
NGINX Unit
Cookbook
Recipes for Using a Versatile Open Source Server

Derek DeJonghe

Derek DeJonghe

NGINX Unit Cookbook
Recipes for Using a Versatile Open Source Server

978-1-492-07856-2

[LSI]

NGINX Unit Cookbook
by Derek DeJonghe

Copyright © 2020 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Mary Preap
Development Editor: Virginia Wilson
Production Editor: Christopher Faucher
Copyeditor: Piper Editorial, LLC
Proofreader: Piper Editorial, LLC

Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

September 2020: First Edition

Revision History for the First Edition
2020-09-02: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492078562 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. NGINX Unit Cookbook, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and NGINX. See our statement of editorial
independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492078562
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Preface. v

1. Unit Introduction and Features. 1
1.1 Application Landscape and Unit Project History 1
1.2 Dynamic Web Application Server 2
1.3 Polyglotism 2
1.4 API-Driven Configuration and Server Management 2
1.5 Conclusion 3

2. Installation. 5
2.1 Red Hat–Based Systems (.rpm) 5
2.2 Debian-Based Systems (.deb) 6
2.3 Go and NPM 8
2.4 Third-Party Repositories 8
2.5 Installing from Source 9

3. Configuration. 13
3.1 Application Object 13
3.2 Listener Object 14
3.3 Route Object 15
3.4 Proxying 19
3.5 Static Files 20
3.6 Upstreams/Load Balancing 21
3.7 Targets 22

iii

4. Usage and Operations. 25
4.1 Startup and Shutdown 25
4.2 Applying Configuration 26
4.3 Limits 30

5. Security. 31
5.1 Unix User Permissions 31
5.2 Linux Namespace Isolation 32
5.3 API Security Through Encryption 34

6. Application Integration. 37
6.1 WordPress 37
6.2 Django 40
6.3 Flask 42
6.4 Express 43
6.5 Ruby 46

7. Ecosystem Integration. 49
7.1 Reverse Proxying to Unit Applications Through NGINX 49
7.2 Securely Serving the NGINX Unit Control API 50
7.3 Containerized Environment 52
7.4 Deployments 53
Conclusion 56

Index. 57

iv | Table of Contents

Preface

The NGINX Unit Cookbook aims to provide a reference for using NGINX Unit
through practical real-world examples. Throughout this book, you will learn about
NGINX Unit, its features, and where it fits in your system architecture. This guide
will provide you with the knowledge to effectively use NGINX Unit and simplify your
system architecture by using a single middleware server for a wide range of web
application use cases.

This book will be most useful for system engineers, architects, and those in a DevOps
role, whose position is focused on web application delivery, deployment, and security.
A background in web application hosting and the HTTP protocol will help readers
understand the concepts contained in this book.

Chapter 1 will explain the what and why of NGINX Unit, in a traditional report form,
before transitioning to the how, in a cookbook format, for the rest of the book. The
main focus areas will be installation of NGINX Unit, its configuration API, serving
applications and routing requests, security and application isolation, and integration
with common web languages and ecosystems.

I personally believe in NGINX Unit and have begun using it in my own web system
architectures because of its versatility and simple minimalistic configuration. NGINX
Unit enables me to deploy web application environments for a wide variety of use
cases and language ecosystems effectively with a common middleware server. My
hope is that the information in this book will empower you to do the same.

v

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/dejonghe/nginx_unit_examples/tree/master/2020.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “NGINX Unit Cookbook
by Derek DeJonghe (O’Reilly). Copyright 2020 O’Reilly Media, Inc.,
978-1-492-08723-6.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

vi | Preface

https://github.com/dejonghe/nginx_unit_examples/tree/master/2020
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/NGINX-unit-cookbook.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments
Special thanks to Ryan Tasson and Artem Konev for their detailed reviews and
feedback.

Preface | vii

http://oreilly.com
http://oreilly.com
https://oreil.ly/NGINX-unit-cookbook
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

CHAPTER 1

Unit Introduction and Features

This chapter will introduce you to NGINX Unit in a traditional book format before
switching to the O’Reilly Cookbook format in Chapter 2. Throughout this chapter,
you will learn about what makes Unit different from other middleware application
servers. Before learning the how, you’ll learn the why, with a brief history of the prob‐
lem Unit aims to solve. From that understanding, the architecture of NGINX Unit
will be introduced, followed by the language support, and finally the API that drives
the configuration.

1.1 Application Landscape and Unit Project History
The landscape of web applications has changed. In the past, applications were written
from the ground up to serve specific needs, and upgrades were seldom issued com‐
pared to the present day. Today, applications are released frequently, in a piecemeal
fashion, and portions are completely rewritten over time. As teams and web applica‐
tion offerings grow, the likelihood of the logic being diverse in both language and
code base grows as well.

As web applications diversify through microservices, languages, and language ver‐
sions, so does the operational complexity of managing middleware, where middle‐
ware is defined as the application server that receives requests and ushers them to the
application code. Installing, configuring, tuning, and maintaining multiple types of
middleware servers for different types of application languages and versions requires
a lot of work, expertise, and time and affects the bottom line.

This solution, NGINX Unit, aims to reduce operational complexity by providing a
single middleware server that is able to run multiple applications of different lan‐
guages and versions and update on the fly without dropping a connection.

1

1.2 Dynamic Web Application Server
NGINX Unit is a dynamic web application server, which means that it can be dynam‐
ically reconfigured during runtime without dropping requests. The architecture of
Unit is such that request handling is broken into layers. These layers comprise a con‐
troller process, a router process, and some application processes.

Each application served by Unit is run by an isolated process or set of processes. The
router process receives incoming connections and asynchronously queues them for
the destined application. The controller process manages the configuration of the
application and router processes. The administrator, or operational automation,
interacts with the controller process through an application programming interface
(API). The controller process is able to reconfigure the router process and the appli‐
cation processes on the fly.

1.3 Polyglotism
Polyglotism is the ability to speak multiple languages. Prior to NGINX Unit, a few
polyglot middleware services have served the web well—for example, the Common
Gateway Interface (CGI) supports languages such as PHP, Perl, and Python; the Web
Server Gateway Interface (WSGI) supports Perl, Python, and Ruby. Unit provides a
single middleware server to run both compiled and scripting languages—including
the aforementioned languages as well as Node.js, Go, and JSP—through a unified
configuration.

With NGINX Unit, teams are able to code in the application language that makes the
most sense for the service they’re providing to the end user. This technology reduces
the difficulty of running complex systems to enable business value from all aspects.

1.4 API-Driven Configuration and Server Management
The NGINX Unit controller process is advertised through an API. The API can be
configured to be served through a Unix or TCP socket. These two options allow the
API to be tightly controlled but also enable remote configuration. This API follows
RESTful paths, methods, and JSON bodies, per industry standard.

The controller process is able to start and stop application processes and to reconfig‐
ure only necessary portions of the router process’s memory. This ability to start appli‐
cations and configure traffic routing accordingly is the core of the dynamic reconfi‐
guration. These paradigms enable native integration with operational workflows
found in DevOpsian organizations.

2 | Chapter 1: Unit Introduction and Features

1.5 Conclusion
NGINX Unit has a unique place in system architectures, as it’s able to consolidate the
number of different middleware server types needed to run a polyglot system. When
system engineering teams are able to standardize, they become much more efficient.
Teams that are going through migrations or technology transformations and need to
write configuration management for a number of different web application middle‐
ware servers should consider using NGINX Unit.

Unit is an excellent choice for applications stuck in traditional data centers. Its API
and dynamic nature provide an overlay on static infrastructure that enables software
and DevOps teams to drive change from the application layer. Cloud deployments
also benefit from Unit, as the industry-standard API fits directly into the ecosystem,
and its lightweight resource footprint and functionality diversity allow teams to get
the most out of their provisioned infrastructure.

Unit is built for serving web requests. An example of when Unit would not be a good
fit would be running asynchronous worker applications that feed off of a queue or
message bus.

The rest of this book is written in O’Reilly’s Cookbook format. The Cookbook format
follows the cadence of problem statement, solution, and discussion.

1.5 Conclusion | 3

CHAPTER 2

Installation

The first step for using NGINX Unit is installing it. NGINX Unit can be installed on a
wide variety of systems. This chapter will detail how to install Unit on the major
Linux distributions such as Debian, Ubuntu, Red Hat, CentOS, and Amazon Linux
through NGINX package repositories. Other installation methods, such as compiling
from source and using third-party repositories, are also included to enable success
with NGINX Unit on virtually any Linux-based platform.

2.1 Red Hat–Based Systems (.rpm)
Problem
You need to install NGINX Unit on Red Hat, CentOS, or Amazon Linux.

Solution
Create a file named /etc/yum.repos.d/unit.repo that contains the following contents:

[unit]
name=unit repo
baseurl=https://packages.nginx.org/unit/OS/$releasever/$basearch/
gpgcheck=0
enabled=1

Alter the file, replacing OS at the end of the URL with rhel, centos, amzn, or amzn2,
depending on your distribution.

Install the Unit base package:

sudo yum install unit

5

Install additional modules that you may want to use with Unit:

RHEL-like systems version 6.x:

sudo yum install unit-devel unit-jsc8 unit-php unit-python

For RHEL-like systems version 7.x and 8.x, you must specify versions of some lan‐
guage modules:

sudo yum install unit-devel unit-jsc8 unit-jsc11 \
 unit-perl unit-php unit-python27 unit-python36

Discussion
The file you just created for this solution instructs the yum package management sys‐
tem to utilize the Official NGINX Unit package repository. The command that fol‐
lows installs Unit from the Official repository, as well as the Unit modules needed for
each application language you may want to run.

