creating Atlas Search indexes.

So now we know how the different analyzer types will affect index size, but what

about query time? Figure 13-6 shows execution time for an identical query executed

against the five different index analyzer types.

Figure 13-5.  Index size by analyzer and field length (5555 documents)

Chapter 13 Replica Sets and Atlas

307

If we were to look at this data alone, we would assume that the keyword analyzer will

provide us with the best performance for our query. However, with any text search, we

also need to take into account the scoring of our results.

For instance, consider this query:

db.listingsAndReviews.aggregate([

 {

 $search: {

 text: {

 query: ["oven", "microwave", "air conditioning"],

 path: "notes",

 },

 },

 },

 {$limit: 3,},

 {$project: {

Figure 13-6.  Query duration by index analyzer type (5555 documents, 1000
queries)

Chapter 13 Replica Sets and Atlas

308

 name: 1,

 score: { $meta: "searchScore" },},

 },

]);

Table 13-2 shows our top-scoring document for each index type.

The first thing you may notice is that the keyword analyzer returned no documents

(and thus a 0 score) for our query, despite having the lowest query time. This is expected,

as the keyword index requires an exact match to the entire value of the field. So although

it’s fast, it doesn’t necessarily return the best results.

You may also notice that for our remaining analyzers, only the whitespace index

returned a different result. The other types found the same document, but with varying

levels of confidence. Figure 13-7 shows a scatter plot of these results.

Table 13-2.  Performance of different analyzer types

Analyzer Query Time (min) Score Document

Standard 2.13 6.25 Studio 1 Q Leblon, Promo de…

Simple 2.50 6.09 Studio 1 Q Leblon, Promo de...

Whitespace 2.10 6.16 Tree Fern Garden Appt,…

Keyword 1.99

Language 2.11 5.48 Studio 1 Q Leblon, Promo de...

Chapter 13 Replica Sets and Atlas

309

These results correspond roughly to our created index size, with the larger indexes

taking longer to return a result. Interestingly, although the standard analyzer is not

the quickest, it does provide the best combination of high confidence results for only

a fraction more query time. You may have expected a language-specific analyzer to

perform better than the standard analyzer. In this case, there are multiple languages

both in the indexed field and across many other fields. When it comes to user input, it’s

hard to guarantee a single unified language.

You could repeat this analysis on your dataset to try and find the right analyzer for your

Atlas Search. It is integral to think about the type of data, as well as the types of queries

when creating an Atlas Search index. Although there is no always-right or always-wrong

answer, the standard analyzer is likely to provide you with good overall performance.

However, be aware that different analyzers can return different results, and it’s generally

not good practice to make a query faster if doing so returns the wrong results.

Tip  The various Atlas Search text search analyzers have different performance
characteristics. However, the fastest analyzer might not return the best results for
your application. Make sure you balance the accuracy of results with the speed of
the text search.

Figure 13-7.  Query duration, document score, and document by analyzer (5555
documents, 1000 queries)

Chapter 13 Replica Sets and Atlas

310

�Atlas Data Lake
The concept of a “Data Lake” as a centralized repository of large amounts of structured

or unstructured data became popular with the rise of Big Data and technologies like

Hadoop. Since then, it has become a standard fixture in many enterprise environments.

MongoDB introduced Atlas Data Lake as a method to integrate with this pattern. In a

nutshell, the Atlas Data Lake allows you to query data from an Amazon S3 bucket using

the Mongo Query Language.

Atlas Data Lake is a powerful tool for extending the reach of your MongoDB system

to external, non-BSON data, and although it has the look and feel of a normal MongoDB

database, there are some considerations to take into account when querying Data Lake.

The first aspect of Data Lake that may stop you in your tracks is the lack of indexes.

There are no indexes in Data Lake, so by default, many of your queries will be resolved

by a complete scan of all files.

However, there is a way around this limitation. By creating files whose names reflect

a key attribute value, we can restrict the file accesses to only relevant files.

For example, let’s say you have your Data Lake set up with one file per collection.

A single customers.json file contains all your customers, and this is mapped to the

customers collection, as in the following example:

 databases: {
 dataLakeTest: {

 customers: [

 {

 definition: '/customers.json',
 store: 's3store'
 }

],

 }

 }

We can’t index these files; however, we can instead define the collection with

multiple files, one file for each customer, where the name of the file is the customerId

(the field we would want to index):

 customers: [

 {

 definition: '/customers/{customerId string}',

Chapter 13 Replica Sets and Atlas

311

 store: 's3store'

 }

],

Our new collection is now defined by the union of all the files in the /customers

folder. Each file in the customers folder will be named by the customerid value; for

example, the file /customers/1234.json will have all data with a customerId of 1234.

The Data Lake will now only need to scan files for the customer IDs concerned in a

query, rather than all of the files in the directory. You can see this in action by viewing

the explain plan:

> db.customersNew.find({customerId:"1234"}).explain("queryPlanner")

{

 "ok": 1,

 "plan": {

 "kind": "mapReduce",

 "map": [{

 "$match": {

 "customerId": {

 "$eq": "1234"

 }

 }

 }],

 "node": {

 "kind": "data",

 "partitions": [{

 �"source": "s3://datalake02/customers/1234?delimiter=/®io

n=ap-southeast-2",

 "attributes": {

 "customerId": "1234"

 }

 }]

 }

 }

}

Chapter 13 Replica Sets and Atlas

312

We can see that only a single file (partition) was accessed along with the name of the

matching partition.

Tip  We can avoid having to scan all files in an Atlas Data Lake by creating files
whose contents and file names correspond to a particular key value.

Another area where a lack of indexes can cause problems is in the case of $lookup.

As we discussed in Chapter 7, indexes are absolutely essential when optimizing joins

with $lookup.

If we are joining between two collections in an Atlas Data Lake, we will definitely

want to make sure that the collection referred to in the $lookup section is partitioned

based on the join condition. We can see how this improves $lookup performance in

Figure 13-8.

Additionally, this method is far more scalable. With a $lookup against a single file,

the file must be repeatedly scanned for each customer we join. However, with separate

files for each customer, a much smaller file is read for each $lookup operation. With a

single large file, performance will steeply degrade as documents are added to the file,

whereas with multiple files, performance will scale more linearly.

Figure 13-8.  $lookup performance by file structure in Data Lake (5555
documents)

Chapter 13 Replica Sets and Atlas

313

There are some downsides to splitting your data into multiple files. As you might

expect, when scanning the entire collection, there is overhead on opening each file. For

example, a simple aggregation that counts all the documents in a collection completes

almost instantly on a single file but takes significantly longer when each document exists

in its file. The overhead of opening each file dominates the performance of the query. We

can see this illustrated in Figure 13-9.

In summary, while you can’t index files directly in Data Lake, you can make up for

some of the lost performance by manipulating file names. The file name can become

a sort of high-level index, which is particularly useful when using $lookup. However, if

you are always accessing the complete dataset, your scan performance will be best on a

single file.

�Summary
Most MongoDB production implementations incorporate replica sets to provide high

availability and fault tolerance. Replica sets are not intended to solve performance

problems, but they definitely have performance implications.

Figure 13-9.  Full collection query duration by file structure in Data Lake (254,058
documents)

Chapter 13 Replica Sets and Atlas

314

In a replica set, read preference can be set to allow reads from secondary nodes.

Secondary reads can distribute work across more nodes in the cluster, reduce network

latency in geographically distributed clusters, and allow for parallel processing of

workloads. However, secondary reads can return out-of-date results which won’t always

be acceptable.

Replica set write concern controls how many nodes must acknowledge a write

before the write can be acknowledged. Higher levels of write concern provide greater

guarantees around data, but at the expense of performance.

MongoDB Atlas adds at least two significant features that have performance

implications. Atlas text search allows for more sophisticated full-text indexing, while the

Atlas Data Lake allows for queries against data held on low-cost cloud storage.

