

Australia • Brazil • Mexico • Singapore • United Kingdom • United States

HTML 5 and
CSS

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product
text may not be available in the eBook version.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

© 2021, 2017 Cengage Learning, Inc.

Unless otherwise noted, all content is © Cengage.

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein
may be reproduced or distributed in any form or by any means, except as
permitted by U.S. copyright law, without the prior written permission of the
copyright owner.

Library of Congress Control Number: 2019940290

ISBN: 978-0-357-10714-0

Cengage
200 Pier 4 Boulevard
Boston, MA 02210
USA

Cengage is a leading provider of customized learning solutions with employees
residing in nearly 40 different countries and sales in more than 125 countries
around the world. Find your local representative at www.cengage.com.

Cengage products are represented in Canada by Nelson Education, Ltd.

To learn more about Cengage platforms and services, register or access your
online learning solution, or purchase materials for your course, visit
www.cengage.com.

New Perspectives on HTML 5 and CSS,
8th Edition Comprehensive
Patrick Carey

SVP, Higher Education Product Management:
Erin Joyner

VP, Product Management: Mike Schenk

Product Director: Lauren Murphy

Product Team Manager: Kristin McNary

Product Assistant: Tom Benedetto

Director, Learning Design: Rebecca von Gillern

Senior Manager, Learning Design: Leigh Hefferon

Learning Designer: Kate Mason

Vice President, Marketing – Science, Technology,
& Math: Jason Sakos

Senior Marketing Director: Michele McTighe

Marketing Manager: Cassie L Cloutier

Marketing Development Manager:
Samantha Best

Director, Content Creation: Juliet Steiner

Senior Manager, Content Creation: Patty Stephan

Content Manager: Christina Nyren

Director, Digital Production Services:
Krista Kellman

Digital Delivery Lead: Justin Maniaci

Technical Editors: John Freitas and Danielle Shaw

Developmental Editors: Deb Kaufmann and
Ann Shaffer

Production Service/Composition: Lumina
Datamatics Ltd.

Design Director: Jack Pendleton

Designer: Erin Griffin

Text Designer: Althea Chen

Cover Template Designer: Wing-Ip Ngan,
Ink Design, Inc.

Cover image(s): Mai Phongsook/ShutterStock.com

Printed in the United States of America
Print Number: 01 Print Year: 2019

For product information and technology assistance, contact us at
Cengage Customer & Sales Support, 1-800-354-9706 or

support.cengage.com.

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions.

Notice to the Reader
Publisher does not warrant or guarantee any of the products described herein or perform any independent analysis in connection
with any of the product information contained herein. Publisher does not assume, and expressly disclaims, any obligation to
obtain and include information other than that provided to it by the manufacturer. The reader is expressly warned to consider and
adopt all safety precautions that might be indicated by the activities described herein and to avoid all potential hazards. By
following the instructions contained herein, the reader willingly assumes all risks in connection with such instructions. The
publisher makes no representations or warranties of any kind, including but not limited to, the warranties of fitness for particular
purpose or merchantability, nor are any such representations implied with respect to the material set forth herein, and the
publisher takes no responsibility with respect to such material. The publisher shall not be liable for any special, consequential, or
exemplary damages resulting, in whole or part, from the readers’ use of, or reliance upon, this material.

WCN: 02-300

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

www.EBooksWorld.ir

“I love this text
because it provides
detailed instructions
and real-world
application examples.
It is ideal for classroom
and online instruction.
At the end of the term
my students comment
on how much they’ve
learned and put to use
outside the classroom.”

—Customer at
St. Johns River

Community College

The New Perspectives Series’ critical-thinking, problem-solving approach is the ideal way
to prepare students to transcend point-and-click skills and take advantage of all that
HTML 5 and CSS has to offer.

In developing the New Perspectives Series, our goal was to create books that give students
the software concepts and practical skills they need to succeed beyond the classroom. We’ve
updated our proven case-based pedagogy with more practical content to make learning
skills more meaningful to students. With the New Perspectives Series, students understand
why they are learning what they are learning, and are fully prepared to apply their skills to
real-life situations.

About This Book
This book provides thorough coverage of HTML 5 and CSS, and includes the following:

 • Up-to-date coverage of using HTML 5 to create structured websites
 • Instruction on the most current CSS styles to create visually-interesting pages and

captivating graphical designs
 • Working with browser developer tools to aid in the creation and maintenance of

 fully-functioning websites
New for this edition!

 • Coverage of CSS grid styles for creating grid-based layouts.
 • Exploration of new CSS styles for filters and transformations.
 • New hands-on demo pages to interactively explore HTML and CSS concepts.
 • New coding challenges for each tutorial to focus on specific tasks and concepts.
 • New debugging challenges for each tutorial to explore how to fix malfunctioning

websites.

System Requirements
This book assumes that students have an Internet connection, a text editor, and a current
browser that supports HTML 5 and CSS. The following is a list of the most recent versions of
the major browsers at the time this text was published: Internet Explorer 11, Microsoft
Edge 44, Firefox 66, Safari 12.1, Opera 60, and Google Chrome 75. More recent versions may
have come out since the publication of this book. Students should go to the web browser home
page to download the most current version. All browsers interpret HTML 5 and CSS code in
slightly different ways. It is highly recommended that students have several different browsers
installed on their systems for comparison and, if possible, access to a mobile browser or a
mobile emulator. Students might also want to run older versions of these browsers to highlight
compatibility issues. The screenshots in this book were produced using Google Chrome 75
 running on Windows 10 (64-bit), unless otherwise noted. If students are using different devices,
browsers, or operating systems, their screens might vary from those shown in the book; this
should not present any problems in completing the tutorials.

Preface

iii

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

iv New Perspectives Series

VISUAL OVERVIEW

The New Perspectives Approach

Context
Each tutorial begins with a problem presented in a “real-world” case that is meaningful to
 students. The case sets the scene to help students understand what they will do in the tutorial.

Hands-on Approach
Each tutorial is divided into manageable sessions that combine reading and hands-on, step-
by-step work. Colorful screenshots help guide students through the steps. Trouble? tips,
which anticipate common mistakes or problems, help students stay on track and continue
with the tutorial.

Visual Overviews
Each session begins with a Visual Overview, a two-page spread that includes colorful, enlarged
figures with numerous callouts and key term definitions, giving students a comprehensive
 preview of the topics covered in the session, as well as a handy study guide.

ProSkills Boxes
ProSkills boxes provide guidance for applying concepts to real-world, professional situations,
involving one or more of the following soft skills: decision making, problem solving, teamwork,
verbal communication, and written communication.

Key Steps
Important steps are highlighted in yellow with attached margin notes to help students pay close
attention to completing the steps correctly and avoid time-consuming rework.

InSight Boxes
InSight boxes offer expert advice and best practices to help students achieve a deeper under-
standing of the concepts behind the software features and skills.

Margin Tips
Margin Tips provide helpful hints and shortcuts for more efficient use of the software. The Tips
appear in the margin at key points throughout each tutorial, giving students extra information
when and where they need it.

Try It tips point to demo pages provided with the data folder for interactive exploration of key
concepts.

Assessment
Retention is a key component to learning. At the end of each session, a series of Quick Check
multiple choice questions helps students test their understanding of the material before mov-
ing on. New with this edition are Coding Challenges and debugging exercises that focus on a
few key challenges. Engaging end-of-tutorial Review Assignments and Case Problems have
always been a hallmark feature of the New Perspectives Series. Colorful bars and brief descrip-
tions accompany the exercises, making it easy to understand both the goal and level of chal-
lenge a particular assignment holds.

Reference
Within each tutorial, Reference boxes appear before a set of steps to provide a succinct
summary or preview of how to perform a task. In addition, each book includes a combination
Glossary/Index to promote easy reference of material.

PROSKILLS

KEY STEP

INSIGHT

TRY IT

REVIEW

REFERENCE

“New Perspectives texts
provide up-to-date,
real-world application
of content, making
book selection easy. The
step-by-step, hands-on
approach teaches
students concepts they
can apply immediately.”

—Customer at
Southeastern Technical

College

APPLY

GLOSSARY/INDEX

CHALLENGE

CREATE

CODE

DEBUG

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Level Color Scheme

HTML 5 and CSS, 8th Edition, Comprehensive v

Our Complete System of Instruction
Coverage To Meet Your Needs
Whether you’re looking for just a small amount of coverage or enough to fill a semester-long
class, we can provide you with a textbook that meets your needs.

 • Introductory books contain an average of 5 to 8 tutorials and include essential skills
on the books concepts.

 • Comprehensive books, which cover additional concepts and skills in depth, are great
for a full-semester class, and contain 9 to 12+ tutorials.

So, if you are looking for just the essential skills or more complete in-depth coverage of a
topic, we have an offering available to meet your needs. Go to our web site or contact your
Cengage sales representative to find out what else we offer.

MindTap
MindTap is a personalized learning experience with relevant assignments that guide students to
analyze, apply, and improve thinking, allowing you to measure skills and outcomes with ease.

For instructors: personalized teaching becomes yours with a Learning Path that is built with
key student objectives. Control what students see and when they see it. Use as-is, or match to
your syllabus exactly: hide, rearrange, add, or create your own content.

For students: a unique Learning Path of relevant readings, multimedia, and activities that guide
you through basic knowledge and comprehension to analysis and application.

Better outcomes: empower instructors and motivate students with analytics and reports that
provide a snapshot of class progress, time in course, engagement, and completion rates.

The MindTap for HTML 5 and CSS includes coding labs, study tools, and interactive quizzing,
all integrated into an eReader that includes the full content of the printed text.

Instructor Resources
We offer more than just a book. We have all the tools you need to enhance your lectures, check
students’ work, and generate exams in a new, easier-to-use and completely revised package. This
book’s Instructor’s Manual, Cognero testbank, PowerPoint presentations, data files, solution files,
figure files, and a sample syllabus are all available at sso.cengage.com.

Acknowledgments
I would like to thank the people who worked so hard to make this book possible. Special thanks
to my developmental editors, Deb Kaufmann and Ann Shaffer, for their hard work, attention
to detail, and valuable insights, and to Content Manager, Christina Nyren, who has worked tire-
lessly in overseeing this project and made my task so much easier with enthusiasm and good
humor. Other people at Cengage who deserve credit are Kristin McNary, Program Team Lead;

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Kate Mason, Learning Designer; Tom Benedetto, Product Assistant; Erin Griffin, Art Director;
Fola Orekoya, Manufacturing Planner; Lumina Datamatics Ltd., Compositor, as well as John
Freitas and Danielle Shaw, Technical Editors.

This book is dedicated to my wife Joan who is my inspiration and role model for her good
humor, dedication, and tireless support.
– Patrick Carey

vi New Perspectives Series

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS, 8th Edition, Comprehensive vii

Level I Tutorials
Tutorial 1 Getting Started with HTML 5 . HTML 1
Creating a Website for a Food Vendor

Tutorial 2 Getting Started with CSS . HTML 85
Designing a Website for a Fitness Club

Level II Tutorials
Tutorial 3 Designing a Page Layout . HTML 175
Creating a Website for a Chocolatier

Tutorial 4 Graphic Design with CSS . HTML 273
Creating a Graphic Design for a Genealogy Website

Tutorial 5 Designing for the Mobile Web . HTML 361
Creating a Mobile Website for a Daycare Center

Level III Tutorials
Tutorial 6 Working with Tables and Columns HTML 451
Creating a Program Schedule for a Radio Station

Tutorial 7 Designing a Web Form . HTML 517
Creating a Survey Form

Tutorial 8 Enhancing a Website with Multimedia HTML 601
Working with Sound, Video, and Animation

Tutorial 9 Getting Started with JavaScript . HTML 681
Creating a Countdown Clock

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements . . . HTML 751
Creating a Monthly Calendar

Appendix A Color Names with Color Values, and HTML Character
Entities . HTML A1

Appendix B HTML Elements and Attributes . HTML B1

Appendix C Cascading Styles and Selectors . HTML C1

Appendix D Making the Web More Accessible HTML D1

Appendix E Designing for the Web . HTML E1

Appendix F Page Validation with XHTML . HTML F1

Glossary REF 1

Index REF 11

BRIEF CONTENTS
HTML

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

New Perspectives Seriesviii

SESSION 1.2 . HTML 22

Writing the Page Body . HTML 24

Using Sectioning Elements HTML 24

Comparing Sections in HTML 4 and HTML 5 . . . HTML 26

Using Grouping Elements HTML 26

Using Text-Level Elements HTML 29

Linking an HTML Document to a Style Sheet HTML 32

Working with Character Sets and Special
Characters . HTML 33

Character Encoding . HTML 33

Character Entity References HTML 34

Working with Inline Images HTML 36

Line Breaks and Other Empty Elements HTML 38

Working with Block Quotes and Other Elements . . . HTML 39

Session 1 .2 Quick Check . HTML 45

SESSION 1.3 . HTML 46

Working with Lists . HTML 48

Ordered Lists . HTML 48

Unordered Lists . HTML 49

Description Lists . HTML 51

Navigation Lists . HTML 55

Working with Hypertext Links HTML 57

Turning an Inline Image into a Link HTML 59

Specifying the Folder Path HTML 60

Absolute Paths . HTML 61

Relative Paths . HTML 61

Setting the Base Path . HTML 62

Linking to a Location within a Document HTML 63

Preface . iii

HTML LEVEL I TUTORIALS

Tutorial 1 Getting Started with HTML 5
Creating a Website for a Food Vendor HTML 1

SESSION 1.1. .HTML 2

Exploring the World Wide Web HTML 4

Networks . HTML 4

Locating Information on a Network HTML 4

Web Pages and Web Servers HTML 4

Introducing HTML . HTML 5

The History of HTML . HTML 5

Tools for Working with HTML HTML 6

Content Management Systems and
Frameworks . HTML 7

Testing your Code . HTML 7

Exploring an HTML Document HTML 8

The Document Type Declaration HTML 8

Introducing Element Tags HTML 9

The Element Hierarchy . HTML 10

Introducing Element Attributes HTML 11

Handling White Space . HTML 12

Viewing an HTML File in a Browser HTML 12

Creating an HTML File . HTML 13

Creating the Document Head HTML 15

Setting the Page Title . HTML 16

Adding Metadata to the Document HTML 16

Adding Comments to Your Document HTML 18

Session 1 .1 Quick Check . HTML 21

TABLE OF CONTENTS

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS, 8th Edition, Comprehensive ix

RGB Color Values . HTML 99

HSL Color Values . HTML 101

Defining Semi-Opaque Colors HTML 102

Setting Text and Background Colors HTML 102

Employing Progressive Enhancement HTML 106

Session 2 .1 Quick Check . HTML 107

SESSION 2.2 . HTML 108

Exploring Selector Patterns HTML 110

Contextual Selectors . HTML 110

Attribute Selectors . HTML 113

Working with Fonts . HTML 117

Choosing a Font . HTML 117

Exploring Web Fonts . HTML 119

The @font-face Rule . HTML 120

Setting the Font Size . HTML 123

Absolute Units . HTML 123

Relative Units . HTML 123

Scaling Fonts with ems and rems HTML 124

Using Viewport Units . HTML 125

Sizing Keywords . HTML 125

Controlling Spacing and Indentation HTML 127

Working with Font Styles HTML 129

Aligning Text Horizontally and Vertically HTML 130

Combining All Text Formatting in a
Single Style . HTML 131

Session 2 .2 Quick Check . HTML 133

SESSION 2.3 . HTML 136

Formatting Lists . HTML 138

Choosing a List Style Type HTML 138

Creating an Outline Style HTML 138

Marking Locations with the id Attribute HTML 63

Linking to an id . HTML 63

Anchors and the name Attribute HTML 63

Linking to the Internet and Other Resources HTML 64

Linking to a Web Resource HTML 64

Linking to an Email Address HTML 65

Linking to a Phone Number HTML 67

Working with Hypertext Attributes HTML 68

Validating Your Website . HTML 69

Session 1 .3 Quick Check . HTML 71

Review Assignments . HTML 76

Case Problems . HTML 79

Tutorial 2 Getting Started with CSS
Designing a Website for a Fitness Club HTML 85

SESSION 2.1 . HTML 86

Introducing CSS . HTML 88

Types of Style Sheets . HTML 88

Viewing a Page Using Different Style Sheets . . . HTML 89

Exploring Style Rules . HTML 92

Browser Extensions . HTML 92

Embedded Style Sheets HTML 93

Inline Styles . HTML 93

Style Specificity and Precedence HTML 94

Style Inheritance . HTML 94

Browser Developer Tools HTML 95

Creating a Style Sheet . HTML 96

Writing Style Comments HTML 96

Defining the Character Encoding HTML 97

Importing Style Sheets . HTML 98

Working with Color in CSS HTML 98

Color Names . HTML 98

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

New Perspectives Seriesx

Working with Container Collapse HTML 201

Session 3 .1 Quick Check . HTML 204

SESSION 3.2. HTML 206

Introducing Grid Layouts . HTML 208

Overview of Grid-Based Layouts HTML 208

Fixed and Fluid Grids . HTML 209

CSS Frameworks . HTML 210

Introducing CSS Grids . HTML 210

Creating a CSS Grid . HTML 213

Working with Grid Rows and Columns HTML 215

Track Sizes with Fractional Units HTML 217

Repeating Columns and Rows HTML 218

Applying a Grid Layout HTML 219

Outlining a Grid . HTML 221

Placing Items within a Grid HTML 223

Placing Items by Row and Column HTML 224

Using the span Keyword HTML 226

Placing Grid Items by Area HTML 228

Defining the Grid Gap . HTML 232

Managing Space within a Grid HTML 234

Alignment for a Single Grid Cell HTML 235

Aligning the Grid . HTML 235

Session 3 .2 Quick Check . HTML 237

SESSION 3.3 . HTML 238

Positioning Objects . HTML 240

The CSS Positioning Styles HTML 240

Relative Positioning . HTML 240

Absolute Positioning . HTML 241

Fixed and Inherited Positioning HTML 244

Using the Positioning Styles HTML 244

Using Images for List Markers HTML 141

Setting the List Marker Position HTML 142

Working with Margins and Padding HTML 143

Setting the Padding Space HTML 144

Setting the Margin and the Border Spaces HTML 146

Using Pseudo-Classes and Pseudo-Elements HTML 149

Pseudo-Classes . HTML 149

Pseudo-classes for Hypertext HTML 152

Pseudo-Elements . HTML 154

Generating Content with CSS HTML 155

Displaying Attribute Values HTML 156

Inserting Quotation Marks HTML 157

Validating Your Style Sheet HTML 158

Session 2 .3 Quick Check . HTML 160

Review Assignments . HTML 166

Case Problems . HTML 169

HTML LEVEL II TUTORIALS

Tutorial 3 Designing a Page Layout
Creating a Website for a Chocolatier HTML 175

SESSION 3.1 . HTML 176

Introducing the display Style HTML 178

Creating a Reset Style Sheet HTML 178

Exploring Page Layout Designs HTML 182

Fixed, Fluid, and Elastic Layouts HTML 182

Working with Width and Height HTML 184

Setting Maximum and Minimum Dimensions . . . HTML 184

Centering a Block Element HTML 187

Vertical Centering . HTML 188

Floating Page Content . HTML 189

Clearing a Float . HTML 193

Refining a Floated Layout HTML 197

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS, 8th Edition, Comprehensive xi

Gradients and Color Stops HTML 315

Creating a Radial Gradient HTML 316

Repeating a Gradient . HTML 320

Creating Semi-Transparent Objects HTML 322

Session 4 .2 Quick Check . HTML 324

SESSION 4.3 .HTML 326

Transforming Page Objects HTML 328

Transformations in Three Dimensions HTML 332

Understanding Perspective HTML 333

Exploring CSS Filters . HTML 337

Working with Image Maps HTML 341

Defining a Client-Side Image Map HTML 341

Applying an Image Map HTML 345

Session 4 .3 Quick Check . HTML 347

Review Assignments . HTML 354

Case Problems . HTML 357

Tutorial 5 Designing for the Mobile Web
Creating a Mobile Website for a Daycare Center. . HTML 361

SESSION 5.1 . HTML 362

Introducing Responsive Design HTML 364

Introducing Media Queries HTML 365

The @media Rule . HTML 366

Media Queries and Device Features HTML 367

Applying Media Queries to a Style Sheet HTML 369

Exploring Viewports and Device Width HTML 372

Creating a Mobile Design HTML 375

Creating a Pulldown Menu with CSS HTML 376

Testing Your Mobile Website HTML 379

Creating a Tablet Design HTML 383

Creating a Desktop Design HTML 387

Session 5 .1 Quick Check . HTML 391

Handling Overflow . HTML 254

Clipping an Element . HTML 257

Stacking Elements . HTML 258

Session 3 .3 Quick Check HTML 260

Review Assignments . HTML 267

Case Problems . HTML 269

Tutorial 4 Graphic Design with CSS
Creating a Graphic Design for a
Genealogy Website . HTML 273

SESSION 4.1. .HTML 274

Creating Figure Boxes . HTML 276

Exploring Background Styles HTML 280

Tiling a Background Image HTML 281

Attaching the Background Image HTML 283

Setting the Background Image Position HTML 283

Defining the Extent of the Background HTML 284

Sizing and Clipping an Image HTML 285

The background Property HTML 286

Adding Multiple Backgrounds HTML 288

Working with Borders . HTML 290

Setting Border Width and Color HTML 290

Setting the Border Design HTML 291

Creating Rounded Corners HTML 293

Applying a Border Image HTML 297

Session 4 .1 Quick Check . HTML 301

SESSION 4.2 . HTML 302

Creating Drop Shadows . HTML 304

Creating a Text Shadow HTML 304

Creating a Box Shadow HTML 306

Applying a Color Gradient HTML 312

Creating a Linear Gradient HTML 312

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

New Perspectives Seriesxii

Session 5 .3 Quick Check . HTML 437

Review Assignments . HTML 443

Case Problems . HTML 446

HTML LEVEL III TUTORIALS

Tutorial 6 Working with Tables and Columns
Creating a Program Schedule for a Radio Station. . HTML 451

SESSION 6.1. HTML 452

Introducing Web Tables . HTML 454

Marking Tables and Table Rows HTML 454

Marking Table Headings and Table Data HTML 456

Adding Table Borders with CSS HTML 459

Spanning Rows and Columns HTML 464

Creating a Table Caption . HTML 471

Session 6 .1 Quick Check . HTML 475

SESSION 6.2 . HTML 476

Creating Row Groups . HTML 478

Creating Column Groups . HTML 482

Exploring CSS Styles and Web Tables HTML 485

Working with Width and Height HTML 486

Applying Table Styles to Other
Page Elements . HTML 490

Tables and Responsive Design HTML 492

Designing a Column Layout HTML 496

Setting the Number of Columns HTML 496

Defining Columns Widths and Gaps HTML 498

Managing Column Breaks HTML 501

Spanning Cell Columns HTML 503

Session 6 .2 Quick Check . HTML 505

Review Assignments . HTML 510

Case Problems . HTML 512

SESSION 5.2 . HTML 392

Introducing Flexible Boxes HTML 394

Defining a Flexible Box HTML 394

Cross-Browser Flexboxes HTML 395

Setting the Flexbox Flow HTML 395

Working with Flex Items . HTML 397

Setting the Flex Basis HTML 397

Defining the Flex Growth HTML 398

Defining the Shrink Rate HTML 399

The flex Property . HTML 401

Applying a Flexbox Layout HTML 402

Reordering Page Content with Flexboxes HTML 407

Exploring Flexbox Layouts HTML 409

Aligning Items along the Main Axis HTML 409

Aligning Flex Lines . HTML 410

Aligning Items along the Cross Axis HTML 410

Creating a Navicon Menu HTML 412

Session 5 .2 Quick Check . HTML 417

SESSION 5.3 . HTML 418

Designing for Printed Media HTML 420

Previewing the Print Version HTML 420

Applying a Media Query for Printed Output HTML 421

Working with the @page Rule HTML 422

Setting the Page Size . HTML 423

Using the Page Pseudo-Classes HTML 423

Page Names and the Page Property HTML 423

Formatting Hypertext Links for Printing HTML 428

Working with Page Breaks HTML 431

Preventing Page Breaks HTML 432

Working with Widows and Orphans HTML 434

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS, 8th Edition, Comprehensive xiii

Tutorial 7 Designing a Web Form
Creating a Survey Form. HTML 517

SESSION 7.1 . HTML 518

Introducing Web Forms . HTML 520

Parts of a Web Form . HTML 520

Forms and Server-Based Programs HTML 521

Starting a Web Form . HTML 522

Interacting with the Web Server HTML 523

Creating a Field Set . HTML 525

Marking a Field Set . HTML 525

Adding a Field Set Legend HTML 526

Creating Input Boxes . HTML 528

Input Types . HTML 528

Input Types and Virtual Keyboards HTML 531

Adding Field Labels . HTML 532

Designing a Form Layout . HTML 534

Defining Default Values and Placeholders HTML 539

Session 7 .1 Quick Check . HTML 543

SESSION 7.2. HTML 544

Entering Date and Time Values HTML 546

Creating a Selection List . HTML 547

Working with select Attributes HTML 549

Grouping Selection Options HTML 551

Creating Option Buttons . HTML 553

Creating Check Boxes . HTML 556

Creating a Text Area Box HTML 558

Session 7 .2 Quick Check . HTML 561

SESSION 7.3 . HTML 562

Entering Numeric Data . HTML 564

Creating a Spinner Control HTML 564

Creating a Range Slider HTML 566

Suggesting Options with Data Lists HTML 569

Working with Form Buttons HTML 572

Creating a Command Button HTML 572

Creating Submit and Reset Buttons HTML 572

Designing a Custom Button HTML 575

Validating a Web Form . HTML 575

Identifying Required Values HTML 575

Validating Based on Data Type HTML 577

Testing for a Valid Pattern HTML 578

Defining the Length of the Field Value HTML 580

Applying Inline Validation HTML 581

Using the focus Pseudo-Class HTML 581

Pseudo-Classes for Valid and Invalid Data HTML 583

Session 7 .3 Quick Check . HTML 586

Review Assignments . HTML 592

Case Problems . HTML 595

Tutorial 8 Enhancing a Website with Multimedia
Working with Sound, Video, and Animation . . . HTML 601

SESSION 8.1 . HTML 602

Introducing Multimedia on the Web HTML 604

Understanding Codecs and Containers HTML 604

Understanding Plug-Ins HTML 605

Working with the audio Element HTML 607

Browsers and Audio Formats HTML 607

Applying Styles to the Media Player HTML 610

Providing a Fallback to an Audio Clip HTML 613

Exploring Embedded Objects HTML 615

Plug-In Attributes . HTML 615

Plug-Ins as Fallback Options HTML 616

Session 8 .1 Quick Check . HTML 616

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

New Perspectives Seriesxiv

The Development of JavaScript HTML 685

Working with the script Element HTML 686

Loading the script Element HTML 686

Inserting the script Element HTML 687

Creating a JavaScript Program HTML 689

Adding Comments to your JavaScript Code HTML 689

Writing a JavaScript Command HTML 690

Understanding JavaScript Syntax HTML 691

Debugging Your Code . HTML 692

Opening a Debugger . HTML 692

Inserting a Breakpoint HTML 694

Applying Strict Usage of JavaScript HTML 695

Session 9 .1 Quick Check . HTML 697

SESSION 9.2. .HTML 698

Introducing Objects . HTML 700

Object References . HTML 701

Referencing Object Collections HTML 701

Referencing an Object by ID and Name HTML 703

Changing Properties and Applying Methods HTML 704

Object Properties . HTML 704

Applying a Method . HTML 704

Writing HTML Code . HTML 705

Working with Variables . HTML 709

Declaring a Variable . HTML 709

Variables and Data Types HTML 710

Using a Variable . HTML 711

Working with Date Objects HTML 711

Creating a Date Object HTML 712

Applying Date Methods HTML 713

Setting Date and Time Values HTML 716

Session 9 .2 Quick Check . HTML 717

SESSION 8.2 . HTML 618

Exploring Digital Video . HTML 620

Video Formats and Codecs HTML 620

Using the HTML 5 video Element HTML 621

Adding a Text Track to Video HTML 624

Making Tracks with WebVTT HTML 625

Placing the Cue Text . HTML 628

Applying Styles to Track Cues HTML 630

Using Third-Party Video Players HTML 634

Exploring the Flash Player HTML 635

Embedding Videos from YouTube HTML 636

HTML 5 Video Players HTML 637

Session 8 .2 Quick Check . HTML 639

SESSION 8.3 . HTML 640

Creating Transitions with CSS HTML 642

Introducing Transitions HTML 642

Setting the Transition Timing HTML 644

Delaying a Transition . HTML 647

Creating a Hover Transition HTML 647

Animating Objects with CSS HTML 652

The @keyframes Rule . HTML 652

Applying an Animation HTML 655

Controlling an Animation HTML 658

Session 8 .3 Quick Check . HTML 666

Review Assignments . HTML 673

Case Problems . HTML 676

Tutorial 9 Getting Started with JavaScript
Creating a Countdown Clock HTML 681

SESSION 9.1 . HTML 682

Introducing JavaScript . HTML 684

Server-Side and Client-Side Programming HTML 684

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS, 8th Edition, Comprehensive xv

Reversing an Array . HTML 763

Sorting an Array . HTML 764

Extracting and Inserting Array Items HTML 765

Using Arrays as Data Stacks HTML 766

Session 10 .1 Quick Check HTML 769

SESSION 10.2 . HTML 770

Working with Program Loops HTML 772

Exploring the for Loop HTML 772

Exploring the while Loop HTML 774

Exploring the do/while Loop HTML 775

Comparison and Logical Operators HTML 776

Program Loops and Arrays HTML 777

Array Methods to Loop Through Arrays HTML 780

Running a Function for Each Array Item HTML 781

Mapping an Array . HTML 781

Filtering an Array . HTML 782

Session 10 .2 Quick Check HTML 785

SESSION 10.3 .HTML 786

Introducing Conditional Statements HTML 788

Exploring the if Statement HTML 789

Nesting if Statements . HTML 791

Exploring the if else Statement HTML 793

Using Multiple else if Statements HTML 794

Completing the Calendar App HTML 796

Setting the First Day of the Month HTML 797

Placing the First Day of the Month HTML 798

Writing the Calendar Days HTML 799

Highlighting the Current Date HTML 801

Displaying Daily Events HTML 803

SESSION 9.3 . HTML 718

Working with Operators and Operands HTML 720

Using Assignment Operators HTML 720

Calculating the Days Left in the Year HTML 721

Working with the Math Object HTML 723

Using Math Methods . HTML 723

Using Math Constants HTML 728

Working with JavaScript Functions HTML 730

Calling a Function . HTML 732

Creating a Function to Return a Value HTML 733

Running Timed Commands HTML 734

Working with Time-Delayed Commands HTML 734

Running Commands at Specified Intervals HTML 734

Controlling How JavaScript Works with
Numeric Values . HTML 736

Handling Illegal Operations HTML 736

Defining a Number Format HTML 737

Converting Between Numbers and Text HTML 737

Session 9 .3 Quick Check . HTML 739

Review Assignments . HTML 744

Case Problems . HTML 746

Tutorial 10 Exploring Arrays, Loops, and Conditional

Statements
Creating a Monthly Calendar HTML 751

SESSION 10.1 .HTML 752

Introducing the Monthly Calendar HTML 754

Reviewing the Calendar Structure HTML 755

Adding the calendar() Function HTML 756

Introducing Arrays . HTML 757

Creating and Populating an Array HTML 758

Working with Array Length HTML 761

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

New Perspectives Seriesxvi

Managing Program Loops and Conditional
Statements . HTML 806

Exploring the break Command HTML 806

Exploring the continue Command HTML 806

Exploring Statement Labels HTML 807

Session 10 .3 Quick Check HTML 809

Review Assignments . HTML 815

Case Problems . HTML 817

Appendix A Color Names with Color Values,

and HTML Character Entities HTML A1

Appendix B HTML Elements and Attributes . . .HTML B1

Appendix C Cascading Styles and Selectors . . HTML C1

Appendix D Making the Web

More Accessible . HTML D1

Appendix E Designing for the Web HTML E1

Appendix F Page Validation with XHTML HTML F1

GLOSSARY .REF 1

INDEX .REF 11

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 1

OBJECTIVES

Session 1.1
• Explore the history of the web
• Create the structure of an

HTML document
• Insert HTML elements and

attributes
• Insert metadata into a document
• Define a page title

Session 1.2
• Mark page structures with

sectioning elements
• Organize page content with

grouping elements
• Mark content with text-level

elements
• Insert inline images
• Insert symbols based on

character codes

Session 1.3
• Mark content using lists
• Create a navigation list
• Link to files within a website

with hypertext links
• Link to email addresses and

telephone numbers

Getting Started
with HTML 5
Creating a Website for a Food Vendor

Case | Curbside Thai
Sajja Adulet is the owner and master chef of Curbside Thai,
a restaurant owner and now food truck vendor in Charlotte,
North Carolina that specializes in Thai dishes. Sajja has hired
you to develop the company’s website. The website will display
information about Curbside Thai, including the truck’s daily
locations, menu, catering opportunities, and contact information.
Sajja wants the pages to convey the message that customers will get
the same great food and service whether they order in the restaurant
or from the food truck. Some of the materials for these pages have
already been completed by a former employee and Sajja needs you
to finish the job by converting that work into a collection of web
page documents. To complete this task, you’ll learn how to write
and edit HTML 5 code and how to get your HTML files ready for
display on the World Wide Web.

TUTORIAL 1

STARTING DATA FILES

HTML 1

tutorial

ct_catering_txt.html
ct_contact_txt.html
ct_locations_txt.html
ct_menu_txt.html
ct_reviews._txt.html + 16 files

review

mp_catering_txt.html
mp_events_txt.html
mp_index_txt.html
mp_menu_txt.html + 5 files

code1

code1-1_txt.html

code2

case1

code3

case2

code4

demo

code1-2_txt.html

jtc_index_txt.html
jtc_services_txt.html
+ 6 files

code1-3_txt.html + 7 files

dr_faq_txt.html
dr_index_txt.html
dr_info_txt.html + 9 files

code1-4_txt.html + 2 files

demo_characters.html
demo_html.html
+ 3 files

html01

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 2 HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5

Session 1.1 Visual Overview:

© Kzenon/Shutterstock.com;
© martiapunts/Shutterstock.com;
© Brian A Jackson/Shutterstock.com;
© sayhmog/Shutterstock.com;
© rangizzz/Shutterstock.com

The <title> tag marks
the page title that
appears on the browser
title bar or browser tab.

An HTML comment is a
descriptive note added
to the HTML �le.

The <head> tag marks
the document head
containing information
about the document.

The <body> tag marks
the document body
containing all of the
content that will
appear in the page.

An opening tag marks
the start of the element
content; this tag marks
the start of page footer.

The <meta> tag marks
metadata containing
information about the
document.

A closing tag marks the
end of the element
content; this tag marks the
end of the page footer.

The document type
declaration is a processing
instruction indicating the
markup language used in
the document.

The <html> tag
marks the
beginning of the
HTML document.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 3Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS

The Structure of an HTML Document

The exact layout of the
document elements is
determined by a style
sheet and not by the
document markup.

Document as it appears
in the browser.

Kzenon/Shutterstock.com; © Courtesy Patrick Carey; martiapunts/Shutterstock.
com; Brian A Jackson/Shutterstock.com; A Studios/Shutterstock.com; rangizzz/
Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 4

Exploring the World Wide Web
It is no exaggeration to say that the World Wide Web has had as profound an effect on
human communication as the printing press. One key difference is that operation of the
printing press was limited to a few select tradesmen but on the web everyone can be a
publisher of a website. Before creating your first website, you’ll examine a short history
of the web because that history impacts the way you write code for your web pages.
You’ll start by exploring the basic terminology of computer networks.

Networks
A network is a structure in which information and services are shared among devices
known as nodes or hosts. A host can be any device that is capable of sending or
receiving data electronically. The most common hosts that you will work with are
desktop computers, laptops, tablets, mobile phones, and printers.

A host that provides information or a service to other devices on the network is
called a server. For example, a print server provides printing services; a file server
provides storage space for saving and retrieving files. The device receiving these
services is called a client. A common network design is the client-server network,
in which the clients access information provided by one or more servers.

Networks are classified based on the range of devices they cover. A network
confined to a small geographic area, such as within a building or department, is
referred to as a local area network or LAN. A network that covers a wider area, such as
several buildings or cities, is called a wide area network or WAN. Wide area networks
typically consist of two or more interconnected local area networks. The largest WAN
in existence is the Internet, which incorporates an almost uncountable number of
networks and hosts involving computers, mobile devices (such as phones, tablets, and
so forth), MP3 players, and gaming systems.

Locating Information on a Network
The biggest obstacle to effectively using the Internet is the network’s sheer scope and
size. Most of the early Internet tools required users to master a bewildering array of
terms, acronyms, and commands. Because network users had to be well versed in
computers and network technology, Internet use was largely limited to programmers
and computer specialists working for universities, large businesses, and the
government.

The solution to this problem was developed in 1989 by Timothy Berners-Lee and
other researchers at the CERN nuclear research facility near Geneva, Switzerland.
They needed an information system that would make it easy for their researchers to
locate and share data on the CERN network, and so developed a system of hypertext
documents. Hypertext is a method of organization in which data sources are
interconnected through a series of links or hyperlinks activated to jump from one data
source to another. Hypertext is ideally suited for the Internet because end users don’t
need to know where a service is located—they only need to know how to activate
the link. The effectiveness of this technique quickly spread beyond Geneva and was
adopted across the Internet. The totality of these interconnected hypertext documents
became known as the World Wide Web. The fact that the Internet and the World
Wide Web are synonymous in many users’ minds is a testament to the success of the
hypertext approach.

Web Pages and Web Servers
Documents on the web are stored on web servers in the form of web pages and
accessed through a software program called a web browser. The browser retrieves the

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 5

document from the web server and renders it in a form readable on a client device.
However, because there is a wide selection of client devices ranging from desktop
computers to mobile phones to screen readers that relay data aurally, each web page
must be written in code that is compatible with every device. How does the same
document work with so many different devices? To understand, you need to look at
how web pages are created.

Introducing HTML
A web page is a simple text file written in HTML (Hypertext Markup Language). You’ve
already read about hypertext, but what is a markup language? A markup language is
a language that describes the content and structure of a document by “marking up”
or tagging, different document elements. For example, this tutorial contains several
document elements such as the tutorial title, main headings, subheadings, paragraphs,
figures, figure captions, and so forth. Using a markup language, each of these elements
could be tagged as a distinct item within the “tutorial document.” Thus, a Hypertext
Markup Language is a language that supports tagging distinct document elements and
connecting documents through hypertext links.

The History of HTML
In the early years, no single organization defined the rules or syntax of HTML. Browser
developers were free to define and modify the language in different ways that, of
course, led to problems as different browsers supported different “flavors” of HTML
and a web page that was written based on one browser’s standard might appear totally
different when rendered by another browser. Ultimately, a group of web designers
and programmers called the World Wide Web Consortium, or the W3C, settled on
a set of standards or specifications for all browser manufacturers to follow. The W3C
has no enforcement power, but, because using a uniform language is in everyone’s
best interest, the W3C’s recommendations are usually followed, though not always
immediately. Each new version of HTML goes through years of discussion and testing
before it is formally adopted as the accepted standard. For more information on the
W3C and its services, see its website at www.w3.org.

By 1999, HTML had progressed to the fourth version of the language, HTML 4.01,
which provided support for multimedia, online commerce, and interactive scripts
running within the web page. However, there were still many incompatibilities in
how HTML was implemented across different browsers and how HTML code was
written by web developers. The W3C sought to take control of what had been a
haphazard process and enforce a stricter set of standards in a different version of
the language called XHTML (Extensible Hypertext Markup Language). By 2002, the
W3C had released the specifications for XHTML 1.1. But XHTML 1.1 was intended to
be only a minor upgrade on the way to XHTML 2.0, which would correct many of the
deficiencies found in HTML 4.01 and become the future language of the web. One
problem was that XHTML 2.0 would not be backward compatible with HTML and, as a
result, older websites could not be easily brought into the new standard.

Web designers rebelled at this development and, in response, the Web Hypertext
Application Technology Working Group (WHATWG) was formed in 2004 with the
mission to develop a rival version to XHTML 2.0, called HTML 5. Unlike XHTML 2.0,
HTML 5 would be compatible with earlier versions of HTML and would not apply the
same strict standards that XHTML demanded. For several years, it was unclear which
specification would win out; but by 2006, work on XHTML 2.0 had completely stalled
and the W3C issued a new charter for WHATWG to develop HTML 5 as the de facto
standard for the next generation of HTML. You can learn more about WHATWG and its
current projects at www.whatwg.org. The current version of HTML is HTML 5.2, which
achieved Recommendation status in 2017.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 6

As HTML has evolved, features and code found in earlier versions of the language
are often deprecated, or phased out, and while deprecated features might not be part
of HTML 5, that doesn’t mean that you won’t encounter them in your work—indeed, if
you are maintaining older websites, you will often need to interpret code from earlier
versions of HTML. Moreover, there are still many older browsers and devices in active
use that do not support HTML 5. Thus, a major challenge for website designers is
writing code that takes advantage of HTML 5 but is still accessible to older technology.

Figure 1–1 summarizes some of the different versions of HTML that have been
implemented over the years. You can read detailed specifications for these versions at
the W3C website.

You can find out which
browsers support the
features of HTML 5 by
going to the website
caniuse.com.

This book focuses on HTML 5, but you will also review some of the specifications
for HTML 4.01 and XHTML 1.1. Deprecated features from older versions of HTML will
be noted as such in the text.

Tools for Working with HTML
Because HTML documents are simple text files, the first tool you will need is a text
editor. You can use a basic text editor such as Windows Notepad or TextEdit for the
Macintosh, but it is highly recommended that you use one of the many inexpensive
editors that provide built-in support for HTML. These editors include syntax checking
to weed out errors and automatic insertion of HTML code. Some of the more popular
HTML editors are Notepad++ (notepad-plus-plus.org), Eclipse (www.eclipse.org), and
CoffeeCup (www.coffeecup.com).

These enhanced editors are a good way to start learning HTML and they will be all
you need for most basic projects, but professional web developers working on large
websites will quickly gravitate toward using a web IDE (Integrated Development
Environment), which is a software package providing comprehensive coverage of all

Version Date Description
HTML 1.0 1989 The first public version of HTML

HTML 2.0 1995 HTML version that added interactive elements including web
forms

HTML 3.2 1997 HTML version that provided additional support for web
tables and expanded the options for interactive form
elements and a scripting language

HTML 4.01 1999 HTML version that added support for style sheets to
give web designers greater control over page layout and
appearance, and provided support for multimedia elements
such as audio and video

XHTML 1.0 2001 A reformulation of HTML 4.01 using the XML markup
language in order to provide enforceable standards for
HTML content and to allow HTML to interact with other XML
languages

XHTML 2.0 discontinued in 2009 The follow-up version to XHTML 1.1 designed to fix some of
the problems inherent in HTML 4.01 syntax

HTML 5.0 2012 HTML version providing support for mobile design, semantic
page elements, column layout, form validation, offline
storage, and enhanced multimedia

HTML 5.2 2017 The current version of HTML 5

Figure 1–1 HTML version history

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 7

phases of the development process from writing HTML code to creating scripts for
programs running on web servers. Some of the popular IDEs for web development
include Adobe Dreamweaver (www.adobe.com), Aptana Studio (www.aptana.com),
NetBeans IDE (netbeans.org), and Komodo IDE (komodoide.com). Web IDEs can be
very expensive, but most software companies will provide a free evaluation period for
you to test their product to see if it meets your needs.

Content Management Systems and Frameworks
You can also invest in a web content management system (wcms) which provides
authoring tools for website content and administration. Management systems provide
prepackaged templates so that users can get websites up and running with only a
minimal knowledge of HTML. Popular content management systems include WordPress
(www.wordpress.org), Joomla (www.joomla.org), and Drupal (www.drupal.org).
Content management systems are not without drawbacks. A wcms can be expensive
to maintain and put extra load on server resources. In addition, the templates and
authoring tools can be difficult to modify if they don’t exactly meet your needs.

A website usually involves the integration of many technologies and languages
beyond HTML, including databases for storing and retrieving data and programs
running on the web server for managing electronic commerce and communication.
Managing all those technologies is the job of a web framework that provides the
foundation of the design and deployment of web applications. Popular frameworks
include Ruby on Rails (rubyonrails.org), ASP.NET (www.asp.net), AngularJS (angularjs.org),
and Django (www.djangoproject.com).

Choosing among all these tools might seem intimidating to you. The bottom line is
that no matter what tools you use, the final code for the website is written in HTML. So,
even if that code is generated by a framework or content management system, you still
need to understand HTML to effectively manage your website. In this book, we’ll try to
keep things as simple as possible: just you, a text editor, and a web browser creating a
foundation for future study.

Testing your Code
Once you’ve written your code, you can test whether your HTML code employs proper
syntax and structure by validating it at the W3C validation website (validator.w3.org).
Validators, like the one available through the W3C website, are programs that test code
to ensure that it contains no syntax errors. The W3C validator will highlight all of the
syntax errors in your document with suggestions about how to fix those errors.

Finally, you’ll need to test it to ensure that your content is rendered correctly.
You should test your code under a variety of screen resolutions, on several different
browsers and, if possible, on different versions of the same browser because users are
not always quick to upgrade their browsers. What may look good on a widescreen
monitor might look horrible on a mobile phone. At a minimum you should test your
website using the following popular browsers: Google Chrome, Internet Explorer, Apple
Safari, Mozilla Firefox, and Opera.

It is not always possible to load multiple versions of the same browser on
one computer, so, in order to test a website against multiple browser versions,
professional designers will upload their code to online testing services that report
on the website’s compatibility across a wide range of browsers, screen resolutions,
and devices, including both desktop and mobile devices. Among the popular
testing services are BrowserStack (www.browserstack.com), CrossBrowserTesting
(www.crossbrowsertesting.com), and Browsera (www.browsera.com). Most of these
sites charge a monthly connection fee with a limited number of testing minutes, so you
should not upload your code until you are past the initial stages of development.

You can analyze
each browser for its
compatibility with
HTML 5 at the website
www.html5test.com.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 8

Exploring an HTML Document
Now that you have reviewed the history of the web and some of the challenges in
developing your own website, you will look at the code of an actual HTML file. To get
you started, Sajja Adulet has provided you with the ct_start.html file containing the
code for the initial page users see when they access the Curbside Thai website. Open
Sajja’s file now.

The Document Type Declaration
The first line in an HTML file is the document type declaration or doctype, which
is a processing instruction indicating the markup language used in the document.
The browser uses the document type declaration to know which standard to use for
displaying the content. For HTML 5, the doctype is entered as

<!DOCTYPE html>

To open the ct_start.html file:
w 1. Use the editor of your choice to open the ct_start.html file from the html01 c

tutorial folder.

Figure 1–2 shows the complete contents of the file as viewed in the
Notepad++ editor.

All HTML files have the file
extension .html or .htm.

Trouble? Depending on your editor and its configuration, the text style
applied to your code might not match that shown in Figure 1–2. This is not a
problem. Because HTML documents are simple text files, any text styles are
a feature of the editor and have no impact on how the document is rendered
by the browser.

w 2. Scroll through the document to become familiar with its content but do not
make any changes to the text.

several elements
nested within
another element

an element attribute

empty elements,
which do not
contain content

two-sided tag
enclosing element
content

Figure 1–2 Elements and attributes from an HTML document

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 9

You might also see the doctype entered in lowercase letters as

<!doctype html>

Both are accepted by all browsers. Older versions of HTML had more complicated
doctypes. For example, the doctype for HTML 4.01 is the rather foreboding

<! DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

You might even come across older HTML files that do not have a doctype. Because
early versions of HTML did not require a doctype, many browsers interpret the
absence of the doctype as a signal that the page should be rendered in quirks mode,
based on styles and practices from the 1990s and early 2000s. When the doctype is
present, browsers will render the page in standards mode, employing the most current
specifications of HTML. The difference between quirks mode and standards mode can
mean the difference between a nicely laid-out page and a confusing mess, so always
put your HTML 5 file in standards mode by including the doctype.

Introducing Element Tags
The fundamental building block in every HTML document is the element tag, which
marks an element in the document. A starting tag indicates the beginning of that
element, while an ending tag indicates the ending. The general syntax of a two-sided
element tag is

<element>content</element>

where element is the name of the element, content is the element’s content,
<element> is the starting tag, and </element> is the ending tag. The following code
marks a paragraph element enclosed within the <p> and </p> tags:

<p>Welcome to Curbside Thai.</p>

The <p></p> tags indicate the presence of a paragraph and the text Welcome to
Curbside Thai. comprises the paragraph text.

Not every element tag encloses document content. Empty elements are elements
that are either nontextual (such as images) or contain directives to the browser about
how the page should be treated. An empty element is entered using one of the
following forms of the one-sided element tag:

<element />

or

<element>

The following br element indicates the presence of a line break in the text, and thus
does not contain any content:

Note that, while this code could also be entered as
, the ending slash /> form is
required in XHTML documents as well as other markup languages. While HTML 5
allows for either form, it’s a good idea to get accustomed to using the ending slash
/> form if you intend to work with other markup languages. We’ll follow the />
convention in the code in this book.

Elements can contain other elements, which are called nested elements. In the
following code, the em element (used to mark emphasized text) is nested within the
paragraph element by placing the tag completely within the <p> tag.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 10

Proper syntax:

<p>Welcome to Curbside Thai.</p>

When nesting one element inside of another, the entire code of the inner element
must be contained within the outer element, including opening and closing tags. Thus,
it would not be correct to place the closing tag for the em element outside of the p
element as in the following code:

Improper syntax:

<p>Welcome to Curbside Thai</p>.

Now that you’ve examined the basics of tags, you’ll examine at how they’re organized
within an HTML file.

The Element Hierarchy
The entire structure of an HTML document can be thought of as a set of nested
elements in a hierarchical tree. At the top of the tree is the html element marking the
entire document. Within the html element is the head element enclosing information
about the document itself and the body element enclosing the content of the web page.
Thus, the general structure of an HTML file, like the one shown in Figure 1–2, is

<!DOCTYPE html>
<html>
<head>
 head content
</head>

<body>
 body content
</body>
</html>

where head content and body content are nested elements placed within the
document head and body. Note that the body element is always placed after the head
element.

R
E
FE

R
E
N
C
E

Creating the Basic Structure of an HTML File

• To create the basic structure of an HTML file, enter the tags

<!DOCTYPE html>
<html>
<head>
 head content
</head>

<body>
 body content
</body>
</html>

where head, content, and body content contain nested elements that mark the
content of the head and body sections.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 11

Introducing Element Attributes
Elements often contain one or more element attributes providing additional
information about the purpose of the element or how the element should be handled
by the browser. The general syntax of an element attribute within a two-sided tag is

<element attr1="value1" attr2="value2" …>
 content
</element>

Or, for a one-sided tag

<element attr1="value1" attr2="value2" … />

where attr1, attr2, and so forth are attributes associated with element and value1,
value2, and so forth are the corresponding attribute values. For example, the following
code adds the id attribute with the value "intro" to the <p> tag in order to identify the
paragraph as an introductory paragraph.

<p id="intro">Welcome to Curbside Thai.</p>

Each element has its own set of attributes but, in addition to these element-specific
attributes, there is a core set of attributes that can be applied to almost every HTML
element. Figure 1–3 lists some of the most commonly used core attributes; others are
listed in Appendix B.

Attributes can be listed in
any order but they must
come after the element
name and be separated
from each other by a blank
space; each attribute value
must be enclosed within
single or double quotation
marks.

For attributes that do not require a value, HTML supports attribute minimization by
removing the attribute value completely. For example, the hidden attribute used in the
following code does not require a value; its mere presence indicates that the marked
paragraph should be hidden in the rendered page.

<p hidden>Placeholder Text</p>

Attribute minimization is another example of how HTML 5 differs from other
markup languages such as XHTML in which minimization is not allowed and all
attributes must have attribute values.

Figure 1–3 Commonly used core HTML attributes

Attribute Description
class="text" Defines the general classification of the element

dir="ltr|rtl|auto" Defines the text direction of the element content as left-to-right,
right-to-left, or determined by the browser

hidden Indicates that the element should be hidden or is no longer
relevant

id="text" Provides a unique identifier for the element

lang="text" Specifies the language of the element content

style="definition" Defines the style or appearance of the element content

tabindex="integer" Specifies the tab order of the element (when the tab button is
used to navigate the page)

title="text" Assigns a title to the element content

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 12

Handling White Space
An HTML file is composed only of text characters and white-space characters. A white-
space character is any empty or blank character such as a space, tab, or line break.
The browser reading the HTML code ignores the presence of white-space characters
between element tags and makes no distinction between spaces, tabs, or line breaks.
Thus, a browser will treat the following two pieces of code the same:

<p>Welcome to Curbside Thai.</p>

and

<p>
 Welcome to Curbside Thai.
</p>

The browser also collapses consecutive occurrences of white-space characters into a
single occurrence, so that the text of the paragraph in the following code is still treated
as “Welcome to Curbside Thai”, ignoring the extra white spaces between “Curbside”
and “Thai”.

<p>
 Welcome to Curbside Thai.
</p>

The bottom line is that it doesn’t matter how you lay out your HTML code because
the browser is only interested in the text content and not how that text is entered. This
means you can make your file easier to read by indenting lines and by adding extra
white-space characters to separate one code block from another. However, this also
means that any formatting you do for the page text to make the code more readable,
such as tabs or extra white spaces, is not transferred to the web page.

Viewing an HTML File in a Browser
The structure of the HTML file shown in Figure 1–2 should now be a little clearer, even
if you don’t yet know how to interpret the meaning and purpose of each of element and
attribute. To see what this page looks like, open it within a web browser.

To open the ct_start.html file in a web browser:
w 1. Open your web browser. You do not need to be connected to the Internet to

view local files stored on your computer.

w 2. After your browser loads its home page, open the ct_start.html file from the
html01 c tutorial folder. Figure 1–4 shows the page as it appears on a mobile
phone and on a tablet device. The two devices have different screen widths,
which affects how the page is rendered.

R
E
FE

R
E
N
C
E

Adding an Attribute to an Element

• To add an attribute to an element, enter

<element attr1="value1" attr2="value2" …>
 content
</element>

where attr1, attr2, and so forth are HTML attributes associated with element and
value1, value2, and so forth are the corresponding attribute values.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 13

Trouble? If you’re not sure how to open a local file with your browser, check
for an Open or Open File command under the browser’s File menu. You
can also open a file by double-clicking the file name from within Windows
Explorer or Apple Finder.

w 3. Reduce the width of your browser window and note that when the width
falls below a certain value (in this case 480 pixels), the layout automatically
changes to a stacked row of images (as shown in the mobile device image in
Figure 1–4) that are better suited to the narrower layout.

w 4. Increase the width of the browser window and confirm that the layout
changes to a 2×3 grid of images (as shown in the tablet device image in
Figure 1–4), which is a design more appropriate for the wider window.

mobile device tablet device

©
 K

ze
no

n/
Sh

ut
te

rs
to

ck
.c

om
; ©

 m
ar

tia
p

un
ts

/S
hu

tt
er

st
oc

k.
co

m
;

©
 B

ria
n

A
 J

ac
ks

on
/S

hu
tt

er
st

oc
k.

co
m

; ©
 s

ay
hm

og
/S

hu
tt

er
st

oc
k.

co
m

;
©

 r
an

g
iz

zz
/S

hu
tt

er
st

oc
k.

co
m

; B
en

B
oi

s/
op

en
cl

ip
ar

t;

Jm
le

vi
ck

/o
p

en
cl

ip
ar

t

Figure 1–4 illustrates an important principle: HTML does not describe the
document’s appearance, it only describes the document’s content and structure. The
same HTML document can be rendered differently on different devices or screen sizes.
The actual appearance of the document is determined by style sheets—a topic you’ll
explore later in this tutorial.

Creating an HTML File
Now that you’ve studied the structure of an HTML file, you’ll start creating your
own documents for the Curbside Thai website. Sajja wants you to create a web page
containing information about the restaurant. Start by inserting the doctype and the
markup tags for the html, head, and body elements. You will also specify English (en)
as the language of the web page by adding the lang attribute to the <html> tag.

Figure 1–4 The Curbside Thai starting page as rendered by a mobile and tablet device

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 14

To begin writing the HTML file:
w 1. Using the editor of your choice, create a new blank HTML file in the html01 c

tutorial folder, saving the file as ct_about.html.

w 2. Enter the following code into the file:

<!DOCTYPE html>
<html lang="en">

<head>
</head>

<body>
</body>

</html>

Figure 1–5 shows the initial elements in the document.

HTML filenames should
be entered in lowercase
letters and have no blank
spaces.

w 3. Save your changes to the file.

document type declaration
identi�es the markup
language as html

head element will
contain information
about the document

body element will
contain the content
displayed by the
browser

opening <html> tag
marks the start of
the document and
speci�es the
language

closing </html> tag
marks the end of
the document

Next, you’ll add elements to the document head.

Figure 1–5 Initial structure of the ct_about.html file

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 15

Creating the Document Head
The document head contains metadata, which is content that describes the document
or provides information about how the document should be processed by the browser.
Figure 1–6 describes the different metadata elements found in the document head.

The first metadata you’ll add to the About Curbside Thai web page is the title element.

PR
O
SK

IL
LS

Written Communication: Writing Effective HTML Code

Part of writing good HTML code is being aware of the requirements of various
browsers and devices, as well as understanding the different versions of the language.
Here are a few guidelines for writing good HTML code:

• Become well versed in the history of HTML and the various versions of HTML and
XHTML. Unlike other languages, HTML’s history does impact how you write your
code.

• Know your market. Do you have to support older browsers, or have your clients
standardized on one particular browser or browser version? Will your web pages be
viewed on a single device such as a computer, or do you have to support a variety
of devices?

• Test your code on several different browsers and browser versions. Don’t assume
that if your page works in one browser, it will work in other browsers or even in
earlier versions of the same browser. Also check on the speed of the connection. A
large file that performs well with a high-speed connection might be unusable with a
slower connection.

• Read the documentation on the different versions of HTML and XHTML at the W3C
website and keep up to date with the latest developments in the language.

To effectively communicate with customers and users, you need to make sure your
website content is always readable. Writing good HTML code is a great place to start.

Figure 1–6 HTML metadata elements

Element Description
head Contains a collection of metadata elements that describe the document or

provide instructions to the browser

base Specifies the document’s location for use with resolving relative hypertext
links

link Specifies an external resource that the document is connected to

meta Provides a generic list of metadata values such as search keywords, viewport
properties, and the file’s character encoding

script Provides programming code for programs to be run within the document

style Defines the display styles used to render the document content

title Stores the document’s title or name, usually displayed in the browser title bar
or on a browser tab

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 16

Setting the Page Title
The title element is part of the document head because it’s not displayed within the
web page, but rather in the browser title bar or browser tab. Page titles are defined
using the following title element

<title>document title</title>

where document title is the text of the title. Add a page title to the Curbside Thai
page now.

Adding Metadata to the Document
Another metadata is the meta element, which is used for general lists of metadata
values. The meta element structure is

<meta attributes />

where attributes define the type of metadata that is to be added to a document.
Figure 1–8 lists the attributes of the meta element.

To insert the document title:
w 1. Directly after the opening <head> tag, insert the following title element,

indented to make the code easier to read.

<title>About Curbside Thai</title>

Figure 1–7 highlights the code for the page title.

Document titles should be
no more than 64 characters
in length to ensure that the
text fits on the browser title
bar or a browser tab.

w 2. Save your changes to the file.

title text that appears
in the browser title bar
or on a browser tab

Figure 1–7 Entering the document title

Adding a Document Title

• To define the document title, enter the following tag into the document head:

<title>document title</title>

where document title is the text that will appear on the browser title bar or a
browser tab.

R
E
FE

R
E
N
C
E

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 17

For example, you can use the following meta element to provide a collection of
keywords for the Curbside Thai website that would aid web search engines, such as
Google or Bing search tools, to locate the page for potential customers:

<meta name="keywords" content="Thai, restaurant, Charlotte, food" />

The name attribute defines the type of metadata and the content attribute provides the
data values. HTML does not specify a set of values for the name attribute, but commonly
used names include keywords, description, author, and viewport.

Another use of the meta element is to define the character encoding used in the
HTML file. Character encoding is the process by which the computer converts text
into a sequence of bytes when it stores the text and then converts those bytes back into
characters when the text is read. The most common character encoding is UTF-8, which
supports almost all of the characters you will need. To indicate that the document is
written using UTF-8, add the following meta element to the document head:

<meta charset="utf-8" />

The charset attribute was introduced in HTML 5 and replaces the following more
complicated expression used in earlier versions of HTML:

<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8" />

The title element and the
charset meta element are
both required in a valid
HTML 5 document.

Add meta elements to the document head now, providing the character set and a list
of keywords describing the page.

Attribute Description
charset="encoding" Specifies the character encoding used in the

HTML document

content="text" Provides the value associated with the
http-equiv or name attributes

http-equiv="content-type|default-
style|refresh"

Provides an HTTP header for the document’s
content, default style, or refresh interval (in
seconds)

name="text" Sets the name associated with the metadata

Figure 1–8 Attributes of the meta element

Adding Metadata to the Document

• To define the character encoding used in the document, enter

<meta charset="encoding" />

where encoding is the character encoding used in the document.
• To define search keywords associated with the document, enter

<meta name="keywords" content="terms" />

where terms is a comma-separated list of keyword terms.

R
E
FE

R
E
N
C
E

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 18

Before continuing with your edits to the ct_about.html file, you should document
your work. You can do this with HTML comments.

Adding Comments to Your Document
An HTML comment is descriptive text that is added to the HTML file but that does not
appear in the page. Comments can include the name of the document’s author, the
date the document was created, and the purpose for which the document was created.
Comments are added with the following markup:

<!-- comment -->

where comment is the text of the comment or note. For example, the following code
inserts a comment describing the Curbside Thai page:

<!-- General Information about Curbside Thai -->

A comment can be spread across several lines as long as the comment begins
with <!-- and ends with -->. Because comments are ignored by the browser, they can
be added anywhere within a document, though it’s good practice to always include
a comment in the document head in order to describe the document content that
follows.

Always include comments
when working with a team
so that you can document
the development process
for other team members.

To insert metadata:
w 1. Directly after the opening <head> tag, insert the following meta elements,

indented to make the code easier to read:

<meta charset="utf-8" />
<meta name="keywords"
 content="Thai, restaurant, Charlotte, food" />

Figure 1–9 highlights the newly added meta elements used in the document
head.

The <meta> tag that
defines the character
encoding should always be
the first meta element in
the document head.

w 2. Save your changes to the file.

w 3. Open the ct_about.html file in your browser. Confirm that the browser tab or
browser title bar contains the text “About Curbside Thai”. There should be
no text displayed in the browser window because you have not added any
content to the page body yet.

character encoding
used in the document

keywords used for
search engines

Figure 1–9 Adding metadata to a document

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 19

Add comments to the ct_about.html file indicating the document’s author, date of
creation, and purpose.

To add a comment to the document:
w 1. Return to the ct_about.html file in your HTML editor.

w 2. Directly after the opening <head> tag, insert the following comment text,
indented to make the code easier to read:

<!--
New Perspectives on HTML 5 and CSS, 8th Edition
Tutorial 1
Tutorial Case
General Information about Curbside Thai
Author: your name
Date: the date

Filename: ct_about.html
-->

where your name is your name and the date is the current date. Figure 1–10
highlights the newly added comment in the file.

HTML comments must
be closed with the -->
characters.

Comment added
to the document

R
E
FE

R
E
N
C
E

Adding a Comment to an HTML Document

• To insert a comment anywhere within your HTML document, enter

<!-- comment -->

where comment is the text of the HTML comment.

Figure 1–10 Adding a comment to the document

w 3. Save your changes to the file.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 20

IN
SI
G
H
T

Conditional Comments and Internet Explorer

Another type of comment you will encounter in many HTML files is a conditional
comment, which encloses content that should only be run by particular versions of the
Internet Explorer browser. The general form of the conditional comment is

<!--[if operator IE version]>
 content
<![endif]-->

where operator is a logical operator (such as less than or greater than), version is
the version number of an Internet Explorer browser, and content is the HTML code
that will be run only if the conditional expression is true. The following code uses the
lt (less than) logical operator to warn users that they need to upgrade their browser if
they are running Internet Explorer prior to version 8.

<!--[if lt IE 8]>
 <p>Upgrade your browser to view this page.</p>
<![endif]-->

Other logical operators include lte (less than or equal to), gt (greater than), gte
(greater than or equal to), and ! (not). For example, the following code uses the logical
operator ! to display the paragraph text only when the browser is not Internet Explorer:

<!--[if !IE]>
 <p>You are not running Internet Explorer.</p>
<![endif]-->

Note that if you omit the version number, the conditional comment is applied to all
Internet Explorer versions.

The need for conditional comments arose because Internet Explorer significantly
differed from other browsers in how it implemented HTML and there was a need to
separate the code meant for the IE browser from code meant for other browsers. This
is not as much of a problem with Microsoft ending development of Internet Explorer
in favor of the Edge browser, but you may still encounter legacy websites that use
conditional comments in their code.

In the next session, you’ll continue your work on the ct_about.html file by adding
content to the page body.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 21

R
E
V
IE

W

Session 1.1 Quick Check

 1. What is a markup language?
a. A language used for e-commerce websites
b. A language describing the content and structure of a document by tagging

document elements
c. A language introduced by Microsoft for use in web browsers
d. A language that defines the appearance of web pages for computers and

cell phones
 2. WordPress is a:

a. web browser
b. text editor
c. web content management system
d. web framework

 3. What does W3C stand for?
a. World Wide Web Computing
b. World Wide Web Corporation
c. World Wide Web Creators
d. World Wide Web Consortium

 4. Which of the following is the proper form of an HTML 5 doctype?
a. <doctype html>
b. <DOCTYPE html>
c. <doctype>html</doctype>
d. <!DOCTYPE html>

 5. Which of the following defines the page title for an HTML document?
a. <title>My Web Page</title>
b. <pageTitle>My Web Page</title>
c. <head id="title">My Web Page</title>
d. <titleStart>My Web Page</titleEnd>

 6. Which of the following is not proper HTML syntax?
a. <p>Welcome to my web page</p>
b. <p>Welcome to my web page</p>
c. <p>

 Welcome to my
 web page
</p>

d. <p>Welcome to my
web page
</p>

 7. Which of the following defines “restaurant” as a search keyword for a web
page?
a. <keyword>restaurant</keyword>
b. <meta>restaurant</meta>
c. <meta name="keywords" content="restaurant" />
d. <meta keyword="restaurant" type="search" />

 8. Which of the following uses the proper syntax for creating an HTML comment?
a. <! Home page for my personal website>
b. <comment>Home page for my personal website</comment>
c. // Home page for my personal website
d. <!-- Home page for my personal website -->

 9. True or false: HTML describes how content should be rendered by the browser.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 22 HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5

The tag marks an
image using the �le speci�ed
in the src attribute.

The <h1> tag marks
a major heading. The tag marks

text of major importance
or seriousness.

The <p> tag marks
a paragraph.

The tag marks
emphasized text.

A character entity
reference inserts a
character based on a
de�ned name.

A numeric character
reference inserts a character
based on its code value.

The <cite> tag
marks a citation.

Session 1.2 Visual Overview:

© Kzenon/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 23Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS

Bullet characters are inserted
with the • numeric
character reference.

The opening paragraph
of the article is marked
with the <p> tag.

Images are added
to the web page.

The restaurant name is marked
with the tag to
indicate its importance.

An example of emphasized text
is marked with the tag.

The main heading of
the article is marked
with the <h1> tag.

Nonbreaking space is
inserted with the
character entity reference.

A citation to a magazine is
marked with the <cite> tag.

HTML Page Elements

K
ze

no
n/

Sh
ut

te
rs

to
ck

.c
om

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 24

For example, a news blog page might contain several major topics. To identify these
areas, the HTML code for the blog might include the following elements marking off
the page’s header, navigation list, article, aside, and footer.

<body>
 <header>
 </header>
 <nav>
 </nav>
 <article>
 </article>
 <aside>
 </aside>
 <footer>
 </footer>
</body>

These sectioning elements are also referred to as semantic elements because the tag
name describes the purpose of the element and the type of content it contains. Even
without knowing much about HTML, the page structure defined in the above code is
easily understood from the tag names.

Sectioning elements can
be nested within each
other; an article might
contain its own header,
footer, and collection of
navigation links.

Writing the Page Body
Now that you have created the document head of the About Curbside Thai web page,
you’ll begin writing the document body, starting with general markup tags identifying
the major sections of the page body, and working inward to more specific content
within those sections.

Using Sectioning Elements
The first task in designing the page body is identifying the page’s major topics. A page
typically has a header, one or more articles that are the chief focus of the page, and a
footer that provides contact information for the author or company. HTML marks these
major topical areas using the sectioning elements described in Figure 1–11.

Element Description
address Marks contact information for an individual or group

article Marks a self-contained composition in the document such as a newspaper story

aside Marks content that is related to a main article

body Contains the entire content of the document

footer Contains closing content that concludes an article or section

h1, h2, h3,
h4, h5, h6

Marks major to minor headings with h1 representing the heading with the highest
rank, h2 representing next highest-ranked heading, and so forth

header Contains opening content that introduces an article or section

nav Marks a list of hypertext or navigation links

section Marks content that shares a common theme or purpose on the page

Figure 1–11 HTML sectioning elements

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 25

The About Curbside Thai page will have a simple structure containing a header, a
single article, and a footer. Within the header, there will be an h1 element providing a
main topic heading (not to be confused with the document title, which is displayed on
the browser title bar or a browser tab). Add this structure to the document body.

R
E
FE

R
E
N
C
E

Defining Page Sections

• To mark the page header, use the header element.
• To mark self-contained content, use the article element.
• To mark a navigation list of hypertext links, use the nav element.
• To mark a sidebar, use the aside element.
• To mark the page footer, use the footer element.
• To group general content, use the section element.

To define the sections in the page body:
w 1. If you took a break after the previous session, return to the ct_about.html file

in your HTML editor.

w 2. Directly after the opening <body> tag, insert the following HTML code,
indented to make the code easier to read:

<header>
 <h1>Curbside Thai</h1>
</header>
<article>
 <h1>About Us</h1>
</article>
<footer>
 Curbside Thai 411 Belde Drive, Charlotte NC 28201 704-555-1151
</footer>

Figure 1–12 highlights the sectioning elements used in the page body.

w 3. Save your changes to the file.

page heading

article headingmain article in the
document

document header

document footer

Figure 1–12 Adding sectioning elements to the page body

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 26

Comparing Sections in HTML 4 and HTML 5
Many of the sectioning elements described in Figure 1–11 were introduced in HTML 5.
Prior to HTML 5, sections were defined as divisions created using the following div
element:

<div id="id">
 content
</div>

where id uniquely identifies the division. Figure 1–13 shows how the same page layout
marked up using sectioning elements in HTML 5 would have been defined in HTML
4.01 using div elements.

One problem with div elements is that there are no rules for ids. One web designer
might identify the page heading with the id header, while another designer might use
heading or top. The lack of consistency makes it harder for search engines to identify
the page’s main topics. The advantage of the HTML 5 sectioning elements is that their
tag name indicates their purpose in the document, leading to greater uniformity in how
pages are designed and interpreted. However, you might still encounter use of the div
element in older websites and within the code generated by web frameworks.

Using Grouping Elements
Within sectioning elements are grouping elements. Each grouping element organizes
similar content into a distinct group, much like a paragraph groups sentences that share
a common theme. Figure 1–14 describes the HTML grouping elements.

<header></header>

<footer></footer>

<section></section><nav></nav> <aside></aside>

<article></article>

HTML 5.0

HTML 4.01
<div id="header"></div>

<div id="nav">
</div>

<div id="section"></div> <div id="aside">
</div>

<div id="article">
</div>

<div id="footer"></div>

Figure 1–13 Sections in HTML 5.0 vs. divisions in HTML 4.01

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 27

The following code shows three paragraphs nested within a page article with each
paragraph representing a group of similar content:

<article>
 <p>Content of 1st paragraph.</p>
 <p>Content of 2nd paragraph.</p>
 <p>Content of 3rd paragraph.</p>
</article>

The default style for browsers is to start sectioning or grouping elements on a new
line, separating them from any content that appears before it. Thus, each of these
paragraphs will appear in the web page on a new line as will the article itself. Note that
the exact appearance of the paragraphs and the space between them depends on the
styles applied by the browser to those elements. You’ll learn more about styles later in
this tutorial.