The official packages rely on default language versions that are available for the
respective systems within the same package manager ecosystem. Information on cus‐
tomizing language modules can be found in the section Additional Resources.

Additional Resources
System Requirements
CentOS Package Documentation
RHEL Package Documentation
Working with Language Modules

2.2 Debian-Based Systems (.deb)
Problem
You need to install NGINX Unit on a Debian or Ubuntu machine.

Solution
Ensure that the Advanced Package Tool (APT) system is able to use HTTPS
repositories:

sudo apt install apt-transport-https

Create a file named /etc/apt/sources.list.d/unit.list that contains the following contents:

deb https://packages.nginx.org/unit/OS/ CODENAME unit
deb-src https://packages.nginx.org/unit/OS/ CODENAME unit

6 | Chapter 2: Installation

http://bit.ly/2ISB4ss
http://unit.nginx.org/installation/#centos
http://unit.nginx.org/installation/#rhel
https://unit.nginx.org/howto/modules

Alter the file, replacing OS at the end of the URL with ubuntu or debian, depending
on your distribution. Replace CODENAME with the code name of your system. If you
don’t know the code name, the following command will output the value you need:

lsb_release -c
Codename: xenial # Example

Run the following commands to install the NGINX signing key and install Unit:

wget http://nginx.org/keys/nginx_signing.key
sudo apt-key add nginx_signing.key
sudo apt update
sudo apt install unit

A version of the language needs to be specified for certain Unit modules. At the time
of this writing, not all versions of all languages are supported across all versions of the
OS. You can search for module packages available from the repository for your oper‐
ating system by using the following command:

apt-cache search unit- | grep NGINX

Install additional modules that you may want to use with Unit. The following pack‐
ages are available on all Debian-based systems:

sudo apt install unit-php unit-python2.7 unit-perl \
 unit-ruby unit-dev unit-jsc-common unit-jsc8

Discussion
The file you just created instructs the apt package management system to utilize the
Official NGINX Unit package repository. The commands that follow download the
NGINX GPG package signing key and import it into apt. Providing the APT system
with the signing key enables it to validate packages from the repository. The apt
update command instructs the APT system to refresh its package listings from its
known repositories. After the package list is refreshed, you can install Unit and any
necessary packages from the Official NGINX repository. The search command
demonstrated previously can assist in finding which language versions are available
for your system.

Additional Resources
System Requirements
Debian Package Documentation
Ubuntu Package Documentation

2.2 Debian-Based Systems (.deb) | 7

http://bit.ly/2ISB4ss
http://unit.nginx.org/installation/#debian
http://unit.nginx.org/installation/#ubuntu

2.3 Go and NPM
Problem
You need to install the Go or Node.js Unit packages for Unit to hook into your
application.

Solution
Unit’s Node.js package is called unit-http. It uses Unit’s libunit library; your Node.js
applications require the package to run in Unit:

sudo npm install -g --unsafe-perm unit-http

Unit’s Go language module is hosted directly by NGINX. This module enables your
Go application to communicate with the Unit router process directly:

go get unit.nginx.org/go

Discussion
NGINX maintains packages libraries for external applications types. These libraries
must be installed for the respective application to be able to run in Unit. These exam‐
ples show how to install the library or module for Node.js and Go with the default
package manager for either ecosystem.

2.4 Third-Party Repositories
Problem
You want to run NGINX Unit on a system for which NGINX Inc. does not have pre‐
built packages, and you do not want to build from source.

Solution
Install from a third-party repository. These named repositories are maintained by the
community; NGINX has no control over or responsibility for these resources.

Third-Party Repositories

These third-party repositories are maintained by the community.
They may not contain the latest versions and can be subject to
change.

8 | Chapter 2: Installation

Alpine Linux:

sudo apk update
sudo apk upgrade
sudo apk add unit
sudo apk add unit-openrc unit-perl unit-php7 unit-python3 unit-ruby

Arch Linux:

sudo pacman -S git
git clone https://aur.archlinux.org/nginx-unit.git
cd nginx-unit
makepkg -si

FreeBSD:

sudo pkg install -y unit

Gentoo:

sudo emerge --sync
sudo emerge www-servers/nginx-unit

Remi’s RPM repository hosts the latest version of PHP for RHEL and its derivatives,
such as CentOS and Fedora:

sudo yum install --enablerepo=remi unit \
 php54-unit-php php55-unit-php php56-unit-php \
 php70-unit-php php71-unit-php php72-unit-php php73-unit-php

Discussion
This section has detailed the usage of a number of third-party repositories main‐
tained by the community. It is possible to utilize this information to quickly install
prebuilt Unit and Unit module packages on systems that NGINX Inc. does not yet
maintain a repository for. Also, the Remi repository contains specific older PHP ver‐
sions that may be useful to some readers.

Additional Resources
System Requirements
Community Repositories Install Documentation

2.5 Installing from Source
Problem
You need to install Unit from source code.

2.5 Installing from Source | 9

http://bit.ly/2ISB4ss
http://bit.ly/2GH0TKE

Solution
You will have to install the packages needed to compile from source. The following
includes all the development packages for all supported languages; skip the packages
that you are not going to use.

For Debian and Ubuntu:

sudo apt install build-essential
sudo apt install golang
sudo curl -sL \
 https://deb.nodesource.com/setup_<Node.js version>.x \
 | bash -; apt install nodejs; npm install -g node-gyp
sudo apt install php-dev libphp-embed
sudo apt install libperl-dev
sudo apt install python-dev
sudo apt install ruby-dev
sudo apt install openjdk-8-jdk
sudo apt install libssl-dev

For Amazon Linux, CentOS, RHEL, and Fedora:

sudo yum install gcc make unzip
sudo yum install golang
sudo curl -sL \
 https://rpm.nodesource.com/setup_<Node.js version>.x \
 | bash -; yum install nodejs; npm install -g node-gyp
sudo yum install php-devel php-embedded
sudo yum install perl-devel perl-libs
sudo yum install python-devel
sudo yum install ruby-devel
sudo yum install java-1.8.0-openjdk-devel
sudo yum install openssl-devel

In some cases you may need to install the Go programming language repositories,
Perl itself, and the following packages: gcc-c++, perl-ExtUtils-Embed.

Clone or download the source code from https://github.com/nginx/unit. If you choose
to download, you’ll need to unzip the package that is downloaded. Once the source is
cloned or unpacked, move into the base of the project. The next example follows the
download path:

curl -O https://codeload.github.com/nginx/unit/zip/master
unzip master
cd unit-master/

Alternatively, you can download the source directly from NGINX:

curl -O https://unit.nginx.org/download/unit-1.18.0.tar.gz
tar xzf unit-1.18.0.tar.gz
cd unit-1.18.0

10 | Chapter 2: Installation

https://github.com/nginx/unit

You can update the version number, in the event you’re looking for a newer version of
Unit.

Next, use the configure script to prepare the source code for installing on your sys‐
tem. Run ./configure --help, or ./configure <language> --help, to fully under‐
stand the flags available. In the following example, the --prefix option is used to
specify the installation directory. Each supported language has an associated module
that also needs to be built. Run the configure script with each application type you
need to build a module for:

./configure --prefix=/opt/unit/

./configure go --go=/usr/local/go/bin/go

./configure perl

./configure php

./configure python

./configure ruby

./configure nodejs

./configure java

Next, use the make command to run the Makefile created by the configure script and
install the software. You will need to run the make command for each language. Each
language has its own configuration options. Depending on the location and owner‐
ship of the --prefix flag specified by the configure command, you may need to run
the last command with elevated privileges:

make
sudo make go-install
sudo make node-install
sudo make install

NGINX Unit is now installed. Validate the installation by getting the help options
from the binary:

sudo /opt/unit/sbin/unitd -h

Discussion
The preceding steps will build and install NGINX Unit from source. A number of
configuration flags can be used to modify the build and installation. Unit is ready to
use.

Additional Resources
System Requirements
Source Installation Documentation

2.5 Installing from Source | 11

http://bit.ly/2ISB4ss
http://bit.ly/2GtKNCC

CHAPTER 3

Configuration

There are three main types of configuration objects used by NGINX Unit. All are
defined with JSON. The application object defines characteristics of the application
being run by Unit, such as the language, the process controls, and the location on the
filesystem. The listener object defines the Unit configuration that directs incoming
requests on a defined IP address and port to a specified application. The route objects
provide routing capabilities. The routing capabilities include routing to Unit applica‐
tions, serving static files, proxying to external services, and load balancing over a pool
of servers. This chapter will build a foundational understanding of these objects.

3.1 Application Object
Problem
You need to understand the application object for a fundamental understanding of
NGINX Unit.

Solution
Define an application object that describes an application on the system. Each appli‐
cation type has different attributes and options that can be applied. The following is a
basic example of a PHP application object:

{
 "applications": {
 "my-app": {
 "type": "php",
 "processes": 2,
 "root": "/var/www/app/",
 "index": "index.php",
 "user": "app_user",

13

 "group": "app_group"
 }
 }
}

Discussion
Every application deployed on NGINX Unit is defined by an application object. The
application object, defined in JSON, specifies the application’s attributes. Each
application type has its own required and optional attributes. A number of different
application attributes control Unit process management and limitation. The type
attribute is the only process management attribute that is common and required
across all applications; it defines the application language, such as PHP, Python,
Golang, Ruby, or Perl. Other attributes include application process count limits; time
limits; user, group, and environment variables; and working directory.