Chapter 13 Replica Sets and Atlas

315
© Guy Harrison, Michael Harrison 2021
G. Harrison and M. Harrison, MongoDB Performance Tuning, https://doi.org/10.1007/978-1-4842-6879-7_14

CHAPTER 14

Sharding
In the previous chapter, we covered the most commonly deployed MongoDB

configuration: replica sets. Replica sets are essential for modern applications requiring

availability that a single MongoDB instance cannot provide. As we’ve seen, replica sets

can do some limited scaling of reads through secondary write. But, for large applications,

particularly where the write workload exceeds the capability of a single cluster, sharded

clusters may be deployed.

Everything we have covered in previous chapters is entirely applicable to sharded

MongoDB servers. Indeed, it’s probably best not to consider sharding until you have

optimized your application workload and individual server configuration using the

techniques covered in previous chapters.

However, there are some significant performance opportunities and challenges

presented by sharded MongoDB deployments, and these will be covered in this chapter.

�Sharding Fundamentals
We introduced sharding in Chapter 2. In a sharded database cluster, selected collections

are partitioned across multiple database instances. Each partition is referred to as a

“shard.” This partitioning is based on a shard key value.

While replica sets are designed to provide high availability, sharding is designed to

provide greater scalability. When your workload – particularly your write workload –

exceeds the capacity of your server, then sharding provides a way to spread that

workload across multiple nodes.

https://doi.org/10.1007/978-1-4842-6879-7_14#DOI

316

�Scaling and Sharding
Sharding is an architectural pattern developed to allow databases to support the massive

workloads of the world’s largest websites.

As application load grows, at some point the workload exceeds the capability of

a single server. The capability of the server can be extended by shifting some read

workload to secondary nodes, but eventually the amount of write workload to the

primary becomes too great. We can no longer “scale up.”

When “scaling up” becomes impossible, we turn to “scaling out.” We add more

primary nodes and split the workload across those primaries using sharding.

Sharding at scale was critical to the establishment of the modern Web – Facebook

and Twitter were both early adopters of large-scale sharding using MySQL. However,

it’s not universally loved – sharding with MySQL involves a huge amount of manual

configuration and breaks some of the core database capabilities. However, sharding in

MongoDB is fully integrated into the core database and is relatively easy to configure and

manage.

�Sharding Concepts
Sharding is a big topic, and we can’t provide a tutorial for all sharding considerations

here. Please consult the MongoDB documentation or the book MongoDB Topology

Design by Nicholas Cottrell (Apress, 2020) for a full review of sharding concepts.

The following sharding concepts are particularly significant:

•	 Shard key: The shard key is the attributes which determine into

which shard any given document will be placed. Shard keys should

have high cardinality (lots of unique values) to ensure that the data

can be evenly distributed across shards.

•	 Chunks: Documents are contained within chunks, and chunks are

allocated to specific shards. Chunking avoids MongoDB having to

laboriously move individual documents across shards.

•	 Range sharding: With range sharding, contiguous groups of shard

keys are stored within the same chunk. Range sharding allows for

efficient shard key range scans but can result in “hot” chunks if the

shard value is monotonically increasing.

Chapter 14 Sharding

317

•	 Hash sharding: In hash-based sharding, keys are distributed based

on a hash function applied to the shard key.

•	 The balancer: MongoDB tries to keep the data and workload

attributed to each shard equal. The balancer periodically moves data

from one shard to another to maintain this balance.

�To Shard or Not to Shard?
Sharding is the most sophisticated MongoDB configuration topology, and sharding is

used by some of the world’s largest and most performant websites. So sharding must be

good for performance, right? Well, it is not quite that simple.

Sharding adds a layer of complexity and processing on top of your MongoDB

database that – as often as not – makes individual operations a little slower. However,

it allows you to throw more hardware resources at your workload. If – and only if – you

have a hardware bottleneck involving operations to a replica set primary, then sharding

might be the best solution. However, in most other circumstances, sharding adds

complexity and overhead to your deployment.

Figure 14-1 compares the performance for sharded and unsharded collections for

a few simple operations on equivalent hardware.1 In most cases, operations against

sharded collections are slower than against unsharded collections. Of course, every

workload will be different, but the point is that sharding alone does not make things go

faster!

1�To make it a fair comparison, the shards were located on the same host as the single replica set
option. Each node had an equivalent cache size, and there was no memory bottleneck.

Chapter 14 Sharding

318

Sharding is expensive in terms of dollar costs for the hardware and in terms of

operational overhead. It should truly only be a recourse of last resort. Only when you

have exhausted all other tuning measures, and all “scale-up” options, should you

consider sharding. In particular, make sure that the disk subsystem on your primary is

optimized before considering sharding. It’s much cheaper and easier to buy and deploy

some new SSDs than to shard a primary!

Warning  Sharding should be the last resort for scaling a MongoDB deployment.
Make sure your workload, server, and replica set configuration are optimized
before commencing a sharding project.

Even if you believe that sharding is inevitable, you should still thoroughly tune your

database before commencing the sharding project. If your workload and configuration

are creating unnecessary load, then you may end up creating more shards than are

necessary. Only when your workload is tuned can you make a rational determination of

your sharding requirements.

Figure 14-1.  Sharding doesn't always help performance

Chapter 14 Sharding

319

�Shard Key Selection
Sharding occurs at the collection level. While the number of shards in a cluster is the

same for all collections, not all collections need be sharded and collections need not all

have the same shard key.

Collections should be sharded if the aggregate IO write demand on the collection

exceeds the capacity of a single primary. We then choose the shard key based on the

following criteria:

•	 The keys should have a high cardinality so that data can be divided

into small chunks if necessary.

•	 The keys should have an even distribution of values. If any single

value is particularly common, then the shard key may be a poor

choice.

•	 The key should be frequently included in queries so that queries

can be routed to specific shards.

•	 The key should be non-monotonically increasing. When a shard key

value increases monotonically (e.g., always increases by a set value),

then the new documents appear in the same chunk, causing a hot

spot. If you do have a monotonically increasing key value, consider

using a hashed shard key.

Tip  Choosing the correct sharding key is critical to the success of your sharding
project. A shard key should support a good balance of documents across shard and
support as many query filter conditions as possible.

�Range- vs. Hash-Based Sharding
Distribution of data across shards can be either range-based or hash-based. In range-

based partitioning, each shard is allocated a specific range of shard key values.

MongoDB consults the distribution of key values in the index to ensure that each shard

is allocated approximately the same number of keys. In hash-based sharding, keys are

distributed based on a hash function applied to the shard key.

Chapter 14 Sharding

320

There are advantages and compromises involved in each scheme. Figure 14-2

illustrates the performance trade-offs inherent in range and hash sharding for inserts

and range queries.

Figure 14-2.  Range- and hash-based sharding compared

Chapter 14 Sharding

321

Range-based partitioning allows for efficient execution of shard key range scans

since these queries can often be resolved by accessing a single shard. Hash-based

sharding requires that range queries be resolved by accessing all shards. On the other

hand, hash-based sharding is more likely to distribute “hot” documents (unfilled

orders or recent posts, for instance) evenly across the cluster, thus balancing load more

effectively.

Tip H ashed shard keys result in more evenly distributed data and workload.
However, they result in poor performance for range-based queries.

Hashed shard keys do result in a more even distribution of data. However, as we’ll

soon see, hashed shard keys do create significant challenges for a variety of query

operations, particularly those which involve sorting or range queries. Furthermore,

we can only hash on a single attribute, while our ideal shard key is often composed of

multiple attributes.

However, there is one use case in which a hashed shard key is clearly indicated.

If we must shard on an attribute which is constantly increasing – often referred to

as monotonically increasing – then a range sharding strategy will result in all new

documents being inserted into a single shard. This shard will become “hot” in terms of

inserts and probably in terms of reads as well since recent documents are often more

likely to be updated and read than older documents.