Element Description
blockquote Contains content that is quoted from another source, often with a citation and

often indented on the page

div Contains a generic grouping of elements within the document

dl Marks a description list containing one or more dt elements with each followed by
one or more dd elements

dt Contains a single term from a description list

dd Contains the description or definition associated with a term from a description list

figure Contains an illustration, photo, diagram, or similar object that is cross-referenced
elsewhere in the document

figcaption Contains the caption associated with a figure

hr Marks a thematic break such as a scene change or a transition to a new topic
(often displayed as a horizontal rule)

main Marks the main content of the document or application; only one main element
should be used in the document

ol Contains an ordered list of items

ul Contains an unordered list of items

li Contains a single item from an ordered or unordered list

p Contains the text of a paragraph

pre Contains a block of preformatted text in which line breaks and extra spaces in the
code are retained (often displayed in a monospace font)

Figure 1–14 HTML grouping elements

Defining Page Groups

• To mark a paragraph, use the p element.
• To mark an extended quote, use the blockquote element.
• To mark the main content of a page or section, use the main element.
• To mark a figure box, use the figure element.
• To mark a generic division of page content, use the div element.

R
E
FE

R
E
N
C
E

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 28

To group the page text into paragraphs:
w 1. Use a text editor to open the ct_pages.txt file from the html01 c tutorial

folder.

w 2. Select and copy the three paragraphs of text directly after the About Us title.

w 3. Close the file, but do not save any changes you may have inadvertently made
to the document.

w 4. Return to the ct_about.html file in your HTML editor.

w 5. Directly after the <h1>About Us</h1> line within the page article, insert a
new blank line and paste the text you copied.

w 6. Enclose each of the three paragraphs of pasted content between an opening
<p> tag and a closing </p> tag. Indent the code within the article element
to make the code easier to read.

Figure 1–15 highlights the newly added code for the three paragraphs of
article text.

w 7. Save your changes to the file.

each paragraph is enclosed
within an opening <p> tag
and a closing </p> tag

�rst paragraph

third paragraph

second paragraph

Figure 1–15 Grouping article content by paragraphs

Sajja has written an article describing Curbside Thai. Enter the text of the article into
the article element in the About Curbside Thai web page and use p elements to mark
the paragraphs in the article.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 29

The following HTML code demonstrates how to employ text-level elements to mark
select phrases or characters within a paragraph.

<p>
 Contact us to cater your next party and experience what
 <cite>Carolina Traveler</cite> calls <q>the finest
 Asian food on or off the streets of Charlotte.</q>
</p>

Element Description
a Marks content that acts as a hypertext link

abbr Marks an abbreviation or acronym

b Indicates a span of text to which attention should be drawn (text usually appears in bold)

br Represents a line break within the grouping element

cite Marks a citation to a title or author of a creative work (text usually appears in italics)

code Marks content that represents computer code (text usually appears in a monospace
font)

data Associates a data value with the marked text with the value attribute providing the
value

dfn Marks a defined term for which a definition is given elsewhere in the document

em Indicates content that is emphasized or stressed (text usually appears in italics)

i Indicates a span of text that expresses an alternate voice or mood (text usually appears
in italics)

kbd Marks text that represents user input, typically from a computer keyboard or a voice
command

mark Marks content that is highlighted for reference purposes

q Marks content that is quoted from another source

s Marks content that is no longer accurate or relevant (text is usually struck through)

samp Marks text that represents the sample output from a computer program or application

small Marks side comments (text usually in small print)

span Contains a generic run of text within the document

strong Indicates content of strong importance or seriousness (text usually appears in bold)

sub Marks text that should be treated as a text subscript

sup Marks text that should be treated as a text superscript

time Marks a time value or text string

u Indicates text that appears stylistically different from normal text (text usually appears
underlined)

var Marks text that is treated as a variable in a mathematical expression or computer
program

wbr Represents where a line break should occur, if needed, for a long text string

Figure 1–16 HTML text-level elements

Using Text-Level Elements
Within each grouping element are text-level elements, which mark phrases or
characters within a paragraph. Unlike sectioning or grouping elements that mark a
self-contained block of content, text-level elements appear in line with the surrounding
content and are known as inline elements. For example, the italicized or boldface
text in this paragraph is considered inline content because it appears alongside the
surrounding text. Figure 1–16 describes some of the many text-level elements in HTML.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 30

Use text-level elements in the About Curbside Thai web page to mark examples of
emphasized text, strongly important text, citations, and quoted material.

To apply text-level elements to a page:
w 1. Go to the first paragraph within the page article and enclose the opening

words Curbside Thai within a set of opening and closing tags. Use
 tags when you want to strongly reinforce the importance of the
text, such as the restaurant name, for the reader.

w 2. In the second paragraph, enclose the phrase, Curbside Thai will deliver
within a set of opening and closing tags to emphasize this text.

w 3. Go the third paragraph and mark Carolina Traveler using the cite element
and then mark the extended quote, the finest Asian food on or off the streets
of Charlotte, using the q element.

Figure 1–17 highlights the application of the four text-level elements to the
paragraph text.

quoted material
marked with the
<q> tag

citation marked
with the <cite> tag

emphasized text
marked with the
 tag

strong and
important text
marked with the
 tag

Figure 1–17 Marking text-level content

Defining Text-Level Content

• To mark emphasized text, use the em element.
• To mark text of great importance, use the strong element.
• To mark a citation, use the cite element.
• To mark a selection of quoted material, use the q element.
• To mark a subscript, use the sub element; to mark a superscript, use the sup element.
• To mark a generic selection of text-level content, use the span element.R

E
FE

R
E
N
C
E

Two text-level elements are used in this paragraph: the cite element marks the citation
to the Carolina Traveler magazine and the q element marks the direct quote from the
magazine’s review of Curbside Thai. Both the citation and the quoted material will
appear alongside other text within the paragraph.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 31

In rendering the page, the browser made the following stylistic choices for the
different page elements:

• The h1 heading from the body header is assigned the largest font and is displayed in
bold to emphasize its importance. The h1 heading from the page article is given a
slightly smaller font but is still displayed in bold.

• Strong text is displayed in bold while emphasized text is displayed in italics.
• Citations are displayed in italic while quoted material is automatically surrounded by

quotation marks.

It needs to be emphasized again that all of these stylistic choices are not determined
by the markup tags; they are default styles used by the browser. Different browsers and
different devices might render these page elements differently. To exert more control
over your page’s appearance, you can apply a style sheet to the document.

You can explore the impact
of different HTML tags
using the demo_html.html
file in the html01 c demo
folder.

TRY IT

Trouble? Depending on your browser, device, and screen settings, you
might see some minor differences in the appearance of the About Curbside
Thai web page from that shown in Figure 1–18.

body header

page article

body footer

citation is italicized

h1 heading from
the page article

h1 heading from
the body header

strong text
appears in bold

quotation marks
automatically added
to quoted content

emphasized text is italicized

Figure 1–18 The About Curbside Thai page as rendered by the browser

w 4. Save your changes to the file.

w 5. Open the ct_about.html file in your browser to view how your browser
renders the page content.

Figure 1–18 shows the current appearance of the page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 32

Linking an HTML Document to a Style Sheet
A style sheet is a set of rules specifying how page elements are displayed. Style sheets
are written in the Cascading Style Sheets (CSS) language. Like HTML, the CSS language
was developed and enhanced as the web grew and changed and, like HTML, CSS
specifications are managed by the W3C.To replace the browser’s internal style sheet
with one of your own, you can link your HTML file to a style sheet file using the
following link element:

<link href="file" rel="stylesheet" />

where file is a text file containing the CSS style sheet. Because the link element
can also be used to link to data other than style sheets, the rel attribute is required
to tell the browser that it is linking to style sheet data. Older websites might include
type="text/css" as part of the link href element.

Sajja has supplied you with two CSS files that he wants applied to his website. The
ct_base.css file contains styles specifying the appearance of text-level elements. The
ct_layout2.css file contains styles that govern the arrangement of sectioning and grouping
elements on the page. Link the ct_about.html file to both of these style sheets now.

Because the link element is
metadata, it’s always added
to the document head.

To link an HTML document to a style sheet:
w 1. Return to the ct_about.html file in your HTML editor.

w 2. Directly before the closing </head> tag, insert the following link elements:

<link href="ct_base.css" rel="stylesheet" />
<link href="ct_layout2.css" rel="stylesheet" />

Figure 1–19 highlights the two style sheet links added to the document.

link elements link
the web page to
a style sheet �le

rel attribute indicates the
type of link relationship

�lename of the
CSS style sheet

Linking an HTML Document to an External Style Sheet

• To link an HTML document to an external style sheet file, add the following element
to the document head:

<link href="file" rel="stylesheet" />

where file is a text file containing the CSS style rules.

R
E
FE

R
E
N
C
E

Figure 1–19 Linking to style sheets

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 33

Applying these style sheets displays the page body on a tan background with a drop
shadow, the font used in the two h1 headings has changed, a top border has been
added to the footer to set it off from the preceding content, and the citation to the
Carolina Traveler magazine is displayed in a light blue font. The effect makes the page
content easier to read and more pleasing to the eye.

Sajja is concerned that the contact information in the page footer is difficult to read.
He wants you to add bullet characters (•) separating the name of the restaurant, the street
address, and the restaurant phone number. However, this character is not represented by
any keys on your keyboard. How then, do you insert this symbol into the web page?

Working with Character Sets and Special
Characters
Every character that your browser is capable of rendering belongs to a collection of
characters and symbols called a character set. The character set used for the English
alphabet is the American Standard Code for Information Interchange more simply
known as ASCII. A more extended character set, called Latin-1 or the ISO 8859-1
character set, supports 255 characters and can be used by most languages that employ
the Latin alphabet, including English, French, Spanish, and Italian. Unicode, the most
extended character set, supports up to 65,536 symbols and can be used with any of the
world’s languages.

Character Encoding
Each character from a character set is associated with an encoding value that can then
be stored and read by a computer program. For example, the copyright symbol © from
the Unicode character set is encoded with the number 169. If you know the encoding
value, you can insert the corresponding character directly into your web page using the
following character encoding reference:

&#code;

You can explore different
character encoding
values using the demo_
characters.html file in the
html01 c demo folder.

TRY IT

tan background with
drop shadow added
to page body

footer displayed with
top border and footer
content centered

straight quotes
replaced with
curly quotes

citation displayed in
a light blue font

h1 heading text
displayed in a
new font style

Figure 1–20 The About Curbside Thai page rendered under a new style sheet

w 3. Save your changes to the file and then reload the ct_about.html file in your
browser. Figure 1–20 shows the new appearance of the page using the style
sheets provided by Sajja.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 34

where code is the encoding reference number. Thus, to display the © symbol in your
web page, you would enter

©

into your HTML file.

Character Entity References
Another way to insert a special symbol is to insert a character entity reference, which
is a short memorable name used in place of the encoding reference number. Character
entity references are inserted as

&char;

where char is the character’s entity reference. The character entity reference for the
copyright symbol is copy, so to display the © symbol in your web page, you could
insert the following expression into your HTML code:

©

In the last session, you learned that HTML will collapse consecutive occurrences of
white space into a single white-space character. You can force HTML to display extra
white space by using the following character entity reference

where nbsp stands for nonbreaking space. When you want to display extra white
space, you need to insert the nonbreaking space character reference in the HTML code
for each space you want to display.

For the footer in the About Curbside Thai page, use the bullet symbol (•), which has
the encoding value 8226, to separate the restaurant name, address, and phone number.
Use the character reference to insert an extra blank space prior to the postal
code in the restaurant address.

Inserting Symbols from a Character Set

• To insert a symbol based on the character encoding reference number, enter

&#code;

where code is the character encoding reference number.
• To insert a symbol based on a character entity reference, enter

&char;

where char is the name assigned to the character.
• To insert a white-space character, use

R
E
FE

R
E
N
C
E

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 35

w 3. Save your changes to the file and then reload the ct_about.html file in your
browser. Confirm that the footer now shows the characters displayed in
Figure 1–22.

character encoding
reference for a bullet
character (•)

character entity reference
for a nonbreaking space

bullet characters

extra nonbreaking
space

Figure 1–21 Inserting special characters

Figure 1–22 Revised page footer

To insert a character encoding reference number and an entity
reference:

w 1. Return to the ct_about.html file in your HTML editor.

w 2. Go to the footer element and insert the character encoding number
• directly after the word Thai and after the postal code 28201. Insert
the character reference directly before the postal code.

Figure 1–21 highlights the character codes and references added to the
footer.

Character encoding
reference numbers must
always begin with &# and
end with a semicolon,
otherwise the code won’t
be recognized as a code
number.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 36

Element Description
audio Represents a sound clip or audio stream

canvas Contains programming scripts used to construct bitmap images and graphics

embed Contains general embedded content including application or interactive content

iframe Contains the contents of an external web page or Internet resource

img Contains a graphic image retrieved from an image file

object Contains general embedded content including application or interactive content

video Represents a video clip or video stream with captions

Figure 1–23 HTML embedded elements

IN
SI
G
H
T

Presentational Attributes

Early versions of HTML supported presentational elements and presentational attributes
describing how each element should be rendered by the browser. For example, to
align text on a page, HTML included the following align attribute

<element align="alignment">content</element>

where alignment is either left, right, center, or justify. Thus, to center an h1
heading on a page, apply the following code:

<h1 align="center">Curbside Thai</h1>

Almost all presentational elements and attributes are now deprecated in favor
of style sheets, but you may still see them in the code from older websites. Using a
deprecated attribute like align would probably not cause your web page to fail,
however, it’s still best practice to adhere to a standard in which HTML is used only to
describe the content and structure of the document and style sheets are used to format
its appearance.

So far your work on the Curbside Thai page has been limited to textual content.
Next, you’ll explore how to add graphical content to your web page.

Working with Inline Images
Most web pages include embedded content, which is content imported from another
resource, often nontextual, such as graphic images, audio soundtracks, video clips,
or interactive games. To support this type of content, HTML provides the embedded
elements listed in Figure 1–23.

These elements are also known as interactive elements because they allow for
interaction between the user and the embedded object. For example, embedded audio
or video content usually contains player buttons to control the playback.

Images are inserted into a web page using the following img element

where file is the name of the image file. If the browser cannot display images, the text
in the alt attribute is used in place of the image. As with other one-sided tags, the img
element can be entered without the closing slash as

Always include the alt
attribute; it is required in
XHTML code and is highly
recommended as a way
of accommodating users
running nonvisual web
browsers.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 37

Images marked with the tag are also known as inline images because they are
placed, like text-level elements, in line with surrounding content.

By default, the image size matches the size of the image in the file but you can specify
a different size by adding the following width and height attributes to the img element

width="value" height="value"

where the width and height values are expressed in pixels. If you specify only the
width, browsers automatically set the height to maintain the proportions of the image;
similarly, if you define the height, browsers automatically set the width to maintain the
image proportions. Image sizes can also be set within the document’s style sheet.

Embedding an Inline Image

• To embed an inline image into the document, use

where file is the name of the graphic image file, and text is text displayed by
browsers in place of the graphic image.

R
E
FE

R
E
N
C
E

To insert inline images into a document:
w 1. Return to the ct_about.html file in your HTML editor.

w 2. Go to the header element and replace the h1 element with the tag

w 3. Go to the article element and, directly after the h1 element, insert the tag

Figure 1–24 highlights the newly added img elements in the document.

Include the alt attribute as a
blank text string if the image
file does not convey any
text message to the user.

Figure 1–24 Inserting inline images

h1 heading replaced
with an inline image

image added to the
About Us article

w 4. Save your changes to the file and then reload the ct_about.html file in your
browser. Figure 1–25 displays the newly added graphic images in the web page.

Sajja has provided you with two images. The image from the ct_logo2.png file
displays the restaurant logo, while the ct_photo1.png image provides an image of
customers being served by an employee at his brick-and-mortar restaurant. Sajja
included this image to emphasize that the food from his food truck is the same quality
and great taste as the food at his award winning restaurant. Add both of these images to
the ct_about.html file.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 38

Note that the photo of the Curbside Thai customers is floated alongside the right margin
of the article, with the surrounding paragraphs flowing around the image. This is the result
of code in the style sheets. You’ll learn about styles used to float images in Tutorial 3.

Line Breaks and Other Empty Elements
The img element is inserted using the empty element tag because it does not enclose
any text content, but instead links to an external image file. Another important empty
element is the following br element, which creates a line break

Line breaks are placed within grouping elements, such a paragraphs or headings, to
force page content to start on a new line within the group. While useful for controlling
the flow of text within a group, the br element should not be used as a formatting tool.
For example, it would not make semantic sense to insert two or more br elements in a
row if the only reason to do so is to increase the spacing between lines of text. Instead,
all such formatting choices belong in a style sheet.

If the text of a line cannot fit within the width of the viewing window, the browser
will wrap the text automatically at the point the browser identifies as the most
appropriate. To recommend a different line break point, use the wbr (word break)
element to indicate where a line break should occur if needed. For example, the
following HTML code uses the wbr element to break a long web address between
“.com/” and “general”, but this break happens only if the address will not fit on one line.

www.curbsidethai.com/<wbr />general/docs/ct_about.html

Figure 1–25 Images on the About Curbside Thai page

photo �oated on the right
margin of the article

restaurant logo
used for the
page header

© Kzenon/Shutterstock.com

Trouble? The exact appearance of the text as it flows around the image will
vary depending on the width of your browser window.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 39

IN
SI
G
H
T

Supporting HTML 5 with Legacy Browsers

HTML 5 introduced several new semantic elements including the header,
footer, article, and nav elements. Some browsers, such as Internet Explorer
Version 8, could not cope with new elements without an external program known
as a script running in the browser.

One script that provides support for HTML 5 is Modernizr (http://modernizr
.com); another is HTML 5 Shiv (https://github.com/aFarkas/html5shiv). Many
HTML editors, such as Dreamweaver, supply their own script files to cope with
legacy browsers. Note that even with these scripts, the rendering of your page
under old browsers might not match current browsers.

Working with Block Quotes and Other
Elements
Now that you’ve written the code for the ct_about.html file, you’ll work on other pages
in the Curbside Thai website. The ct_reviews.html file provides excerpts of reviews from
food critics and magazines. Because these excerpts contain extended quotes, you’ll
place each review in the following blockquote element

<blockquote>
 content
</blockquote>

where content is the text of the quote. By default, most browsers render block quotes
by indenting the quoted material to separate from it from the website author’s words,
however, you can substitute your own style with a custom style sheet.

Sajja has created much of the code required for the reviews page. The code is
contained in the two style sheets that are already linked to the reviews page. Complete
the page by adding the excerpts of the reviews marked as block quotes.

Finally, another oft-used empty element is the following hr or horizontal rule
element, which denotes a major topic change within a section

<hr />

Originally, the hr element was used to insert horizontal lines into the page and,
although that task is better left to style sheets, you will still see the hr element used in
that capacity in older web pages.

To create the reviews page:
w 1. Open the ct_reviews_txt.html file from the html01 c tutorial folder in your

HTML editor. Enter your name and the date in the comment section and
save the file as ct_reviews.html.

w 2. Go to the ct_pages.txt file in your text editor.

w 3. Locate the section containing the restaurant reviews and copy the text of the
two reviews and two awards.

w 4. Return to the ct_reviews.html file in your HTML editor and paste the text of
the four reviews directly after the <h1>Reviews</h1> line.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 40

w 6. Save your changes to the file and then open the ct_reviews.html file in your
browser. Figure 1–27 shows the appearance of the restaurant review quotes
using Sajja’s style sheet.

Figure 1–26 Marking extended text as block quotes

within each
block quote
are paragraphs

blockquote elements
within the page body

w 5. Enclose each review within a set of <blockquote> tags. Enclose each
paragraph within each review with a set of <p> tags. Align and indent your
code to make it easier to read.

Figure 1–26 highlights the newly added code in the document.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 41

Figure 1–27 Block quotes of restaurant reviews

open quotes are added
by the style sheet

block quotes

paragraphs within
the block quote

Because of the styles in Sajja’s style sheets, each blockquote element appears
within its own formatted box with an opening quote character added to reinforce the
fact that this is quoted material.

The next page you’ll create contains information about catering from Curbside Thai.
The structure of this page is identical to the structure of the About Curbside Thai page.
Sajja has linked the catering page to two style sheets containing the style rules that
dictate how the page will look when the page is rendered in a browser.

To create the Catering page:
w 1. Open the ct_catering_txt.html file from the html01 c tutorial folder in your

HTML editor. Enter your name and the date in the comment section and
save the file as ct_catering.html.

w 2. Return to the ct_pages.txt file in your text editor.

w 3. Locate the section containing information about Curbside Thai’s catering
service and copy the four paragraphs of information.

w 4. Return to the ct_catering.html file in your HTML editor and paste the copied
text directly after the <h1>Catering</h1> line.

w 5. Mark each paragraph in the article using the p element. Align and indent
your code to make it easier to read.

w 6. Directly after the <h1>Catering</h1> tag, insert an inline image using
ct_photo2.png as the source and an empty text string for the alt attribute.

Figure 1–28 highlights the newly added paragraphs in the document.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 42

The final page you’ll create in this session will contain contact information for
Curbside Thai. Mark the content within the main page article.

w 7. Save your changes to the file and then open the ct_catering.html file in your
browser. Figure 1–29 shows the appearance of the page.

Figure 1–28 Entering the markup for the Catering page

paragraphs

inline image

Figure 1–29 Content of the Catering page

inline image

paragraphs

RojaninSri/Shutterstock.com

To create the Contact Us page:
w 1. Open the ct_contact_txt.html file from the html01 tutorial folder in your

HTML editor. Enter your name and the date in the comment section and
save the file as ct_contact.html. Note that this page is linked to two style
sheets that Sajja created.

w 2. Go to the ct_pages.txt file in your text editor.

w 3. Copy the Contact Us section in the text file (excluding the title).

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 43

w 4. Return to the ct_contact.html file in your HTML editor and paste the copied
text directly after the <h1>Contact Us</h1> tag.

w 5. Enclose the introductory paragraph within a set of opening and closing <p>
tags to mark it as a paragraph.

w 6. Enclose the three lines containing the street address within a set of opening
and closing <address> tags to mark that content as an address. Insert the

 tag at the end of the first two lines to create a line break between the
name of the restaurant and the street address.

w 7. Mark each of the last two lines as paragraphs using the p element.

Figure 1–30 highlights the marked up code for Curbside Thai’s contact
information.

Figure 1–30 Entering the markup for the Contact Us page

line breaks to start the
next part of the address
on a new line

address element
to mark up a
mailing address

w 8. Save your changes to the file and then open the ct_contact.html file in your
browser as shown in Figure 1–31.

Figure 1–31 Content of the Contact Us page

street address

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 44

In the next session, you’ll continue to work on the Curbside Thai website by adding
pages describing the restaurant menu and listing the time and locations where the
mobile food truck is parked.

PR
O
SK

IL
LS

Problem Solving: Making your Page Accessible with ARIA

The web is for everyone and that presents a special challenge when writing code for
the visually impaired who will be accessing your website with a screen reader. One
standard to assist screen readers is Accessible Rich Internet Applications (ARIA), which
supplements HTML elements with additional attributes that provide clues as to the
element’s purpose as well as provide information on the current status of every page
element.

One of the cornerstones of ARIA is the role attribute, which specifies the purpose of
a given element. For example, the following role attribute indicates that the header
element contains a banner, such as a logo that introduces the web page

<header role="banner">
 content
</header>

ARIA supports a list of approved role names including the following:

• alert Content with important and usually time-sensitive information
• application A web application, as opposed to a web document
• definition A definition term or concept
• dialog An application window that will require user input
• log A region of data that is constantly modified and updated
• progress bar Content that displays the progress status for ongoing tasks
• search Content that provides search capability to the user
• separator A divider that separates one region of content from another
• timer A region that contains a numerical counter reporting on elapsed time

You can view the complete list of role attribute values and how to apply them at
www.w3.org/WAI/PF/aria/roles.

ARIA is a useful tool for enhancing the accessibility of your web page and making
the rich resource that is the World Wide Web open to all. A side benefit is that
accessibility and usability go hand-in-hand. A website that is highly accessible is also
highly usable and that is of value to all users.

The Contact Us page only provides the text of the contact information but that text is
static. In the next session, you’ll learn how to make this content interactive by turning
the contact information into hypertext.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 45

R
E
V
IE

W

Session 1.2 Quick Check

 1. Which of the following marks a heading with the second level of importance?
a. <h level="2">Gourmet Thai Cooking</h>
b. <hLevel2>Gourmet Thai Cooking</hLevel2>
c. <heading2>Gourmet Thai Cooking</heading2>
d. <h2>Gourmet Thai Cooking</h2>

 2. Prior to HTML 5, sections were identified with:
a. the section element and the name attribute
b. the div element and the id attribute
c. the article element and the section attribute
d. the aside element and the id attribute

 3. To mark content that is related to the main article, use
a. the sidebar element
b. the extraContent element
c. the aside element
d. the section element

 4. Which of the following marks the content as emphasized text?
a. <i>Daily Special</i>
b. Daily Special
c. Daily Special
d. Daily Special

 5. Which of the following should be used to mark the text string “H2SO4”?
a. H<lower>2</lower>SO<lower>4</lower>
b. H²SO⁴
c. H<code>2</code>SO<code>4</code>
d. H₂SO₄

 6. Which of the following links the HTML file to the CSS style sheet file,
mystyles.css?
a. <stylesheet rel=link">mystyles.css</mystyles>
b. <stylesheet src="mystyles.css" />
c. <link rel="stylesheet">mystyles.css</link>
d. <link href="mystyles.css" rel="stylesheet" />

 7. Which of the following tags might be used to indicate a change of topic within
a section?
a. <hr />
b.

c. <aside />
d.

 8. Which character reference is used to insert a nonbreaking space within a text
string?
a. &space;
b.
c. &ws;
d. ©

 9. Which of the following tags inserts an inline image with the alternative text “Art
World”?
a. <image src="awlogo.png" alt="Art World" />
b. Art World
c. <figure src="awlogo.png" alt="Art World" />
d.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 46 HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5

Session 1.3 Visual Overview:

The <a> tag marks
content as a hypertext
link to an external
resource.

The href attribute
provides the URL of the
linked �le (ct_start.html).

The tag marks
an unordered list with
the tag marking
each list item.The <nav> tag marks

a list of hypertext links
used for navigation.

The tel scheme is used
to provide the URL for
a telephone link.

The mailto scheme is
used to provide the
URL for an email link.

The URL points to
an email address.

Each list item
is marked as a
hypertext link.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 47Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS

Lists and Hypertext Links

Clicking the logo
jumps the user to
the ct_start.html �le.

The email link opens
an email program
when clicked.

The telephone link opens
a telephony application
when clicked.

The navigation list
encloses links to pages in
the Curbside Thai website.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 48

Working with Lists
In the last session, you added order and structure to your web page with some of
HTML’s sectioning and grouping elements. Another type of grouping element is a list.
HTML supports three types of lists: ordered lists, unordered lists, and description lists.

Ordered Lists
Ordered lists are used for items that follow some defined sequential order, such as
items arranged alphabetically or numerically. An ordered list is marked using the ol
(ordered list) element with each list item marked using the li element. The general
structure is

 item1
 item2
 …

where item1, item2, and so forth are the items in the list. For example, the following
ordered list ranks the top-three most populated states:

 California
 Texas
 New York

By default, browsers display list items alongside a numeric marker. In the case of
ordered lists, this is a numeric value starting with the number 1 and ascending in value.
For example, the ordered list of states would be rendered in most browsers as

 1. California
 2. Texas
 3. New York

Note that because both the ol and li elements are considered grouping elements,
each list item will appear, by default, on a new line in the document.

To display different numbering, use the start and reversed attributes of the ol
element. The start attribute provides the numeric value for the first item in the list,
while the reversed attribute specifies that the list numbers should be displayed in
descending order. Thus, the following HTML code that lists the most populated states

<ol reversed start="50">
 California
 Texas
 New York

would be rendered as a list in descending order starting from 50

50. California
49. Texas
48. New York

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 49

You can explicitly define the item value by adding the value attribute to each list
item. The list shown previously could also have been generated with the following
code:

 <li value="50">California
 <li value="49">Texas
 <li value="48">New York

You can use style sheets to display lists using alphabetical markers (A, B, C, …) or
Roman Numerals (I, II, III, …) in place of numeric values. You’ll explore this technique
in Tutorial 2.

Unordered Lists
Unordered lists are lists in which the items have no sequential order. The structure for
an unordered list is similar to that used with ordered lists except that the list items are
grouped within the following ul (unordered list) element:

 item1
 item2
 …

For example, the following HTML code creates an ordered list of all of the states
along the Pacific coast:

 California
 Oregon
 Washington

By default, browsers display items from an unordered list alongside a marker such as
a bullet point. Thus, an unordered list of Pacific coast states might be rendered as

• California
• Oregon
• Washington

Once again, the exact appearance of an unordered list will depend on the style sheet
that is applied to the element.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 50

IN
SI
G
H
T

Creating a Nested List

Because the li element is itself a grouping element, it can be used to create a series
of nested lists. The general structure for a nested collection of unordered list is

 Item 1
 Item 2

 Sub Item 1
 Sub Item 2

where Sub Item 1, Sub Item 2, and so forth are items contained within the Item 2
list. For example, an unordered list of states and cities within those states could be
marked up as

 California
 Oregon

 Portland
 Salem

 Washington

Most browsers will differentiate the various levels by increasing the indentation and
using a different list symbol at each level of nested lists, for example, rendering the
HTML code above as

• California
• Oregon

 o Portland
 o Salem

• Washington

The markers used at each level and the amount of indentation applied to each nested
list is determined by style sheets, either those built into the browser or those supplied
by the page designer. You’ll explore this technique in Tutorial 2.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 51

Description Lists
A third type of list is the description list containing a list of terms and matching
descriptions. The description list is grouped by the dl (description list) element,
the terms are marked with the dt (description term) element, and the description(s)
associated with each term is marked by the dd element. The general structure is

<dl>
 <dt>term1</dt>
 <dd>description1</dd>
 <dt>term2</dt>
 <dd>description2a</dd>
 <dd>description2b</dd>
 ...
</dl>

where term1, term2, and so forth are the terms in the list, and description1,
description2a, description2b, and so forth are the descriptions associated with the
terms. Note that descriptions must always directly follow the term they describe and
that more than one description may be provided with each term.

By default, most browsers indent the descriptions associated with each term.
Markers are rarely displayed alongside either the description term or the description.

Sajja wants to use a description list in a page that displays some of the menu items
sold by Curbside Thai. He’s already started work on the HTML code but needs you to
complete it by adding the markup for the description list.

To complete the menu page:
w 1. Open the ct_menu_txt.html file from the html01 c tutorial folder in your

HTML editor. Enter your name and the date in the comment section and
save the file as ct_menu.html.

w 2. Open the ct_pages.txt file in your text editor if it is not already open and
copy the five menu items listed in the Mobile Menu section.

w 3. Return to the ct_menu.html file in your HTML editor and paste the copied
text directly after the <h1>Mobile Menu</h1> tag.

w 4. Enclose the entire menu within an opening and closing <dl> tag.

w 5. Mark the name of each menu item using the dt element. Mark the
corresponding description using the dd element. Indent your code to make it
easier to read and interpret.

Figure 1–32 shows the completed code for the description list of the mobile
menu.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 52

w 6. Save your changes to the file and then open the ct_menu.html file in your
browser. Figure 1–33 shows the completed menu for Curbside Thai.

Figure 1–32 Marking the restaurant menu as a description list

the name of each menu item is
marked as a description term;
information about the item is
marked as a description

description list

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 53

Figure 1–33 Curbside Thai menu as a description list

description list

term description
of the term

Note that the style sheet that Sajja uses for his website inserts a dividing line
between each term and description in the list. This is not the default browser style for
description lists.

Description lists can be used with any general list that pairs one list of items with
another list providing additional information. For example, Sajja has a page that lists
the times and locations at which the Curbside Thai truck will make an appearance.
Complete this page by enclosing the content within a description list, marking the times
as the list “terms” and the locations as the list “descriptions”.

To create a page of times and locations:
w 1. Open the ct_locations_txt.html file from the html01 c tutorial folder in your

HTML editor. Enter your name and the date in the comment section and
save the file as ct_locations.html.

w 2. Return to the ct_pages.txt file in your text editor and copy the four locations
from the Today’s Locations section.

w 3. Return to the ct_locations.html file in your HTML editor and paste the
copied text directly after the <h1>Today’s Locations</h1> tag.

w 4. Mark the entire list of times and locations using the dl element. Mark each
time using the dt element and each location using the dd element. Indent
your code to make it easier to read and interpret.

w 5. In order to distinguish this description list from other description lists in the
website, add the attribute id="ct_locations" to the opening <dl> tag.

w 6. Sajja has a map that he wants displayed alongside the list of times and
locations. Directly after the h1 element within the article element, insert
the following inline image:

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 54

w 7. Save your changes to the file and then open the ct_locations.html file in
your browser. Figure 1–35 shows the appearance of the page. Remember,
the placement of items on the screen is a result of the style sheets.

From this page, Curbside Thai customers can quickly find the mobile truck. A page
like this will have to be updated, probably daily, as the truck moves around. This
is often better accomplished using database programs on the web server that will
generate code for both the HTML and the inline image file.

Figure 1–34 highlights the newly added code for the Today’s Locations page.

Figure 1–34 Creating a description list

description list

inline image
showing map
of location

id attribute uniquely
identi�es this
description list

each time interval marked
as a description term; each
location marked as a
description

Figure 1–35 Locations of the Curbside Thai food truck

description
list

inline image showing
mobile truck locationsterm

description

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 55

You’ve now created six web pages for the Curbside Thai website. Next, you’ll link
these pages together so that users can easily navigate between the pages in the website.
You’ll start by creating a navigation list.

Navigation Lists
A navigation list is an unordered list of hypertext links placed within the nav element.
The general structure is

<nav>

 link1
 link2
…

</nav>

where link1, link2, and so forth are hypertext links. While hypertext links can be
placed anywhere within the page, having a central list of links makes the website easier
to work with and navigate.

IN
SI
G
H
T

Marking Dates and Times

The adage that nothing ever quite disappears on the Internet also means that the
web is populated with old articles, documents, and news stories that are no longer
relevant or perhaps, even accurate. Any content you publish to the web should be
time-stamped to document its history. One way of marking a date-time value is with
the following time element

<time datetime="value">content</time>

where value is the date and time associated with the enclosed content. Dates should
be entered in the yyyy-mm-dd format, where yyyy is the four-digit year value, mm is
the two-digit month value, and dd is the two-digit day value. Times should be entered
in the hh:mm format for the two-digit hour and minute values entered in 24-hour time.
To combine both dates and times, enter the date and time values separated by a
space or the letter T as in the following code:

<footer>Last updated at:
 <time datetime="2021-03-01T14:52">March 1 2021 at 2:52
p.m.</time>
</footer>

For international applications, you can base your time values on the common
standard of Greenwich Mean Time. For example, the following code includes the
information that the time is based on the Eastern time zone, which is 5 hours behind
Greenwich Mean Time:

<p>Webinar starts at:
 <time datetime="2021-03-10T20:30-05:00">3:30 p.m.
(EST)</time>
</p>

While the value of the datetime attribute is not visible to users, it is readable by
machines such as search engines, which can include the date and time in reporting
search results. You can read more about the time element on the W3C website,
including information on marking a time duration between two events.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 56

Add this structure to the About Curbside Thai web page, creating entries for each of
the six web pages you created in this tutorial.

To create a navigation list:
w 1. Open the ct_about.html file in your HTML editor if it is not already open.

w 2. Go to the body header and, directly below the inline image for the Curbside
Thai logo, insert the following navigation list:

<nav>

 About
 Locations
 Menu
 Reviews
 Catering
 Contact

</nav>

Figure 1–36 highlights the structure of the navigation list.

Figure 1–36 Creating a navigation list

navigation list section
created with the nav
element

unordered list
within the nav
section

w 3. Save your changes to the file and then reopen the ct_about.html file in your
browser.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 57

Note that the appearance of the navigation list in the ct_about.html file is based on
styles in Sajja’s style sheets. Navigation lists can be displayed in a wide variety of ways
depending on the styles being employed and the same navigation list might be laid out
horizontally for desktop devices and vertically for mobile devices. You’ll learn more
about how to format navigation lists in Tutorial 5.

Now that you’ve created the structure of the navigation list, mark the list items as
hypertext links.

Working with Hypertext Links
Hypertext is created by enclosing content within a set of opening and closing <a> tags
in the following structure

content

where url is the Uniform Resource Locator (URL), which is a standard address format
used to link to a variety of resources including documents, email addresses, telephone
numbers, and text messaging services, and content is the document content marked
as a link. When linking to another HTML file in the same folder, the URL is simply
the name of the file. For example, a hypertext link to the ct_menu.html file would be
marked as

Menu

When the user clicks or touches the word Menu, the browser will load the ct_menu.html
file in the browser. Note that filenames are case sensitive on some web servers so that
those servers differentiate between files named ct_menu.html and CT_Menu.html. The
standard for all web filenames is to always use lowercase letters and to avoid using
special characters and blank spaces.

The default browser style is to underline hypertext links and to display those links
in a different text color if the user has previously visited the page. However, page
designers can substitute different hypertext link styles from their own style sheets. We’ll
explore this technique in Tutorial 2.

Keep your filenames
short and descriptive so
that users are less apt to
make a typing error when
accessing your website.

Figure 1–37 shows appearance of the navigation list.

Figure 1–37 Navigation list for the Curbside Thai website

items within the
navigation list

layout of the
navigation list
based on Sajja’s
style sheet

© Kzenon/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 58

Mark the six entries in the navigation list, pointing each entry to the corresponding
Curbside Thai page.

Marking a Hypertext Link

• To mark content as a hypertext link, use

content

where url is the address of the linked document, and content is the document
content that is being marked as a link.

R
E
FE

R
E
N
C
E

To create hypertext links:
w 1. Return to the ct_about.html file in your HTML editor.

w 2. Mark the first entry as a hypertext link pointing to ct_about.html file by
changing the list item to

About

w 3. Change the code of the second list item to

Locations

w 4. Continuing in the same fashion, change the Menu entry to a link pointing to
the ct_menu.html file, the Reviews entry to a link pointing to the ct_reviews.
html file, the Catering entry to a link pointing to the ct_catering.html file,
and the Contact entry to a link pointing to the ct_contact.html file.

Figure 1–38 highlights the newly added code that changes all of the items in
the navigation list to hypertext links.

Figure 1–38 Marking hypertext links

each item in the
navigation list is marked
as a hypertext link

linked �le hypertext

w 5. Save your changes to the file and then reopen the ct_about.html file in your
browser.

w 6. Click each of the six navigation list entries and verify that the browser loads
the corresponding web page. Use the Back button on your browser to return
to the About Curbside Thai page after you view each document.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 59

You may have noticed that when your mouse pointer moved over a hypertext link
in the navigation list, the appearance of the link changed to white text on a black
background. This is an example of a rollover effect, which is used to provide visual
clues that the text is hypertext rather than normal text. You’ll learn how to create
rollover effects in Tutorial 2.

Turning an Inline Image into a Link
Inline images can also be turned into links by enclosing the image within opening and
closing <a> tags. Turn the Curbside Thai logo into a hyperlink that points to the Startup
page you opened in the first session.

Sajja wants to be able to jump to any document in the Curbside Thai website from
any page. He asks you to copy the hypertext links, including the image hyperlink, you
just created in the ct_about.html file to the other documents in the website.

Trouble? If the links do not work, be sure your code matches Figure 1–38.
For example, check the spelling of each filename in the href attribute of each
<a> tag to ensure it matches the filename of the corresponding Curbside
Thai web page and check to be sure you have all needed opening and
closing tags.

To mark an image as a hypertext link:
w 1. Return to the ct_about.html file in your HTML editor.

w 2. Mark the image in the body header as a hyperlink by changing the HTML
code for the inline image to

<img src="ct_logo2.png"
alt="Curbside Thai" />

Figure 1–39 highlights the code to change the logo image to a hypertext link.

w 3. Save your changes to the file and then reopen the ct_about.html file in your
browser.

w 4. Click the Curbside Thai logo and verify that the browser opens the Curbside
Thai Startup page. Click the Back button to return to the About Curbside
Thai page.

Figure 1–39 Marking an inline image as a hypertext link

reference to the
hypertext link

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 60

Specifying the Folder Path
In the links you created, the browser assumed that the linked files were in the same
folder as the current page. However, large websites containing hundreds of documents
often place documents in separate folders to make them easier to manage.

Figure 1–40 shows a preview of how Sajja might organize his files as the Curbside
Thai website increases in size and complexity. In this structure, all folders start from
a root folder named thai that contains the site’s home page, which Sajja has stored
in the index.html file. Sajja has moved all of his images and CSS style sheet files into
their own folders. He has divided the rest of the web pages among three subfolders:
the general folder for pages containing general information about the restaurant, the
mobile folder for pages with content specifically about the mobile food service, and the
catering folder for pages describing Curbside Thai’s catering opportunities.

To copy and paste the hypertext links:
w 1. Return to the ct_about.html file in your HTML editor.

w 2. Copy the entire content of the page header from the opening <header> tag
through to the closing </header> tag, including the revised code for the
company logo and navigation list.

w 3. Go to the ct_locations.html file in your HTML editor. Paste the copied
HTML code, replacing the previous page header in this document. Save your
changes to the file.

w 4. Repeat the previous step for the ct_menu.html, ct_reviews.html,
ct_catering.html, and ct_contact.html files, replacing the body header in
each of those documents with the revised header from ct_about.html. Save
your changes to each file.

w 5. Reopen the ct_locations.html file in your browser and verify that you can
jump from one page to another by clicking items in the navigation list at the
top of each page. Also verify that you can jump to the Startup page at any
time by clicking the Curbside Thai logo.

You can give your
websites a uniform design
by including the same
navigation list on each
page so that users can
easily move from one page
to the next.

Figure 1–40 A sample folder structure

thai docs

imgs

css

general

mobile

catering

ct_about.html

ct_contact.html

ct_locations.html

ct_menu1.html

ct_catering.html

ct_menu2.html

ct_reviews.html

index.html

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 61

To create links between files in separate folders, you must provide a path to the
linked file. HTML supports two kinds of paths: absolute and relative.

Absolute Paths
An absolute path is a path that starts from the root folder and processes down the entire
folder structure described with the expression

/folder1/folder2/folder3/file

where folder1 is the root folder, followed by the subfolders folder2, folder3, and
so forth, down to the linked file. Based on the structure shown previously in Figure
1–40, an absolute path pointing to the ct_catering.html file would be

/thai/docs/catering/ct_catering.html

If files are located on different drives as well as in different folders, you must include
the drive letter in the path with the expression

/drive|/folder1/folder2/folder3/file

where drive is the letter assigned to the drive. Note that the drive letter must be
followed by the | character. Thus, if the ct_catering.html file were located on drive E,
the absolute path that includes the drive would have the expression

/E|/thai/docs/catering/ct_catering.html

Note that you don’t have to include a drive letter if the linked document is located on
the same drive as the current file.

Relative Paths
When many folders and subfolders are involved, absolute path expression can quickly
become long and cumbersome to work with. For this reason, most web designers prefer
relative paths in which the path is expressed relative to the location of the current
document. If the current document and linked file are in the same folder, there is no
path and you need only include the filename. If the linked file is in a subfolder of
the current document, the path includes all of the subfolder names starting from the
location of the current page using the expression

folder1/folder2/folder3/file

where folder1, folder2, folder3, and so forth are subfolders of the current
document. The relative path to the ct_about.html file starting from the index.html file is

docs/general/ct_about.html

Note that relative paths are often expressed in terms of familial relationships such
as parent, child, descendant, sibling, and so forth in order to indicate the hierarchical
nature of the folder structure. Relative paths can also go up the hierarchy to parent
folders by including the symbol (..), which means “go up one level.” Thus, to go from
ct_about.html in the general folder up two levels to the index.html file, enter the
expression

../../index.html

Finally, to go sideways in the folder structure by going to a file in a different folder but
on the same level, you go up to the parent folder and then back down to a different child
folder. To go from the ct_about.html file in the general folder to the ct_locations.html
file in the mobile folder, use the relative path expression

../mobile/ct_locations.html

In this expression, the link goes up to the parent folder docs through the use of the ..
reference and then back down through the mobile folder to ct_locations.html.

You can reference the
current folder using a
single period (.) character.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 62

You should almost always use relative paths in your links. If you have to move your
files to a different computer or server, you can move the entire folder structure without
having to edit the relative paths you’ve created. If you use absolute paths, you will have
to revise each link to reflect the new location of the folder tree on the new device.

Setting the Base Path
A browser resolves relative paths based on the location of the current document. You
define a different starting point for relative paths by adding the following base element
to the document head

<base href="url" />

where url is the location that you want the browser to use when resolving relative
paths in the current document. The base element is useful when a single document
from the website is moved to a new folder. Rather than rewriting all of the relative paths
to reflect the document’s new location, the base element can point to the document’s
old location allowing relative paths to work as before.

Decision Making: Managing Your Website

Websites can quickly grow to dozens or hundreds of pages. As the size of a site
increases, it becomes more difficult to get a clear picture of the site’s structure and
content. Imagine deleting or moving a file in a website that contains dozens of folders
and hundreds of files. Could you easily project the effect of this change? Would all of
your hypertext links still work after you moved or deleted the file?

To effectively manage a website, you should implement clear decision-making skills
by following a few important rules. The first is to be consistent in how you structure
the site. If you decide to collect all image files in one folder, you should continue that
practice as you add more pages and images. Websites are more likely to break down
if files and folders are scattered throughout the server without a consistent rule or
pattern. Decide on a structure early and stick with it.

A second rule is to decide on and then create a folder structure that matches the
structure of the website itself. If the pages can be easily categorized into different
groups, those groupings should also be reflected in the groupings of the subfolders.
The names you assign to your files and folders should also reflect their uses on the
website. This makes it easier for you to predict how modifying a file or folder might
impact other pages on the website.

Finally, you should document your work by adding comments to each new web
page. Comments are useful not only for colleagues who may be working on the site
but also for the author who must revisit those files months or even years after creating
them. The comments should include

• The page’s filename and location
• The page’s author and the date the page was initially created
• A list of any supporting files used in the document, such as image and audio files
• A list of the files that link to the page and their locations
• A list of the files that the page links to and their locations

By following these rules, you can reduce a lot of the headaches associated with
maintaining a large and complex website.

PR
O

SK
IL

LS

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 63

Linking to a Location within a Document
Hypertext can point to locations within a document. For example, you could link a
specific definition within a long glossary page to save users the trouble of scrolling
through the document. Websites containing the text of novels or plays can contain links
to key passages or phrases within those works. When a link is established to a location
within a document, the browser will jump to that location automatically scrolling the
page to the linked location.

Marking Locations with the id Attribute
In order to enable users to jump to a specific location within a document, identify that
location by adding the following id attribute to an element tag at that location

id="text"

where text is the name assigned to the ID. Imagine that Sajja writes a long page
describing the full menu offered by Curbside Thai. He could mark the location in the
page where the lunch menu is displayed by adding the following id attribute to the h2
heading that marks the start of the Lunch Menu section.

<h2 id="lunch">Lunch Menu</h2>

Note that IDs must be unique. If you assign the same ID to more than one element,
the browser will jump to the first occurrence of that ID value.

Linking to an id
Once you’ve marked the location with an ID, you link to that element using the
following hypertext link:

content

where file points to the location and filename of the linked document and id is
associated with the element within that document. The following hypertext link points
to the element with the ID “lunch” within the ct_fullmenus.html file.

View our Lunch Menu

To link to a location within the current page, include only the ID value along with
the # symbol. Thus, the following hypertext link points to the lunch ID within the
current web page:

View our Lunch Menu

In both cases, clicking or tapping the link will cause the browser to automatically scroll
to the location within the page.

Anchors and the name Attribute
Early web pages did not support the use of the id attribute as a way of marking
locations within a document. Instead, they used the <a> tag as an anchor to mark that
page location (hence the “a” in <a> tag). The general form of the anchor was

content

where anchor is the name given to the anchored text. Inserting content within the
<a> tag was optional because the primary purpose of the tag was to mark a document
location, not to mark up content. The following code would establish an anchor at the
start of the lunch section in the Curbside Thai full menu:

<h2>Lunch Menu</h2>

Once an anchor had been set, you link to the anchor using the same syntax you
would use with the id attribute. The use of anchors is a deprecated feature of HTML
and is not supported in strict applications of XHTML, but you will still see anchors used
in older websites.

In general, a web page
should not span more than
one or two screen heights.
Studies show that users
often skip long pages
where the content runs off
the screen.

IDs are case-sensitive: an
ID of “top” is different
from an ID of “TOP”.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 64

Linking to a Location within a Document

• To mark a location, add a unique ID to an element at that document location using
the following id attribute

id="text"

where text is the value of the ID.
• To link to that location from a different document, use the hypertext reference

content

where file is the name and path location (if necessary) of the external file and text is
the value of the ID.

• To link to that location from within the same document, use the hypertext reference

content

R
E
FE

R
E
N
C
E

Linking to the Internet and Other Resources
The type of resource that a hypertext link points to is indicated by the link’s URL. All
URLs share the general structure

scheme:location

where scheme indicates the resource type and location provides the resource
location. The name of the scheme is taken from the network protocol used to access the
resource where a protocol is a set of rules defining how information is passed between
two devices. Pages on the web use the Hypertext Transfer Protocol (HTTP) protocol
and therefore the URL for many web pages start with the http scheme. Other schemes
that can be included within a URL are described in Figure 1–41.

Figure 1–41 Commonly used URL schemes

Scheme Description
fax A fax phone number

file A document stored locally on a user’s computer

ftp A document stored on an FTP server

geo A geophysical coordinate

http A resource on the World Wide Web

https A resource on the World Wide Web accessed over a secure encrypted connection

mailto An email address

tel A telephone number

sms A mobile text message sent via the Short Message Service

Linking to a Web Resource
If you have ever accessed the web, you should be very familiar with website URLs,
which have the general structure

http://server/path/filename#id

or for secure connections

https://server/path/filename#id

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 65

where server is the name of the web server hosting the resource, path is the path
to the file on that server, filename is the name of the file, and if necessary, id is the
name of an id or anchor within the file. For example, the following URL uses the HTTP
protocol to access the web server at www.curbsidethai.com, linking to the document
location named lunch within the ct_menus.html file in the /thai/docs folder:

http://www.curbsidethai.com/thai/docs/ct_menus.html#lunch

URLs are often entered in a more abbreviated form, http://www.curbsidethai.com
for example, with no path or filename. Those URLs point to the default home page
located in the top folder in the server’s folder tree. Many servers use index.html as the
filename for the default home page, so the URL http://www.curbsidethai.com would
be equivalent to http://www.curbsidethai.com/index.html.

IN
SI
G
H
T

Understanding Domain Names

The server name portion of a URL is also called the domain name. By studying a
domain name, you learn about the server hosting the website. Each domain name
contains a hierarchy of names separated by periods (.), with the top level appearing at
the far right end. The top level, called an extension, indicates the general audience
supported by the web server. For example, .edu is the extension reserved for
educational institutions, .gov is used for agencies of the United States government,
and .com is used for commercial sites or general-use sites.

The next lower level appearing to the immediate left of the extension displays the name
of the individual or organization hosting the site. The domain name curbsidethai.com
indicates a commercial or general-use site owned by Curbside Thai. To avoid duplicating
domain names, the top two levels of the domain must be registered with the Internet
Assigned Numbers Authority (IANA) before they can be used. You can usually register
your domain name through your web hosting company. Note: You must pay an annual
fee to keep a domain name.

The lowest levels of the domain, which appear farthest to the left in the domain
name, are assigned by the individual or company hosting the site. Large websites
involving hundreds of pages typically divide their domain names into several levels.
For example, a large company like Microsoft might have one domain name for file
downloads—downloads.microsoft.com—and another domain name for customer
service—service.microsoft.com. Finally, the first part of the domain name displays the
name of the hard drive or resource storing the website files. Many companies have
standardized on www as the initial part of their domain names.

Linking to an Email Address
Many websites use email to allow users to communicate with a site’s owner, sales
representative, or technical support staff. You can turn an email address into a hypertext
link using the URL:

mailto:address

where address is the email address. Activating the link opens the user’s email program
with the email address automatically inserted into the To field of a new outgoing
message. To create a hypertext link to the email address s.adulet@example.com, you
could use the following URL:

mailto:s.adulet@example.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 66

The mailto protocol also allows you to insert additional fields into the email message
using the URL:

mailto:address?field1=value1&field2=value2&...

where field1, field2, and so forth are different email fields and value1, value2,
and so forth are the field values. Fields include subject for the subject line of the email
message and body for the message body. To create a link to an email message with the
following content

TO: s.adulet@example.com
SUBJECT: Test
BODY: Test Message

you would use the URL

mailto:s.adulet@example.com?subject=Test&body=Test%20Message

Notice that the body text uses %20 character code to represent a blank space since
URLs cannot contain blank spaces.

On the Contact Us page, Sajja has inserted the Curbside Thai’s email address.
Convert this email address into a hypertext link.

To link to more than one
email address, add the
addresses to the mailto link
in a comma-separated list.

To link to an email address:
w 1. Go to the ct_contact.html file in your HTML editor.

w 2. Change the Curbside Thai email address into the following mailto
 hypertext link:

 curbside.thai@example.com

Note that this is a fictional email address. If you want to test this link, change
the URL to a link pointing to your own email address. Figure 1–42 highlights
the hypertext code to the linked email address.

A mailto hypertext link to an
external resource must include
the mailto scheme name in
order to be recognized by the
browser.

Figure 1–42 Linking to an email address

email address marked
as a hyperlinkemail address

mailto scheme
indicates that this
is an email link

w 3. Save your changes to the file and then reopen the ct_contact.html file in your
browser.

w 4. Click the email address link and verify that your device opens your email
program with the Curbside Thai address already entered. Close the email
program without sending a message.

Trouble? Depending on your device, you may have to set up your email
program to accept hypertext links.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 67

Linking to a Phone Number
With the increased use of mobile phones to access the web, many developers now
include links to phone numbers for their company’s customer service or help line.
Activating the link brings up the user’s phone app with the number already entered,
making it easier and more convenient to call the business or organization. The URL for
a phone link is

tel:phone

where phone are the digits of the linked number. For example, the following code
creates a telephone link to the Curbside Thai number:

Call: (704) 555-1151

Because websites are international, any telephone link should include the
international dialing prefix (+1 for the United States) and the area code. Spaces or
dashes between digits are optional with the exception of the + symbol before the
international calling code. However, you can insert pauses in the phone number
(used when accessing an extension) by inserting the p symbol, as in the following
telephone link:

Call: 555-1151 ext. 22

Sajja asks you to change the telephone number from the Contact Us page into a
telephone link.

Skype on the desktop
uses callto: in place
of the tel: scheme for
telephone links. There are
program scripts available
on the web that you can
use in order to work with
both protocols.

IN
SI
G
H
T

Email Links and Spam

Use caution when adding email links to your website. While it may make it more
convenient for users to contact you, it also might make you more vulnerable to spam.
Spam is unsolicited email sent to large numbers of people, promoting products,
services, and in some cases inappropriate websites. Spammers create their email lists
by scanning discussion groups, stealing Internet mailing lists, and using programs
called email harvesters to scan HTML code for the email addresses contained in
mailto URLs. Many developers have removed email links from their websites in order to
foil these harvesters, replacing the links with web forms that submit email requests to a
secure server.

Fighting spammers is an ongoing battle, and they have proved very resourceful in
overcoming some of the defenses people have created. As you develop your website,
you should carefully consider how to handle email addresses and review the most
current methods for safeguarding that information.

To link to a phone number:
w 1. Return to the ct_contact.html file in your HTML editor.

w 2. Change the Curbside Thai phone number into the following hypertext link:

 (704) 555-1151

Once again this number is fictional; you can change the URL to a link
pointing to your own phone number if you want to test the link on a mobile
device. Figure 1–43 highlights the hypertext code of the telephone link.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 68

HTML supports links to other types of telephony devices. You can create a link to a
fax machine using the fax: scheme and a link to your text messaging app by using the
sms: scheme.

Working with Hypertext Attributes
HTML provides several attributes to the a element that control the behavior and
appearance of hypertext links. Figure 1–44 describes these attributes.

Figure 1–43 Marking a telephone link

tel scheme
indicates that this
is a telephone link

telephone number including
international dialing code
and area code

telephone
number marked
as a hyperlink

w 3. Save your changes to the file.

Figure 1–44 Attributes of the a element

Attribute Description
href="url" Provides the url of the hypertext link

target=(_blank|_parent|_self|_top) Specifies where to open the linked document

download="filename" Indicates that the link should be downloaded as
a file, where filename is the name given to the
 downloaded file

rel="type" Provides the relationship between the linked
 document and the current page

hreflang="lang" Indicates the language of the linked document

type="mime-type" Indicates the media type of the linked document

Using the target attribute, you can control how a page is opened. By default the
target of a link replaces the contents of the current page in the browser window. In
some websites, you will want to open a link in a new browser window or tab so that
you can keep the current page and the linked page in view. To force a document to
appear in a new window or tab, add the following target attribute to the <a> tag:

content

where window is a name assigned to the browser window or browser tab in which the
linked page will appear. You can choose any name you wish for the browser window or
you can use one of the following target names:

• _self opens the page in the current window or tab (the default)
• _blank opens the page in a new unnamed window or tab, depending on how the

browser is configured
• _parent opens the page in the parent of the current frame (for framed websites)
• _top opens the page in the top frame (for framed websites)

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 69

You should use the target attribute sparingly in your website. Creating secondary win-
dows can clutter up a user’s desktop. Also, because the page is placed in a new window,
users cannot use the Back button to return to the previous page in that window; they must
click the browser’s program button or the tab for the original website. This confuses some
users and annoys others. Many designers now advocate not using the target attribute at
all, but instead provide the user with the choice of opening a link in a new tab or window.

PR
O
SK

IL
LS

Written Communication: Creating Effective Hypertext Links

To make it easier for users to navigate your website, the text of your hypertext links
should tell readers exactly what type of document the link points to. For example, the
link text

Click here for more information.
doesn’t tell the user what type of document will appear when here is clicked. In

place of phrases like “click here”, you should use descriptive link text such as
For more information, view our list of frequently asked questions.
If the link points to a non-HTML file, such as a PDF document, include that

information in the link text. If the linked document is extremely large and will take a
while to download to the user’s computer, include that information in your link text so
that users can decide whether or not to initiate the transfer. For example, the following
link text informs users of both the type of document and its size so users have this
information before they initiate the link:

Download our complete manual (PDF 2 MB).
Finally, when designing the style of your website, make your links easy to recognize.

Users should never be confused about a link. Also, if you apply a color to your text, do
not choose colors that make your hyperlinks harder to pick out against the web page
background.

Validating Your Website
After finishing the code for your website, you can validate that code to ensure that there
are no syntax errors. While browsers are very forgiving of syntax errors and will often
render the page correctly, you should still perform a validation test for those browsers
that might not be so accommodating.

Many HTML editors and web content management systems have built-in validators.
If you don’t have direct access to an HTML validator you can upload your code to the
validator at the W3C website. To see how a validator can catch HTML syntax errors, you
will introduce errors to the ct_about.html file and then test that file in the W3C validator.

To introduce errors to the ct_about.html file:
w 1. Return to the ct_about.html file in your editor.

w 2. Scroll down and delete the line <h1>About Us</h1>.

w 3. Go to the tag for the ct_photo1.png inline image and delete the alt
attribute, alt="", changing the tag to simply .

w 4. Save your changes to the file.

Using the validator at the W3C website or one built into your editor, validate the
ct_about.html file to see the impact of these changes.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5HTML 70

To validate the code in the ct_about.html file:
w 1. Open your browser to W3C validator at https://validator.w3.org/.

Trouble? If you are using an HTML editor with a built-in validator, talk to
your instructor about accessing that editor’s validation command.

w 2. Click the Validate by File Upload tab within the web page.

w 3. Click the Choose File or Browse button in the web form and locate the
ct_about.html file from the html01 c tutorial folder.

w 4. Click the Check button to validate the file.

The validator reports 1 error and provides 1 warning. See Figure 1–45.

Figure 1–45 Validation report

Because every img element must have an alt attribute (to make the page accessible
to all users), the validator reports an error that the inline image for the ct_photo.png
image is missing alternate text. The validator also issues a warning that the page article
is lacking a heading. While this is not a syntax error (hence the validator only issued a
warning) it is strongly recommended that all articles have at least one heading.

To fix the errors in the ct_about.html file:
w 1. Return to the ct_about.html file in your editor.

w 2. Re-insert the heading <h1>About Us</h1> directly below the opening
<article> tag.

w 3. Add the attribute alt="" to the img element for the ct_photo1.png inline image.

w 4. Save your changes to the file.

w 5. Return in your browser to the W3C validator at https://validator.w3.org/ or
run the validator within your HTML editor.

w 6. Retest the ct_about.html file, verifying that no errors or warnings are reported.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS HTML 71

You’ve completed your work on the Curbside Thai website. Sajja will study your
work and get back to you with future projects for his restaurant. For now, you can close
any open files or applications.

R
E
V
IE

W

Session 1.3 Quick Check

 1. Which of the follow tags is not used to mark a list?
a. …
b. …
c. <dl> … </dl>
d. …

 2. To have an ordered list count down from 100, which attributes should you use?
a. down start="100"
b. reversed start="100"
c. decrease start="100"
d. reversed from="100"

 3. Lists of hypertext links should be enclosed within what tags?
a. <a> …
b. <dl> … </dl>
c. <links> … </link>
d. <nav> … </nav>

 4. To link text to the website https://ww.mobilepanini.com, use the tag:
a. …
b. <link a=" https://www.mobilepanini.com"> … </link>
c. …
d. …

 5. Using Figure 1–40, the relative path going from the ct_about.html file to the
ct_catering.html file is:
a. ../catering/ct_catering.html
b. ct_catering.html
c. /catering/ct_catering.html
d. ./catering/ct_catering.html

 6. What tag can be used to define the starting point for relative paths?
a. <start />
b. <base />
c. <a> …
d. <link />

 7. What tag should you use to mark the h1 heading with the location
topHeading?
a. <h1 id="TopHeading">Mobile Panini</h1>
b. <h1 id="topHeading">Mobile Panini</h1>
c. <h1>Mobile Panini</h1>
d. All of the above

 8. To link to the email address sajja@example.com, use the URL:
a. mail:sajja@example.com
b. sms:sajja@example.com
c. fax:sajja@example.com
d. mailto:sajja@example.com

 9. To link to the phone number 970-555-0002, use the URL:
a. tel:9705550002
b. phone:9705550002
c. call:9705550002
d. dial:9705550002

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 72 HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5

Coding Challenge 1

Data Files needed for this Coding Challenge: code1-1_txt.html

Use HTML to create a navigation list of 10 government websites as shown in Figure 1–46. Each item
in the list should act as a hypertext link to the government side.C

O
D

E

Figure 1–46 Coding Challenge 1-1 example page

The following are the URLs associated with each website:

 • USA government (https://www.usa.gov)
 • Library of Congress (https://www.loc.gov)
 • U.S. Congress (https://www.congress.gov)
 • Federal Depository Library System (https://www.fdlp.gov)
 • Ben’s Guide to US Government for Kids (https://bensguide.gpo.gov)
 • Health Finder (https://www.healthfinder.gov)
 • National Center for Health Statistics (https://www.cdc.gov/nchs)
 • The Whitehouse (https://www.whitehouse.gov)
 • U.S. Census Bureau (https://www.census.gov)
 • CIA World Factbook (https://www.cia.gov/library/publications/the-world-factbook/)

Do the following:

 1. Open the code1-1_txt.html file from the tutorial1 c code1 folder. Enter your name and the date
in the head section of the document and save the file as code1-1.html to the same location.

 2. Within the body section of the file, enter the text Government Sites on the Web. Mark that text as
an h1 heading.

 3. Place the list of government websites within an unordered list nested within a navigation list.
Mark each government website as a separate list item.

 4. Mark the text of each government site as a hypertext link using the <a> tag. Set the href attribute
to the URLs specified above.

 5. Save your changes to the file.
 6. Test the page in your browser, verifying that each item in the list is linked to the appropriate

government website.
 7. Submit the completed file to your instructor.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 73Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS

Coding Challenge 2

Data Files needed for this Coding Challenge: code1-2_txt.html

Mark up a web page containing the poem Revelation by Robert Frost shown in Figure 1–47.

C
O

D
E

Figure 1–47 Coding Challenge 1-2 example page

Do the following:

 1. Open the code1-2_txt.html file from the tutorial1 c code2 folder. Enter your name and the date
in the head section of the document and save the file as code1-2.html to the same location.

 2. Mark the text Revelation as an h1 heading and the text by Robert Frost as an h2 heading.
 3. Mark each stanza of the poem as a paragraph.
 4. Within each of the three stanzas, end each line with a line break using the
 tag.
 5. For alternating lines within the three stanzas, insert three character entities to indent the

text of those lines three spaces.
 6. Replace the line of dashes after the poem with the <hr /> tag to indicate a horizontal rule.
 7. Enclose the reference to the poem’s origin within a <footer> tag.
 8. Mark the text A Boy’s Will using the <cite> tag.
 9. Replace the word copyright with the character reference ©
 10. Save your changes to the file.
 11. View the page in your browser to verify that the poem’s structure resembles that shown in

Figure 1–47.
 12. Submit the completed file to your instructor.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 74 HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5

Coding Challenge 3

Data Files needed for this Coding Challenge: code1-3_txt.html, code1-3_styles.css,
drawing01.png – drawing06.png

Display a gallery of six drawings by Renaissance masters using HTML and a CSS style sheet. The page
containing the drawings is shown in Figure 1–48.

C
O

D
E

Figure 1–48 Coding Challenge 1-3 example page

Do the following:

 1. Open the code1-3_txt.html file from the tutorial1 c code3 folder. Enter your name and the date
in the head section of the document and save the file as code1-3.html to the same location.

 2. Add an attribute to the opening <html> tag to set the language of the page to “en” (for English).
 3. Within the head section of the document do the following:

a. Set the character encoding of the file to utf-8.
b. Set the page title to Coding Challenge 1-3.
c. Link the file to designs stored in the code1-3_styles.css style sheet file.

 4. Within the page body, insert an h1 heading containing the text Drawings from the Old Masters.
 5. After the h1 heading, insert six section elements using the <section> tag.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 75Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS

 6. Within each of the six sections, insert an inline image using the tag, displaying the
image files drawing01.png through drawing06.png. For the six inline images, specify the
following alternate text: Leonardo da Vinci, Jacopo da Pontormo, Raphael, Peter Paul Rubens,
Andrea del Sarto, and Titian.

 7. After each of the six inline images within the section elements, add a footer element using the
<footer> tag. Within the six footers, add the following text captions: The Battle of Anghiari ---
Leonardo da Vinci, Study of a Youth -- Jacopo da Pontormo, The Nativity -- Raphael, Head of a
Maid -- Peter Paul Rubens, Head of a Young Woman -- Andrea del Sarto, and Head of a Youth
-- Titian.

 8. For the figure captions in the previous step, replace the six “--” character strings with a line break
tag (
) followed by the — character reference.

 9. Save your changes to the file.
 10. View the page in your browser to verify that the drawing gallery resembles Figure 1–48.
 11. Submit the completed file to your instructor.

Coding Challenge 4

Data Files needed for this Coding Challenge: code1-4_txt.html, code1-4_styles.css,
code1-4_image.png

You have been given a file containing several coding errors that need to be fixed for the page to
pass validation. Locate and fix the errors in the web page. A preview of the fixed page is shown in
Figure 1–49.

D
E

B
U

G

Figure 1–49 Coding Challenge 1-4 example page

©
 C

ou
rt

es
y

Pa
tr

ic
k

C
ar

ey

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 76 HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5

Do the following:

 1. Open the code1-4_txt.html file from the tutorial1 c code3 folder. Enter your name and the date
in the document and save the file as code1-4.html to the same location.

 2. Test the page in the validator at the W3C website (validator.w3.org) or with another validator
of your choice. Make a note of the errors reported as a guide to debugging the page. Not every
error will be initially reported. There are 10 syntax errors in the HTML file.

 3. Fix all 10 errors you discover and then resubmit the saved document to validation until it passes
with no warnings or errors.

 4. View the page in your browser to verify that the page resembles Figure 1–49.
 5. Submit the completed file to your instructor.

Review Assignments

Data Files needed for the Review Assignments: mp_index_txt.html, mp_menu_txt.html,
mp_events_txt.html, mp_catering_txt.html, 2 CSS files, 2 PNG files, 1 TXT file

Curbside Thai has partnered with another food truck vendor Mobile Panini. Sajja asks you to create
a website for the company similar to what you did for his restaurant. The site will have a home page,
an online menu, a description of catering opportunities, and a calendar of upcoming events that
Mobile Panini will host. A preview of the home page is shown in Figure 1–50.

Figure 1–50 Mobile Panini home page

© Glenn Price/Shuttertock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 77Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS

The page text has already been written for you and style sheets and graphic files have been created.
Your job will be to complete this project by writing the HTML markup.

Complete the following:

 1. Use your HTML editor to open the mp_index_txt.html, mp_menu.txt.html, mp_events_txt.html,
and mp_catering_txt.html files from the html01 c review folder. Enter your name and the date in
the comment section of each file, and save them as mp_index.html, mp_menu.html, mp_events
.html, and mp_catering.html respectively.

 2. Go to the mp_index.html file in your HTML editor. Within the document head, do the following:
a. Use the meta element to set the character encoding of the file to utf-8.
b. Add the following search keywords to the document: Italian, Mobile, food, and Charlotte.
c. Set the title of the document to Mobile Panini.
d. Link the document to the mp_base.css and mp_layout.css style sheet files.

 3. Go to the document body and insert a header element containing the following:
a. An inline image from the mp_logo.png file with the alternate text Mobile Panini. Mark the

image as a hypertext link pointing to the mp_index.html file.
b. A navigation list containing an unordered list with the following list items: Home, Menu,

Events, and Catering. Link the items to the mp_index.html, mp_menu.html, mp_events.html,
and mp_catering.html files respectively.

 4. Below the header element insert an article element. Below the article element, insert a
footer element containing the following text:

 Mobile Panini 31 West Avenue, Charlotte NC 28204 704-555-2188
 where is inserted using the 9832 character code and an extra space is added between NC and

28204 using the nbsp character name.
 5. Go to the mp_pages.txt file in your text editor. This file contains the text content of the four pages

in the Mobile Panini website. Copy the text of the Welcome section, which will be used in the
home page of the website. Return to mp_index.html in your HTML editor and paste the copied
text into the article element.

 6. Within the article element, do the following:
a. Mark the Welcome line as an h1 heading.
b. Below the h1 element, insert an inline image containing the mp_photo1.png file with an

empty text string for the alternate text.
c. Mark the next five paragraphs as paragraphs using the p element. Within the first paragraph,

mark the text Mobile Panini as strong text. Within the third paragraph mark the text Curbside
Thai as emphasized text.

d. The fourth paragraph contains Mobile Panini’s phone number. Mark the phone number as
a telephone link and be sure to include the international code in the URL. Note that this
number is fictional, so, if you have access to a mobile browser and want to test the link, you
might want to replace this number with your phone number.

e. The fifth paragraph contains Mobile Panini’s email address. Mark the email address as a
hypertext link. Once again, note that this email address is fictional, so, if you want to test this
link, you will need to replace the Mobile Panini email address with your email address.

 7. Save your changes to the file and then open the mp_index.html file in your browser. Verify that
the layout and appearance of the page resemble that shown in Figure 1–45. If possible, test the
telephone links and email links to verify that they open the correct application.

 8. Go to the mp_index.html file in your HTML editor, and copy the header and footer elements.
Then go to the mp_menu.html file in your HTML editor and paste the header and footer
elements into the body element so that this page has the same logo and navigation list and footer
used in the home page. Insert an article element between the header and footer.

 9. Return to the mp_pages.txt file in your text editor and copy the contents of the Mobile Panini
menu. Then, go to the mp_menu.html file in your HTML editor and paste the copied text into the
article element.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 78 HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5

 10. Within the article element of the mp_menu.htm file, do the following:
a. Mark the text title Our Menu as an h1 heading.
b. Enclose the menu items in a description list with the name of each menu item marked with

the dt element and each menu description marked with the dd element.
 11. Save your changes to mp_menu.html file. Open the page in your browser and verify that each

menu item name appears in a bold font and is separated from the indented item description by a
horizontal line.