In the example, some of the attributes that can be applied to a PHP process are used,
such as root and index. The application-specific attributes are focused on the entry
point of the application, such as the directory of the project or the main executable
file.

The processes option shown in the example is set to a static number of 2 application
processes. Optional attributes max, spare, and idle_timeout are also valid for pro‐
cess control. The max and spare attributes represent an integer of the maximum
number of processes and number of spare processes to keep on hand, respectively.
The idle_timeout attribute represents the number in seconds a process can stay idle
before being killed if there is an excess of the number of spare processes.

You will learn how to apply application objects to the Unit configuration in the sec‐
tion Recipe 4.2.

Additional Resource
Applications Object

3.2 Listener Object
Problem
You need to understand the NGINX Unit listener object in order for your application
to listen for requests.

14 | Chapter 3: Configuration

http://bit.ly/2IImvbG

Solution
Define a listener object to instruct Unit to listen for incoming requests on a provided
IP and port:

{
 "listeners": {
 "*:8080": {
 "pass": "applications/my-app"
 }
 }
}

Discussion
To instruct NGINX Unit to listen for incoming requests, a listener object must be
defined. The listener object defines the application to which Unit will direct incoming
requests. The listener object is the value, specified to a key that defines the IP and
port. In the example, the * is used for the IP address, thus instructing Unit to listen
on all IP addresses assigned to the server. The listener object has two attributes: pass
and optionally tls. The pass attribute takes a string value that specifies the applica‐
tion, application target, route, or upstream to which requests will be directed. The
example sends requests directly to an application named my-app.

You will learn how to apply listener objects to the Unit configuration in the section
Recipe 4.2.

Additional Resource
Listeners Object

3.3 Route Object
Problem
You want to understand the NGINX Unit route objects to enable internal routing
between listeners and applications.

Solution
The routes attribute of the Unit configuration can be configured as an array of route
steps or an object of named route arrays.

3.3 Route Object | 15

http://bit.ly/2DzbB3w

When an array of route steps is used as the value of the routes attribute, the value
provided to the pass attribute is simply routes, as in the following example:

{
 "listeners": {
 "*:8080": {
 "pass": "routes"
 }
 },
 "routes": [
 {
 "match": {
 "host": "blog.example.com"
 },
 "action": {
 "pass": "applications/blog"
 }
 },
 {
 "action": {
 "pass": "applications/my-app"
 }
 }
]
}

Figure 3-1 depicts this simple routing example. Route steps are evaluated in the order
of their appearance.

Figure 3-1. Simple NGINX Unit routing

When an object of named route arrays is used as the value of the routes attribute, the
value provided to the pass attribute must be routes/ followed by the named route, as
in the following example:

{
 "listeners": {
 "*:8080": {
 "pass": "routes/main"
 }

16 | Chapter 3: Configuration

 },
 "routes": {
 "main": [
 {
 "match": {
 "host": ["example.com", "www.example.com"]
 },
 "action": {
 "pass": "applications/website"
 }
 },
 {
 "match": {
 "uri": "/admin/*",
 "scheme": "https"
 },
 "action": {
 "pass": "applications/admin"
 }
 }
]
 }
}

Figure 3-2 depicts the routing of a scenario that merges these two route configuration
examples, naming the first example route blog.

Figure 3-2. Named NGINX Unit routing

3.3 Route Object | 17

Discussion
This recipe demonstrates a couple of basic routes. A route step has two attributes:
match and action. Both attributes have their own respective object types that have a
number of configurable attributes.

The match object has the following options: arguments, cookies, destination,
headers, host, method, scheme, source, and uri. With these options, you can identify
a web request and direct it to the correct action. The only valid values for scheme are
http or https.

There are two types of match options: simple and compounding. The following are
simple match options: destination, host, method, source, and uri. These options
match against a string pattern or an array of patterns. When specifying multiple
options together in a single match object, they work as a logical AND. When an array
of strings is used for one of these options, the match at the option level is evaluated as
a logical OR.

A pattern can use wildcards, negations, or ranges. Wildcards (*) prefixing, suffixing,
and splitting the string are valid with the host, method, and uri match options, as
well as the IP portion of source and destination. Negations (!) are also supported,
but they must come at the beginning of an option value. Ranges, in the format
{start_port}-{end_port}, are supported for the IP and Port portions of the source
and destination options. The option values patterns must be an exact match to the
request for the action to take effect.

Compounding match options use an object of key-value pair attributes to define a
match. The following options use the compounding match: arguments, cookies, and
headers. To match a request for a compounding match option, the request must
match all of the attributes of the option. The key attribute names the particular argu‐
ment, cookie, or header your request is trying to match. The value of the attribute
behaves exactly like a simple type match option, accepting a string pattern or an array
of string patterns.

The action object takes the following options: pass, share, fallback, proxy, return,
and location. The pass action type routes the request to a given route, upstream, or
application, where the share serves static content from a given file path. The
fallback action is used in conjunction with a share to reroute the request in the
event a file requested is not found or cannot be accessed. Routes can be chained for
more complex logic. The proxy type will proxy the request to another HTTP server.
The return attribute alone will return a status code. To redirect a request, the return
and location attributes can be used together to return an HTTP status code and a
redirect location.

18 | Chapter 3: Configuration

The route steps in a given array are evaluated in order, and the first match takes
action. If only the action attribute, but no match condition, is specified in a route,
requests are unconditionally directed to the pass, share, or return value. If no route
is matched, an HTTP 404 is served.

Additional Resources
Route Object

3.4 Proxying
Problem
You need to proxy a request handled by Unit to another HTTP service.

Solution
Use the routes attribute of the Unit configuration to specify a route object that uses a
proxy action type:

{
 "listeners": {
 "*:8080": {
 "pass": "routes"
 }
 },
 "routes": [
 {
 "match": {
 "uri": "/wiki/*"
 },
 "action": {
 "proxy": "http://172.17.0.1:80"
 }
 },
 {
 "action": {
 "pass": "applications/my-app"
 }
 }
]
}

This example routes any request with a prefixed URI of /wiki/ to an external HTTP
service hosted at http://172.17.0.1:80, and all other requests to an application
hosted by Unit.

3.4 Proxying | 19

http://bit.ly/2Dx0dpc

Discussion
The proxy action type will relay the request to an external HTTP service. The capa‐
bilities of this action are that of a basic reverse proxy. You can use Unix, IPv4, and
IPv6 socket addresses as targets. This Unit feature will fit many use cases. For more
advanced features, you may look to the NGINX reverse proxy and load balancer
server.

Additional Resources
Route Object

3.5 Static Files
Problem
You need to serve static files with Unit.

Solution
Use the routes attribute of the Unit configuration to specify a route object that uses a
share action type:

{
 "listeners": {
 "*:8080": {
 "pass": "routes"
 }
 },
 "routes": [
 {
 "action": {
 "share": "/var/www/static/",
 "fallback": {
 "share": "/var/app/static"
 }
 }
 }
]
}

This example serves all requests out of a local file directory, /var/www/static/. If the
file is not found, Unit will fall back to an alternate location, /var/app/static. When
serving static content, a user attribute is not specified as it is with applications. The
files are accessed with the access rights of the user Unit runs as, usually root.

20 | Chapter 3: Configuration

http://bit.ly/2Dx0dpc

Discussion
The share action type will serve static content from a local directory. It can be used in
conjunction with the fallback action, which will tell Unit how to direct the request if
the requested file is not found or if Unit has insufficient privileges to access it. The
fallback action can route requests to a pass, proxy, or share action. When
fallback directs requests to another share action, the fallback actions can be
nested.

Additional Resources
Route Object

3.6 Upstreams/Load Balancing
Problem
You need to load balance over multiple servers external to Unit.

Solution
Use the upstreams attribute of the Unit configuration to define a pool of servers to
load balance over:

{
 "listeners": {
 "*:8080": {
 "pass": "upstreams/pool-0"
 }
 },
 "upstreams": {
 "pool-0": {
 "servers": {
 "10.0.0.2:8080": { },
 "10.0.1.2:8080": {
 "weight": 2.0
 }
 }
 }
 }
}

This example will load balance between servers 10.0.0.2 and 10.0.1.2, both of
which listen on port 8080. These two servers are defined as an upstream named
pool-0. The server at 10.0.1.2 will receive twice as many requests as 10.0.0.2
because of the weight attribute.

3.6 Upstreams/Load Balancing | 21

http://bit.ly/2Dx0dpc

Discussion
The upstreams attribute of the Unit configuration defines a number of named
upstream objects. Each upstream object defines a servers object. The servers object
uses keys to define the destination and uses the value to specify an optional weight.
The upstream uses a weighted round-robin load balancing algorithm. The maximum
weight value is 1000000, the minimum is 0 (such servers receive no requests), and the
default is 1.

The load balancing capabilities of Unit are pretty basic but fit many use cases. For
more advanced load balancing features, you should use the NGINX reverse proxy
and load balancing server, which is described in Chapter 7.

Additional Resources
Upstreams Object

3.7 Targets
Problem
Your application has multiple entry points, and you need to separate routing, root
directories, and the index or script being run.