Hashed shard keys come to the rescue here because the hashed values will be evenly

distributed across the shards.

Figure 14-3 illustrates how monotonically increasing shard keys affect inserts into

collections using hashed or range shard keys. In this example, the shard key is the

orderDate which is always increasing as time moves forward. With hash sharding,

inserts are distributed evenly between shards. In the range sharded scenario, all

documents are inserted into a single shard. The hashed shard key not only distributes

the workload across multiple nodes, it also results in greater throughput since there is

less contention on that single node.

Chapter 14 Sharding

322

Tip I f your shard key must be a perpetually (monotonically) increasing value, then
a hashed shard key is preferable. However, consider the possibility of sharding on
another attribute if range queries on the shard key are required.

�Zone Sharding
Most of the time, our sharding strategy is to distribute documents and workload evenly

across all shards. Only by distributing the load evenly can we hope to gain effective

scalability. If one shard is responsible for a disproportionate amount of the workload,

then that shard may become a limiting factor in our overall application throughput.

However, there’s another possible motivation for sharding – to distribute workload

across shards so that data is close, in network terms, to the applications that want that

data or to distribute data so that “hot” data is on expensive high-powered hardware,

while “cold” data is stored on cheaper hardware.

Zone sharding allows the MongoDB administrator to fine-tune the distribution of

documents to shards. By associating a shard with a zone and associating a range of

Figure 14-3.  Time to insert 120,000 documents into a sharded collection – hash vs.
range monotonically increasing key

Chapter 14 Sharding

323

keys within a collection within that zone, the administrator can explicitly determine the

shard on which these documents will reside. This can be used to archive data to shards

on cheaper, but slower storage or to direct particular data to a specific data center or

geography.

To create zones, we first allocate shards to zones. Here, we create one zone for the

United States and another zone for the rest of the world:

sh.addShardToZone("shardRS2", "US");

sh.addShardToZone("shardRS", "TheWorld");

Even though we have only two zones, we can have as many shards as we want – each

zone can have multiple shards.

Now we assign shard key ranges to each zone. Here, we have sharded by Country and

City, so we use minKey and maxKey as proxies for the high and low City values within a

Country range:

sh.addTagRange(

 "MongoDBTuningBook.customers",

 { "Country" : "Afghanistan", "City" : MinKey },

 { "Country" : "United Kingdom", "City" : MaxKey },

 "TheWorld");

sh.addTagRange(

 "MongoDBTuningBook.customers",

 { "Country" : "United States", "City" : MinKey },

 { "Country" : "United States", "City" : MaxKey },

 "US");

sh.addTagRange(

 "MongoDBTuningBook.customers",

 { "Country" : "Venezuela", "City" : MinKey },

 { "Country" : "Zambia", "City" : MaxKey },

 "TheWorld");

We would then locate the hardware for the “US” zone somewhere in the United

States and the hardware for “TheWorld” somewhere in the rest of the world (Europe

maybe). We would also deploy mongos routers in each of these regions. Figure 14-4

illustrates what this deployment might look like.

Chapter 14 Sharding

324

The end result is lower latency for US queries issued from the US router and similarly

for other geographies. Of course, if you issue a query for US data from Europe, your

round trip time would be higher. But if queries issued from a region are mainly for data

zoned to that region, then overall performance is improved.

We could add more zones in other regions as our application grows.

Tip  Zone sharding can be used to distribute data across geographies, reducing
latencies for region-specific queries.

Another use of zone sharding is to create archives of old data on slow but cheap

hardware. For instance, if we have decades of order data, we could create a zone for

older data which is hosted on VMs or servers with less CPU, memory, and maybe even

using magnetic disk rather than premium SSD. Recent data could be kept on high-speed

servers. This might result in a better overall performance for a given hardware budget.

�Shard Balance
The getShardDistribution() method can show the breakdown of data across shards.

Here’s an example of a well-balanced sharded collection:

Applica�on

mongos

primary

secondarysecondary

Applica�on

mongos

primary

secondarysecondary

Figure 14-4.  Zone sharding to reduce geographic network latency

Chapter 14 Sharding

325

mongo> db.iotDataHshard.getShardDistribution()

Shard shard02 at shard02/localhost:27022,localhost:27023

 data : 304.04MiB docs : 518520 chunks : 12

 estimated data per chunk : 25.33MiB

 estimated docs per chunk : 43210

Shard shard01 at shard01/localhost:27019,localhost:27020

 data : 282.33MiB docs : 481480 chunks : 11

 estimated data per chunk : 25.66MiB

 estimated docs per chunk : 43770

Totals

 data : 586.38MiB docs : 1000000 chunks : 23

 �Shard shard02 contains 51.85% data, 51.85% docs in cluster, avg obj size

on shard : 614B

 �Shard shard01 contains 48.14% data, 48.14% docs in cluster, avg obj size

on shard : 614B

In a well-balanced sharded cluster, there are approximately the same number of

chunks and the same amount of data in each shard. If the number of chunks between

shards is inconsistent, then the balancer should be able to migrate chunks to return

balance to the cluster.

If the number of chunks is roughly equivalent, but the amount of data in each shard

varies significantly, then it may be that your shard key is not evenly distributed. A single

shard key value cannot span chunks, so if some shard keys have massive document

counts, then massive “jumbo” chunks will result. Jumbo chunks are sub-optimal, as the

data within cannot be effectively distributed across shards and thus a larger proportion

of queries may be sent to a single shard.

�Rebalancing Shards
Let’s say you have selected an appropriate shard key type (range or hashed) and the key

possesses the right attributes – high cardinality, even distribution, frequently queried,

non-monotonically increasing. In that case, your chunks will likely be well balanced

across shards, and consequently, you will achieve a well-distributed workload. However,

several factors may cause the shards to fall out of balance, with many more chunks

Chapter 14 Sharding

326

existing on one shard than another. When this occurs, that single node will become a

bottleneck until the data can be evenly redistributed across multiple nodes – as shown in

Figure 14-5.

If we can maintain an appropriate balance among our shards, query load is more

likely to be divided evenly among the nodes – as shown in Figure 14-6.

Figure 14-5.  A set of poorly balanced shards, most queries will go to Shard 01

Figure 14-6.  A set of well-balanced shards: query load will be evenly
distributed

Chapter 14 Sharding

327

Fortunately, MongoDB will automatically rebalance a sharded collection whenever

a large enough disparity is detected between shards. The threshold for this disparity

depends on the number of total chunks. For example, if there are 80 or more chunks, the

threshold will be a difference of eight between the most chunks on a shard and the least.

For between 20 and 80, the threshold is four, and if there are fewer than 20 chunks, the

threshold is two.

If this disparity is detected, the shard balancer will begin to migrate chunks to

rebalance the distribution of data. This migration might be triggered by large amounts of

new data being inserted within a specific range or simply by the addition of a shard. A new

shard is initially empty and therefore causes a large disparity in chunk distribution that

requires rebalancing.

The balancerStatus command allows you to see the current balancer status:

mongos> db.adminCommand({ balancerStatus: 1})

{

 "mode" : "full",

 "inBalancerRound" : false,

 "numBalancerRounds" : NumberLong(64629),

 "ok" : 1,

 "operationTime" : Timestamp(1604706062, 1),

 . . .

}

In the preceding output, the mode field indicates that the balancer is enabled, and the

inBalancerRound field indicates the balancer is not currently distributing chunks.

Although MongoDB automatically handles the rebalancing, rebalancing does not

come without performance implications. Bandwidth, workload, and disk space usage

will all increase during chunk migration. To mitigate this performance hit, MongoDB

will only migrate a single shard at a time. Additionally, each shard can only participate in

one migration at a time. If the impact of chunk migrations is affecting your application

performance, there are a few things to try:

•	 Modifying the balancer window

•	 Manually enabling and disabling the balancer

•	 Changing the chunk size

We’ll discuss each of these options in the following few pages.