 12. Go to the mp_index.html file in your HTML editor and copy the header and footer elements.
Then, go to the mp_events.html file in your HTML editor and paste the header and footer
elements into the body element. Insert an article element between the header and footer.

 13. Return to the mp_pages.txt file in your text editor and copy the list of upcoming events at the
bottom of the file. Then, go to the mp_events.html file in your HTML editor and paste the copied
text into the article element.

 14. Within the article element, do the following:
a. Mark the text Where Are We This Week? as an h1 heading.
b. Enclose each day’s worth of events within a separate div (or division) element.
c. Within each of the seven day divisions, enclose the day and date as an h1 heading. Enclose

the location within a paragraph element. Insert a line break element,
, directly
before the time of the event so that each time interval is displayed on a new line within the
paragraph.

 15. Save your changes to mp_events.html file. Open the page in your browser and verify that each
calendar event appears in its own box with the day and date rendered as a heading.

 16. Go to the mp_index.html file in your HTML editor and copy the header and footer elements.
Then, go to the mp_catering.html file in your HTML editor and paste the header and footer
elements into the body element. Insert an article element between the header and footer and
then insert an aside element within the article.

 17. Directly after the opening <article> tag, insert an h1 element containing the text Catering.
 18. Return to the mp_pages.txt file in your text editor and copy the text about the mobile kitchen,

including the heading. Then, go to the mp_catering.html file in your HTML editor and paste the
copied text into the aside element.

 19. Within the article element, do the following:
a. Mark the text About the Mobile Kitchen as an h1 heading.
b. Mark the next two paragraphs as paragraphs.

 20. Return to the mp_pages.txt file in your text editor and copy the text describing Mobile Panini’s
catering opportunities; do not copy the Catering head. Then, go to the mp_catering.html file in
your HTML editor and paste the copied text directly after the aside element.

 21. Make the following edits to the pasted text:
a. Mark the first two paragraphs as paragraphs.
b. Enclose the list of the six catering possibilities within an unordered list with each item marked

as a list item.
c. Mark the concluding paragraph as a paragraph.

 22. Save your changes to mp_catering.html file. Open the page in your browser and verify that the
information about the mobile kitchen appears as a sidebar on the right edge of the article.

23. Return to the mp_index.html file in your browser and verify that you can jump from one page to
another by clicking the entries in the navigation list at the top of each page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 79Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS

The style sheets and graphic files have already been created for you. Your job is to write the HTML
markup.

Complete the following:

 1. Using your editor, open the jtc_index_txt.html and jtc_services_txt.html files from the html01 c
case1 folder. Enter your name and the date in the comment section of each file, and save them
as jtc_index.html and jtc_services.html respectively.

 2. Go to the jtc_index.html file in your HTML editor. Within the document head, do the following:
a. Use the meta element to set the character encoding of the file to utf-8.
b. Set the document title to Jedds Tree Care.
c. Link the document to the jtc_base.css and jtc_layout.css style sheet files.

 3. Within the document body, insert a header element, an aside element, and an article element.

Case Problem 1

Data Files needed for this Case Problem: jtc_index_txt.html, jtc_services_txt.html, 2 CSS files,
3 PNG files, 1 TXT file

Jedds Tree Care Carol Jedds is the owner and operator of Jedds Tree Care and tree removal
and landscaping company in Lansing, Michigan. She has asked for your help in developing her
company’s website. She has already written some of the text for a few sample pages and wants you to
write the HTML code. Figure 1–51 shows a preview of the company’s home page that you’ll create.

Figure 1–51 Jedds Tree Care home page

© mary981/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 80 HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5

 4. Within the header element, insert a navigation list with links to jtc_index.html and jtc_services
.html file. The text of the links should be home and services respectively.

 5. Go to the jtc_pages.txt file in your text editor. The first section in the file contains comments
made by Jedds Tree Care customers. Copy the text of the three reviews including the reviewer
names. Then, go to the jtc_index.html file in your HTML editor and paste the copied text within
the aside element.

 6. Within the aside element, add the following content and markup:
a. Directly after the opening <aside> tag, insert an inline image for the jtc_comments.png file.

Specify Comments as the alternate text.
b. Enclose each of the three reviewer comments within a blockquote element, including both

the text of the quote and the name of the review.
c. Within each of the three blockquote elements,

i. mark the review as a paragraph.
ii. mark the line containing the reviewer name as a cite element.
iii. replace the “---” text with the em dash character (—) using the character reference

—.
 7. Go to the article element and insert a header element containing the inline image file jtc_

photo1.png with the alternate text Jedds Tree Care.
 8. Return to the jtc_pages.txt file in your text editor and copy the second section of text containing

the description of the company and its contact information. Then, go to the jtc_index.html file in
your HTML editor and paste the copied text in the article element, directly below the article
header.

 9. Mark up the content of the page article as follows:
a. Mark the first two paragraphs using the <p> tag.
b. Enclose the five lines of the contact information within an address element. Insert a line

break element at the end of the first four lines so that each part of the address appears on a
new line in the rendered page.

c. Mark the text Jedds Tree Care in the first line of the address as a strong element.
d. Mark the email address as a hypertext link. Make the telephone number a telephone link,

including the international access code.
 10. Save your changes to the jtc_index.html file. Open the page in your browser and verify that

the layout and contents of the page resemble that shown in Figure 1–51. Note that under the
smaller screen widths associated with mobile devices, the text of the reviewer comments is not
displayed.

 11. Go to the jtc_services.html file in your HTML editor. Insert the same metadata in the document
head to match what you did for the jtc_index.html file except name the page title Jedds Tree Care
Services.

 12. Go to the jtc_index.html file in your HTML editor and copy the body header. Then, go to the
jtc_services.html file and paste the copied header into the document body so that both files
share a common header design.

 13. Return to the jtc_pages.txt file in your text editor and copy the content of the third section, which
contains information on the services offered by Jedds Tree Care. Be sure to copy the heading as
well. Then, go to the jtc_services.html file in your HTML editor and paste the copied text directly
after the header.

 14. Mark the content describing Jedds Tree Care services as follows:
a. Mark the heading Jedds Tree Care Services as an h1 heading.
b. Directly after the h1 element, insert an inline image file for the jtc_photo2.png with the

alternate text set to an empty text string (“”).
c. Mark each of the headings associated with individual services as h2 headings.
d. Mark each service description as a paragraph.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 81Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS

 15. Directly after the text of the last service, insert a footer element containing the following text:
 Jedds Tree Care 201 Edward Ave. Lansing, MI 48930
 where the symbol is inserted using the character reference ♦.
16. Save your changes to the file and open the jtc_services.html file in your browser. Verify that the

page title is displayed as a major heading and the name of each service is displayed as a second
level heading.

Case Problem 2

Data Files needed for this Case Problem: dr_index_txt.html, dr_info_txt.htm, dr_faq_txt.html,
4 CSS files, 2 PNG files, 3 TXT files

Diane’s Run Diane’s Run is a charity run to raise money for breast cancer awareness and research
funding. Peter Wheaton is the charity run’s organizer and he has asked you to help modify the run’s
website. He has revised text that he wants added to the current site. A preview of the page you’ll
create is shown in Figure 1–52.

Figure 1–52 Diane’s Run home page

© wavebreakmedia/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 82 HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5

Peter has supplied you with the text content, the graphic images, and style sheets you need for the
project. Your job will be to write HTML code for three pages: the site’s home page, a page containing
race information, and finally a page containing a list of frequently asked questions (FAQ).

Complete the following:

 1. Using your editor, open the dr_index_txt.html, dr_info_txt.html, and dr_faq_txt.html files from
the html01 c case2 folder. Enter your name and the date in the comment section of each file,
and save them as dr_index.html, dr_info.html, and dr_faq.html respectively.

 2. Go to the dr_index.html file in your HTML editor. Within the document head, add the following
metadata:
a. Set the character encoding of the file to utf-8.
b. Insert the search keywords: breast cancer, run, race, and charity.
c. Set the title of the document to Diane’s Run.
d. Link the document to the dr_base.css and dr_layout.css style sheet files.

 3. Within the document body, insert a header element, two section elements, and a footer element.
 4. In the header element, insert a navigation list containing an unordered list with the items:

Home, Race Info, and FAQ. Link the items to the dr_index.html, dr_info.html, and dr_faq.html
files respectively.

 5. The file dr_index.txt contains the text to be inserted into the Diane’s Run home page. Go to the
dr_index.txt file in your text editor and copy the text from the first section of the file. Then, go to
the dr_index.html file in your HTML editor and paste it into the first section element.

 6. Add the following markup to the content of the first section element:
a. Mark the line What Your Support Does as an h1 heading.
b. Mark the next two paragraphs as paragraphs using the p element.
c. Mark the four ways a contribution can help as an unordered list. Mark the dollar amounts of

each list item using the strong element.
 7. Return to the dr_index.txt file in your text editor, copy the text from the second section, then

close the dr_index.txt file. Go to the dr_index.html file in your HTML editor and paste the copied
text within the second section element.

 8. Within the second section element in the dr_index.html file, add the following:
a. Enclose the opening heading Diane’s Run - September 12, 2021 within a header element and

marked as an h1 heading. Directly above this heading, insert the inline image file dr_photo1
.png with Diane’s Run as the alternate text of the image.

b. Mark the first paragraph after the header as a paragraph. Mark the text Diane’s Run in this
opening paragraph using the strong element.

c. Mark the minor headings How to Join, History, and Remembering Diane as h2 headings.
Mark the other blocks of text as paragraphs.

 9. Within the footer element, insert the following text:
 Diane’s Run ª 45 Mountain Drive ª Cheyenne, WY 82001
 where the ª character is inserted using the character reference ♥.
10. Save your changes to the file and then open dr_index.html in your browser. Verify that the

content and the layout of the page resemble that shown in Figure 1–52.
11. Go to the dr_info.html file in your HTML editor. Within the document head, link the page to the

dr_base.css and dr_layout2.css style sheets.
12. Go to the dr_index.html file in your HTML editor and copy the body header content. Then, go to

the dr_info.html file in your HTML editor and paste the copied content into the document body.
Repeat for the body footer so that the Racing Information page has the same navigation list and
footer as the home page. Between the header and footer element, insert a section element.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 83Tutorial 1 Getting Started with HTML 5 | HTML 5 and CSS

 13. Within the section element, insert a header element with the following content:
a. Insert a paragraph with the text Page last updated: Tuesday, August 31, 2021. Mark the date

using the time element with the datetime attribute equal to 2021-08-31.
b. Add the text Race Information as an h1 heading.
c. Insert the inline image file dr_logo.png with Diane’s Run as the alternate text.

14. Go to the dr_info.txt file in your text editor. This file contains the text describing the race. Copy
the content describing the race from the file, then close the dr_info.txt file. Go to the dr_info.html
file in your HTML editor and paste the copied text into the section element, directly after the
section header.

15. Mark the content of the section element as follows:
a. Mark the opening block of text directly after the section header as a paragraph.
b. Mark the headings Race Times, Goodies and Stuff, and Notes as h2 headings.
c. Below each of the h2 elements, mark the list of items that follows as an unordered list.

16. Save your changes to the file and then load dr_info.html in your browser to verify that the layout
and content are readable.

17. Go to the dr_faq.html file in your HTML editor. Within the document head, link the page to the
dr_base.css and dr_layout3.css style sheets.

18. Go to the dr_index.html file in your HTML editor and copy the body header content. Then, go to
the dr_faq.html file in your HTML editor and paste the copied content into the document body.
Repeat with the body footer so that the FAQ page has the same navigation list and footer as was
used in the home page. Between the header and footer element, insert a section element.

19. Within the section element, insert a header element with the id attribute pagetop. Within the
header, insert the inline image file dr_logo.png with the alternate text Diane’s Run followed by
the h1 element with the text Frequently Asked Questions.

20. Go to the dr_faq.txt file in your text editor. This file contains a list of frequently asked questions
followed by the question answers. Copy the text and then close the dr_faq.txt file. Then, go to
the dr_faq.html file in your HTML editor and paste the copied text into the section element,
directly after the section header.

 21. Next, you’ll create a series of hypertext links between the list of questions and their
answers within the same document. Make the following changes to the section element in the
dr_faq.html file:
a. Mark the 13 questions at the top of the section as an ordered list.
b. Notice that below the ordered list you just created, the questions are repeated and each

question is followed by its answer. Mark the text of those questions as an h2 heading and
the answer as a paragraph. Add an id attribute to each of the 13 h2 headings with the first
heading given the id faq1, the second heading faq2, and so forth down to faq13 for the last
h2 heading.

c. After the last answer, insert a paragraph with the text Return to the Top and mark the text as a
hypertext link pointing to the header element with the id pagetop.

d. Return to the ordered list at the top of the section that you created in Step a. Change each
item in the ordered list to a hypertext link pointing to the h2 heading containing the question’s
answer that you created in Step b. For example, the first question How do I sign up? should
be linked to the h2 heading with the faq1 id.

22. Save your changes to the file and then open dr_faq.html in your browser. Verify that by clicking a
question within the ordered list, the browser jumps to that question’s answer. Further, verify that
clicking the Return to the Top link at the bottom of the page causes the browser to return to the
top of the page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 84 HTML 5 and CSS | Tutorial 1 Getting Started with HTML 5

 23. Return to the dr_index.html file in your HTML editor. Add the following two
hypertext links to the How to Join paragraph in the second section element:
a. Change the email address dianesrun@example.com to an email link with the subject heading

Entry Form.
b. Change the word accommodations to a hypertext link pointing to the element with the id

faq13 in the dr_faq.html file.
24. Save your changes to the file and reload dr_index.html in your browser. Verify that clicking the

email link brings up your email program with the email address and the subject heading already
filled in.

25. Click the accommodations hypertext link and verify that the browser goes to the last answer on
the FAQ page.

26. Verify that you can jump between all three pages by clicking the navigation links at the top of the
page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 85

OBJECTIVES

Session 2.1
• Explore the history of CSS
• Study different types of style

sheets
• Explore style precedence and

inheritance
• Apply colors in CSS

Session 2.2
• Use contextual selectors
• Work with attribute selectors
• Apply text and font styles
• Use a web font

Session 2.3
• Define list styles
• Work with margins and

padding space
• Use pseudo-classes and

pseudo-elements
• Insert page content with CSS

Getting Started
with CSS
Designing a Website for a Fitness Club

Case | Tri and Succeed Sports
Alison Palmer runs Tri and Succeed Sports, an athletic club in
Austin, Texas, that specializes in coaching men and women aspiring
to compete in triathlons and other endurance sports. The center
provides year-round instruction in running, swimming, cycling, and
general fitness with one-on-one and group training classes. Alison
has asked you to work on the company’s new website.

Alison designed the original Tri and Succeed Sports website several
years ago but she now feels that the site needs a makeover. She
wants a new design that uses color and interesting typography to
create visual interest and impact. She wants you to use CSS to help
give the website a new look.

TUTORIAL 2

STARTING DATA FILES

HTML 85

tutorial

tss_bike_txt.html
tss_home_txt.html
tss_run_txt.html
tss_swim_txt.html
tss_styles_txt.css
+ 8 files

review

tss_coach_txt.html
coach_styles_txt.css
+ 8 files

code1

code2-1_txt.html
code2-1_txt.css

code2

case1

code3

case2

code4

demo

code2-2_txt.html
code2-2_txt.css
+ 1 file

code2-3_txt.html
code2-3_txt.css
+ 2 files

html02

code2-4_txt.html
code2-4_txt.css
+ 2 files

ph_plays_txt.html
ph_styles_txt.css
+ 8 files

cw_class__txt.html
cw_styles_txt.css
+ 3 files

17 demo files

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 86

Session 2.1 Visual Overview:

Style comments
provide information
about the style sheet.

A style rule sets the
display properties of a
page element.

CSS supports 147 color
names.

The HSL color value de�nes
a color based on its hue,
saturation, and lightness.

The RGB color value
de�nes a color based on
the mixture of red, green,
and blue colors.

The background-color
property sets the
background color for the
selected elements.

The @charset rule
speci�es the character
encoding used in the
style sheet �le.

The selector de�nes
what element or elements
are affected by the rule.

The style property
speci�es what aspect of
the selector to modify.

The color property sets
the text color for the
selected elements.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 87

CSS Styles and Colors

Page body background color
is set to ivory using the style
rule for the body element.

Page text is set to the
color value rgb(91, 91, 91).

The browser window background
color is set to the color value
hsl(27, 72%, 72%) using style rule
for the html element.

The h2 headings
appear in white
on a light orange
background as
speci�ed by the
style rule for the
h2 element.

The h1 headings appear in white
on a dark orange background as
speci�ed by the style rule for the
h1 element.

© Ysbrand Cosijn/Shutterstock.com;
© Charles T. Bennett/Shutterstock.com;
© ostill/Shutterstock.com;
© Monkey Business Images/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 88

Introducing CSS
An important principle discussed in the previous tutorial was that HTML only defines
a document’s content and structure, not how it should be displayed. The appearance
of the page is determined by style sheets written in the Cascading Style Sheets (CSS)
language. Starting with this tutorial, you’ll learn how to write your own CSS style
sheets.

The CSS language is maintained by the same World Wide Web Consortium (W3C)
that defines the standards for HTML. As with HTML, CSS has gone through several
versions, the latest of which is CSS Version 3, more commonly known as CSS. CSS is
not based on a single specification but rather is built upon several modules, where each
module is focused on a separate design topic. At the time of this writing, there were
over 50 CSS modules with each module enjoying different level of browser support.
The W3C continues to expand the scope of the language, which means that many new
design features are still at the stage where few, if any, browsers support them.

In this tutorial, you’ll focus mostly on CSS features that have near-universal support
among current browsers. However, you’ll also examine workarounds to support older
browsers and study ways to accommodate the difference between browsers in how
they implement the CSS language.

Types of Style Sheets
A website’s appearance is not the product of a single style sheet; rather, it is a
combination of style sheets starting from the browser style sheet and then superseded
by user-defined style sheets, external style sheets, embedded style sheets, and finally,
inline styles (see Figure 2–1.) Let’s examine each of these style sheets in more detail.

You can research browser
support for CSS at
www.caniuse.com.

Figure 2–1 Hierarchy of style sheets

inline styles

embedded styles

external styles

user-de�ned styles

browser styles

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 89

The first styles to be processed in rendering a website are the browser styles or user
agent styles, built into the browser itself. In the absence of competing styles from other
style sheets, browser styles are the ones applied to the web page.

The next styles to be processed are user-defined styles, created by the user within
the browser. For example, a user with a visual impairment could make a website easier
to read by altering the browser’s default settings, displaying text in highly contrasting
colors and a large font. Any user-defined style has precedence over a browser style.

User-defined styles can be superseded by external styles, which are styles created
and placed within a CSS file and linked to the website. You used external style sheets
in the last tutorial when you linked the Curbside Thai website to a collection of CSS
files. As you saw in that tutorial, multiple documents can access the same style sheet,
making it easier to apply a common design to an entire website.

Above external style sheets in the hierarchy are embedded styles, which are the
styles placed within the HTML file itself. Embedded styles only apply to the HTML
document in which they are created and are not accessible to other documents in the
website.

Finally, at the highest order of precedence are inline styles, which are added as
attributes of specific elements within the HTML file. The use of embedded styles and
inline styles is not considered best practice because it violates one of the basic tenets of
HTML: that HTML files should only describe the content and structure of the document
and not the design itself.

Thus, the final appearance of the website is based on a combination of the styles
from these different sources. Some of the styles might originate from the browser
style sheet while others will be defined in an external style sheet or an embedded style
sheet. Part of the challenge of CSS is determining how styles from these different style
sheets interact to determine the page’s final appearance.

Viewing a Page Using Different Style Sheets
You’ll start your work on the Tri and Succeed Sports website by viewing how the home
page appears when it is rendered using only those styles in the browser style sheet.

To view the Tri and Succeed Sports home page:
w 1. Use your editor to open the tss_home_txt.html file from the html02 c

tutorial folder. Enter your name and the date in the comment section of the
file and save the document as tss_home.html.

w 2. Take some time to scroll through the document to become familiar with its
content and structure.

w 3. Open the tss_home.html page in your browser. Part of the appearance of
the page is shown in Figure 2–2.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 90

Figure 2–2 The TSS home page rendered using only the browser style sheet

hypertext
displayed
in blue

list items displayed
with a solid circle
bullet

heading displayed
in a larger bold font

strong text displayed
in bold

© Ysbrand Cosijn/Shutterstock.com; © Charles T. Bennett/Shutterstock.com; © ostill/Shutterstock.com;
© Monkey Business Images/Shutterstock.com

Trouble? Depending on your browser’s style sheet, your page might not
exactly resemble the one shown in Figure 2–2.

The browser style sheet applies a few specific styles to the page, including adding
solid circles to the navigation list items, as well as displaying hypertext in blue,
headings in a large bold font, and strong text in a bold font.

However, the layout of these elements makes the page difficult to read. Alison has
an external style sheet containing styles that will present this page in a more pleasing
three-column layout. Link this page now to her style sheet file and then reload the
document in your browser to view the impact on the page’s appearance.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 91

To change the layout of the TSS home page:
w 1. Return to the tss_home.html file in your HTML editor and add the following

link element to the head section directly after the title element:

<link href="tss_layout.css" rel="stylesheet" />

Figure 2–3 highlights the newly added code in the document.

Figure 2–3 Linking to the tss_layout.css file

Figure 2–4 The TSS home page using the tss_layout.css style sheet

rel attribute
indicates that the
�le is a style sheet �lename of

style sheet

w 2. Save your changes to the file and then reopen the tss_home.html file in your
browser. Figure 2–4 shows the appearance of the page using the layout
styles defined in the tss_layout.css file.

© Ysbrand Cosijn/Shutterstock.com; © Charles T. Bennett/Shutterstock.com; © ostill/Shutterstock.com;
© Monkey Business Images/Shutterstock.com

The tss_layout.css file controls the placement of the page elements but not their
appearance. The colors, fonts, and other design styles are still based on the browser
style sheet.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 92

Exploring Style Rules
If the element tag is the building block of the HTML file, then the style rule, which
defines the styles applied to an element or group of elements, is the building block of
the CSS style sheet. Style rules have the general form

selector {
 property1: value1;
 property2: value2;
 ...
}

where selector identifies an element or a group of elements within the document and
the property: value pairs specify the style properties and their values applied to that
element or elements. For example, the following style rule has a selector of h1 to match
all h1 elements in the document and it has property: value pairs of color: red
and text-align: center that tell the browser to display all h1 headings in red and
centered on the page:

h1 {
 color: red;
 text-align: center;
}

Selectors can also be entered as comma-separated lists as in the following style rule
to display both h1 and h2 headings in red:

h1, h2 {
 color: red;
}

Like HTML, CSS ignores the use of white space, so you can also enter this style more
compactly in a single line:

h1, h2 {color: red;}

Writing a style rule on a single line saves space, but entering each style property
on a separate line often makes your code easier to read and edit. You will see both
approaches used in the CSS files you encounter on the web.

Browser Extensions
In addition to the W3C-supported style properties, most browsers supply their own
extended library of style properties, known as browser extensions. Many of the styles
that become part of the W3C specifications start as browser extensions and for older
browser versions, sometimes the only way to support a particular CSS feature is through
a browser extension tailored to a particular browser.

Browser extensions are identified through the use of a vendor prefix indicating the
browser vendor that created and supports the property. Figure 2–5 lists the browser
extensions you’ll encounter in your work on web design.

Vendor Prefix Rendering Engine Browsers
-khtml- KHTML Konqueror

-moz- Mozilla Firefox, Camino

-ms- Trident Internet Explorer

-o- Presto Opera, Nintendo Wii browser

-webkit- WebKit Android browser, Chrome, Safari

Figure 2–5 Vendor prefixes for browser extensions

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 93

For example, one of the more recent style features added to CSS is the layout style
to display content in separate columns. The number of columns is indicated using
the column-count property. To apply this style in a way that supports both older and
current browsers, you would include the browser extensions first followed by the most
current CSS specification:

article {
 -webkit-column-count: 3;
 -moz-column-count: 3;
 column-count: 3;
}

In general, browsers process style properties in the order they’re listed, ignoring
those properties they don’t recognize or support, so you always want the most current
specifications listed last.

Embedded Style Sheets
The style rule structure is also used in embedded style sheets and inline styles.
Embedded styles are inserted directly into the HTML file by adding the following style
element to the document head

<style>
 style rules
</style>

where style rules are the different rules you want to embed in the HTML page.
For example, the following embedded style applies the same style rules described
previously to make all h1 headings in the current document appear in red and
centered:

<style>
 h1 {
 color: red;
 text-align: center;
 }
</style>

Remember that, when all else is equal, the style that is loaded last has precedence
over styles defined earlier. In the following code, the browser will load the embedded
style sheet last, giving it precedence over the style rules in the tss_styles.css file.

<link href="tss_styles.css" rel="stylesheet" />
<style>
 style rules
</style>

If the order of the link and style elements is reversed, the styles from the
tss_styles.css file are loaded last and given precedence.

Inline Styles
The very last styles to be interpreted by the browser are inline styles, which are styles
applied directly to specific elements using the following style attribute

<element style="property1: value1;property2: value2; …">
 content
</element>

To avoid confusion, always
place your embedded
styles after any links to
external style sheet files so
that the embedded styles
always have precedence.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 94

where the property : value pairs define the styles, which are applied directly to that
element. Thus, the following inline style sets the appearance of the h1 heading to red
text centered on the page:

<h1 style="color: red; text-align: center;">
 Tri and Succeed Sports
</h1>

This style applies only to this particular h1 heading and not to any other h1 heading
on the page or in the website. The advantage of inline styles is that it is clear exactly
what page element is being formatted; however, inline styles are not recommended in
most cases because they make it difficult to manage your website design. For example,
if you used inline styles to format all of your headings, you would have to locate all
of the h1 through h6 elements in all of the pages within the entire website and add
style attributes to each tag. This would be no small task on a large website containing
hundreds of headings spread out among dozens of pages. Likewise, it would be a
nightmare if you had to modify the design of those headings at a later date. Thus, the
recommended practice is to always use external style sheets that can be applied across
the entire website.

Style Specificity and Precedence
With so many different style rules to be applied to the same document, there has to
be an orderly method by which conflicts between those different rules are resolved.
You’ve already learned that the style that is defined last has precedence, but that is
not the whole story. Another important principle is that the more specific style rule
has precedence over the more general style rule. Thus, a rule applied to a paragraph
takes precedence over a rule applied to the entire page, and a rule applied to a section
of text within that paragraph takes precedence over the rule for the paragraph. In
the following style rules, the color of the text in all paragraphs is set to red, taking
precedence over the color black applied to the rest of the text in the page:

p {color: red;}
body {color: black;}

Note that specificity is only an issue when two or more styles conflict, as in the
example above. When the style rules involve different properties (such as color and
size), there is no conflict and both rules are applied. If two rules have equal specificity
and thus equal importance, then the one that is defined last has precedence.

Style Inheritance
An additional factor in how style rules are interpreted is that styles are passed from
a parent element to its children in a process known as style inheritance. Thus, the
following style rule sets the color of article text to blue and that rule is passed to
any paragraph, header, footer, or other element nested within an article element. In
addition, the paragraph text within that article is centered:

article {color: blue;}
p {text-align: center;}

The final rendering of any page element is the result of styles drawn from rules
across multiple style sheets and from properties passed down from one element to
another within the hierarchy of page elements. These style sheets and style rules form
the “cascade” of styles in Cascading Style Sheets.

Not all properties are
inherited; for example, a
style property that defines
text color has no meaning
for an inline image.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 95

Browser Developer Tools
If the idea of multiple style sheets and multiple style rules is intimidating, there are
tools available to help you manage your styles. Most browsers include developer tools
allowing the designer to view HTML code, CSS styles, and other parts of the web page.
These developer tools make it easier for the designer to locate the source of a style that
has been applied to a specific page element.

Each browser’s developer tools are different and are constantly being updated and
improved with every new browser version. However, to give you the flavor of the tools
you have at your disposal, you’ll examine both the HTML code and the CSS style sheet
under the developer tools built into your desktop browser. Note that the figures in the
steps that follow use the desktop version of the Google Chrome browser.

In most browsers, you can
quickly access information
about a specific page
element by right-clicking
the element in the browser
window and choosing
Inspect Element from the
pop-up menu.

Accessing the browser developer tools:
w 1. Return to the tss_home.html file in your browser.

w 2. Press F12 to open the developer tools window.

Trouble? If pressing F12 doesn’t open the developer tools, your
browser might need a different keyboard combination. In Safari for the
Macintosh, you can view the developer tools by pressing ctrl+shift+I or
command+option+I.

w 3. From the hierarchical list of elements in the web page, click the <body> tag if
it is not already selected.

Figure 2–6 shows the layout of panes using the developer tools under
Google Chrome for the desktop.

Figure 2–6 Developer tools in Google Chrome

hierarchical list of
elements on the web
page

styles applied to the
body element from
tss_layout.css style
sheet

styles applied to
the body element
from the browser
style sheet

layout styles
applied to the
body element

the margin style in the
browser style sheet
has been superseded
by the margin style in
the tss_layout.css
style sheet

diagram of the
layout of the body
element

© Ysbrand Cosijn/Shutterstock.com; © Charles T. Bennett/Shutterstock.com; © ostill/Shutterstock.com;
© Monkey Business Images/Shutterstock.com

As shown in Figure 2–6, the styles pane lists the styles that have been
applied to the body element. Note that the margin property from the
browser style sheet has been crossed out, indicating that this browser style
has been superseded by a style defined in the external style sheet.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 96

In this and future tutorials, you may find that your browser’s developer tools are
a great aid to working through your website designs. Most developer tools allow the
user to insert new style rules in order to view their immediate impact on the page’s
appearance; however, these modifications are only applied during the current session
and are not saved. So, once you find a setting that you want to use, you must enter it in
the appropriate style sheet for it to take effect permanently.

Trouble? Every browser has a different set of developer tools and
configurations. Your tools might not resemble those shown in Figure 2–6.

w 4. Take some time to explore the content and styles used in the other page
elements by selecting the elements tags from the hierarchical list of
elements.

w 5. Press F12 again to close the developer tools window.

Trouble? In Safari, you can close the developer tools by pressing ctrl+shift+I
or by command+option+I.

IN
SI
G
H
T

Defining an !important Style

You can override the style cascade by marking a particular property with the following
!important keyword:

property: value !important;

The following style rule sets the color of all h1 headings to orange; and because this
property is marked as important, it takes precedence over any conflicting styles found
in other style sheets.

h1 {color: orange !important;}

The !important keyword is most often used in user-defined style sheets in which
the user needs to substitute his or her own styles in place of the designer’s. For
example, a visually impaired user might need to have text displayed in a large font
with highly contrasting colors. In general, designers should not use the !important
keyword because it interferes with the cascade order built into the CSS language.

Creating a Style Sheet
Now that you’ve reviewed some history and concepts behind style sheets, you’ll start
creating your own. You should usually begin your style sheets with comments that
document the purpose of the style sheet and provide information about who created
the document and when.

Writing Style Comments
Style sheet comments are entered as

/*
 comment
*/

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 97

where comment is the text of the comment. Because CSS ignores the presence of white
space, you can insert your comments on a single line to save space as:

/* comment */

Create a style sheet file now, placing a comment with your name and the current
date at the top of the file.

Writing a Style Comment:
w 1. Use your editor to open the tss_styles_txt.css file from the html02 c tutorial

folder.

w 2. Within the comment section at the top of the file, enter your name following
the Author: comment and the date following the Date: comment.

w 3. Save the file as tss_styles.css.

w 4. Return to the tss_home.html file in your HTML editor and add the following
link element directly before the closing </head> tag.

<link href="tss_styles.css" rel="stylesheet" />

w 5. Close the tss_home.html file, saving your changes.

Defining the Character Encoding
As with HTML files, it is a good idea in every CSS document to define the character
encoding used in the file. In CSS, you accomplish this using the following @charset rule

@charset "encoding";

where encoding defines the character encoding used in the file. Add the @charset
rule to the tss_styles.css style sheet file now, specifying that the UTF-8 character set is
used in the CSS code.

To indicate the character encoding:
w 1. Return to the tss_styles.css file in your editor.

w 2. Directly above the initial comment section, insert the line: @charset "utf-8";.

Figure 2–7 highlights the new code in the style sheet.

the charset rule
de�nes the character
encoding used in the
style sheet

CSS comments
provide information
about the style sheet author name and

current date

Figure 2–7 Adding the @charset rule and style comments

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 98

Importing Style Sheets
The @charset rule is an example of a CSS at-rule, which is a rule used to send
directives to the browser indicating how the contents of the CSS file should be
interpreted and parsed. Another at-rule is the following @import used to import the
contents of a style sheet file

@import url(url);

where url is the URL of an external style sheet file.
The @import is used to combine style rules from several style sheets into a

single file. For example, an online store might have one style sheet named basic.css
containing all of the basic styles used in every web page and another style sheet named
sales.css containing styles used with merchandise-related pages. The following code
imports styles from both files:

@import url(basic.css);
@import url(sales.css);

Using multiple @import rules in a CSS file has the same impact as adding multiple
link elements to the HTML file. One advantage of the @import rule is that it simplifies
your HTML code by placing the decision about which style sheets to include and
exclude in the CSS file rather than in the HTML file.

Working with Color in CSS
The first part of your style sheet for the Tri and Succeed Sports website will focus on
color. If you’ve worked with graphics software, you’ve probably made your color
selections using a graphical interface where you can see your color options. Specifying
color with CSS is somewhat less intuitive because CSS is a text-based language and
requires colors to be defined in textual terms. This is done through a color name or a
color value.

Color Names
You’ve already seen from previous code examples that you can set the color of page
text using the color property along with a color name such as red, blue, or black. CSS
supports 147 color names covering common names such as red, green, and yellow to
more exotic colors such as ivory, orange, crimson, khaki, and brown.

The @import statement
must always come before
any other style rules in the
style sheet.

You can view the complete
list of CSS color names by
opening the demo_color_
names.html file in the
html02 c demo folder.

Note that only one @charset rule should appear in a style sheet and it
should always precede any other characters, including comments.

w 3. Save your changes to the file.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 99

RGB Color Values
Because a palette of 147 color names is extremely limited for graphic design and color
names can be constricting (how do you name a color that is slightly redder than ivory
with a tinge of blue?), CSS also supports color values, in which the color is given by an
exact numeric representation. CSS supports two types of color values: RGB values and
HSL values.

RGB color values are based on classical color theory in which all colors are
determined by adding three primary colors—red, green, and blue—at different levels of
intensity. For example, adding all three primary colors at maximum intensity produces
the color white, while adding any two of the three primary colors at maximum
intensity produces the trio of complementary colors—yellow, magenta, and cyan (see
Figure 2–8).

PR
O
SK

IL
LS

Written Communication: Communicating in Color

Humans are born to respond to color. Studies have shown that infants as young as
two months prefer bright colors with strong contrast to drab colors with little contrast,
and market research for clothing often focuses on what colors are “in“ and what colors
are passé.

Your color choices can impact the way your website is received so you want to
choose a color scheme that is tailored to the personality and interests of your target
audience. Color can evoke an emotional response and is associated with particular
feelings or concepts, such as

• red—assertive, powerful, sexy, dangerous
• pink—innocent, romantic, feminine
• black—strong, classic, stylish
• gray—business-like, detached
• yellow—warm, cheerful, optimistic
• blue—consoling, serene, quiet
• orange—friendly, vigorous, inviting
• white—clean, pure, straightforward, innocent

If your website will be used internationally, you need to be aware of how cultural
differences can affect your audience’s response to color. For instance, white, which
is associated with innocence in Western cultures, is the color of mourning in China;
yellow, which is considered a bright, cheerful color in the West, represents spirituality in
Buddhist countries.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 100

Varying the intensity of the three primary colors extends the palette to other colors.
Orange, for example, is created from a high intensity of red, a moderate intensity of
green, and a total absence of blue. CSS represents these intensities mathematically as a
set of numbers called an RGB triplet, which has the format

rgb(red, green, blue)

where red, green, and blue are the intensities of the red, green, and blue components
of the color. Intensities range from 0 (absence of color) to 255 (maximum intensity);
thus, the color white has the value rgb(255, 255, 255), indicating that red, green, and
blue are mixed equally at the highest intensity, and orange is represented by rgb(255,
165, 0). RGB triplets can describe 2563 (16.7 million) possible colors, which is a
greater number of colors than the human eye can distinguish.

RGB values are sometimes expressed as hexadecimal numbers where a hexadecimal
number is a number expressed in the base 16 numbering system rather than in the
commonly used base 10 system. In base 10 counting, numeric values are expressed
using combinations of 10 characters (0 through 9). Hexadecimal numbering includes
these ten numeric characters and six extra characters: A (for 10), B (for 11), C (for 12),
D (for 13), E (for 14), and F (for 15). For values above 15, you use a combination of
those 16 characters. For example, the number 16 has a hexadecimal representation of
10, and a value of 255 has a hexadecimal representation of FF. The style value for color
represented as a hexadecimal number has the form

#redgreenblue

where red, green, and blue are the hexadecimal values of the red, green, and blue
components. Therefore, the color yellow could be represented either by the RGB triplet

rgb(255,255,0)

or more compactly as the hexadecimal

#FFFF00

You can explore the RGB
color values using the
demo_rgb.html file in the
html02 c demo folder.

TRY IT

red

magenta

blue
cyan

green

yellow

white

Figure 2–8 Color addition in the RGB color model

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 101

Color values using the HSL model are described in CSS using

hsl(hue, saturation, lightness)

where hue is the tint of the color in degrees, saturation is the intensity in percent,
and lightness is the brightness in percent of the color. Thus, a medium orange color
would be represented as

hsl(38, 90%, 60%)

You can explore the HSL
color values using the
demo_hsl.html file in the
html02 c demo folder.

TRY IT

0% 50% 100%

0%
50%

100%

red= 0°

blue= 240°

orange at about 38°

green = 120°

hsl(38, 90%, 60%)

90% saturation; 60% lightness

+

+

saturation varies
from 0% to 100%

hue expressed as degrees
on the color wheel

lightness varies
from 0% to 100%

Most HTML editors and graphic programs provide color picking tools that allow the
user to choose a color and then copy and paste the RGB or hexadecimal color value.
Hexadecimal color values have the advantage of creating smaller style sheets, which
can be loaded faster—an important consideration for mobile devices. However, for
others viewing and studying your style sheet code, they are more difficult to interpret
than RGB values.

Finally you can enter each component value as a percentage, with 100%
representing the highest intensity. In this form, you would specify the color orange with
the following values

rgb(100%, 65%, 0%)

which is equivalent to the rgb(255, 165, 0) value described above.

HSL Color Values
HSL color values are based on a color model in which each color is determined
by its hue, saturation, and lightness. Hue is the tint of the color and is usually
represented by a direction on a color wheel. Hue values range from 0° up to 360°,
where 0° matches the location of red on the color wheel, 120° matches green,
and 240° matches blue. Saturation measures the intensity of the chosen color and
ranges from 0% (no color) up to 100% (full color). Finally, lightness measures the
brightness of the color and ranges from 0% (black) up to 100% (white). Figure 2–9
shows how setting the hue to 38°, the saturation to 90%, and the lightness to 60%
results in a medium shade of orange.

Figure 2–9 Defining the color orange under the HSL color model

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 102

Graphic designers consider HSL easier to use because it allows them to set the initial
color based on hue and then fine-tune the saturation and lightness values. This is more
difficult in the RGB model because you have to balance three completely different
colors to achieve the right mix. For example, the RGB equivalent to the color orange in
Figure 2–9 would be the color value rgb(245, 177, 61); however, it’s not immediately
apparent why that mixture of red, green, and blue would result in that particular shade
of orange.

Defining Semi-Opaque Colors
Colors can also be semi-opaque by setting the color’s opacity, which defines how solid
the color appears. The color’s opacity can be specified using either of the following
rgba and hsla properties

rgba(red, green, blue, opacity)
hsla(hue, saturation, lightness, opacity)

where opacity is the opacity of the color ranging from 0 (completely transparent) up
to 1.0 (completely opaque). For example, the following style property uses the HSL
color model to define a medium orange color with an opacity of 0.7:

hsla(38, 90%, 60%, 0.7)

The final appearance of a semi-opaque color is influenced by the colors behind it on
the page. Displayed against a white background, a medium orange color would appear
in a lighter shade of orange because the orange will appear mixed with the background
white.

On the other hand, the same orange color displayed on a black background would
appear as a darker shade of orange. The advantage of using semi-transparent colors
is that it makes it easier to create a color theme in which similarly tinted colors blend
with other colors on the page.

Setting Text and Background Colors
Now that you’ve studied how CSS works with colors, you can start applying color to
some of the elements displayed on the Tri and Succeed Sports website. CSS supports
the following styles to define both the text and background color for each element on
your page

color: color;
background-color: color;

where color is either a color value or a color name.
Alison wants to use an HSL color value (27, 72%, 72%) to set the background of

the document to orange and she would like the text of the home page to appear in a
medium gray color on an ivory background. The style rules to modify the appearance of
these document elements are

html {
 background-color: hsl(27, 72%, 72%);
}
body {
 color: rgb(91, 91, 91);
 background-color: ivory;
}

You can explore the RGBA
and HSLA color values
using the demo_rgba.html
and demo_hsla.html files in
the html02 c demo folder.

TRY IT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 103

Setting Text and Background Color

• To set the text color of an element, use the following property

color: color;

• To set the background color of an element, use the following property

background-color: color;

where color is a color name or a color value.

R
E
FE

R
E
N
C
E

To define background and text colors:
w 1. Add the following code within the HTML and Body Styles section:

 html {
 background-color: hsl(27, 72%, 72%);
}

body {
 color: rgb(91, 91, 91);
 background-color: ivory;
}

Saturation and lightness
values in an hsl color value
must be expressed as
percentages.

Next, add style rules for text and background colors to the tss_styles.css file.

The html selector in this code selects the entire HTML document so that any part
of the browser window background that is not within the page body will be displayed
using the HSL color (27, 72%, 72%).

Within the page body, Alison wants the h1 and h2 headings displayed in white text
on dark and lighter orange colors using the RGB color values (222, 128, 60) and (235,
177, 131) respectively. The style rules are

h1 {
 color: white;
 background-color: rgb(222, 128, 60);
}
h2 {
 color: white;
 background-color: rgb(235, 177, 131);
}

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 104

Figure 2–10 Adding text and background colors

selects the HTML
element

selects the body
element

selects all h1 headings

selects all h2 headings

sets the document
background to a
medium orange color

displays page body
text in gray on an ivory
background

displays h1 heading
text in white on a dark
orange background

displays h2 heading text
in white on a medium
orange background

w 3. Save your changes to the file and then reload the tss_home.html file in your
browser. Figure 2–11 shows the appearance of the page under the new
styles.

w 2. Add the following style rules within the Heading Styles section:

h1 {
 color: white;
 background-color: rgb(222, 128, 60);
}

h2 {
 color: white;
 background-color: rgb(235, 177, 131);
}

Figure 2–10 highlights the new style rules.

Almost 8% of all men
and 0.5% of all women
have some sort of color
blindness. Because
redgreen color blindness
is the most common type
of color impairment, you
should avoid using red text
on a green background
and vice versa.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 105

Figure 2–11 Text and background colors in the web page

white h2 heading
text on a light
orange background

browser window
background is
medium orange

white h1 heading
text on a dark orange
background

page body style shows
gray text on an ivory
background

© Ysbrand Cosijn/Shutterstock.com;
© Charles T. Bennett/Shutterstock.com;
© ostill/Shutterstock.com;
© Monkey Business Images/Shutterstock.com

Trouble? The text of hypertext links in the left column is blue, using the
default browser styles applied to hypertext links. You’ll modify these colors
later in the tutorial.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 106

PR
O
SK

IL
LS

Problem Solving: Choosing a Color Scheme

One of the worst things you can do to your website is to associate interesting and
useful content with jarring and disagreeable color. Many designers prefer the HSL
color system because it makes it easier to select visually pleasing color schemes.
The following are some basic color schemes you may want to apply to websites you
design:

• monochrome—a single hue with varying values for saturation and lightness; this
color scheme is easy to manage but is not as vibrant as other designs

• complementary—two hues separated by 180° on the color wheel; this color scheme
is the most vibrant and offers the highest contrast and visual interest, but it can be
misused and might distract users from the page content

• triad—three hues separated by 120° on the color wheel; this color scheme provides
the same opportunity for pleasing color contrasts as a complementary design, but it
might not be as visibly striking

• tetrad—four hues separated by 90° on the color wheel; perhaps the richest of all
color schemes, it is also the hardest one in which to achieve color balance

• analogic—three hues close to one another on the color wheel in which one color is
the dominant color and the other two are supporting colors used only for highlights
and nuance; this scheme lacks color contrasts and is not as vibrant as other color
schemes

Once you have selected a color design and the main hues, you then vary those
colors by altering the saturation and lightness. One of the great advantages of style
sheets is that you can quickly modify your color design choices and view the impact of
those changes on your page content.

You can explore color
schemes with the demo_
anal.html, demo_comp.
html, demo_mono.html,
demo_split.html, and
demo_triad.html files in the
html02 c demo folder.

TRY IT

Employing Progressive Enhancement
The HSL color you used for the html selector was introduced with CSS and thus it is
not supported in very old browsers. If this is a concern, you can insert the older style
properties first followed by the newer standards. For example, the following style rule
sets the background color of the html element to a lighter orange using the RGB value
first, and then the equivalent HSL value.

html {
 background-color: rgb(235, 177, 131);
 background-color: hsl(27, 72%, 72%);
}

Old browsers that don’t recognize the HSL color value will ignore it and use the
RGB value, while browsers that recognize both values will use the one that is defined
last, which in this case is the HSL value. This is an example of a technique known as
progressive enhancement, which places code conforming to older standards before
newer properties, providing support for old browsers but still allowing newer standards
and techniques to be used by the browsers that support them.

You show Alison the work you’ve done on colors. She’s pleased with the ease of
using CSS to modify the design and appearance of elements on the Tri and Succeed
Sports website. In the next session, you’ll continue to explore CSS styles, focusing on
text styles.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 107

R
E
V
IE

W

Session 2.1 Quick Check

 1. Which styles are applied directly to elements within an HTML file?
a. browser styles
b. inline styles
c. embedded styles
d. external styles

 2. What keyword do you add to a style property to override style precedence and
style inheritance?
a. cascade!
b. use!
c. important!
d. import!

 3. CSS comments are entered as:
a. /* comment */
b. ! comment !
c. /* comment
d. <!--- comment --->

 4. Which of the following values is used to represent the color red?
a. rgb(10, 0, 0)
b. rgb(1000, 0, 0)
c. rgb(255, 0, 0)
d. rgb(0, 255, 0)

 5. What is the hue associated with the color value hsl(90, 100%, 50%)?
a. 90
b. 100%
c. 50%
d. Cannot be determined by the color value

 6. What is the vendor prefix associated with the Google Chrome browser?
a. -chrome-
b. -google-
c. -moz-
d. -webkit-

 7. What is the HSL color value for red displayed with the highest saturation and
lightness and with 50% transparency?
a. hsl(0, 100%, 100%, 0.5)
b. hsl(255, 100%, 100%, 0.5)
c. hsla(0, 100%, 100%, 0.5)
d. hsla(0.5, 0, 100%, 100%)

 8. What is the style to display h1 headings in green text on a yellow background?
a. h1 {color: green; background-color: yellow;}
b. h1 {color: green; bgcolor: yellow;}
c. h1 {text: green; background: yellow;}
d. h1 {textColor: green; backgroundColor: yellow;}

 9. Which of the following matches the color blue?
a. rgb(0, 0, 255)
b. hsl(240, 100%, 50%);
c. rgba(0, 0, 255, 1)
d. All of the above

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 108

Session 2.2 Visual Overview:

© Monkey Business Images/Shutterstock.com

The font-family
property lists the
possible fonts used
for the element text.

The @font-face rule
imports a web font
into the style sheet.

The letter-spacing
property sets the
kerning or space
between letters.

The font-size
property sets the text
size in absolute or
relative units.

The line-height
property sets the
height of the lines of
text in the element.

The text-align
property sets the
horizontal alignment
of the text.

The nav > ul selector selects
ul elements that are direct
children of the nav element.

The aside blockquote
selector selects blockquote
elements that are descendants
of the aside element.

The em unit is a relative unit
of length that expresses a
size relative to the font size
of the containing element.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 109

CSS Typography

Page footer is centered and
displayed in small caps as specified
by the body > footer address
style rule.

Navigation list is
double-spaced with
a line height of 2em.

The h2 headings are displayed
in the Quicksand font with a
font size of 1.5em and letter
spacing of 0.1em.

Body text is displayed
in a Verdana font.

The h1 heading is displayed
in the Quicksand font with
a font size of 2.2em and
letter spacing of 0.1em.

M
on

ke
y

B
us

in
es

s
Im

ag
es

/S
hu

tt
er

st
oc

k.
co

m

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 110

Exploring Selector Patterns
The following style rule matches every h1 element in the HTML document, regardless
of its location within the page:

h1 {
 color: red;
}

Often, however, you will want your style rules to apply to elements only placed within
specific locations, such as h1 headings found within articles but not anywhere else. To
direct a style rule to an element at a specific location use selector patterns to match
only those page elements that match a specified pattern.

Contextual Selectors
The first selector pattern you’ll examine is a contextual selector, which specifies
the context under which a particular page element is used. Context is based on the
hierarchical structure of the document, which involves the relationships between a
parent element containing one or more child elements and within those child elements
several levels of descendant elements. A contextual selector relating a parent element
to its descendants has the following pattern

parent descendant { styles }

where parent is a parent element, descendant is a descendant of that parent, and
styles are styles applied to the descendant element. For example, the following style
rule sets the text color of h1 headings to red but only when those headings are nested
somewhere within the header element:

header h1 {
 color: red;
}

As shown in the following code, the descendant element does not have to be a
direct child of the parent; in fact, it can appear several levels below the parent in the
hierarchy. This means that the above style rule matches the h1 element in the following
HTML code:

<header>
 <div>
 <h1>Tri and Succeed Sports</h1>
 </div>
</header>

The h1 element is a direct child of the div element; but, because it is still a descendant
of the header element, the style rule still applies.

Contextual selectors follow the general rule discussed in the last session; that is, the
more specific style is applied in preference to the more general rule. For instance, the
following style rules would result in h1 headings within the section element being
displayed in red while all other h1 headings would appear in blue:

section h1 {color: red;}
h1 {color: blue;}

Figure 2–12 describes some of the other contextual selectors supported by CSS.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 111

To match any element, use the wildcard selector with the * character. For example,
the following style rule matches every child of the article element, setting the text
color to blue:

article > * {color: blue;}

Sibling selectors select elements based on the elements that are adjacent to them
in the document hierarchy. The following style rule uses the + symbol to select the h2
element, but only if it is immediately preceded by an h1 element:

h1+h2 {color: blue;}

On the other hand, the following style rule uses the ~ symbol to select any h2
element that is preceded (but, not necessarily immediately) by an h1 element:

h1 ~ h2 {color: blue;}

Figure 2–13 provides additional examples of selectors and highlights in red those
elements in the document that would be selected by the specified selector.

Figure 2–12 Contextual selectors

Selector Description
* Matches any element

elem Matches the element elem located anywhere in the document

elem1, elem2, … Matches any of the elements elem1, elem2, etc.

parent descendant Matches the descendant element that is nested within the parent
element at some level

parent > child Matches the child element that is a child of the parent element

elem1 + elem2 Matches elem2 that is immediately preceded by the sibling
 element elem1

elem1 ~ elem2 Matches elem2 that follows the sibling element elem1

Figure 2–13 Contextual selector patterns

body

article

header p

p p

p p h1

h1

p

aside

p

body

article

header p

p p

p p h1

h1

p

aside

article p

body

article

header p

p p

p p h1

h1

p

aside

article > p

body

article

header p

p p

p p h1

h1

p

aside

h1 + p

body

article

header p

p p

p p h1

h1

p

aside

h1 ~ p

body

article

header p

p p

p p h1

h1

p

aside

article > *

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 112

Remember that, because of style inheritance, any style applied to an element
is passed down the document tree. Thus, a style applied to a header element is
automatically passed down to elements contained within that header unless that style
conflicts with a more specific style.

Using Contextual Selectors

• To select all elements, use the * selector.
• To select a single element, use the elem selector, where elem is the name of the

element.
• To select a descendant element, use the parent descendant selector where parent

is a parent element and descendant is an element nested within the parent at some
lower level.

• To select a child element, use the parent > child selector.
• To select a sibling element, elem2, that directly follows elem1, use the elem1 +
elem2 selector.

• To select a sibling element, elem2, that follows, but not necessarily directly elem1,
use the elem1 ~ elem2 selector.

R
E
FE

R
E
N
C
E

Now, you’ll create a style rule to change the text color of the customer testimonials
on the Tri and Succeed Sports home page to a dark orange using the RGB color value
rgb(232, 165, 116). You’ll use a contextual selector to apply the style rule only to block
quotes that are descendants of the aside element.

To create style rule with a contextual selector:
w 1. If you took a break after the previous session, make sure the tss_styles.css

file is open in your editor.

w 2. Within the Aside and Blockquote Styles section, insert the following style
rule:

aside blockquote {
 color: rgb(232, 165, 116);
}

Figure 2–14 highlights the new style rule for the blockquote element.

Figure 2–14 Setting the text color of block quotes

style applies to block
quotes nested within
an aside element

sets the text color
to dark orange

w 3. Save your changes to the file and then reload the tss_home.html file in your
browser. Verify that the text of the customer quotes appears in orange.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 113

Attribute Selectors
Contextual selectors can also be based on attributes and attribute values within
elements. Two attributes, id and class, are often key in targeting styles to specific
elements. Recall that the id attribute is used to identify specific elements within the
document. To apply a style to an element based on its id, you use either the selector

#id

or the selector

elem#id

where id is the value of the id attribute and elem is the name of the element. Because
ids are supposed to be unique, either form is acceptable but including the element
name removes any confusion about the location of the selector. For example, the
selector for the following h1 heading from the HTML file

<h1 id="title">Tri and Succeed Sports</h1>

can be entered as either #title or h1#title in your CSS style sheet.
Because no two elements can share the same ID, HTML uses the class attribute to

identify groups of elements that share a similar characteristic or property. The following
h1 element and paragraph element both belong to the intro class of elements:

<h1 class="intro">Tri and Succeed Sports</h1>
<p class="intro"> … </p>

To select an element based on its class value, use the selector

elem.class

where class is the value of the class attribute. Thus the following style rule displays
the text of h1 headings from the intro class in blue:

h1.intro {color: blue;}

To apply the same style rule to all elements of a particular class, omit the element
name. The following style rule displays the text of all elements from the intro class in
blue:

.intro {color: blue;}

While id and class are the most common attributes to use with selectors, any attribute
or attribute value can be the basis for a selector. Figure 2–15 lists all of the CSS attribute
selector patterns based on attributes and attribute values.

An element can belong to
several classes by including
the class names in a space-
separated list in the class
attribute.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 114

Figure 2–15 Attribute selectors

Selector Selects Example Selects
elem#id Element elem with the ID

value id
h1#intro The h1 heading with the

id intro

#id Any element with the ID
value id

#intro Any element with the id
intro

elem.class All elem elements with
the class attribute value
class

p.main All paragraphs belonging
to the main class

.class All elements with the class
value class

.main All elements belonging
to the main class

elem [att] All elem elements con-
taining the att attribute

a[href] All hypertext elements
containing the href
attribute

elem [att=”text”] All elem elements whose
att attribute equals text

a[href="top.html"] All hypertext elements
whose href attribute
equals top.html

elem [att~=”text”] All elem elements whose
att attribute contains the
word text

a[rel~="glossary"] All hypertext elements
whose rel attribute
 contains the word
glossary

elem [att|=”text”] All elem elements whose
att attribute value is a
hyphen-separated list
of words beginning with
text

p[id|="first"] All paragraphs whose
id attribute starts
with the word first in a
hyphen-separated list of
words

elem [att^=”text”] All elem elements whose
att attribute begins with
text

a[rel^="prev"] All hypertext elements
whose rel attribute
begins with prev

elem [att$=”text”] All elem elements whose
att attribute ends with
text

a[href$="org"] All hypertext elements
whose href attribute
ends with org

elem [att*=”text”] All elem elements whose
att attribute contains the
value text

a[href*="faq"] All hypertext elements
whose href attribute
 contains the text string
faq

Using Attribute Selectors

• To select an element based on its ID, use the elem#id or #id selector, where elem is
the name of the element and id is the value of the id attribute.

• To select an element based on its class value, use the .class or the elem.class
selectors, where class is the value of the class attribute.

• To select an element that contains an att attribute, use elem [att].
• To select an element based on whether its attribute value equals a specified value,
val, use elem [att=”val”].

R
E
FE

R
E
N
C
E

In the Tri and Succeed Sports home page, the main content is enclosed within an
article element with the ID about_tss. Alison wants the h1 and h2 heading styles you
entered in the last session to be applied only to h1 and h2 elements within articles that
have this particular ID. Revise the style sheet now.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 115

To apply an id selector:
w 1. Return to the tss_styles.css file in your editor.

w 2. Change the selectors for the h1 and h2 elements in the Heading Styles
section to article#about_tss h1 and article#about_tss h2 respectively.

Figure 2–16 highlights the revised selectors in the style sheet.

Figure 2–16 Using an id selector

selects h2 headings
within an article element
with the about_tss id

selects h1 headings
within an article element
with the about_tss id

w 3. Save your changes to the file and then reload the tss_home.html file in your
browser. Verify that the design of the h1 and h2 headings is only applied to
the headings in the about_tss article but not to the other headings on the
page.

The article element will be used in other pages in the Tri and Succeed Sports
website. Alison has provided you with three additional HTML files containing
descriptions of the services her company offers for runners, cyclists, and swimmers. On
those pages the article elements have the class attribute with the value syllabus.
Create style rules for the h1 and h2 elements within the articles on those pages.

To apply a class selector:
w 1. Use your editor to open the tss_run_txt.html, tss_bike_txt.html, and

tss_swim_txt.html files from the html02 c tutorial folder. Enter your
name and the date in the comment section of each file and save them as
tss_run.html, tss_bike.html, and tss_swim.html respectively.

w 2. Within each of the three files insert the following link elements directly
before the closing </head> tag to link these files to the tss_layout.css and
tss_styles.css files, respectively:

<link href="tss_layout.css" rel="stylesheet" />
<link href="tss_styles.css" rel="stylesheet" />

w 3. Take some time to study the content and structure of the files. Note that the
article element has the class attribute with the value syllabus. Save your
changes to the files.

w 4. Return to the tss_style.css file in your editor.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 116

w 5. Within the Heading Styles section, add the following style rule to display the
text of h1 and h2 headings in medium gray on a light purple background:

article.syllabus h1, article.syllabus h2 {
 background-color: rgb(255, 185, 255);
 color: rgb(101, 101, 101);
}

Figure 2–17 highlights the new style rule in the file.

Figure 2–17 Using a class selector

displays the content in
medium gray text on a
light purple background

selects h1 and h2 headings
within article elements of
the syllabus class

w 6. Save your changes to the style sheet and then open the tss_run.html file in
your browser. Figure 2–18 shows the appearance of the h1 and h2 headings
on this page.

Figure 2–18 Headings on the running class page

h1 heading text
shows medium gray
on a light purple
background

h2 heading text
shows medium gray
on a light purple
background

w 7. Use the navigation links on the page to view the content and design of
the cycling and the swimming pages, and then confirm that the h1 and h2
headings on these pages have similar formats.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 117

IN
SI
G
H
T

Calculating Selector Specificity

The general rule in CSS is that the more specific selector takes precedence over the
more general selector, but the application of this rule is not always clear. For example,
which of the following selectors is the more specific?

header h1.top

vs.

#main h1

To answer that question, CSS assigns a numeric value to the specificity of the
selector using the formula

(inline, ids, classes, elements)

where inline is 1 for an inline style and 0 otherwise, ids is 1 for every id in the
selector, classes is 1 for every class or attribute in the selector, and elements is 1 for
every element in the selector. For example, the selector ul#links li.first would
have a value of (0, 1, 1, 2) because it references one id value (#links), 1 class value
(.first) and two elements (ul and li). Specificity values are read from left to right
with a larger number considered more specific than a smaller number.

To answer our earlier question: the selector header h1.top has a value of (0, 0, 1, 2)
but #main h1 has a value of (0, 1, 0, 1) and, thus, is considered more specific because
0101 is larger than 0012.

By the way, since every inline style has the value (1, 0, 0, 0), they will always be more
specific than any style set in an embedded or external style sheet.

Working with Fonts
Typography is the art of designing the appearance of characters and letters on a page.
So far, the only typographic style you’ve used is the color property to set the text
color. For the rest of this session, you’ll explore other properties in the CSS family of
typographical styles, starting with choosing the text font.

Choosing a Font
Text characters are based on fonts that define the style and appearance of each
character in the alphabet. The default font used by most browsers for displaying text is
Times New Roman, but you can specify a different font for any page element using the
following font-family property

font-family: fonts;

where fonts is a comma-separated list, also known as a font stack, of specific or
generic font names. A specific font is a font that is identified by name, such as Times
New Roman or Helvetica, and based on a font definition file that is stored on the user’s
computer or accessible on the web. A generic font describes the general appearance of
the characters in the text but does not specify any particular font definition file. Instead,
the font definition file is selected by the browser to match the general characteristics of
the generic font. CSS supports the following generic font groups:

• serif—a typeface in which a small ornamentation appears at the tail end of each
character

• sans-serif—a typeface without any serif ornamentation
• monospace—a typeface in which each character has the same width; often used to

display programming code

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 118

• cursive—a typeface that mimics handwriting with highly stylized elements and
 flourishes; best used in small doses for decorative page elements

• fantasy—a highly ornamental typeface used for page decoration; should never be
used as body text

Because you have no control over which font definition file the browser will
choose for a generic font, the common practice is to list specific fonts first, in order of
preference, ending the font stack with a generic font. If the browser cannot find any
of the specific fonts listed, it uses a generic font of its own choosing. For example, the
style

font-family: ‘Arial Black’, Gadget, sans-serif;

tells a browser to use the Arial Black font if available; if not, to look for the Gadget font;
and if neither of those fonts are available, to use its own generic sans-serif font. Note
that font names containing one or more blank spaces (such as Arial Black) must be
enclosed within single or double quotes.

Because the available fonts vary by operating system and device, the challenge is
to choose a font stack limited to web safe fonts, which are fonts that will be displayed
in mostly the same way in all operating systems and on all devices. Figure 2–19 lists
several commonly used web safe font stacks.

Figure 2–19 Web safe font stacks

A general rule for printing is to use sans-serif fonts for headlines and serif fonts for
body text. For computer monitors, which have lower resolutions than printed material,
the general rule is to use sans-serif fonts for headlines and body text, leaving serif fonts
for special effects and large text.

Currently, the body text for the Tri and Succeed Sports website is based on a serif
font selected by the browser. You’ll add the following font stack for sans-serif fonts,
which will take precedence over the browser font style rule:

font-family: Verdana, Geneva, sans-serif;

As a result of this style rule, the browser will first try to load the Verdana font, followed
by the Geneva font. If both of these fonts are unavailable, the browser will load a
generic sans-serif font of its own choosing. Add this font family to the style rule for the
page body.

Including too many fonts
can make your page
difficult to read. Don’t use
more than two or three
typefaces within a single
page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 119

Exploring Web Fonts
Because web safe fonts limit your choices to a select number of fonts that have
universal support, another approach is to supply a web font in which the definition font
is supplied to the browser in an external file. Figure 2–22 describes the different web
font file formats and their current levels of browser support. The format most universally
accepted in almost all current browsers and on almost all devices is the Web Open
Font Format (WOFF).

To specify a font family for the page body:
w 1. Return to the tss_styles.css file in your editor.

w 2. Add the following style to the style rule for the body element:

 font-family: Verdana, Geneva, sans-serif;

Figure 2–20 highlights the new style for the body element.

Font stacks should be listed
in a comma-separated list
with the most desired fonts
listed first.

Figure 2–20 Specifying a font stack

browser attempts to use the
Verdana font �rst, followed
by Geneva, and �nally any
generic sans-serif font

w 3. Save your changes to the file and then reload the tss_home.html file in your
browser. Figure 2–21 shows the revised appearance of the body text using
the sans-serif font.

Figure 2–21 Sans-serif font applied to the home page

© Monkey Business Images/Shutterstock.com

w 4. View the other three pages in the website to verify that the sans-serif font is
also applied to the body text on those pages.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 120

Web font files can be downloaded from several sites on the Internet. In many cases,
you must pay for their use; in some cases, the fonts are free but are licensed only for
non-commercial use. You should always check the EULA (End User License Agreement)
before downloading and using a web font to make sure you are in compliance with the
license. Finally, many web fonts are available through Web Font Service Bureaus that
supply web fonts on their servers, which page designers can link to for a fee.

The great advantage of a web font is that it gives the author more control over the
fonts used in the document; the disadvantage is that it becomes another file for the
browser to download, adding to the time required to render the page. This can be a
huge issue with mobile devices in which you want to limit the number and size of files
downloaded by the browser.

The @font-face Rule
To access and load a web font, you add the following @font-face rule to the style
sheet

@font-face {
 font-family: name;
 src: url('url1') format('text1'),
 url('url2') format('text2'),
 …;
 descriptor1: value1;
 descriptor2: value2;
 …
}

where name is the name of the font, url is the location of the font definition file, text
is an optional text description of the font format, and the descriptor: value pairs are
optional style properties that describe when the font should be used. Note several font
definition files can be placed in a comma-separated list, allowing the browser to pick the
file format it supports. For example, the following @font-face rule defines a font named
Gentium installed from either the Gentium.woff file or if that fails, the Gentium.ttf file:

@font-face {
 font-family: Gentium;
 src: url('Gentium.woff') format('woff'),
 url('Gentium.ttf') format('truetype');
}

It is considered best
practice to always include
a format value to alert the
browser about the font’s
format so that it doesn’t
download a font definition
file it can’t display.

Figure 2–22 Web font formats

Format Description Browser
Embedded
OpenType (EOT)

A compact form of OpenType fonts
designed for use as embedded fonts in
style sheets

Internet Explorer (IE)

TrueType (TTF) Font standard used on the Mac OS and
Microsoft Windows operating systems

IE, Firefox, Chrome, Safari, Opera

OpenType (OTF) Font format built on the TrueType format
developed by Microsoft

IE, Firefox, Chrome, Safari, Opera

Scalable Vector
Graphics (SVG)

Font format based on an XML vocabulary
designed to describe resizable graphics
and vector images

Safari

Web Open Font
Format (WOFF)

The W3C recommendation font format
based on OpenType and TrueType with
compression and additional metadata

IE, Firefox, Chrome, Safari, Opera

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 121

If the style sheet includes instructions to display a web font in italics, boldface, or
other variants, the browser will modify the font, which sometimes results in poorly
rendered text. However if the manufacturer has supplied its own version of the
font variant, you can direct the browser to use that font file. For example, the following
@font-face rule directs the browser to use the GentiumBold.woff or GentiumBold.ttf
file when it needs to display Gentium in bold.

@font-face {
 font-family: Gentium;
 src: url('GentiumBold.woff') format('woff'),
 url('GentiumBold.ttf') format('truetype');
 font-weight: bold;
}

Note that the web font is given the same font-family name Gentium, which is the font
name you use in a font stack. The added descriptor: value pair and font-weight:
bold declarations tell the browser that these font files should be used with boldface
Gentium.

Once you’ve defined a web font using the @font-face rule, you can include it in a
font stack. For example, the following style will attempt to load the Gentium font first,
followed by Arial Black, Gadget, and then a sans-serif font of the browser’s choosing:

font-family: Gentium, 'Arial Black', Gadget, sans-serif;

Alison decides that the rendering of the Verdana font in the h1 and h2 heading text
is too thick and heavy. She has located a web font named Quicksand that she is free to
use under the End User License Agreement and she thinks it would work better for the
page headings. She asks you to add this font to the style sheet and apply it to all h1 and
h2 elements.

To install and use a web font:
w 1. Return to the tss_styles.css file in your editor.

w 2. Directly after the @charset rule at the top of the file, insert the following
@font-face rule:

@font-face {
 font-family: Quicksand;
 src: url('Quicksand-Regular.woff') format('woff'),
 url('Quicksand-Regular.ttf') format('truetype');
}

w 3. At the top of the Heading Styles section, insert the style rule:

h1, h2 {
 font-family: Quicksand, Verdana, Geneva, sans-serif;
}

Figure 2–23 highlights the code to create and use the Quicksand web font.

The @font-face rule
should be placed at the
top of the style sheet after
the @charset rule and
before any styles that use
the web font.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 122

w 4. Save your changes to the file and reload the tss_home.html file in your
browser. Figure 2–24 shows the revised appearance of the h1 and h2
headings using the Quicksand web font.

Figure 2–23 Accessing a web font

TTF font �le

adds the web
font to the list of
available fonts

WOFF font le

name given to
the web font@font-face

rule de�nes
the web font

style rule for
all h1 and h2
headings

Figure 2–24 Quicksand font used for all h1 and h2 headings

h1 and h2 text
rendered in the
Quicksand font

© Ysbrand Cosijn/Shutterstock.com; © Charles T. Bennett/Shutterstock.com; © ostill/Shutterstock.com;
© Monkey Business Images/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 123

Setting the Font Size
Another important consideration in typography is the text size, which is defined using
the following font-size property

font-size: size;

where size is a length in a CSS unit of measurement. Size values for any of these
measurements can be whole numbers (0, 1, 2 ...) or decimals (0.5, 1.6, 3.9 ...). Lengths
(and widths) in CSS are expressed in either absolute units or relative units.

Absolute Units
Absolute units are units that are fixed in size regardless of the output device and are
usually used only with printed media. They are specified in one of five standard units of
measurement: mm (millimeters), cm (centimeters), in (inches), pt (points), and pc (picas).
For example, to set the font size of your page body text to a 12pt font, you would apply
the following style rule:

body {font-size: 12pt;}

Note that you should not insert a space between the size value and the unit abbreviation.

Relative Units
Absolute units are of limited use because, in most cases, the page designer does not
know the exact properties of the device rendering the page. In place of absolute units,
designers use relative units, which are expressed relative to the size of other objects
within the web page or relative to the display properties of the device itself.

IN
SI
G
H
T

Using Google Fonts

Google Fonts (google.com/fonts) hosts a library of free web fonts. After selecting a
font from the Google Font catalog, you will receive the code for the link element to
access the font files. For example, the following link element accesses a style sheet
for a Google font named Monoton:

< link href="http://fonts.googleapis.com/css?family=Monoton"
rel="stylesheet"/>

To use the Monoton font, include the following font-family property in the CSS
style sheet:

font-family: Monoton, fantasy;

Google fonts, like all web fonts, need to be used in moderation because they can
greatly increase the load times for your website. To help you know when you have
exceeded a reasonable limit, the Google Fonts page shows a timer estimating the load
times for all of the fonts you have selected. You can also limit the size of the font file by
using the &text parameter to specify only those characters you want to download. For
example, the following link element limits the Monoton font file to only the characters
found in “TSS Sports“:

<link href="http://fonts.googleapis.com/css?family=Monoton
&text=TSS%20Sports" rel="stylesheet" />

Note that blank spaces are indicated using the %20 character. If you have a longer
text string, you can shorten the value of the href attribute by removing duplicate
characters, as the order of characters doesn’t matter.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 124

The basic unit for most devices is the pixel (px), which represents a single dot on
the output device. A pixel is a relative unit because the actual pixel size depends on
the resolution and density of the output device. A desktop monitor might have a pixel
density of about 96ppi (pixels per inch), laptops are about 100 to 135ppi, while mobile
phones have dense displays at 200 to 300ppi or more. Typically, most browsers will
apply a base font size of 16px to body text with slightly larger font sizes applied to h1,
h2, and h3 headings. You can override these default sizes with your own style sheet.
The following style rules set the font size of the text on the page body to 10px and the
font size of all h1 headings text to 14px:

body {font-size: 10px;}
h1 {font-size: 14px;}

The exact appearance of the text depends greatly on the device’s pixel density.
While a 10px font might be fine on a desktop monitor, that same font size could be
unreadable on a mobile device.

Scaling Fonts with ems and rems
Because the page designer doesn’t know the exact properties of the user’s device, the
common practice is to make the text scalable with all font sizes expressed relative to
a default font size. There are three relative measurements used to provide scalability:
percentages, ems, and rems.