Solution
Use the application attribute target to provide a separate context within the same
application:

{
 "listeners": {
 "*:8080": {
 "pass": "routes"
 }
 },
 "routes": [
 {
 "match": {
 "host": "admin.example.com"
 },
 "action": {
 "pass": "applications/my-app/admin"
 }
 },
 {
 "action": {
 "pass": "applications/my-app/website"
 }

22 | Chapter 3: Configuration

https://unit.nginx.org/configuration/#upstreams

 }
],
 "applications": {
 "my-app": {
 "type": "php",
 "targets": {
 "admin": {
 "index": "admin.php",
 "root": "/var/www/admin"
 },
 "website": {
 "script": "index.php",
 "root": "/var/www/"
 }
 }
 }
 }
}

Discussion
This section took the route and application configurations to a deeper level. The
application configuration has an attribute, targets, that defines another layer of
application context. A PHP application must have a root and script or index
attribute defined at either the application level or a target level. In the example, the
admin target has a different root directory than the website target. The admin target
also allows all PHP files within the directory structure to be called, with admin.php
being the index. The website target contains the admin root directory; however, it
only allows for the index.php script to be called. Up to 254 targets can be configured
for an application. Routing to a target is done by simply appending to the application
namespace with the name of the target.

3.7 Targets | 23

CHAPTER 4

Usage and Operations

Understanding how to start and stop the NGINX Unit server, and the applications it
runs, is essential. In this chapter, you will learn how to start and stop the Unit service
on init.d and systemd service managers, as well as how to start the Unit server in the
foreground. This chapter also details how to submit the configuration objects to the
Unit control API in order to start serving the application.

4.1 Startup and Shutdown
Problem
You need to start or stop the NGINX Unit server.

Solution
When Unit is installed through a repository, a startup file for a service manager such
as init.d or systemd is also installed and configured. These service managers will start
Unit as a daemon.

Start Unit on an init.d system:

sudo /etc/init.d/unit start

Stop Unit on an init.d system:

sudo /etc/init.d/unit stop

Start Unit on a systemd system:

sudo systemctl start unit

Stop Unit on a systemd system:

sudo systemctl stop unit

25

Start Unit in the foreground. The following assumes that the Unit binary is installed
into a directory defined in your PATH:

sudo unitd --no-daemon

Discussion
The service manager used to start the Unit daemon depends on the type of system it’s
running on. Each service manager has its own syntax for starting and stopping serv‐
ices. The service managers will start Unit as a daemon. An example of starting Unit in
the foreground is also shown. This can be useful for testing or when running Unit in
a Docker container.

4.2 Applying Configuration
Problem
You need to alter the NGINX Unit configuration through the control interface.

Solution
For this section, it’s important to understand that the Unit configuration is repre‐
sented as a single JSON object. Portions of the object can be interacted with in a
RESTful manner. The following are examples of working with specific application
and listener objects, and then with the Unit config as a whole.

Locate the Unit control socket; example output is provided. The default value found
in this example, /var/run/control.unit.sock, will be used throughout the book. As
the control socket is owned by root by default, all curl commands will be run with
sudo:

unitd -h

unit options:

 --version print unit version and configure options

 --no-daemon run unit in non-daemon mode

 --control ADDRESS set address of control API socket
 default: "unix:/var/run/control.unit.sock"
 ...
 ...

26 | Chapter 4: Usage and Operations

Create an application by submitting an application object to the control socket:

sudo curl -X PUT -d @/path/to/application-object.json \
 --unix-socket /var/run/control.unit.socket \
 http://localhost/config/applications/my-app

In accordance to REST standard, a PUT request overwrites prior
configurations that might have been previously defined for a given
entity.

Configure a listener to send requests to the application:

sudo curl -X PUT \
 -d '{"*:8080":{"pass":"applications/my-app"}}' \
 --unix-socket /var/run/control.unit.socket \
 http://localhost/config/listeners

Figure 4-1 depicts the routing at this point.

Figure 4-1. Simple NGINX Unit configuration

Configure a route object named main to match /wiki/* and serve static files
from /var/www/static/:

sudo curl -X PUT \
 -d '{
 "main":[
 {
 "match":{"uri":"/wiki/*"},
 "action":{"share":"/var/www/static/"}
 }
]
 }' \
 --unix-socket /var/run/control.unit.socket \
 http://localhost/config/routes

Append specifically to the route array named main, with a POST method to the
routes/main entity, that will direct all other traffic to the application:

sudo curl -X POST \
 -d '{"action":{"pass":"applications/my-app"}}' \
 --unix-socket /var/run/control.unit.socket \
 http://localhost/config/routes/main

4.2 Applying Configuration | 27

Set the listener object to direct traffic at the route, rather than the application:

sudo curl -X PUT \
 -d '"routes/main"' \
 --unix-socket /var/run/control.unit.socket \
 'http://localhost/config/listeners/*:8080/pass'

Figure 4-2 depicts the routing at this point.

Figure 4-2. Simple NGINX Unit configuration

Use the GET method to retrieve and save the entire configuration to a file named
config.json:

sudo curl \
 --unix-socket /var/run/control.unit.socket \
 http://localhost/config/ \
 -o config.json

Your config.json file should look similar to the following:

{
 "listeners": {
 "*:8080": {
 "pass": "routes/main"
 }
 },
 "routes": {
 "main": [
 {
 "match": {
 "uri": "/wiki/*"
 },
 "action": {
 "share": "/var/www/static/"
 }
 },
 {
 "action": {
 "pass": "applications/my-app"
 }

28 | Chapter 4: Usage and Operations

 }
]
 },
 "applications": {
 "my-app": {
 "type": "php",
 "processes": 5,
 "root": "/var/www/app/",
 "index": "index.php"
 }
 }
}

Alternatively, you can create all of these objects at once by applying the entire config‐
uration file with a PUT method:

sudo curl -X PUT -d @config.json \
 --unix-socket /var/run/control.unit.sock \
 http://localhost/config/

This command removes all other listeners, apps, and routes that
might have been defined previously.

Test your application:

curl localhost:8080
curl localhost:8080/wiki/somefile

Discussion
All interactions with Unit are done through the control interface. The API is RESTful;
applications and configurations are created, altered, or deleted through the API. In
the examples for this solution, we build on the examples from Chapter 3 by submit‐
ting them to the Unit control interface. Throughout the example, you created an
application, a listener, and a route. You then updated the route and the listener. By
using a GET method, you retrieved the entire configuration of the running NGINX
Unit server and saved it to a configuration file. Finally, you used the returned config‐
uration file to set all configurations at once with a single HTTP request to the control
interface.

It is important to note what each HTTP method will do to a given entity targeted by
the API RESTful endpoint. A GET will return the configuration or value for a targeted
entity. A PUT will set the configuration or value for a given entity, overwriting what
was previously configured. A POST will append to a configuration array. A DELETE will
delete the entity and return a status message.

4.2 Applying Configuration | 29

4.3 Limits
Problem
You need to limit the number of requests an application will process before being
respawned as well as the amount of time it has to respond before timing out.

Solution
Use the limits option of an application object:

{
 "listeners": {
 "*:8080": {
 "pass": "applications/app-name"
 }
 },
 "applications": {
 "app-name": {
 "type": "php",
 "processes": 5,
 "root": "/var/www/app/",
 "index": "index.php",
 "limits": {
 "timeout": 10,
 "requests": 10000
 }
 }
 }
}

Discussion
The limits option takes an object that is comprised of one or two options. The time
out option configures how long in seconds NGINX Unit will wait for a request before
timing out and returning an error to the user. The requests option defines how
many requests an application process can serve before being restarted. Restarting a
process after a certain number of requests is helpful for applications that have mem‐
ory leaks.

30 | Chapter 4: Usage and Operations

CHAPTER 5

Security

Security is everyone’s job. NGINX Unit enables many layers of security configuration.
Unit naturally separates applications by spawning separate processes for each one,
enabling isolation at the process and memory layer. Each application process can be
owned by separate users, enabling security at the file permission layer as well. Each
application can also have its own Linux namespace specifications. Next, NGINX Unit
has full SSL/TLS support, which enables Unit to serve applications through encrypted
HTTPS communication. Finally, the system user accounts that are used to run Unit
(the account that the unitd daemon runs as, the control socket owner, and the app-
specific user and group accounts) enable fine-tuning access rights. All of these secu‐
rity attributes are demonstrated in this chapter.

5.1 Unix User Permissions
Problem
You need to further isolate your applications by using user permissions.

Solution
Use a different system user for each application so that Unit spawns the processes as
separate users with their own permissions:

{
 "applications": {
 "auth-service": {
 "type": "ruby",
 "working_directory": "/var/app/auth/",
 "script": "/var/app/auth/config.ru",
 "user": "auth-app"
 },

31

 "key-service": {
 "type": "external",
 "working_directory": "/var/app/key/",
 "executable": "bin/key-app",
 "user": "key-app"
 }
 }
}

Discussion
Unit runs each application as a separate process or group of processes, enabling it to
run these processes as separate system users. When configuring an application in
Unit, there are attributes for user and group. Using separate system users for each
application will provide your applications with further isolation. The example dem‐
onstrates two different applications running as separate users in two separate working
directories. It is implied that these directories have separate file permissions.