Chapter 14 Sharding

328

�Modifying the Balancer Window

The balancer window defines the time periods during which the balancer will be active.

Modifying the balancer window will prevent the balancer from running outside of a

given time window; for example, you may only want to balance chunks when application

load is at its lowest. In this example, we limit rebalancing to a 90-minute window starting

at 10:30 PM:

mongos> use config

switched to db config

mongos> db.settings.update(

... { _id: "balancer" },

... { $set: {activeWindow :{ start: "22:30", stop: "23:59" } } },

... { upsert: true })

WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

Note  When selecting a balancing window, you must ensure that enough time
is provided to balance all the new documents from that day. If your window is too
small, there will be a cumulative effect of leftover chunks which will increasingly
unbalance your shards.

�Disabling the Balancer

It is possible to disable the balancer and re-enable it later. You could, for instance,

disable the balancer during a nightly batch window that modifies lots of documents

because you don’t want the balancer to “thrash” during the process.

Be careful when using this approach, however, as failing to re-enable the balancer

could cause shards becoming heavily out of balance. Here’s some code showing the

balancer being stopped and restarted:

mongos> sh.getBalancerState()

true

mongos> sh.stopBalancer()

{

 "ok" : 1,

Chapter 14 Sharding

329

 "operationTime" : Timestamp(1604706472, 3),

 . . .

}

mongos> sh.getBalancerState()

false

mongos> sh.startBalancer()

{

 "ok" : 1,

 "operationTime" : Timestamp(1604706529, 3),

 . . .

 }

mongos> sh.getBalancerState()

true

Note  Migrations may still be in progress after the balancer is disabled. You may
need to wait until sh.isBalancerRunning() returns false to be sure that the
balancer has completely stopped.

�Changing the Chunk Size

The chunksize option – 64MB by default – will determine how large a chunk will grow

before being split. By reducing the chunksize option, you will have a larger number of

small chunks. This will increase migrations and query routing time, but also provide a

more even distribution of data. By increasing the chunk size, you will have fewer, larger

chunks; this will be more efficient in terms of migrations and routing but may result in

a larger proportion of your data sitting in a single chunk. This option won’t take effect

immediately, and you will have to update or insert into an existing chunk to trigger a split.

Note  Once chunks are split, they cannot be recombined by increasing the
chunksize option, so be careful when reducing this parameter. Additionally,
sometimes a chunk may grow beyond this parameter but cannot be split because
all the documents have the same shard key. These unsplittable chunks are known
as jumbo chunks.

Chapter 14 Sharding

330

Each of these rebalancing options involves a trade-off between maintaining cluster

balance and optimizing the overhead of rebalancing. Continual rebalancing might create

a noticeable drag on your throughput, while allowing a cluster to become out of balance

may create a performance bottleneck on a single shard. There’s no “one-size-fits-all”

solution, but establishing a maintenance window for rebalancing operations is a low-risk

and low-impact way of ensuring that rebalancing operations do not cause performance

degradation during peak periods.

Tip E stablishing a maintenance window for rebalancing operations is often
the best way to maintain cluster balance while avoiding excessive rebalancing
overhead.

Before using any of these methods to control the balancer directly, try to avoid the

shards getting out of balance in the first place! Careful selection of a well-distributed

shard key is a good first step. Hashed shard keys might also be worth considering if a

cluster is experiencing a continually high rebalancing overhead.

�Changing Shard Keys
If you have determined that a poorly chosen shard key is creating performance

overheads, there are ways to change that shard key. Changing or recreating your shard

key is not an easy or quick process in MongoDB. There is no automatic process or

command you can run. The process of changing the shard key for a collection is even

more work than creating it in the first place. The procedure to change an existing shard

key is to

	 1.	 Back up your data

	 2.	 Drop the entire collection

	 3.	 Create a new shard key

	 4.	 Import the old data

As you can imagine, with large datasets, this can be a prolonged and tedious process.

This awkward procedure makes it even more important to consider, design, and

implement a good shard key from the beginning. If you’re not sure you have the right

shard key, it can be useful to create a test collection with a smaller subset of the data.

Chapter 14 Sharding

331

You can then create and recreate the shard keys while observing the distribution. Just

remember, when selecting the subset of data to test on, it must be representative of the

whole dataset, not just a single chunk.

Although MongoDB does not explicitly support changing shard keys, starting

in version 4.4, it does support a method for improving existing sharded collection

performance without fully recreating it. In MongoDB, this is called refining a shard key.

When refining a shard key, we can add additional fields to the shard key, but not

remove or edit the existing fields. These suffix fields can be added to increase the

granularity and reduce the size of our chunks. Remember, the balancer cannot split or

move jumbo chunks (chunks larger than the chunksize option) consisting of documents

for a single shard key. By refining our shard key, we may be able to break a jumbo chunk

into many smaller chunks which can then be rebalanced.

Imagine our application was relatively small, and initially, sharding by the country

field was good enough. However, as our application grew, we have a lot of users in a

single country, creating jumbo chunks. By refining this shard key with the district

field, we have increased the granularity of our chunks and thus removed the permanent

imbalance created by jumbo chunks.

Here is an example of refining the country shard key with the district attribute:

mongos> db.adminCommand({

 refineCollectionShardKey:

 "MongoDBTuningBook.customersSCountry",

 key: {

 Country: 1, District: 1}

})

{

 "ok" : 1,

 "operationTime" : Timestamp(1604713390, 40),

 . . .

}

Note T o refine a shard key, you must ensure that a matching index exists on the
new shard key attributes. For example, in the preceding code snippet, an index
must exist on {Country: 1, District: 1}.

Chapter 14 Sharding

332

Keep in mind that refining a shard key will not have an immediate effect on the data

distribution: it will merely increase the ability for the balancer to split and rebalance

existing data. Furthermore, newly inserted data will be of finer granularity, and this

should lead to fewer jumbo chunks and more balanced sharding.

�Sharded Queries
Sharding might help you escape a write bottleneck, but if critical queries are negatively

affected, then your sharding project is unlikely to be deemed a success. We want to be

sure that sharding is not causing any degradation in queries.

�Sharded Explain Plans
As usual, we can use the explain() method to see how MongoDB will execute a

request – even if the request is executed across multiple nodes of a sharded cluster.

Generally, we’ll want to use the executionStats option when looking at a sharded

query, since only that option will show us how work was distributed across the cluster.

Here’s an example of the executionStats section for a sharded query. Within the

output, we should see a shards step, which has child steps for each shard. Here’s a

truncated version of explain output for a sharded query:

var exp=db.customers.explain('executionStats').

 find({'views.title':'PRINCESS GIANT'}).next();

mongos > exp.executionStats {

 "nReturned": 17874,

 "executionTimeMillis": 9784,

 "executionStages": {

 "stage": "SHARD_MERGE",

 "nReturned": 17874,

 "executionTimeMillis": 9784,

 "shards": [

 {"shardName": "shard01",

 "executionStages": {

 "stage": "SHARDING_FILTER",

 "inputStage": {

Chapter 14 Sharding

333

 "stage": "COLLSCAN"}}},

 {"shardName": "shard02",

 "executionStages": {

 "stage": "SHARDING_FILTER",

 "inputStage": {

 "stage": "COLLSCAN"}}}}}

This plan shows that the query was resolved by performing collection scans on each

shard, then merging the results – SHARD_MERGE – before returning the data to the client.