A percentage sets the font size as a percent of the font size used by the containing
element. For example, the following style rule sets the font size of an h1 heading to
200% or twice the font size of the h1 heading’s parent element:

h1 {font-size: 200%;}

The em unit acts the same way as a percentage, expressing the font size relative to
the font size of the parent element. Thus, to set the font size of h1 headings to twice the
font size used in their parent elements, you can also use the style rule:

h1 {font-size: 2em;}

The em unit is the preferred style unit for web page text because it makes it easy to
develop pages in which different page elements have consistent relative font sizes
under any device.

Context is very important with relative units. For example, if the h1 element is
placed within a body element where the font size is 16px, the h1 heading will have a
font size twice that size or 32px. On the other hand, an h1 heading nested within an
article element where the font size is 9px will have a font size of 18px. In general,
you can think of font sizes based on percentages and em units as relative to the size of
immediately adjacent text.

The fact that relative units cascade through the style sheet can lead to confusing
outcomes. For example, consider the following set of style rules for an h1 element
nested within an article element in the page body:

body {font-size: 16px;}
body > article {font-size: 0.75em;}
body > article > h1 {font-size: 1em;}

Glancing at the style rules, you might conclude that the font size of the h1 element is
larger than the font size used in the article element (since 1em > 0.75em). However,
this is not the case: both font sizes are the same. Remember, em unit expresses the
text size relative to font size used in the parent element and since the h1 heading is
contained within the article element its font size of 1em indicates that it will have
the same size used in the article element. In this case, the font size in the article
element is 75% of 16px or 12 pixels as is the size of h1 headings in the article.

Because of this confusion, some designers advocate using the rem or root em unit
in which all font sizes are always expressed relative to the font size used in the html

You can explore
typographic styles using
the demo_css.html file in
the html02 c demo folder.

TRY IT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 125

element. Using rems, the following style rule sets the font size of article text to 75%
of 16 pixels or 12 pixels while the h1 heading size is set to 16 pixels, equal to the font
size of the html element:

html {font-size: 16px;}
article {font-size: 0.75rem;}
article > h1 {font-size: 1rem;}

The rem unit has become increasingly popular with designers as browser support
grows and its use might possibly replace the use of the em unit as the font size unit of
choice in upcoming years.

Using Viewport Units
Another relative unit is the viewport unit in which lengths are expressed as a
percentage of the width or height of the browser window. As the browser window is
resized, the size of text based on a viewport unit changes to match. There are four
viewport units: vw, vh, vmin, and vmax where

• 1vw = 1% of the browser window width
• 1vh = 1% of the browser window height
• 1vmin = 1vw or 1vh (whichever is smaller)
• 1vmax = 1vw or 1vh (whichever is larger)

For example, if the browser window is 1366 pixels wide, a length of 1vw would
be equal to 13.66px. If the width of the window is reduced to 780 pixels, 1vw is
automatically rescaled to 7.8 pixels. Auto-rescaling has the advantage that font sizes
set with a viewport unit will be sized to match the browser window, maintaining
a consistent page layout. The disadvantage is that page text can quickly become
unreadable if the browser window becomes too small.

Sizing Keywords
Finally, you also can express font sizes using the following keywords: xx-small,
x-small, small, medium, large, x-large, xx-large, larger, or smaller. The font
size corresponding to each of these keywords is determined by the browser. Note that
the larger and smaller keywords are relative sizes, making the font size of the element
one size larger or smaller than the font size of the container element. For example, the
following style rules set the sidebar to be displayed in a small font, while an h1 element
nested within that aside element is displayed in a font one size larger (medium):

aside {font-size: small;}
aside > h1 {font-size: larger;}

Use em units now to set the font size for the h1 and h2 headings, as well as the text
within the navigation list and the aside element.

To set font sizes of the page elements:
w 1. Return to the tss_styles.css file in your editor.

w 2. Add the following style rules directly below the Heading Styles comment to
define the font sizes for h1 and h2 headings throughout the website:

h1 {
 font-size: 2.2em;
}

h2 {
 font-size: 1.5em;
}

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 126

w 3. Go to the Aside and Blockquote Styles section and insert the following style
rule to set the default font size of text in the aside element to 0.8em:

aside {
 font-size: 0.8em;
}

w 4. Go to the Navigation Styles section and insert the following style rule to set
the default font size of text in the navigation list to 0.8em:

nav {
 font-size: 0.8em;
}

Figure 2–25 highlights the new font sizes for the website.

Figure 2–25 Setting font sizes for the website

sets the font size of the
aside element and
navigation list text to
80% of the font size of
the body text

sets the font size of h2
headings 1.5x bigger
than surrounding content

sets the font size of h1
headings 2.2x bigger
than surrounding content

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 127

Note that the text of the h1 heading in the page article is larger than the text in the h1
headings from the navigation list and the aside element even though all headings have
a font size of 2.2em. This is because you reduced the default font size of the text in the
navigation list and aside elements by 80% and thus the h1 headings in those elements
are also reduced by the same proportion.

Controlling Spacing and Indentation
CSS supports styles to control some basic typographic attributes, such as kerning,
tracking, and leading. Kerning sets the space between characters, while tracking sets
the space between words. The properties to control an element’s kerning and tracking
are

letter-spacing: value;
word-spacing: value;

where value is the size of space between individual letters or words. You specify these
sizes with the same units that you use for font sizing. The default value for both kerning
and tracking is 0 pixels. A positive value increases the letter and word spacing, while
a negative value reduces the space between letters and words. If you choose to make
your text scalable under a variety of devices and resolutions, you can express kerning
and tracking values as percentages or em units.

Leading sets the space between lines of text and is defined with the following line-
height property

line-height: size;

w 5. Save your changes to the file and then reload the tss_home.html file in your
browser. Figure 2–26 shows the revised font sizes of the headings, navigation
list, and aside element.

Figure 2–26 Revised font sizes in the About TSS page

font size set
to 1.5em

font size set
to 2.2em

font size set
to 0.8em

font size set
to 0.8em

font size set to 2.2em

font size set to 2.2em

© Monkey Business Images/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 128

where size is a value or a percentage of the font size of the text on the affected lines. If
no unit is specified, the size value represents the ratio of the line height to the font size.
The default value is 1.2 or 1.2em so that the line height is 20% larger than the font size.
By contrast, the following style sets the line height to twice the font size, making the
text appear double-spaced:

line-height: 2em;

An additional way to control text spacing is to set the indentation for the first line of
a text block by using the following text-indent property

text-indent: size;

where size is expressed in absolute or relative units, or as a percentage of the width of
the text block. For example, an indentation value of 5% indents the first line by 5% of
the width of the block. The indentation value also can be negative, extending the first
line to the left of the text block to create a hanging indent.

Alison suggests you increase the kerning used in the h1 and h2 headings to 0.1em so
that the letters don’t crowd each other on the page. She also asks that you increase the
line height of the text of the navigation list to 2em so that the list of links on the home
page is double-spaced.

You can give multi-line
titles more impact by
tightening the space
between the lines using a
large font-size along with a
small line-height.

To set font sizes of the page elements:
w 1. Return to the tss_styles.css file in your editor.

w 2. In the Heading Styles section, insert the following style as part of the style
rule for the h1, h2 selector:

letter-spacing: 0.1em;

w 3. Scroll down to the Navigation Styles section near the bottom of the file and
add the following style rule for the text of ul elements nested within the nav
element:

nav > ul {
 line-height: 2em;
}

Figure 2–27 highlights the letter-spacing and line-height styles for the
website.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 129

By increasing the kerning in the headings, you’ve made the text appear less
crowded, making it easier to read.

Working with Font Styles
The style sheet built into your browser applies specific styles to key page elements; for
instance, address elements are often displayed in italic, headings are often displayed
in boldface. You can specify a different font style using the following font-style
property

font-style: type;

where type is normal, italic, or oblique. The italic and oblique styles are similar in
appearance, but might differ subtly depending on the font in use.

To change the weight of the text, use the following font-weight property

font-weight: weight;

where weight is the level of bold formatting applied to the text. CSS uses the
keyword bold for boldfaced text and normal for non-boldfaced text. You also can
use the keywords bolder or lighter to express the weight of the text relative to its
surrounding content. Finally for precise weights, CSS supports weight values ranging
from 100 (extremely light) up to 900 (extremely heavy) in increments of 100. In
practice, however, it’s difficult to distinguish font weights at that level of precision.

You can apply decorative features to text through the following text-decoration
property

text-decoration: type;

Figure 2–27 Controlling letter spacing and line height

double spaces the list
of hypertext links

sets the space between
letters to 0.1em

w 4. Save your changes to the file and then reload the tss_home.html file in your
browser. Verify that the space between letters in the h1 and h2 headings has
been increased and the list of links is now double-spaced.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 130

where type equals none (for no decoration), underline, overline, or line-through.
The text-decoration property supports multiple types so that the following style
places a line under and over the element text:

text-decoration: underline overline;

Note that the text-decoration style has no effect on non-textual elements, such as
inline images.

To control the case of the text within an element, use the following text-transform
property

text-transform: type;

where type is capitalize, uppercase, lowercase, or none (to make no changes
to the text case). For example, to capitalize the first letter of each word in an element,
apply the style:

text-transform: capitalize;

Finally, CSS supports variations of the text using the font-variant property

font-variant: type;

where type is normal (for no variation) or small-caps (small capital letters). Small
caps are often used in legal documents, such as software agreements, in which the
capital letters indicate the importance of a phrase or point, but the text is made small
so as not to detract from other elements in the document.

Aligning Text Horizontally and Vertically
Text can be aligned horizontally or vertically within an element. To align the text
horizontally, use the following text-align property

text-align: alignment;

where alignment is left, right, center, or justify (align the text with both the left
and the right margins).

To vertically align the text within each line, use the vertical-align property

vertical-align: alignment;

where alignment is one of the keywords described in Figure 2–28.

Figure 2–28 Values of the vertical-align property

Value Description
baseline Aligns the baseline of the element with the baseline of the parent element

bottom Aligns the bottom of the element with the bottom of the lowest element in
the line

middle Aligns the middle of the element with the middle of the surrounding content
in the line

sub Subscripts the element

super Superscripts the element

text-bottom Aligns the bottom of the element with the bottom of the text in the line

text-top Aligns the top of the element with the top of the text in the line

top Aligns the top of the element with the top of the tallest object in the line

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 131

Instead of using keywords, you can specify a length or a percentage for an element
to be vertically aligned relative to the surrounding content. A positive value moves the
element up as in the following style that raises the element by half the line height of the
surrounding content:

vertical-align: 50%;

A negative value drops the content. For example, the following style drops the
element an entire line height below the baseline of the current line:

vertical-align: -100%;

Combining All Text Formatting in a Single Style
You can combine most of the text and font style properties into the following shorthand
font property

font: style variant weight size/height family;

where style is the font’s style, variant is the font variant, weight is the font weight, size
is the font size, height is the height of each line, and family is the font stack. For example,
the following style rule displays the element text in italic, bold, and small capital letters
using Arial or another sans-serif font, with a font size of 1.5em and a line height of 2em:

font: italic small-caps bold 1.5em/2em Arial, sans-serif;

You do not have to include all of the values in the shorthand font property; the only
required values are the size and family values. A browser assumes the default value
for any omitted property; however, you must place any properties that you do include
in the order indicated above.

At the bottom of each page in the Tri and Succeed Sports website, Alison has nested
an address element within the body footer. The default browser style sheet displays
address text in italics. Alison suggests that you display the text in a semi-transparent
bold white font on a dark orange background and centered on the page. She also
suggests that you use the small-cap font variant to add visual interest, and she wants
you to increase the height of the address line to 3em. To make your CSS code more
compact, you’ll set all of the font values using the shorthand font property.

The subscript and
superscript styles lower
or raise text vertically,
but do not resize it. To
create true subscripts and
superscripts, you also must
reduce the font size.

To apply the font property:
w 1. Return to the tss_styles.css file in your editor.

w 2. Go down to the Footer Styles section and add the following style rule:

body > footer address {
 background-color: rgb(222,128,60);
 color: white; color: rgba(255, 255, 255, 0.7);
 font: normal small-caps bold 0.9em/3em
 Quicksand, Verdana, Geneva, sans-serif;
 text-align: center;
}

Note that this style rule uses progressive enhancement by placing each color
rule on its own line so that browsers that do not support semi-transparent
colors will display the address text in white. Figure 2–29 highlights the style
rule for the footer.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 132

Figure 2–29 Style rule for the body footer

applies the style rule to
the address element
within the body footer

sets the background
color to dark orange

displays the text in a
Quicksand, Verdana,
Geneva, or a default
sans-serif font

sets the
line height
to 3em

sets the
font size
to 0.9em

horizontally
centers the text

displays the text color
in a semi-transparent
white or white if
semi-transparent colors
are not supported

displays the text in a
normal bold font with
small caps

w 3. Save your changes to the file and then reload the tss_home.html file in your
browser. Figure 2–30 shows the revised appearance of the body footer.

Figure 2–30 Formatted body footer

body footer

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 133

Alison likes the typographic changes you made to her website. In the next session,
you’ll explore how to design styles for hypertext links and lists, and you’ll learn how to
use CSS to add special visual effects to your web pages.

PR
O
SK

IL
LS

Decision Making: Selecting a Font

HTML and CSS provide several typographic options. Your main goal, however, is
always to make your text easily readable. When designing your page, keep in mind
the following principles:

• Keep it plain—Avoid large blocks of italicized text and boldfaced text. Those styles
are designed for emphasis, not readability.

• Sans-serif vs. serif—Sans-serif fonts are more readable on a computer monitor and
should be used for body text. Reserve the use of serif, cursive, and fantasy fonts for
page headings and special decorative elements.

• Relative vs. absolute—Font sizes can be expressed in relative or absolute units.
A relative unit like the em unit is more flexible and will be sized to match the
screen resolution of the user’s device, but you have more control over your page’s
appearance with an absolute unit. Generally, you want to use an absolute unit only
when you know the configuration of the device the reader is using to view your
page.

• Size matters—Almost all fonts are readable at a size of 14 pixels or greater; however,
for smaller sizes, you should choose fonts that were designed for screen display,
such as Verdana and Georgia. If you have to go really small (at a size of only a few
pixels), you should either use a web font that is specially designed for that purpose
or replace the text with an inline image.

• Avoid long lines—In general, try to keep the length of your lines to 60 characters or
fewer. Anything longer is difficult to read.

When choosing any typeface and font style, the key is to test your selection on a
variety of browsers, devices, screen resolutions, and densities. Don’t assume that text
that is readable and pleasing to the eye on your device screen will work as well on
another device.

R
E
V
IE

W

Session 2.2 Quick Check

 1. Which of the following selectors is used to match only paragraphs that are
children of the aside element?
a. aside p
b. p
c. aside > p
d. All of the above

 2. Which of the following selectors matches an h1 heading with the id
“topHeading”?
a. h1#topHeading
b. h1[id="topHeading"]
c. h1
d. All of the above

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 134

 3. For the following style rules, what is the font size of the h1 heading in pixels?
body {font-size: 16px;}

body > article {font-size: 0.75em;}

body > article > h1 {font-size: 1.5em;}
a. 16px;
b. 12px;
c. 18px;
d. 18.25px;

 4. Which of the following styles will set the font size to 2% of the viewport width?
a. 2%vw;
b. 2vw;
c. 2vmin;
d. 2%view;

 5. Provide a style rule to remove underlining from hypertext links marked with the
<a> tag and nested within a navigation list.
a. nav > a {text-decoration: none;}
b. nav > a {text-decoration: no-underline;}
c. nav a {text-decoration: none;}
d. nav a {text-decoration: underline="no";}

 6. Provide an @font-face rule to create a web font named Cantarell based on the
font file cantarell.woff and cantarell.ttf.
a. @font-face {

 font-family: Cantarell;
 src: url('Cantarell.woff') format('woff'),
 src: url('Cantarell.ttf') format('truetype');
}

b. font-family: Cantarell, cantarell.woff, cantarell.ttf.
c. Cantarell {

 src: url('Cantarell.woff') format('woff'),
 src: url('Cantarell.ttf') format('truetype');
}

d. All of the above will work
 7. Which of the following provides a style rule to display all blockquote elements

belonging to the Reviews class in italic and indented 3em?
a. Reviews > blockquote {

 font-style: italic;
 indent: 3em;
}

b. blockquote#Reviews {
 font-style: italic;
 indent: 3em;
}

c. blockquote.Reviews {
 font-style: italic;
 text-indent: 3em;
}

d. blockquote#Reviews {
 italic: true;
 indent: 3em;
}

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 135

 8. Which of the following style rules will center the text of all h1 through h6
headings with the text displayed at normal weight?
a. h1 - h6 {

 text-align: center;
 weight: normal;
}

b. h1, h2, h3, h4, h5, h6 {
 align: center;
 weight: normal;
}

c. h1, h2, h3, h4, h5, h6 {
 text-align: center;
 font-weight: normal;
}

d. h1 - h6 {
 text-align: center;
 font-weight: normal;
}

 9. What style property sets the kerning of the text within an element?
a. letter-spacing
b. word-spacing
c. kerning-size
d. kerning

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 136

Session 2.3 Visual Overview:

The content property
is used to insert content
into a page element.

The quotes property
defines characters for
quotation marks.

The list-style-image
property is used to
insert an image for the
list marker.

The first-of-type
pseudo-class selects the
first element type of the
parent element.

The list-style-type
property defines the
appearance of the list
marker.

The visited pseudo-class
selects previously visited
links; the link pseudo-class
selects unvisited links.

The nth-of-type
pseudo-class selects
the nth element type
of the parent.

The margin-top
property sets the margin
space above the element.

The hover
pseudo-class selects
links that are hovered
over; the active
pseudo-class selects
actively clicked links.

The last-of-type
pseudo-class selects
the last element type
of the parent element.

The before and after
pseudo-elements are
used to select page
space before and after
a page element.

© Monkey Business Images/Shutterstock.com;
© Courtesy Patrick Carey

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 137

Pseudo Elements and Classes

Top margins at each
newgroup class are
set to 20 pixels.

An image is used
to mark each of the
three list markers.

Style of the link changes
when the mouse pointer
hovers over it.

This is the last
li element.

This is the second
li element.

This is the first
li element.

Close quote character
is inserted using the
content property.

Open quote character
is inserted using the
content property.

M
on

ke
y

B
us

in
es

s
Im

ag
es

/S
hu

tt
er

st
oc

k.
co

m

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 138

Formatting Lists
In this session, you’ll explore how to use CSS to create styles for different types of lists
that you learned about in Tutorial 1. You’ll start by examining how to create styles for
the list marker.

Choosing a List Style Type
The default browser style for unordered and ordered lists is to display each list item
alongside a symbol known as a list marker. By default, unordered lists are displayed
with a solid disc while ordered lists are displayed with numerals. To change the type
of list marker or to prevent any display of a list marker, apply the following
list-style-type property

list-style-type: type;

where type is one of the markers described in Figure 2–31.

Figure 2–31 Values of the list-style-type property

list-style-type Marker(s)
disc d

circle s

square j

decimal 1, 2, 3, 4, …

decimal-leading-zero 01, 02, 03, 04, …

lower-roman i, ii, iii, iv, …

upper-roman I, II, III, IV, …

lower-alpha a, b, c, d, …

upper-alpha A, B, C, D, …

lower-greek a, b, g, d, …

upper-greek A, B, G, D, …

none no marker displayed

For example, the following style rule marks each item from an ordered list with an
uppercase Roman numeral:

ol {list-style-type: upper-roman;}

Creating an Outline Style
Nested lists can be displayed in an outline style through the use of contextual selectors.
For example, the following style rules create an outline style for a nested ordered list:

ol {list-style-type: upper-roman;}
ol ol {list-style-type: upper-alpha;}
ol ol ol {list-style-type: decimal;}

In this style, the ol selector selects the top level of the list, displaying the list items
with a Roman numeral. The ol ol selector selects the second level, marking the items
with capital letters. The third level indicated by the ol ol ol selector is marked with
decimal values.

To see how these style rules are rendered on a page, you’ll apply them to the three
pages that Alison has set up describing the running, cycling, and swimming programs
offered by Tri and Succeed sports. Each page contains a syllabus outlining the course of
study for the next several weeks.

List style properties can be
applied to individual list
items using the li selector
in the style rule.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 139

To apply an outline style:
w 1. If you took a break after the previous session, make sure the tss_styles.css

file is open in your editor.

w 2. Scroll down to the List Styles section and insert the following style rules to
format nested ordered lists within the syllabus article:

article.syllabus ol {
 list-style-type: upper-roman;
}

article.syllabus ol ol {
 list-style-type: upper-alpha;
}

article.syllabus ol ol ol {
 list-style-type: decimal;
}

Figure 2–32 highlights the style rule for the nested lists.

Figure 2–32 Creating an outline style for a nested list

3rd-level list
marker is a
decimal number

selector for the
top level of the
ordered list

selector for the
second level of
the ordered list

selector for the
third level of the
ordered list

2nd-level list
marker is an
uppercase letter

top-level list
marker is a
Roman numeral

w 3. Save your changes to the file and then open the tss_run.html file in your
browser. As shown in Figure 2–33, the syllabus for the class should now be
displayed in an outline style.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 140

Alison points out that the hypertext links from the navigation list are displayed with a
disc marker. She asks you to remove the markers from the navigation list by setting the
list-style-type property to none.

Figure 2–33 Course outline

nested list with
different markers for
each level of list items

To remove the markers from navigation lists:
w 1. Return to the tss_styles.css file in your editor.

w 2. Go to the Navigation Styles section and, within the style rule for the nav > ul
selector, add the style list-style-type: none;

Figure 2–34 highlights the new style.

Figure 2–34 Removing list markers from navigation lists

displays no markers for
unordered lists within
the nav element

w 3. Save your changes to the file and then open the tss_home.html file in your
browser. Verify that there are no markers next to the navigation list items in
the left column.

w 4. Go to the other three pages in the website and verify that navigation lists in
these pages also do not have list markers.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 141

Using Images for List Markers
You can supply your own graphic image for the list marker with the following
list-style-image property

list-style-image: url(url);

where url is the URL of a graphic file containing the marker image. Marker images are
only used with unordered lists in which the list marker is the same for every list item.
For example, the following style rule displays items from unordered lists marked with
the graphic image in the redball.png file:

ul {list-style-image: url(redball.png);}

Alison has an icon image in a file named runicon.png that she wants to use for the
classes listed on the Tri and Succeed Sports home page in the About TSS article. Apply
her image file to the list now.

Designing a List

• To define the appearance of the list marker, use the property

list-style-type: type;

 where type is disc, circle, square, decimal, decimal-leading-zero,
lower-roman, upper-roman, lower-alpha, upper-alpha, lower-greek,
upper-greek, or none.

• To insert a graphic image as a list marker, use the property

list-style-image: url(url);

where url is the URL of the graphic image file.
• To set the position of list markers, use the property

list-style-position: position;

where position is inside or outside.
• To define all of the list style properties in a single style, use the property

list-style: type url(url) position;

R
E
FE

R
E
N
C
E

To use an image for a list marker:
w 1. Return to the tss_styles.css file in your editor.

w 2. At the top of the List Styles section, insert the following style rule:

article#about_tss ul {
 list-style-image: url(runicon.png);
}

Figure 2–35 highlights the style rule to use the runicon.png file as the list
marker image.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 142

Notice that the list marker is aligned with the baseline of the first line in each list item.
This is the default placement for list marker images.

Setting the List Marker Position
CSS treats each list item as a block-level element, placed within a virtual box in which
the list marker is placed outside of the list text. You can change this default behavior
using the following list-style-position property

list-style-position: position;

where position is either outside (the default) or inside. Placing the marker
inside the virtual box causes the list text to flow around the marker. Figure 2–37
shows how the list-style-position property affects the flow of the text around
the bullet marker.

Figure 2–35 Displaying an image in place of a list marker

style rule applied to
the unordered list
within the about_tss
article

displays the
runicon.png
�le as the
list marker

w 3. Save your changes to the file and then open the tss_home.html file in your
browser. As shown in Figure 2–36 the items in the unordered list now use the
runicon.png image file as their list marker.

Figure 2–36 Unordered list with the runicon.png image marker

runicon.png
image file

© Courtesy Patrick Carey

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 143

All three of the list styles just discussed can be combined within the following
shorthand list-style property

list-style: type image position;

where type is the marker type, image is an image to be displayed in place of the
marker, and position is the location of the marker. For example, the following style
rule displays unordered lists using the marker found in the bullet.png image placed
inside the containing block:

ul {list-style: circle url(bullet.png) inside;}

If a browser is unable to display the bullet.png image, it uses a default circle marker
instead. You do not need to include all three style properties with the list style. Browsers
will set any property you omit to the default value.

Allison notes that there is a lot of unused space to the left of the items in the
navigation list now that the list markers have been removed. She wants you to move
the navigation list into that empty space. To do this, you’ll work with the CSS styles for
margin and padding space.

Working with Margins and Padding
Block-level elements like paragraphs or headings or lists follow the structure of the box
model in which the content is enclosed within the following series of nested boxes:

• the content of the element itself
• the padding space, which extends from the element’s content to the element’s border
• the border surrounding the padding space and marking the extent of the element
• the margin space comprised of the space between the element and the next page

element

Figure 2–38 shows a diagram of the box model for a sample paragraph discussing
athletes at Tri and Succeed Sports.

Figure 2–37 Values of the list-style-position property

list-style-position: outside; list-style-position: inside;

virtual box around
each list item

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 144

The browser’s internal style sheet sets the size of the padding, border, and margin
spaces but you can specify different sizes in your style sheet.

Setting the Padding Space
To set the width of the padding space, use the following padding property

padding: size;

where size is expressed in one of the CSS units of length or the keyword auto to let
the browser automatically choose the padding. For example, the following style rule
sets the padding space around every paragraph to 20 pixels:

p {padding: 20px;}

The padding space can also be defined for each of the four sides of the virtual box
by writing the padding property as follows

padding: top right bottom left;

where top is the size of the padding space along the top edge of the content, right
is padding along the right edge, bottom is the size of the bottom padding, and left
is the size of the padding along the left edge. Thus, the following style rule creates a
padding space that is 10 pixels on top, 0 pixels to the right, 15 pixels on the bottom,
and 5 pixels to the left:

p {padding: 10px 0px 15px 5px;}

To help remember this order, think of moving clockwise around the box, starting
with the top edge. While you don’t have to supply values for all of the edges, the values
you supply are interpreted based on how many values you supply. So, if you specify a
single value, it’s applied to all four sides equally. Two values set the padding spaces for
the top/bottom edges and the right/left edges. For example, the following style rule sets
the top and bottom padding spaces at 10 pixels and the right and left padding spaces at
5 pixels:

p {padding: 10px 5px;}

With three values, the padding spaces are set for the top, right/left, and bottom
edges. Thus, the following rule sets the size of the top padding space to 10 pixels, the
left/right spaces to 5 pixels, and the bottom space to 0 pixels:

p {padding: 10px 5px 0px;}

Your browser’s developer
tools will display a schematic
diagram of the box model
for each element on your
page so that you can
determine the size of the
padding, border, and
margin spaces.

Figure 2–38 The CSS box model

padding

border

margin

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 145

To define the padding space for one edge but not for the others, apply the following
style properties:

padding-top: size;
padding-right: size;
padding-bottom: size;
padding-left: size;

The following style rule sets the top padding of every paragraph to 10 pixels but it
does not specify a padding size for any of the three remaining edges:

p {padding-top: 10px;}

With ordered and unordered lists, the default browser style sets the left padding space
to 40 pixels in order to provide the extra space needed for the list markers. Removing the
list markers doesn’t remove this padding space. Allison suggests you recover this unused
space by reducing the size of the left padding space in the navigation list to 5 pixels.

To change the left padding used in the navigation list:
w 1. Return to the tss_styles.css file in your editor.

w 2. Locate the nav > ul style rule in the Navigation Styles section and add the
style padding-left: 5px;.

Figure 2–39 highlights the new style for all navigation lists.

Include the unit in any
style involving padding or
margin spaces.

Figure 2–39 Setting the size of the left padding space

sets the padding
on the left edge
to 5 pixels

selects unordered
lists within the nav
element

w 3. Save your changes to the file and then reload the tss_home.html file in your
browser. Verify that the entries in the navigation list in the left column have
been shifted to the left, which is the result of changing the left padding
setting to 5 pixels.

Now that you’ve worked with the padding space, you’ll examine how to work with
margins.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 146

Setting the Margin and the Border Spaces
Styles to set the margin space are similar to the padding styles. To set the size of the
margin around your block elements, use either of the following properties:

margin: size;

or

margin: top right bottom left;

The margins of individual sides are set using the style properties

margin-top: size;
margin-right: size;
margin-bottom: size;
margin-left: size;

where once again size is expressed in one of the CSS units of length or using the
keyword auto to have the browser automatically set the margin.

The size of the border space is set using the following border-width property

border-width: size;

or

border-width: top right bottom left;

or with the properties border-top-width, border-right-width,
border-bottom-width, and border-left-width used to specify the size of individual
borders. You’ll explore borders in more detail in Tutorial 4.

The navigation list that Alison created for the home page groups the list into those
links for pages within the Tri and Succeed Sports website and those links to external
websites. The list item at the start of each group is marked with the class value
newgroup. Alison suggests you increase the top margin above each group of links to
20 pixels in order to offset it from the preceding group. The groups will be easier to
recognize after the top margin for each group has been increased.

Setting Padding and Margin Space

• To set the padding space around all sides of the element, use

padding: size;

where size is the size of the padding using one of the CSS units of length.
• To set the margin space around all sides of the element, use

margin: size;

• To set padding or margin on only one side (top, right, bottom, or left) include the
name of the side in the property as

padding-side: size;
margin-side: size;

where side is top, right, bottom, or left.
• To set different padding or margins on each side of the element, enter the sides as

padding: top right bottom left;
margin: top right bottom left;

where top, right, bottom, and left are individual sizes for the associated side.

R
E
FE

R
E
N
C
E

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 147

w 3. Save your changes to the file and then reload the tss_home.html file in your
browser. Verify that the entries in the navigation list are now split into three
groups: the first group containing the links from the Tri and Succeed Sports
website; the second group containing links to websites on running, cycling,
and swimming; and the third group containing links to triathlon websites.

To increase the top margin:
w 1. Return to the tss_styles.css file in your editor.

w 2. Directly below the style rule for the nav > ul selector in the Navigation
Styles section, add the following rule:

nav > ul > li.newgroup {
 margin-top: 20px;
}

Figure 2–40 highlights the style rule setting the top margin value.

Figure 2–40 Setting the size of the top margin

sets the margin
space on the top
edge to 20 pixels

selects the list items
belonging to the
newgroup class found
within the unordered
navigation list

Alison has also noticed that the block quotes in the right column of the home page
have unused space to the left, leaving less space for the customer quotes. The default
browser style for the blockquote element offsets block quotes from the surrounding
text by setting the left and right margins to 40 pixels. To adjust this spacing and to make
the block quotes more readable, you’ll reduce the left/right margins to 5 pixels. You’ll
also increase the top/bottom margins to 20 pixels to better separate one customer quote
from another.

To change the margin space around block quotes:
w 1. Return to the tss_styles.css file in your editor.

w 2. Locate the style rule for the aside blockquote selector in the Aside and
Blockquote Styles section and insert the margin: 20px 5px; style into the
style rule for the aside blockquote selector.

Figure 2–41 displays the style to change the margin space around the
blockquote element.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 148

w 3. Save your changes to the file and then reload the tss_home.html file in your
browser. Figure 2–42 displays the revised appearance of the page with the
new padding and margin sizes applied to the navigation list and the block
quotes.

Figure 2–41 Setting the margin size for block quotes

selects block quotes
within the aside
element

sets the size of the
left and right margins
to 5 pixels

sets the size of the
top and bottom
margins to 20 pixels

Figure 2–42 Home page with new margins and padding

each new group
offset by a 20 pixel
top margin

left padding set to
5 pixels

each block quote
surrounded by a
20 pixel top/bottom
margin and a 5 pixel
left/right margin

© Monkey Business Images/Shutterstock.com; © Courtesy Patrick Carey

Alison thinks the revised appearance of the navigation list and the customer quotes
is a big improvement. However, she doesn’t like the underlining in the navigation
list. She would like the underlining to appear only when the user hovers the mouse
pointer over the link. She would also like a different list marker to appear next to each
list item in the classes section. You can make these changes using pseudo-classes and
pseudo-elements.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 149

Using Pseudo-Classes and Pseudo-Elements
Not everything that appears in the rendered page is marked up in the HTML file. For
example, a paragraph has a first letter or a first line but those are not marked as distinct
elements. Similarly, an element can be classified based on a particular property without
having a class attribute. The initial entry from an ordered list has the property of
being the first item, but no class attribute in the HTML file identifies it as such. These
elements and class attributes that exist only within the rendered page but not within
the HTML document are known as pseudo-elements and pseudo-classes. Despite not
being part of the HTML document, you can still write style rules for them.

Pseudo-Classes
A pseudo-class is a classification of an element based on its current status, position, or
use in the document. The style rule for a pseudo-class uses the selector

element:pseudo-class

where element is an element from the document and pseudo-class is the name of a
CSS pseudo-class. Pseudo-classes are organized into structural and dynamic classes. A
structural pseudo-class classifies an element based on its location within the structure of
the HTML document. Figure 2–43 lists the structural pseudo-classes supported in CSS.

Figure 2–43 Structural pseudo-classes

Pseudo-Class Matches
:root The top element in the document hierarchy (the html element)

:empty An element with no content

:only-child An element with no siblings

:first-child The first child of the parent element

:last-child The last child of the parent element

:first-of-type The first descendant of the parent that matches the specified type

:last-of-type The last descendant of the parent that matches the specified type

:nth-of-type(n) The nth element of the parent of the specified type

:nth-last-of-type(n) The nth from the last element of the parent of the specified type

:only-of-type An element that has no siblings of the same type

:lang(code) The element that has the specified language indicated by code

:not(selector) An element not matching the specified selector

For example, the first-of-type pseudo-class identifies the first element of a
particular type. The following selector uses this first-of-type pseudo-class to select
the first list item found within an unordered list:

ul > li:first-of-type

This selector will not select any other list item and it will not select the first list item if it
is not part of an unordered list.

Alison would like to modify the marker images used with the list of classes on the
home page. Currently the runicon.png image file is used as the marker for all three list
items. Instead, she would like to use the runicon.png image only for the first item, the
bikeicon.png image as the marker for the second list item, and the swimicon.png as the
third and last item’s maker. You can use the first-of-type, nth-of-type, and
last-of-type pseudo-classes to match the appropriate png file with each item.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 150

To apply pseudo-classes to an unordered list:
w 1. Return to the tss_styles.css file in your editor.

w 2. Go to the List Styles section at the bottom of the style sheet, delete the
article#about_tss ul style rule that sets the list style image marker and
replace it with the following three style rules:

article#about_tss ul li:first-of-type {
 list-style-image: url(runicon.png);
}

article#about_tss ul li:nth-of-type(2) {
 list-style-image: url(bikeicon.png);
}

article#about_tss ul li:last-of-type {
 list-style-image: url(swimicon.png);
}

Figure 2–44 highlights the three selectors and their associated style rules
using pseudo-classes with the unordered list items.

Figure 2–44 Applying pseudo-classes to list items

selects the
second list item

selects the last
list itemuses the swimicon.png

image for the last
marker

uses the bikeicon.png
image for the second
marker

uses the runicon.png
as the marker for the
�rst list item

selects the �rst
list item from
the unordered
list in the
about_tss
article

w 3. Save your changes to the file and then reload the tss_home.html file in
your browser. Figure 2–45 shows the new format of the unordered list with
different image markers used with each of the list items.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 151

Figure 2–45 List marker images for each item

swimicon.png
image

bikeicon.png
image

runicon.png
image

© Courtesy Patrick Carey

IN
SI
G
H
T

Exploring the nth-of-type Pseudo-class

The nth-of-type pseudo-class is a powerful tool for formatting groups of elements in
cyclical order. Cycles are created using the selector

nth-of-type(an+b)

where a is the length of the cycle, b is an offset from the start of the cycle, and n is
a counter, which starts at 0 and increases by 1 through each iteration of the cycle.
For example, the following style rules create a cycle of length 3 with the first list item
displayed in red, the second displayed in blue, and the third displayed in green, after
which the cycle repeats red-blue-green until the last item is reached:

li:nth-of-type(3n+1) {color: red;}
li:nth-of-type(3n+2) {color: blue;}
li:nth-of-type(3n+3) {color: green;}

When the cycle length is 1, the nth-of-type selector selects elements after the
specified offset has passed. The following style rule sets the text color to blue for all
list items starting from the 5th item

li:nth-of-type(n+5) {color: blue;}

CSS also supports the keywords even and odd so that two-length cycles can be more
compactly entered as

li:nth-of-type(even) {color: red;}
li:nth-of-type(odd) {color: blue;}

with a red font applied to the even-numbered list items and a blue font applied to the
odd-numbered items.
The same cyclical methods described above can be applied to the nth-child selector
with the important difference that the nth-child selector selects any child element of
the parent while the nth-of-type selector only selects elements of a specified type.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 152

Pseudo-classes for Hypertext
Another type of pseudo-class is a dynamic pseudo-class in which the class can change
state based on the actions of the user. Dynamic pseudo-classes are used with hypertext
links such as the visited class, which indicates whether the target of the link has
already been visited by the user. Figure 2–46 describes the dynamic pseudo-classes.

Figure 2–46 Dynamic pseudo-classes

Pseudo-Class Description
:link The link has not yet been visited by the user.

:visited The link has been visited by the user.

:active The element is in the process of being activated or clicked by the user.

:hover The mouse pointer is hovering over the element.

:focus The element is receiving the focus of the keyboard or mouse pointer.

For example, to display all previously visited links in a red font, you could apply the
following style rule to the a element:

a:visited {color: red;}

To change the text color to blue when the mouse pointer is hovered over the link,
apply the following rule:

a:hover {color: blue;}

In some cases, two or more pseudo-classes can apply to the same element.
For example, a hypertext link can be both visited previously and hovered over. In
such situations, the standard cascading rules apply with the pseudo-class listed last
applied to the element. As a result, you should enter the hypertext pseudo-classes
in the following order—link, visited, hover, and active. The link pseudo-class
comes first because it represents a hypertext link that has not been visited yet. The
visited pseudo-class comes next, for links that have been previously visited. The
hover pseudo-class follows, for the situation in which a user has moved the mouse
pointer over a hypertext link prior to clicking the link. The active pseudo-class is last,
representing the exact instant in which a link is activated.

Users with disabilities might interact with hypertext links through their keyboard
rather than through a mouse pointer. Most browsers allow users to press the Tab key to
navigate through the list of hypertext links on the page and to activate those links by
pressing the Enter key. A link reached through the keyboard has the focus of the page
and most browsers will indicate this focus by displaying an outline around the linked
text. You can substitute your own style by using the focus pseudo-class in the same
way that you used the hover pseudo-class.

The hover, active, and
focus pseudo-classes
also can be applied to
non-hypertext elements
to create dynamic page
elements that change their
appearance in response to
user actions.

Using Dynamic Pseudo-Class to Create Hypertext

• To create a rollover for a hypertext link, use the pseudo-classes

a:link
a:visited
a:hover
a:active

where the link pseudo-element matches unvisited link, visited matches
previously visited links, hover matches links that have the mouse pointer hovering
over them, and active matches links that are in the action of being clicked.

R
E
FE

R
E
N
C
E

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 153

The default browser style is to underline all hypertext links; displaying the links in a
blue font with previously visited links in purple. Alison wants the links in the navigation
list to appear in a medium gray font with no distinction between unvisited and
previously visited links. She does not want the hypertext underlined in the navigation
list except when the link is hovered over or active. She also wants hovered or active
links to appear in purple. Add these style rules to the style sheet now.

To apply pseudo-classes to a hypertext links:
w 1. Return to the tss_styles.css file in your editor.

w 2. Go to the Navigation Styles section and add the following style rules for
hypertext links that have been visited or not visited.

nav > ul > li > a:link, nav > ul > li > a:visited {
 color: rgb(151, 151, 151);
 text-decoration: none;
}

w 3. Add the following new style rules for links that are being hovered over or are
active:

nav > ul > li > a:hover, nav > ul > li > a:active {
 color: rgb(255, 64, 255);
 text-decoration: underline;
}

Figure 2–47 highlights the style rules for hypertext links in the navigation list.

Figure 2–47 Using pseudo-classes with hypertext links

sets the text color to
medium gray

adds underlining to the
hypertext link

removes underlining
from the hypertext link

selects links in the navigation
list that either have been
visited (a:visited) or haven’t
been visited (a:link)

sets the text color to
medium purple

selects links that the user is
hovering over (a:hover) or
that are currently being
activated (a:active)

w 4. Save your changes to the file and then reload the tss_home.html file in your
browser and hover your mouse pointer over the links in the navigation list.
Figure 2–48 shows the hover effect applied to the link to the TSS swimming
class.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 154

Pseudo-Elements
Another type of pseudo selector is a pseudo-element, which is an object that exists
only in the rendered page. For example, a paragraph is an element that is marked in
the HTML file, but the first line of that paragraph is not. Similarly, the first letter of that
paragraph is also not a document element, but it certainly can be identified as an object
in the web page. Pseudo-elements can be selected using the following CSS selector

element::pseudo-element

where element is an element from the HTML file and pseudo-element is the name of
a CSS pseudo-element. Figure 2–49 describes the pseudo-elements supported in CSS.

Figure 2–48 Style applied to a hovered link

link color changed to
medium gray and
underlining is removed

link changes color
and decoration in
response to the
hover event

© Monkey Business Images/Shutterstock.com

PR
O
SK

IL
LS

Problem Solving: Hover with Touch Devices

The hover pseudo-class was written to apply only to user interfaces that support mice
or similar pointing devices. Technically, there is no hover event with touch devices, such
as mobile phones and tablets. However, most mobile devices will still respond to a
hover style by briefly applying the style when the user initially touches a hypertext link.

Many mobile devices also apply a “double tap” response so that initially touching
a page element invokes the hover style and then immediately tapping the page
element a second time invokes the click event. This technique is most often used for
web pages that use the hover event to reveal hidden menus and page objects.

With the increasing importance of touch devices, a good guiding principle is that
you should avoid making support for the hover style necessary for the end-user. Hover
effects should be limited to enhancing the user experience but they should not be a
critical component of that experience.

Figure 2–49 Pseudo-elements

Pseudo-Element Description
::first-letter The first letter of the element text

::first-line The first line of the element text

::before Content inserted directly before the element

::after Content inserted directly after the element

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 155

For example, the following style rule matches the first displayed line of every
paragraph in the rendered web page and transforms the text of that line to uppercase
letters:

p::first-line {text-transform: uppercase;}

The following style rule matches the first letter of every paragraph within a block
quote and displays the character in a Times New Roman font that is 250% larger than
the surrounding text:

blockquote p::first-letter {
 font-family: ‘Times New Roman’, Times, serif;
 font-size: 250%;
}

The double colon separator “::” was introduced in CSS to differentiate pseudo-
elements from pseudo-classes. Older browsers use the singe colon “:” for both pseudo-
elements and pseudo-classes.

Generating Content with CSS
Another type of pseudo-element is used to generate content for the web page. New
content can be added either before or after an element using the following before and
after pseudo-elements

element::before {content: text;}
element::after {content: text;}

where text is the content to be inserted into the rendered web page. The content
property supports several types of text content as described in Figure 2–50.

Figure 2–50 Values of the content property

Value Description
none Sets the content to an empty text string

counter Displays a counter value

attr(attribute) Displays the value of the selector’s attribute

text Displays the specified text

open-quote Displays an opening quotation mark

close-quote Displays a closing quotation mark

no-open-quote Removes an opening quotation mark, if previously specified

no-close-quote Removes a closing quotation mark, if previously specified

url(url) Displays the content of the media (image, video, etc.) from the file
located at url

For example, the following style rules combine the before and after pseudo-
elements with the hover pseudo-class to insert the “<” and “>” characters around
every hypertext link in a navigation list:

nav a:hover::before {content: "<";}
nav a:hover::after {content: ">";}

Note that these style rules use both the hover pseudo-class and the before/after
pseudo-elements so that the content is only inserted in response to the hover event.

If you want to insert a special symbol, you have to insert the code number for
that symbol using text string"\code" where code is the code number. For example,
if instead of single angled brackets as indicated above, you wanted to show double

You cannot use CSS to
insert HTML markup tags,
character references, or
entity references. Those
can only be done within
the HTML file.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 156

angled brackets, « and », you would need to use the Unicode character code for these
characters, 00ab and 00bb respectively. To insert these characters before and after a
navigation list hypertext link, you would apply the following style rules:

nav a:hover::before {content: "\00ab";}
nav a:hover::after {content: "\00bb";}

In addition to adding content to an element as just discussed, you can also insert
content that is a media file, such as an image or video clip, by using the following
content property

content: url(url);

where url is the location of the media file. For example, the following style rule
appends the image file uparrow.png to any hypertext link in the document when it is
hovered over:

a:hover::after {content: url(uparrow.png);}

An image file or any content generated by the style sheet should not consist of
material that is crucial to understanding your page. Instead, generated content should
only consist of material that supplements the page for artistic or design-related reasons.
If the generated content is crucial to understanding the page, it should be placed in the
HTML file in the first place.

Displaying Attribute Values
The content property can also be used to insert an attribute value into the rendered
web page through the use of the following attr() function

content: attr(attribute);

where attribute is an attribute of the selected element. One application of the
attr() function is to add the URL of any hypertext link to the link text. In the following
code, the value of the href attribute is appended to every occurrence of text marked
with the a element:

a::after {
 content: "(" attr(href) ")";
}

Notice that URL is enclosed within opening and closing parentheses. Thus, a hypertext
link in an HTML document, such as

Triathlons

will be displayed in the rendered web page as:
Triathlons (http://www.triathlon.org)

This technique is particularly useful for printed output in which the author wants to have
the URLs of all links displayed on the printed page for users to read and have as references.

Inserting Content using CSS

• To insert content directly before a page element, use the style rule

element::before {content: text;}

where element is the page element and text is the content to be inserted before the
element.

• To insert content directly after a page element, use the style rule

element::after {content: text;}

R
E
FE

R
E
N
C
E

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 157

Inserting Quotation Marks
The blockquote and q elements are used for quoted material. The content of these
elements is usually placed in quotation marks and, while you can insert these quotation
marks within the HTML file, you can also insert decorative opening and closing
quotation marks using the content property with the following values:

content: open-quote;
content: close-quote;

The actual characters used for the open and closing quotation marks are defined for
the selector with the following quotes property

quotes: "open1" "close1" "open2" "close2" …;

where open1 is the character used for the opening quotation mark and close1 is
character used for the closing quotation mark. The text strings open2, close2, and so
on are used for nested quotation marks. In the example that follows, character codes
are used to define the curly quotes for opening and closing quotation marks

quotes: "\201C" "\201D" "\2018" "\2019";

where the character code 201C returns the opening curly double quote “, the code
201D returns the closing curly double quote ”, the code 2018 returns the nested
opening single quote ’, and 2019 provides the closing single quote ’.

Alison suggests that you use decorative quotes for the customer comments on the Tri
and Succeed Sports home page. You display curly quotes in a bold Times New Roman
font with a font size of 1.6em (which is slightly bigger than the font size of the block
quote text.)

Quotation marks
generated by CSS
are often used with
international pages in
which different languages
require different quotation
mark symbols.

To insert quotes into block quotes:
w 1. Return to the tss_styles.css file in your editor.

w 2. Go to the Aside and Blockquote Styles section and, within the style rule for
the aside blockquote selector, add the following quotes property to use
curly quotes for the quotation marks:

quotes: "\201C" "\201D";

w 3. Add the following style rules to insert quotation marks before and after each
block quote in the aside element:

aside blockquote::before {
 content: open-quote;
 font-family: ‘Times New Roman’, Times, serif;
 font-size: 1.6em;
 font-weight: bold;
}

aside blockquote::after {
 content: close-quote;
 font-family: ‘Times New Roman’, Times, serif;
 font-size: 1.6em;
 font-weight: bold;
}

Figure 2–51 highlights the styles to add curly quotes before and after each
block quote.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 158

Figure 2–51 Adding quotation marks to block quotes

character codes for the
“ and ” curly quotes

before pseudo-element

after pseudo-elementformat applied to the
opening and closing
quotation marks

displays the close
quote character after
each block quote

displays the open
quote character before
each block quote

w 4. Save your changes to the file and then reload the tss_home.html file in your
browser. As shown in Figure 2–52, bold quotation marks have been added
before and after each customer comment.

Figure 2–52 Quotation marks added to reviewer comments

opening and closing
quotes enclose each
comment

© Monkey Business Images/Shutterstock.com

Validating Your Style Sheet
As with your HTML code, you can submit your CSS style sheet for validation, either to
a web content management system or to the validation site at the W3C. You decide to
test your CSS code for possible errors by using a validator. First add a deliberate error
to the code so you can see how the CSS validator works.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 159

Saturation and lightness in the HSL color value must be entered as percentages, such as
72%, rather than numbers, such as 72. The validator caught this mistake and reported it as
an error. Note that unlike HTML errors, browsers are very unforgiving about CSS errors. If
you make a mistake in your CSS files, the browser will ignore the style rule with the syntax
error and resort to its own browser style sheet if necessary to render the page object.

To introduce an error to the tss_styles.css file:
 1. Scroll up and change the background color value for the html element

from hsl(27, 72%, 72%) to hsl(27, 72, 72) (deleting the % symbols from the
saturation and lightness values).

 2. Save your changes to the file.

Using the validator at the W3C website or one built into your editor, validate the
tss_styles.css file to see the impact of this change.

To validate the code in the tss_styles.css file:
w 1. Open your browser to the W3C validator at https://jigsaw.w3.org/css-validator/.

w 2. Click the Validate by File Upload or By file upload tab within the web page.

w 3. Click the Choose File or Browse button in the web form and locate the
tss_styles.css file from the html02 c tutorial folder. Select the file and click
Open to load the file into the validator.

w 4. Click the Check button to validate the file. See Figure 2–53.

Figure 2–53 CSS validation report

error due to using a value
of 72 in the HSL color value
rather than 72%

To fix the error in the tss_styles.css file:
w 1. Return to the tss_styles.css file in your editor.

w 2. Change the background color value for the html element back to hsl(27,
72%, 72%).

w 3. Save your changes to the file.

w 4. Return in your browser to the W3C validator at https://jigsaw.w3.org/css-
validator/ or run the validator with your HTML editor.

w 5. Retest the tss_styles.css file, verifying that no errors or warnings are reported.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 160

Alison is pleased with the work you’ve done on the typography and design of the
Tri and Succeed Sports website. Alison will continue to develop the new version of the
website and will get back to you with future changes and design ideas.

PR
O
SK

IL
LS

Teamwork: Managing a Style Sheet

Your style sheets often will be as long and as complex as your website content. As the
size of a style sheet increases, you might find yourself overwhelmed by multiple style
rules and definitions. This can be an especially critical problem in a workplace where
several people need to interpret and sometimes edit the same style sheet. Good
management skills are as crucial to good design as a well-chosen color or typeface
are. As you create your own style sheets, here are some techniques to help you
manage your creations:

• Use style comments throughout, especially at the top of the file. Clearly describe the
purpose of the style sheet, where it’s used, who created it, and when it was created.

• Because color values are not always immediately obvious, include comments that
describe your colors. For example, annotate a color value with a comment such as
“body text is tan”.

• Divide your style sheet into sections, with comments marking the section headings.
• Choose an organizing scheme and stick with it. You may want to organize style

rules by the order in which they appear in your documents, or you may want to
insert them alphabetically. Whichever you choose, be consistent and document the
organizing scheme in your style comments.

• Keep your style sheets as small as possible, and break them into separate files if
necessary. Use one style sheet for layout, another for text design, and perhaps
another for color and graphics. Combine the style sheets using the @import rule,
or combine them using the link element within each page. Also, consider creating
one style sheet for basic pages on your website, and another for pages that deal
with special content. For example, an online store could use one style sheet (or set
of sheets) for product information and another for customer information.

By following some of these basic techniques, you’ll find your style sheets easier to
manage and develop, and it will be easier for your colleagues to collaborate with you
to create an eye-catching website.

R
E
V
IE

W

Session 2.3 Quick Check

 1. Which style will display a list with lowercase letters as the list marker?
a. list-style-type: lower-letter;
b. list-style-case: lower;
c. list-style; lower-case;
d. list-style-type: lower-alpha;

 2. Which style rule will display all unordered lists using the star.png image file
placed inside the virtual box?
a. ul { list-style-image: star.png;

 list-position: inside;
}

b. ul { list-style-image: url(star.png);
 list-style-position: inside;
}

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 161

c. ul { list-image: url(star.png);
 list-position: inside;
}

d. ul { list-style-listImage: star.png;
 inside: true;
}

 3. Which style displays all previously visited hypertext links in gray?
a. a:visited {

 color: gray;
}

b. a:previousVisit {
 color: gray;
}

c. a:link {
 color: gray;
}

d. a#visited {
 color: gray;
}

 4. What is the size of the left padding space in the style property padding-spacing:
10px 5px 8px; ?
a. 10px
b. 5px
c. 8px
d. The size is not specified

 5. Which of the following styles sets the size of the left margin to 30 pixels?
a. margin: 30px;
b. margin: 10px 30px;
c. margin: 10px 30px 5px;
d. All of the above

 6. The first line of a paragraph is referenced using which selector?
a. p#first-line;
b. p.first-line;
c. p > first-line;
d. p::first-line;

 7. The space at the outer extent of an element is found within the element’s
a. content
b. padding
c. border
d. margin

 8. Which style rule will insert the text string “***” before every paragraph belonging
to the Reviews class?
a. p#Reviews {content: “***”;}
b. p#Reviews {before: “***”;}
c. p.Reviews.before {content: “***”;}
d. p.Reviews::before {content: “***”;}

 9. Which style rule will underline the last item in an ordered list?
a. ol li:last {text-decoration: underline; }
b. ol li:last-of-type {text-decoration: underline;}
c. ol li#last {text-decoration: underline;}
d. ol li.last-of-type {text-decoration: underline;}

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 162

Coding Challenge 1

Data Files needed for this Coding Challenge: code2-1_txt.html, code2-1_txt.css

Use CSS to format the appearance of a web page containing several literary quotes marked as
blockquote elements. Figure 2–54 shows a preview of the formatted page.C

O
D

E

Figure 2–54 Coding Challenge 2-1 example page

Do the following:

 1. Open the code2-1_txt.html and code2-1_txt.css files from the html02 c /code1 folder. Enter
your name and the date in each document and save the files as code2-1.html and code2-1.css
respectively.

 2. Go to the code2-1.html file in your editor. Within the head section insert a link element linking
the page to the code2-1.css file. Review the contents of the file and then save your changes.

 3. Go to the code2-1.css file in your editor.
 4. Create a style rule for the h1 element that sets the font-size property to 3.5em and sets the line-

height property to 0em.
 5. Create a style rule for h1 and h2 elements that applies the fonts Helvetica, Arial, sans-serif to the

font-family property and sets the letter-spacing property to 0.1em.
 6. Create a style rule for the blockquote element that sets the color property to the value hsl(30,

85%, 45%) and sets the font-size property to 1.5em.
 7. Create a style for the first letter of the blockquote element that sets the font-size property to

1.5em.
 8. Create a style for the footer element that:

a) Centers the text by setting the text-align property to center,
b) Sets the font-size property to 2em,
c) Sets the color property to white, and
d) Sets the background-color property to the color value hsl(30, 85%, 45%).

 9. Save your changes to the file.
 10. Test the code2-1.html file in your browser, verifying that the page resembles that shown in

Figure 2–54 (aside from the line length which depends on the width of your browser window.)
 11. Submit the completed file to your instructor.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 163

Coding Challenge 2

Data Files needed for this Coding Challenge: code2-2_txt.html, code2-2_txt.css, code2-2_layout.css

Figure 2–55 shows part of a web page for a website on sports. Use CSS to complete the style rules
for the document.C

O
D

E

Figure 2–55 Coding Challenge 2-2 example page

Do the following:

 1. Open the code2-2_txt.html and code2-2_txt.css files from the html02 c /code2 folder. Enter
your name and the date in each document and save the files as code2-2.html and code2-2.css
respectively.

 2. Go to the code2-2.html file in your editor. Within the head section insert link elements linking
the page to the code2-2_layout.css and code2-2.css files. Review the contents of the file and
then save your changes.

 3. Go to the code2-2.css file in your editor.
 4. For h1 headings that are direct children of the header element create a style rule to:

a) Set the text-align property to center,
b) Set the font family to Impact or sans-serif, and
c) Set the font size to 3em.

 5. For h1 headings that are direct children of the nav element:
a) Set the font size to 1.2em,
b) Set the font color to white,
c) Set the background color to black, and
d) Set the text-align property to center.

 6. For h1 headings that are direct children of the article element, set the font size to 2em and set
the font family to cursive.

 7. For ul elements nested within the nav element, set the list style type to none and set the line
height to 2em.

 8. For all hypertext links in the document, set the font color to ivory and set the text decoration to
none.

 9. For all hyperlinks that are hovered over, set the text decoration to underline.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 164

 10. Save your changes to the style sheet file and then open code2-2.html in your browser, verifying
that the appearance resembles that shown in Figure 2–55. Verify that when you hover your
mouse pointer over the list of sports websites, the text of the link is underlined.

 11. Submit the completed file to your instructor.

Coding Challenge 3

Data Files needed for this Coding Challenge: code2-3_txt.html, code2-3_txt.css, code2-3_layout.css,
code2-3_img.png

An article describing the fresco School of Athens by the Renaissance painter Raphael is shown in
Figure 2–56. Much of the HTML and CSS code has been created for you. Complete the web page
design by adding the missing CSS styles.

C
O

D
E

Figure 2–56 Coding Challenge 2-3 example page

Do the following:

 1. Open the code2-3_txt.html and code2-3_txt.css files from the html02 c /code3 folder. Enter
your name and the date in each document and save the files as code2-3.html and code2-3.css
respectively.

 2. Go to the code2-3.html file in your editor. Within the head section insert link elements linking
the page to the code2-3_layout.css and code2-3.css files. Review the contents of the file and
then save your changes.

 3. Go to the code2-3.css file in your editor.
 4. For the html element, set the left padding space to 30 pixels and set the background color to the

value hsla(40, 80%, 75%, 0.5).
 5. Display all h1 and h2 headings in a Helvetica, Arial, or sans-serif font.
 6. For all h1 headings:

a) Set the font size to 3em,
b) Set the line height to 1em, and
c) Set the bottom margin to 0.

So
ur

ce
: W

ik
im

ed
ia

 C
om

m
on

s

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 165

 7. For all h2 headings:
a) Set the top margin to 0,
b) Set the font style to italic, and
c) Set the font weight to normal.

 8. For all inline images, set the top and right margins to 0, the bottom margin to 10px, and the left
margin to 20px.

 9. For all paragraphs, set the font size to 1.4em and set the text indent to 1em.
 10. For the first paragraph, using the first-of-type pseudo-class, set the text indent to 0.
 11. For the first line of the first paragraph, set the font variant to small-caps. (Hint: Use the p:first-of-

type::first-line pseudo-class and pseudo-element as the selector.)
 12. Save your changes to the file.
 13. View the page in your browser to verify that page resembles Figure 2–56.
 14. Submit the completed file to your instructor.

Coding Challenge 4

Data Files needed for this Coding Challenge: code2-4_txt.html, code2-4_txt.css,
code2-4_layout.css, code2-4_img.png

You have been given a style sheet file containing several errors. Locate all of the errors and fix the
file.

D
E

B
U

G

Figure 2–57 Coding Challenge 2-4 example page

©
 C

ou
rt

es
y

Pa
tr

ic
k

C
ar

ey

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 166

Do the following:

 1. Open the code2-4_txt.html and code2-4_txt.css files from the html02 c /code4 folder. Enter
your name and the date in each document and save the files as code2-4.html and code2-4.css
respectively.

 2. Go to the code2-4.html file in your editor. Within the head section insert link elements linking
the page to the code2-4_layout.css and code2-4.css files. Review the contents of the file and
then save your changes.

 3. View the code2-4.html file in your browser and compare it to Figure 2–57. Does it match the
figure?

 4. Test the code2-4.css file in the CSS validator at the W3C website or with another validator of
your choice. Make a note of the errors reported as a guide to debugging the page. There are six
syntax errors in the CSS file.

 5. Fix all six errors you discover and then resubmit the saved stylesheet file to validation until it
passes with no warnings or errors.

 6. View the page in your browser to verify that your page resembles Figure 2–57.
 7. Submit the completed file to your instructor.

Review Assignments

Data Files needed for the Review Assignments: coach_styles_txt.css, tss_coach_txt.html, 1 CSS file,
5 PNG files, 1 TTF file, 1 WOFF file

Alison has created another page for the Tri and Succeed Sports website providing biographies of the
coaches at the club. She has already written the page content, acquired image files, and created a
style sheet for the page layout. She wants you to finish the design of the page by developing a style
sheet for the page’s color scheme and typography. A preview of the page you’ll design is shown in
Figure 2–58.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 167

Complete the following:

 1. Use your HTML editor to open the tss_coach_txt.html and coach_styles_txt.css files from the
html02 c review folder. Enter your name and the date in the comment section of each file, and
save them as tss_coach.html and coach_styles.css respectively.

 2. Go to the tss_coach.html file in your editor and then within the document head, create links to
the coach_layout.css and coach_styles.css style sheets.

 3. Take some time to study the content and structure of the file and then close the document,
saving your changes.

Figure 2–58 TSS coaches profile page

© Ysbrand Cosijn/Shutterstock.com; © Charles T. Bennett/Shutterstock.com; © ostill/Shutterstock.com;
© eurobanks/Shutterstock.com; © wavebreakmediaShutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 168

 4. Go to the coach_styles.css file in your editor. At the top of the file and before the comment
section do the following:
a. Insert an @charset rule to set the character encoding for the file to utf-8.
b. Use the @font-face rule to define a web font named Nobile, which is based on the nobile-

webfont.woff file and, if that format is not supported, on the nobile-webfont.ttf file.
 5. Go to the Main Structural Styles section and do the following:

a. Change the background color of the browser window by creating a style rule for the html
element that sets the background color to the value hsl(27, 72%, 72%).

b. For the body element, create a style rule to set the text color to the value rgb(91, 91, 91), the
background color to ivory, and body text to the font stack: Verdana, Geneva, sans-serif.

 6. Create a style rule for the body > footer address selector containing the following styles:
a. The background color set to the value rgb(222, 128, 60)
b. The font color to white and then to the semitransparent value rgba(255, 255, 255, 0.6)
c. The font style to normal displayed in bold small capital letters with a font size of 0.9em and a

line height of 3em using the font stack Nobile, Verdana, Geneva, sans-serif
d. The text horizontally centered on the page

 7. Go to the Heading Styles section and create a style rule for every h1 heading that displays the
text with a normal font weight from the font stack: Nobile, Verdana, Geneva, sans-serif. Set the
letter spacing to 0.2em and the margin to 0 pixels.

 8. Alison wants you to format the main h1 heading at the top of the page. Create a style rule for the
section#tss_coaches h1 selector that sets the font size to 2.5em with a color value of hsl(27,
82%, 85%) and background color of hsl(27, 6%, 21%). Set the left padding space to 10 pixels.

 9. Alison also wants you to format the h2 headings for each coach. Create a style rule for the
article.coach_bio h2 selector that sets the font size to 1.6em with normal weight and the
font color to rgb(240, 125, 0).

10. Alison has inserted a comment from an athlete about the coaches. Format this comment by
going to the Blockquote Styles section and creating a style rule for the aside blockquote
selector to do the following:
a. Set the font size to 0.95em using the font stack ‘Comic Sans MS’, cursive.
b. Set the font color to rgb(222, 128, 60) and use a semi-transparent background color with the

value rgba(255, 2555, 255, 0.75).
c. Set the padding space to 10 pixels.
d. Define opening and closing quotes for the element using the Unicode character 201C and

201D respectively.
11. Format the appearance of the opening quotes by creating a style rule for the aside

blockquote::before selector to write a boldfaced open quote before the block quote with the
font size set to 1.6em from the font stack ‘Times New Roman’, Times, serif.

12. Format the appearance of the closing quotes by creating a style rule for the aside
blockquote::after selector to write a boldfaced open quote after the block quote with the
font size once again set to 1.6em from the font stack ‘Times New Roman’, Times, serif.

13. Next, you’ll format the appearance of the navigation list by going to the Navigation Styles
section and creating a style rule for body > nav selector that sets the text of the navigation list
in a 0.8em font size with a line height of 2em.

14. Create a style rule for the nav > ul selector that removes the list marker and sets the left
padding to 5 pixels.

15. Alison wants to break up the long list of links in the navigation list. Create style rules for the 6th
and 16th li elements within the nav > ul selector that sets the size of the top margin of those
items to 20 pixels.

16. For every previously visited or unvisited hypertext link within the nav > ul > li selector, set the
text to the RGB color value rgb(151, 151, 151) and remove the underlining from the text link.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 169

17. For every hovered or active hypertext link within the nav > ul > li selector, set the text color
to RGB value rgb(222, 128, 60) and underline the hypertext link.

18. Go to the Paragraph Styles section and insert a style rule that sets the top margin and bottom
margin to 10 pixels, the right margin to 30 pixels, and the left margin to 0 pixels for every
paragraph in the document.

19. Every coach has a list of accomplishments. Go to the List Styles section and insert a style rule for
the article.coach_bio > header > ul selector that displays the check.png file as the list
marker and sets the margin space to 0 pixels, except for the bottom margin, which should be set
to 10 pixels.

20. Save your changes to the style sheet and then open the tss_coach.html file in your browser.
Verify that the color and typography match that shown in Figure 2–58. Verify that when
you hover the mouse pointer over the links in the navigation list the text is displayed in an
underlined orange font.

Case Problem 1

Data Files needed for this Case Problem: ph_plays_txt.html, ph_styles_txt.css, 1 CSS file,
1 PNG file, 3 TTF files, 3 WOFF files

Philip Henslowe Classic Theatre Randall Chen is the media director for the Philip Henslowe Classic
Theatre, a regional classical theatre in Coeur d’Alene, Idaho. You’ve been asked to work on the
website design for the company. The first page you’ll manage lists the plays for next summer’s
repertoire. A preview of the page is shown in Figure 2–59.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 170

The content and layout of the page has already been created for you. Your job will be to create a
style sheet for the typography of the page.

Do the following:

 1. Using your editor, open the ph_plays_txt.html and ph_styles_txt.css files from the html02 c
case1 folder. Enter your name and the date in the comment section of each file, and save them
as ph_plays.html and ph_styles.css respectively.

 2. Go to the ph_plays.html file in your HTML editor, and within the document head create links
to the ph_layout.css and ph_styles.css style sheet files. Take some time to study the content and
structure of the document and then close the file, saving your changes.

Figure 2–59 List of Plays at the Philip Henslowe Classic Theatre

© Christian Bertrand/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 171

 3. Go to the ph_styles.css file in your editor, and at the top of the file before the comment section,
define the character encoding used in the document as utf-8.

 4. Randall has several web fonts that he wants used for the titles of the plays produced by the
company. Add the following web fonts to the style sheet, using @font-face rules before the
comment section:
a. The Champagne font using the cac_champagne.woff and cac_champagne.ttf files
b. The Grunge font using the 1942.woff and 1942.ttf files
c. The Dobkin font using the DobkinPlain.woff and DobkinPlain.ttf files

 5. Go to the Structural Styles section, creating a style rule that sets the background color of the
html element to the value hsl(91, 8%, 56%).

 6. Add a style rule for the body element to set the background color to the value hsl(58, 31%, 84%)
and the font of the body text to the font stack: ‘Palatino Linotype’, ‘Book Antiqua’, Palatino, serif.

 7. Create a style rule for the header element that sets the background color to black.
 8. Create a style rule for every paragraph that sets the margin space to 0 pixels and the padding

space to 5 pixels on top and 25 pixels on the right, bottom, and left.
 9. For paragraphs that are direct children of the body element, create a style rule that sets the font

size to 1.1em and horizontally centers the paragraph text.
 10. Create a style rule for the address element that sets the font style to normal with a font size of

0.9em, horizontally centered on the page. Set the top and bottom padding to 10 pixels.
 11. Next, you’ll format the appearance of navigation lists on the page. Go to the Navigation Styles

section and create a style rule for the nav a selector that displays the hypertext links using the
font stack ‘Trebuchet MS’, Helvetica, sans-serif, and sets the top and bottom padding to 10
pixels.

 12. For every unvisited and previously visited hypertext link within a nav element, set the text color
to white, remove underlining from the link text, and set the background color to the semi-
transparent value hsla(0, 0%, 42%, 0.4).

 13. For every active or hovered link in a nav element, set the text color to the semi-transparent value
hsla(0, 0%, 100%, 0.7) and set the background color to the semi-transparent value hsl(0, 0%,
42%, 0.7).

 14. Go to the Section Styles section of the style sheet. In this section, you’ll define the appearance of
the four playbills. You’ll start with the h1 headings from the sections. Create a style rule for the
section.playbill h1 selector that sets the font size to 3em and the font weight to normal. Set
the margin space around the h1 headings to 0 pixels. Set the padding space to 20 pixels on top,
0 pixels on the right, 10 pixels on the bottom, and 20 pixels on the left.

 15. Each playbill section is identified by a different ID value ranging from play1 to play4. Create
style rules that set a different background color for each playbill using the following background
colors:
ID: play1 set to hsl(240, 100%, 88%)
ID: play2 set to hsl(25, 88%, 73%)
ID: play3 set to hsl(0, 100%, 75%)
ID: play4 set to hsl(296, 86%, 86%)

 16. Each playbill section heading will also have a different font. For the h1 headings within the four
different playbills, create style rules to apply the following font stacks:
ID: play1 set to Champagne, cursive
ID: play2 set to Grunge, ‘Times New Roman’, Times, serif
ID: play3 set to Impact, Charcoal, sans-serif
ID: play4 set to Dobkin, cursive

 17. Randall has put the author and the director of each play within a definition list. Format these
definition lists now by going to the Definition List Styles section and creating a style rule for the
dt element that sets the font size to 1.3em, the font weight to bold, and the font color to the
semi-transparent value hsla(0, 0%, 0%, 0.4).

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 172

Figure 2–60 Civil War History home page

 18. Create a style rule for every dd element to set the font size to 1.3em, the left margin space to 0
pixels, and the bottom margin space to 10 pixels.

 19. Save your changes to the file and then open the ph_plays.html file in your browser. Verify that
the typography and colors used in the document match those shown in Figure 2–54. Also, verify
that, when you hover the mouse pointer over an item in the navigation lists for the entire page
and for each play, the background color of the link becomes more opaque.

Case Problem 2

Data Files needed for this Case Problem: cw_class_txt.html, cw_styles_txt.css, 1 CSS file,
2PNG files

The Civil War and Reconstruction Peter Craft is a professor of military history at Mountain Crossing
University. The university is offering a series of online courses, one of which is “The Civil War and
Reconstruction” taught by Professor Craft. He has developed the online content and has had a
colleague help with the page layout. You’ve been asked to complete the project by creating text and
color styles. A preview of the sample page is shown in Figure 2–60.

Library of Congress, Prints & Photographs Division, Reproduction number LC-DIG-cwpb-01451 (digital file from original
neg. of left half) LC-DIG-cwpb-01450 (digital file from original neg. of right half) LC-B8184-2288 (b&w film copy neg.);
© Courtesy Patrick Carey

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 2 Getting Started with CSS | HTML 5 and CSS HTML 173

Complete the following:

 1. Using your editor, open the cw_class_txt.html and cw_styles_txt.css files from the html02 c
case2 folder. Enter your name and the date in the comment section of each file, and save them
as cw_class.html and cw_styles.css respectively.

 2. Go to the cw_class.html file in your HTML editor. Within the document head, create a link to
the cw_styles.css style sheet file.

 3. Using the Google Fonts website, locate the Limelight font. Copy the code for the
link element to use this font and paste the copied code to the document head in the cw_class
.html file.

 4. Study the content and structure of the cw_class.html file and then close the file, saving your
changes.

 5. Go to the cw_styles.css file in your editor. At the top of the file, define the character encoding as
utf-8.

 6. On the next line, use the @import rule to import the contents of the cw_layout.css
file into the style sheet.

 7. Go to the Structural Styles section. Within that section create a style rule to set the background
color of the browser window to rgb(151, 151, 151).

 8. Create a style rule to set the background color of the page body to rgb(180, 180, 223) and set
the body text to the font stack: Verdana, Geneva, sans-serif.