5.2 Linux Namespace Isolation
Problem
You want to use Linux namespaces so that processes are fully isolated.

Solution
Configure the application to use Linux namespace isolation:

{
 "applications": {
 "auth-service": {
 "type": "php",
 ...
 "isolation": {
 "namespaces": {
 "cgroup": true,
 "credential": true,
 "mount": true,
 "network": true,
 "pid": true,
 "uname": true
 },
 "uidmap": [
 {
 "host": 1000,
 "container": 0,
 "size": 1000
 }
],

32 | Chapter 5: Security

 "gidmap": [
 {
 "host": 1000,
 "container": 0,
 "size": 1000
 }
],
 "rootfs": "/var/app/sandbox/"
 }
 }
 }
}

This example exercises all of the available Linux namespace configurations for an
NGINX Unit application.

Discussion
A Linux namespace wraps a global system resource in an abstraction that makes it
appear to the processes within the namespace that they have their own isolated
instance of the global resource. Changes to the global resource are visible to other
processes that are members of the namespace but are invisible to other processes.

This NGINX Unit feature provides your application with an isolated runtime envi‐
ronment native to the underlying operating system. This type of isolation is akin to
Docker and LXC, as they use Linux namespaces and cgroups to separate containers.
This isolation is available on Linux systems and may not be fully supported by every
OS that NGINX Unit is capable of running on, such as FreeBSD, MacOS, and Solaris.
The uidmap and gidmap options are available only if the operating system supports
Linux user namespaces.

The rootfs option provides the ability to confine the application in a directory. This
feature enables Linux chroot abilities of NGINX Unit.

Additional Resources
Linux Namespaces
Cgroup Namespaces
User Namespaces
Mount Namespaces
Network Namespaces
PID Namespaces
Uname Namespaces
chroot Man Page

5.2 Linux Namespace Isolation | 33

https://oreil.ly/DLxvR
https://oreil.ly/lhqYN
https://oreil.ly/5sSl4
https://oreil.ly/U5g9A
https://oreil.ly/lMvDY
https://oreil.ly/O1zjk
https://oreil.ly/4m15j
https://oreil.ly/YA4ab

5.3 API Security Through Encryption
Problem
You need to secure your application’s communication with SSL/TLS certificates.

Solution
Create a .pem file that includes your certificate chain and private key:

cat cert.pem ca.pem key.pem | sudo tee bundle.pem > /dev/null

Upload the bundle.pem file to Unit’s certificate storage under a suitable name:

sudo curl -X PUT --data-binary @bundle.pem \
 --unix-socket /var/run/control.unit.socket \
 http://localhost/certificates/certificate-name

Configure a listener object to use the certificate. In this example, a file with the object
will be written to a file named tls-listener.json for clarity:

{
 "*:8443": {
 "pass": "applications/app-name",
 "tls": {
 "certificate": "certificate-name"
 }
 }
}

Submit the tls-listener.json configuration to the Unit API:

sudo curl -X PUT -d @tls-listener.json \
 --unix-socket /var/run/control.unit.socket \
 http://localhost/config/listeners

This command removes all other listeners that might have been
defined previously.

Validate that your application is communicating over TLS:

curl -v https://localhost:8443

34 | Chapter 5: Security

Discussion
This recipe concatenates the certificate, certificate authority chain, and key into a
bundle that can be used by NGINX Unit. After the certificate is uploaded to Unit’s
certificate store, it can be referenced by listeners. A listener object is constructed
using the IP and port on which to accept requests. It references the application via the
pass attribute, as well as the certificate bundle object. The listener object is then sub‐
mitted to the Unit control interface.

Validating that the TLS certificate is configured properly can be done by making a
request to the listener. Using the verbose flag, -v, when issuing the curl command
will print the TLS handshake operations if the certificate is configured properly.

Additional Resources
TLS Object

5.3 API Security Through Encryption | 35

http://bit.ly/2UBy1an

CHAPTER 6

Application Integration

To provide examples of serving real-world applications with NGINX Unit, this chap‐
ter will demonstrate step-by-step setups of some common application frameworks. In
this chapter, you will learn how to serve WordPress, a common PHP content man‐
agement system. You will also learn how to serve applications based in common
frameworks such as Django, Flask (Python frameworks), and Express (a Node.js
framework). A Ruby example is also provided, making use of the common frame‐
work Ruby on Rails. This chapter will demonstrate how to install applications onto a
system and ensure that they have the correct file permissions and the configuration of
NGINX Unit needed to serve them.

6.1 WordPress
Problem
You need to run WordPress with NGINX Unit.

Solution
To install WordPress, if you haven’t already done so, check the prerequisites to ensure
that you have the necessary requirements. Next, configure the WordPress database.
Then download and extract the WordPress files:

sudo mkdir /var/app/
sudo cd /var/app/
sudo wget https://wordpress.org/latest.tar.gz
sudo tar xzvf latest.tar.gz

In this example, the WordPress files will be stored in /var/app/wordpress/.

Update the wp-config.php file with your database settings and other customizations.

37

http://bit.ly/2IGsBt4
https://oreil.ly/eAACv
https://oreil.ly/W5Vew
https://oreil.ly/l7Lzn

Set the user file permissions for WordPress to ensure that the user that owns the PHP
processes and the user running the Unit server are able to access the files:

sudo chown -R wpuser:www-data /var/app/wordpress/
sudo find /var/app/wordpress/ -type d -exec chmod g+s {} \;
sudo chmod g+w /var/app/wordpress/wp-content
sudo chmod -R g+w /var/app/wordpress/wp-content/themes
sudo chmod -R g+w /var/app/wordpress/wp-content/plugins

Configure a PHP application object, as well as a listener object, and submit both
objects to the NGINX Unit control interface. This example will configure two appli‐
cations and listeners in order to isolate the main WordPress entry point, index.php,
from the rest of the PHP files that can be run, such as wp-admin.php. Name the fol‐
lowing JSON file wordpress-unit.json:

{
 "listeners": {
 "*:8080": {
 "pass": "routes/wordpress"
 }
 },
 "routes": {
 "wordpress": [
 {
 "match": {
 "uri": [
 "*.php",
 "*.php/*",
 "/wp-admin/"
]
 },
 "action": {
 "pass": "applications/wordpress/direct"
 }
 },
 {
 "action": {
 "share": "/var/app/wordpress/",
 "fallback": {
 "pass": "applications/wordpress/index"
 }
 }
 }
]
 },
 "applications": {
 "wordpress": {
 "type": "php",
 "user": "wpuser",
 "group": "www-data",
 "targets": {
 "direct": {

38 | Chapter 6: Application Integration

http://bit.ly/2GFqzFY

 "root": "/path/to/wordpress/"
 },
 "index": {
 "root": "/path/to/wordpress/",
 "script": "index.php"
 }
 }
 }
 }
}

Submit the wordpress-unit.json file to the Unit control interface:

sudo curl -X PUT -d @wordpress-unit.json \
 --unix-socket /var/run/control.unit.socket \
 http://localhost/config

Use a browser to make a request to Unit on port 8080, and finish the installation pro‐
cess.

Discussion
In this recipe, WordPress is installed from scratch. The system and database first need
to be prepared to WordPress specifications. After the system is prepared, the code
base is downloaded and unpacked to a location on the filesystem.

Once the application code is on the filesystem, WordPress needs to be informed how
to connect to the database. This is done by altering a configuration file that is
included in the code base. For the sake of brevity, this is statically configured. In a
production system, environment variables would be used and set when configuring
the Unit application.

After the database connection has been configured, the file permissions are changed
so that the system user that will own the Unit processes will be able to read the files.
Permissions are also set for the system group.

When configuring Unit to serve the application, a route is used to send any requests
that specify a filename ending with .php or a file path that starts with /wp-admin/,
directly to the application script. All other requests are attempted to be served stati‐
cally. If a static file is not found, the request is directed to the main index.php script.

Additional Resources
WordPress How-To

6.1 WordPress | 39

https://oreil.ly/UR3qZ
http://bit.ly/2IICgz7

6.2 Django
Problem
You have a Python Django application you want to serve with NGINX Unit.

Solution
Prepare your existing project or create a new one. NGINX Unit looks for a callable
entity within the WSGI module provided, named application. In this example, the
source code will be placed in /var/project/. Start by ensuring that the correct file per‐
missions are set:

sudo chown -R app-user /var/project/

Detailing the directory structure of the example is important because Unit needs to
know how to import the WSGI module in order to run the application. Thus the Unit
application object values depend on the directory structure:

/var/project/
├── manage.py
├── app1/
│ └── ...
├── app2/
│ └── ...
├── static/
│ └── ...
└── project/
 ├── ...
 └── wsgi.py

Construct an NGINX Unit Python application object and associated listener. Name
this file django-unit.json:

{
 "listeners": {
 "127.0.0.1:8080": {
 "pass": "routes"
 }
 },

 "routes": [
 {
 "match": {
 "uri": "/static/*"
 },
 "action": {
 "share": "/var/project/"
 }
 },
 {

40 | Chapter 6: Application Integration

http://bit.ly/2Dxresg

 "action": {
 "pass": "applications/django_project"
 }
 }
],

 "applications": {
 "django_project": {
 "type": "python",
 "path": "/var/project/",
 "home": "/path/to/virtual-env/if/used/",
 "module": "project.wsgi",
 "user": "app-user"
 }
 }
}

Submit the django-unit.json file to the Unit control interface:

sudo curl -X PUT -d @django-unit.json \
 --unix-socket /var/run/control.unit.socket \
 http://localhost/config

Validate that the application is running by making a request to the server on port
8080:

curl http://localhost:8080

Discussion
In this recipe, a Django project is served with NGINX Unit. In order for Unit applica‐
tion processes to read the files, appropriate file permissions must be set. In the exam‐
ple, the files are owned by the system user that will be running the application.