Our tuning script (see Chapter 3) generates an easy-to-read execution plan for a

sharded query. Here’s an example of this output which shows the plans on each shard:

mongos> var exp=db.customers.explain('executionStats').

 find({'views.title':'PRINCESS GIANT'}).next();

mongos> mongoTuning.executionStats(exp)

1 COLLSCAN (ms:4712 returned:6872 docs:181756)

2 SHARDING_FILTER (ms:4754 returned:6872)

3 Shard ==> shard01 ()

4 COLLSCAN (ms:6395 returned:11002 docs:229365)

5 SHARDING_FILTER (ms:6467 returned:11002)

6 Shard ==> shard02 ()

7 SHARD_MERGE (ms:6529 returned:17874)

Totals: ms: 6529 keys: 0 Docs: 411121

The SHARD_MERGE step occurs when we combine output from multiple shards. It

indicates that the mongos router received data from multiple shards and combined them

into unified output.

However, if we issue a query filtered against the shard key, then we may see a

SINGLE_SHARD plan. In the following example, the collection was sharded on LastName,

so the mongos was able to retrieve all the needed data from a single shard:

mongos> var exp=db.customersShardName.explain('executionStats').

 find({'LastName':'HARRISON'})

mongos> mongoTuning.executionStats(exp)

Chapter 14 Sharding

334

1 IXSCAN (LastName_1_FirstName_1 ms:0

 returned:730 keys:730)

2 SHARDING_FILTER (ms:0 returned:730)

3 FETCH (ms:149 returned:730 docs:730)

4 Shard ==> shard01 ()

5 SINGLE_SHARD (ms:158 returned:730)

Totals: ms: 158 keys: 730 Docs: 730

�Shard Key Lookups
As we’ve seen, when a query contains the shard key, MongoDB may be able to satisfy the

query from a single shard.

For instance, if we have sharded on LastName, then a query on LastName resolves as

follows:

mongos> var exp=db.customersSLName.explain('executionStats').

 find({LastName:'SMITH','FirstName':'MARY'});

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (LastName_1 ms:0 returned:711 keys:711)

2 FETCH (ms:93 returned:9 docs:711)

3 SHARDING_FILTER (ms:93 returned:9)

4 Shard ==> shardRS (ms:97 returned:9)

5 SINGLE_SHARD (ms:100 returned:9)

Totals: ms: 100 keys: 711 Docs: 711

However, note that in the preceding example, we lack a combined index on LastName

and FirstName so the query is less efficient than it might be. We should refine the shard

key to include the FirstName, or we can simply create a new compound index on both

attributes:

mongo> var exp=db.customersSLName.explain('executionStats').

 find({LastName:'SMITH','FirstName':'MARY'});

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (LastName_1_FirstName_1 ms:0 returned:9 keys:9)

Chapter 14 Sharding

335

2 SHARDING_FILTER (ms:0 returned:9)

3 FETCH (ms:0 returned:9 docs:9)

4 Shard ==> shardRS (ms:1 returned:9)

5 SINGLE_SHARD (ms:2 returned:9)

Totals: ms: 2 keys: 9 Docs: 9

Tip I f a query contains the shard key and additional filter conditions, you can
optimize the query by creating an index that includes both the shard key and those
additional attributes.

�Accidental Shard Merge
Wherever possible, we want to send queries to a single shard. To achieve this, we should

make sure that our shard key is aligned with our query filters.

For instance, if we shard by Country, but query by City, MongoDB will need to do

a shard merge, even though all the documents for a given City will be in the shard that

contains that City’s Country:

mongo> var exp=db.customersSCountry.explain('executionStats').

 find({City:"Hiroshima"});

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (City_1 ms:0 returned:544 keys:544)

2 FETCH (ms:0 returned:544 docs:544)

3 SHARDING_FILTER (ms:0 returned:0)

4 Shard ==> shardRS (ms:2 returned:0)

5 IXSCAN (City_1 ms:0 returned:684 keys:684)

6 FETCH (ms:0 returned:684 docs:684)

7 SHARDING_FILTER (ms:0 returned:684)

8 Shard ==> shardRS2 (ms:2 returned:684)

9 SHARD_MERGE (ms:52 returned:684)

Totals: ms: 52 keys: 1228 Docs: 1228

Chapter 14 Sharding

336

It may have been better to shard by City, not Country – since City has a higher

cardinality. However, in this case, it’s equally effective to simply add Country to the

query filter:

mongo> var exp=db.customersSCountry.explain('executionStats').
 find({Country:'Japan',City:"Hiroshima"});

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (City_1 ms:0 returned:684 keys:684)
2 FETCH (ms:0 returned:684 docs:684)
3 SHARDING_FILTER (ms:0 returned:684)
4 Shard ==> shardRS2 (ms:2 returned:684)
5 SINGLE_SHARD (ms:55 returned:684)

Totals: ms: 55 keys: 684 Docs: 684

Tip  Whenever it makes sense, add the shard key to queries that execute against
a sharded cluster. If the shard key is not included in a query filter, then the query
will be sent to all shards even if the data is only present in one of the shards.

�Shard Key Range
If the shard key is range sharded, then we can use the key to perform an index range
scan. For instance, in this example, we have sharded orders by orderDate:

mongo> var startDate=ISODate("2018-01-01T00:00:00.000Z");
mongo> var exp=db.ordersSOrderDate.explain('executionStats').
 find({orderDate:{$gt:startDate}});

mongo> mongoTuning.executionStats(exp);

1 IXSCAN (orderDate_1 ms:0 returned:7191 keys:7191)
2 SHARDING_FILTER (ms:0 returned:7191)
3 FETCH (ms:0 returned:7191 docs:7191)
4 Shard ==> shardRS2 (ms:16 returned:7191)
5 SINGLE_SHARD (ms:68 returned:7191)

Totals: ms: 68 keys: 7191 Docs: 7191

Chapter 14 Sharding

337

However, if hash sharding is implemented, then collection scans in every shard are

required:

mongo> var exp=db.ordersHOrderDate.explain('executionStats').

 find({orderDate:{$gt:startDate}});

mongo> mongoTuning.executionStats(exp);

1 COLLSCAN (ms:1 returned:2615 docs:28616)

2 SHARDING_FILTER (ms:1 returned:2615)

3 Shard ==> shardRS (ms:17 returned:2615)

4 COLLSCAN (ms:1 returned:4576 docs:29881)

5 SHARDING_FILTER (ms:1 returned:4576)

6 Shard ==> shardRS2 (ms:20 returned:4576)

7 SHARD_MERGE (ms:72 returned:7191)

Totals: ms: 72 keys: 0 Docs: 58497

Tip I f you frequently perform range scans on the sharding key, range sharding is
preferable to hash sharding. However, remember that range sharding can lead to
hot spots if the key values are constantly incrementing.

�Sorting
When sorted data is retrieved from more than one shard, the sort operation occurs in

two stages. First, data is sorted on each shard and then returned to the mongos where a

SHARD_MERGE_SORT combines the sorted inputs into a consolidated, sorted output.

Indexes that exist to support the sort – including the shard key index if appropriate –

can be used on each shard to facilitate the sort, but even if you are sorting by shard key, a

final sort operation must still be performed on the mongos.

Here’s an example of a query which sorts orders by orderDate. The shard key is

used to return data in sorted order from each shard before a final SHARD_MERGE_SORT is

performed on the mongos:

1 IXSCAN (orderDate_1 ms:22 returned:527890 keys:527890)

2 SHARDING_FILTER (ms:58 returned:527890)

Chapter 14 Sharding

338

3 FETCH (ms:87 returned:527890 docs:527890)

4 Shard ==> shardRS2 (ms:950 returned:527890)

5 IXSCAN (orderDate_1 ms:29 returned:642050 keys:642050)

6 SHARDING_FILTER (ms:58 returned:642050)

7 FETCH (ms:102 returned:642050 docs:642050)

8 Shard ==> shardRS (ms:1011 returned:642050)

9 SHARD_MERGE_SORT (ms:1013 returned:1169940)

Totals: ms: 1013 keys: 1169940 Docs: 1169940

If there is no appropriate index to support the sort, then blocking sorts will need to

be performed on each shard:

1 COLLSCAN (ms:37 returned:564795 docs:564795)

2 SHARDING_FILTER (ms:70 returned:564795)

3 SORT (ms:237 returned:564795)

4 Shard ==> shardRS (ms:1111 returned:564795)

5 COLLSCAN (ms:30 returned:605145 docs:605145)

6 SHARDING_FILTER (ms:78 returned:605145)

7 SORT (ms:273 returned:605145)

8 Shard ==> shardRS2 (ms:1315 returned:605145)

9 SHARD_MERGE_SORT (ms:1363 returned:1169940)

Totals: ms: 1363 keys: 0 Docs: 1169940

The normal considerations for optimizing sorts apply to each of the shard sorts.