 9. Display all h1 and h2 headings with normal weight.
 10. Create a style rule for every hypertext link nested within a navigation list that removes

underlining from the text.
 11. Create a style rule for the footer element that sets the text color to white and the background

color to rgb(101, 101, 101). Set the font size to 0.8em. Horizontally center the footer text, and
set the top/bottom padding space to 1 pixel.

 12. Next, you’ll format the body header that displays the name of the university. Go to the Body
Header Styles section and, for the body > header selector, create a style rule that sets the
background color to rgb(97, 97, 211).

 13. The university name is stored in an h1 heading. Create a style rule for the h1 heading that is
a direct child of the body header that sets the font size to 4vw with the color value rgba(255,
255, 255, 0.8). Display the text with the font stack: Limelight, cursive. Set the margin space to 0
pixels.

 14. The last word of the h1 heading text is enclosed within a span element. Create a style rule for
the span element nested within the h1 heading that is nested within the body header, setting the
text color to rgba(255, 255, 255, 0.4).

 15. Go the Navigation Styles section. In this section, you format the navigation list that has the ID
mainLinks. For hypertext links within this navigation list, set the top and bottom padding space
to 5 pixels.

 16. For previously visited and unvisited links within the mainLinks navigation list, create a style rule
that displays the hypertext links in a white font.

 17. For hovered or active links within the mainLinks navigation list, create a style rule that displays
the hypertext links in white with an opacity of 0.8 and set the background color to the value
rgba(51, 51, 51, 0.5).

 18. Go to the Outline Styles section. In this section, you’ll format the course outline that appears on
the page’s left column. The navigation list in this outline has the ID outline. Create a style rule
for this navigation list that sets the text color to rgb(51, 51, 51) and the font size to 0.8em.

 19. Horizontally center the h1 headings within the outline navigation list.
 20. For the first level ol elements that are a direct child of the outline navigation list, create a style

rule that sets the line height to 2em, the top/bottom margin to 0 pixels and the left/right margin
to 5 pixels. Display the list marker as an upper-case Roman numeral.

 21. Display the second level of ol elements nested within the outline navigation list with an upper-
case letter as the list marker.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 2 Getting Started with CSSHTML 174

 22. Display all previously visited and unvisited links in the outline navigation list using the color
value rgb(101, 101, 101).

 23. Display hovered and active links in the outline navigation list using the color value rgb(97, 97,
211) with the text underlined.

 24. Go to the Section Styles section. In this section, format the description of the course. Create a
style rule that sets the background color of the section element to rgb(220, 220, 220).

 25. Format the heading of this section by creating a style rule for the section header h1 selector
that sets the font size of 2.2em and the left padding space to 10 pixels.

 26. Go to the Article Styles section and create a style rule for h2 headings within the article
element that sets the font size to 1.4em.

 27. Display the first letter of the first paragraph within the article element with a
font size of 2em and vertically aligned with the baseline of the surrounding text. (Hint: Use the
first-of-type pseudo-class and the first-letter pseudo-element.)

 28. Information about Peter Craft has been placed in an aside element. Go to the Aside Styles
section and create a style rule that sets the font size of text in the aside element to 0.9em.

 29. For h1 headings nested within the aside element, create a style rule that sets the font size to
1.4em and horizontally centers the text.

 30. Save your changes to the file and then open the cw_class.html file in your browser. Verify that
the appearance of the page resembles that shown in Figure 2–60. Confirm that when you change
the width of the browser window, the size of the page heading text changes in response to setting
the heading text using the vw unit.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 175

TUTORIAL 3
OBJECTIVES

Session 3.1
• Create a reset style sheet
• Explore page layout designs
• Center a block element
• Create a floating element
• Clear a floating layout
• Prevent container collapse

Session 3.2
• Use CSS grid styles
• Define a grid layout
• Place items within a grid
• Work with grid areas

Session 3.3
• Explore positioning styles
• Work with relative positioning
• Work with absolute positioning
• Work with overflow content

Designing a Page
Layout
Creating a Website for a Chocolatier

Case | Pandaisia Chocolates
Anne Ambrose is the owner and head chocolatier of Pandaisia
Chocolates, a chocolate shop located in Essex, Vermont. You have
been asked to assist on the redesign of the company’s website. Anne
has provided you with three pages from the website to start your
work. She has written all of the content, compiled the necessary
images and graphics, and written some of the text and color styles.
She needs you to complete the project by designing the page layout
using the CSS layout properties.

STARTING DATA FILES

tutorial

pc_about_txt.html
pc_home_txt.html
pc_info_txt.html
pc_grids_txt.css
pc_home_txt.css
pc_reset_txt.css
+ 22 files

review

pc_specials_txt.html
pc_specials_txt.css
+ 12 files

code1

code3-1_txt.html
code3-1_float_txt.css
+ 11 files

code2

code3-2_txt.html
code3-2_layout_txt.css
+ 1 file

code3 code4

code3-3_txt.html
code3-3_scroll_txt.css
+ 10 files

code3-4_txt.html
debug3-4_txt.css
+ 2 files

sp_home_txt.html
sp_layout_txt.css
+ 13 files

ss_dday_txt.html
ss_layout_txt.css
+ 4 files

demo_grid1.html
demo_grid2.html
demo_positioning.html
+ 6 files

html03

case1 case2 demo

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 176

The left and right column
sections are floated with
widths of 33% and 67%,
respectively.

To prevent an element
containing only floated
elements from collapsing,
use the after pseudo-element
and the content property to
generate a placeholder element.

The display property
defines how an element
should be laid out.

The width property defines
the width of an element, the
max-width property sets
its maximum possible width,
the min-width property
sets its minimum width.

The vertical navigation list
and contactInfo section are
floated as separate columns.

The clear property displays
the element only when the
left, right, or both floated
objects have been cleared.

To horizontally center
a block element, set
the left and right
margins to auto.

All horizontal list items
are floated on the left to
create columns.

The float property takes
an object out of normal
document flow and floats
it on the left or right
margin of its container
element.

Session 3.1 Visual Overview:

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 177

Page body is horizontally
centered within the
browser window.

Horizontal list items
are floated into
separate columns.

Left and right sections
are floated into
separate columns.

The contents of the page
footer are floated into
separate columns.

Page Layout with Floating Elements

© Brenda Carson/Shutterstock.com;
© Brent Hofacker/Shutterstock.com;
© Jim Bowie/Shutterstock.com;
© wacomkaShutterstock.com;
© Shebeko/Shutterstock.com;
Source: Facebook;
Source: Twitter, Inc.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 178

Introducing the display Style
The study of page layout starts with defining how an individual element is presented on
the page. In the first tutorial, you learned that HTML elements are classified into block
elements, such as paragraphs or headings, or into inline elements, such as emphasized
text or inline images. However, whether an element is displayed as a block or as inline
depends on the style sheet. You can define the display style for any page element with
the following display property

display: type;

where type defines the display type. A few of the many type values are shown
in Figure 3–1.

Figure 3–1 Some values of the display property

Display Value Appearance
block Displayed as a block

table Displayed as a web table

inline Displayed inline within a block

inline-block Treated as a block placed inline within another block

run-in Displayed as a block unless its next sibling is also a block, in which case, it is
displayed inline, essentially combining the two blocks into one

inherit Inherits the display property of the parent element

list-item Displayed as a list item along with a bullet marker

none Prevented from displaying, removing it from the rendered page

For example, to supersede the usual browser style that displays images inline, you
can apply the following style rule to display all of your images as blocks:

img {display: block;}

If you want to display all block quotes as list items, complete with list markers, you
can add the following style rule to your style sheet:

blockquote {display: list-item;}

You can even prevent browsers from displaying an element by setting its display
property to none. In that case, the element is still part of the document structure but it
is not shown to users and does not occupy space in the displayed page. This is useful
for elements that include content that users shouldn’t see or have no need to see.

You’ll use the display property in creating a reset style sheet.

Creating a Reset Style Sheet
You learned in the last tutorial that your browser applies its own styles to your page
elements unless those styles are superseded by your own style sheet. Many designers
prefer to work with a “clean slate” and not have any browser style rules creep into the final
design of their website. This can be accomplished with a reset style sheet that supersedes
the browser’s default styles and provides a consistent starting point for page design.

You also can hide elements
by applying the style
 visibility: hidden;,
which hides the element
content but leaves the
element still occupying the
same space in the page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 179

You’ll create a reset style sheet for the Pandaisia Chocolates website. The first style
rule in your sheet will use the display property to display all of the HTML 5 structural
elements in your web page as blocks. While current browsers already do this, there
are some older browsers that do not recognize or have predefined display styles for
elements as such header, article, or footer. By including the display property
in a reset style sheet, you add a little insurance that these structural elements will be
rendered correctly.

You will complete the reset style sheet by adding other style rules that set default
padding and margins around commonly used page elements, define some basic
typographic properties, and remove underlining from hypertext links found within
navigation lists.

To create a reset style sheet:
w 1. Use the text editor or HTML editor of your choice to open the pc_reset_txt.css

file from the html03 c tutorial folder. Enter your name and the date in the
comment section of the file and save the document as pc_reset.css.

w 2. Within the Structural Styles section, insert the following style rule to define
the display properties of several HTML 5 structural elements:

article, aside, figcaption, figure,
footer, header, main, nav, section {
 display: block;
}

Figure 3–2 highlights the new style rule in the document.

To complete the reset style sheet:
w 1. Within the Typographic Styles section, insert the following style rule to define

the typographic styles for several page elements:

address, article, aside, blockquote, body, cite,
div, dl, dt, dd, em, figcaption, figure, footer,
h1, h2, h3, h4, h5, h6, header, html, img,
li, main, nav, ol, p, section, span, ul {

 background: transparent;
 font-size: 100%;
 margin: 0;
 padding: 0;
 vertical-align: baseline;
}

Figure 3–2 Displaying structural elements as blocks

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 180

w 2. Add the following style rules to remove list markers from list items found
within navigation lists:

nav ul {
 list-style: none;
 list-style-image: none;
}

nav a {
 text-decoration: none;
}

w 3. Set the default line height to 1 (single-spaced) by applying the following style
rule to the page body:

body {
 line-height: 1;
}

Figure 3–3 describes the new style rules in the document.

w 4. Save your changes to the file.

Figure 3–3 Completing the reset style sheet

single spaces
all body text

does not display markers
for unordered lists within
navigation lists

does not underline
hypertext links within
navigation lists

aligns all
content with the
baseline

removes all
margin and
padding spaces

makes the
background color
transparent

sets the font size
equal to the font
size of the parent

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 181

This is a very basic reset style sheet. There are premade reset style sheets freely
available on the web that contain more style rules used to reconcile the various
differences between browsers and devices. Before using any of these reset style sheets,
you should study the CSS code and make sure that it meets the needs of your website.
Be aware that some reset style sheets may contain more style rules than you actually
need and you can speed up your website by paring down the reset sheet to use only
the elements you need for your website.

The first page you will work on for Pandaisia Chocolates is the site’s home page.
Anne has already created a typographical style sheet in the pc_styles1.css file. Link
to the style sheet file now as well as the pc_reset.css style sheet you just created and
the pc_home.css style sheet that you will work on for the remainder of this session to
design the page layout.

To get started on the Pandaisia Chocolates home page:
w 1. Use your editor to open the pc_home_txt.css file from the html03 c tutorial

folder. Enter your name and the date in the comment section of the file and
save the document as pc_home.css.

w 2. Use your editor to open the pc_home_txt.html file from the same folder.
Enter your name and the date in the comment section and save the file as
pc_home.html.

w 3. Within the document head, directly after the title element, insert the following
link elements to link the home page to the pc_reset.css, pc_styles1.css and
pc_home.css style sheets:

<link href="pc_reset.css" rel="stylesheet" />
<link href="pc_styles1.css" rel="stylesheet" />
<link href="pc_home.css" rel="stylesheet" />

w 4. Take some time to study the content and structure of the pc_home.html
document. Pay particular attention to the use of ID and class names throughout
the document.

w 5. Save your changes to the file. You might want to keep this file open as you
work with the pc_home.css style sheet so that you can refer to its content
and structure.

The reset style sheet
should always be the first
style sheet listed before
any other style sheets to
ensure that your default
styles are applied first.

Anne has sketched the general layout she wants for the home page, shown in
Figure 3–4. Compare the pc_home.html file content to the sketch shown in Figure 3–4 to
get a better understanding of how the page content relates to Anne’s proposed layout.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 182

Before creating the page layout that Anne has sketched out for you, you’ll examine
different types of layout designs.

Exploring Page Layout Designs
One challenge of layout is that your document will be viewed on many different
devices with different screen resolutions. When designing for the web, you’re usually
more concerned about the available screen width than screen height because users can
scroll vertically down the length of the page, but it is considered bad design to make
them scroll horizontally.

A page designer needs to cope with a wide range of possible screen widths ranging
from wide screen monitors with widths of 1680 pixels or more, down to mobile
devices with screen widths of 320 pixels and even less. Complicating matters even
more is that a screen width represents the maximum space available to the user, but
some space is always taken up by toolbars, sidebar panes, and other browser features.
In addition, the user might not even have the browser window maximized to fill the
entire screen. Thus, you need a layout plan that will accommodate a myriad of screen
resolutions and browser configurations.

Fixed, Fluid, and Elastic Layouts
Web page layouts fall into three general categories: fixed, fluid, and elastic. A fixed layout
is one in which the size of the page and the size of the page elements are fixed, usually
using pixels as the unit of measure. The page width might be set at 960 pixels and the

Figure 3–4 Proposed home page layout

The Store Products Services Location & Hours

Pandaisia Chocolates

Home

chocolates Fudges TrufflesToffees

Online Store My Account Contact UsSpecials

header

left column section

vertical navigation lists

footer

horizontal navigation list

right column
section

horizontal
navigation list

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 183

width of the company logo set to 780 pixels. These widths are set regardless of the screen
resolution of the user’s device and this can result in the page not fitting into the browser
window if the device’s screen is not wide enough.

By contrast, a fluid layout sets the width of page elements as a percent of the
available screen width. For example, the width of the page body might be set to fill
90% of the screen and the width of the company logo might be set to fill 80% of that
page body. Under a fluid layout, the page resizes automatically to match the screen
resolution of the user’s device. Figure 3–5 shows how a three-column layout might
appear in both a fixed and a fluid design.

Figure 3–5 Fixed layouts vs. fluid layouts

FIXED

256px 512px 512px

FLUID

20% 40% 40%

1280px 100%

fixed layouts stay the same size
regardless of screen resolution

fluid layouts change with
the screen resolution

With different devices accessing your website, it’s usually best to work with a fluid
layout that is more adaptable to a range of screen resolutions. Fixed layouts should only
be used when you have more control over the devices that will display your page, such
as a web page created specifically for a digital kiosk at a conference.

Another layout design is an elastic layout in which all measurements are expressed
in em units and based on the default font size used in the page. If a user or the designer
increases the font size, then the width, height, and location of all of the other page
elements, including images, change to match. Thus, images and text are always sized
in proportion to each other and the layout never changes with different font sizes. The
disadvantage to this approach is that, because sizing is based on the font size and not
on the screen resolution, there is a danger that if a user sets the default font size large
enough, the page will extend beyond the boundaries of the browser window.

Finally, the web is moving quickly toward the principles of responsive design in
which the layout and design of the page change in response to the device that is
rendering it. The page will have one set of styles for mobile devices, another for tablets,
and yet another for laptops or desktop computers. You’ll explore how to implement
responsive design in Tutorial 5.

Because width is such an integral part of layout, you will start designing the
Pandaisia Chocolates home page by defining the width of the page body and elements
within the page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 184

Working with Width and Height
The width and height of an element are set using the following width and height
properties

width: value;
height: value;

where value is the width or height using one of the CSS units of measurement or as
a percentage of the width or height of the parent element. For example, the following
style rule sets the width of the page body to 95% of the width of its parent element (the
browser window):

body {width: 95%;}

Usually, you do not set the height value because browsers automatically increase
the height of an element to match its content. Note that all block elements, like the
body element, have a default width of 100%. Thus, this style rule makes the body
element width slightly smaller than it would be by default.

Setting Maximum and Minimum Dimensions
You can set limits on the width or height of a block element by applying the following
properties

min-width: value;
min-height: value;
max-width: value;
max-height: value;

where value is once again a length expressed in one of the CSS units of measure (usually
pixels to match the measurement unit of the display device). For example, the following
style rule sets the width of the page body to 95% of the browser window width but
confined within a range of 640 to 1680 pixels:

body {
 width: 95%;
 min-width: 640px;
 max-width: 1680px;
}

Maximum and minimum widths are often used to make page text easier to read. Studies
have shown that lines of text that are too wide are difficult to read because the eye has
to scan across a long section of content and that lines of text that are too narrow with
too many line returns break the flow of the material.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 185

R
E
FE

R
E
N
C
E

Setting Widths and Heights

• To set the width and height of an element, use the styles

width: value;
height: value;

where value is the width or height in one of the CSS units of measurement or a
 percentage of the width or height of the parent element.

• To set the minimum possible width or height, use the styles

min-width: value;
min-height: value;

• To set the maximum possible width or height, use the styles

max-width: value;
max-height: value;

Set the width of the page body for the Pandaisia Chocolates home page to 95%
of the browser window ranging from 640 pixels to 960 pixels. Also display the
company logo image as a block with its width set to 100% so that it extends across
the page body. You do not have to set the height of the logo because the browser will
automatically scale the height to keep the original proportions of the image.

To set the initial dimensions of the page:
w 1. Return to the pc_home.css file in your editor and add the following style rule

to the Body Styles section:

body {
 max-width: 960px;
 min-width: 640px;
 width: 95%;
}

w 2. Within the Body Header Styles section, insert the following style rule to set
the display type and width of the logo image:

body > header > img {
 display: block;
 width: 100%;
}

Figure 3–6 highlights the newly added style rules in the style sheet.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 186

Figure 3–6 Setting the width of the page body and logo

Figure 3–7 Initial view of the body header

web page width is 95%
of the browser window
ranging from 640 pixels
to 960 pixels

displays the logo image
as a block element

sets the width of the logo
to 100% of the page body

page body width is 95%
of the browser window

browser window
background

logo is 100% of the
body width

body background

w 3. Save your changes to the file and then open the pc_home.html file in your
browser. Figure 3–7 shows the current layout of the page body and logo.

w 4. Change the width of your browser window and verify that the size of the
page body and the size of the logo resize as needed within the range of 640
to 960 pixels.

The page body is currently placed on the left margin of the browser window. Anne
would like it centered horizontally within the browser window.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 187

Centering a Block Element
Block elements can be centered horizontally within their parent element by setting
both the left and right margins to auto. Thus, you can center the page body within the
browser window using the style rule:

body {
 margin-left: auto;
 margin-right: auto;
}

Modify the style rule for the page body to center the Pandaisia Chocolates home
page horizontally by setting the left and right margins to auto.

To center the page body horizontally:
w 1. Return to the pc_home.css file in your editor and, within the style rule for the

body selector, insert the properties:

margin-left: auto;
margin-right: auto;

Figure 3–8 highlights the newly added styles.

Figure 3–8 Centering the page body

setting the left and right
margins to auto forces
block elements to be
horizontally centered
within their parent

w 2. Save your changes to the file and then reload the pc_home.html file in your
browser. Verify that the page body is now centered within the browser window.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 188

Vertical Centering
Centering an element vertically within its parent element is not easily accomplished
because the height of the parent element is usually determined by its content, which
might not be a defined value. One solution is to display the parent element as a table
cell with a defined height and then set the vertical-align property set to middle.
For example, to vertically center the following h1 heading within the div element

<div>
 <h1>Pandaisia Chocolates</h1>
</div>

you would apply the style rule:

div {
 height: 40px;
 display: table-cell;
 vertical-align: middle;
}

Using this style rule, the h1 heading will be vertically centered.

IN
SI
G
H
T

Working with Element Heights

The fact that an element’s height is based on its content can cause some confusion.
For example, the following style rule appears to set the height of the header to 50% of
the height of the page body:

body > header {height: 50%;}

However, because the total height of the page body depends on the height of
its individual elements, including the body header, there is circular reasoning in this
style rule. You can’t set the page body height without knowing the height of the body
header and you can’t set the body header height unless you know the height of the
page body. Most browsers deal with this circularity by leaving the body header height
undefined, resulting in no change in the layout.

Heights need to be based on known values, as in the following style rules where
the body height is set to 1200 pixels and thus the body header is set to half of that or
600 pixels.

body {height: 1200px;}
body > header {height: 50%;}

It is common in page layout design to extend the page body to the height of the
browser window. To accomplish this, you set the height of the html element to 100%
so that it matches the browser window height (a known value defined by the physical
properties of the screen) and then you set the minimum height of the page body to
100% as in the following style rules:

html {height: 100%;}
body {min-height: 100%;}

The result is that the height of the page body will always be at least equal to the height
of the browser window, but it will extend beyond that if necessary to accommodate extra
page content.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 189

To vertically center a single line of text within its parent element, set the line height
of the text larger than the text’s font size. The following style rule will result in an
h1 heading with vertically centered heading text.

h1 {
 font-size: 1.4em;
 line-height: 2em;
}

Note that this approach will only work for a single line of text. If the text wraps to a
second line, it will no longer be vertically centered. Vertical centering is a common design
challenge and there are several other workarounds that have been devised over the years.
The simplest approach is to use CSS grid styles, a topic that we’ll discuss in the next session.

Next, you will lay out the links in the navigation list. Anne wants the links displayed
horizontally rather than vertically. You can accomplish this using CSS floats.

Floating Page Content
By default, content is displayed in the page in the order it appears within the HTML file
as part of the normal document flow. Floating an element takes it out of position and
places it along the left or right edge of its parent element. Subsequent content that is
not floated occupies the space previously taken up by the floated element. Figure 3–9
shows a diagram of an element that is floated along the right margin of its container
and its effect on the placement of subsequent content.

Figure 3–9 Floating an element

original layout element is floated on the right margin
and the subsequent page content

wraps around it

To float an element, apply the following float property

float: position;

where position is none (the default), left to float the object on the left margin, or
right to float the object on the right margin. If sibling elements are floated along the
same margin, they are placed alongside each other within a row as shown in Figure 3–10.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 190

Note that for the elements to be placed within a single row, the combined width
of the elements cannot exceed the total width of their parent element, otherwise any
excess content will automatically wrap to a new row.

Figure 3–10 Floating multiple elements in a row

original layout

float: left float: left float: left

when several elements are floated on the
same margin, they are aligned within a row

R
E
FE

R
E
N
C
E

Floating an Element

• To float an element within its container, apply the style

float: position;

where position is none (the default), left, or right.

Anne wants you display the content of navigation lists belonging to the
horizontalNavigation class within a single row. You will accomplish this by floating
each item in those navigation lists on the left margin using the float property. Create
this style rule now.

To lay out horizontal navigation list items:
w 1. Return to the pc_home.css file in your editor and go to the Body Header

Styles section.

w 2. Because there are five links in the navigation list, you’ll make each list item
20% of the width of the navigation list by adding the following style rule:

body > header > nav.horizontalNavigation li {
 width: 20%;
}

To be confined to a single
row, the total width of
floated elements cannot
exceed the width of the
container.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 191

w 3. Insert the following style rule within the Horizontal Navigation Styles section
to display every list item within a horizontal navigation list as a block floated
on the left.

nav.horizontalNavigation li {
 display: block;
 float: left;
}

Figure 3–11 highlights the styles used with list items.

w 4. Save your changes to the file and then reload the pc_home.html file in your
browser. Figure 3–12 shows the revised layout of the navigation list in the
page header.

�oats the list item
within every horizontal
navigation list as a
block on the left

sets the width of
the list item to 20%
of the width of the
navigation list

the width of each
list item set to 20%
and floated on the
left margin

Figure 3–11 Floating items in the navigation list

Figure 3–12 Floating items in a horizontal navigation list

Anne doesn’t like the appearance of the hypertext links in the navigation list. Because
the links are inline elements, the background color extends only as far as the link text. She
suggests you change the links to block elements and center the link text within each block.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 192

To change the display of the hypertext links:
w 1. Return to the pc_home.css file in your editor.

w 2. Within the Horizontal Navigation Styles section, insert the following style rule to
format the appearance of the hypertext links within the horizontal navigation lists:

nav.horizontalNavigation a {
 display: block;
 text-align: center;
}

Figure 3–13 highlights the style rule for the hypertext links.

w 3. Save your changes to the file and then reload the pc_home.html file in
your browser.

w 4. Hover your mouse pointer over the links in the navigation list. Note that the
link text is centered within its block and the background color extends fully
across the block rather than confined to the link text. See Figure 3–14.

Trouble? Don’t worry about the jumble of elements displayed after the body
header. You’ll straighten out those objects next.

Figure 3–13 Formatting hyperlinks in horizontal navigation lists

Figure 3–14 Links in the body header

displays the
link as a block

centers the
link text within
the block

each hypertext
link displayed as
a block with the
link text centered
within the block

You have completed the design of the body header. Next, you will lay out the middle
section of the home page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 193

Figure 3–15 Clearing a float

float: right;float: right;

clear: right;

original layout floating an element on the
right margin

last element is displayed once
the right margin is clear of

floated objects

Clearing a Float
In some layouts, you will want an element to be displayed on a new row, clear of
previously floated objects. To ensure that an element is always displayed below your
floated elements, apply the following clear property:

clear: position;

where position is left, right, both, or none. A value of left displays the element
only when the left margin is clear of floating objects. A value of right displays the
element only when the right margin is clear. A value of both displays the element only
when both margins are clear of floats. The default clear value is none, which allows the
element to be displayed alongside any floated objects.

Figure 3–15 shows how use of the clear property prevents an element from being
displayed until the right margin is clear of floats. The effect on the page layout is that
the element is shifted down and is free to use the entire page width since it is no longer
displayed alongside a floating object.

IN
SI
G
H
T

Creating Drop Caps with CSS

A popular design element is the drop cap, which consists of an enlarged initial letter
that drops down into a body of text. To create a drop cap, you increase the font size
of an element’s first letter and float it on the left margin. Drop caps also generally
look better if you decrease the line height of the first letter, enabling the surrounding
content to better wrap around the letter. Finding the best combination of font size
and line height is a matter of trial and error, and unfortunately, what looks best in
one browser might not look as good in another. The following style rule works well in
applying a drop cap to the first paragraph element:

p:first-of-type::first-letter {
 font-size: 4em;
 float: left;
 line-height: 0.8;
}

For additional design effects, you can change the font face of the drop cap to a
cursive or decorative font.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 194

To float the left and right column sections:
w 1. Return to the pc_home.css file in your editor. Go to the Left Column Styles

section and insert the style rule:

section#leftColumn {
 clear: left;
 float: left;
 width: 33%;
}

w 2. Within the Right Column Styles section, insert:

section#rightColumn {
 float: left;
 width: 67%;
}

Note that you do not apply the clear property to the right column because you
want it to be displayed in the same row alongside the left column. Figure 3–16
highlights the style rules for the left and right columns.

Figure 3–16 Float the left and right column sections

�oats the left column
on the left margin
with a width of 33%
of the page body

�oats the right
column alongside
the left column with
a width of 67%

displays the left
column once the left
margin is clear of
previously �oated
elements

The next part of the Pandaisia Chocolates home page contains two section elements
named leftColumn and rightColumn. Set the width of the left column to 33% of the body
width and set the width of the right column to 67%. Float the sections side-by-side on
the left margin, but only when the left margin is clear of all previously floated objects.

R
E
FE

R
E
N
C
E

Clearing a Float

• To display a non-floated element on a page with a floated element, use the following
style so the non-floated element can clear the floated element

clear: position;

where position is none (the default), left, right, or both.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 195

To complete the right column section:
w 1. Within the Right Column Styles section, insert the following style rules to

format the inline images and list items:

section#rightColumn img {
 display: block;
 width: 100%;
}

section#rightColumn > nav.horizontalNavigation li {
 width: 25%;
}

Note that you do not have to include a style rule to float the items in the
horizontal navigation list because you have already created that style rule in
Figure 3–11. Figure 3–17 describes the new style rules in the style sheet.

w 2. Save your changes to the file and then reload the pc_home.html file in your
browser. Figure 3–18 shows the layout of the left and right column sections.

Figure 3–17 Formatting the right column section

displays every image
in the right column as
a block with a width
equal to the width of
its parent element

sets the width of
each list item to 25%
of the width of the
navigation list

The right column contains a horizontal navigation list containing four items, each
consisting of an image and a label above the image. Anne wants the four items placed
side-by-side with their widths set to 25% of the width of the navigation list. Anne also
wants the images in the right column displayed as blocks with their widths set to 100%
of their parent element.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 196

Anne doesn’t like that the text in the left column crowds the right column and page
boundary. She suggests that you provide more interior space by increasing the padding
in the left column.

Figure 3–18 Layout of the left and right columns

horizontal navigation
list with each image
and label set to 25%
of the list width

left column occupies
33% of the width of
the page body

right column
occupies 67%
of the width

© Brenda Carson/Shutterstock.com; © Brent Hofacker/Shutterstock.com; © Jim Bowie/Shutterstock.com;
© wacomkaShutterstock.com; © Shebeko/Shutterstock.com

To increase the left column padding:
w 1. Return to the pc_home.css file in your editor and go to the Left Column

Styles section.

w 2. Insert the property padding: 1.5em; into the section#leftColumn style rule
as shown in Figure 3–19.

Figure 3–19 Increasing the padding of the left column

increases the interior
padding to 1.5em

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 197

This simple change has caused the layout to crash. What went wrong?

Refining a Floated Layout
When the total width of floated objects exceeds the width of their parent, excess
content is automatically wrapped to a new row. The reason the layout for the Pandaisia
Chocolates home page crashed is that increasing the padding in the left column,
increased the column’s width beyond its set value of 33%. Even this small increase
caused the total width of the two columns to exceed 100% and, as a result, the right
column moved to a new row.

To keep floats within the same row, you have to understand how CSS handles
widths. Recall that block elements are laid out according to the box model, as
illustrated previously in Figure 2–38, in which the content is surrounded by the padding
space, the border space, and finally the margin space. By default, browsers measure
widths using the content box model in which the width property only refers to the
width of the element content and any padding or borders constitute added space.

CSS also supports the border box model, in which the width property is based on
the sum of the content, padding, and border spaces and any space taken up by the
padding and border is subtracted from space given to the content. Figure 3–21 shows
how the two different models interpret the same width, padding, and border values.

Figure 3–20 Page layout crashes with increased padding

the right column is
forced to wrap to
a new row, ruining
the page layout

increased padding
increases the width
of the left column,
making it bigger
than 33% of the
page body width

w 3. Save your changes to the style sheet and then reload the pc_home.html file
in your browser. Figure 3–20 shows the result of your change.

© Brenda Carson/Shutterstock.com; Source: Facebook; Source: Twitter, Inc.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 198

You can choose the layout model using the following box-sizing property

box-sizing: type;

where type is content-box (the default), border-box, or inherit (to inherit the
property defined for the element’s container). Many designers prefer to use the border
box model in page layout so that there is no confusion about the total width of each
element.

Height values are similarly
affected by the type of
layout model used.

Figure 3–21 Comparing the content box and border box models

10px

Content Box model

10px 10px 5px

Border Box model

10px 10px 5px 5px

Style Properties
width: 200px;
padding: 10px;
border: 5px;

Total Width = 230px

200px

170px

Total Width = 200px

5px

R
E
FE

R
E
N
C
E

Defining How Widths Are Interpreted

• To define what the width property measures, use the style:

box-sizing: type;

where type is content-box (the default), border-box, or inherit (to inherit the
property defined for the element’s container).

Add the box-sizing property to the reset style sheet and apply it to all block elements.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 199

To set the block layout model:
w 1. Return to the pc_reset.css file in your editor.

w 2. Add the following style property to the style rule for the list of block
elements:

box-sizing: border-box;

Figure 3–22 highlights the revised style rule.

To lay out the page footer:
w 1. Return to the pc_home.css file in your editor and scroll down to the Footer

Styles section.

w 2. Insert the following style rules:

footer {
 clear: left;
}

footer > nav.verticalNavigation {
 float: left;
 width: 22%;
}

footer > section#contactInfo {
 float: left;
 width: 34%;
}

Figure 3–22 Adding the border-box style to the reset style sheet

applies border-box
sizing to all of the
listed block elements

w 3. Save your changes to the style sheet and then reload the pc_home.html file
in your browser. Verify that the layout of the left and right columns has been
restored and additional padding has been added within the left column.

The final part of the Pandaisia Chocolates home page is the footer, which contains
three vertical navigation lists and a section element with contact information for
the store. Once the left margin is clear of previously floated objects, float these four
elements on the left margin with the widths of the three navigation lists each set to 22%
of the body width and the section element occupying the remaining 34%.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 200

Figure 3–23 highlights the layout style rules for the page footer.

Figure 3–23 Setting the layout of the page footer

sets the width of the
verticalNavigation lists
to 22% and floats
them on the left

sets the width of the
contactInfo section to
34% and floats it on
the left

displays the footer
once the left margin is
clear of floated objects

w 3. Save your changes to the style sheet and then reload pc_home.html in your
browser. Figure 3–24 shows the new layout of the footer.

Figure 3–24 Page footer layout

width of the contactInfo
section set at 34% of the
footer width and �oated
on the left

each vertical navigation
list set at 22% of the
footer width and
�oated on the left

© Brent Hofacker/Shutterstock.com; © Jim Bowie/Shutterstock.com;
© wacomkaShutterstock.com; © Shebeko/Shutterstock.com;
Source: Facebook; Source: Twitter, Inc.

Anne asks you to change the background color of the footer to a dark brown to better
show the text content.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 201

To set the footer background color:
w 1. Return to the pc_home.css file in your editor and go to the Footer Styles section.

w 2. Insert the following property for the footer selector:

background-color: rgb(71, 52, 29);

Figure 3–25 highlights the footer background color style.

w 3. Save your changes to the style sheet and then reload pc_home.html in your
browser. Note that the background color is not changed.

Figure 3–25 Setting the footer background color

footer background
set to a dark brown

Why didn’t the change to the background color take effect? To help you understand
why, you’ll look once again at the nature of floated elements.

Working with Container Collapse
Recall that a floated element is taken out of the document flow so that it is no longer
“part” of the element that contains it. Literally it is floating free of its container. When
every element in a container is floated, there is no content left. As far as the browser is
concerned, the container is empty and thus has no height and no background to color, a
situation known as container collapse. Figure 3–26 demonstrates container collapse for
a container that has three floating objects that exceed the boundaries of their container.

Figure 3–26 Container collapse

container expanded
to enclose floated

content

container doesn’t
enclose floated

content

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 202

What you usually want in your layout is to have the container expand to surround
all of its floating content. One way this can occur is if the container is followed by
another element that is displayed only when the margins are clear of floats. In that
situation, the container’s height will expand up to that trailing element and in the
process surround its floating content.

The problem with the footer in the Pandaisia home page is that there is no trailing
element—the footer is the last element in the page body. One way to fix that problem
is to use the after pseudo-element to add a placeholder element after the footer. The
general style rule is

container::after {
 clear: both;
 content: "";
 display: table;
}

where container is the selector for the element containing floating objects. The clear
property keeps this placeholder element from being inserted until both margins are
clear of floats. The element itself is a web table but contains only an empty text string
so that no actual content is written to the web page. That’s okay because the mere
presence of this placeholder element is enough to keep the container from collapsing.

Add a style rule now to create a placeholder element that keeps the footer from
collapsing around its floating content.

To find other ways to
prevent container collapse,
search the web using the
keywords CSS clearfix.

To keep the footer from collapsing:
w 1. Return to Footer Styles section in the pc_home.css file and, after the style

rule for the footer element, insert the following rule:

footer::after {
 clear: both;
 content: "";
 display: table;
}

Figure 3–27 highlights the new rule in the style sheet.

w 2. Save your changes to the style sheet and then reload pc_home.html in
your browser. Figure 3–28 shows the completed layout of the Pandaisia
Chocolates home page.

Figure 3–27 Preventing the footer from collapsing

places the element
after both the
margins are clear

creates an element
after the footer

the element
consists of an
empty web table

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 203

Figure 3–28 Final layout of the Pandaisia Chocolates home page

footer has expanded
to contain all �oated
content

© Brenda Carson/Shutterstock.com; © Brent Hofacker/Shutterstock.com; © Jim Bowie/Shutterstock.com;
© wacomkaShutterstock.com; © Shebeko/Shutterstock.com; Source: Facebook; Source: Twitter, Inc.

Note that the footer now has a dark brown background because it has
expanded in height to contain all of its floated content.

w 3. Close any of the documents you opened for this session.

R
E
FE

R
E
N
C
E

Keeping a Container from Collapsing

• To prevent a container from collapsing around its floating content, add the following
style rule to the container

 container::after {
 clear: both;
 content: "";
 display: table;
}

where container is the selector for the element containing the floating content.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 204

PR
O
SK

IL
LS

Problem Solving: The Virtue of Being Negative

It’s common to think of layout in terms of placing content, but good layout also must
be concerned with placing emptiness. In art and page design, this is known as working
with positive and negative space. Positive space is the part of the page occupied by
text, graphics, borders, icons, and other page elements. Negative space, or white
space, is the unoccupied area and provides balance and contrast to elements contained
in positive space.

A page that is packed with content leaves the eye with no place to rest; which
also means that the eye has no place to focus and maybe even no clear indication
about where to start reading. Negative space is used to direct users to resting stops
before moving on to the next piece of page content. This can be done by providing
a generous margin between page elements and by increasing the padding within an
element. Even increasing the spacing between letters within an article heading can
alleviate eye strain and make the text easier to read.

White space also has an emotional aspect. In the early days of print advertising,
white space was seen as wasted space, and thus, smaller magazines and direct mail
advertisements would tend to crowd content together in order to reduce waste. By
contrast, upscale magazines and papers could distinguish themselves from those
publications with an excess of empty space. This difference carries over to the web,
where a page with less content and more white space often feels more classy and
polished, while a page crammed with a lot of content feels more commercial. Both can
be effective; you should decide which approach to use based on your customer profile.

You’ve completed your work on the Pandaisia Chocolates home page. In the next
session, you’ll work on page layout using the technique of grids.

Session 3.1 Quick Check

 1. To display an element as a block-level use:
a. display: block-level;
b. display: block;
c. display: inline;
d. display: display-block;

 2. What are three types of layouts?
a. inline, fluid, static
b. fixed, floating, static
c. fixed, fluid, elastic
d. inline, block, scrolling

 3. Provide a style rule to set the maximum width of an element to 960 pixels.
a. maximum-width: 960px;
b. maxw: 960px;
c. width: 960px;
d. max-width: 960px;

R
E
V
IE

W

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 205

 4. Provide a style rule to horizontally center a block element within its container
with a top/bottom margin of 20 pixels.
a. margin: 20px center;
b. margin: center 20px;
c. margin: auto 20px;
d. margin: 20px auto;

 5. Provide a style rule to place an object on the right margin of its container.
a. margin: right;
b. text-align: right;
c. float: right;
d. padding: right;

 6. Provide a style rule to display an object only when all floating elements have
cleared.
a. clear: float;
b. clear: floats;
c. clear: both;
d. clear: all;

 7. Your layout has four floated elements in a row but unfortunately the last
element has wrapped to a new line. What is the source of the layout mistake?
a. The widths of the floated elements exceed the available width of their

container.
b. You cannot float more than one object within a row.
c. You have to clear the first three floating object to make room for the fourth.
d. You have to clear the fourth floating object to make room for the first three.

 8. Provide a style rule to change the width property for the header element so
that it measures the total width of the header content, padding, and border
spaces.
a. box-sizing: border-box;
b. box-sizing: content-box;
c. box-sizing: all;
d. box-sizing: complete;

 9. What causes container collapse?
a. The width of the child elements exceeds the width of the container.
b. The width of the container element is fixed at 0 pixels.
c. The height of the container element is fixed at 0 pixels.
d. All child elements are floating so that they are free of the container, leaving

the container with no content.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 206

The grid-template-
areas property de�nes
the areas in the grid

Use the grid-area
property to place items
within grid areas.

The grid-template-
columns property
establishes the size and
number of grid columns

To create a grid container
set the display property
to grid.

A fractional unit,
indicated by the unit
abbreviation fr, expands or
contracts to �ll available
space; these fractional units
keep the columns widths in
a 2:1 proportion.

The grid-column-gap
property sets the interior
space between grid
columns.Use the grid-row

and grid-column
properties to place items
at and across speci�ed
grid rows and columns.

Session 3.2 Visual Overview:

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 207

footer element
placed in the
footer grid area

Page header covers the
grid from column gridline
1 to –1 (the last gridline)

aside element
placed in the
FAQ grid area

Columns
laid out in a
proportion
of 2:1

CSS Grid Layouts

© Twin Design/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 208

Introducing Grid Layouts
In the previous session, you used the float property to lay out a page in sections
that floated alongside each other like columns. In this session, you’ll explore how to
generalize this technique by creating a page layout based on a grid.

Overview of Grid-Based Layouts
Grids are a classic layout technique that has been used in publishing for hundreds of
years and, like many other publishing techniques, can be applied to web design. In a
grid layout, the page is comprised of a system of intersecting rows and columns that
form a grid. The rows are based on the page content. A long page with several articles
might span several rows, or it could be a home page with introductory content that
fits within a single row. The number of columns is based on the number that provides
the most flexibility in laying out the page content. Many grid systems are based on
12 columns because 12 is evenly divisible by 2, 3, 4, and 6, but other sizes are also
used. Figure 3–29 shows a 12-column grid layout.

space between
columns

space between
rows

grid rows

grid columns

The page designer then arranges the page elements within the chosen grid. Figure 3–30
shows one possible layout comprised of a main header element (the tan area), three
major sections (the lavender, light green, and blue areas), as well as a navigation bar
and a footer (the dark green areas). Some sections (like the dark green and blue areas)
are further divided into small subsections.

Figure 3–29 Page grid

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 209

It should be stressed that the grid is not part of the web page content. Instead, it’s a
systematic approach to visualizing how to best fit content onto the page. Working from
a grid has several aesthetic and practical advantages, including

• Grids add order to the presentation of page content, adding visual rhythm, which is
pleasing to the eye.

• A consistent logical design gives readers the confidence to find the information they seek.
• New content can be easily placed within a grid in a way that is consistent with

 previously entered information.
• A well designed grid is more easily accessible for users with disabilities and special needs.
• Grids speed up the development process by establishing a systematic framework for

the page layout.

There are two basic types of grid layouts: fixed grids and fluid grids.

Fixed and Fluid Grids
In a fixed grid, the widths of the columns and margins are specified in pixels, where
every column has a fixed position. Many fixed grid layouts are based on a page width
of 960 pixels because most desktop screen widths are at 1024 pixels (or higher) and a
960-pixel width leaves room for browser scrollbars and other features. The 960-pixel
width is also easily divisible into halves, thirds, quarters, and so forth, making it easier
to create evenly spaced columns.

The problem of course with a fixed grid layout is that it does not account for other
screen sizes and thus, a fluid grid, in which column widths are expressed in percentages
rather than pixels, is often used to provide more support across different devices. In the
examples to follow, you’ll base your layouts on a fluid grid system.

Grids are often used with responsive design in which one grid layout is used with
mobile devices, another grid layout is used with tablets, and yet another layout is used
with desktop computers. A layout for a mobile device is typically based on a 1-column
grid, tablet layouts are based on grids of 4 to 12 columns, and desktop layouts are often
based on layouts with 12 or more columns.

Figure 3–30 Layout based on a grid

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 210

CSS Frameworks
Designing your own grids can be time-consuming. To simplify the process, you can
choose from the many CSS frameworks available on the web. A framework is a software
package that provides a library of tools to design your website, including style sheets for
grid layouts and built-in scripts to provide support for a variety of browsers and devices.
Most frameworks include support for responsive design so that you can easily scale your
website for devices ranging from mobile phones to desktop computers.

Some popular CSS frameworks include

• Bootstrap (getbootstrap.com)
• Neat (neat.bourbon.io)
• Unsemantic (unsemantic.com)
• Profound Grid (www.profoundgrid.com)
• HTML 5 Boilerplate (html5boilerplate.com)
• Skeleton (getskeleton.com)

While a framework does a lot of the work in building the grid, you still need to
understand how to interact with the underlying code, including the style sheets used
to create a grid layout. In place of third-party frameworks, you can design your own
grids using grid styles from CSS. Achieving Candidate Recommendation status by the
W3C in December, 2017, the CSS grid styles are now widely supported by all major
browsers on almost every device.

Introducing CSS Grids
The CSS grid model is a set of CSS design styles used to create grid-based layouts.
Before discussing the CSS styles, we should first explore the key terms and concepts
associated with building a CSS grid. Each CSS grid is laid out in a set of row and
column gridlines as shown in Figure 3–31.

row grid line

column grid line

Figure 3–31 Row and column gridlines

To reference positions within a grid, the CSS grid model numbers the gridlines in the
horizontal and vertical directions, starting from the top-left corner of the grid with the
row gridlines and then moving left to right with the column gridlines along the bottom.
Both gridlines start with a value of “1” and increase in value down and across the grid
(see Figure 3–32.)

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 211

Figure 3–33 Numbering gridlines from right to left

–5

–4

–4

–3

–3

–2

–2
–1

–1

The advantage of using both positive and negative gridline numbers is that you can
always reference both the first gridline (1) and the last gridline (21) no matter the size
of the grid. This will become important later when placing items at specific locations
within the grid or sizing those items to cover multiple rows and columns.

The cells that are created from the intersection of the horizontal and vertical
gridlines will contain the elements from the web page. An element can be contained
within a single cell or it can span several cells within a grid area. Figure 3–34 shows
a grid area consisting of three rows and two columns. Note that grid areas must be
rectangular; you cannot have an L-shaped grid area.

For countries and regions
that read material right-
to-left rather than left-
to-right, the grid
numbering system is
reversed to reflect
reading order.

Figure 3–32 Numbering gridlines

1

1

2

2

3

3

4
4

5

You can reference gridlines in the reverse order starting from the bottom-right corner
with the first row and column gridlines in those directions are given a value of “21” as
shown in Figure 3–33.

grid area covering 3
rows and 2 columns of
the grid

Rows and columns are also called tracks or grid tracks.

Figure 3–34 Grid area within a CSS grid

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 212

You will create a grid for a web page describing the Pandaisia Chocolates company.
Anne has already written and marked up the content of the page. Open Anne’s file now.

To open the file containing information about the company:
w 1. Use your editor to open the pc_about_txt.html file from the html03 c tutorial

folder. Enter your name and the date in the comment section and save the
file as pc_about.html.

w 2. Take some time to examine the contents of the page.

w 3. Open the pc_about.html file in your browser. See Figure 3–35.

Figure 3–35 Initial About Pandaisia Chocolates page

There is currently no layout for the page contents and all the structural elements
appear stacked within a single column. Anne sketches her idea for a different page
layout, shown in Figure 3–36.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 213

Anne’s layout consists two grids: one nested within the other. The outer grid consists
of three rows and two columns. The first and third rows contain the page header and
page footer, with the header and footer both spanning an entire row. The second row
displays information about the company in the first column and a list of frequently
asked questions is displayed in the second column. Within the second row is a nested
grid of two rows and two columns containing four articles about Pandaisia Chocolates,
its operations, and products. You will use the CSS grid model to create this grid layout.

Creating a CSS Grid
To create a CSS grid, you must first identify a page element as the grid container using
the following display property:

display: grid;

Figure 3–37 shows a simple web page containing a div element with the id "outer"
that contains six nested div elements. The outer element is displayed as a grid and each
of the six child elements become items within that grid. The grid is limited to those six
div elements. Any elements nested within those div elements are not part of the grid
structure.

FAQOur Company

About Chocolate

Enjoying Chocolate

Single-Origin and Blends Ethical Produce

Healthy Chocolate

About Pandaisia Chocolates

Pandaisia Chocolates © 2021 All Rights Reserved

�rst row

�rst column

second row

second column

third row

2 × 2 grid nested
within the �rst
column of the
second row

Figure 3–36 Proposed grid layout for the About Pandaisia Chocolates page

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 214

The six child div elements are now grid items, so they are no longer considered
block-level elements because they are fixed within the grid structure. You couldn’t, for
example, float any of those elements because floating them would remove them from
the grid and the CSS grid model doesn’t allow that. The entire grid itself is considered a
block-level element and thus could be floated or resized within the web page just like
any other block-level element.

Grids can also be created as inline elements using the style:

display: inline-grid;

which creates the grid inline with other elements in the web page. In this session
we will only examine grids as block-level elements, but be aware than any of the
techniques introduced for setting up a grid can be applied to both the block-level and
inline versions.

Use the display property now to define outer and inner grids described in
Figure 3–36. You will place all your grid styles within a separate CSS file.

Web Page

each child element
is part of the grid

HTML Content

CSS Styles

outer element is
marked as a grid

Figure 3–37 Using the display style

To create the grid style sheet:
w 1. Use your editor to open the pc_grids_txt.css file from the html03 c tutorial

folder. Enter your name and the date in the comment section and save the
file as pc_grids.css.

w 2. Within the Grid Styles for Page Body section, insert the following style rule to
define a grid for the entire page body:

body {
 display: grid;
}

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 215

w 3. Within the Grid Styles for Nested Grid section, insert the following style rule
to turn the section element into a grid:

section {
 display: grid;
}

Figure 3–38 highlights the newly added code.

displays the children
of the body element
within a grid

displays the children
of the section
element within a
grid

Figure 3–38 Creating two grids for the web page

w 4. Save your changes to the file and then return to the pc_about.html file in
your editor.

w 5. Within the head section, add the following link element to link the web
page to the pc_grids.css style sheet.

<link href="pc_grids.css" rel="stylesheet" />

w 6. Save your changes to the file.

Having set up the grids you will next use CSS to define the rows and columns of the
grid structure.

Working with Grid Rows and Columns
To define the number and size of grid columns, use the following grid-template-
columns style:

grid-template-columns: width1 width2 …;

where width1, width2, etc. is a space-separated list that defines the width of the
columns or tracks within the grid. For example, the following style rule creates two grid
columns: the first 250 pixels in width and the second with a width of 100 pixels.

grid-template-columns: 250px 100px;

The number of columns
in the grid is determined
by the number of entries
in the grid-template-
columns property.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 216

Column widths can be expressed using any CSS unit measures such as pixels, em
units, and percentages. You can also use the keyword auto to allow the column width
to be automatically set by the browser. The following style creates a three-column grid
with the width of the first column fixed at 100 pixels, the third column at 50 pixels,
and the center column occupying whatever space remains.

grid-template-columns: 100px auto 50px;

You might use such a layout in a page in which the first and third columns contain
navigation lists that are fixed in size while the middle column contains an article that
should expand to fill the remaining space.

Figure 3–39 shows a two-column grid with fixed widths of 250 pixels and 100
pixels. Notice that the number of rows is not defined, so that the browser automatically
adds rows as needed to contain all page elements within the grid container. Because
there are six grid items, this grid is arranged in a layout of three rows and two columns.
If there were eight child elements the grid would be four rows by two columns, and
so forth.

Figure 3–39 Setting the grid columns

rows are implicitly
created from the
grid content

columns are
explicitly de�ned
in the style sheet

de�nes a two-column
grid layout using
absolute widths

Figure 3–39 highlights an important contrast between explicit grids and implicit grids.
An explicit grid completely defines the number and size of the grid rows and columns.
An implicit grid contains rows and/or columns that are generated by the browser as
it populates the grid with items from the grid container. In most grid layouts you will
explicitly define the columns and let the browser fill out the grid rows drawn from the
web page content.

To explicitly define the number of rows and their height, use the following
grid-template-rows property:

grid-template-rows: height1 height2 …;

where height1, height2, etc. define the heights of the grid rows. Figured 3-40 shows
an example of an explicit grid in which both the columns and rows are defined in the
CSS style sheet.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 217

In an implicit grid, the row heights are determined by the page element. You can also
set the row heights in an implicit grid using the following grid-auto-rows property:

grid-auto-rows: height1 height2 …;

where height1, height2, etc. are the heights of the rows with the sequence repeating
for each new set of rows. For example, the style:

grid-auto-rows: 100px;

sets the height of each row to 100 pixels, while the style

grid-auto-rows: 100px 200px;

sets the height of the first row in the implicit grid to 100 pixels, the height of the second
row to 200 pixels, and then repeats those heights for each subsequent set of two rows
until the grid is filled.

Track Sizes with Fractional Units
A grid layout will often need to adapt to devices of various screen widths and sizes.
One way of accomplishing this is with flexible units. A fr (fractional) unit, indicated
by the unit abbreviation fr, creates grid tracks that expand or contract in size to fill
available space while retaining their relative proportions to one another. The following
is an example of a grid in which the track sizes of the columns and rows is set using
fractional units:

grid-template-columns: 4fr 1fr;
grid-template-rows: 4fr 2fr 1fr;

As the size of the display window changes, the column widths maintain their
proportions so that the first column is always four times wider than the second column
and the row heights maintain their proportion of 4:2:1. See Figure 3–41.

If the content of a grid
item is greater than can
be displayed within
the allotted height, the
browser will automatically
increase the row height to
match.

Figure 3–40 Explicitly defining grid columns and rows

explicitly de�nes
both the rows and
columns of the grid

50px

100px

100px250px

150px

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 218

Fractional units are often combined with absolute units to create grid layouts that
are both fixed and flexible. The following style rule generates a grid in which the width
of the first column is set to 250 pixels with the remaining space allotted to the other
two columns in a proportion of 2 to 1.

grid-template-columns: 250px 2fr 1fr

Such a layout might be used in a web page in which the first column contains a
navigation list whose width is fixed, the second column contains an article of primary
importance, and the third column contains a sidebar of lesser importance. As the
size of the display window changes, the width of the second and third columns
automatically change, filling the screen while maintaining their 2:1 ratio.

Repeating Columns and Rows
Some grid layouts involve 12 or 16 columns or more. With so many columns it’s
difficult to specify the size of each column. You can simplify the layout style by using
the following repeat() function

repeat(repeat, tracks)

where repeat is the number of repetitions of the tracks specified in tracks. For
example, the following expression creates a layout consisting of one fixed column 250
pixels in width followed by four sets of two columns in which the first column in each
set is twice the width of the second column for a total of nine grid columns.

grid-template-columns: 250px repeat(4, 2fr 1fr);

In place of a repeat value, you can use the keyword auto-fill to fill up the grid
with as many columns (or rows) that will fit within the grid container. The following
style uses the auto-fill keyword to fill the grid with as many 100 pixel-wide
columns that will fit within the container:

grid-template-columns: 250px repeat(auto-fill, 100px);

Any grid item that cannot fit within the grid container will be automatically wrapped
to a new row. This type of layout could be used with an image gallery in which each

Figure 3–41 Using flexible units in a grid

fr unit sets �exible
track sizes

columns maintain a
proportion of 4:1

rows maintain a
proportion of
4:2:1

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 219

row contains as many 100 pixel-wide images that can fit within the display window,
arranged in columns.

Finally, you can switch between fixed and flexible track sizes using the following
minmax() function

minmax(min, max)

where min is the minimum track size for a row and column and max is the maximum.
Used in the following style rule, the grid will contain as many columns of equal width
that can fit within a grid container down to a minimum width of 100 pixels:

grid-template-columns: repeat(auto-fill, minmax(100px, 1fr));

Figure 3–42 shows how such a layout would be applied to grid containers of different
widths.

Figure 3–42 Using the minmax function in a grid

each row is �lled
with as many
equal-width items
as will �t within
the grid, down to
a minimum width
of 100 pixels

As the grid container decreases in size, grid items are automatically wrapped to a
new row. Under each layout, the columns are given equal widths down to a minimum
width value of 100 pixels.

Applying a Grid Layout
Now that you’ve seen how to set the size of rows and columns within a grid, you will
apply your knowledge to the About Pandaisia web page. From Anne’s proposed layout
shown earlier in Figure 3–36, you’ve learned that the two columns in the outer grid
should be displayed in a proportion of 2:1, while the four articles about chocolate in
the nested grid should be displayed with columns of equal width. You will define the
column widths for both the outer and nested grids using fractional units. You won’t,
however, explicitly define the number and height of the grid rows, leaving the browser
to implicitly lay out that content.

To define the grid columns:
w 1. Return to the pc_grids.css file in your editor.

w 2. Within the style rule for the body element, add the style:

grid-template-columns: 2fr 1fr;

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 220

 4. Save your changes to the file and then reload pc_about.html in your browser.
Figure 3–44 shows part of the layout of the page under the current grid structure.

creates two grid
columns with the �rst
column twice the width
of the second

creates two grid
columns of equal width

�rst column is twice the
width of the second

nested grid in a
2-column layout

w 3. Within the style rule for the section element, add:

grid-template-columns: repeat(2, 1fr);

 Figure 3–43 highlights the newly added code.

Figure 3–43 Creating two grids for the web page

Figure 3–44 Web page with the column layout

Tw
in

 D
es

ig
n/

Sh
ut

te
rs

to
ck

.c
om

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 221

The page layout does not resemble the plan that Anne outlined in Figure 3–36
because we have not specified where each item should be placed within the grid. That
will be the final step in designing the grid layout. Before doing that however, it would
be helpful to view the page with gridlines superimposed on the web page. We can do
that with outline styles.

Outlining a Grid
Outlines are simply lines drawn around an element, enclosing the element content,
padding, and border spaces. Unlike borders, which you’ll study in the next tutorial, an
outline doesn’t add anything to the width or height of the object, it only indicates the
extent of the element on the rendered page.

The width of the line used in the outline is defined by the following outline-width
property

outline-width: value;

where value is expressed in one of the CSS units of length, or with the keywords
thin, medium, or thick. The line color is set using the outline-color property

outline-color: color;

where color is a CSS color name or value. Finally, the design of the line can be set
using the following outline-style property

outline-style: style;

where style is none (to display no outline), solid (for a single line), double,
dotted, dashed, groove, inset, ridge, or outset. All the outline properties can be
combined into the following outline shorthand property

outline: width style color;

where width, style, and color are the values for the line’s width, design, and
color. For example, the following style rule uses the wildcard selector along with the
outline shorthand property to draw a 1 pixel dotted green line around every element on
the web page:

* {
 outline: 1px dotted green;
}

Note that there are no separate outline styles for the left, right, top, or bottom edge
of the object. The outline always surrounds an entire element.

Adding an Outline to an Element

• To add an outline around an element, use the property

outline: width style color;

where width, style, and color are the outline width, outline design, and outline
color respectively. These attributes can be listed in any order.

R
E
FE

R
E
N
C
E

Outlines can also be
applied to inline elements
such as inline images,
citations, quotations, and
italicized text.

Use the outline property now to add an outline to each item in both the outer
and inner grids.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 222

To define the grid columns:
 1. Return to the pc_grids.css file in your editor.

 2. At the bottom of the style sheet, add the following style rule to place a red
dashed outline around every child of the body element:

body > * {
 outline: 2px dashed red;
}

 3. Add the following style rule to place a blue dashed outline around every
child of the section element:

section > * {
 outline: 2px dashed blue;
}

 Figure 3–45 highlights the code for the style rules.

Most browsers include
developer tools for viewing
the gridlines from a CSS
grid. See your browser
documentation for specific
instructions.

 4. Save your changes to the file and then reload pc_about.html in your browser.
Figure 3–46 shows the outlines around both the outer and inner grids.

Figure 3–45 Adding outlines to grid items

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 223

Figure 3–46 Web page with grid items outlined

items in the inner
grid appear with
a blue outline

items in the outer
grid appear with
a red outline

Adding an outline makes it clear how each item is placed within the grid. Next you
will change the location and sizes of the grid items to match Anne’s proposed layout.

Placing Items within a Grid
By default, grid items are laid out in document order going from left to right and up to
down, with each item placed within a single cell. Thus, the page header in Figure 3–46,
being the first item in the grid, appears in the first row and column. The next item, an
article about the company, occupies the cell in the second column of the first row.
Subsequent items are placed in cells in the next rows filling the grid until the last item
is reached, which in this case is the page footer. In many layouts however, you might
want to move items around or a have a single item occupy multiple rows and columns.

Tw
in

 D
es

ig
n/

Sh
ut

te
rs

to
ck

.c
om

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 224

Placing Items by Row and Column
To move a grid item to a specific location within the grid, use the following grid-row
and grid-column properties:

grid-row: row;
grid-column: column;

where row is the row number and column is the column number. Thus, to place the
article element in a grid cell located in the first row and second column of the grid,
apply the following style rule:

article {
 grid-row: 1;
 grid-column: 2;
}

To extend a grid item so that it covers multiple rows or multiple columns, include the
starting and ending gridline in the style property as follows:

grid-row: start/end;
grid-column: start/end;

where start is the starting gridline and end is the ending gridline. Figure 3–47 shows
a page layout in which grid items 6, 8, and 9 have been moved and resized using
the grid-row and grid-column properties. For example, item 6 is moved to the first
row and second column of the grid while items 8 and 9 have been resized to cover
multiple rows and/or columns. The other items in the grid are placed in their default
locations and sized to fit within a single grid cell.

Defining Grids with CSS

• To assign a CSS grid to an element, use the property

display: grid;

• To define the number of rows and columns within the grid, use the properties

grid-template-rows: height1 height2 …;
grid-template-columns: width1 width2 …;

where height1, height2, width1, width2, etc. define the row heights or column
widths.

• To place an element within a specific intersection of grid rows and columns, use the
properties

grid-row-start: integer;
grid-row-end: integer;
grid-column-start: integer;
grid-column-end: integer;

where integer defines the starting and ending row or column that contains the
content.

• To more compactly set the location of the element within the grid, use the properties

grid-row: start/end;
grid-column: start/end;

where start and end are the starting and ending coordinates of the row and columns
containing the element.

R
E
FE

R
E
N
C
E

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 225

Figure 3–47 Placing items within a grid layout

1

1

2

3

4

5

2 3 4 5

Starting and ending gridlines can also be expressed in the following four properties:

grid-column-start: integer;
grid-column-end: integer;
grid-row-start: integer;
grid-row-end: integer;

so that the style rule grid-column: 2/5 is equivalent to:

grid-column-start: 2;
grid-column-end: 5;

Which approach you use is a matter of personal preference.
You can also use negative gridline numbers (shown earlier in Figure 3–33) to extend

an item from the first gridline to the last. Recall that since the last column or row
gridline has a value of -1, the expression

grid-column: 1/-1;

would extend the grid item across the entire row from the first gridline to the last.
Similarly, the expression

grid-row: 1/-1;

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 226

would create a grid item that extends across an entire column. Note that this technique
only works with explicit grids because in an implicit grid there is no defined last
column or row.

Using the span Keyword
Another way of setting the size of a grid cell is with the span keyword. The general
syntax is:

grid-row: span value;
grid-column: span value;

where value is the number of rows or columns covered by the item. The following
style rule extends the article element across 2 rows and 3 columns of the grid.

article {
 grid-row: span 2;
 grid-column: span 3;
}

To specify both the location and the size of the item, include the starting gridline
in the style rule. The following style rule places the article element in the first row
and fourth column of the grid while spanning two rows and three columns from that
location.

article {
 grid-row: 1/span 2;
 grid-column: 4/span 3;
}

In Anne’s proposed layout, the page header should occupy a single row, extending
from the first column to the last. Use the grid-column style rule now to display the
body header across the first row of the grid.

IN
SI
G
H
T

Naming Gridlines

Gridline numbers can be difficult and cumbersome to work with, so the CSS grid
model also supports gridline names, which are descriptive names for row and
column gridlines. Gridline names are created by adding a name enclosed within
square brackets into the grid-template-columns or grid-template-rows style.
For example, the following style creates a grid with three columns and four column
gridlines named row-start, main-start, main-end, and row-end.

grid-template-columns: [row-start] 50px [main-start] 250px
[main-end] 100px [row-end];

To extend a grid item across the entire row, you could apply the style:

grid-column: 1/4;

or

grid-column: row-start/row-end;

An article could be placed within the center grid column with the style:

grid-column: main-start/main-end;

Gridline names can make your CSS code easier to interpret and manage and can be
more easily updated if you insert additional rows or columns within your grid layout.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 227

To place the body header across the first row:
w 1. Return to the pc_grids.css file in your editor.

w 2. Directly below the style rule for the body element, insert the following style
rule as shown in Figure 3–48.

body > header {
 grid-row: 1;
 grid-column: 1/-1;
}

Figure 3–48 Spanning the body header across the grid row

Figure 3–49 Body header in the first row

body header
extends from
the �rst
gridline to the
last

header placed in
the �rst grid row

number of the
last gridline

number of the
�rst gridline

w 3. Save your changes to the file and reload pc_about.html in your browser.
The body header extends across the first row of the grid (see Figure 3–49.)

body header
occupies the
�rst row

Gridlines are a quick and effective method of placing and sizing grid items, but they
can be confusing when applied to a grid of several rows and columns. An easier and
more intuitive approach is to use grid areas.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 228

Placing Grid Items by Area
In the grid areas approach to layout you identify sections of the grid with item names,
creating a textual representation of the layout. Figure 3–50 shows a grid of four
rows and three columns in which several items span multiple rows and columns,
represented both visually as it would appear on the web page and textually.

visual representation textual representation

header

side1

side2

footer

header

main

main

footer

header

nav

nav

footer

To create a textual representation in a style sheet, use the following
grid-template-areas property:

grid-template-areas: "row1"
 "row2"
 …;

where row1, row2, etc. are text strings containing the names of the areas for each row.
Thus, to create the grid layout shown in Figure 3–50, you would enter the style:

grid-template-areas: "header header header"
 "side1 main nav"
 "side2 main nav"
 "footer footer footer";

You will add a grid-template-areas property to the style sheet, representing the
layout Anne proposed in Figure 3–36.

To place the body header across the first row:
w 1. Return to the pc_grids.css file in your editor.

w 2. Within the style rule for the body element, insert the following style:

grid-template-areas: "header header"
 "intro faq"
 "articles faq"
 "footer footer";

See Figure 3–51.

Make sure you enclose
each row of the grid layout
within a set of quotation
marks.

Figure 3–50 Mapping out grid areas

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 229

To assign elements to grid areas, use the following grid-area property:

grid-area: area;

where area is the name of an area defined in the grid-template-areas property.
Use the grid-area property now to assign elements from the web page to areas within
the grid.

To assign the page elements to grid areas:
w 1. Below the body > header style rule, add the following style to assign the

article element to the intro grid area.

body > article {grid-area: intro;}

w 2. Place the aside element in the faq grid area with the style:

body > aside {grid-area: faq;}

w 3. Place the section element in the articles grid area with the style:

body > section {grid-area: articles;}

w 4. Place the body footer element in the footer grid area using the style:

body > footer {grid-area: footer;}

Figure 3–52 highlights the newly added code.

Figure 3–51 Defining areas for the outer grid

header spans 2
columns

footer spans 2
columns

faq spans 2
rows

intro and articles
occupy single grid cells

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 230

place the aside
element in the
faq area

place the article
element in the
intro area

place the section
element in the
articles area

place the footer
element in the
footer area

Figure 5–52 Assigning elements to grid areas

The grid-area property can also be used as a shorthand to place and size grid
items using gridline numbers. The general syntax is:

grid-area: row-start/col-start/row-end/col-end;

where row-start, col-start, row-end, and col-end are the starting and ending
gridline numbers from the grid’s rows and columns. For example, the following
expression places the grid item to extend from the first row gridline through the fourth
and from the third column gridline through the fifth.

grid-area: 1/3/4/5;

The only remaining part of the About Pandaisia web page that needs to be placed
within the layout is the “About Chocolate” h1 heading that appears in the nested grid.
Anne wants this heading to extend across two columns in the first row of that grid.
Add a style rule to place the heading now.

To place the h1 heading:
w 1. Below the style rule for the section element, add the following rule to place

the h1 heading:

section > h1 {
 grid-area: 1/1/2/3;
}

See Figure 3–53.

Figure 3–53 Placing the h1 heading

extends the h1 heading from
the first through second row
gridlines and the first through
third column gridlines

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 231

Figure 3–54 About Pandaisia web page

w 2. Save your changes to the pc_grids.css file and then reload the pc_about.html
file in your browser. Figure 3–54 shows the complete layout of the page.

w 3. Return to the pc_grids.css file in your text editor.

w 4. Remove the two style rules that create the red and blue dashed outlines and
then save your changes to the file.

w 5. Reload the pc_about.html file in your browser and confirm that the grid
outlines are removed from the rendered page.

Tw
in

 D
es

ig
n/

Sh
ut

te
rs

to
ck

.c
om

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 232

Compare the appearance of the page content in Figure 3–54 with the schematic
diagram shown earlier in Figure 3–36 to see how using a grid provided a unified layout
for the page. As you become more experienced with setting up and applying grids, you
can move to more intricate and dynamic page layouts.

IN
SI
G
H
T

Generating Content with Lorem Ipsum

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer nec odio. Praesent
libero. Sed cursus ante dapibus diam. Sed nisi. Nulla quis sem at nibh elementum
imperdiet. Duis sagittis ipsum. Vestibulum lacinia arcu eget nulla. Sed dignissim
lacinia nunc.

That previous paragraph is an example of lorem ipsum, which is nonsensical,
improper Latin commonly used in page design as filler text. Rather than creating large
portions of sample text before you can view your layout, lorem ipsum is used to quickly
generate sentences, lines, and paragraphs that resemble the structure and appearance
of real text. Lorem ipsum is a particularly useful tool for web designers because they
can begin working on page design without waiting for their clients to supply all the
page content.

Many popular web editors include tools to generate lorem ipsum text strings in
a wide variety of formats and styles. There are also lorem ipsum generators freely
available on the web that supplement the lorem ipsum text with HTML markup tags.

Defining the Grid Gap
Another part of grid layout is defining the space between items in a grid. So far, all our
layouts have assumed no spacing, but many layouts include interior spaces to allow
each item “room to breathe.” The gap size is defined using the following grid-gap
property:

grid-gap: row column;

where row is the internal space between grid rows and column is the internal space
between grid columns. Figure 3–55 shows a grid layout in which the rows are
separated by a 10-pixel space and the columns by a space of 30 pixels.

Figure 3–55 Setting the grid gap

style to set the row
and column gap

column gap is
30 pixels

row gap is
10 pixels

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 233

You can also set the grid gaps for rows and columns using the following properties:

grid-column-gap: value;
grid-row-gap: value;

where value is the size of the gap in one of the CSS units of measure. Anne wants you
to add a 15-pixel column gap to the About Pandaisia web page but leave the row gap
at its default value of 0 pixels.

To set the size of the column gap:
w 1. Return to the pc_grids.css file in your editor.

w 2. Within the style rule for the body element, add the following property to set
the column gap size as shown in Figure 3–56.

grid-column-gap: 15px;

Figure 3–56 Setting the size of the column gap

interior space between
columns set to 15 pixels

w 3. Save your changes to the file then reload the pc_about.html file in your
browser. As shown in Figure 3–57, the gap between the first and second
columns is set to 15 pixels.

w 4. You’ve completed your work on the web page. Close the pc_about.html and
pc_grids.css files.

Figure 5–57 Gap between the first and second columns

15-pixel gap
between columns

Tw
in

 D
es

ig
n/

Sh
ut

te
rs

to
ck

.c
om

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 234

Note that, unlike margins, the gap size setting is applied only to the interior space
between the grid items and not to the exterior space between the grid items and the
edge of the grid container.

Managing Space within a Grid
The grid-gap property allows you to define the space between grid items. CSS
includes other properties to manage the space around the content of each grid cell.
By default, there is no space between the grid cell borders and the grid cell content.
However, you can position the content within the grid cell using the align-items and
justify-items properties. The align-items property sets the vertical placement of
the content, while the justify-items property sets the horizontal placement. The
syntax of both properties is:

align-items: placement;
justify-items: placement;

where placement is:

• stretch to expand the content between the top/bottom or left/right edges, removing
any spacing between the content and the cell border (the default)

• start to position the content with the top or left edge of the cell
• end to position the content with the bottom or right edge of the cell
• center to center the content vertically or horizontally within the cell

Figure 3–58 shows the impact of the align-items and justify-items properties
on the placement of the content within each grid cell. By default, there is no spacing
between the content and the cell border as the content “stretches” to fill the cell
(shown in the grid on the left in the figure). In the grid on the right, the content is
placed at the start (top) and horizontal center of the cell and spacing is added between
the cell content and the cell borders.

Figure 3–58 Applying the align-items and justify-items properties

align-items: stretch;
justify-items: stretch;

align-items: start;
justify-items: center;

You can explore the

align-items and

justify-items
properties using the
demo_grid1.html file from
the html03 c demo folder.