This recipe shows the directory structure, not because it needs to be followed but
because it shows how the module attribute of the Unit application object for Python
applications is configured. The value of the module attribute is used to import the
WSGI module, with standard Python import syntax, from the directory specified by
the path attribute.

The Unit configuration specifies that this application is of type python. As the version
of Python is not specified, the latest version is used. The path attribute specifies the
path to the base directory of the application. If a virtual environment is being used,
the optional home attribute can be set to the base directory of the virtual environment.
Unit imports the WSGI object by use of the module attribute and runs the application
as specified by the system user.

The configuration also defines a listener object that instructs Unit to send incoming
requests on the 127.0.0.1:8080 interface, to be processed by the routes configura‐
tion. A route is defined to match the URI, /static/*, and serve static files from the

6.2 Django | 41

root directory of the project. As the URI path must be prefixed with /static/, only
files in the static directory will be matched. All other requests will be directed to the
django_project application.

Additional Resources
Django How-To

6.3 Flask
Problem
You have a Python Flask application you want to serve with NGINX Unit.

Solution
Prepare your existing project. NGINX Unit looks for a callable entity within the
WSGI module provided, named application. In many Flask examples, the Flask
application is initiated and simply called app. If this is the case with your project,
you’ll have to make alterations. The following is the most minimal amount of code
we can provide to run a Flask application and have it ready to be served by NGINX
Unit. For this example, the name of the file will be simply called app.py:

from flask import Flask
application = Flask(__name__)

@application.route('/')
def hello_world():
 return 'Hello, Unit!'

In this example, the source code will be placed in /var/project/. Start by ensuring that
the correct file permissions are set:

sudo chown -R app-user /var/project/

Construct an NGINX Unit Python application object and associated listener. Name
this file flask-unit.json:

{
 "listeners": {
 "127.0.0.1:8080": {
 "pass": "applications/flask_project"
 }
 },

 "applications": {
 "flask_project": {
 "type": "python",
 "path": "/var/project/",

42 | Chapter 6: Application Integration

http://bit.ly/2UHg8Xq

 "home": "/path/to/virtual-env/if/used/",
 "module": "app",
 "user": "app-user"
 }
 }
}

Submit the flask-unit.json file to the Unit control interface:

sudo curl -X PUT -d @flask-unit.json \
 --unix-socket /var/run/control.unit.socket \
 http://localhost/config

Validate that the application is running by making a request to the server on port
8080:

curl http://localhost:8080

Discussion
In this recipe, a Flask project is served with NGINX Unit. For Unit to be permitted to
read the files, the correct file permissions need to be set. In the example, the files are
owned by the system user that will be running the application.

The Unit configuration specifies that this application is of type python. As the version
of Python is not specified, the latest version is used. The path attribute specifies the
path to the base directory of the application. If a virtual environment is being used,
the optional home attribute can be set to the base directory of the virtual environment.
Unit imports the file that contains the Flask application object by use of the module
attribute and runs the application as specified by the system user. As noted previ‐
ously, it’s important that this object be explicitly named application. The configura‐
tion then defines a listener object that instructs Unit to send incoming requests on
the 127.0.0.1:8080 interface, to be directed to the flask_project application.

Additional Resources
Flask How-To
Flask Quickstart

6.4 Express
Problem
You have a Node.js application that utilizes the Express framework.

Solution
Set up your project and ensure that Node is installed.

6.4 Express | 43

https://unit.nginx.org/howto/flask
https://flask.palletsprojects.com/en/1.1.x/quickstart
http://bit.ly/2vnJa4i

To run Node applications in NGINX Unit, an NPM package is required. The version
of the NPM package unit-http must match the version of NGINX Unit being used.
It’s wise to version-lock the Unit server and the NPM package to avoid version con‐
flicts. To build and install the NPM package, you will first need the Unit development
package, which includes necessary header files. The Unit development package is
installed via the system package manager and was shown in the installation process in
Chapter 2:

npm install unit-http

Unit will call the Node application’s entry point as an executable. Add the following
line to the beginning of the entry point file:

#!/usr/bin/env node

Make the entry point executable, and ensure that it can be executed by the system
user that will run the application. In the example, the entry point file is index.js, and
the project directory is /var/app/:

chown -R app-user /var/app/
chmod u+x index.js

To serve an Express application with Unit, the code needs to be modified slightly. The
default Express HTTP server, ServerResponse, and IncomingMessage objects need to
be replaced with objects from the default http package to the unit-http package.
The following “Hello World!” example shows how to rewire the application:

#!/usr/bin/env node

const {
 createServer,
 IncomingMessage,
 ServerResponse,
} = require('unit-http')

require('http').ServerResponse = ServerResponse
require('http').IncomingMessage = IncomingMessage

const express = require('express')

const app = express()

app.get('/', (req, res) => {
 res.set('X-Header-Example', 'Value')
 res.send('Hello, Unit!')
})

createServer(app).listen()

44 | Chapter 6: Application Integration

NGINX Unit also supports the WebSocket protocol; your Node.js app only needs to
replace the default websocket with:

var webSocketServer = require('unit-http/websocket').server;

Construct the NGINX Unit application and listener objects for this project and name
the file express-unit.json:

{
 "listeners": {
 "127.0.0.1:8080": {
 "pass": "applications/express_project"
 }
 },

 "applications": {
 "express_project": {
 "type": "external",
 "executable": "/var/app/index.js",
 "user": "app-user"
 }
 }
}

Submit the express-unit.json file to the Unit control interface:

sudo curl -X PUT -d @express-unit.json \
 --unix-socket /var/run/control.unit.socket \
 http://localhost/config

Validate that the application is running by making a request to the server on port
8080.

Discussion
In this recipe, the unit-http package is installed to the project, and its objects are
used rather than the default http server objects. The entry point file is made exe‐
cutable and the correct file permissions are set on the project so that Unit is able to
read the modules and run the entry point. Lastly, the Unit application and listener
objects are constructed and submitted to the Unit control API. The executable
attribute specifies the location of the entry point file. An optional application object
attribute for external application types, named arguments, can be used if there are
arguments that need to be passed to the executable.

Additional Resources
Express How-To

6.4 Express | 45

http://bit.ly/2VriBd9

6.5 Ruby
Problem
You have a Ruby application you want to serve with NGINX Unit.

Solution
Install the rack Ruby gem:

$ gem install rack

Construct an NGINX Unit Ruby application object and associated listener. Name this
file ruby-unit.json:

{
 "listeners": {
 "127.0.0.1:8080": {
 "pass": "applications/ruby_app"
 }
 },

 "applications": {
 "ruby_app": {
 "type": "ruby",
 "processes": 5,
 "script": "/www/app/config.ru",
 "working_directory": "/var/app/"
 }
 }
}

Submit the ruby-unit.json file to the Unit control interface:

sudo curl -X PUT -d @ruby-unit.json \
 --unix-socket /var/run/control.unit.socket \
 http://localhost/config

Validate that the application is running by making a request to the server on port
8080:

curl http://localhost:8080

Discussion
In this recipe, a Ruby application is served with NGINX Unit. To run Ruby scripts,
Unit uses the rack interface to run Ruby scripts, which is why its installation was
called out. The only required attribute of a Unit Ruby application object is script.
The script attribute specifies the path to the application entry point. In Ruby on

46 | Chapter 6: Application Integration

Rails projects, this script is at the base of the project initiated by the rails new app-
name command and is called config.ru.

The Unit configuration specifies that this application is of type ruby. The script
attribute specifies the full path to the applications entry point, sets the number of pro
cesses to 5, and sets the working_directory to /var/app/. The configuration then
defines a listener object that instructs Unit to send incoming requests on the
127.0.0.1:8080 interface, to be directed to the ruby_app application.

Additional Resources
Ruby on Rails Getting Started
NGINX Unit Redmine Example

6.5 Ruby | 47

https://guides.rubyonrails.org/getting_started.html
https://unit.nginx.org/howto/redmine

CHAPTER 7

Ecosystem Integration

Throughout this chapter, you will learn about operational integration as it pertains to
NGINX Unit. Unit applications may need to be served via an NGINX proxy or load
balancer, to which the configuration will be detailed. Also included are recipes that
enable you to securely expose the Unit control interface through NGINX. Other top‐
ics include running Unit within a container and deploying application version
upgrades through the control API.

7.1 Reverse Proxying to Unit Applications Through NGINX
Problem
You need to serve an application running in NGINX Unit through an NGINX server
acting as a reverse proxy or load balancer.

Solution
Configure an upstream block in the NGINX configuration made up of Unit servers:

upstream unit_backend {
 server 127.0.0.1:8080; # Local Reverse Proxy
 server 10.0.0.12:8080; # Remote Server Load Balance
 server 10.0.1.12:8080; # Remote Server Load Balance
}

Configure a server block within the NGINX configuration to proxy requests to the
upstream server set:

server {
 # Typical NGINX server setup and security directives

 location / {

49

 # NGINX Proxy Settings
 proxy_pass http://unit_backend;
 }
}

Discussion
The NGINX web server and reverse proxy load balancer is a fully dynamic applica‐
tion gateway. It can be used as a web server, reverse proxy, load balancer, and more.
For brevity, this recipe assumes that the NGINX server block has been configured
with the necessary required and security-concerned directives.