In particular, you need to make sure you don’t exceed the sort memory limit on each

shard – see Chapter 6 for more details.

�Non-Shard Key Lookups
If a query does not include a shard key predicate, then the query is sent to each shard,

and the results merged back on the mongos. For instance, here we perform a collection

scan on each shard and merge the results in the SHARD_MERGE step:

mongo> var exp=db.customersSCountry.explain('executionStats').

 find({'views.filmId':637});

mongo> mongoTuning.executionStats(exp);

Chapter 14 Sharding

339

1 COLLSCAN (ms:648 returned:10331 docs:199078)

2 SHARDING_FILTER (ms:648 returned:10331)

3 Shard ==> shardRS (ms:1602 returned:10331)

4 COLLSCAN (ms:875 returned:4119 docs:212043)

5 SHARDING_FILTER (ms:882 returned:4119)

6 Shard ==> shardRS2 (ms:1954 returned:4119)

7 SHARD_MERGE (ms:2002 returned:14450)

Totals: ms: 2002 keys: 0 Docs: 411121

There’s nothing wrong with a SHARD_MERGE – we should totally expect that many

queries will need to resolve in this manner. However, you should make sure that the

query that runs on each shard is optimized. In the preceding example, a need for an

index on views.filmId is clearly indicated.

Tip  For queries that must be executed against every shard, ensure that each
shard’s workload is minimized using the indexing and document design principles
outlined in previous chapters.

�Aggregations and Sorts
When performing aggregation operations, MongoDB tries to push as much work as

possible to the shards. The shards are responsible not just for the data access portions of

the aggregation (such as $match and $project) but also pre-aggregations necessary to

satisfy $group and $unwind operations.

The explain plan for a sharded aggregation includes unique sections to illustrate how

the aggregation was resolved.

For instance, consider this aggregation:

db.customersSCountry.aggregate([

 { $unwind: "$views" },

 { $group:{ _id:{ "views_title":"$views.title" },

 "count":{$sum:1}

 }

 },

]);

Chapter 14 Sharding

340

An execution plan for this aggregation contains a unique section showing how the

work will be split across the aggregation:

 "mergeType": "mongos",

 "splitPipeline": {

 "shardsPart": [

 {

 "$unwind": {

 "path": "$views"

 }

 },

 {

 "$group": {

 "_id": {

 "views_title": "$views.title"

 },

 "count": {

 "$sum": {

 "$const": 1

 }

 }

 }

 }

],

 "mergerPart": [

 {

 "$group": {

 "_id": "$$ROOT._id",

 "count": {

 "$sum": "$$ROOT.count"

 },

 "$doingMerge": true

 }

 }

]

 },

Chapter 14 Sharding

341

The mergeType section tells us which component will perform the merge. We expect

to see mongos here, but in some circumstances, we might see the merge allocated to one

of the shards, in which case we’d see “primaryShard” or “anyShard”.

The splitPipeLine shows the aggregation stages that are sent to the shards. In this

example, we can see that the $group and $unwind operations will be performed on the

shards.

Finally, mergerPart shows us what operations will occur in the merging node – in

this case, on the mongos.

For the most commonly used aggregate steps, MongoDB will push down the

majority of work to the shards and combine output on the mongos.

�Sharded $lookup Operations
Join operations using $lookup are only partially supported on sharded collections.

The collection referenced in the from section of the $lookup stage cannot be sharded.

Consequently, The work of the $lookup cannot be distributed across the shard. All the

work will occur on the master shard that contains the lookup collection.

Warning  $lookup is not fully supported on sharded collections. A collection
referenced in a $lookup pipeline stage cannot be a sharded collection, although
the initiating collection may be sharded.

�Summary
Sharding provides a scale-out solution for very large MongoDB implementations. In

particular, it allows the write workload to be spread across multiple nodes. However,

sharding adds operational complexity and performance overhead and should not be

implemented lightly.

The most important consideration for sharded cluster implementation is to pick a

shard key with care. The shard key should have a high cardinality to allow for chunks to

split as data grows, should support queries that can operate against individual shards,

and should distribute workload evenly across shards.

Chapter 14 Sharding

342

Rebalancing is a background operation that MongoDB performs to keep shards

balanced. Rebalancing operations can cause performance degradation: you may wish to

tweak rebalancing to avoid this or limit rebalancing to a maintenance window.

Query tuning on a sharded cluster is driven by most of the same considerations

that exist for single node MongoDB – indexing and document design are still the most

important factors. However, you should make sure that queries that can include the

shard key do include that key and that indexes exist to support the queries that are

routed to each shard.

Chapter 14 Sharding

343
© Guy Harrison, Michael Harrison 2021
G. Harrison and M. Harrison, MongoDB Performance Tuning, https://doi.org/10.1007/978-1-4842-6879-7

Index

A
ACID transactions, 203
Advanced patterns

attribute pattern, 86, 87
subsetting

hybrid bucket data model, 82, 83
orders, 83
read performance/updates, 84
risks, 81, 82
two-collection design, 83, 84

vertical partitioning, 85
aggregate()command, 21–23
Aggregation pipelines, 155
Aggregation pipeline vs. multiple

updates, 196
All or nothing approach, 81
Application workload, 8, 9
Atlas Data Lake, 310
Atlas Full-Text Search, 304

B
Balanced tree (B-tree) indexes, 144

add entry, 90
advantages, 90
BAKER, 90
case-insensitive searches, 94, 95
index scans, 92, 93
index splits, 91
leaf blocks, 90

NIVEN, 90
selectivity, 91
structure, 89, 90
unique index, 91

Balancer window, 328
Binary JSON (BSON), 14

C
Caching, 125

film title, 124
implement, 125
performance improvements, 125

Cautionary tale, 3, 4
Collection scan, 152
Compound indexes

advantage, 95
covering index, 98
creation, 95
definition, 95
find()/$match clauses, 95
guidelines, 98
initial/leading attributes, 96
key order, 97
performance, 96, 97
uses, 96

Consistency mechanisms
limitations, 24
non-relational databases, 23
read preference, 24
relational databases, 23

https://doi.org/10.1007/978-1-4842-6879-7#DOI

344

settings, 24
transactions, 25
write concern, 24

createCollection method, 16
Current operations

db.currentOp() command, 58, 60
db.killOp, 61
db.serverStatus(), 59
filter, 60
inprog, 58, 59
tuning situation, 60
$all, 61
$ownOps, 61

Custer tuning, 11

D
Database

application layer, 8
layers, 5–7
MongoDB database server, 8
steps, 6
storage engine, 8
storage subsystem, 8

Database-as-a-service (DBaaS), 303
Data manipulation statements, 185, 186
db.getProfilingStatus() command, 45
dbPath directory, 274, 284
db.serverStatus() command, 228, 241
Delete optimizations, 200
Disk IO, 10, 227

detecting/solving problems, 285–287
disk hardware, 259
HDD, 259, 260
latency, 256
queuing, 256–258
sequencial/random, 258
subsystem bandwidth

cloud storage, 289
disks, 288
MAngoDB Atlas, 291
storage arrays, 289

throughput, 256
Disk sort vs. indexed sort, 175
Disk sort vs. memory sort, 177

E
explain() method, 332

alternate plans, 38
choices, 34
command, 35
cursor, 35
execution plan, 37
execution statistics, 38

executionStages section, 39, 40
executionSteps subdocument, 40
mongoTuning.executionStats(), 40
types, 40

fundamental procedures, 38
inputStage, 37
MongoDB documentation, 37
optimizer’s decisions, 35
query, 34
tune query, 41, 42
visual explain utilities

dbKoda product, 43, 44
MongoDB Compass, 42, 43

winningPlan, 35
winningPlan, 36

F
Filter optimizations, 186
Filter strategies

array queries, 147, 148
not equals conditions, 141–143

Consistency mechanisms (cont.)