TRY IT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 235

Alignment for a Single Grid Cell
The align-items and justify-items properties apply to every cell in the grid. To
align and justify only one cell, apply the align-self and justify-self properties to
the content within the grid cell. The placement values are the same as for the align-
items and justify-items properties. For example, the following style rule displays the
content of the article element in both the horizontal and vertical center of the grid cell.

article {
 align-self: center;
 justify-self: center;
}

Using the align-self and justify-self properties is a quick and easy way
of centering your content within the web page. Before the introduction of the CSS
grid model, this was a difficult task involving a lot of CSS hacks, but now it can be
accomplished by simply placing the item within a grid and centering the content both
horizontally and vertically.

Aligning the Grid
In some layouts involving fixed units, the space taken up by the items within the grid
will be less than the total space allotted to the grid container itself, creating unused
space in the container. By default, the grid will be positioned at the top-left corner
of the container, but you can modify that position using the align-content and
justify-content properties:

align-content: placement;
justify-content: placement;

where placement is:

• start to position the grid with the top or left edge of the container (the default)
• end to position the grid with the bottom or right edge of the container
• center to center the grid vertically or horizontally within the container
• space-around to insert an even amount of space between each grid item, with

half-sized spaces on the far ends
• space-between to insert an even amount of space between each grid item, with no

space at the far ends
• space-evenly to insert an even amount of space between each grid item, including

the far ends

As with the other grid properties, the align-content property positions the grid
vertically within the container and the justify-content property moves the grid
horizontally. Figure 3–59 shows how the interior space within the grid container can be
managed using the align-content and justify-content properties. In the left grid,
the layout is centered both horizontally and vertically within the container. In the right
grid, the grid items themselves are positioned evenly within the container.

You can explore the

align-content and

justify-content
properties using the
demo_grid2.html file from
the html03 c demo folder.

TRY IT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 236

Figure 3–59 Applying the align-content and justify-content properties

align-content: center;
justify-content: center;

align-content: space-evenly;
justify-content: space-evenly;

PR
O
SK

IL
LS

Written Communication: Getting to the Point with Layout

Page layout is one of the most important aspects of web design. A well-constructed
layout naturally guides a reader’s eyes to the most important information in the page.
You should use the following principles to help your readers quickly get to the point:

• Guide the eye. Usability studies have shown that a reader’s eye first lands in the top
center of the page, then scans to the left, and then to the right and down. Arrange
your page content so that the most important items are the first items a user sees.

• Avoid clutter. If a graphic or an icon is not conveying information or making the
content easier to read, remove it.

• Avoid overcrowding. Focus on a few key items that will be easy for readers to locate
while scanning the page, and separate these key areas from one another with ample
white space. Don’t be afraid to move a topic to a different page if it makes the
current page easier to understand.

• Make it manageable. It’s easier for the brain to process information when it’s
presented in smaller chunks. Break up long extended paragraphs into smaller
paragraphs or bulleted lists.

• Use a grid. Users find it easier to digest content when it’s aligned vertically and
horizontally. Using a grid helps you line up your elements in a clear and consistent way.

• Cut down on distractions. If you’re thinking about using blinking text or a cute
animated icon, don’t. The novelty of such features wears off very quickly and
distracts users from the valuable content.

Always remember that your goal is to convey information to readers, and that
an important tool in achieving that is to make it as easy as possible for readers to
find that information. A thoughtfully constructed layout is a great aid to effective
communication.

The align-content and justify-content properties are useful when you want
to center your entire layout within the web page in both the horizontal and vertical
directions.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 237

In the next session, you’ll explore CSS positioning styles that allow you to place page
elements anywhere within the rendered page.

Session 3.2 Quick Check

 1. To change an element into a grid container, apply the style:
a. display: grid-container;
b. grid-template-columns: auto;
c. display: grid;
d. All of the above

 2. A fractional unit (fr) is:
a. part of a pixel
b. a fraction of an em unit
c. a fraction of any fixed unit
d. used to create elements that expand or contract to fill available space

 3. To explicitly define the columns within a grid, use the CSS property:
a. grid-template-columns
b. grid-columns
c. columns
d. grid-auto-columns

 4. To implicitly define the height of grid rows, use:
a. grid-template-rows
b. grid-rows
c. rows
d. grid-auto-rows

 5. To position a grid item in the second row and cover the second and third
column, apply the style(s):
a. grid-row: 2;

grid-column: 2/3;
b. grid-row: 2;

grid-column: 2/4;
c. row: 2;

column: 2/3;
d. grid-row: 2;

column-span: 2/2;
 6. To define a grid layout with areas, use the property:

a. grid-areas
b. grid-area
c. grid-template-areas
d. grid-areas-template

 7. To place an element in the grid area named “intro”, apply the style:
a. grid-area: intro;
b. grid-template-areas: "intro";
c. area: intro;
d. All of the above

 8. To set the space between grid columns to 15 pixels and the space between grid
rows to 10 pixels, apply the style:
a. gap: 10px 15px;
b. grid-gap: 10px 15px;
c. grid-gap: 15px/10px;
d. gap: 15px/10px;

 9. To horizontally center the content of a grid cell, apply the style:
a. align-content: center;
b. align-self: center;
c. justify-self: center;
d. justify-content: center;

R
E
V
IE

W

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 238

Session 3.3 Visual Overview:

Top and left values can be
expressed using any of
the CSS units of measure,
including pixels and
percentages, where a
percentage represents
the percent width or
height of the containing
element.

Relative positioning is
used to shift an element
from its default position in
the document �ow.

Absolute positioning is
used to place an element
at speci�ed coordinates
within a container element.

When overflow is set
to auto, the browser
automatically displays
scrollbars for over�owed
content.

The top property
provides the top
coordinate for an
element using relative,
absolute, or �xed
positioning.

The left property
provides the left
coordinate for the
positioned element.

The overflow
property determines
how the browser
should handle content
that exceeds the space
allotted to the element.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 239

Layout with Positioning Styles

20px

185px

135px

5%

42%

75% info3 is placed 135 pixels
from the top and 75%
from the left edge.

Vertical scrollbar
is automatically
added to view
the over�owed
content.

info1 is placed 20 pixels
from the top of the
main element and 5%
from the left edge.

info2 is placed 185 pixels
from the top and 42%
from the left edge of the
main element.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 240

Positioning Objects
In the last session, you developed a layout in which page objects were strictly aligned
according to the rows and columns of a grid. While a grid layout gives a page a feeling
of uniformity and structure, it does limit your freedom to place objects at different
locations within the page. In this session, you’ll explore how to “break out” of the grid
using the CSS positioning styles.

The CSS Positioning Styles
CSS supports several properties to place objects at specific coordinates within the page
or within their container. To place an element at a specific position within its container,
you use the following style properties

position: type;
top: value;
right: value;
bottom: value;
left: value;

where type indicates the kind of positioning applied to the element, and the top, right,
bottom, and left properties indicate the coordinates of the top, right, bottom, and left
edges of the element, respectively. The coordinates can be expressed in any of the CSS
measuring units or as a percentage of the container’s width or height.

CSS supports five kinds of positioning: static (the default), relative, absolute,
fixed, and inherit. In static positioning, the element is placed where it would have
fallen naturally within the flow of the document. This is essentially the same as not
using any CSS positioning at all. Browsers ignore any values specified for the top,
left, bottom, or right properties under static positioning.

Relative Positioning
Relative positioning is used to nudge an element out of its normal position in the
document flow. Under relative positioning, the top, right, bottom, and left properties
indicate the extra space that is placed alongside the element as it is shifted into a new
position. For example, the following style rule adds 250 pixels of space to the top of the
element and 450 pixels to the left of the element, resulting in the element being shifted
down and to the right (see Figure 3–60):

div {
 position: relative;
 top: 250px;
 left: 450px;
}

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 241

Note that the layout of the other page elements are not affected by relative positioning;
they will still occupy their original positions on the rendered page, just as if the object
had never been moved at all.

Relative positioning is sometimes used when the designer wants to “tweak” the page
layout by slightly moving an object from its default location to a new location that fits
the overall page design better. If no top, right, bottom, or left values are specified with
relative positioning, their assumed values are 0 and the element will not be shifted at all.

Absolute Positioning
Absolute positioning places an element at specific coordinates within a container
where the top property indicates the position of the element’s top edge, the right
property sets the position of the right edge, the bottom property sets the bottom edge
position, and the left property sets the position of the left edge.

For example, the following style rule places the header element 620 pixels from the
top edge of its container and 30 pixels from the left edge (see Figure 3–61).

header {
 position: absolute;
 top: 620px;
 left: 30px;
}

To place an element at the
bottom right corner of its
container, use absolute
positioning with the right
and bottom values set to
0 pixels.

original layout layout under relative positioning

250 pixels

450 pixelsother page elements
retain their original
positions

position:
relative;
top: 250px;
left: 450px;

object shifted
250 pixels down
and 450 pixels
to the right
from its default
position

Figure 3–60 Moving an object using relative positioning

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 242

To place an object with absolute positioning, you use either the top/left coordinates or
the bottom/right coordinates, but you don’t use all four coordinates at the same time
because that would confuse the browser. For example an object cannot be positioned
along both the left and right edge of its container simultaneously.

As with floating an element, absolute positioning takes an element out of normal
document flow with subsequent elements moving into the space previously occupied
by the element. This can result in an absolutely positioned object overlapping other
page elements.

The interpretation of the coordinates of an absolutely positioned object are all
based on the edges of the element’s container. Thus the browser needs to “know”
where the object’s container is before it can absolutely position objects within it. If the
container has been placed using a position property set to relative or absolute,
the container’s location is known and the coordinate values are based on the edges
of the container. For example the following style rules place the article element at
a coordinate that is 50 pixels from the top edge of the section element and 20 pixels
from the left edge.

section {
 position: relative;
}
section > article {
 position: absolute;
 top: 50px;
 left: 20px;
}

Note that you don’t have to define coordinates for the section element as long as
you’ve set its position to relative.

The difficulty starts when the container has not been set using relative or absolute
positioning. In that case, the browser has no context for placing an object within the
container using absolute positioning. As a result, the browser must go up a level in
the hierarchy of page elements, that is, to the container’s container. If that container
has been placed with absolute or relative positioning, then any object nested within it

You can explore positioning
styles using the file demo_
positioning.html from the
html04 c demo folder.

TRY IT

Figure 3–61 Moving an object using absolute positioning

original layout layout under absolute positioning

30px

620px

position:
absolute;
top: 620px;
left: 30px;

other page
elements move into
the space previously
occupied by the
now absolutely
positioned object

top-left corner of
object placed
620 pixels down
and 30 pixels to
the right of the
top-left edge of
the web page

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 243

Coordinates can be expressed in percentages as well as pixels. Percentages are used
for flexible layouts in which the object should be positioned in relation to the width
or height of its container. Thus, the following style rule places the article element
halfway down and 30% to the right of the top-left corner of its container.

article {
 position: absolute;
 top: 50%;
 left: 30%;
}

can be placed with absolute positioning. For example, in the following style rule, the
position of the article element is measured from the edges of the body element, not
the section element:

body {position: absolute;}

body > section {position: static;}

body > section > article {
 position: absolute;
 top: 50px;
 left: 20px;
}

Proceeding in this fashion the browser will continue to go up the hierarchy of
elements until it finds a container that has been placed with absolute or relative
positioning or it reaches the root html element. If it reaches the html element, the
coordinates of any absolutely positioned object are measured from the edges of the
browser window itself. Figure 3–62 shows how the placement of the same object can
differ based on which container supplies the context for the top and left values.

If all of the objects within
a container are placed
using absolute positioning,
the container will have no
content and will collapse.

Figure 3–62 Context of the top and left coordinates

absolute positioning from the
inner container

position: relative;

80px

40px

absolute positioning from the
outer container

80px

40px

position: relative;

position: absolute;
top: 80px;
left: 40px;

position: absolute;
top: 80px;
left: 40px;

because the inner
container has not been
placed using relative or
absolute positioning, the
context shifts up the
hierarchy to the outer
container

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 244

Using the Positioning Styles
Anne wants you to work on the layout for a page that contains an infographic on
chocolate. She sketched the layout of the infographic page, as shown in Figure 3–63.

As the container of the article changes in width or height, the article’s position will
automatically change to match.

Fixed and Inherited Positioning
When you scroll through a document in the browser window, the page content scrolls
along. If you want to fix an object within the browser window so that it doesn’t scroll, you
can set its position property to fixed. For example, the following style rule keeps the
footer element at a fixed location, 10 pixels up from the bottom of the browser window:

footer {
 position: fixed;
 bottom: 10px;
}

Note that a fixed object might cover up other page content, so you should use it with
care in your page design.

Finally, you can set the position property to inherit so that an element inherits
the position value of its parent element.

R
E
FE

R
E
N
C
E

Positioning Objects with CSS

• To shift an object from its default position, use the properties

position: relative;
top: value;
left: value;
bottom: value;
right: value;

where value is the distance in one of the CSS units of measure that the object should
be shifted from the corresponding edge of its container.

• To place an object at a specified coordinate within its container, use the properties

position: absolute;
top: value;
left: value;
bottom: value;
right: value;

where value is a distance in one of the CSS units of measure or a percentage of the
container’s width or height.

• To fix an object within the browser window so that it does not scroll with the rest of
the document content, use the property

position: fixed;

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 245

Because the placement of the text and figures do not line up nicely within a grid,
you’ll position each graphic and text box using the CSS positioning styles. Anne has
already created the content for this page and written the style sheets to format the
appearance of the infographic. You will write the style sheet to layout the infographic
contents using the CSS positioning styles.

The first box of Valentine’s
Day chocolates was created
by British chocolatier
Richard Cadbury in 1868.

A single cocoa tree produces
about 800 bars of milk
chocolate or 400 bars of dark
chocolate every year.

The Ivory Coast accounts
for 40% of the worldwide
cocoa production.

The word chocolate comes
from the Azetc word, xocalatl,
which means bitter water.

Favorite Box Chocolates

Dark
36%

Milk
55%

White
9%

Top Chocolate-Loving Nations (per capita)

22% of all chocolate
consumption takes place
between 8 p.m. and midnight.

Dark chocolate is one of the
most potent sources of
antioxidants, having up to 5
times more antioxidant power
than so-called “super berries.”

Eating 40 grams of good quality
organic dark chocolate every day
significantly reduces your levels of
stress hormones and improves your
overall health.

Figure 3–63 Proposed layout of the chocolate infographic

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 246

To format the main element:
w 1. Use your editor to open the pc_info_txt.css file from the html03 c tutorial

folder. Enter your name and the date in the comment section of the file and
save the document as pc_info.css.

w 2. Go to the Main Styles section and insert the following style rule to format the
appearance of the main element:

main {
 position: relative;
 height: 1400px;
 width: 100%;
}

It will be easier to see the effect of placing the different div elements if they
are not displayed until you are ready to position them. Add a rule to hide the
div elements, then as you position each element, you can add a style rule to
redisplay it.

w 3. Directly before the Main Styles section, insert the following style rule to hide
all of the infoboxes:

div.infobox {display:none;}

Figure 3–64 highlights the newly added code in the style sheet.

When you want to position
objects in an exact or absolute
position within a container, set
the position property of the
container to relative.

Next, you’ll start working on the pc_info.css file, which will contain the positioning
and other design styles for the objects in the infographic. You will begin by formatting
the main element, which contains the infographics. Because you’ll want the position
of each infographic to be measured from the top-left corner of this container, you will
place the main element with relative positioning and extend the height of the container
to 1400 pixels so that it can contain all eight of the graphic elements.

To open the infographic file:
w 1. Use your editor to open the pc_info_txt.html file from the html03 c tutorial

folder. Enter your name and the date in the comment section of the file and
save the document as pc_info.html.

w 2. Directly after the title element, insert the following link elements to attach
the file to the pc_reset.css, pc_styles3.css, and pc_info.css style sheets.

<link href="pc_reset.css" rel="stylesheet" />
<link href="pc_styles3.css" rel="stylesheet" />
<link href="pc_info.css" rel="stylesheet" />

w 3. Take some time to study the structure and content of the pc_info.html
document. Note that Anne has placed eight information graphics, each
within a separate div element with a class name of infobox and an id name
ranging from info1 to info8.

w 4. Close the file, saving your changes.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 247

places the main
element using
relative positioning

sets the height of the main
element to 1400 pixels and
makes it the width of the
page body

hides the div elements of
the infobox class

w 4. Save your changes to the file and then open the pc_info.html file in your
browser. Verify that the browser shows an empty box, about 1400 pixels high,
where the infographic will be placed.

Next, you will add a style rule for all of the information boxes so that they are placed
within the main element using absolute positioning.

To position the information boxes:
w 1. Return to the pc_info.css file in your editor and scroll down to the Infographic

Styles section.

w 2. Add the following style rule to set the position type of all of the
information boxes.

div.infobox {
 position: absolute;
}

w 3. Within the First Infographic section, add the following style rule to position
the first information box 20 pixels from the top edge of its container and 5%
from the left edge.

div#info1 {
 display: block;
 top: 20px;
 left: 5%;
}

Note that we set the display property to block so that the first information
box is no longer hidden on the page. Figure 3–65 highlights the style rules for
all of the information boxes and the placement of the first information box.

Figure 3–64 Setting the display styles of the main element

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 248

To place the next two boxes:
w 1. Return to the pc_info.css file in your editor and go to the Second Infographic

section.

w 2. Add the following style rule to place the second box 185 pixels down from
the top of the container and 42% from the left edge.

div#info2 {
 display: block;
 top: 185px;
 left: 42%;
}

w 4. Save your changes to the file and then reload the pc_info.html file in your
browser. Figure 3–66 shows the placement of the first information box.

places every
information box
using absolute
positioning

places the first box
20 pixels from the
top edge of the
main element and
5% from the left

Figure 3–65 Placing the first information box

Figure 3–66 Appearance of the first information box

placement of the
first information box

Now place the second and third information boxes.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 249

third
information
box

second
information
box

places the second
box 185 pixels
from the top and
42% from the left

places the third
box 135 pixels
from the top and
75% from the left

w 4. Save your changes to the file and reload pc_info.html in your browser. Figure 3–68
shows the placement of the first three information boxes.

w 3. Within the Third Infographic section insert the following style rule to place
the third box 135 pixels from the top edge and 75% of the width of its
container from the left edge.

div#info3 {
 display: block;
 top: 135px;
 left: 75%;
}

Figure 3–67 highlights the style rules to position the second and third
 information boxes.

Figure 3–67 Positions of the second and third boxes

Figure 3–68 Placement of the first three boxes

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 250

Place the next three information boxes.

To place the next three boxes:
w 1. Return to the pc_info.css file in your editor, go to the Fourth Infographic

section and place the fourth box 510 pixels from the top edge and 8% from
the left edge.

div#info4 {
 display: block;
 top: 510px;
 left: 8%;
}

w 2. Add the following style rule to the Fifth Infographic section to position the
fifth box:

div#info5 {
 display: block;
 top: 800px;
 left: 3%;
}

w 3. Add the following style rule to the Sixth Infographic section to position the
sixth box:

div#info6 {
 display: block;
 top: 600px;
 left: 48%;
}

Figure 3–69 highlights the positioning styles for the fourth, fifth, and sixth
information boxes.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 251

places the fifth
box 800 pixels
from the top and
3% from the left

places the sixth
box 600 pixels
from the top and
48% from the left

places the fourth
box 510 pixels
from the top and
8% from the left

w 4. Save your changes to the file and reload pc_info.html in your browser.
Figure 3–70 shows the revised layout of the infographic.

fourth
information
box

fifth
information
box

sixth
information
box

Figure 3–69 Positions of the fourth, fifth, and sixth boxes

Figure 3–70 Placement of the next three boxes

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 252

To place the last two boxes:
w 1. Return to the pc_info.css file in your editor, go to the Seventh Infographic

section and insert the following style rules:

div#info7 {
 display: block;
 top: 1000px;
 left: 68%;
}

w 2. Add the following style rules to the Eighth Infographic section:

div#info8 {
 display: block;
 top: 1100px;
 left: 12%;
}

Figure 3–71 highlights the style rules for the seventh and eighth information
boxes.

w 3. Scroll up to before the Main Styles section and delete the style rule
div.infobox {display: none;} because you no longer need to hide any
information boxes.

w 4. Save your changes to the file and reload pc_info.html in your browser.
Figure 3–72 show the complete layout of the eight boxes in the infographic.

places the eighth
box 1100 pixels
from the top and
12% from the left

places the
seventh box
1000 pixels from
the top and 68%
from the left

Figure 3–71 Positioning the seventh and eighth boxes

Complete the layout of the infographic by placing the final two boxes on the page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 253

seventh
information box

eighth
information box

Figure 3–72 Final layout of the infographic

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 254

Anne likes the appearance of the infographic, but she is concerned about its length.
She would like you to reduce the height of the infographic so that it appears within
the boundaries of the browser window. This change will create overflow because the
content is longer than the new height. You will read more about overflow and how to
handle it now.

IN
SI
G
H
T

IN
SI
G
H
T

Creating an Irregular Line Wrap

Many desktop publishing and word-processing programs allow designers to create
irregular line wraps in which the text appears to flow tightly around an image. This is
not easily done in a web page layout because all images appear as rectangles rather
than as irregularly shaped objects. However, with the aid of a graphics package, you
can simulate an irregularly shaped image.

The trick is to use your graphics package to slice the image horizontally into several
pieces and then crop the individual slices to match the edge of the image you want
to display. Once you’ve edited all of the slices, you can use CSS to stack the separate
slices by floating them on the left or right margin, displaying each slice only after the
previous slice has been cleared. For example, the following style rule stacks all inline
images that belong to the “slice” class on the right margin:

img.slice {
 clear: right;
 float: right;
 margin-top: 0px;
 margin-bottom: 0px;
}

Now any text surrounding the stack of images will tightly match the image’s
boundary, creating the illusion of an irregular line wrap. Note that you should always
set the top and bottom margins to 0 pixels so that the slices join together seamlessly.

Handling Overflow
The infographic is long because it displays several information boxes. If you reduce the
height of the infographic you run the risk of cutting off several of the boxes that will no
longer fit within the reduced infographic. However you can control how your browser
handles this excess content using the following overflow property

overflow: type;

where type is visible (the default), hidden, scroll, or auto. A value of visible
instructs browsers to increase the height of an element to fit the overflow content.
The hidden value keeps the element at the specified height and width, but cuts off
excess content. The scroll value keeps the element at the specified dimensions, but
adds horizontal and vertical scroll bars to allow users to scroll through the overflowed
content. Finally, the auto value keeps the element at the specified size, adding scroll
bars only as they are needed. Figure 3–73 shows examples of the effects of each
overflow value on content that is too large for its space.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 255

CSS also provides the overflow-x and overflow-y properties to handle overflow
specifically in the horizontal and vertical directions.

overflow: visible; overflow: hidden; overflow: scroll; overflow: auto;

box extends to make
all of the content visible

overflowed content
is hidden from the

reader

horizontal and
vertical scrollbars are

added to the box

scrollbars are added
only where needed

R
E
FE

R
E
N
C
E

Working with Overflow

• To specify how the browser should handle content that overflows the element’s
boundaries, use the property

overflow: type;

where type is visible (the default), hidden, scroll, or auto.

You decide to limit the height of the infographic to 450 pixels and to set the overflow
property to auto so that browsers displays scroll bars as needed for the excess content.

To apply the overflow property:
w 1. Return to the pc_info.css file in your editor and go to the Main Styles section.

w 2. Within the style rule for the main selector, insert the property overflow: auto;.

w 3. Reduce the height of the element from 1400px to 450px.

Figure 3–74 highlights the revised code in the style rule.

Figure 3–73 Values of the overflow property

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 256

w 4. Close the file, saving your changes.

w 5. Reload the pc_info.html file in your browser. As shown in Figure 3–75, the
height of the infographic has been reduced to 450 pixels and scrollbars have
been added that you can use to view the entire infographic.

sets the height of
the infographic
to 450 pixels

displays scrollbars
if the content
overflows the
allotted height

Figure 3–75 Final layout of the infographic page

scrollbar automatically
added to view the
infographic content

height of the
infographic set
at 450 pixels

w 6. Close any open files now.

Figure 3–74 Setting the overflow property

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 257

Clipping an Element
Closely related to the overflow property is the clip property, which defines a
rectangular region through which an element’s content can be viewed. Anything that
lies outside the boundary of the rectangle is hidden. The syntax of the clip property is

clip: rect(top, right, bottom, left);

where top, right, bottom, and left define the coordinates of the clipping rectangle.
For example, a clip value of rect(100px, 270px, 260px, 65px) defines a clip region whose
top and bottom boundaries are 100 and 260 pixels from the top edge of the element, and
whose right and left boundaries are 270 and 65 pixels from the element’s left edge. See
Figure 3–76.

Managing White Space with CSS

Scroll bars for overflow content are usually placed vertically so that you scroll down to
view the extra content. In some page layouts, however, you may want to view content
in a horizontal rather than a vertical direction. You can accomplish this by adding the
following style properties to the element:

overflow: auto;
white-space: nowrap;

The white-space property defines how browsers should handle white space in the
rendered document. The default is to collapse consecutive occurrences of white space
into a single blank space and to automatically wrap text to a new line if it extends beyond
the width of the container. However, you can set the white-space property of the
element to nowrap to keep inline content on a single line, preventing line wrapping.
With the content thus confined to a single line, browsers will display only horizontal scroll
bars for the overflow content. Other values of the white-space property include normal
(for default handling of white space), pre (to preserve all white space from the HTML file),
and pre-wrap (to preserve white space but to wrap excess content to a new line).

100px

65px

clip: rect(100px, 270px, 260px, 65px) clipped image

270px

260px

© Brent Hofacker/Shutterstock.com

IN
SI
G
H
T

Figure 3–76 Clipping an image

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 258

The top, right, bottom, and left values also can be set to auto, which matches the
specified edge of the clipping region to the edge of the parent element. A clip value of
rect(10, auto, 125, 75) creates a clipping rectangle whose right edge matches the right
edge of the parent element. To remove clipping completely, apply the style clip: auto.
Clipping can only be applied when the object is placed using absolute positioning.

R
E
FE

R
E
N
C
E

Clipping Content

• To clip an element’s content, use the property

clip: rect(top, right, bottom, left);

where top, right, bottom, and left define the coordinates of the clipping rectangle.
• To remove clipping for a clipped object, use
clip: auto;

Stacking Elements
Positioning elements can sometimes lead to objects that overlap each other. By default,
elements that are loaded later by the browser are displayed on top of elements that are
loaded earlier. In addition, elements placed using CSS positioning are stacked on top of
elements that are not. To specify a different stacking order, use the following z-index
property:

z-index: value;

where value is a positive or negative integer, or the keyword auto. As shown in
Figure 3–77, objects with the highest z-index values are placed on top of other page
objects. A value of auto stacks the objects using the default rules.

z-index: 1

z-index: 2

z-index: 3

The z-index property works only for elements that are placed with absolute positioning.
Also, an element’s z-index value determines its position relative only to other elements that
share a common parent; the style has no impact when applied to elements with different
parents. Figure 3–78 shows a layout in which the object with a high z-index value of 4 is
still covered because it is nested within another object that has a low z-index value of 1.

Figure 3–77 Using the z-index property to stack elements

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 259

You do not need to include the z-index property in your style sheet because none
of the elements in the infographic page are stacked upon another.

z-index: 1

z-index: 2

z-index: 3

z-index: 4
nested object

PR
O
SK

IL
LS

Problem Solving: Principles of Design

Good web page design is based on the same common principles found in other areas
of art, which include balance, unity, contrast, rhythm, and emphasis. A pleasing layout
involves the application of most, if not all, of these principles, which are detailed below:

• Balance involves the distribution of elements. It’s common to think of balance in terms of
symmetrical balance, in which similar objects offset each other like items on a balance
scale; but you often can achieve more interesting layouts through asymmetrical balance,
in which one large page object is balanced against two or more smaller objects.

• Unity is the ability to combine different design elements into a cohesive whole. This is
accomplished by having different elements share common colors, font styles, and sizes.
One way to achieve unity in a layout is to place different objects close to each other,
forcing your viewers’ eyes to see these items as belonging to a single unified object.

• Contrast consists of the differences among all of the page elements. To create
an effective design, you need to vary the placement, size, color, and general
appearance of the objects in the page so that your viewers’ eyes aren’t bored by the
constant repetition of a single theme.

• Rhythm is the repetition or alteration of a design element in order to provide a
sense of movement, flow, and progress. You can create rhythm by tiling the same
image horizontally or vertically across the page, by repeating a series of elements
that progressively increase or decrease in size or spacing, or by using elements with
background colors of the same hue but that gradually vary in saturation or lightness.

• Emphasis involves working with the focal point of a design. Your readers need a few
key areas to focus on. It’s a common design mistake to assign equal emphasis to all
page elements. Without a focal point, there is nothing for your viewers’ eyes to latch
onto. You can give a page element emphasis by increasing its size, by giving it a
contrasting color, or by assigning it a prominent position in the page.
Designers usually have an intuitive sense of what works and what doesn’t in page

design, though often they can’t say why. These design principles are important
because they provide a context in which to discuss and compare designs. If your page
design doesn’t feel like it’s working, evaluate it in light of these principles to identify
where it might be lacking.

Figure 3–78 Stacking nested objects

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 260

Anne is pleased with the final design of the infographic page and all of the other
pages you’ve worked on. She’ll continue to develop the website and test her page
layouts under different browsers and screen resolutions. She’ll get back to you with
future projects as she continues the redesign of the Pandaisia Chocolates website.

R
E
V
IE

W
Session 3.3 Quick Check

 1. To shift an object from its default placement in the document flow but keep it
within the document flow, use:
a. absolute positioning
b. relative positioning
c. fixed positioning
d. static positioning

 2. Provide a style to shift rule to shift an article element 15 pixels to the left of its
default position in the document flow.
a. article {

 position: absolute;
 left: 15px;
}

b. article {
 position: relative;
 left: 15px;
}

c. article {
 position: absolute;
 left: -15px;
}

d. article {
 position: relative;
 left: -15px;
}

 3. Provide a style to place an article element 15 pixels up from the top edge of its
container element.
a. article {

 position: absolute;
 top: 15px;
}

b. article {
 position: relative;
 top: 15px;
}

c. article {
 position: absolute;
 top: -15px;
}

d. article {
 position: relative;
 top: -15px;
}

 4. To place an object using absolute positioning within its container, the
container:
a. must also have absolute positioning
b. must have absolute or relative positioning
c. must have statistic positioning
d. must not have any position property value

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 261

 5. Provide a style property to display scrollbars when the element content
exceeds the element’s boundaries.
a. overflow: auto;
b. overflow: scroll;
c. overflow: scrollbar;
d. overflow: true;

 6. An inline image is 400 pixels wide by 300 pixels high. Provide a style rule to
clip this image by 10 pixels on each edge.
a. clip: rect(10, 390, 290, 10);
b. clip: 10;
c. clip: -10;
d. clip: 10 390 290 10;

 7. If two elements overlap, the one displayed on top will:
a. be listed first in the document order
b. have the greater height and width
c. have the lower z-index value
d. have the higher z-index value

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 262

Coding Challenge 1

Data Files needed for this Coding Challenge: code3-1_txt.html, code3-1_float_txt.css, code3-1.css,
lincoln01.png - lincoln10.png

Figure 3–79 shows an example page containing two applications of floating objects. In the first
line of Lincoln’s second inaugural speech a drop capital is created by floating the first letter of the
first paragraph next to the surrounding text. The text of the speech is wrapped around the image of
Lincoln using an irregular line wrap. This effect is created by cutting the Lincoln image into separate
strips which are floated and stacked on top of each other. In this Coding Challenge you will explore
how to create both effects.

C
O

D
E

Figure 3–79 Coding Challenge 3-1 example page

Do the following:

 1. Open the code3-1_txt.html and code3-1_float_txt.css files from the html03 c code1 folder.
Enter your name and the date in each document and save the files as code3-1.html and
code3-1_float.css respectively.

 2. Go to the code3-1.html file in your editor. Within the head section insert a link element linking
the page to the code3-1_float.css style sheet file. Take some time to study the content of the page
and then save your changes to the file.

 3. Go to the code3-1_float.css file in your editor.

Li
br

ar
y

of
 C

on
gr

es
s,

 P
rin

ts
 &

 P
ho

to
gr

ap
hs

 D
iv

is
io

n,
 R

ep
ro

du
ct

io
n

nu
m

be
r L

C
-D

IG
-

pp
m

sc
a-

19
46

9
(d

ig
ita

l fi
le

 fr
om

 o
rig

in
al

)

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 263

 4. To create a drop cap, insert a style rule for the selector p:first-of-type:first-letter and
add the following styles:
a. Float the element on the left margin.
b. Set the font size to 4em and the line height to 0.8em.
c. Set the size of the right margin and padding space to 0.1em. Set the bottom padding to

0.2em.
 5. Display the first line of the speech in small caps by adding a style rule for the selector

p:first-of-type:first-line that changes the font variant to small-caps and the
font size to 1.4em.

 6. For all img elements create a style rule to set the height of the image to 3.3em and float the
image on the right margin, but only when the page is cleared of floats.

 7. Save your changes to the style sheet.
 8. Open the page in your browser and verify the layout of the page resembles that shown in

Figure 3-79.
 9. Submit the completed file to your instructor.

Coding Challenge 2

Data Files needed for this Coding Challenge: code3-2_txt.html, code3-2_grad_txt.css, code3-2.css,
landscape.png

Figure 3–80 shows a proposed layout for a new web page. At this point the final content is not ready
for the web page, so the layout is shown using lorem ipsum text. You’ve been given the HTML code
for the page and your challenge is to create the page layout using CSS grid styles.

C
O

D
E

Figure 3–80 Coding Challenge 3-2 example page

Complete the following:

 1. Open the code3-2_txt.html and code3-2_layout_txt.css files from the html03 c code2 folder.
Enter your name and the date in each document and save the files as code3-2.html and
code3-2_layout.css respectively.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 264

 2. Go to the code3-2.html file in your editor. Within the head section insert a link element linking
the page to the code3-2_layout.css file. Study the contents of the file, taking note of the structure,
element names, and element ids. Save your changes.

 3. Go to the code3-2_layout.css file. Create a style rule for the header, footer, aside, article,
and a (hyperlink) elements to set the padding space to 10 pixels and add a 3-pixel gray dashed
outline.

 4. Create a style rule for the body element that:
a. Sets the width to 90% of the browser window, ranging from a minimum width of 640 pixels

up to a maximum width of 1024 pixels.
b. Sets the top/bottom margin to 30 pixels and the left/right margin to auto.
c. Displays the body as a CSS grid.
d. Creates six grid columns each with a width of 1fr.
e. Creates five grid rows with widths of 50 pixels, 30 pixels, 1fr, 1fr, and 100 pixels.
f. Adds a grid gap of 15 pixels.

 5. Display the a (hyperlink) element as a block.
 6. Set the size of the grid items as follows:

a. Have the header element span from gridline 1 to gridline -1.
b. Have the article#intro element span two rows and two columns.
c. Have the article#main element two rows and three columns.
d. Have the footer element span two columns.

 7. Save your changes to the style sheet.
 8. Open the page in your browser and verify the layout of the page resembles that shown in

Figure 3–80.
 9. Submit the completed file to your instructor.

Coding Challenge 3

Data Files needed for this Coding Challenge: code3-3_txt.html, code3-3_scroll_txt.css,
code3-3_styles.css, image01.png - image09.png

You can use the CSS positioning and overflow styles to create a scrolling slideshow. Figure 3–81
shows an example of a slideshow consisting of nine sketches by Renaissance masters. You’ve been
given the HTML code for this document and you’ve been asked to write the style rules to generate
the slideshow.

C
O

D
E

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 265

Complete the following to create the web page:

 1. Open the code3-3_txt.html and code3-3_scroll_txt.css files from the html03 c code3 folder.
Enter your name and the date in each document and save the files as code3-3.html and
code3-3_scroll.css respectively.

 2. Go to the code3-3.html file in your editor. Link the file to the code3-3_scroll.css style sheet file.
Review the contents of the document and then save your changes to the file.

 3. Go to the code3-3_scroll.css file in your editor. Create a style rule for the section element with
the id “container” with the following styles:
a. Set the width of the element to 900 pixels and the height to 370 pixels.
b. Horizontally center the element by adding a 10-pixel top/bottom margin and set the left/right

margin to auto.
c. Place the element with relative positioning, setting the top value to 30 pixels and the left value

to 0 pixels.
d. Add a 2-pixel solid brown outline to the element.
e. Have the browser automatically display scrollbars for any overflow content.

 4. Create a style rule for every div element, setting the width to 300 pixels and the height to 330
pixels. Position the element with absolute positioning.

 5. Display every inline image as a block-level element with a width and height of 300 pixels.
 6. There are nine div elements with ids ranging from “slide1” to “slide9”. Set the left position of

the elements in 300-pixel increments starting with 0 pixels for slide1, 300 pixels for slide2, 600
pixels for slide3, and so forth up to 2400 pixels for slide9.

 7. Save your changes to the style sheet.
 8. Open the page in your browser. Verify that the nine images are displayed within a scroll box and

that you can using a horizontal scrollbar to scroll through the image list.
 9. Submit the completed file to your instructor.

Figure 3–81 Coding Challenge 3-3 example page

Source: Public Domain

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 266

Coding Challenge 4

Data Files needed for this Coding Challenge: code3-4_txt.html, debug3-4_txt.css, code3-4_.css,
redball.png

Figure 3–82 shows a completed web page that uses CSS to design the page layout. You’ve been given
the initial HTML and CSS code for this web page, but there are several errors in the CSS stylesheet.
Use your knowledge of CSS to locate and fix the errors.

D
E

B
U

G

Do the following:

 1. Open the code3-4_txt.html and debug3-4_txt.css files from the html03 c code4 folder. Enter
your name and the date in each document and save the files as code3-4.html and debug3-4.css
respectively.

 2. Go to the code3-4.html file in your editor. Link the page to the debug3-4.css style sheet file.
Study the contents of the file and then save your changes.

 3. Go to the debug3-4.css file in your browser.
 4. The body element should have a width that is 90% of the width of the browser window ranging

from a minimum of 600 pixels up to a maximum of 1024 pixels. Fix the syntax errors in the body
style rule that defines the width of the web page.

 5. The style rule for the body element sets up a grid layout for the page. However, there are several
errors in defining the grid areas, grid columns, and grid gaps. Fix the syntax errors in the style
rule.

 6. Go to the style rules in the Grid Areas section that assigns page elements to areas of the grid.
Locate and fix the errors in assigning elements to grid areas.

Figure 3–82 Coding Challenge 3-4 example page

Maxim Maksutov/sshutterstock.om; @Shebeko/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 267

 7. The style rules for the horizontal navigation list and the section element also define grid styles
for those elements. Locate and fix errors in the code that set up the grid columns.

 8. The last paragraph within the section div selector should be placed with absolute positioning
1 pixel and 5 pixels from the bottom right corner of the container element. However, there is an
error in defining the selector. Find and fix the error.

 9. Save your changes and open the code3-4.html file in your browser. Verify that design of the page
resembles that shown in Figure 3–82.

 10. Submit the completed file to your instructor.

Figure 3–83 March Specials web page

Review Assignments

Data Files needed for the Review Assignments: pc_specials_txt.html, pc_specials_txt.css,
2 CSS files, 8 PNG files, 1 TTF file, 1 WOFF file

Anne wants you to work on another page for the Pandaisia Chocolates website. This page will
 contain information on some of the specials offered by the company in March; it will also display a
list of some awards that the company has won. As you work on the page, you will use clip art images
as placeholders until photographs of the awards are available. A preview of the completed page is
shown in Figure 3–83.

 Anne has already created the page content and some of the design styles to be used in the page. Your
job will be to come up with the CSS style sheet to set the page layout.

© Arina P Habich/Shutterstock.com;
© Alexander Chaikin/Shutterstock.com; © ESB Professional/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 268

Complete the following:

 1. Use your editor to open the pc_specials_txt.html and pc_specials_txt.css files from the
html03 c review folder. Enter your name and the date in the comment section of each file,
and save them as pc_specials.html and pc_specials.css respectively.

 2. Go to the pc_specials.html file in your editor. Within the document head, create links to the
pc_reset2.css, pc_styles4.css, and pc_specials.css style sheets.

 3. Take some time to study the content and structure of the document, paying careful attention to
the use of ids and class names in the file. Save your changes to the file.

 4. Go to the pc_specials.css file in your editor. Within the Page Body Styles section, add a style rule
for the body element that sets the width of the page body to 95% of the browser window width
within the range of 640 to 960 pixels. Horizontally center the page body within the window by
setting the left and right margins to auto.

 5. Go to the Image Styles section and create a style rule that displays all img elements as blocks
with a width of 100%.

 6. Anne wants the navigation list to be displayed horizontally on the page. Go to the Horizontal
Navigation Styles section and create a style rule for every list item within a horizontal navigation
list that displays the list item as a block floated on the left margin with a width of 16.66%.

 7. Display every hypertext link nested within a navigation list item as a block.
 8. Next, you will create the grid styles for the March Specials page. Go to the Grid Styles section

and create a style rule for the body element that displays the element as a grid with two columns
in the proportion of 2:1 (using fr units) with a column grid gap of 20 pixels.

 9. Create a style rule for the header and footer elements that has both elements span the grid
from the gridline number 1 to gridline number -1.

 10. Create a style rule for the section element with the id “sub” that displays that element as a grid
consisting of three columns of equal width by repeating the column width 1fr three times.

 11. Go to the Specials Styles section. In this section, you will create styles for the monthly specials
advertised by the company. Create a style rule for all div elements of the specials class that sets
the minimum height to 400 pixels and adds a 1 pixel dashed outline around the element with a
color value of rgb(71, 52, 29).

 12. Go to the Award Styles section. In this section, you will create styles for the list of awards won
by Pandaisia Chocolates. Information boxes for the awards are placed within an aside element.
Create a style rule for the aside element that places it using relative positioning, sets its height to
650 pixels, and automatically displays scrollbars for any overflow content.

 13. Every information box in the aside element is stored in a div element. Create a style rule that
places these elements with absolute positioning and sets their width to 30%.

 14. Position the individual awards within the awardList box by creating style rules for the div
elements with id values ranging from award1 to award5 at the following (top, left) coordinates:
award1 (80px, 5%), award2 (280px, 60%), award3 (400px, 20%), award4 (630px, 45%), and
award5 (750px, 5%). (Hint: In the pc_specials.html file, the five awards have been placed in a
div element belonging to the awards class with id values ranging from award1 to award5.)

 15. Save your changes to the style sheet and then open the pc_specials.html file in your browser.
Verify that the layout and design styles resemble the page shown in Figure 3–83.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 269

Case Problem 1

Data Files needed for this Case Problem: sp_home_txt.html, sp_layout_txt.css, 2 CSS files, 11 PNG files

Slate & Pencil Tutoring Karen Cooke manages the website for Slate & Pencil Tutoring, an online
tutoring service for high school and college students. Karen is overseeing the redesign of the website
and has hired you to work on the layout of the site’s home page. Figure 3–84 shows a preview of the
page you’ll create for Karen.

Figure 3–84 Slate & Pencil Tutoring home page

Karen has supplied you with the HTML file and the graphic files. She has also given you a base style
sheet to initiate your web design and a style sheet containing several typographic styles. Your job will
be to write up a layout style sheet according to Karen’s specifications.

Complete the following:

 1. Using your editor, open the sp_home_txt.html and sp_layout_txt.css files from the html03 c case1
folder. Enter your name and the date in the comment section of each file, and save them as
sp_home.html and sp_layout.css respectively.

 2. Go to the sp_home.html file in your editor. Within the document head, create links to the
sp_base.css, sp_styles.css, and sp_layout.css style sheet files. Study the content and structure of
the file and then save your changes to the document.

© Monkey Business Images/Shutterstock.com;
© Courtesy Patrick Carey

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 270

 3. Go to the sp_layout.css file in your editor. Go to the Window and Body Styles section. Create a
style rule for the html element that sets the height of the browser window at 100%.

 4. Create a style rule for the page body that sets the width to 95% of the browser window ranging
from 640 pixels up to 960 pixels. Horizontally center the page body within the browser window.
Finally, Karen wants to ensure that the height of the page body is always at least as high as the
browser window itself. Set the minimum height of the browser window to 100%.

 5. Add a style rule to display all inline images as blocks.
 6. Within the CSS Grid Styles section create a style rule that displays the body element as a grid

with four columns of length 1fr.
 7. Create a style rule for the img element with id "logo" so that the logo image spans three columns

and has a width of 100%.
 8. For the horizontal navigation list and the footer element create a style rule so that those

elements span four columns. Create a style for the aside element to span two columns.
 9. Within the Horizontal Navigation List Styles section create a style rule for li elements nested

within the horizontal navigation list that display each element as a block with a width of 12.5%
and floated on the left margin.

 10. Within the Section Styles section create a style rule for inline images within the section element
that sets the width of the image to 50% and centers the image using a top/bottom margin of 0
and a left/right margin of auto.

 11. Create a style rule for paragraphs within the section element that sets the width of the
paragraph to 70% and centers the paragraph using a top/bottom margin of 0 and a left/right
margin of auto.

 12. Go to the Customer Comment Styles section and create a style rule for the aside element setting
the width to 75% and the bottom padding to 30 pixels.

 13. The six aside elements will be displayed in two columns. For odd-numbered aside elements,
use the justify-self grid property to place the element on the end (right) margin. (Hint: Use
the nth-of-type(odd) pseudo-class to select the odd-numbered aside elements.)

 14. Float inline images nested within the aside element on the left with a width of 20%.
 15. Float paragraphs nested within the aside element on the left with a width of 75% and a left

margin of 5%.
 16. Save your changes to the file and then open the sp_home.html file in your browser. Verify that

the layout and appearance of the page elements resemble that shown in Figure 3–84.

Case Problem 2

Data Files needed for this Case Problem: ss_dday_txt.html, ss_layout_txt.css, 1 CSS file, 3 PNG files

A Soldier’s Scrapbook Jakob Bauer is a curator at the Veteran’s Museum in Raleigh, North Carolina.
Currently he is working on an exhibit called A Soldier’s Scrapbook containing mementos, artifacts,
journals, and other historic items from the Second World War. You’ve been asked to work on a
page for an interactive kiosk used by visitors to the exhibit. Jakob has already supplied much of the
text and graphics for the kiosk pages but he wants you to complete the job by working on the page
 layout.

The page you will work on provides an overview of the Normandy beach landings on June 6th, 1944.
Since this page will be displayed only on the kiosk monitor, whose screen dimensions are known,
you’ll employ a fixed layout based on a screen width of 1152 pixels.

Jakob also wants you to include an interactive map of the Normandy coast where the user can hover
a mouse pointer over location markers to view information associated with each map point. To create
this effect, you’ll mark each map point as a hypertext link so that you can apply the hover pseudo-
class to the location. In addition to the interactive map, Jakob wants you to create a drop cap for the
first letter of the first paragraph in the article describing the Normandy invasion. Figure 3–85 shows a
preview of the page you’ll create.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 3 Designing a Page Layout | HTML 5 and CSS HTML 271

Complete the following:

 1. Using your editor, open the ss_dday_txt.html and ss_layout_txt.css files from the html03 case2
folder. Enter your name and the date in the comment section of each file, and save them as
ss_dday.html and ss_layout.css respectively.

 2. Go to the ss_dday.html file in your editor. Within the document head, create links to the
ss_styles.css and ss_layout.css style sheet files. Study the content and structure of the document.
Note that within the aside element is an image for the battle map with the id mapImage. Also
note that there are six marker images enclosed within hypertext links with ids ranging from
marker1 to maker6. After each marker image are div elements of the mapInfo class with IDs
ranging from info1 to info6. Part of your style sheet will include style rules to display these div
elements in response to the mouse pointer hovering over each of the six marker images.

 3. Save your changes to the file and then go to the ss_layout.css file in your editor.
 4. Go to the Article Styles section. Within this section, you’ll lay out the article describing the

Normandy Invasion. Create a style rule to float the article element on the left margin and set
its width to 384 pixels.

Figure 3–85 Normandy Invasion kiosk page

… displays
information about
the location

hovering the pointer
over the map marker …

Source: Chief Photographer’s Mate (CPHOM) Robert F. Sargent, U.S. Coast Guard/National Archives and Records Administration;
Source: U.S. Department of Defense/Wikimedia Commons; © Patrick Carey

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 3 Designing a Page LayoutHTML 272

 5. Jakob wants the first line from the article to be displayed in small capital letters. Go
to the First Line and Drop Cap Styles section and create a style rule for the first paragraph of the
article element and the first line of that paragraph, setting the font size to 1.25em and the font
variant to small-caps. (Hint: Use the first-of-type pseudo-class for the paragraph and the
first-line pseudo-element for the first line of that paragraph.)

 6. Jakob also wants the first letter of the first line in the article’s opening paragraph to
be displayed as a drop cap. Create a style rule for the article’s first paragraph and first letter that
applies the following styles: (a) sets the size of the first letter to 4em in a serif font and floats it on
the left, (b) sets the line height to 0.8em, and (c) sets the right and bottom margins to 5 pixels.
(Hint: Use the first-letter pseudo-element for the first letter of that paragraph.)

 7. The interactive map is placed within an aside element that Jakob wants displayed alongside the
Normandy Invasion article. Go the Aside Styles section and create a style rule that sets the width
of the aside element to 768 pixels and floats it on the left margin.

 8. Next, you will lay out the interactive map. The interactive map is placed within a div element
with the ID battleMap. Go to the Map Styles section and create a style rule for this element that
sets its width to 688 pixels. Center the map by setting its top/bottom margins to 20 pixels and its
left/right margins to auto. Place the map using relative positioning.

 9. The actual map image is placed within an img element with the ID mapImage. Create a style rule
for this element that displays it as a block with a width of 100%.

 10. Go to the Interactive Map Styles section. Within this section, you’ll create style rules that position
each of the six map markers onto the battle map. The markers are placed within hypertext links.
Create a style rule for every a element of the battleMarkers class that places the hypertext link
using absolute positioning.

 11. Create style rules for the six a elements with IDs ranging from marker1 to marker6, placing them
at the following (top, left) coordinates:

 marker1 (220, 340)
marker2 (194, 358)
marker3 (202, 400)
marker4 (217, 452)
marker5 (229, 498)
marker6 (246, 544)

 12. The information associated with each map marker has been placed in div elements belonging to
the mapInfo class. Go to the Map Information Styles section and create a style rule that hides this
class of elements so that this information is not initially visible on the page.

 13. To display the information associated with each map maker, you need to create a
style rule that changes the map information’s display property in response to the mouse pointer
hovering over the corresponding map marker. Since the map information follows the map marker
in the HTML file, use the following selector to select the map information corresponding to the
hovered map marker: a.battleMarkers:hover + div.mapInfo. Write a style rule for this
selector that sets its display property to block.

 14. Save your changes to the style sheet and then load ss_dday.html in your browser. Verify that a
drop cap appears for the first letter of the Normandy Invasion article and the first line of the first
paragraph is displayed in small caps. Test the interactive map by first verifying that none of the
information about the six battle locations appears on the page unless you hover your mouse
pointer over the marker on the battle map. Further verify that when you are not hovering over the
battle marker, the information is once again not visible on the page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 273

STARTING DATA FILES

TUTORIAL 4
OBJECTIVES

Session 4.1
• Create a figure box
• Add a background image
• Add a border to an element
• Create rounded borders
• Create a graphic border

Session 4.2
• Create a text shadow
• Create a box shadow
• Create linear and radial

gradients
• Set the opacity of an element

Session 4.3
• Apply a 2D and 3D

transformation
• Apply a CSS filter
• Create an image map

Graphic Design
with CSS
Creating a Graphic Design for a
Genealogy Website

Case | Tree and Book
Kevin Whitmore is the founder of Tree and Book, a social
networking website for people interested in documenting their
family histories, creating online photo albums, and posting stories
and information about members of their extended families. He has
come to you for help in upgrading the site’s design. Kevin wants to
take advantage of some of the CSS styles that can be used to add
interesting visual effects to his site in order to give his website more
impact and visual interest.

tutorial

tb_genta_txt.html
tb_komatsu_txt.html
tb_visual1_txt.css
tb_visual2_txt.css
+ 21 files

review

tb_ferris_txt.html
tb_kathleen_txt.html
tb_visual3_txt.css
tb_visual4_txt.css
+ 16 files

code1

code4-1_txt.html
code4-1_back_txt.css
+ 2 files

code2

code4-2_txt.html
code4-2_grad_txt.css
+ 2 files

code3 code4

code4-3_txt.html
code4-3_cube_txt.css
+ 6 files

code4-4_txt.html
debug4-4_txt.css
+ 2 files

sf_torte_txt.html
sf_effects_txt.css
+ 11 files

cf_home_txt.html
cf_effects_txt.css
+ 9 files

24 demo pages
+ 21 files

html04

case1 case2 demo

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 274

Session 4.1 Visual Overview:

The background
property de�nes all
background options,
including the use of
multiple backgrounds.

The cover keyword
speci�es that the
background image
should completely
cover the background.

The border-left and
border-right
properties add borders
to the left and right
edge of the element.

The background-
image property applies
an image �le to the
element background.

The border property
adds a border around
all sides of the element.

The padding-box
keyword speci�es
that the background
extends through the
padding space.

The content-box
keyword speci�es
that the background
extends only over
the element content.

The no-repeat
keyword speci�es that
no tiling is done with
the background image.

Every border is de�ned by
its width, style, and color.

The border-radius
property creates
rounded corners with
the speci�ed radius.

The border-image
property de�nes an
image �le used to
create a graphic border.

The border images are
based on an image �le,
the size of the slice from
the image, and how slices
are displayed along the
element edge.

Logo Design Studio Pro;
Source: wiki Media;
© imtmphoto/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 275

Backgrounds and Borders

The tb_back1.png image
is tiled to �ll the element
background.

The background image
tb_back4.png covers the
entire article’s padding space.

The background image
tb_back3.png is placed
at the lower-left corner
of the article.

The background image
tb_back2.png is placed
at the right corner of
the article.

The aside element
has a 4-pixel wide
double border.

The aside element has
a rounded corner with
a radius of 30 pixels.

The border image
is based on the
tb_border.png �le.

Source: Wikimedia Commons; Design Studio Pro; imtmphoto/Shutterstock.com; imtmphoto/
Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 276

Creating Figure Boxes
So far your work with CSS visual design styles has been limited to typographical styles
and styles that modify the page’s color scheme. In this tutorial, you’ll explore other CSS
styles that allow you to add figure boxes, background textures, background images,
and three-dimensional effects to your web pages.

You’ll start by examining how to work with figure boxes. In books and magazines,
figures and figure captions are often placed within a separate box that stands apart
from the main content of the article, using the following figure and figcaption
elements:

<figure>
 content
 <figcaption>caption text</figcaption>
</figure>

where content is the content that will appear within the figure box and caption text
is the description text that accompanies the figure. The figcaption element is optional
and can be placed either directly before or directly after the figure box content. For
example, the following code marks a figure box containing the tb_komatsu.png image
file with the caption (L-R): Ikko, Mika, Hiroji, Genta, Suzuko.

<figure>

 <figcaption>(L-R): Ikko, Mika, Hiroji, Genta, Suzuko</figcaption>
</figure>

While the figure element is used to contain an image file, it can also be used
to mark any page content that you want to stand apart from the main content of an
article. For instance, the figure element could contain a text excerpt, as the following
code demonstrates:

<figure>
 <p>'Twas brillig, and the slithy toves

 Did gyre and gimble in the wabe;

 All mimsy were the borogoves,

 And the mome raths outgrabe.</p>
 <figcaption>
 <cite>Jabberwocky, Lewis Carroll, 1832-98</cite>
 </figcaption>
</figure>

Kevin plans on using figure boxes throughout the Tree and Book website to mark
up family and individual photos along with descriptive captions. He’s created a set of
sample pages for the Komatsu family that you will work on to learn about HTML and
CSS visual elements and styles. Open the family’s home page and create a figure box
displaying the family portrait along with a descriptive caption.

The semantic difference
between the figure and
aside elements is that the
figure element should
be used for content that
is directly referenced from
within an article while the
aside element is used for
extraneous content.

To create a figure box:
w 1. Use your editor to open the tb_komatsu_txt.html file from the html04 c tutorial

folder. Enter your name and the date in the comment section of the file and
save it as tb_komatsu.html.

For this web page, you’ll work with a new style sheet named tb_visual1.css.
Kevin has already created a reset style sheet and a typographical style sheet
in the tb_reset.css and tb_styles1.css files respectively.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 277

Format the appearance of the figure box by adding new style rules to the tb_visual1.css
style sheet file.

w 2. Within the document head, insert the following link elements to link the
page to the tb_reset.css, tb_styles1.css, and tb_visual1.css style sheet files.

<link href="tb_reset.css" rel="stylesheet" />
<link href="tb_styles1.css" rel="stylesheet" />
<link href="tb_visual1.css" rel="stylesheet" />

w 3. Scroll down to the article element and, directly after the h1 element, insert
the following code for the figure box displaying the Komatsu family portrait.

<figure>

 <figcaption>(L-R): Ikko, Mika, Hiroji,
 Genta, Suzuko
 </figcaption>
</figure>

Figure 4–1 highlights the code for the family portrait figure box.

w 4. Take some time to review the content and structure of the rest of the document
and then save your changes to the file.

caption associated
with the image

image within
the �gure box

Figure 4–1 Inserting a figure box

To format and view the figure box:
w 1. Use your editor to open the tb_visual1_txt.css files from the html04 c tutorial

folder. Enter your name and the date in the comment section of the file and
save it as tb_visual1.css.

w 2. Scroll down to the Figure Box Styles section at the bottom the document and
insert the following style rule for the figure element:

figure {
 margin: 20px auto 0px;
 width: 80%;
}

w 3. Add the following style to format the appearance of the image within the
figure box:

figure img {
 display: block;
 width: 100%;
}

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 278

w 4. Finally, insert the following rule for the figure caption:

figure figcaption {
 background-color: white;
 font-family: 'Palatino Linotype', Palatino,
 'Times New Roman', serif;
 font-style: italic;
 padding: 10px 0;
 text-align: center;
}

Figure 4–2 highlights the style rules for the figure box, image, and caption.

w 5. Save your changes to the file and then open the tb_komatsu.html file in
your browser. Figure 4–3 shows the initial appearance of the page.

Figure 4–2 Formatting the figure box and caption

�gure box is 80% of the
width of the header and
centered horizontally

�gure image is displayed
as a block with a width
equal to the �gure box

�gure caption is centered
and displayed in a serif
italic font on a white
background

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 279

With all of the content for the Komatsu Family page now added, you will start
working on enhancing the page’s appearance, starting with the CSS background styles.

Figure 4–3 Initial design of the Komatsu family page

�gure image

�gure caption

�gure box

Source: Design Studio Pro; Source: Wikimedia Commons; © imtmphoto/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 280

Exploring Background Styles
Thus far, your design choices for backgrounds have been limited to color using either
the RGB or HSL color models. CSS also supports the use of images for backgrounds
through the following background-image style:

background-image: url(url);

where url specifies the name and location of the background image. For example, the
following style rule uses the trees.png file as the background of the page body.

body {
 background-image: url(trees.png);
}

This code assumes that the trees.png file is in the same folder as the style sheet; if the
figure is not in the same folder, then you will have to include path information pointing
to the folder location in which the image file resides.

IN
SI
G
H
T

Choosing your Graphic File Format

Graphic files on the web fall into two basic categories: vector images and bitmap
images. A vector image is an image comprised of lines and curves that are based
on mathematical functions. The great advantage of vector images is that they can be
easily resized without losing their clarity and vector files tend to be compact in size.
The most common vector format for the web is SVG (Scalable Vector Graphics),
which is an XML markup language that can be created using a basic text editor and
knowledge of the SVG language.

A bitmap image is an image that is comprised of pixels in which every pixel is
marked with a different color. Because a graphic file can be comprised of thousands of
pixels, the file size of a bitmap image is considerably larger than the file size of a vector
image. The most common bitmap formats on the web are GIF, JPEG, and PNG.

GIF (Graphic Interchange Format) is the oldest standard with a palette limited to
256 colors. GIF files, which tend to be large, have two advantages: first, GIFs support
transparent colors and second, GIFs can be used to create animated images. Because
GIFs have a limited color palette, they are unsuitable for photos. The most popular
photo format is JPEG (Joint Photographic Experts Group), which supports a palette
of over 16 million colors. JPEGs also support file compression, allowing a bitmap
image to be stored at a smaller file size than would be possible with other bitmap
formats. JPEGs do not support transparent colors or animations.

The PNG (Portable Network Graphics) format was designed to replace GIFs with its
support for several levels of transparent colors and palette of millions of colors. A PNG
file can also be compressed, creating a file that is considerably smaller and, therefore,
takes up considerably less space than its equivalent GIF file. PNG files also contain
color correction information so that PNGs can be accurately rendered across a variety of
display devices.

In choosing a graphic format for your website, the most important consideration is
often file size; you want to choose the smallest size that still gives you an acceptable
image. This combination means that users will view a quality image but they will not
have to wait for the graphic file to download. In addition to file size, you want to
choose a format that supports a large color palette. For these reasons, most graphics
on the web are now in either JPEG or PNG format, though GIFs are still often found on
legacy sites.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 281

Tiling a Background Image
The default browser behavior is to place the background image at the top-left corner
of the element and repeat the image in both the vertical and horizontal direction until
the background is filled. This process is known as tiling because of its similarity to the
process of filling up a floor or other surface with tiles.

You can specify the type of tiling to be applied to the background image, or even
turn off tiling, by applying the following background-repeat style:

background-repeat: type;

where type is repeat (the default), repeat-x, repeat-y, no-repeat, round, or
space. Figure 4–4 displays the effect of each background-repeat type.

Figure 4–4 Examples of background-repeat types

background-repeat: repeat;

image is tiled both
horizontally and vertically

background-repeat: repeat-x;

image is tiled horizontally

background-repeat: repeat-y;

image is tiled vertically

background-repeat: no-repeat;

image is not tiled

background-repeat: round;

background image is tiled and
resized to fit in the container a

whole number of times

background-repeat: space;

background image is
tiled and spaces added to fit

in the container a whole
number of times

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 282

Kevin has supplied you with an image file, tb_back1.png to fill the background of the
browser window. Use the default option for tiling so that the image is displayed starting
from the top-left corner of the window and repeating until the entire window is filled.

R
E
FE

R
E
N
C
E

Adding a Background Image

• To add an image to the background, use the CSS style

background-image: url(url);

where url specifies the name and location of the background image.
• To specify how the image should be tiled, use

background-repeat: type;

where type is repeat (the default), repeat-x, repeat-y, no-repeat, round, or space.

To add a background image to the browser window:
w 1. Return to the tb_visual1.css file in your editor.

w 2. Go to the HTML Styles section and add the following style rule to change the
background of the browser window:

html {
 background-image: url(tb_back1.png);
}

Note that because you are using the default setting for tiling the
background image, you do not need to include the background-repeat
style rule. Figure 4–5 highlights the new style rule.

w 3. Save your changes to the file and then reload tb_komatsu.html in your
browser. Figure 4–6 shows the tiled background in the browser window.

tiles the tb_back1.png
image le across the
browser window
background

Figure 4–5 Defining a background image

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 283

Note that the page body covers part of the tiled images in the browser window.
However, even though the background images are hidden, the tiling still continues
behind the page body.

Attaching the Background Image
A background image is attached to its element so that as you scroll through the element
content, the background image scrolls with it. You can change the attachment using the
following background-attachment property

background-attachment: type;

where type is scroll (the default), fixed, or local. The scroll type sets the background
to scroll with the element content. The fixed type creates a background that stays in place
even as the element content is scrolled horizontally or vertically. Fixed backgrounds are
sometimes used to create watermarks, which are translucent graphics displayed behind the
content with a message that the content material is copyrighted or in draft form or some
other message directed to the reader. The local type is similar to scroll except that it is
used for elements, such as scroll boxes, to allow the element background to scroll along
with the content within the box.

Setting the Background Image Position
By default, browsers place the background image in the element’s top-left corner.
You can place the background image at a different position using the following
background-position property:

background-position: horizontal vertical;

where horizontal and vertical provide the coordinates of the image within
the element background expressed using one of the CSS units of measure or as a
percentage of the element’s width and height. For example, the following style places
the image 10% of the width of the element from the left edge of the background and
20% of the element’s height from the background’s top edge.

background-position: 10% 20%;

Background coordinates
are measured from the
top-left corner of the
background to the top-left
corner of the image.

Figure 4–6 Tiled background image in the browser window

tiled image in
browser window
background

page body

Source: Design Studio Pro; Source: Wikimedia
Commons; © imtmphoto/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 284

If you specify a single value, the browser applies that value to both the horizontal
and vertical position. Thus, the following style places the background image 30 pixels
from the element’s left edge and 30 pixels down from the top edge.

background-position: 30px;

You can also place the background image using the keywords left, center, and
right for the horizontal position and top, center, and bottom for the vertical position.
The following style places the background image in the bottom-right corner of the element.

background-position: right bottom;

Typically, the background-position property is only useful for non-tiled images
because, if the image is tiled, the tiled image fills the background and it usually doesn’t
matter where the tiling starts.

Defining the Extent of the Background
You learned in Tutorial 2 that every block element follows the Box Model in which the
element content is surrounded by a padding space and beyond that a border space
(see Figure 2-38). However, the element’s background is defined, by default, to extend
only through the padding space and not to include the border space. You can change
this definition using the following background-clip property:

background-clip: type;

where type is content-box (to extend the background only through the element
content), padding-box (to extend the background through the padding space), or
border-box (to extend the background through the border space). For example, the
following style rule defines the background for the page body to extend only as far as
the page content. The padding and border spaces would not be considered part of the
background and thus would not show any background image.

body {
 background-clip: content-box;
}

Because the background extends through the padding space by default, all
coordinates for the background image position are measured from the top-left corner
of that padding space. You can choose a different context by applying the following
background-origin property:

background-origin: type;

where type is once again content-box, padding-box, or border-box. Thus, the
following style rule places the background image at the bottom-left corner of the page body
content and not the bottom-left corner of the padding space (which would be the default).

body {
 background-position: left bottom;
 background-origin: content-box;
}

Based on this style rule, the padding space of page body would not have any background
image or color, other than what would be defined for the browser window itself.

You can explore the
impact of different CSS
background styles using
the demo_background.
html file in the html04 c
demo folder.

TRY IT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 285

Sizing and Clipping an Image
The size of the background image is equal to the size stored in the image file. To specify
a different size, apply the following background-size property:

background-size: width height;

where width and height are the width and height of the image in one of the CSS units
of length or as a percentage of the element’s width and height. The following style sets
the size of the background image to 300 pixels wide by 200 pixels high.

background-size: 300px 200px;

CSS also supports the sizing keywords auto, cover, and contain. The auto keyword
tells the browser to automatically set the width or height value based on the dimensions
of the original image. The following style sets the height of the image to 200 pixels and
automatically scales the width to keep the original proportions of the image:

background-size: auto 200px;

The cover keyword tells the browser to resize the image to cover all of the element
background while still retaining the image proportions. Depending on the size of
the element, this could result in some of the background image being cropped. The
contain keyword scales the image so that it’s completely contained within the element,
even if that means that not all of the element background is covered. Figure 4–7 displays
examples of a background set to a specific size, as well as resized to either cover the
background or to have the image completely contained within the background.

If you specify only one size
value, the browser applies
it to the image width
and scales the height
proportionally.

Figure 4–7 Examples of background-size types

image is resized so that it is
contained within the element,
but part of the background is
left uncovered

image is resized to �ll the
background, but part of the
image is cropped

image is scaled at the speci�ed
dimensions

background-size: 200px 300px; background-size: cover; background-size: contain;

300px

200px

Source: Wikimedia Commons

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 286

The background Property
All of these different background options can be organized in the following background
property:

background: color url(url) position / size repeat attachment
origin clip;

where color is the background color, url is the source of the background image,
position is the image’s position, size sets the image size, repeat sets the tiling of
the image, attachment specifies whether the image scrolls with the content or is fixed,
origin defines how positions are measured on the background, and clip specifies the
extent over which the background is spread. For example, the following style rule sets
the background color to ivory and then uses the draft.png file as the background image
fixed at the horizontal and vertical center of the page body and sized at 10% of the
body’s width and height:

body {
 background: ivory url(draft.png)
 center center / 10% 10%
 no-repeat fixed content-box content-box;
}

The rest of the property sets the image not to repeat and to use the content box for
defining the background origin and clipping. Note that the page body will have an ivory
background color at any location where the draft.png image is not displayed. If you
don’t specify all of the option values, the browser will assume the default values for the
missing options. Thus, the following style rule places the draft.png at the horizontal and
vertical center of the page body without tiling:

body {
 background: ivory url(draft.png) center center no-repeat;
}

You can explore the CSS
background style using the
demo_background2.html
file in the html04 c demo
folder.

TRY IT

R
E
FE

R
E
N
C
E

Setting Background Image Options

• To specify how the image is attached to the background, use

background-attachment: type;

where type is scroll (the default), fixed, or local.
• To set the position of the background image, use

background-position: horizontal vertical;

where horizontal and vertical provide the coordinates of the image within the
element background.

• To define the extent of the background, use

background-clip: type;

where type is content-box, padding-box (the default), or border-box.
• To define how position coordinates are measured, use

background-origin: type;

where type is content-box, padding-box (the default), or border-box.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 287

Since no size, attachment, origin, and clip values are specified, the size of the
image will be based on the dimensions from the image file, the image will scroll with
the body content, and the background origin and clipping will extend through the page
body’s padding space.

Kevin wants you to include a semi-transparent image of the family patriarch, Genta
Komatsu, as a background image placed in the lower-right corner of the article on the
Komatsu family. Add a style rule to the tb_visual1.css file to display the tb_back2.png
image within that element without tiling.

The background property
includes the "/" character
only when you need
to separate the image
 position value from the
image size value.

To add a background image to the page article:
w 1. Return to the tb_visual1.css file in your editor and scroll down to the Article

Styles section.

w 2. Add the following style rule:

article {
 background: url(tb_back2.png) bottom right / 15%
 no-repeat content-box;
}

Figure 4–8 highlights the style rule applied to the page article.

w 3. Save your changes and then reload tb_komatsu.html in your browser.
Figure 4–9 shows the placement of the background image.

Figure 4–8 Adding a background to the page article

Figure 4–9 Placement of the background image

image �le sets the width of the
image to 15% of the
article width

positions the image
with respect to the
article content

places the image at
the lower-right corner

does not tile the image

background image placed
in lower-right corner of the
article content with no tiling

Source: Wikimedia Commons; © imtmphoto/Shutterstock.com

Kevin likes the addition of the image of Genta Komatsu and would like you to add
another background image showing the family matriarch, Mika Komatsu, and a third
image giving the article a paper-textured background.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 288

Adding Multiple Backgrounds
To add multiple backgrounds to the same element, you list the backgrounds in the
following comma-separated list:

background: background1, background2, …;

where background1, background2, and so on are the properties for each background.
For example the following style rule applies three different backgrounds to the header
element:

header {
 background: url(back2.png) top left no-repeat,
 url(back1.png) bottom right no-repeat,
 rgb(191, 191, 191);
}

Backgrounds are added in the reverse order in which they’re listed in the style rule. In
this style rule, the background color is applied first, the back1.png background image
is placed on top of that, and finally the back2.png background image is placed on top
of those two backgrounds.

Individual background properties can also contain multiple options placed in a
comma-separated list. The following style rule creates the same multiple backgrounds
for the header element without using the background property:

header {
 background-image: url(back2.png), url(back1.png);
 background-position: top left, bottom right;
 background-repeat: no-repeat;
 background-color: rgb(191, 191, 191);
}

Note that if a background style is listed once, it is applied across all of the backgrounds.
Thus the background-color and the background-repeat properties are used in all
the backgrounds.

Revise the style rule for the article element to add two more backgrounds.

Always list the background
color last so that it provides
the foundation for your
background images.

To add a background image to the page article:
w 1. Return to the tb_visual1.css file in your editor and return to the Article Styles

section.

w 2. Type a comma after the first background listed for the article element and
before the semicolon (;), then press Enter.

w 3. Be sure the insertion point is before the semicolon (;), then add the following
code to display two more background images followed by a background
color:

url(tb_back3.png) bottom left / 15% no-repeat content-box,
url(tb_back4.png) 100%/cover no-repeat,
rgb(211, 211, 211)

The background color acts as a fallback design element and will not be
displayed except for browsers that are incapable of displaying background
images. Figure 4–10 displays the code for the multiple backgrounds applied
to the page article.

The properties for multiple
backgrounds need to be
separated by commas.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 289

Kevin is pleased with the revised backgrounds for the browser window and the page
article. Next, you will explore how to work with CSS border properties.