In a reverse proxy situation, the NGINX server would be configured on the same
physical or virtual machine as NGINX Unit. The upstream block would be
configured with a server directive with a parameter specifying the same interface
configured for the Unit listener object. In this example, the localhost 127.0.0.1 is
used in conjunction with the port 8080.

In a load balancing situation, the NGINX server would be configured with an
upstream block that contains multiple remote server directives. The example pro‐
vides two server directives specifying different remote NGINX Unit servers at IP
addresses 10.0.0.12 and 10.0.1.12. Both of these Unit servers would be configured
with listener objects on port 8080 for the same application.

This example further demonstrates how a properly configured server block can
receive connections and direct the request to the upstream block. This is done by
defining a location block and using the proxy_pass directive with a parameter that
specifies the protocol and destination. In this example, the destination is the
upstream server block, named unit_backend.

Incoming connections to the NGINX server will be processed, and requests matching
the configured server definition will be directed to the configuration within this
server block. In this example, all configuration requests will be sent to the NGINX
Unit server for processing. The NGINX Unit server will return the request to the
NGINX server, which will return the request to the client.

Additional Resources
NGINX Integration

7.2 Securely Serving the NGINX Unit Control API
Problem
You would like to remotely and securely configure the Unit application server.

50 | Chapter 7: Ecosystem Integration

http://bit.ly/2XDCYkA

Solution
Configure an NGINX reverse proxy to the control interface Unix socket. Ensure that
it is available only internally and that client-server encryption is enforced:

server {

 # Configure SSL encryption
 server 443 ssl;
 ssl_certificate /path/to/ssl/cert.pem;
 ssl_certificate_key /path/to/ssl/cert.key;

 # Configure SSL client certificate validation
 ssl_client_certificate /path/to/ca.pem;
 ssl_verify_client on;

 # Configure network ACLs
 #allow 1.2.3.4; # Uncomment and update with the IP addresses
 # and networks of your administrative systems.
 deny all;

 # Configure HTTP Basic authentication
 auth_basic on;
 auth_basic_user_file /path/to/htpasswd;

 location / {
 proxy_pass http://unix:/var/run/control.unit.sock;
 }
}

Discussion
This recipe configures the NGINX reverse proxy server to serve the NGINX Unit
control interface through an HTTPS connection. The NGINX server is configured to
serve only on port 443 and to accept only encrypted connections. The SSL/TLS direc‐
tives of the NGINX server must be configured to specify a given certificate and key
for encryption. This configuration also requires the client to provide a certificate
signed by the specified certificate authority as a means of authentication. For further
security, the configuration denies all requests from any client IP that is not specified
by the allow directive. The allow directive must be uncommented and configured to
your internal IP or CIDR. Finally, a username and password must be specified via
HTTP basic auth. The auth_basic_user_file directive defines a file that contains
usernames and hashed passwords of authorized users.

Once all security measures are met, NGINX will proxy the request to the NGINX
Unit control interface. By default, the Unit control interface listens on a Unix socket.
The system user running NGINX must have permission to read and write to this
Unix socket file.

7.2 Securely Serving the NGINX Unit Control API | 51

Additional Resources
NGINX Integration

7.3 Containerized Environment
Problem
You would like to use NGINX Unit as a middleware server in a containerized
environment.

Solution
Build a unit configuration file at the base of the project. Name the file unit-conf.json:

{
 "listeners": {
 "*:8080": {
 "pass": "applications/php_project"
 }
 },
 "applications": {
 "php_project": {
 "type": "php",
 "processes": 1,
 "root": "/var/app",
 "index": "index.php"
 }
 }
}

Use the Official NGINX Unit Docker Image as the base. Create a Dockerfile with the
following:

FROM nginx/unit

ADD / /var/app/

ADD /unit-conf.json /docker-entrypoint.d/

Build the Dockerfile into an image:

docker build -t unit-example

Run the Docker image and expose the listener through the Docker proxy for testing.
The following example uses the Docker -p flag to configure a proxy, exposing port
8080 proxied to port 8080. As a reminder, the port number before the : is the port
exposed on the local machine:

docker run -p 8080:8080 unit-example

52 | Chapter 7: Ecosystem Integration

http://bit.ly/2XDCYkA

Make a request to the exposed Docker proxy to validate:

curl localhost:8080

Discussion
This recipe demonstrates the basics of using NGINX Unit as a middleware server for
dockerized applications. A Unit configuration file is created for the application. A
Dockerfile is then crafted, based on the Official NGINX Unit Docker Image. Within
the Dockerfile, the application code is added to the image. The configuration file is
then added to the image at the location /docker-entrypoint.d/.

The /docker-entrypoint.d/ location enables Unit to bootstrap the container with
SSL/TLS certificates or Unit configuration snippets and allows for arbitrary code exe‐
cution. Files with the extension .pem will be uploaded as certificates, .json as Unit
configuration. Arbitrary scripts with the .sh extension will run after certificates and
configurations are uploaded to Unit.

The Dockerfile is then built, rendering an image tagged unit-example. The Docker
image is then run with the proxy flag to expose the listener to the host. Once running,
the Docker container is validated.

Furthermore, with Docker you can mount volumes with the -v flag. Doing so enables
you to expose the host’s filesystem. If the control interface is overridden via the CMD
directive in the Dockerfile, and exposed by the Docker proxy, remote reconfiguration
of the Unit container is enabled. In this configuration it is possible to add applications
that exist on the host’s filesystem and to reconfigure Unit listeners to serve these
applications remotely through the control API. This technique may be helpful for
local development environments.

Additional Resources
Unit in Docker

7.4 Deployments
Problem
You need to deploy a new version of an application without downtime.

Solution
Utilize NGINX Unit’s API to switch between application versions through an API
call. This recipe will use a directory structure laid out in the following way:

7.4 Deployments | 53

http://bit.ly/2UGUrXw

/var/app/
├── version-1
│ ├── index.php
│ └── ...
└── version-2
 ├── index.php
 └── ...

The current state of the Unit configuration is as follows:

{
 "listeners": {
 "*:8080": {
 "pass": "applications/php_project_version_1"
 }
 },
 "applications": {
 "php_project_version_1": {
 "type": "php",
 "processes": 2,
 "root": "/var/app/version-1",
 "index": "index.php"
 }
 }
}

Create another file named php-v2.json file with the following JSON:

{
 "type": "php",
 "processes": 2,
 "root": "/var/app/version-2",
 "index": "index.php"
}

Make an API call to the control interface. Provide the php-v2.json as the JSON body.
Use the RESTful syntax to name the Unit application php_project_version_2:

sudo curl -X PUT -d @php-v2.json \
 --unix-socket /var/run/control.unit.sock \
 http://localhost/config/applications/php_project_version_2

Make the following request to the Unit control interface to validate that both applica‐
tions are configured:

sudo curl --unix-socket /var/run/control.unit.sock \
 http://localhost/config
{
 "listeners": {
 "*:8080": {
 "pass": "applications/php_project_version_1"
 }
 },

54 | Chapter 7: Ecosystem Integration

 "applications": {
 "php_project_version_1": {
 "type": "php",
 "processes": 2,
 "root": "/var/app/version-1",
 "index": "index.php"
 },

 "php_project_version_2": {
 "type": "php",
 "processes": 2,
 "root": "/var/app/version-2",
 "index": "index.php"
 }
 }
}

Make a request to the control interface with the following command, instructing Unit
to switch the listener *:8080 to point to the php_project_version_2 application:

sudo curl -X PUT -d '"php_project_version_2"' \
 --unix-socket /var/run/control.unit.sock \
 'http://localhost/config/listeners/*:8080/application'

Make the following request to the Unit control interface to validate that the listener
has been reconfigured to direct requests to the php_project_version_2 application:

sudo curl --unix-socket /var/run/control.unit.sock \
 http://localhost/config
{
 "listeners": {
 "*:8080": {
 "pass": "applications/php_project_version_2"
 }
 },

 "applications": {
 "php_project_version_1": {
 "type": "php",
 "processes": 2,
 "root": "/var/app/version-1",
 "index": "index.php"
 },

 "php_project_version_2": {
 "type": "php",
 "processes": 2,
 "root": "/var/app/version-2",
 "index": "index.php"
 }
 }
}

7.4 Deployments | 55

Make a request to the control interface to remove the php_project_version_1
application:

sudo curl -X DELETE \
 --unix-socket /var/run/control.unit.sock \
 http://localhost/config/applications/php_project_version_1

Discussion
This recipe demonstrates the deployment of a new version of an application. The
example starts from a preconfigured state, with a single application version being
served on port 8080. NGINX Unit is then configured to start another application of a
new version. Both versions run in parallel as separate process sets. Unit is then
instructed to route incoming requests to the new application version. Finally, the
older application version is removed, and the processes that served that application
are removed.

Conclusion
This book focused on the NGINX Unit server, its capabilities, its configuration, and
where it fits in your system architecture. By working through these recipes, you’ve
gained a working knowledge of installing NGINX Unit and Unit’s configuration ele‐
ments, and you’ve tackled real-world examples of serving different applications.