Index

345

range queries, 144, 145
regular expressions, 148, 149
$exists operation, 150, 151
$or/$in, 145, 146

find() command, 20
Flexible document schema model, 14

G
Geospatial data, 113
Geospatial indexes

creation, 117
error, 115
execution plan, 116
GeoJSON format, 113
geospatial data, 113
limitations, 118, 119
performance, 117
query, 114, 115
types, 116
$near operator, 115

getShardDistribution() method, 324
Google Cloud Platform (GCP), 272

H
Hashed shard keys, 330
Host-level monitoring

CPU, 225–227
Disk IO, 227
memory, 227
network, 223, 224
operating system, 222

I
Indexed vs. non-indexed, 167
Indexes, 187, 188

definition, 89

joins, 102
maintenance, 102
partial, 100
query performance, 102
sorting, 101
sparse, 101
wildcard index

creation, 103
data, 102
definition, 102
vs. find operations, 104
naming, 103
performance, 103
uses, 105
vs. traditional indexes, 104, 105

Index merges, 99
Index vs. scan, 132, 133

optimizer, 135
pick/create, 139, 140
sort operations, 136–139
statements, 134

Inserting data
batch processing, 190–192
cloning, 192–194
load from files, 195

iostat command, 285

J, K
JavaScript Object Notation

(JSON), 13, 14

L
Latency, 256
Linking vs. embedding

advantages, 81
customer data

aggregation, 73, 74

Index

346

performance, 74
query, 73

definitions, 69
deleting customers, 79
indexes, 72
information, 71, 72
logical entities, 70, 71
new orders, 77
non-performance-related reasons, 69
open orders, 74, 75
Orders schema, 70
performance, 80
top products, 76, 77
updating products, 78

M
Magnetic disk or hard disk drive (HDD), 259
Materialized views, 181, 183
Materialized view vs. direct view, 182
maxStalenessSeconds, 297
mdadm command, 270
Memory tuning

MongoDB memory architecture
application memory,

reducing, 252, 253
host memory, 239
measuring memory, 240, 241
WiredTiger storage engine, 237, 238

Memory utilization, 171–173
MongoDB

architecture
cluster balancing, 32
mongod, 26
replica sets, 28–30
sharding, 30, 31
storage engine, 26, 27

commands
aggregate() command, 21–23
categories, 20
data manipulation commands, 23
find() command, 20, 21

document model
BSON, 14
collections, 15, 16
JSON, 14
schemas, 16, 18

drivers, 19
logs

command-specific
information, 52, 53

critical metrics, 53
db.setLogLevel, 51
elements, 52
executed query, 51
file location, 50
grep, 52
grep, 52
logLevel, 52
logpath parameter, 51
mtools, 53
slow operations, 51
view, 51

protocol
communication mechanism, 18
wire, 18, 19

MongoDB Atlas, 303
analyzers, 304–306
data lake, 310–313
query duration, 307, 309
search, 304

MongoDB Compass, 62, 63
MongoDB IO

architecture, 274
datafile, 281–283, 285

Linking vs. embedding (cont.)

Index

347

journal, 279, 280
temporary file, 274–276
types, 273
WiredTiger cache, 276–278

MongoDB optimizer, 25
MongoDB server monitoring

Atlas, 231, 232
compass, 228
free monitoring, 229, 230
Ops manager, 230, 231
third-party monitoring tools, 232, 233

MongoDB transactions
definition, 206
drivers, 209–212
limits, 206
performance implications,

TransientTransaction
Errors, 212, 213

TransientTransactionErrors, 207–209
mongoTuning.quickExplain function, 37
Multi-level cell (MLC), 266, 288, 292
Multiple collections, 166, 167

graph lookups, 169–171
join order, 167–169

Multi-Version Concurrency Control
(MVCC), 203, 204

N
Network transmission, 126

application architecture, 131
batch processing, 128–131
bulk inserts, 131
projections, 126, 127

O
Operating system monitoring, 61, 62
Optimizing views, 178–180

P
Partial index, 100
Physical IO, 9

Q
Query optimization, 25, 26
Query profiler

levels, 44, 45
profiling data

accurate picture, 48
aggregating statistics, 48
execution plans, 50
explain(), 50
general approach, 47
getMore operation, 48
mongoTuning.profile

Query(), 49
queries, 48
queryHash, 49, 50
query shape, 48
system.profile, 47

profiling level, 45, 46
setProfilingLevel

arguments, 45
syntax, 45

system.profile collection, 46, 47

R
Read preference, 294

maxStalenessSeconds, 297
read performance, 296
secondaries, 294
settings, 295–297
tag sets, 298, 299

Regular expressions, 148, 149
Replica sets, 293

Index

348

S
Schema modelling

guiding principles, 68, 69
key objectives, 68, 69
third normal form, 68

Server monitoring
host-level, 222
MAngoDB, 228
phases, 221

Server statistics
db.serverStatus() command, 54

categories, 56
counts, 55
outputs, 54, 55
problems, 56
WiredTiger cache, 56

db.serverStatus() command
outputs, 55

helper function, 56
MongoDB Atlas/Ops Manager, 56
mongoTuning package, 57
mongoTuning.keyServerStats, 57, 58
operations, 57

Shard balance, 324, 326, 327
changing/recreating keys, 330–332
chunk size, 329, 330
disable, 328, 329
window, 328

Sharded queries
accidental merge, 335, 336
aggregations/sorts, 339, 341
explain() method, 332, 333
key lookups, 334
key range, 336, 337
non-shared key loops, 338, 339
sorting, 337, 338
$lookup, 341

Sharding, 152
concepts, 316
hash-based, 319–322
key selection, 319
performance, 317, 318
range-based, 319–322
scaling, 316
zone, 322–324

Single-level cell (SLC), 261, 292
Solid State Drives (SSDs), 292

definition, 261
garbage collection/wear levelling, 263
magnetic disk, 266
SATA vs. PCI, 263, 265
storage hierarchy, 261
write endurance, 262
write performance, 262

Sort aggregation pipelines, 174
disk sorts, 176, 177
indexed, 174, 175

Sparse index, 101
Storage arrays

cloud storage, 272, 273
hardware storage, 271
non-volatile caches, RAID 5 devices, 269
RAID, 266, 269
RAID 5 write penalty, 269

Suffix stemming, 106
Symptomatic performance tuning, 4, 5
Systematic performance tuning, 5

T
Tag sets, 298, 299
Text indexes

compound indexes, 107
create index, 106
exact matching, 109

Index

349

exclusions, 109
limitations, 109
multiple attributes, 107
performance

collection scan, 112
considerations, 112
index scans, 110
vs. number of search terms, 110, 111
query, 111, 112
sort, 112

suffix stemming, 106
$text operator, 108
textScore field, 108
tuning/creating, 106
weight, 108
$text operator, 108

_tmp directory, 275
transactionLifetimeLimitSeconds

parameter, 206
Transactions

definition, 203
MongoDB, 206
MVCC, 204, 205
optimization

avoiding transaction, 214–216
ordering operations, 216–218
partition hot documents, 218, 219

theory, 203, 204
throughput, 220

Tune aggregation pipelines, 156–158
optimizations, 161, 162, 164, 165
ordering, 159, 161