Figure 4–10 Adding multiple background images

Figure 4–11 Revised background for the page article

uses a gray color as the background
if the browser doesn’t support
background images

places the second background
image at the lower-left corner of
the article content with no tiling
and a width of 15%

places the third background
image, scaled to cover all of the
padding box of the article
without repeating

commas used to separate one
background from the next

tb_back3.png

tb_back4.png

tb_back2.png

Trouble? Be sure your code matches the code in Figure 4–10, including
the commas used to separate the components in the list and the ending
semicolon.

w 4. Save your changes and then reload tb_komatsu.html in your browser.
Figure 4–11 shows the three background images displayed with the article.

Source: Wikimedia Commons; © imtmphoto/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 290

Working with Borders
So far, you have only worked with the content, padding, and margin spaces from the
CSS Box model. Now, you will examine the border space that separates the element’s
content and padding from its margins and essentially marks the extent of the element
as it is rendered on the page.

Setting Border Width and Color
CSS supports several style properties that are used to format the border around each
element. As with the margin and padding styles, you can apply a style to the top, right,
bottom, or left border, or to all borders at once. To define the thickness of a specific
border, use the property

border-side-width: width;

where side is either top, right, bottom, or left and width is the width of the
border in one of the CSS units of measure. For example, the following style sets the
width of the bottom border to 10 pixels.

border-bottom-width: 10px;

Border widths also can be expressed using the keywords thin, medium, or thick;
the exact application of these keywords depends on the browser. You can define the
border widths for all sides at once using the border-width property

border-width: top right bottom left;

where top, right, bottom, and left are the widths of the matching border. As with
the margin and padding properties, if you enter one value, it’s applied to all four

IN
SI
G
H
T

Blending Backgrounds

Multiple backgrounds are stacked on top of each other, with the first background listed
in the code placed on top of subsequent backgrounds. By default, the backgrounds on
the top of the stack will obscure the lower-ordered backgrounds unless there is gap or
a transparent color that allows the backgrounds at the bottom of the stack to appear.
Thus, each background acts as its own background layer, separate in appearance from
other backgrounds.

To combine multiple backgrounds into a single background, use the following
background-blend-mode style:

background-blend-mode: type;

where type defines the method by which the backgrounds are combined. Possible
type values include:

• normal backgrounds are stacked (the default)
• multiply background colors are multiplied, leading to a darker image

combined of several colors
• overlay background colors are mixed to reflect the lightness and darkness of

the colors
• darken backgrounds are replaced with the darkest of background colors
• lighten backgrounds are replaced with the lightest of the background colors

Several other type options are also available. You can specify a comma-separated list
of blend values, so that each background layer is blended in a different way with all the
other backgrounds.

To explore the impact of
the background-blend-
mode style on multiple
backgrounds, open the
demo_blend.html file in
the html04 c demo folder.

TRY IT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 291

Or to specify styles for all four borders use the property:

border-style: top right bottom left;

Figure 4–12 Examples of border styles

solid dashed dotted

double outset inset

groove ridge none

borders; two values set the width of the top/bottom and left/right borders, respectively;
and three values are applied to the top, left/right, and bottom borders, in that order.
Thus, the following property sets the widths of the top/bottom borders to 10 pixels and
the left/right borders to 20 pixels:

border-width: 10px 20px;

The color of each individual border is set using the property

border-side-color: color;

where side once again specifies the border side and color is a color name, color
value, or the keyword transparent to create an invisible border. The color of the four
sides can be specified using the following border-color property

border-color: top right bottom left;

where top right bottom left specifies the side to which the color should be
applied. Thus, the following style uses gray for the top and left borders and black for the
right and bottom borders:

border-color: gray black black gray;

If no border color is specified, the border will use the text color assigned to the element.

Setting the Border Design
CSS allows you to further define the appearance of borders using the following border styles:

border-side-style: style;

where side once again indicates the border side and style specifies one of the nine
border styles displayed in Figure 4–12.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 292

Kevin wants the page body to stand out better against the tiled images used as the
background for the browser window. He suggests you add solid borders to the left
and right edges of the page body and that you add a double border around the aside
element containing links to other Komatsu family pages.

R
E
FE

R
E
N
C
E

Adding a Border

• To add a border around every side of an element, use the CSS property

border: width style color;

where width is the width of the border, style is the design style, and color is the
border color.

• To apply a border to a specific side, use

border-side: width style color;

where side is top, right, bottom, or left for the top, right, bottom, and left borders.
• To set the width, style, or color of a specific side, use the properties

border-side-width: width;
border-side-style: style;
border-side-color: color;

To add borders to the page elements:
w 1. Return to the tb_visual1.css file in your editor and go to the Page Body

Styles section.

w 2. Add the following style rule for the page body:

body {
 border-left: 1px solid rgb(51, 51, 51);
 border-right: 1px solid rgb(51, 51, 51);
}

w 3. Go to the Aside Styles section and add the following style rule for the aside
element:

aside {
 border: 4px double rgb(45, 93, 62);
}

As with the other border rules, you can modify the style of all borders or combinations
of the borders. For example, the following style uses a double line for the top/bottom
borders and a single solid line for the left/right borders.

border-style: double solid;

All of the border styles discussed above can be combined into the following
property that formats the width, style, and color of all of the borders

border: width style color;

where width is the thickness of the border, style is the style of the border, and color
is the border color. The following style rule inserts a 2-pixel-wide solid blue border
around every side of each h1 heading in the document:

h1 {border: 2px solid blue;}

To modify the width, style, and color of a single border, use the property

border-side: width style color;

where side is either top, right, bottom, or left.

You can explore the CSS
border style using the
demo_border.html file in
the html04 c demo folder.

TRY IT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 293

Kevin is concerned that the design of the page is too boxy and he wants you to
soften the design by adding curves to some of the page elements. You can create this
effect using rounded corners.

Creating Rounded Corners
To round off any of the four corners of a border, apply the following border-radius
property:

border-radius: top-left top-right bottom-right bottom-left;

where top-left, top-right, bottom-right, and bottom-left are the radii of
the individual corners. The radii are equal to the radii of hypothetical circles placed
at the corners of the box with the arcs of the circles defining the rounded corners
(see Figure 4–15).

w 4. Save your changes to the file and then reload tb_komatsu.html in your
browser. Figure 4–14 shows the appearance of the page with the newly
added borders. Note that the background color and other styles associated
with the aside element are in the tb_styles1.css file.

Figure 4–14 Page design with borders

right page
border

double border around
the aside element

left page
border

Source: Wikimedia Commons; © imtmphoto/Shutterstock.com

Figure 4–13 Adding borders to the page body and aside element

adds a 4-pixel double
medium green border
to the aside element

adds a 1-pixel solid
gray border to the
left and right edges
of the page body

Figure 4–13 highlights the style rules that create borders for the page body
and aside element.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 294

Figure 4–15 Setting rounded corners based on corner radii

60px

60
p

x

100px

10
0p

x

140px

140p
x

20px

20px

border-radius: 20px 60px 100px 140px;

If you enter only one radius value, it is applied to all four corners; if you enter two
values, the first is applied to the top-left and bottom-right corners, and the second is
applied to the top-right and bottom-left corners. If you specify three radii, they are
applied to the top-left, top-right/bottom-left, and bottom-right corners, in that order.
For example, the following style rule creates rounded corners for the aside element in
which the radii of the top-left and bottom-right corners is 50 pixels and the radii of the
top-right and bottom-left corners is 20 pixels.

aside {border-radius: 50px 20px;}

To set the curvature for only one corner, use the property:

border-corner-radius: radius;

where corner is either top-left, top-right, bottom-right, or bottom-left.

You can explore the CSS
border-radius style using
the demo_radius.html
file in the html04 c demo
folder.

TRY IT

R
E
FE

R
E
N
C
E

Creating a Rounded Corner

• To create rounded corners for an element border, use

border-radius: top-left top-right bottom-right bottom-left;

where radius is the radius of the rounded corner in one of the CSS units of
measurement and top-left, top-right, bottom-right, and bottom-left are the
radii of the individual corners.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 295

Thus, the following style rule creates elongated corners in which the ratio of the
horizontal to vertical radius is 50 pixels to 20 pixels.

border-radius: 50px/20px;

Note that using percentages for the radius value can result in elongated corners if
the element is not perfectly square. The following style rule sets the horizontal radius to
15% of element width and 15% of the element height. If the element is twice as wide
as it is high for example, the corners will not be rounded but elongated.

border-radius: 15%;

When applied to a single corner, the format to create an elongated corner is slightly
different. You remove the slash between the horizontal and vertical values and use the
following syntax:

border-corner-radius: horizontal vertical;

For example, the following style creates an elongated bottom-left corner with a
horizontal radius of 50 pixels and a vertical radius of 20 pixels.

border-bottom-left-radius: 50px 20px;

Rounded and elongated corners do not clip element content. If the content of the
element extends into the corner, it will still be displayed as part of the background.
Because this is often unsightly, you should avoid heavily rounded or elongated corners
unless you can be sure they will not obscure or distract from the element content.

Add rounded corners with a radius of 30 pixels to the aside element.

To create a circular border,
use a square element with
an equal width and height
and the corner radii set
to 50%.

You can explore how to
create elliptical corners
using the demo_ellipse.
html file in the html04 c
demo folder.

TRY IT

150px

80
p

x

border-radius: 150px/80px;

The corners do not need to be circular. Elongated or elliptical corners are created by
specifying the ratio of the horizontal radius to the vertical radius using the style:

border-radius: horizontal/vertical;

where horizontal is the horizontal radius of the corner and vertical is the vertical
radius of the same corner (see Figure 4–16).

Figure 4–16 Creating an elongated corner

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 296

To add rounded corners to an element:
w 1. Return to the tb_visual1.css file in your editor and go to the Aside Styles section.

w 2. Add the following style to the style rule for the aside element:

border-radius: 30px;

Figure 4–17 highlights the style to create the rounded corners for the aside
border.

w 3. Save your changes to the file and reload tb_komatsu.html in your browser.
Figure 4–18 shows the rounded corners for the aside element border.

Figure 4–17 Adding rounded corners to the aside element border

sets the radius at each
border corner to 30 pixels

Figure 4–18 Aside element border with rounded corners

rounded corner

© imtmphoto/Shutterstock.com

Kevin likes the revision to the border for the aside element. He also wants you to
add a border to the family portrait on the Komatsu Family page. However, rather than
using one of the styles shown in Figure 4–12, Kevin wants you to use a graphic border
that makes it appear as if the figure box came from a torn piece of paper. You can
create this effect using border images.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 297

To apply a border image, use the following property

border-image: url(url) slice repeat fill;

where url is the source of the graphic image, slice is the width or height of the slices
used to create the sides and corners, repeat indicates whether the side slices should
be stretched or tiled to cover the border’s four sides, and fill is an optional attribute
that fills the image background with the graphic image file. The repeat option supports
the following values:

• stretch: The slices are stretched to fill each side.
• repeat: The slices are tiled to fill each side.
• round: The slices are tiled to fill each side; if they don’t fill the sides with an integer

number of tiles, the slices are rescaled until they do.
• space: The slices are tiled to fill each side; if they don’t fill the sides with an integer

number of tiles, extra space is distributed around the tiles.

For example, the following style cuts 10-pixel-wide slices from the frame.png image file
with the four side slices stretched to cover the length of the four sides of the object’s border:

border-image: url(frame.png) 10 stretch;

Figure 4–19 Slicing a graphic image to create a border

slices are stretched to
match the image border

20px

20px

20px

frame.png

border slices

20px

border-image: url(frame.png) 20 stretch;

© imtmphoto/Shutterstock.com

Applying a Border Image
A border image is a border that it is based on a graphic image. The graphic image is sliced
into nine sections representing the four corners, the four sides, and the interior piece. The
interior piece is discarded because that is where the content of the object will appear; the
four corners become the corners of the border and the four sides are either stretched or
tiled to fill in the border’s top, right, bottom, and left sides. Figure 4–19 shows an example
of an image file, frame.png, sliced into nine sections to create a border image.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 298

The size of the slices is measured either in pixels or as a percentage of the image file
width and height. A quirk of this property is that you should not specify the pixel unit if
you want the slices measured in pixels but you must include the % symbol when slices
are measured in percentages.

You can create slices of different widths or heights by entering the size values in a
space-separated list. For instance, the following style slices the graphic image 5 pixels
on the top, 10 pixels on the right, 15 pixels on the bottom, and 25 pixels on the left:

border-image: url(frame.png) 5 10 15 25 stretch;

The slice sizes follow the same top/right/bottom/left syntax used with all of the CSS
border styles. Thus, the following style slices 5% from the top and bottom sides of the
graphic image, and 10% from the left and right sides:

border-image: url(frame.png) 5% 10% stretch;

You can also apply different repeat values to different sides of the border. For
example, the following style stretches the border slices on the top and bottom but tiles
the left and right slices:

border-image: url(frame.png) 10 stretch repeat;

You can explore how to
create a border image
using the demo_frame.
html file in the html04 c
demo folder.

TRY IT

R
E
FE

R
E
N
C
E

Creating a Graphic Border

• To create a border based on a graphic image, use

border-image: url(url) slice repeat fill;

where url is the source of the border image file, slice is the size of the border
image cut off to create the borders, repeat indicates whether the side borders
should be either stretched or tiled to cover the object’s four sides, and fill is an
optional attribute that fills the image background with the graphic image file.

The torn paper image that Kevin wants to use is based on the graphic image file
tp_border.png file. Use the border-image property to add a border image around the
figure box on the Komatsu Family page, tiling the border slices to fill the sides. Note that
in order for the border image to appear you must include values for the border-width
and border-style properties.

To create a graphic border:
w 1. Return to the tb_visual1.css file in your editor and scroll to the Figure Box

Styles at the top of the file.

w 2. Add the following style to the style rule for the figure box:

border-style: solid;
border-width: 25px;
border-image: url(tb_border.png) 50 repeat;

Figure 4–20 displays the styles used to create the graphic border.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 299

Kevin appreciates the effect you created, making it appear as if the family portrait
was torn from an album and laid on top of the web page.

Figure 4–21 Figure box with border image

graphic image
slices are tiled to �ll
the border sides

border image
created from the
tb_border.png �le

w 3. Save your changes and reload tb_komatsu.html in your browser. Figure 4–21
shows the appearance of the border image.

© imtmphoto/Shutterstock.com

Figure 4–20 Adding a border image

slices 50 pixels
from each side of
the border image

uses the
tb_border.png file
for the graphical
border

tiles the side
slices to fill the
border sides

border width and
style values are
required for the
border image

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 300

In the next session, you’ll continue to work with the CSS graphic styles to add
three-dimensional effects through the use of drop shadows and color gradients. If you
want to take a break, you can close your open files and documents now.

PR
O
SK

IL
LS

Problem Solving: Graphic Design and Legacy Browsers

Adding snazzy graphics to your page can be fun, but you must keep in mind that
the fundamental test of your design is not how cool it looks but how usable it is. Any
design you create needs to be compatible across several browser versions if you want
to reach the widest user base. To support older browsers, your style sheet should use
progressive enhancement in which the older properties are listed first, followed by
browser extensions, and then by the most current CSS properties. As each property
supersedes the previous properties, the browser will end up using the most current
property that it supports.

For example, the following style rule starts with a basic 5-pixel blue border that
will be recognized by every browser. It is followed by browser extensions for Opera,
Mozilla, and WebKit to support older browsers that predate adoption of the CSS
border-image property. Finally, the style list ends with the CSS border-image
property, recognized by every current browser. In this way, every browser that opens the
page will show some type of border.

border: 5px solid blue;
-o-border-image: url(paper.png) 30 repeat;
-moz-border-image: url(paper.png) 30 repeat;
-webkit-border-image: url(paper.png) 30 repeat;
border-image: url(paper.png) 30 repeat;

Be aware, however, that the syntax for an extension may not match the syntax for
the final CSS specification. For example, the following list of styles creates a rounded
top-right corner that is compatible across a wide range of browser versions:

-moz-border-radius-top-right: 15px;
-webkit-border-top-right-radius: 15px;
border-top-right-radius: 15px;

Note that the syntax for the Mozilla extension does not match the syntax for the
WebKit extension or for the final CSS specification. As always, you need to do your
homework to learn exactly how different browser versions handle these CSS design styles.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 301

R
E
V
IE

W

Session 4.1 Quick Check

 1. The element to create a figure caption is:
a. caption
b. figurecap
c. figcaption
d. alt

 2. Lines and curves based on mathematical functions comprise a:
a. bitmap image
b. png image
c. figure image
d. vector image

 3. To tile a background image in the horizontal direction only, use:
a. repeat-x
b. repeat-y
c. repeat-horizontal
d. repeat-h

 4. To display the background image only within a content box, apply the style:
a. background-origin: content-box;
b. background: content-box;
c. background-display: content-box;
d. background-clip: content-box;

 5. To create a 5-pixel wide brown border with a dotted line, apply the style:
a. border-style: 5px brown dotted;
b. border-type: brown 5px dotted;
c. border-outline: dotted brown 5px;
d. border: 5px brown dotted;

 6. To use rounded corners with a radius of 15 pixels in a border, apply the style:
a. border-width: 15px;
b. border-radius: 15px;
c. border-arc: 15px;
d. corner-radius: 15px;

 7. To create an elongated corner with a horizontal radius of 10 pixels and a
vertical radius of 5 pixels, use:
a. border-radius: 10px 5px;
b. border-radius: 5px 10px;
c. border-radius: 10px/5px;
d. border-radius: 5px/10px;

 8. To create a border image using the border.png file with a slice size of 30 pixels
and the slices stretched along the borders, use:
a. border-image: url(border.png) 30 stretch;
b. border: url(border.png) 30 stretch;
c. border-img: url(border.png) 30 stretch;
d. border-slice: url(border.png) 30 stretch;

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 302

Session 4.2 Visual Overview:

The box-shadow
property adds a drop
shadow to a block
element.

The inset keyword
places the shadow
inside the element.

The text-shadow
property adds a drop
shadow to a text
string.

The opacity property
makes an object
semi-transparent.

The radial-gradient
function creates a color
gradient proceeding
outward from a central
point.

The linear-gradient
function creates a color
gradient proceeding
along a straight line.

The color-stop de�nes
the extent of a color
within a gradient.

This value sets
the shadow size.

These color values
set the shadow color.

The color value sets
the shadow color.

This value sets
the shadow blur.

These values
set the shadow
offsets.

The distance values set
the shadow offsets.

This value sets
the opacity of the
�gure to 55%.

This value sets
the shadow blur.

Logo Design Studio Pro; Source: wiki Media;
© imtmphoto/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 303

Shadows and Gradients

This shows a
box shadow on
the left edge of
the page body.

This shows a box
shadow inside
the page article.

This shows the
�gure box is
displayed as
55% opaque.

The radial gradient
proceeds from white in the
center to medium green on
the edges.

There is a box shadow on
the right edge of the
page body.

The box shadow creates
a halo around the aside
element.

The linear gradient proceeds
at an angle of 15°
counter-clockwise from light
green to dark green.

The heading
text has a
text shadow.

Source: Design Studio Pro; Source: Wikimedia Commons; imtmphoto/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 304

Creating Drop Shadows
In this session, you will examine some design styles that create 3D effects, making the
page content appear to jump out of the browser window. The first styles you’ll explore
are used to create drop shadows around text strings and element boxes.

Creating a Text Shadow
To give the text on your page visual impact, you can use CSS to add a shadow using
the following text-shadow property

text-shadow: color offsetX offsetY blur;

where color is the shadow color, offsetX and offsetY are the distances of the
shadow from the text in the horizontal and vertical directions, and blur defines the
amount by which the shadow spreads out, creating a blurred effect. The shadow offset
values are expressed so that positive values push the shadow to the right and down
while negative values move the shadow to the left and up. The default blur value is 0,
creating a shadow with distinct hard edges; as the blur value increases, the edge of the
shadow becomes less distinct and blends more in the text background.

The following style creates a red text shadow that is 10 pixels to the right and 5 pixels
down from the text with blur of 8 pixels:

text-shadow: red 10px 5px 8px;

Multiple shadows can be added to text by including each shadow definition in the
following comma-separated list.

text-shadow: shadow1, shadow2, shadow3, …;

where shadow1, shadow2, shadow3, and so on are shadows applied to the text with
the first shadow listed displayed on top of subsequent shadows when they overlap. The
following style rule creates two shadows with the first red shadow placed 10 pixels to
the left and 5 pixels up from the text and the second gray shadow is placed 3 pixels to
the right and 4 pixels down from the text. Both shadows have a blur of 6 pixels:

text-shadow: red -10px -5px 6px,
 gray 3px 4px 6px;

Figure 4–22 shows examples of how the text-shadow style can be used to achieve a
variety of text designs involving single and multiple shadows.

You can explore the
text-shadow style and
creating multiple text
shadows by using the
demo_text.html file from
the html04 c demo folder.

TRY IT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 305

Kevin wants you to add two text shadows to the h1 heading The Komatsu Family.
The first text shadow will be a light-green highlight with hard edges and the second
shadow will be semi-transparent gray and blurred.

Figure 4–22 Examples of text shadows

text-shadow: gray 4px 6px 5px; color: rgb(150, 187, 60);
text-shadow: black -4px -3px 5px;

color: white;
text-shadow: black 0px 0px 1px;

 color: white;
 text-shadow: green 0px 0px 25px;

color: white;
text-shadow: black 0px 0px 3px,
 green 4px 4px 4px,
 blue 0px 0px 55px;

background-color:
rgb(110, 137, 20);
color: rgb(90, 127, 0);
text-shadow: black 1px 1px 1px,
 white 0px -2px 0px;

R
E
FE

R
E
N
C
E

Creating a Text Shadow

• To add a shadow to a text string, use the property

text-shadow: color offsetX offsetY blur;

where color is the shadow color, offsetX and offsetY are the distances of the
shadow from the text in the horizontal and vertical directions, and blur defines the
amount by which the shadow is stretched.

To add a text shadow:
w 1. If you took a break after the previous session, reopen or return to the

tb_visual1.css file in your editor and scroll to the Article Styles section.

w 2. Add the following style for the h1 heading in the article header:

article header h1 {
 text-shadow: rgb(181, 211, 181) 2px 2px 1px,
 rgba(21, 21, 21, 0.66) 5px 5px 25px;
}

Figure 4–23 highlights the style to add text shadows to the h1 heading.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 306

Figure 4–23 Adding text shadows

shadow
color

horizontal
offset vertical

offset

semi-transparent
gray shadow
with soft edges

blur
size

light green text
shadow with hard
edges

w 3. Save your changes and reload tb_komatsu.html in your browser. Figure 4–24
shows the shadow effect added to the h1 heading.

Figure 4–24 Article heading with text shadows

Kevin likes the shadow effect and the use of the light green shadow, which appears to give
a highlight to the heading text. Next, he wants you to add shadows to other page objects.

Creating a Box Shadow
Shadows can be added to any block element in the web page by using the box-shadow
property

box-shadow: color offsetX offsetY blur;

where color, offsetX, offsetY, and blur have the same meanings for box shadows
as they do for text shadows. As with text shadows, you can add multiple shadows by
including them in the following comma-separated list

box-shadow: shadow1, shadow2 …;

where once again the first shadow listed is displayed on top of subsequent shadows.
In the last session, you used left and right borders to set off the page body from the

browser window background. Kevin would like you to increase this visual distinction
by adding drop shadows to the left and right sides of the page body.

If no shadow color is
provided, the browser uses
black as the default color.

soft gray background
shadow light green

highlight shadow

© imtmphoto/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 307

To add a box shadow:
w 1. Return to the tb_visual1.css file in your editor and go to the Page Body

Styles section.

w 2. Within the style rule for the body element, insert the following styles:

box-shadow: rgb(51, 51, 51) 15px 0px 25px,
 rgb(51, 51, 51) -15px 0px 25px;

Figure 4–25 highlights the style to add box shadows to the page body.

w 3. Save your changes and reload tb_komatsu.html in your browser. Figure 4–26
shows the drop shadows added to the page body.

Figure 4–25 Adding box shadows

Figure 4–26 Page body with drop shadows

drop shadow on the
page body’s right edge

drop shadow on the
page body’s left edge

gray shadow color

drop shadow on
the left edge drop shadow on

the right edge

Source: Design Studio Pro; Source: Wikimedia Commons; © imtmphoto/Shutterstock.com

Box shadows can be placed inside the element as well as outside. By adding an
interior shadow you can create the illusion of a beveled edge in which the object appears
to rise out of its background. To create an interior shadow, add the inset keyword to the
box-shadow property

box-shadow: inset color offsetX offsetY blur;

where the meanings of the offsetX and offsetY values are switched when applied to
interior shadowing so that positive offsetX and offsetY values move the shadow to
the left and up within the box, while negative offsetX and offsetY values move the
shadow to the right and down.

Explore multiple box
shadows with the
demo_box.html file from
the html04 c demo folder.

TRY IT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 308

An object can contain a mixture of exterior and interior shadows. Figure 4–27
shows examples of box shadows, including one example that mixes both interior and
exterior shadows.

Figure 4–27 Examples of box shadows

box-shadow: 15px 15px;

background-color: rgb(90, 141, 191);
box-shadow: inset rgb(0, 51, 101) -10px -15px 15px,
 inset white 5px 5px 5px;

background-color: rgb(101, 191, 101);
box-shadow: inset rgb(0, 101, 51) 10px 15px 15px,
 inset white -5px -5px 25px,
 rgb(51, 51, 51) -10px -10px 20px;

box-shadow: rgb(127, 90, 0) -10px -10px 15px;

Kevin suggests that you add inset shadows to the article element, placing medium
gray shadows within the article to make it appear raised up from the surrounding page
content.

To add inset shadows:
w 1. Return to the tb_visual1.css file in your editor and go to the Article Styles

section.

w 2. Within the style rule for the article element, insert the following box-shadow
style:

box-shadow: inset rgb(71, 71, 71) -10px -10px 25px,
 inset rgb(71, 71, 71) 10px 10px 25px;

Figure 4–28 highlights the newly added code for the inset box shadow.

Positive and negative offset
values for interior shadows
have the opposite meaning
from positive and negative
offset values for exterior
shadows.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 309

places a medium-
gray shadow in the
lower-right interior
corner

places a medium-gray
shadow in the
upper-left interior
corner

inset keyword
places shadow
inside the object

interior shadow
placed on the right
and down based on
negative offset values

interior shadow
placed on the left
and up based on
positive offset values

Figure 4–28 Adding an inset shadow

Figure 4–29 Page article with interior shadowing

w 3. Save your changes and reload tb_komatsu.html in your browser. The inset
shadow for the page body element is shown in Figure 4–29.

Source: Wikimedia Commons; © imtmphoto/Shutterstock.com

By default, a box shadow has the same size and dimensions as its page object offset
in the horizontal and vertical direction. To change the shadow size, add the spread
parameter to the box-shadow property, specifying the size of the shadow relative to
the size of the page object. A positive value increases the size of the shadow, while a
negative value decreases it. For example, the following style creates a gray shadow that
is offset from the page object by 5 pixels in both the vertical and horizontal direction

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 310

with no blurring but with a shadow that is 15 pixels larger in the horizontal and
vertical directions than the object:

box-shadow: gray 5px 5px 0px 15px;

On the other hand, the following style creates a shadow that is 15 pixels smaller
than the page object:

box-shadow: gray 5px 5px 0px -15px;
R
E
FE

R
E
N
C
E

Creating a Box Shadow

• To add a shadow to a block element, use

box-shadow: color offsetX offsetY blur spread;

where color is the shadow color, offsetX and offsetY are the distances of the
shadow from the element in the horizontal and vertical directions, blur defines the
amount by which the shadow is stretched and spread sets the size of the shadow
relative to the size of the block element. If no spread is specified, the shadow has the
same size as the block element.

• To create an interior shadow, include the inset keyword

box-shadow: inset color offsetX offsetY blur spread;

• To create multiple shadows place them in a comma-separated list:

box-shadow: shadow1, shadow2, …;

where shadow1, shadow2, and so on are definitions for individual shadows with the
first shadows listed displayed on top of subsequent shadows.

One application of the spread parameter is to create a visual effect in which the
object appears to be surrounded by a halo. This is achieved by setting the shadow
offsets to 0 pixels while making the shadow larger than the page object itself. Kevin
suggests that you use this technique to add a green halo to the aside element.

To increase the shadow size:
w 1. Return to the tb_visual1.css file in your editor and go to the Aside Styles

section.

w 2. Within the style rule for the aside element, insert the following style:

box-shadow: rgba(51, 91, 51, 0.4) 0px 0px 20px 10px;

Figure 4–30 highlights the style to add a halo to the aside element.

Figure 4–30 Creating a spreading shadow

semi-transparent
green shadow

zero shadow offset
in the horizontal and
vertical direction

shadow is 10 pixels
wider and taller
than the object

20-pixel blur

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 311

Figure 4–31 Aside element with glowing effect

green halo added
around aside box

w 3. Save your changes and reload tb_komatsu.html in your browser. Figure 4–31
shows the revised appearance of the aside element with the glowing green
shadow.

© imtmphoto/Shutterstock.com

IN
SI
G
H
T

Creating a Reflection

WebKit, the rendering engine for Safari and Google Chrome, includes support for
adding reflections to page objects through the following property

-webkit-box-reflect: direction offset mask-box-image;

where direction is the placement of the reflection using the keywords above,
below, left, or right; offset is the distance of the reflection from the edge of
the element box, and mask-box-image is an image that can be used to overlay the
reflection. For example, the following style rule creates a reflection that is 10 pixels
below the inline image:

img {
 -webkit-box-reflect: below 10px;
}

There is no equivalent reflect property in the official W3C CSS specifications. Before
using the reflect property, you should view the current browser support for the
-webkit-box-reflect property at caniuse.com.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 312

Applying a Color Gradient
So far you have worked with backgrounds consisting of a single color, though that
color can be augmented through the use of drop shadows. Another way to modify the
background color is through a color gradient in which one color gradually blends
into another color or fades away if transparent colors are used. CSS supports linear
gradients and radial gradients.

Creating a Linear Gradient
A linear gradient is a color gradient in which the background color transitions from a
starting color to an ending color along a straight line. Linear gradients are created using
the linear-gradient function

linear-gradient(color1, color2, …)

where color1, color2, and so on are the colors that blend into one another starting
from color1, through color2, and onto the last color listed. The default direction for
a linear color gradient is vertical, starting from the top of the object and moving to the
bottom.

Gradients are treated like background images and thus can be used with any
CSS property that accepts an image such as the background, background-image,
and list-style-image properties. For example, to create a linear gradient as a
background for the page body, you could apply the following style rule:

body {
 background: linear-gradient(red, yellow, blue);
}

Figure 4–32 shows the appearance of this vertical gradient as the background color
transitions gradually from red down to yellow and then from yellow down to blue.

When using multiple
backgrounds, gradients
can be combined with solid
colors and background
images to create interesting
visual effects; one gradient
can also be overlaid on top
of another.

Figure 4–32 Linear gradient with three colors

vertical g
rad

ient

linear-gradient(red, yellow, blue)

To change from the default vertical direction, you add a direction value to the
linear-gradient function

linear-gradient(direction, color1, color2, …)

where direction is the direction of the gradient using keywords or angles. Direction
keywords are written in the form to position where position is either a side of the

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 313

object or a corner. For example the following linear gradient moves in a straight line to
the left edge of the object blending from red to yellow to blue:

background: linear-gradient(to left, red, yellow, blue);

To move toward the corner, include both corner edges. The following style moves the
gradient in the direction of the object’s bottom right corner:

background: linear-gradient(to bottom right, red, yellow, blue);

To move in a direction other than a side or corner, you can express the direction
using an angle value. Angles are measured in degrees with 0deg equal to to top,
90deg equal to to right, 180deg equal to to bottom, and 270deg equal to to left
(see Figure 4–33.)

For square objects, a
direction of 45deg is
equivalent to a direction of
to right top.

Figure 4–33 Linear gradient directions

0deg

90deg

180deg

270deg

45deg

135deg 225deg

315deg

to top

to right

to bottom

to left

For example, the following gradient points at a 60 degree angle:

background: linear-gradient(60deg, red, yellow, blue);

Figure 4–34 shows other examples of linear gradients moving in different directions
using both syntaxes.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 314

IN
SI
G
H
T

Transparency and Gradients

Interesting gradient effects can be achieved using transparent colors so that the
background color gradually fades away as it moves in the direction of the gradient. For
example, the following style creates a linear gradient that gradually fades away from its
initial solid red color:

linear-gradient(rgba(255, 0, 0, 1), rgba(255, 0, 0, 0))

Note that since the final color is completely transparent it will adopt the background
color of the parent element.

You can also use gradients to create background images that appear to fade by
using multiple backgrounds in which the gradient appears on top of an image. For
example, the following background style creates a fading background using the
back.png image file:

background: linear-gradient(rgb(255, 255, 255, 0), rgb(255,
255, 255, 1)),url(back.png));

When rendered by the browser, the background image will start as solid but gradually
fade to white as the linear gradient proceeds through the element background.

Figure 4–34 Directions of linear gradients

linear-gradient(to left bottom, red, yellow, blue)

linear-gradient(300deg, red, yellow, blue)

linear-gradient(-200deg, red, yellow, blue)

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 315

Note that the degree values can be negative in which case the direction is pointed
counter-clockwise around the circle shown in Figure 4–33. A negative angle of –45deg,
for example, would be equivalent to a positive angle of 315deg, an angle of –200deg
would be equal to 160deg, and so forth.

Gradients and Color Stops
The colors specified in a gradient are evenly distributed so that the following gradient
starts with a solid red, solid green appears halfway through the gradient, and finishes
with solid blue:

background: linear-gradient(red, green, blue);

To change how the colors are distributed, you define color stops, which represent
the point at which the specified color stops and the transition to the next color begins.
The linear-gradient function using color stops has the general form

linear-gradient(direction, color-stop1, color-stop2, …)

where color-stop1, color-stop2, and so on are the colors and their stopping
positions within the gradient. Stopping positions can be entered using any of the CSS
units of measurement. For example, the following gradient starts with solid red up
until 50 pixels from the starting point, red blends to solid green stopping at 60 pixels
from the starting point and then blends into solid blue 80 pixels from the start. After
80 pixels, the gradient will remain solid blue to the end of the background.

linear-gradient(red 50px, green 60px, blue 80px)

Similarly, the following style rule sets the color stops using percentages with solid
red for the first 25% of the background, transitioning to solid green from 25% to
75% of the background, and then transitioning to solid blue from 75% to 95% of the
background size. From that point to the end, the background remains solid blue.

linear-gradient(red 25%, green 75%, blue 95%)

Figure 4–35 shows an example of a linear gradient in which color stops are used to
create a narrow strip of yellow within a background of red blended into blue.

You can create your own
linear gradients using the
demo_linear.html file from
the html04 c demo folder.

TRY IT

Figure 4–35 Linear gradient color stops

solid red (start to 25%)

red to blue (25% to 45%)

blue to red (51% to 75%)

linear-gradient(red 25%, blue 45%, yellow 49%, blue 51%, red 75%)

solid red (75% to end)

blue to yellow to blue
(45% to 49% to 51%)

Kevin suggests you use a linear gradient that transitions from light green to dark green
as the background for the page footer.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 316

To apply a linear gradient:
w 1. Return to the tb_visual1.css file in your editor and go to the Footer Styles

section.

w 2. Insert the following style rule for the footer element:

footer {
 background: linear-gradient(345deg, rgb(172, 232, 172),
 rgb(21, 35, 21) 80%);
}

Figure 4–36 highlights the style to create the linear gradient.

�nal color is
dark green

initial color
is light green

gradient is
pointed at a
345° angle

background is
dark green from
80% to the end

Figure 4–36 Applying a linear gradient

end of gradient

start of gradient

Figure 4–37 Page footer with linear gradient background

w 3. Save your changes and reload tb_komatsu.html in your browser. Figure 4–37
shows the revised appearance of the page footer with a linear gradient.

The other color gradient supported in CSS is a radial gradient. You will explore how
to create radial gradients now.

Creating a Radial Gradient
A radial gradient is a color gradient that starts from a central point and proceeds
outward in a series of concentric circles or ellipses. Figure 4–38 shows an example of a
radial gradient consisting of a series of concentric ellipses radiating from a central red
color to an ending blue color.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 317

Figure 4–38 A radial gradient of three colors

radial-gradient(red, yellow, blue)

Radial gradients are created using the following radial-gradient function.

radial-gradient(shape size at position, color-stop1,
color-stop2, …)

The shape value defines the shape of the gradient and is either ellipse (the default)
or circle. The size value defines the extent of the gradient as it radiates outward and
can be expressed with a CSS unit of measure, a percentage of the background’s width
and height, or with one of the following keywords:

• farthest-corner (the default) Gradient extends to the background corner farthest
from the gradient’s center.

• farthest-side Gradient extends to background side farthest from the gradient’s
center.

• closest-corner Gradient extends to the nearest background corner.
• closest-side Gradient extends to the background side closest to the

gradient’s center.

The position defines where the gradient radiates from and can be expressed in
coordinates using pixels, percentages of the element’s width and height, or with the
keywords: left, center, right, top, and bottom. The default is to place the gradient
within the center of the background.

Finally the color-stop1, color-stop2 … values are the colors and their stopping
positions within the gradient and have the same interpretation used for linear gradients
except they mark stopping points as the gradient radiates outward. Note that the
color stops are optional, just as they are in linear gradients. For example the following
function defines a circular gradient radiating from the horizontal and vertical center of
the background through the colors red, yellow, and blue:

radial-gradient(circle closest-corner at center center,
 red, yellow, blue)

The gradient ends when it reaches the closest background corner. Anything outside of
the gradient will be a solid blue.

Figure 4–39 shows other examples of the different effects that can be accomplished
using the radial-gradient function. Note that when parameters of the radial-gradient
function are omitted they take their default values.

You can explore how
to create your own
radial gradients using the
demo_radial.html file from
the html04 c demo folder.

TRY IT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 318

Kevin would like you to apply a radial gradient to the background of the aside
element. The gradient will start from a white center blending into to a medium green
and then into a darker shade of green.

Figure 4–39 Examples of radial gradients

radial-gradient(circle closest-side, red, yellow, blue)

radial-gradient(120px 180px at 25% 75%, red, yellow, blue)

radial-gradient(at right, red 46%, yellow 50%, blue 54%)

To apply a radial gradient:
w 1. Return to the tb_visual1.css file in your editor and go to the Aside Styles

section.

w 2. Add the following style to the style rule for the aside element:

background:
radial-gradient(white, rgb(151, 222, 151),
 rgb(81, 125, 81));

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 319

Note that this style supersedes the previous background style created in the
tb_styles1.css style sheet. Figure 4–40 highlights the code to create the radial
gradient.

w 3. Save your changes and reload tb_komatsu.html in your browser. Figure 4–41
shows the radial gradient within the aside element.

Figure 4–40 Applying a radial gradient

Figure 4–41 Aside element with radial gradient background

color at the center

color in the middle

outside color

center of
gradient

end of
gradient

© imtmphoto/Shutterstock.com

Kevin likes the effect of the radial gradient on the aside element and feels that it
works well with the glowing effect you added earlier.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 320

Repeating a Gradient
As you add more color stops, the gradient function can become unwieldy and overly
complicated. One alternative is to repeat the gradient design. You can repeat linear and
radial gradients using the functions

repeating-linear-gradient(params)
repeating-radial-gradient(params)

where params are the parameters of the linear-gradient or the radial-gradient
functions already discussed. The only requirement for a repeating gradient is that a
stopping position is required for the last color in the list that is less than the size of the
object background. Once the last color in the color list is reached, the gradient starts
over again. For example, the following function repeats a vertical gradient starting with
white transitioning to black, transitioning back to white at 10% of the height of the
object, and then repeating that pattern each time it reaches the next 10% of the height
of the object:

repeating-linear-gradient(white, black 10%)

Figure 4–42 shows some other examples of repeating linear and radial gradients.

You can create your own
repeating gradients using
the demo_repeat_linear.
html and demo_repeat_
radial.html files from the
html04 c demo folder.

TRY IT

IN
SI
G
H
T

Gradients and Browser Extensions

The gradient functions were heavily revised as they went from being browser-specific
properties to the final syntax approved by the W3C. If you work with older browsers,
you may need to accommodate their versions of these gradient functions. For example,
the following linear gradient that blends red to blue going in the direction to the right
edge of the background

linear-gradient(to right, red, blue)

would be expressed using the old WebKit gradient function as:

-webkit-gradient(linear, left, right, from(red), to(blue))

Other older versions of browsers such as Mozilla, Internet Explorer, and Opera have
their own gradient functions with different syntax. You can study these functions using
the online support at the browser websites or doing a search on the Web for CSS
gradient functions.

Note that not all browser extensions support the same types of gradients, which
means that it is difficult and sometimes impossible to duplicate a particular gradient
background for every browser. Thus, you should not make gradients an essential
feature of your design if you want to be compatible with older browsers.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 321

The last visual effect that Kevin wants you to add to the Komatsu Family page is to
make the figure box semi-transparent so that it blends in better with its background.

Figure 4–42 Repeating a gradient

repeating-linear-gradient(to left bottom, red 5%, yellow 18%, blue 20%)

repeating-radial-gradient(circle, red 10%, yellow 25%, blue 30%)

R
E
FE

R
E
N
C
E

Creating a Gradient

• To create a linear gradient, use the function

linear-gradient(direction, color-stop1, color-stop2, …)

where direction is the direction of the gradient and color-stop1, color-stop2,
and so on are the colors and their stopping positions within the gradient.

• To create a radial gradient, use the function

radial-gradient(shape size at position, color-stop1,
color-stop2, …)

where shape defines the shape of the gradient, size sets the gradient size, position
places the center of the gradient, and color-stop1, color-stop2, and so on are the
colors and their stopping positions within the gradient.

• To repeat a gradient, use the functions

repeating-linear-gradient(params)
repeating-radial-gradient(params)

where params are the parameters of the linear-gradient or the radial-gradient
functions.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 322

Creating Semi-Transparent Objects
In Tutorial 2, you learned that you could create semi-transparent colors that blend with
the background color. You can also create whole page objects that are semi-transparent
using the following opacity property:

opacity: value;

where value ranges from 0 (completely transparent) up to 1 (completely opaque).
For example, the following style rule makes the page body 70% opaque, allowing a bit
of the browser window background to filter through

body {
 opacity: 0.7;
}

R
E
FE

R
E
N
C
E

Making a Semi-transparent Object

• To make a page object semi-transparent, use the property

opacity: value;

where value ranges from 0 (completely transparent) up to 1 (completely opaque).

Kevin suggests that you set the opacity of the figure box to 55% in order to blend the
figure box with the paper texture background you added to the article element.

IN
SI
G
H
T

Gradients as Images

Gradients can be treated as images and thus can be tiled within a background or
used with the border-image style. For example, the following style rule creates a
background of radial gradients repeated in the horizontal and vertical directions:

background-size: 50% 50%;
background-image-repeat: repeat;
background-image: radial-gradient(circle, yellow, blue);

Note that setting the background size to 50% 50% sets the width and height of
each radial gradient to half of the width and height of the object. By setting the
background-image-repeat style to repeat, the entire background is filled with
radial gradients, resulting in two rows of two gradient images.

The following code shows how to use a linear gradient as a border image:

border: 30px solid transparent;
border-image: (linear-gradient(yellow, blue)), 15);

with the image file replaced by the linear-gradient() function. The gradient is generated
for the entire object but is trimmed with a slice width of 15px to form the gradient
border.

You can explore gradients
as backgrounds in the
demo_linear_image.html
and demo_radial_image.
html files in the html04 c
demo folder

TRY IT

You can explore
gradient borders using the
demo_gradient_border.
html file in the html04 c
demo folder.

TRY IT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 323

To create a semi-transparent object:
w 1. Return to the tb_visual1.css file in your editor and scroll up to the Figure Box

Styles section.

w 2. Within the style rule for the figure element, insert the following style:

opacity: 0.55;

Figure 4–43 highlights the code to make the figure box semi-transparent.

Figure 4–43 Creating a semi-transparent object

sets the opacity of
the �gure box to 55%

w 3. Save your changes and reload tb_komatsu.html in your browser. Figure 4–44
displays the semi-transparent figure box with part of the background paper
texture showing through.

Figure 4–44 Changing the opacity of the figure box

part of the
background
page texture
shows through
in the �gure box

© imtmphoto/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 324

At this point you’ve completed your work on the design of the Komatsu Family page.
In the next session, you will learn how to use CSS to apply transformations and filters.
You will also learn how to work with image maps to create linkable images. Close any
open files now.

PR
O
SK

IL
LS

Written Communication: How to Use Visual Effects

The CSS visual styles can add striking effects to your website, but they might not be
supported by older browsers. This leaves you with the dilemma of when and how to
use these styles. Here are some tips to keep in mind when applying visual effects to
your website:

• Because not every user will be able to see a particular visual effect, design your
page so that it is still readable to users with or without the effect.

• Be aware that some visual effects that flicker or produce strobe-like effects can
cause discomfort and even photo-epileptic seizures in susceptible individuals.
Avoid clashing color combinations and optical illusions that can cause these
conditions.

• If you need to create a cross-browser solution, use browser extensions and be
aware that the browser extension syntax might not match the syntax of the CSS
standard.

• Consider using graphic images to create your visual effects. For example, rather
than using the CSS gradient functions, create a background image file containing
the gradient effect of your choice.

No matter how you employ visual effects on your website, remember that the most
important part of your site is its content. Do not let visual effects distract from your
content and message.

R
E
V
IE

W

Session 4.2 Quick Check

 1. Provide a style rule to create a red text shadow that is 5 pixels to the right and
10 pixels up from the text with a blur of 15 pixels.
a. text-shadow: red 5px 10px 15px;
b. text-shadow: red -5px 10px 15px;
c. text-shadow: red 5px -10px 15px;
d. text-shadow: red -5px -10px 15px;

 2. Provide a style rule to add a blue drop shadow to a page object that is 2 pixels
to the left, 5 pixels up and with a blur radius of 8 pixels.
a. box-shadow: blue 2px 5px 8px;
b. box-shadow: blue -2px 5px 8px;
c. box-shadow: blue 2px -5px 8px;
d. box-shadow: blue -2px -5px 8px;

 3. Provide a style to add a green interior drop shadow that is 2 pixels to the left,
5 pixels up and a blur radius of 8 pixels.
a. box-shadow: green 2px 5px 8px;
b. box-shadow: green 2px 5px 8px inset;
c. box-shadow: green -2px -5px 8px;
d. box-shadow: green -2px -5px 8px inset;

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 325

 4. Provide a style rule to create a red halo effect with no shadow offset, a blur of
15 pixels and a shadow size that is 10 pixels larger than the element.
a. box-shadow: red 0px 0px 15px 10px;
b. box-shadow: red 0px 0px 10px 15px;
c. box-shadow: red 15px 10px 0px 0px;
d. box-shadow: red 10px 15p x0px 0px;

 5. Provide code for a linear gradient that moves in the direction of the lower-left
corner of the element through the colors: orange, yellow, and green.
a. linear-gradient(left bottom, orange, yellow, green)
b. linear-gradient(bottom left, orange, yellow, green)
c. linear-gradient(to left bottom, orange, yellow, green)
d. linear-gradient(from right top, orange, yellow, green)

 6. Create a linear gradient that moves at a 15 degree angle with the color orange
stopping at 10% of the background, yellow stopping at 50%, and green
stopping at 55%.
a. linear-gradient(15deg, 10% orange, 50% yellow, 55% green)
b. linear-gradient(15deg, orange 10%, yellow 50%, green 55%)
c. linear-gradient(15deg, orange 10% yellow 50% green 55%)
d. linear-gradient(195deg, 10% orange, 50% yellow, 55% green)

 7. Create a radial gradient that extends to the farthest background corner, going
through the colors orange, yellow, and green.
a. radial(farthest-corner, orange, yellow, green)
b. radial-gradient(from farthest-corner, orange, yellow, green)
c. radial-gradient(farthest-corner, orange, yellow, green)
d. radial(farthest-corner, orange, yellow, green)

 8. Create a repeating circular gradient of orange, yellow, and green bands
centered at the right edge of the element with the colors stopped at 10%, 20%,
and 30% respectively.
a. radial-gradient(circle at right center, orange 10%, yellow

20%, green 30%)
b. radial-gradient-repeat(circle at right center, orange 10%,

yellow 20%, green 30%)
c. radial-gradient-repeat(circle at right center, orange 10%

10%, yellow 20% 20%, green 30% 30%)
d. repeating-radial-gradient(circle at right center, orange

10%, yellow 20%, green 30%)
 9. Create a style rule to set the opacity to 75%.

a. transparency: 25%;
b. transparency: 0.25;
c. opacity: 75%;
d. transform: opacity(0.75);

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 326

Session 4.3 Visual Overview:

Logo Design Studio Pro; Source: wiki Media;
© imtmphoto/Shutterstock.com

The transform property
is used to rotate, rescale,
skew, or shift a page
object.

The filter property is
used to modify an
object's color, brightness,
contrast, or general
appearance.

The rotateX and translateY
functions rotate the object 30°
around the x-axis and move it
50 pixels toward the viewer.

The sepia function
displays the object
in a sepia tone.

The scale function
reduces the object to
90% of its default size.

The rotateZ and
rotateY functions
rotate the object 30°
around the z-axis and
60° around the
y-axis.

The grayscale function
displays the object in
grayscale.

The saturate and contrast
functions increase the
color saturation by 50%
and increase the color
contrast by 20%.

Perspective is used in
3D transformations to
measure how rapidly
objects appear to recede
from or approach the
viewer.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 327

Transformations and Filters

The image uses a
sepia tone and is
rotated around
the x-axis.

This shows the
image in grayscale
and rotated around
the z and y axes.

This shows a rescaled
image with increased
color saturation and
contrast; it is rotated
around the y-axis.

Source: Design Studio Pro; Source: Wikimedia Commons; imtmphoto/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 328

Transforming Page Objects
In this session, you will examine some CSS styles that can be used to transform the
appearance of page objects through rotation, rescaling, and translation in space. To
accomplish these transformations, you’ll use the following transform property:

transform: effect(params);

where effect is a transformation function that will be applied to the page object and
params are any parameters required by the function. Figure 4–45 describes some of
the CSS transformation functions.

Figure 4–45 CSS 2D transformation functions

Function Description
translate(offX, offY) Moves the object offX pixels to the right and offY pixels down;

negative values move the object to the left and up

translateX(offX) Moves the object offX pixels to the right; negative values move the
object to the left

translateY(offY) Moves the object offY pixels down; negative values move the
object up

scale(x, y) Resizes the object by a factor of x horizontally and a factor of y
vertically

scaleX(x) Resizes the object by a factor of x horizontally

scaleY(y) Resizes the object by a factor of y horizontally

skew(angleX, angleY) Skews the object by angleX degrees horizontally and angleY
degrees vertically

skewX(angleX) Skews the object by angleX degrees horizontally

skewY(angleY) Skews the object by angleY degrees vertically

rotate(angle) Rotates the object by angle degrees clockwise; negative values
rotate the object counter-clockwise

matrix(n, n, n, n, n, n) Applies a 2D transformation based on a matrix of six values

For example, to rotate an object 30° clockwise, you would apply the following style
using the rotate function:

transform: rotate(30deg);

To rotate an object counter-clockwise, you would use a negative value for the angle
of rotation. Thus, the following style rotates an object 60° counter-clockwise:

transform: rotate(-60deg);

Figure 4–46 displays the effects of other transformation functions on a sample
page image.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 329

Figure 4–46 Examples of CSS Transformations

transform: translate(40px, -35px);

transform: skew(30deg, 20deg);

transform: scale(0.8, 0.5);

transform: rotate(-90deg);

© imtmphoto/Shutterstock.com

Transforming an object has no impact on the page layout. All of the other page
objects will retain their original positions.

You can apply multiple transformations by placing the effect functions in a
space-separated list. In this situation, transformations are applied in the order listed.
For example, the following style first rotates the object 30° clockwise and then shifts it
20 pixels to the right.

transform: rotate(30deg) translateX(20px);

You can explore different
2D CSS transformations
using the demo pages
demo_transform2d.html
and demo_transform2dm.
html from the html04
c demo folder.

TRY IT

R
E
FE

R
E
N
C
E

Applying a CSS Transformation

• To apply a transformation to a page object, use the property

transform: effect(params);

where effect is a transformation function that will be applied to the page object and
params are any parameters required by the function.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 330

The website has pages with photos for each individual in the Komatsu family. Kevin
wants you to work on transforming the photos on Genta Komatsu’s page. Kevin has already
created the page content and a layout and typographical style sheet but wants you to work
on the style sheet containing the visual effects. Open the Genta Komatsu page now.

© mtmphoto/Shutterstock.com

To open the Genta Komatsu page:
w 1. Use your editor to open the tb_genta_txt.html and tb_visual2_txt.css

files from the html04 c tutorial folder. Enter your name and the date in
the comment section of both files and save them as tb_genta.html and
tb_visual2.css respectively.

w 2. Return to the tb_genta.html file in your editor. Within the document head,
insert the following link elements to link the page to the tb_reset.css,
tb_styles2.css, and tb_visual2.css style sheet files.

<link href="tb_reset.css" rel="stylesheet" />
<link href="tb_styles2.css" rel="stylesheet" />
<link href="tb_visual2.css" rel="stylesheet" />

w 3. Take some time to scroll through the contents of the file. Note that the document
content consists mainly of three figure boxes each containing a different photo of
Genta Komatsu.

w 4. Close the file, saving your changes.

w 5. Open the tb_genta.html file in your browser. Figure 4–47 shows the initial
layout and design of the page content.

Figure 4–47 Initial design of the Genta Komatsu page

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 331

Kevin feels that the page lacks visual interest. He suggests you transform the bottom
row of photos by rotating them and shifting them upward to partially cover the main
photo, creating a collage-style layout. Apply the transform property now to make
these changes.

To apply the transform style:
w 1. Go to the tb_visual2.css file in your editor and scroll as needed to the

Transformation Styles section.

w 2. Insert the following style rule to rotate the figure2 figure box 40°
counter-clockwise, reduce it to 80% of its former size, and shift it 20 pixels to
the right and 100 pixels up. Also, add a style to create a drop shadow using
the code that follows:

figure#figure2 {
 transform: rotate(-40deg) scale(0.8, 0.8)
 translate(20px, -100px);
 box-shadow: rgb(101, 101, 101) 10px 10px 25px;
}

w 3. Add the following style rule to rotate the figure3 figure box 10° clockwise,
resize it to 90% of its current size, and shift it 120 pixels upward. Also add a
drop shadow to the figure box using the following style rule:

figure#figure3 {
 transform: rotate(10deg) scale(0.9, 0.9)
 translateY(-120px);
 box-shadow: rgb(101, 101, 101) 10px -10px 25px;
}

Figure 4–48 describes the newly added style rules.

Figure 4–48 Transforming the figure boxes

rotates the box 40°
counter-clockwise

rotates the box 10°
clockwise

moves the box 120
pixels up

reduces the box size to
90% of its original size

reduces the box size to
80% of its original size

moves the box 20 pixels to
the right and 100 pixels up

w 4. Save your changes to the file and then reload tb_genta.html in your browser.
Figure 4–49 shows the revised design of the page’s content.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 332

The transformations you applied rotated the figure boxes along a two-dimensional
or 2D space that consisted of a horizontal and vertical axis. CSS also supports
transformations that operate in a three-dimensional or 3D space.

Figure 4–49 Viewing the transformed figure boxes

box rotated 40°
counter-clockwise,
rescaled and shifted
up and to the right

box rotated 10°
clockwise, rescaled
and shifted up©imtmphoto/Shutterstock.com

IN
SI
G
H
T

Setting the Transformation Origin

By default, transformations originate in the center of the page object. When an object
is rotated, for example, it rotates the specified number of degrees around its horizontal
and vertical center. If you wish to rotate around a different point, such as the object’s
left edge or bottom-right corner, you can modify the transformation origin using the
following transform-origin property:

transform-origin: horizontal vertical;

where horizontal and vertical specify the location of the origin of the
transformation. For example, the following set of style rules used in conjunction will
rotate an object 30 degrees clockwise arounds its bottom-right corner:

transform: rotate(30deg);
transform-origin: right bottom;

You can explore the
transform-origin
property in the demo_
transform2d.html and
demo_transform2dm.html
files from the html04 c
demo folder.

TRY IT

Transformations in Three Dimensions
A 3D transformation is a change that involves three spatial axes: an x-axis that runs
horizontally across the page, a y-axis that runs vertically, and a z-axis that comes
straight out of the page toward and away from the viewer. Positive values along the
axes are to the right, down, and toward the reader; negative values are to the left, up,
and away from the reader (see Figure 4–50.)

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 333

For example the following style rotates the object 60° around the x-axis, making it appear
as if the top of the object is farther from the viewer and the bottom is closer to the viewer.

transform: rotateX(60deg);

To truly create the illusion of 3D space however, you also need to set the perspective
of that space.

Understanding Perspective
Perspective is a measure of how rapidly objects appear to recede from the viewer
in a 3D space. You can think of perspective in terms of a pair of railroad tracks that
appear to converge at a point, known as the vanishing point. A smaller perspective

View 3D rotations and
perspective values with the
demo_3dview.html file in
the html04 c demo folder.

TRY IT

Function Description
translate3d(offX, offY,
offZ)

Shifts the object offX pixels horizontally, offY pixels vertically, and
offZ pixels along the z-axis

translateX(offX)

translateY(offY)

translateZ(offZ)

Shifts the object offX, offY, or offZ pixels along the specified axis

rotate3d(x, y, z, angle) Rotates the object around the three-dimensional vector (x, y, z) at a
direction of angle

rotateX(angle)

rotateY(angle)

rotateZ(angle)

Rotates the object around the specified axis at a direction of angle

scale3d(x, y, z) Resizes the object by a factor of x horizontally, a factor of y
 vertically, and a factor of z along the z-axis

scaleX(x)

scaleY(y)

scaleZ(z)

Resizes the object by a factor of x, y, or z along the specified axis

perspective(p) Sets the size of the perspective effect to p

matrix3d(n, n, …, n) Applies a 3D transformation based on a matrix of 16 values

Figure 4–51 CSS 3D transformation functions

Figure 4–50 A page object viewed in 3D

y-axis—

—

—

+

+

+
x-axis

z-a
xis

© imtmphoto/Shutterstock.com

With the addition of a third spatial axis, you can create effects in which an object
appears to zoom toward and away from users, or to rotate in three dimensional space.
Figure 4–51 describes the 3D transformations supported by CSS.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 334

value causes the tracks to converge over an apparently shorter distance while a larger
perspective value causes the tracks to appear to go farther before converging.

You define the perspective of a 3D space using the perspective property

perspective: value;

where value is a positive value that measures the strength of the perspective effect
with lower values resulting in more extreme distortion. For example, the following style
rule sets the perspective of the space within the div element to 400 pixels.

div {
 perspective: 400px;
}

Any 3D transformations applied to children of that div element will assume
a perspective value of 400 pixels. Perspective can also be set for individual
transformations using the following perspective function:

transform: perspective(value);

Thus, the following style rule sets the perspective only for the figure1 figure box
within the div element as the figure box is rotated 60° around the x-axis.

div figure#figure1 {
 transform: perspective(400px) rotateX(60deg);
}

You use the perspective property when you have several transformed objects
within a container that all need to appear within the same 3D space with a common
perspective. You use the perspective function when you have only one object
that needs to be transformed in the 3D space. Figure 4–52 compares two different
perspective values for an object rotated 60° around the x-axis in 3D space.

Note that the smaller perspective value results in a more extreme distortion as the
top of the object appears to more quickly recede from the viewer while the bottom
appears to approach the viewer more rapidly.

Explore multiple 3D
transformations with the
demo_transform3dm.html
file in the html04 c demo
folder.

TRY IT

R
E
FE

R
E
N
C
E

Setting Perspective in 3D

• To set the perspective for a container and the objects it contains, use the property

perspective: value;

where value is a positive value that measures the strength of the perspective effect
with lower values resulting in more extreme distortion.

• To set the perspective of a single object or to set the perspective individually of
objects within a group of objects, use the perspective function

transform: perspective(value);

Figure 4–52 Transformations in three dimensions

transform: perspective(150px) rotateX(60deg); transform: perspective(300px)
rotateX(60deg);

© imtmphoto/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 335

To apply the 3D transformations:
w 1. Return to the tb_visual2.css file in your editor.

w 2. Directly after the Transformation Styles comment, insert the following style
rule to set the perspective of the 3D space of the article element.

article {
 perspective: 600px;
}

w 3. Next, insert the following style rule for the figure1 figure box to rotate it 30°
around the x-axis, shift it 50 pixels along the z-axis, and add a drop shadow.

figure#figure1 {
 transform: rotateX(30deg) translateZ(50px);
 box-shadow: rgb(51, 51, 51) 0px 10px 25px;
}

w 4. Add the following functions to the transform property for the figure2
figure box to rotate the box 30° around the z-axis and 60° around the y-axis:
rotateZ(30deg) rotateY(60deg)

w 5. Add the following functions to the transform property for the figure3
figure box to rotate the box counter-clockwise 70° around the y-axis and
shift it 20 pixels away from the user along the z-axis:
rotateY(-70deg) translateZ(-20px)

Figure 4–53 highlights the 3D transformations styles in the style sheet.

Figure 4–53 Applying 3D transformations

sets the perspective
of the article space
to 600 pixels

rotates the box 30°
around the z-axis and
60° around the y-axis

rotates the box 30°
around the x-axis
and shifts it forward
50 pixels along the
z-axis

rotates the box 70°
counter-clockwise
around the y-axis and
shifts it backward
20 pixels along the
z-axis

adds a box shadow
on the box’s bottom
border

Add a 3D transformation to each of the three figure boxes in the Genta Komatsu page,
making it appear that they have been rotated in three dimensional space along the x-, y-, and
z-axes, setting the perspective value to 600 pixels for all of the objects in the page article.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 336

You have only scratched the surface of what can be done using transformations.
For example, you can create a mirror image of an object by rotating it 180° around the
y-axis. You can create virtual 3D objects like cubes that can be viewed from any angle
or spun. You are only limited by your imagination.

Figure 4–54 Figure boxes in 3D space

image rotated 30°
around the z-axis
and 60° around the
y-axis

image rotated 30°
around the x-axis
and moved forward
50 pixels along the
z-axis

image rotated 70°
counter-clockwise
around the y-axis and
shifted backward 20
pixels along the z-axis

© imtmphoto/Shutterstock.com

w 6. Save your changes to the file and then reload tb_genta.html in your browser.
Figure 4–54 shows the result of applying 3D transformations to each of the
figure boxes on the page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 337

IN
SI
G
H
T

Managing a 3D Space

You might want to have several objects that coexist within the same 3D space. You can
do this by creating a container for all those objects, allowing them to share a common
3D perspective using the following transform-style property:

transform-style: type;

where type is either preserve-3d to preserve the 3D space for all nested elements
or flat to allow the nested elements to exist within their own separate 3D spaces. For
example, the following style rules will pass the same 3D space to all elements nested
within the container, including any value assigned to the perspective property.

#container {
 transform-style: preserve-3d;
}

An object in a 3D space is considered to have a front and a back. The default behavior
is to allow any text or images on the front to “bleed through” to the back (thus
appearing in reverse when the object is rotated around the x or y axes.) You can turn
off this feature setting the backface-visibility property to hidden, which prevents
text and images on the front face of the object from appearing on the back face.
Setting backface-visibility to visible restores the default.

Exploring CSS Filters
A final way to alter an object is through a CSS filter. Filters adjust how the browser
renders an image, a background, or a border by modifying the object’s color,
brightness, contrast, or general appearance. For example, a filter can be used to change
a color image to grayscale, increase the image’s color saturation, or add a blurring
effect. Filters are applied using the filter property

filter: effect(params);

where effect is a filter function and params are the parameters of the function.
Figure 4–55 describes the different filter functions supported by most current
browsers.

Explore managing multiple
objects within a 3D space
in the demo_preserve3d.
html, demo_cards.html,
and demo_cube.html files
from the html04 demo
folder.

TRY IT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 338

Function Description
blur(length) Applies a blur to the image where length defines the size of blur in pixels

brightness(value) Adjusts the brightness where values from 0 to 1 decrease the
 brightness and values greater than 1 increase the brightness

contrast(value) Adjusts the contrast where values from 0 to 1 decrease the contrast
and values greater than 1 increase the contrast

drop-shadow(offsetX
offsetY blur color)

Adds a drop shadow to the image where offsetX and offsetY are
horizontal and vertical distances of the shadow, blur is the shadow
blurring, and color is the shadow color

grayscale(value) Displays the image in grayscale from 0, leaving the image unchanged,
up to 1, displaying the image in complete grayscale

hue-rotate(angle) Adjusts the hue by angle in the color wheel where 0deg leaves the
hue unchanged, 180deg displays the complimentary colors and
360deg again leaves the hue unchanged

invert(value) Inverts the color from 0 (leaving the image unchanged), up to 1
(completely inverting the colors)

opacity(value) Applies transparency to the image from 0 (making the image
 transparent), up to 1 (leaving the image opaque)

saturate(value) Adjusts the color saturation where values from 0 to 1 decrease the
 saturation and values greater than 1 increase the saturation

sepia(value) Displays the color in a sepia tone from 0 (leaving the image
unchanged), up to 1 (image completely in sepia)

url(url) Loads an SVG filter file from url

Figure 4–55 CSS filter functions

Figure 4–56 shows the impact of some of the filter functions on a sample image.

Figure 4–56 CSS filter examples

�lter: none; �lter: sepia(0.8); �lter: saturate(2.5);

�lter: blur(3px); �lter: hue-rotate(60deg); �lter: invert(0.9);

©imtmphoto/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 339

Filter functions can be combined in a space-separated list to create new effects.
For example, the following style reduces the object’s color contrast and applies a
sepia tone.

filter: contrast(75%) sepia(100%);

With multiple filter effects, the effects are applied in the order they are listed. Thus, a
style in which the sepia effect is applied first followed by the contrast effect will result
in a different image than if the order is reversed.

Explore the CSS filter styles
with the demo_filter.html
file in the html04 c demo
folder.

TRY IT

R
E
FE

R
E
N
C
E

Applying a CSS Filter

• To apply a CSS filter to a page object, use the property

filter: effect(params);

where effect is a filter function and params are the parameters of the function.

Kevin wants you to apply filters to the photos in the Genta Komatsu page. He wants
a sepia tone applied to the first photo, a grayscale filter applied to the second photo,
and a color enhancement applied to the third photo.

To apply the CSS filters:
w 1. Return the tb_visual2.css file in your editor and go down to the Filter Styles

section.

w 2. Change the figure1 figure box to a sepia tone by adding the following
style rule:

figure#figure1 {
 filter: sepia(0.8);
}

w 3. Change the figure2 figure box to grayscale by adding the style rule:

figure#figure2 {
 filter: grayscale(1);
}

w 4. Increase the saturation and contrast for the figure3 figure box with the style
rule:

figure#figure3 {
 filter: saturate(1.5) contrast(1.2);
}

Figure 4–57 highlights the CSS filters added to the style sheet.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 340

w 5. Save your changes to the file and then reload tb_genta.html in your browser.
Figure 4–58 shows the final design of the Genta Komatsu page.

Figure 4–57 Applying the filter property

displays the
figure1 figure
box in sepia

provides more
cross-browser
support by adding
the WebKit
browser extension

increases the color
saturation and
contrast in the
figure3 figure box

displays the
figure2 figure
box in grayscale

Figure 4–58 Filters applied to the web page photos

grayscale

sepia tone

color saturation and
contrast increased

© imtmphoto/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 341

IN
SI
G
H
T

IN
SI
G
H
T

Box Shadows and Drop Shadows

You may wonder why you need a drop-shadow filter if you already have the
box-shadow property. While they both can be used to add shadowing to a page
object, one important difference is that the drop-shadow filter creates a shadow
that traces the shape of the object, while the box-shadow property always applies
a rectangular shadow. Another important difference is that you can only change the
size of a shadow using the box-shadow property. Thus, if you want to apply a drop
shadow around objects such as text or a circular shape, use the drop-shadow filter.
However, if you need to create an internal shadow or change the size of the drop
shadow shadow, use the box-shadow property.

You’ve completed your redesign of the Genta Komatsu page by adding
transformation and filter effects to make a more visually striking page. Kevin now wants
to return to the page for the Komatsu family. He wants you to edit the family portrait
on the page so that individual pages like the Genta Komatsu page can be accessed
by clicking the person’s face on the family portrait. You can create this effect using an
image map.

Working with Image Maps
When you mark an inline image as a hyperlink, the entire image is linked to the
same file; however, HTML also allows you to divide an image into different zones, or
hotspots, which can then be linked to different URLs through information provided
in an image map. HTML supports two kinds of image maps: client-side image maps
and server-side image maps. A client-side image map is an image map that is defined
within the web page and handled entirely by the web browser, while a server-side
image map relies on a program running on the web server to create and administer the
map. Generally client-side maps are easier to create and do not rely on a connection
to the server in order to run.

Defining a Client-Side Image Map
Client-side image maps are defined with the following map element

<map name="text">
 hotspots
</map>

where text is the name of the image map and hotspots are defined regions within
an image that are linked to different URLs. Client-side image maps can be placed
anywhere within the body of a web page because they are not actually displayed by
browsers but are simply used as references for mapping the locations of the hotspots
within the image. The most common practice is to place a map element below the
corresponding inline image.

Each hotspot within the map element is defined using the following area element:

<area shape="shape" coords="coordinates"
 href="url" alt="text" />

where shape is the shape of the hotspot region, coordinates are the list of points that
define the boundaries of that region, url is the URL of the hypertext link, and text is
alternate text displayed for non-graphical browsers.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 342

Hotspots can be created as rectangles, circles, or polygons (multisided figures)
using shape values of rect, circle, and poly respectively. A fourth possible shape
value, default, represents the remaining area of the inline image not covered by any
hotspots. There is no limit to the number of hotspots you can add to an image map.

For rectangular hotspots, the shape and coords attributes have the general form:

shape="rect" coords="left,top,right,bottom"

where left, top are the coordinates of the top-left corner of the rectangle and right,
bottom are the coordinates of the bottom-right corner. Coordinates for hotspot shapes
are measured in pixels and thus, the following attributes define a rectangular hotspot
with the left-top corner at the coordinates (100, 20) and the right-bottom corner at
(230, 220):

shape="rect" coords="100,20,230,220"

To determine the coordinates of a hotspot, you can use either a graphics program
such as Adobe Photoshop or image map software that automatically generates the
HTML code for the hotspots you define. Note that coordinates are always expressed
relative to the top-left corner of the image, regardless of the position of the image on
the page. For example, in Figure 4–59, the top-left corner of this rectangular hotspot is
100 pixels right of the image’s left border and 20 pixels down from the top border.

Do not overlap the
hotspots to avoid
 confusing the user
about which hotspot is
 associated with which URL.

Figure 4–59 Defining a rectangular hotspot

(230, 220)

shape=“rect” coords=“100,20,230,220”

(100, 20)

©imtmphoto/Shutterstock.com

Circular hotspots are defined using the attributes

shape="circle" coords="x,y,radius"

where x and y are the coordinates of the center of the circle and radius is the circle’s
radius. Figure 4–60 shows the coordinates for a circular hotspot where the center of the
circle is located at the coordinates (160, 130) with a radius of 105 pixels.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 343

Figure 4–60 Defining a circular hotspot

shape=“circle” coords=“160,130,105”

105 pixels

(160, 130)

©imtmphoto/Shutterstock.com

Polygonal hotspots have the attributes

shape="poly" coords="x1,y1,x2,y2,…"

where (x1, y1), (x2, y2), … set the coordinates of each vertex in the shape. Figure 4–61
shows the coordinates for a 5-sided polygon.

Figure 4–61 Defining a polygonal hotspot

(230, 194)(73, 194)

(160, 233)

shape=“poly” coords=“73,14,230,14,230,194,160,233,73,194”

(73, 14) (230, 14)

© imtmphoto/Shutterstock.com

To define the default hotspot for an image, create the following hotspot:

shape="default" coords="0,0,width,height"

where width is the width of the image in pixels and height is the image’s height.
Any region in the image that is not covered by another hotspot activates the default
hotspot link.

Default hotspots should
always be listed last.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 344

R
E
FE

R
E
N
C
E

Creating an Image Map

• To create an image map, use

<map name="text">
 hotspots
</map>

where text is the name of the image map and hotspots are the hotspots within the
image.

• To define each hotspot, use

<area shape="shape" coords="coordinates" href="url" alt="text" />

where shape is the shape of the hotspot region, coordinates list the points
defining the boundaries of the region, url is the URL of the hypertext link, and text
is alternate text that is displayed for non-graphical browsers.