I personally find Unit useful because of its simplistic configuration and powerful ver‐
satility. Using a single middleware server to run multiple applications that are written
in different languages and configured dynamically via an API enables me to move
quickly and rely on common methodologies for all web applications. It is my hope
that this book has provided you with the ability to effectively manage NGINX Unit in
your web application landscape.

56 | Chapter 7: Ecosystem Integration

Index

A
action attribute, 18
Alpine Linux, 9
Amazon Linux, 10
API (application programming interface)

defined, 2
security through encryption, 34
serving securely, 50

API-driven configuration, 2
application integration, 37-47

Django, 40-42
Express, 43-45
Flask, 42
Ruby, 46
WordPress, 37-39

application objects, configuring, 13
application programming interface (see API

(application programming interface))
applying configuration, 26-29
APT (Advanced Package Tool), 6
Arch Linux, 9

C
CentOS, 9, 10
CGI (Common Gateway Interface), 2
compounding match options, 18
configure script, 11
configuring, 13-23

API-driven, 2
application objects, 13
applying, 26-29
listener objects, 14, 38
load balancing, 21
PHP application objects, 38

proxying, 19
route objects, 15-19
static files, 20
targets, 22
upstreams, 21
WordPress database, 37

containerized environment, 52
controller process, 2
curl command, 26, 35

D
.deb (Debian-based systems), installing, 6
Debian-based systems (.deb), installing on, 6
deployments, 53-56
destination option, 18
Django, 40-42
Dockerfile, 52
dynamic web application server, 2

E
ecosystem integration, 49-56

containerized environment, 52
deployments, 53-56
reverse proxying to unit applications

through NGINX, 49
serving NGINX Unit control API, 50

encryption, API security through, 34
environment, containerized, 52
executable attribute, 45
Express, 43-45

F
fallback option, 18, 21

57

Fedora, 9, 10
file permissions, setting for WordPress, 38
Flask, 42
FreeBSD, 9

G
Gentoo, 9
GET method, 28, 29
gidmap option, 33
Go package, installing, 8

H
host option, 18
HTTP method, 29

I
idle_timeout attribute, 14
installing, 5-11

for Amazon Linux, 10
for CentOS, 10
for Debian, 10
for Fedora, 10
for RHEL, 10
for Ubuntu, 10
from sources, 10-11
Go package, 8
Node.js Unit package, 8
on Debian-based systems (.deb), 6
on Red Hat-based systems (.rpm), 5
third-party repositories, 8
WordPress, 37

L
limits option, 30
limits, in usage and operations, 30
Linux

Alpine, 9
Amazon, 10
Arch, 9
namespace isolation, 32

listener objects, 14, 34, 38
load balancing, configuring, 21
location option, 18, 50

M
make command, 11
match attribute, 18
max attribute, 14

method option, 18
module attribute, 41

N
namespace isolation, 32
negations, 18
NGINX Unit (see Unit (NGINX))
Node.js Unit package, installing, 8
NPM package, 44

O
operations (see usage and operations)

P
pass attribute, 15, 16, 18, 21
path attribute, 43
patterns, 18
PHP application objects, configuring, 38
polyglotism, 2
POST method, 27
processes option, 14
proxy option, 18, 21
proxying, configuring, 19
PUT method, 27, 29

R
rails new app-name command, 46
ranges, 18
Red Hat-based systems (.rpm), installing on, 5
Remi, 9
repositories, third-party, 8
requests option, 30
return option, 18
reverse proxying, to unit applications through

NGINX, 49
RHEL, 10
rootfs option, 33
route objects, configuring, 15-19
routes attribute, 15, 19, 20
.rpm (Red Hat-based systems), installing, 5
Ruby, 46

S
script attribute, 46
security, 31-35

API security through encryption, 34
Linux namespace isolation, 32
Unix user permissions, 31

58 | Index

server block, 49
server management, 2
servers object, 22
service manager, 25
share option, 18, 21
shutdown, 25
simple match options, 18
source option, 18
sources, installing from, 10-11
spare attribute, 14
SSL certificates, 34
startup, 25
static directory, 41
static files, configuring, 20

T
target attribute, 22
targets, configuring, 22
third-party repositories, installing, 8
TLS certificates, 34
type attribute, 14

U
Ubuntu, 10
uidmap option, 33
Unit (NGINX)

about, 1
application landscape, 1
project history, 1
reverse proxying to applications through, 49
serving control API securely, 50

unit-http package, 45
Unix, 31
upstreams attribute, 21, 49
upstreams, configuring, 21
uri option, 18
usage and operations, 25-30

applying configuration, 26-29
limits, 30
shutdown, 25
startup, 25

user permissions (Unix), 31

W
web applications, landscape of, 1
WebSocket protocol, 45
WordPress, 37-39
WSGI (Web Server Gateway Interface), 2

Y
yum package management system, 6

Index | 59

About the Author
Derek DeJonghe has had a lifelong passion for technology. His background and
experience in web development, system administration, and networking give him a
well-rounded understanding of modern web architecture. Derek leads a team of site
reliability and cloud solution engineers and produces self-healing, auto-scaling infra‐
structure for numerous applications. While designing, building, and maintaining
highly available applications for clients, he consults for larger organizations as they
embark on their journey to the cloud. Derek and his team are on the forefront of a
technology tidal wave and are engineering cloud best practices every day. With a pro‐
ven track record for resilient cloud architecture, Derek pioneers cloud deployments
for security and maintainability that are in the best interest of his clients.

Colophon
The animal on the cover of NGINX Unit Cookbook is an African wildcat (Felis lybica),
a species of wildcat native to Africa, west and southern Asia, and parts of Europe.

While similar in size and appearance to its house cat relative, the African wildcat has
red-orange ears and long hind legs that give the cat a distinctive upright posture
when seated. It is estimated that the wildcat was first domesticated about ten
thousand years ago, based on the discovery of wildcat remains buried with Neolithic
farmers.

This cat has a sandy brown or gray, short coat with faint tabby stripes and black rings
on its tapered tail. Other identifying markings typically include an orange spot
around the nose and white patches below the eyes.

The African wildcat is mainly active at night, hunting insects, rodents, birds, and rep‐
tiles. Although mostly a solitary species, temporary packs comprised of a female with
her offspring from several litters can form, depending on prey availability in the sur‐
rounding territory.

While the African wildcat’s conservation status is currently listed as of Least Concern,
cross-breeding with domestic cats has a significant impact on this species’ wild popu‐
lation. Many of the animals on O’Reilly covers are endangered; all of them are impor‐
tant to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Dover. The cover fonts are Gilroy Semibold and Guardian Sans. The text font is
Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font
is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com/online-learning

	Cover
	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Unit Introduction and Features
	1.1 Application Landscape and Unit Project History
	1.2 Dynamic Web Application Server
	1.3 Polyglotism
	1.4 API-Driven Configuration and Server Management
	1.5 Conclusion

	Chapter 2. Installation
	2.1 Red Hat–Based Systems (.rpm)
	Problem
	Solution
	Discussion
	Additional Resources

	2.2 Debian-Based Systems (.deb)
	Problem
	Solution
	Discussion
	Additional Resources

	2.3 Go and NPM
	Problem
	Solution
	Discussion

	2.4 Third-Party Repositories
	Problem
	Solution
	Discussion
	Additional Resources

	2.5 Installing from Source
	Problem
	Solution
	Discussion
	Additional Resources

	Chapter 3. Configuration
	3.1 Application Object
	Problem
	Solution
	Discussion
	Additional Resource

	3.2 Listener Object
	Problem
	Solution
	Discussion
	Additional Resource

	3.3 Route Object
	Problem
	Solution
	Discussion
	Additional Resources

	3.4 Proxying
	Problem
	Solution
	Discussion
	Additional Resources

	3.5 Static Files
	Problem
	Solution
	Discussion
	Additional Resources

	3.6 Upstreams/Load Balancing
	Problem
	Solution
	Discussion
	Additional Resources

	3.7 Targets
	Problem
	Solution
	Discussion

	Chapter 4. Usage and Operations
	4.1 Startup and Shutdown
	Problem
	Solution
	Discussion

	4.2 Applying Configuration
	Problem
	Solution
	Discussion

	4.3 Limits
	Problem
	Solution
	Discussion

	Chapter 5. Security
	5.1 Unix User Permissions
	Problem
	Solution
	Discussion

	5.2 Linux Namespace Isolation
	Problem
	Solution
	Discussion
	Additional Resources

	5.3 API Security Through Encryption
	Problem
	Solution
	Discussion
	Additional Resources

	Chapter 6. Application Integration
	6.1 WordPress
	Problem
	Solution
	Discussion
	Additional Resources

	6.2 Django
	Problem
	Solution
	Discussion
	Additional Resources

	6.3 Flask
	Problem
	Solution
	Discussion
	Additional Resources

	6.4 Express
	Problem
	Solution
	Discussion
	Additional Resources

	6.5 Ruby
	Problem
	Solution
	Discussion
	Additional Resources

	Chapter 7. Ecosystem Integration
	7.1 Reverse Proxying to Unit Applications Through NGINX
	Problem
	Solution
	Discussion
	Additional Resources

	7.2 Securely Serving the NGINX Unit Control API
	Problem
	Solution
	Discussion
	Additional Resources

	7.3 Containerized Environment
	Problem
	Solution
	Discussion
	Additional Resources

	7.4 Deployments
	Problem
	Solution
	Discussion

	Conclusion

	Index
	About the Author