U
Unused indexes, 188, 189
Updating data

bulk, 195, 196

multi:false, 197
multi:true, 197
upserts, 198, 199
$merge, 200

Upserts, 198

V
vmstat command, 240

W
Wear levelling, 263
WiredTiger memory

cache size, 242, 243
checkpoints, 248–250
concurrency, 251
database cache hit ratio, 245
database cache hit ratio, 243–246
evictions, 246–248
optimum cache size, 243

WiredTiger memory-based cache, 206
WiredTiger storage engine, 237
Wire protocol, 18, 19
Write concern, 189, 190, 300

effect, 302
journal, 300
secondary reads, 303
w option, 301

X, Y
$exists operation, 150, 151
$lookup pipeline, 161
$merge aggregation, 200

Z
Zone sharding, 324

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Methods and Tools
	Chapter 1: Methodical Performance Tuning
	A Cautionary Tale
	Symptomatic Performance Tuning
	Systematic Performance Tuning
	Anatomy of a Database Request
	The Layers of a MongoDB Database

	Minimizing the Application Workload
	Reducing Physical IO
	Optimizing Disk IO
	Cluster Tuning
	Summary

	Chapter 2: MongoDB Architecture and Concepts
	The MongoDB Document Model
	JSON
	Binary JSON (BSON)
	Collections
	MongoDB Schemas

	The MongoDB Protocol
	Wire Protocol
	MongoDB Drivers

	MongoDB Commands
	The find Command
	The aggregate Command
	Data Manipulation Commands

	Consistency Mechanisms
	Read Preference and Write Concern
	Transactions

	Query Optimization
	MongoDB Architecture
	Mongod
	Storage Engines
	Replica Sets
	Sharding
	Sharding Mechanisms
	Cluster Balancing

	Conclusion

	Chapter 3: Tools of the Trade
	Introduction to explain()
	Getting Started with explain()
	Alternate Plans
	Execution Statistics
	Using explain() to Tune a Query
	Visual Explain Utilities

	The Query Profiler
	The system.profile Collection
	Analyzing Profiling Data

	Tuning with MongoDB Logs
	Server Statistics
	Examining Current Operations
	Operating System Monitoring
	MongoDB Compass
	Summary

	Part II: Application and Database Design
	Chapter 4: Schema Modelling
	The Guiding Principles
	Linking vs. Embedding
	A Case Study
	Getting All the Data for a Customer
	Fetching All Open Orders
	Top Products
	Inserting New Orders
	Updating Products
	Deleting a Customer
	Case Study Summary

	Advanced Patterns
	Subsetting
	Vertical Partitioning
	The Attribute Pattern

	Summary

	Chapter 5: Indexing
	B-Tree Indexes
	Index Selectivity
	Unique Indexes
	Index Scans
	Case-Insensitive Searches

	Compound Indexes
	Compound Index Performance
	Compound Index Key Order
	Guidelines for Compound Indexes
	Covering Indexes

	Index Merges
	Partial and Sparse Indexes
	Partial Indexes
	Sparse Indexes

	Using Indexes for Sorting and Joining
	Sorting
	Using Indexes for Joins

	Index Overhead
	Wildcard Indexes

	Text Indexes
	Text Index Performance

	Geospatial Indexes
	Geospatial Index Performance
	Geospatial Index Limitations

	Summary

	Part III: Tuning MongoDB Code
	Chapter 6: Query Tuning
	Caching Results
	Optimizing Network Round Trips
	Projections
	Batch Processing
	Avoiding Excessive Network Round Trips in Code
	Bulk Inserts
	Application Architecture

	Choosing an Index vs. a Scan
	Overriding the Optimizer with Hints

	Optimizing Sort Operations
	Picking or Creating the Right Index
	Filter Strategies
	Not Equals Conditions
	Range Queries
	$OR or $IN Operations
	Array Queries
	Regular Expressions
	$exists Queries

	Optimizing Collection Scans
	Summary

	Chapter 7: Tuning Aggregation Pipelines
	Tuning Aggregation Pipelines
	Optimizing Aggregation Ordering
	Automatic Pipeline Optimizations

	Optimizing Multi-collection Joins
	Join Order
	Optimizing Graph Lookups

	Aggregation Memory Utilization
	Sorting in Aggregation Pipelines
	Indexed Aggregation Sorts
	Disk Sorts

	Optimizing Views
	Materialized Views

	Summary

	Chapter 8: Inserts, Updates, and Deletes
	Fundamentals
	Filter Optimizations
	Explaining a Data Manipulation Statement
	Index Overhead
	Finding Unused Indexes
	Write Concern

	Inserts
	Batch Processing
	Cloning Data
	Loading from Files

	Updates
	Dynamic Value Bulk Updates
	The multi:true Flag
	Upserts
	Bulk Upsert with $merge

	Delete Optimizations
	Summary

	Chapter 9: Transactions
	Transaction Theory
	MongoDB Transactions
	Transaction Limits
	TransientTransactionErrors
	Transactions in the MongoDB Drivers
	The Performance Implications of TransientTransactionErrors

	Transaction Optimization
	Avoiding Transactions
	Ordering of Operations
	Partitioning Hot Documents

	Conclusion

	Chapter 10: Server Monitoring
	Host-Level Monitoring
	Network
	CPU
	Memory
	Disk IO

	MongoDB Server Monitoring
	Compass
	Free Monitoring
	Ops Manager
	MongoDB Atlas
	Third-Party Monitoring Tools

	Summary

	Part IV: Server Tuning
	Chapter 11: Memory Tuning
	MongoDB Memory Architecture
	Host Memory
	Measuring Memory

	WiredTiger Memory
	Cache Size
	Determining the Optimum Cache Size
	The Database Cache "Hit" Ratio
	Evictions
	Blocking Evictions

	Checkpoints
	WiredTiger Concurrency

	Reducing Application Memory Demand
	Document Design
	Indexing
	Transactions

	Summary

	Chapter 12: Disk IO
	IO Fundamentals
	Latency and Throughput
	Queuing
	Sequential and Random IO

	Disk Hardware
	Magnetic Disks (HDD)
	Solid State Drives
	SSD Storage Hierarchy
	Write Performance
	Write Endurance
	Garbage Collection and Wear Levelling
	SATA vs. PCI
	Recommendations for SSDs

	Storage Arrays
	RAID Levels
	The RAID 5 Write Penalty
	Non-volatile Caches in RAID 5 Devices
	Do It Yourself Arrays
	Hardware Storage Arrays

	Cloud Storage
	Disk Devices in MongoDB Atlas

	MongoDB IO
	Temporary File IO
	The Journal
	Moving the Journal to a Dedicated Device

	Datafile IO
	Datafile Writes
	Splitting Up Datafiles Across Multiple Devices

	Detecting and Solving IO Problems
	Increasing IO Subsystem Bandwidth
	Dedicated Server with Dedicated Disks
	Storage Arrays
	Cloud Storage
	MongoDB Atlas

	Summary

	Chapter 13: Replica Sets and Atlas
	Replica Set Fundamentals
	Using Read Preference
	Setting Read Preference
	maxStalenessSeconds
	Tag Sets

	Write Concern
	Journaling
	The Write Concern w Option
	Write Concern and Secondary Reads

	MongoDB Atlas
	Atlas Search
	Atlas Data Lake

	Summary

	Chapter 14: Sharding
	Sharding Fundamentals
	Scaling and Sharding
	Sharding Concepts
	To Shard or Not to Shard?
	Shard Key Selection
	Range- vs. Hash-Based Sharding
	Zone Sharding

	Shard Balance
	Rebalancing Shards
	Modifying the Balancer Window
	Disabling the Balancer
	Changing the Chunk Size

	Changing Shard Keys

	Sharded Queries
	Sharded Explain Plans
	Shard Key Lookups
	Accidental Shard Merge
	Shard Key Range
	Sorting
	Non-Shard Key Lookups
	Aggregations and Sorts
	Sharded $lookup Operations

	Summary

	Index