• To define a rectangular hotspot, use the shape and attribute values

shape="rect" coords="left,top,right,bottom"

where left, top are the coordinates of the top-left corner of the rectangle and
right, bottom are the coordinates of the bottom-right corner.

• To define a circular hotspot, use

shape="circle" coords="x,y,radius"

where x and y are the coordinates of the center of the circle and radius is the circle’s
radius.

• To define a polygonal hotspot, use

shape="poly" coords="x1,y1,x2,y2,…"

where (x1, y1), (x2, y2), and so on provide the coordinates of each vertex in the
multisided shape.

• To define the default hotspot link, use

shape="default" coords="0,0,width,height"

where width and height is the width and height of the image.

Kevin has provided you with the coordinates for five rectangular hotspots to cover
the five faces on the Komatsu family portrait. Add an image map named “family_map”
to the tb_komatsu.html page with rectangular hotspots for each of the faces in the
family portrait.

To create an image map:
w 1. Open or return to the tb_komatsu.html file in your editor.

w 2. Directly below the figure box, insert the following HTML code:

<map name="family_map">
 <area shape="rect" coords="74,74,123,141"
 href="tb_ikko.html" alt="Ikko Komatsu" />
 <area shape="rect" coords="126,109,177,172"
 href="tb_mika.html" alt="Mika Komatsu" />
 <area shape="rect" coords="180,157,230,214"
 href="tb_hiroji.html" alt="Hiroji Komatsu" />

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 345

 <area shape="rect" coords="258,96,312,165"
 href="tb_genta.html" alt="Genta Komatsu" />
 <area shape="rect" coords="342,86,398,162"
 href="tb_suzuko.html" alt="Suzuko Komatsu" />
</map>

Figure 4–62 highlights the HTML code for the image map and hotspots.

Figure 4–62 Inserting an image map

name of the
image map

shape of
the hotspot

URL of the
hotspot link

alternate text
for the hotspot

coordinates of the
rectangular hotspot

w 3. Save your changes to the file.

With the image map defined, your next task is to apply that map to the image in the
figure box.

Applying an Image Map
To apply an image map to an image, you add the following usemap attribute to the img
element

where map is the name assigned to the image map within the current HTML file.

R
E
FE

R
E
N
C
E

Applying an Image Map

• To apply an image map to an image, add the usemap attribute to the img element

where map is the name assigned to the image map.

Apply the family_map image map to the figure box and then test it in your web
browser.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 346

To apply an image map:
w 1. Add the attribute usemap="#family_map" to the img element for the family

portrait.

Figure 4–63 highlights the code to apply the image map.

Figure 4–63 Applying an image map

Applies the family_map
image map to the image

w 2. Save your changes to the file and then reload tb_komatsu.html in your
browser.

w 3. Click the five faces in the family portrait and verify each face is linked to a
separate HTML file devoted to that individual. Use the link under the image
of each individual to return to the home page.

Kevin likes the addition of the image map and plans to use it on other photos in the
website.

PR
O
SK

IL
LS

Problem Solving: Image Maps with Flexible Layouts

Image maps are not easily applied to flexible layouts in which the size of the image
can change based on the size of the browser window. The problem is that, because
hotspot coordinates are expressed in pixels, they don’t resize and will not point to the
correct region of the image if the image is resized.

One way to deal with flexible layouts is to create hotspots using hypertext links that
are sized and positioned using relative units. The image and the hypertext links would
then be nested within a figure element as follows:

<figure class="map">

 …
</figure>

The figure box itself needs to be placed using relative or absolute positioning and the
image should occupy the entire figure box. Each hypertext link should be displayed as a
block with width and height defined using percentages instead of pixels and positioned
absolutely within the figure box, also using percentages for the coordinates. As the
figure box is resized under the flexible layout, the hotspots marked with the hypertext
links will automatically be resized and moved to match. The opacity of the hotspot
links should be set to 0 so that the links do not obscure the underlying image file. Even
though the hotspots will be transparent to the user, they will still act as hypertext links.

This approach is limited to rectangular hotspots. To create a flexible layout for
other shapes, you need to use a third-party add-in that automatically resizes the shape
based on the current size of the image.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 347

You’ve completed your work on the Komatsu Family pages for Tree and Book. Kevin
will incorporate your work and ideas with other family pages as he continues on the
site redesign. He’ll get back to you with more projects in the future. For now you can
close any open files or applications.

R
E
V
IE

W

Session 4.3 Quick Check

 1. Provide the transformation to shift a page object 5 pixels to the right and 10
pixels up.
a. transform: translate(5px, 10px);
b. transform: translate(5px, -10px);
c. transform: translate(-5px, -10px);
d. translate: -5px 10px;

 2. Provide the transformation to reduce the horizontal and vertical size of an
object by 50%.
a. scale: 0.5, 0.5;
b. transform: scale(0.5, 0.5);
c. transform: rescale(0.5, 0.5);
d. transform: resize(0.5, 0.5);

 3. Provide the transformation to rotate an object 30° counter-clockwise around
the x-axis.
a. transform: rotate(-30deg);
b. transform: rotate(30deg);
c. transform: rotateX(30deg);
d. transform: rotateX(-30deg);

 4. Provide the filter to increase the brightness of an object by 20%.
a. filter: brightness(20%);
b. filter: brightness(0.2);
c. filter: brightness(1.2);
d. brightness: 0.2;

 5. Provide the filter to decrease the contrast of an object by 30%.
a. filter: contrast(0.3);
b. filter: contrast(0.7);
c. filter: contrast(30%);
d. filter: contrast(-0.3);

 6. Provide the code to create a triangular hotspot with vertices at (200, 5), (300,
125), and (100, 125), linked to the info.html file.
a. <area type="poly" coords="200, 5, 300, 125, 100, 125"

href="info.html" />
b. <area type="triangle" coords="200, 5, 300, 125, 100, 125"

href="info.html" />
c. <area type="draw" coords="200, 5, 300, 125, 100, 125"

href="info.html" />
d. <area type="poly" coords="5, 200, 125, 300, 125, 100"

href="info.html" />
 7. Provide code to attach the logo.png image to the mapsites image map:

a.
b.
c.
d.

 8. Provide a style rule to transfer 3D space from a container element to its nested
elements.
a. transform-style: perspective;
b. preserve-3d: true;
c. transfer-style: preserve-3d;
d. transform-style: preserve-3d;

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 348

Coding Challenge 1

Data Files needed for this Coding Challenge: code4-1_txt.html, code4-1_back_txt.css,
code4-1.css, ws.png

Figure 4–64 shows a web page containing text from a Shakespearean sonnet. In this Coding
Challenge you will augment the text of the poem with background colors and images and add a
graphic border.

C
O

D
E

Figure 4–64 Coding Challenge 4-1 example page

Do the following:

 1. Open the code4-1_txt.html and code4-1_back_txt.css files from the html04 c code1 folder. Enter
your name and the date in each document and save the files as code4-1.html and
code4-1_back.css respectively.

 2. Go to the code4-1.html file in your editor. Within the head section insert a link element linking
the page to the code4-1_back.css style sheet file.

 3. Enclose the content of the sonnet within a figure element. At the top of the figure element insert
a figure caption containing the HTML code Sonnet 116 <cite>by William Shakespeare</cite>.

 4. Save your changes to the file and return to the code4-1_back.css file in your editor.
 5. Create a style rule for the figure element that:

a. Sets the padding space to 20 pixels.
b. Adds a 20-pixel border in the ridge style with the color value rgb(52, 52, 180).
c. Has a background consisting of the image file ws.png placed in the bottom right corner of the

figure box and set to 45% of the width of the figure box with no tiling. Be sure to separate the

So
ur

ce
: N

A
SA

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 349

position of the image and its size with the / character. Add a second background containing
the color rgba(52, 52, 180, 0.3). Enter both background properties within a single style rule
separated by a comma.

d. Has a black box shadow that is 5 pixels to the right, 10 pixels down with a blur size of 15
pixels.

 6. Create a style rule for the figure caption that:
a. Sets the font size to 1.8em.
b. Centers the text of the caption.
c. Adds a 2-pixel bottom solid bottom border of the color value rgb(52, 52, 180).

 7. Save your changes to the style sheet.
 8. Open the page in your browser and verify that the design resembles that shown in Figure 4–64.
 9. Submit the completed file to your instructor.

Figure 4–65 Coding Challenge 4-2 example page

Coding Challenge 2

Data Files needed for this Coding Challenge: code4-2_txt.html, code4-2_grad_txt.css,
code4-2.css, landscape.png

Figure 4–65 shows a web page containing text of a poem by Ella Wheeler Wilcox entitled “Dawn.”
To augment the poem, a background image containing a linear gradient has been added to the web
page. In addition, text shadows have been added to bring the text of the poem out of the page.

C
O

D
E

O
pe

nC
lip

A
rt

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 350

Complete the following:

 1. Open the code4-2_txt.html and code4-2_grad_txt.css files from the html04 c code2 folder.
Enter your name and the date in each document and save the files as code4-2.html and
code4-2_grads.css respectively.

 2. Go to the code4-2.html file in your editor. Within the head section insert a link element linking
the page to the code4-2_grad.css file. Save your changes to the file.

 3. Go to the code4-2_grad.css file. Create a style rule for h1 and h2 elements that adds a white text
shadow 2 pixels above and to the left of the text with a blur radius of 3 pixels.

 4. Create a style rule for paragraphs that adds a red text shadow 2 pixels down and to the right of
the text with a blur radius of 3 pixels.

 5. Create a style rule for the article element that adds a black inset box shadow with a
horizontal and vertical offset of 0 pixels, a blur radius of 50 pixels and a size of 20 pixels.

 6. Create a style rule for the article element that sets the radius of the border corners to 150
pixels.

 7. Create a style rule for the article element that adds the following multiple backgrounds:
a. A background containing the image file landscape.png placed with no tiling at the bottom

right corner of the element with a size of 100%.
b. A linear gradient at an angle of 165 degrees that goes from black to the color value rgb(0, 0,

200) with a color stop of 65%, to rgb(211, 0, 55) with a color stop of 75%, to orange with a
color stop of 80%, and finally to yellow with a color stop of 82%.

 8. Save your changes to the style sheet.
 9. Open the page in your browser and verify that the design resembles that shown in Figure 4–65.
 10. Submit the completed file to your instructor.

Coding Challenge 3

Data Files needed for this Coding Challenge: code4-3_txt.html, code4-3_cube_txt.css, code4-3.css,
image01.png - image05.png

Figure 4–66 shows a web page in which five faces of the cube are displayed in a 3D view. You can
create this effect using the CSS 3D transformation styles. The page also contains CSS styles for box
shadows and text shadows that you will have to add.

C
O

D
E

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 351

Complete the following to create the web page:

 1. Open the code4-3_txt.html and code4-3_cube_txt.css files from the html04 c code3 folder.
Enter your name and the date in each document and save the files as code4-3.html and
code4-3_cube.css respectively.

 2. Go to the code4-3.html file in your editor. Within the head section insert a link element that
links the page to the code4-3_cube.css style sheet file. Note that within the web page the five
images are contained with a div element with the ID value “cube”. The images are given ID
values of img1 through img5. Save your changes to the file.

 3. Go to the code4-3_cube.css file in your editor. Create a style rule for the h1 element that
changes the font color to white and adds a text shadow with horizontal and vertical offsets of 0
pixels, a blur radius of 20 pixels and a shadow color value of rgb(120, 85, 0).

 4. Create a style rule for a div element with the id “cube” that sets the perspective size of the 3D
space to 500 pixels. Use the transform-style property to preserve the 3D setting for the
children of this element so that the cube and its children exist in the same 3D space.

Figure 4–66 Coding Challenge 4-3 example page

So
ur

ce
: P

ub
lic

 D
om

ai
n

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 352

 5. For all img elements create a style rule that applies a sepia filter with a value of 1. Add a black
box shadow with horizontal and vertical offsets of 0 pixels and a blur radius of 20 pixels.

 6. Create the following style rules for the five image elements:
a. For the img1 image, translate the image -150 pixels along the z-axis.
b. For the img2 image, rotate the image 90 degrees around the x-axis and translate the image

-150 pixels along the z-axis.
c. For the img3 image, rotate the image -90 degrees around the y-axis and translate the image

150 pixels along the z-axis.
d. For the img4 image, rotate the image 90 degrees around the y-axis and translate the image

150 pixels along the z-axis.
e. For the img5 image, rotate the image -90 degrees around the x-axis and translate the image

-150 pixels along the z-axis.
 7. Save your changes to the style sheet.
 8. Open the page in your browser and verify that the design resembles that shown in Figure 4–66.
 9. Submit the completed file to your instructor.

Coding Challenge 4

Data Files needed for this Coding Challenge: code4-4_txt.html, debug4-4_txt.css, code4-4_.css,
Michelangelo.png

Figure 4–67 shows a completed web page that uses CSS design elements to enhance the appear-
ance of a poem by Walt Whitman. You’ve been given a copy of the files for this web page, but there
are several syntax errors in the CSS stylesheet. Use your knowledge of CSS to fix the stylesheet code
and complete the page.

D
E

B
U

G

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 353

Do the following:
 1. Open the code4-4_txt.html and debug4-4_txt.css files from the html04 c code4 folder. Enter

your name and the date in each document and save the files as code4-4.html and debug4-4.css
respectively.

 2. Go to the code4-4.html file in your editor. Within the head section insert a link element that
links the page to the code4-4_debug.css style sheet file. Study the contents of the file and then
save your changes.

 3. Go to the debug4-4.css file in your browser. The first style rule adds two text shadows to the h1
heading: a dark brown shadow and a white highlight. The shadows are not appearing in the web
page. Locate and fix the syntax error in this style rule.

 4. The next style rule was written to add a box shadow to the article element that has an offset
of 0 pixels in the horizontal and vertical directions, blur radius of 30 pixels and size value of 5
pixels. Fix the syntax errors in this style rule.

 5. The next style rule creates a border image for the article element using a linear gradient for
the image. Fix the syntax error in this style rule.

 6. The final style rule defines the background for the article element consisting of:
a. A radial gradient going from white circle located near the top left corner of the background,

to semi-transparent yellow, semi-transparent brown, and semi-transparent ochre,

Figure 4–67 Coding Challenge 4-4 example page

Walt Whitman; Source: Public Domain

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 354

b. A sketch by Michelangelo located in the lower right corner sized at 75% of the width of the
element, and

c. An ivory-colored background fill. There are several syntax errors in the code. Locate and fix
all of the errors.

 7. Save your changes and open the code4-4.html file in your browser. Verify that design of the page
resembles that shown in Figure 4–67.

 8. Submit the completed file to your instructor.

Review Assignments

Data Files needed for the Review Assignments: tb_ferris_txt.html, tb_kathleen_txt.html,
tb_visual3_txt.css, tb_visual4_txt.css, 3 CSS files, 1 HTML file, 10 PNG files, 1 TTF file, 1 WOFF file

Kevin wants you to work on another family page for the Tree and Book website. The page was created
for the Ferris family with content provided by Linda Ferris-White. Kevin is examining a new color
scheme and design style for the page. A preview of the design you’ll create is shown in Figure 4–68.

Figure 4–68 Ferris Family page

Source: Design Studio Pro; Source: Wikimedia Commons;
© Elzbieta Sekowska/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 355

All of the HTML content and the typographical and layout styles have already been created for
you. Your task will be to complete the work by writing the visual style sheet to incorporate Kevin’s
suggestions.

Complete the following:

 1. Use your HTML editor to open the tb_visual3_txt.css, tb_visual4_txt.css, tb_ferris_txt.html and
tb_kathleen_txt.html files from the html04 c review folder. Enter your name and the date in the
comment section of each file, and save them as tb_visual3.css, tb_visual4.css, tb_ferris.html,
and tb_kathleen.html respectively.

 2. Go to the tb_ferris.html file in your editor. Add links to the tb_base.css, tb_styles3.css, and
tb_visual3.css style sheets in the order listed.

 3. Scroll down and, within the main element header and after the h1 heading, insert a figure box
containing: a) the tb_ferris.png inline image with the alternate text Ferris Family using the image
map named portrait_map and b) a figure caption with the text Kathleen Ferris and daughter Linda
(1961).

 4. Directly below the figure box, create the portrait_map image map containing the following
hotspots: a) a rectangular hotspot pointing to the tb_kathleen.html file with the left-top coordinate
(10, 50) and the right-bottom coordinate (192, 223) and alternate text, “Kathleen Ferris” and b) a
circular hotspot pointing to the tb_linda.html file with a center point at (264, 108) and a radius of
80 pixels and the alternate text, Linda Ferris-White.

 5. Take some time to study the rest of the page content and structure and then save your changes to
the file.

 6. Go to the tb_visual3.css file in your editor. In this file, you’ll create the graphic design styles for
the page.

 7. Go to the HTML Styles section and create a style rule for the html element to use the image file
tb_back5.png as the background.

 8. Go to the Page Body Styles section and create a style rule for the body element that: a) adds a left
and right 3-pixel solid border with color value rgb(169, 130, 88), b) adds a box shadow to the right
border with a horizontal offset of 25 pixels, a vertical offset of 0 pixels and a 35-pixel blur and a
color value of rgb(53, 21, 0), and then adds the mirror images of this shadow to the left border.

 9. Go to the Main Styles section. Create a style rule for the main element that: a) applies the
tb_back7.png file as a background image with a size of 100% covering the entire background
with no tiling and positioned with respect to the padding box and b) adds two inset box
shadows, each with a 25-pixel blur and a color value of rgb(71, 71, 71), and then one with
offsets of –10 pixels in the horizontal and vertical direction and the other with horizontal and
vertical offsets of 10 pixels.

 10. Create a style rule for the h1 heading within the main header that adds the following two text
shadows: a) a shadow with the color value rgb(221, 221, 221) and offsets of 1 pixels and no blurring
and b) a shadow with the color value rgba(41, 41, 41, 0.9) and offsets of 5 pixels and a 20-pixel blur.

 11. Go to the Figure Box Styles section. Create a style rule for the figure element that sets the top/bottom
margin to 10 pixels and the left/right margin to auto. Set the width of the element to 70%.

 12. Next, you’ll modify the appearance of the figure box image. Create a style rule for the image
within the figure box that: a) sets the border width to 25 pixels, b) sets the border style to solid, c)
applies the tb_frame.png file as a border image with a slice size of 60 pixels stretched across the
sides, d) displays the image as a block with a width of 100%, and e) applies a sepia tone to the
image with a value of 80% (include the WebKit browser extension in your style sheet).

 13. Create a style rule for the figure caption that: a) displays the text using the font stack ‘Palatino
Linotype’, Palatino, ‘Times New Roman’, serif, b) sets the style to italic, c) sets the top/bottom
padding to 10 pixels and the left/right padding to 0 pixels, and d) centers the text.

 14. Go to the Article Styles section. Here you’ll create borders and backgrounds for the article that Linda
Ferris-White wrote about her mother. Create a style rule for the article element that: a) displays
the background image file tb_back6.png placed at the bottom-right corner of the element with a
size of 15% and no tiling, b) adds an 8-pixel double border with color value rgb(147, 116, 68) to
the right and bottom sides of the article element, c) creates a curved bottom-right corner with a

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 356

 17. Go to the tb_kathleen.html file in your editor and create links to the tb_base.css, tb_styles4.css,
and tb_visual4.css files. Study the contents of the file and then close it, saving your changes.

 18. Go to the tb_visual4.css file in your editor. Scroll down to the Transformation Styles section and
add a style rule for the article element to set the size of the perspective space to 800 pixels.

 19. Create a style rule for the figure1 figure box to translate it –120 pixels along the z-axis.
 20. Create a style rule for the figure2 figure box to translate it –20 pixels along the y-axis and rotate

it 50° around the y-axis.
 21. Create a style rule for the figure3 figure box to translate it –30 pixels along the y-axis and rotate

it –50° around the y-axis.

radius of 80 pixels, and d) adds an interior shadow with horizontal and vertical offsets of –10 pixels,
a 25-pixel blur, and a color value of rgba(184, 154, 112, 0.7).

 15. Kevin wants a gradient background for the page footer. Go to the Footer Styles section and create
a style rule for the footer that adds a linear gradient background with an angle of 325°, going
from the color value rgb(180, 148, 104) with a color stop at 20% of the gradient length to the
value rgb(40, 33, 23) with a color stop at 60%.

 16. Save your changes to the style sheet and then open tb_ferris.html in your browser. Verify that the
colors and designs resemble that shown in Figure 4–68.
Next, you will create the design styles for individual pages about Kathleen Ferris and Linda
Ferris-White. A preview of the content of the Kathleen Ferris page is shown in Figure 4–69.

Figure 4–69 Kathleen Ferris page

© Elzbieta Sekowska/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 357

 22. Go to the Filter Styles section to apply CSS filters to the page elements. Create a style rule for the
figure1 figure box that applies a saturation filter with a value of 1.3.

 23. Create a style rule for the figure2 figure box that sets the brightness to 0.8 and the contrast to 1.5.
 24. Create a style rule for the figure3 figure box that sets the hue rotation to 170°, the saturation to 3,

and the brightness to 1.5.
 25. Save your changes to the file and then return to the tb_ferris.html file in your browser. Verify that

you can display the individual pages for Kathleen Ferris and Linda Ferris-White by clicking on their
faces in the family portrait. Further verify that the appearance of the Kathleen Ferris page resembles
that shown in Figure 4–69. (Note: Use the link under the pictures to return to the home page.)

Case Problem 1

Data Files needed for this Case Problem: sf_torte_txt.html, sf_effects_txt.css, 2 CSS files, 9 PNG files

Save your Fork Amy Wu has asked for your help in redesigning her website, Save your Fork, a baking
site for people who want to share dessert recipes and learn about baking in general. She has prepared a
page containing a sample dessert recipe and links to other pages on the website. A preview of the page
you’ll create is shown in Figure 4–70.

© Mateusz Gzik/Shutterstock.com; © Jelly/Shutterstock.com; © Courtesy Patrick Carey

Figure 4–70 Save your Fork sample recipe page

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 358

Amy has already created a style sheet for the page layout and typography, so your work will be
focused on enhancing the page with graphic design styles.

Complete the following:
 1. Using your editor, open the sf_torte_txt.html and sf_effects_txt.css files from the html04 c case1

folder. Enter your name and the date in the comment section of each file, and save them as
sf_torte.html and sf_effects.css respectively.

 2. Go to the sf_torte.html file in your editor. Within the document head create links to the sf_base.
css, sf_layout.css, and sf_effects.css style sheet files in that order. Take some time to study the
structure of the document and then close the document, saving your changes.

 3. Go to the sf_effects.css file in your editor. Within the Body Header Styles section, create a style
rule for the body element to add drop shadows to the left and right border of the page body
with an offset of 10 pixels, a blur of 50 pixels, and the color rgb(51, 51, 51). Note that the right
border is a mirror image of the left border.

 4. Go to the Navigation Tabs List Styles section. Amy has created a navigation list with the class
name tabs that appears at the top of the page with the body header. Create a style rule for the
body > header nav.tabs selector that changes the background to the image file sf_back1.
png with no tiling, centered horizontally and vertically within the element and sized to cover the
entire navigation list.

 5. Amy wants the individual list items in the tabs navigation list to appear as tabs in a recipe box.
She wants each of these “tabs” to be trapezoidal in shape. To create this effect, you’ll create a
style rule for the body > header nav.tabs li selector that transforms the list item by setting
the perspective of its 3D space to 50 pixels and rotating it 20° around the x-axis.

 6. As users hover the mouse pointer over the navigation tabs, Amy wants a rollover effect in which
the tabs appear to come to the front. Create a style rule for the body > header nav.tabs li
selector that uses the pseudo-element hover that changes the background color to rgb(231,
231, 231).

 7. Go to the Left Section Styles section. Referring to Figure 4–70, notice that in the left section of
the page, Amy has placed two vertical navigation lists. She wants these navigation lists to have
rounded borders. For the vertical navigation lists in the left section, create a style rule for the
section#left nav.vertical selector that adds a 1-pixel solid border with color value
rgb(20, 167, 170) and has a radius of 25 pixels at each corner.

 8. The rounded corner also has to apply to the h1 heading within each navigation list. Create a
style rule for h1 elements nested within the left section vertical navigation list that sets the top-
left and top-right corner radii to 25 pixels.

 9. Go to the Center Article Styles section. The article element contains an image and brief
description of the Apple Bavarian Torte, which is the subject of this sample page. Create a style
rule for the section#center article selector that adds the following: a) a radial gradient
to the background with a white center with a color stop of 30% transitioning to rgb(151, 151,
151), b) a 1-pixel solid border with color value rgb(151, 151, 151) and a radius of 50 pixels,
and c) a box shadow with horizontal and vertical offsets of 10 pixels with a 20-pixel blur and
a color of rgb(51, 51, 51).

 10. Go to the Blockquote Styles section. Amy has included three sample reviews from users of the
Save your Fork website. Amy wants the text of these reviews to appear within the image of a
speech bubble. For every blockquote element, create a style rule that does the following: a)
sets the background image to the sf_speech.png file with no tiling and a horizontal and vertical
size of 100% to cover the entire block quote, and b) uses the drop-shadow filter to add a drop
shadow around the speech bubble with horizontal and vertical offsets of 5 pixels, a blur of 10
pixels and the color rgb(51, 51, 51).

 11. Amy has included the photo of each reviewer registered on the site within the citation for each
review. She wants these images to appear as circles rather than squares. To do this, create a style
rule for the selector cite img that sets the border radius to 50%.

 12. Save your changes to the style sheet file and then open sf_torte.html in your browser. Verify that
the design of your page matches that shown in Figure 4–70. Confirm that when you hover the
mouse over the navigation tabs the background color changes to match the page color.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 4 Graphic Design with CSS | HTML 5 and CSS HTML 359

Case Problem 2

Data Files needed for this Case Problem: cf_home_txt.html, cf_effects_txt.css, 2 CSS files, 7 PNG files

Chupacabra Music Festival Debra Kelly is the director of the website for the Chupacabra Music
Festival, which takes place every summer in San Antonio, Texas. Work is already underway on the
website design for the 15th annual festival and Debra has approached you to work on the design of
the home page.

Debra envisions a page that uses semi-transparent colors and 3D transformations to make an attractive
and eye-catching page. A preview of her completed design proposal is shown in Figure 4–71.

© Memo Angeles/Shutterstock.com; © Ivan Galashchuk/Shutterstock.com; © Andrey Armyagov/
Shutterstock.com; © Away/Shutterstock.com; Source: Facebook; Source: Twitter, Inc.

Figure 4–71 Chupacabra 15 home page

Debra has provided you with the HTML code and the layout and reset style sheets. Your job will be
to finish her work by inserting the graphic design styles.

Complete the following:
 1. Using your editor, open the cf_home_txt.html and cf_effects_txt.css files from the

html04 c case2 folder. Enter your name and the date in the comment section of each file, and
save them as cf_home.html and cf_effects.css respectively.

 2. Go to the cf_home.html file in your HTML editor. Within the document head, create a link to the
cf_reset.css, cf_layout.css, and cf_effects.css style sheets. Take some time to study the content and
structure of the document. Pay special note to the nested div elements in the center section of
the page; you will use these to create a 3D cube design. Close the file, saving your changes.

 3. Return to the cf_effects.css file in your editor and go to the HTML Styles section. Debra wants
a background displaying a scene from last year’s festival. Add a style rule for the html element
that displays the cf_back1.png as a fixed background, centered horizontally and vertically in the
browser window and covering the entire window.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 4 Graphic Design with CSSHTML 360

 4. Go to the Body Styles section and set the background color of the page body to rgba(255, 255,
255, 0.3).

 5. Go to the Body Header Styles section and change the background color of the body header to
rgba(51, 51, 51, 0.5).

 6. Debra has placed useful information for the festival in aside elements placed within the left and
right section elements. Go to the Aside Styles section and create a style rule for the section aside
selector that adds a 10-pixel double border with color rgba(92, 42, 8, 0.3) and a border radius of 30
pixels.

 7. Debra wants a curved border for every h1 heading within an aside element. For the selector section
aside h1, create a style rule that sets the border radius of the top-left and top-right corners to 30
pixels.

 8. Define the perspective of the 3D space for the left and right sections by creating a style rule for those
two sections that sets their perspective value to 450 pixels.

 9. Create a style rule that rotates the aside elements within the left section 25° around the y-axis. Create
another style rule that rotates the aside elements within the right section –25° around the y-axis.

 10. Go to the Cube Styles section. Here you’ll create the receding cube effect that appears
in the center of the page. The cube has been constructed by creating a div element with the id cube
containing five div elements belonging to the cube_face class with the ids
cube_bottom, cube_top, cube_left, cube_right, and cube_front. (There will be no back face for
this cube.) Currently the five faces are superimposed upon each other. To create the cube you have to
shift and rotate each face in 3D space so that they form the five faces of the cube. First, position the
cube on the page by creating a style rule for the div#cube selector containing the following styles:
a. Place the element using relative positioning.
b. Set the top margin to 180 pixels, the bottom margin to 150 pixels, and the left/right margins

to auto.
c. Set the width and height to 400 pixels.
d. Set the perspective of the space to 450 pixels.

 11. For each div element of the cube_face class, create a style rule that places the faces with absolute
positioning and sets their width and height to 400 pixels.

 12. Finally, you’ll construct the cube by positioning each of the five faces in 3D space so that
they form the shape of a cube. Add the following style rules for each of the five faces to transform their
appearance.
a. Translate the cube_front div element –50 pixels along the z-axis.
b. Translate the cube_left div element –200 pixels along the x-axis and rotate it 90° around the y-axis.
c. Translate the cube_right div element 200 pixels along the x-axis and rotate it

90° counter-clockwise around the y-axis.
d. Translate the cube_top div element –200 pixels along the y-axis and rotate it

90° counter-clockwise around the x-axis.
e. Translate the cube_bottom div element 200 pixels along the y-axis and rotate it 90° around the

x-axis.
 13. Save your changes to style sheet file and open cf_home.html in your browser. Verify that the layout of

your page matches Figure 4–71 including the center cube with the five faces of photos and text.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 361

OBJECTIVES

Session 5.1
• Create a media query
• Work with the browser

viewport
• Apply a responsive design
• Create a pulldown menu with

CSS

Session 5.2
• Create a flexbox
• Work with flex sizes
• Explore flexbox layouts

Session 5.3
• Create a print style sheet
• Work with page sizes
• Add and remove page breaks

Designing for the
Mobile Web
Creating a Mobile Website for a
Daycare Center

Case | Trusted Friends Daycare
Marjorie Kostas is the owner of Trusted Friends Daycare, an early
childhood education and care center located in Carmel, Indiana.
You’ve been hired to help work on the redesign of the company’s
website. Because many of her clients access the website from
their mobile phones, Marjorie is interested in improving the site’s
appearance on mobile devices. However, your design still has to
be compatible with tablet devices and desktop computers. Finally,
the site contains several pages that her clients will want to print, so
your design needs to meet the needs of printed media.

TUTORIAL 5

STARTING DATA FILES

HTML 361

tutorial

tf_articles_txt.html
tf_home_txt.html
tf_prek_txt.html
tf_flex_txt.css
tf_navicon_txt.css
tf_print_txt.css
tf_styles1_txt.css
+ 9 files

review

tf_tips_txt.html
tf_print2_txt.css
tf_styles4_txt.css
+ 6 files

code1

code5-1_txt.html
code5-1_media_txt.css
+ 3 files

code2

case1

code3

case2

code4

code5-2_txt.html
code5-2_flex_txt.css
+ 14 files

code5-3_txt.html
code5-3_print_txt.css
+ 2 files

html05

code5-4_txt.html
code5-4_debug_txt.css
+ 3 files

gp_cover_txt.html
gp_page1_txt.html
gp_page2_txt.html
gp_page3_txt.html
gp_layout_txt.css
gp_print_txt.css
+ 23 files

cw_home_txt.html
cw_styles_txt.css
+ 12 files

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 362

Session 5.1 Visual Overview:
This sets the
initial scale of the
viewport to 1.0.

The
tag is used to set the
properties of the
layout viewport.

This sets the width of
the layout viewport
equal to the width of
the visual viewport.

Responsive designs
should start with base
styles that apply to all
devices, followed by
mobile styles, tablet
styles, and then
desktop styles.

A media query is
used to apply
speci�ed style rules
to a device based on
the device type and
the device features.

Within a media query
are style rules that are
only applied to devices
that match the query.

This media query
matches screens
with a minimum
width of 481 pixels.

This media query
matches screens
with a maximum
width of 480 pixels.

This media query
matches screens
with a minimum
width of 769 pixels.

The viewport meta
tag is used to set the
properties of the
layout viewport.

© Robert Kneschke/Shutterstock.com; © dotshock/Shutterstock.com; BenBois/openclipart;
JMLevick/openclipart; Molumen/openclipart

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 363

Media Queries

Desktop styles are applied
once the screen width is
769 pixels and greater.

Mobile styles are
applied when the
screen width is 0
to 480 pixels.

Tablet styles are
applied once the
screen width
exceeds 480 pixels.

dotshock/Shutterstock.com; Robert Kneschke/Shutterstock.com; Jmlevick/openclipart; Easy/openclipart; BenBois/openclipart

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 364

Introducing Responsive Design
In the first four tutorials, you created a single set of layout and design styles for
your websites without considering what type of device would be rendering the site.
However, this is not always a practical approach and with many users increasingly
accessing the web through mobile devices, a web designer must take into
consideration the needs of those devices. Figure 5–1 presents some of the important
ways in which designing for the mobile experience differs from designing for the
desktop experience.

Figure 5–1 Designing for mobile and desktop devices

User Experience Mobile Desktop
Page Content Content should be short and to the

point.
Content can be extensive, giving
readers the opportunity to explore all
facets of the topic.

Page Layout Content should be laid out within
a single column with no horizontal
scrolling.

With a wider screen size, content can
be more easily laid out in multiple
columns.

Hypertext Links Links need to be easily accessed
via a touch interface.

Links can be activated more precisely
using a cursor or mouse pointer.

Network Bandwidth Sites tend to take longer to load
over cellular networks and thus
overall file size should be kept
small.

Sites are quickly accessed over high-
speed networks, which can more easily
handle large file sizes.

Lighting Pages need to be easily visible in
outdoor lighting through the use of
contrasting colors.

Pages are typically viewed in an office
setting, allowing a broader color
palette.

Device Tools Mobile sites often need access
to devices such as phone dialing,
messaging, mapping, and built-in
cameras and video.

Sites rarely have need to access
desktop devices.

Viewing a web page on a mobile device is a fundamentally different experience
than viewing the same web page on a desktop computer. As a result, these differences
need to be taken into account when designing a website. Figure 5–2 shows the current
home page of the Trusted Friends website as it appears on a mobile device.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 365

Notice that the mobile device has automatically zoomed out to display the complete
page width resulting in text that is difficult to read and small hypertext links that
are practically unusable with a touch interface. While the design might be fine for
a desktop monitor in landscape orientation, it’s clear that it is ill-suited to a mobile
device.

What this website requires is a design that is not only specifically tailored to the
needs of her mobile users but also is easily revised for tablet and desktop devices. This
can be accomplished with responsive design in which the design of the document
changes in response to the device rendering the page. An important leader in the
development of responsive design is Ethan Marcotte, who identified three primary
components of responsive design theory:

• flexible layout so that the page layout automatically adjusts to screens of different widths
• responsive images that rescale based on the size of the viewing device
• media queries that determine the properties of the device rendering the page so that

appropriate designs can be delivered to specific devices

In the preceding tutorials, you’ve seen how to create grid-based fluid layouts and
you’ve used images that scaled based on the width of the browser window and web
page. In this session, you’ll learn how to work with media queries in order to create a
truly responsive website design.

Introducing Media Queries
Media queries are used to associate a style sheet or style rule with a specific device or
list of device features. To create a media query within an HTML file, add the following
media attribute to either the link or style element in the document head

media="devices"

For more information
on the development of
responsive design, refer to
Responsive Web Design
by Ethan Marcotte (http://
alistapart.com/article/
responsive-web-design).

Figure 5–2 Trusted Friends home page displayed on a mobile device

the small text links are
dif�cult to activate
using touch

double column layout
reduces the size of the
page text within the
columns

empty space
indicates poor use of
the available screen

small article text is
dif�cult to read

© Robert Kneschke/Shutterstock.com; BenBois/openclipart

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 366

where devices is a comma-separated list of supported media types associated with a
specified style sheet. For example, the following link element accesses the output.css
style sheet file but only when the device is a printer or projection device:

<link href="output.css" media="print, projection" />

If any other device accesses this web page, it will not load the output.css style sheet
file. Figure 5–3 lists other possible media type values for the media attribute.

Figure 5–3 Media types

Media Type Used For
all All output devices (the default)

braille Braille tactile feedback devices

embossed Paged Braille printers

handheld Mobile devices with small screens and limited bandwidth

print Printers

projection Projectors

screen Computer screens

speech Speech and sound synthesizers, and aural browsers

tty Fixed-width devices such as teletype machines and terminals

tv Television-type devices with low resolution, color, and limited scrollability

When no media attribute is used, the style sheet is assumed to apply to all devices
accessing the web page.

The @media Rule
Media queries can also be used to associate specific style rules with specific devices by
including the following @media rule in a CSS style sheet file

@media devices {
 style rules
}

where devices are supported media types and style rules are the style rules
associated with those devices. For example, the following style sheet is broken into
three sections: an initial style rule that sets the font color of all h1 headings regardless
of device, a second section that sets the font size for h1 headings on screen or
television devices, and a third section that sets the font size for h1 headings that are
printed:

h1 {
 color: red;
}
@media screen, tv {
 h1 {font-size: 2em;}
}
@media print {
 h1 {font-size: 16pt;}
}

Note that in this style sheet, the font size for screen and television devices is expressed
using the relative em unit but the font size for print devices is expressed using points,
which is a more appropriate sizing unit for that medium.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 367

Finally, you can specify media devices when importing one style sheet into another
by adding the media type to the @import rule. Thus, the following CSS rule imports the
screen.css file only when a screen or projection device is being used:

@import url("screen.css") screen, projection;

The initial hope was that media queries could target mobile devices using the handheld
device type; however, as screen resolutions improved to the point where the cutoff
between mobile, tablet, laptop, and desktop was no longer clear, media queries began to
be based on what features a device supported and not on what the device was called.

Media Queries and Device Features
To target a device based on its features, you add the feature and its value to the media
attribute using the syntax:

media="devices and | or (feature:value)"

where feature is the name of a media feature and value is the feature’s value. The
and and or keywords are used to create media queries that involve different devices or
different features, or combinations of both.

The @media and @import rules employ similar syntax:

@media devices and|or (feature:value) {
 style rules
}

and

@import url(url) devices and|or (feature:value);

For example, the following media query applies the style rules only for screen devices
with a width of 320 pixels.

@media screen and (device-width: 320px) {
 style rules
}

Figure 5–4 provides a list of the device features supported by HTML and CSS.

Figure 5–4 Media features

Feature Description
aspect-ratio The ratio of the width of the display area to its height

color The number of bits per color component of the output device; if the
device does not support color, the value is 0

color-index The number of colors supported by the output device

device-aspect-ratio The ratio of the device-width value to the device-height value

device-height The height of the rendering surface of the output device

device-width The width of the rendering surface of the output device

height The height of the display area of the output device

monochrome The number of bits per pixel in the device’s monochrome frame buffer

orientation The general description of the aspect ratio: equal to portrait when
the height of the display area is greater than the width; equal to
landscape otherwise

resolution The resolution of the output device in pixels, expressed in either dpi
(dots per inch) or dpcm (dots per centimeter)

width The width of the display area of the output device

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 368

All of the media features in Figure 5–4, with the exception of orientation,
also accept min- and max- prefixes, where min- provides a minimum value for the
specified feature, and max- provides the feature’s maximum value. Thus, the following
media query applies style rules only for screen devices whose width is at most 700
pixels:

@media screen and (max-width: 700px) {
 style rules
}

Similarly, the following media query applies style rules only to screens that are at
least 400 pixels wide:

@media screen and (min-width: 400px) {
 style rules
}

You can combine multiple media features using logical operators such as and, not,
and or. The following query applies the enclosed styles to all media types but only
when the width of the output devices is between 320 and 480 pixels (inclusive):

@media all and (min-width: 320px) and (max-width: 480px) {
 style rules
}

Some media features are directed toward devices that do not have a particular
property or characteristic. This is done by applying the not operator, which negates
any features found in the expression. For example, the following query applies only to
media devices that are not screen or do not have a maximum width of 480 pixels:

@media not screen and (max-width: 480px) {
 style rules
}

For some features, you do not have to specify a value but merely indicate the
existence of the feature. The following query matches any screen device that also
supports color:

@media screen and (color) {
 style rules
}

Finally, for older browsers that do not support media queries, CSS provides the only
keyword to hide style sheets from those browsers. In the following code, older browsers
will interpret only as an unsupported device name and so will not apply the enclosed
style rules, while newer browsers will recognize the keyword and continue to apply the
style rules.

@media only screen and (color) {
 style rules
}

All current browsers support media queries, but you will still see the only keyword
used in many website style sheets.

If you specify a feature
without specifying a
device, the media query
will apply to all devices.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 369

Applying Media Queries to a Style Sheet
You meet with Marjorie to discuss her plans for the home page redesign. She envisions
three designs: one for mobile devices, a different design for tablets, and finally a design
for desktop devices based on the current appearance of the site’s home page (see
Figure 5–5).

Creating a Media Query

• To create a media query that matches a device in a link or style element within an
HTML file, use the following media attribute

media="devices and|or (feature:value)"

where devices is a comma-separated list of media types, feature is the name of a
media feature, and value is the feature’s value

• To create a media query, create the following @media rule within a CSS style sheet

@media devices and|or (feature:value) {
 style rules
}

where style rules are the style rules applied for the specified device and feature.
• To import a style sheet based on a media query, apply the following @import rule

within a CSS style sheet

@import url(url) devices and|or (feature:value);

R
E
FE

R
E
N
C
E

Figure 5–5 Trusted Friends home page for different screen widths

mobile

0px 480px 768px

tablet desktop

© Robert Kneschke/Shutterstock.com; © dotshock/Shutterstock.com; BenBois/openclipart; JMLevick/openclipart;
Easy/openclipart

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 370

The mobile design will be used for screen widths up to 480 pixels, the tablet design
will be used for widths ranging from 481 pixels to 768 pixels, and the desktop design
will be used for screen widths exceeding 768 pixels. To apply this approach, you’ll
create a style sheet having the following structure:

/* Base Styles */
 style rules

/* Mobile Styles */
@media only screen and (max-width: 480px) {
 style rules
}

/* Tablet Styles */
@media only screen and (min-width: 481px) {
 style rules
}

/* Desktop Styles */
@media only screen and (min-width: 769px) {
 style rules
}

Note that this style sheet applies the principle mobile first in which the overall page
design starts with base styles that apply to all devices followed by style rules specific
to mobile devices. Tablet styles are applied when the screen width is 481 pixels or
greater, and desktop styles build upon the tablet styles when the screen width exceeds
768 pixels. Thus, as your screen width increases, you add on more features or replace
features found in smaller devices. In general, with responsive design, it is easier to add
new styles through progressive enhancement than to replace styles.

Marjorie has supplied you with the HTML code and initial styles for her website’s
home page. Open her HTML file now.

To open the site’s home page:
w 1. Use your editor to open the tf_home_txt.html and tf_styles1_txt.css

files from the html05 c tutorial folder. Enter your name and the date in
the comment section of each file and save them as tf_home.html and
tf_styles1.css respectively.

w 2. Return to the tf_home.html file in your editor and, within the document
head, create links to the tf_reset.css and tf_styles1.css style sheet files.

w 3. Take some time to scroll through the contents of the document to become
familiar with its contents and structure and then save your changes to the file,
but do not close it.

Next, you’ll insert the structure for the responsive design styles in the tf_styles1.css
style sheet, adding sections for mobile, tablet, and desktop devices.

To add media queries to a style sheet:
w 1. Return to the tf_styles1.css file in your editor.

w 2. Marjorie has already inserted the base styles that will apply to all devices at
the top of the style sheet file. Take time to review those styles.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 371

w 3. Scroll to the bottom of the document and add the following code and
comments after the New Styles Added Below comment.

/* ==============================
 Mobile Styles: 0px to 480px
 ===============================
*/
@media only screen and (max-width: 480px) {

}

/* ================================
 Tablet Styles: 481px and greater
 ================================
*/
@media only screen and (min-width: 481px) {

}

/* =================================
 Desktop Styles: 769px and greater
 =================================
*/
@media only screen and (min-width: 769px) {

}

Figure 5–6 highlights the media queries in the style sheet file.

Figure 5–6 Creating media queries for different screen widths

media query matching
screen devices with a
maximum width of 480 pixels

media query matching
screen devices with a
minimum width of 481 pixels

media query matching
screen devices with a
minimum width 769 pixels

w 4. Save your changes to the file.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 372

The media queries you’ve written are based on the screen width. However, before
you can begin writing styles for each media query, you have to understand how those
width values are interpreted by your browser.

Exploring Viewports and Device Width
Web pages are viewed within a window called the viewport. For desktop computers,
the viewport is the same as the browser window; however, this is not the case with
mobile devices. Mobile devices have two types of viewports: a visual viewport
displaying the web page content that fits within a mobile screen and a layout viewport
containing the entire content of the page, some of which may be hidden from the user.

The two viewports exist in order to accommodate websites that have been written
with desktop computers in mind. A mobile device will automatically zoom out of a
page in order to give users the complete view of the page’s contents, but as shown
earlier in Figure 5–2, this often results in a view that is too small to be usable. While
the user can manually zoom into a page to make it readable within the visual viewport,
this is done at the expense of hiding content, as shown in Figure 5–7.

Figure 5–7 Comparing the visual and layout viewports

visual viewport

layout viewport

© Robert Kneschke/Shutterstock.com; BenBois/openclipart

Notice in the figure how the home page of the Trusted Friends website has been
zoomed in on a mobile device so that only part of the page is displayed within the
visual viewport and the rest of the page, which is hidden from the user, extends into the
layout viewport.

Widths in media queries are based on the width of the layout viewport, not the
visual viewport. Thus, depending on how the page is scaled, a width of 980 pixels
might match the physical width of the device as shown in Figure 5–2 or it might extend
beyond it as shown in Figure 5–7. In order to correctly base a media query on the

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 373

physical width of the device, you have to tell the browser that you want the width of
the layout viewport matched to the device width by adding the following meta element
to the HTML file:

<meta name="viewport" content="properties" />

where properties is a comma-separated list of viewport properties and their values,
as seen in the example that follows:

<meta name="viewport"
 content="width=device-width, initial-scale=1" />

In this meta element, the device-width keyword is used to set the width of the
layout viewport to the physical width of the device’s screen. For a mobile device,
this command sets the width of the layout viewport to the width of the device. The
line initial-scale=1 is added so that the browser doesn’t automatically zoom out
of the web page to fit the page content within the width of the screen. We want the
viewport to match the device width, which is what the above meta element tells the
browser to do.

Configuring the Layout Viewport

• To configure the properties of the layout viewport for use with media queries, add the
following meta element to the HTML file

<meta name="viewport" content="properties" />

where properties is a comma-separated list of viewport properties and their values.
• To size the layout viewport so that it matches the width of the device without

rescaling, use the following viewport meta element

<meta name="viewport"
content="width=device-width, initial-scale=1" />

R
E
FE

R
E
N
C
E

Add the viewport meta element to the tf_home.html file now, setting the width of the
layout viewport to match the device width and the initial scale to 1.

To define the visual viewport:
w 1. Return to the tf_home.html file in your editor.

w 2. Below the meta element that defines the character set, insert the following
HTML tag:

<meta name="viewport"
content="width=device-width, initial-scale=1" />

Figure 5–8 highlights the code for the viewport meta element.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 374

w 4. Save your changes to the file.

w 5. Open the tf_home.html file in your browser. Figure 5–9 shows the initial
design of the page.

Figure 5–8 Setting the properties of the viewport

sets the width of the
layout viewport to the
width of the device

page does not
automatically zoom
out when the page
is initially opened
by the browser

Figure 5–9 Mobile layout of the Trusted Friends home page

footer

company
logo

navigation
menu

main article

aside
comments

submenu

submenu title

© Robert Kneschke/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 375

Now that you’ve set up the media queries and configured the viewport, you can
work on the design of the home page. You’ll start by designing for mobile devices.

IN
SI
G
H
T

Not All Pixels Are Equal

While pixels are a basic unit of measurement in web design, there are actually two
types of pixels to consider as you design a website. One is a device pixel, which
refers to the actual physical pixel on a screen. The other is a CSS pixel, which is the
fundamental unit in CSS measurements. The difference between device pixels and
CSS pixels is easiest to understand when you zoom into and out of a web page. For
example, the following style creates an aside element that is 300 CSS pixels wide:

aside: {width: 300px;}

However, the element is not necessarily 300 device pixels. If the user zooms into
the web page, the apparent size of the article increases as measured by device pixels
but remains 300 CSS pixels wide, resulting in 1 CSS pixel being represented by several
device pixels.

The number of device pixels matched to a single CSS pixel is known as the device-
pixel ratio. When a page is zoomed at a factor of 2x, the device-pixel ratio is 2, with a
single CSS pixel represented by a 2×2 square of device pixels.

One area where the difference between device pixels and CSS pixels becomes
important is in the development of websites optimized for displays with high device-
pixel ratios. Some mobile devices are capable of displaying images with a device
pixel ratio of 3, resulting in free crisp and clear images. Designers can optimize their
websites for these devices by creating one set of style sheets for low-resolution displays
and another for high-resolution displays. The high-resolution style sheet would load
extremely detailed, high-resolution images, while the low-resolution style sheet would
load lower resolution images better suited to devices that are limited to smaller device-
pixel ratios. For example, the following media query

<link href="retina.css" rel="stylesheet"
media="only screen and (-webkit-min-device-pixel-ratio: 2) " />

loads the retina.css style sheet file for high-resolution screen devices that have device-
pixel ratios of at least 2. Note that currently the device-pixel-ratio feature is a
browser-specific extension supported only by WebKit.

Creating a Mobile Design
A mobile website design should reflect how users interact with their mobile devices.
Because your users will be working with a small handheld touchscreen device, one
key component in your design is to have the most important information up-front and
easily accessible, which means your home page on a mobile device needs to be free of
unnecessary clutter. Another important principle of designing for mobile devices is that
you should limit the choices you offer to your users. Ideally, there should only be a few
navigation links on the screen at any one time.

With these principles in mind, consider the current layout of the Trusted Friends
home page shown in Figure 5–9. The content is arranged within a single column
providing the maximum width for the text and images, but an area of concern for
Marjorie is the long list of hypertext links, which forces the user to scroll vertically
down the page to view information about the center. Most mobile websites deal with
this issue by hiding extensive lists of links in pulldown menus, appearing only in
response to a tap of a major heading in the navigation list. You’ll use this technique for
the Trusted Friends home page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 376

Creating a Pulldown Menu with CSS
Marjorie has already laid the foundation for creating a pulldown menu in her HTML
code. Figure 5–10 shows the code used to mark the contents of the navigation list in
the body header.

Figure 5–10 Submenus in the navigation list

nested submenu
lists associated with
submenu titles

submenu titles

Marjorie has created a navigation bar that includes topical areas named Classes,
Parents, and About Us. Within each of these topical areas are nested lists containing
links to specific pages on the Trusted Friends website. Marjorie has put each of these
nested lists within a class named submenu. So, first you’ll hide each of these submenus
to reduce the length of the navigation list as it is rendered within the user’s browser.
You’ll place this style rule in the section for Base Styles because it will be used by both
mobile and tablet devices (but not by desktop devices as you’ll see later).

To hide a submenu:
w 1. Return to the tf_styles1.css file in your editor.

w 2. Scroll to the Pulldown Menu Styles section and add the following style rule:

ul.submenu {
 display: none;
}

Figure 5–11 highlights the styles to hide the navigation list submenus.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 377

Next, you want to display a nested submenu only when the user hovers the mouse
pointer over its associated submenu title, which for this page are the Classes, Parents,
and About Us titles. Because the submenu follows the submenu title in the HTML file
(see Figure 5–10), you can use the following selector to select the submenu that is
immediately preceded by a hovered submenu title:

a.submenuTitle:hover+ul.submenu

However, this selector is not enough because you want the submenu to remain visible
as the pointer moves away from the title and hovers over the now-visible submenu. So,
you need to add ul.submenu:hover to the selector:

a.submenuTitle:hover+ul.submenu, ul.submenu:hover

Figure 5–11 Hiding the navigation list submenus

prevents the submenu
unordered lists from
being displayed

w 3. Save your changes to the file and then reload the tf_home.html file in your
browser. Verify that the navigation list no longer shows the contents of the
submenus but only the Home, Classes, Parents, About Us, and Contact Us
links. See Figure 5–12.

Figure 5–12 Navigation list with hidden submenus

submenu lists
are hidden

© Robert Kneschke/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 378

To make the submenu visible, you change its display property back to block, resulting
in the following style rule:

a.submenuTitle:hover+ul.submenu, ul.submenu:hover {
 display: block;
}

You may wonder why you don’t use only the ul.submenu:hover selector. The
reason is that you can’t hover over the submenu until it’s visible and it won’t be visible
until you first hover over the submenu title. Add this rule now to the tf_styles1.css style
sheet and test it.

To redisplay the navigation submenus:
w 1. Return to the tf_styles1.css file in your editor.

w 2. Add the following style rule to the Pulldown Menu Styles section:

a.submenuTitle:hover+ul.submenu, ul.submenu:hover {
 display: block;
}

Figure 5–13 highlights the styles to display the navigation list submenus.

Figure 5–13 Displaying the hidden submenus

selects the submenu that is
preceded by a hovered-over
submenu title

selects the now-visible
submenu as it’s being
hovered over

makes the submenu visible
by changing the display
property to block

w 3. Save your changes to the file and then reload the tf_home.html file in your
browser. Hover your mouse pointer over each of the submenu titles and
verify that the corresponding submenu becomes visible and remains visible
as you move the mouse pointer over its contents.

Figure 5–14 shows the revised appearance of the navigation list using the
pulldown menus.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 379

The hover event is used with mouse pointers on desktop computers, but it has a
different interpretation when applied to mobile devices. Because almost all mobile
devices operate via a touch interface, there is no hovering. A mobile browser will
interpret a hover event as a tap event in which the user taps the page object. When
the hover event is used to hide an object or display it (as we did with the submenus),
mobile browsers employ a double-tap event in which the first tap displays the page
object and a second tap, immediately after the first, activates any hypertext links
associated with the object. To display the Trusted Friends submenus, the user would tap
the submenu title and to hide the submenus the user would tap elsewhere on the page.

To test the hover action, you need to view the Trusted Friends page on a mobile
device or a mobile emulator.

Testing Your Mobile Website
The best way to test a mobile interface is to view it directly on a mobile device.
However, given the large number of mobile devices and device versions, it’s usually not
practical to do direct testing on all devices. An alternative to having the physical device
is to emulate it through a software program or an online testing service. Almost every
mobile phone company provides a software development kit or SDK that developers
can use to test their programs and websites. Figure 5–15 lists some of the many mobile
device emulators available on the web at the time of this writing.

Figure 5–14 Displaying the contents of a pulldown menu

hovering over the
submenu title displays
the corresponding
submenu list

© Robert Kneschke/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 380

Browsers are also starting to include device emulators as part of their developer
tools. You will examine the device emulator that is supplied with the Google Chrome
browser and use it to view the Trusted Friends home page under a device of your
choosing. If you don’t have access to the Google Chrome browser, review the steps that
follow and apply them to the emulator of your choice.

Figure 5–15 Popular device emulators

Mobile Emulator Description
Android SDK Software development kit for Android developers

(developer.android.com/sdk)

iOS SDK Software development kit for iPhone, iPad, and other iOS devices
(developer.apple.com)

Mobile Phone Emulator Online emulation for a variety of mobile devices
(www.mobilephoneemulator.com)

Mobile Test Me Online emulation for a variety of mobile devices (mobiletest.me)

Opera Mobile SDK Developer tools for the Opera Mobile browser
(www.opera.com/developer)

Viewing the Google Chrome device emulator:
w 1. Return to the tf_home.html file in the Google Chrome browser and press

F12 to open the developer tools pane.

w 2. If necessary, click the device icon located at the top of the developer
pane to display the device toolbar.

w 3. Select a device of your choosing from the drop-down list of devices on the
developer toolbar.

w 4. Refresh or reload the web page to ensure that the display parameters of your
selected device are applied to the rendered page.

The emulator also allows you to view the effect of changing the orientation of
the phone from portrait to landscape.

w 5. Click the rotate button located on the device toolbar to switch to
landscape orientation. Click the rotate button again to switch back to
portrait mode.

Google Chrome’s device emulator can also emulate the touch action. The
touch point is represented by a semitransparent circle .

w 6. Move the touch point over Classes, Parents, or About Us and verify that
when you click (tap) the touch point on a submenu title the nested submenu
contents are displayed.

w 7. Verify that you when you click elsewhere in the page the submenu contents
are hidden.

Figure 5–16 shows the effect of opening a submenu with the touch emulator.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 381

An important aspect of mobile design is optimizing your site’s performance under
varying network conditions. Thus, in addition to emulating the properties of the mobile
device, Google Chrome’s device emulator can also emulate network connectivity.

Marjorie wants to increase the font size of the links in the navigation list to make
them easier to access using touch. She also wants to hide the customer comments that
have been placed in the aside element (because she doesn’t feel this will be of interest
to mobile users). Because these changes only apply to the mobile device version of the
page, you’ll add the style rules within the media query for mobile devices.

Figure 5–16 Using the Google Chrome device emulator tool

media device
ranges

select the
mobile device

device width and
height in pixels

click to change the
device orientation

click to display the
device emulator

touch emulation
shows up as a
blurred circle

© Robert Kneschke/Shutterstock.com

w 8. Continue to explore Google Chrome’s device emulators, trying out different
combinations of devices and screen orientations. Press F12 again to close
the developer window.

To hide the customer comments:
w 1. Return to the tf_styles1.css file in your editor and go to the Mobile Styles

section.

w 2. Within the media query for screen devices with a maximum width of 480 pix-
els, add the following style rule to increase the font size of the hypertext links
in the navigation list. Indent the style rule to offset it from the braces around
the media query.

nav.horizontal a {
 font-size: 1.5em;
 line-height: 2.2em;
}

The styles rules for a media
query must always be
placed within curly braces
to define the extent of the
query.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 382

w 3. Add the following style rule to hide the aside element (once again indented
from the surrounding media query):

aside {
 display: none;
}

Figure 5–17 highlights the style rules in the media query for mobile devices.

Figure 5–17 Hiding the aside element for mobile devices

hides the aside
element

increases the size
of the navigation
links

closing curly brace
for the media query

applies the style rules only
for screen devices with a
maximum width of 480 pixels

opening curly
brace for the
media query

w 4. Save your changes to the file and then reload the tf_home.html file in your
browser. Reduce the width of the browser window to 480 pixels or below (or
view the page in your mobile emulator). Verify that the customer comments
are no longer displayed on the web page and that the size of the navigation
links has been increased.

Figure 5–18 shows the final design of the mobile version.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 383

Now that you’ve completed the mobile design of the page, you’ll start to work on
the design for tablet devices.

Creating a Tablet Design
Under the media query you’ve set up, your design for tablet devices will be applied for
screen widths greater than 480 pixels. The pulldown menu you created was part of the
base styles, so it is already part of the tablet design; however, with the wider screen,
Marjorie would like the submenus displayed horizontally rather than vertically. You can
accomplish this by adding a style rule to the tablet media query to float the submenus
side-by-side.

Figure 5–18 Final design of the mobile version of the home page

increased font size
in the navigation list

customer comments
not displayed in the
mobile version

To begin writing the tablet design:
w 1. Return to the tf_styles1.css file in your editor and scroll down to the media

query for the tablet styles.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 384

w 2. Within the media query, add the following style to float the five list items,
which are direct children of the main menu, side-by-side. Set the width of
each list item to 20% of the total width of the main menu.

ul.mainmenu > li {
float: left;
width: 20%;
}

w 3. Double the widths of the submenus so that they stand out better from the
main menu titles by adding the following style rule.

ul.submenu {
width: 200%;
}

Figure 5–19 highlights the style rule within the media query for tablet
devices.

Figure 5–19 Formatting the navigation menus for tablet devices

�oats the menu list items
horizontally with a width
of 20% of the main menu

doubles the width of
each submenu

w 4. Save your changes to the style sheet and then reload the tf_home.html file in
your web browser.

w 5. Increase the width of the browser window beyond 480 pixels to switch from
the mobile design to the tablet design. Verify that the submenu titles are
now laid out horizontally and that if you hover your mouse pointer over the
submenu titles, the contents of the submenu are made visible on the screen.
See Figure 5–20.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 385

Marjorie notices that opening the submenus pushes the subsequent page content
down to make room for the submenu. She prefers the submenus to overlay the page
content. You can accomplish this by placing the submenus with absolute positioning.
Remember that objects placed with absolute positioning are removed from the
document flow and thus, will overlay subsequent page content. To keep the submenus
in their current position on the page, you’ll make each main list item a container for its
submenu by setting its position property to relative. Thus, each submenu will be
placed using absolute positioning with its main list item. You will not need to set the top
and left coordinates for these items because you’ll use the default value of 0 for both.
Because the submenus will overlay page content, Marjorie suggests you add a drop
shadow so, when a submenu is opened, it will stand out more from the page content.

Figure 5–20 Pulldown menus for the tablet layout

menu items �oated
side-by-side

opening the
submenu pushes the
subsequent page
content down

width of the submenu
is double the width of
the submenu title

pulldown menu appears
when the user hovers the
mouse pointer over the
submenu title

© Robert Kneschke/Shutterstock.com;

w 6. Scroll down as needed and note that the customer comments now appear
at the bottom of the page because they were only hidden for the mobile
version of this document.

To position the navigation submenus:
w 1. Return to the tf_styles1.css style sheet in your editor.

w 2. Locate the style rule for the ul.mainmenu > li selector in the Tablet Styles
section and add the following style:

position: relative;

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 386

w 3. Add the following style to the ul.submenu selector in the Tablet Styles
section:

box-shadow: rgb(51, 51, 51) 5px 5px 15px;
position: absolute;

Figure 5–21 highlights the new styles.

Figure 5–21 Placing the pulldown menus with absolute positioning

applies the style rules only
for screen devices with a
minimum width of 481 pixels

places the menu list
items using relative
positioning

absolutely positions
the submenus within
each menu list item

adds a drop shadow
to each submenu

w 4. Save your changes to the style sheet and then reload the tf_home.html file in
your web browser.

w 5. Verify that when you open the pulldown menus, the subsequent page
content is not shifted downward. Figure 5–22 highlights the final design for
the tablet version of the home page.

page content does
not shift when the
pulldown menu is
opened

Figure 5–22 Revised design of the pulldown menus

© Robert Kneschke/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 387

You’ll complete your work on the home page by creating the desktop version of the
page design.

Creating a Desktop Design
Some of the designs that will be used in the desktop version of the page have already
been placed in the Base Styles section of the tf_styles1.css style sheet. For example, the
maximum width of the web page has been set to 1024 pixels. For browser windows
that exceed that width, the web page will be displayed on a fixed background image of
children playing. Other styles are inherited from the style rules for tablet devices. For
example, desktop devices will inherit the style rule that floats the navigation submenus
alongside each other within a single row. All of which illustrates an important principle
in designing for multiple devices: don’t reinvent the wheel. As much as possible allow
your styles to build upon each other as you move to wider and wider screens.

However, there are some styles that you will have to implement only for desktop
devices. With the wider screen desktop screens, you don’t need to hide the submenus
in a pulldown menu system. Instead you can display all of the links from the navigation
list. You’ll change the submenu background color to transparent so that it blends in
with the navigation list and you’ll remove the drop shadows you created for the tablet
design. The submenus will always be visible, so you’ll change their display property
from none to block. Finally, you’ll change their position to relative because you no
longer want to take the submenus out of the document flow and you’ll change their
width to 100%. Apply the styles now to modify the appearance of the submenus.

To start working on the desktop design:
w 1. Return to the tf_styles1.css style sheet in your editor and within the media

query for devices with screen widths 769 pixels or greater insert the following
style rule to format the appearance of the navigation submenus.

ul.submenu {
 background: transparent;
 box-shadow: none;
 display: block;
 position: relative;
 width: 100%;
}

w 2. The navigation list itself needs to expand so that it contains all of its floated
content. Add the following style rule to the media query for desktop devices:

nav.horizontal::after {
 clear: both;
 content: "";
 display: table;
}

w 3. Finally with no hidden submenus, there is no reason to have a submenu title.
Add the following style rule to remove the submenu titles:

nav.horizontal a.submenuTitle {
 display: none;
}

Figure 5–23 highlights the new style rules in the desktop media query.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 388

With a wider screen, you want to order to avoid long lines of text, which are difficult
to read. Modify the layout of the desktop design so that the main article and the
customer comments are floated side-by-side within the same row.

Figure 5–23 Adding design styles for the browser background and page body

applies the style rules only
for screen devices with a
minimum width of 769 pixels

expands the
navigation list
to contain all
�oated lists

sets the width of
the submenus
to 100% places the

submenus
with relative
positioning

makes submenu
backgrounds
transparent

makes submenus
always visible

removes the
drop shadows

hides the
submenu titles

To change the layout of the article and aside elements:
w 1. Within the media query for desktop devices, add the following style rules to

float the article and aside elements:

article {
 float: left;
 margin-right: 5%;
 width: 55%;
}
aside {
 float: left;
 width: 40%;
}

Figure 5–24 highlights the final style rules in the desktop media query.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 389

w 3. Resize your web browser and verify that as you change the browser window
width, the layout changes from the mobile to the tablet to the desktop
design.

Figure 5–24 Styles for the article and aside elements

�oats the main article
with a width of 55% and
a right margin of 5%

�oats the aside element
with a width of 40%

w 2. Save your changes to the style sheet and then reload tf_home.html in your
browser.

Figure 5–25 shows the final appearance of the desktop design.

Figure 5–25 Final desktop design for the Trusted Friends home page

navigation list expands to
contain �oated content

submenus are laid
out horizontally
and are always
visible

article and aside
elements are
arranged in two
columns

© Robert Kneschke/Shutterstock.com; © dotshock/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 390

You show the final design of the home page to Marjorie. She is pleased by the
changes you’ve made and likes that the page’s content and layout will automatically
adapt to different screen widths.

PR
O
SK

IL
LS

Problem Solving: Optimizing Your Site for the Mobile Web

The mobile browser market is a rapidly evolving and growing field with more new
devices and apps introduced each month. Adapting your website for the mobile web
is not a luxury, but a necessity.

A good mobile design matches the needs of consumers. Mobile users need quick
access to main sources of information without a lot of the extra material often found
in the desktop versions of their favorite sites. Here are some things to keep in mind as
you create your mobile designs:

• Keep it simple. To accommodate the smaller screen sizes and slower connection
speeds, scale down each page to a few key items and articles. Users are looking for
quick and obvious information from their mobile sites.

• Resize your images. Downloading several images can bring a mobile device to a
crawl. Reduce the number of images in your mobile design, and use a graphics
package to resize the images so they are optimized in quality and sized for a smaller
screen.

• Scroll vertically. Readers can more easily read your page when they only have to
scroll vertically. Limit yourself to one column of information in portrait orientation
and two columns in landscape.

• Make your links accessible. Clicking a small hypertext link is extremely difficult to
do on a mobile device with a touch screen interface. Create hypertext links that are
easy to locate and activate.

Above all, test your site on a variety of devices and under different conditions.
Mobile devices vary greatly in size, shape, and capability. What works on one device
might fail utterly on another. Testing your code on a desktop computer is only the first
step; you may also need access to the devices themselves. Even emulators cannot
always capture the nuances involved in the performance of an actual mobile device.

You’ve completed your work on the design of the Trusted Friends home page with
a style sheet that seamlessly transitions between mobile, tablet, and desktop devices.
In the next session, you’ll explore how to use flexible boxes to achieve a responsive
design.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 391

R
E
V
IE

W

Session 5.1 Quick Check

 1. Which of the following is not a part of responsive design theory?
a. flexible layouts
b. pulldown menus
c. image rescaling
d. media queries

 2. Which attribute do you add to a link element for aural browsers?
a. media = "aural"
b. type = "aural"
c. media = "speech"
d. type = "speech"

 3. What @rule do you use for braille device?
a. @media braille
b. @braille true
c. @type braille
d. @media nonscreen

 4. What @rule loads style rules for screen devices up to a maximum width of
780 pixels?
a. @screen: 780px
b. @media screen and (width: 780px)
c. @screen and (width <= 780px)
d. @media screen and (max-width: 780px)

 5. What attribute would you add to a link element for screen devices whose
width ranges from 480 pixels up to 780 pixels (inclusive)?
a. media="screen" min-width="480px" min-width="480px"
b. media="screen and (width=480px - 780px)"
c. minScreenWidth = "480px" maxScreenWidth = "780px"
d. media="screen and (min-width: 480px and max-width: 780px)"

 6. In general, what media rules should be listed first in your media queries if you
want to support mobile, tablet, laptop, and desktop devices?
a. mobile
b. tablet
c. laptop
d. desktop

 7. Which viewport displays the web page content that fits within mobile screen?
a. layout
b. visual
c. webpage
d. browser

 8. Which viewport contains the entire content of the page, some of which may be
hidden from the user?
a. layout
b. visual
c. webpage
d. browser

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 392

Session 5.2 Visual Overview:
A �exbox contains items
whose size automatically
expands or contracts to match
the dimensions of the box.

The �ex-basis value
provides the basis or
initial size of the item
prior to �exing.

The �ex-shrink value
speci�es how fast the
item shrinks below its
basis size relative to
other items in the
�exbox.

The �ex-grow value
speci�es how fast the
item grows above its
basis size relative to
other items in the
�exbox.

To de�ne the
orientation of the
�exbox and whether
items can wrap to a
new line, apply the
flex-flow property.

Use the flex property
to de�ne the size of
the �ex items and
how they will grow or
shrink in response to
the changing size of
the �exbox.

To create a �exbox, set
the display property
to �ex.

© dotshock/Shutterstock.com; BenBois/openclipart; JMLevick/openclipart

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 393

Flexible Layouts

With narrower
screens, a �exbox
layout automatically
places items within
a single column.

With wider screens,
the items are free to
expand, automatically
placing themselves
into multiple columns.B

en
B

oi
s/

op
en

cl
ip

ar
t

Jm
le

vi
ck

/o
p

en
cl

ip
ar

t

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 394

Introducing Flexible Boxes
So far our layouts have been limited to a grid system involving floating elements
contained within a fixed or fluid grid of rows and columns. One of the challenges
of this approach under responsive design is that you need to establish a different
grid layout for each class of screen size. It would be much easier to have a single
specification that automatically adapts itself to the screen width without requiring a
new layout design. One way of achieving this is with flexible boxes.

Defining a Flexible Box
A flexible box or flexbox is a box containing items whose sizes can shrink or grow
to match the boundaries of the box. Thus, unlike a grid system in which each item
has a defined size, flexbox items adapt themselves automatically to the size of their
container. This makes flexboxes a useful tool for designing layouts that can adapt to
different page sizes.

Items within a flexbox are laid out along a main axis, which can point in either the
horizontal or vertical direction. Perpendicular to the main axis is the cross axis, which
is used to define the height or width of each item. Figure 5–26 displays a diagram of
two flexboxes with items arranged either horizontally or vertically along the main axis.

Figure 5–26 Horizontal and vertical flexboxes

vertical �exbox

main axis

�ex item �ex item �ex item
�ex item

�ex item

�ex item

cross axis

main axis

horizontal �exbox

cross axis

To define an element as a flexbox, apply either of the following display styles

display: flex;

or

display: inline-flex;

where a value of flex starts the flexbox on a new line (much as a block element
starts on a new line) and a value of inline-flex keeps the flexbox in-line with its
surrounding content.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 395

Cross-Browser Flexboxes
The syntax for flexboxes has gone through major revisions as it has developed from
the earliest drafts to the latest specifications. Many older browsers employ a different
flexbox syntax, in some cases replacing the word flex with box or flexbox. The complete
list of browser extensions that define a flexbox would be entered as:

display: -webkit-box;
display: -moz-box;
display: -ms-flexbox;
display: -webkit-flex:
display: flex;

To simplify the code in the examples that follow, you will limit your code to the
W3C specification. This will cover the current browsers at the time of this writing.
However, if you need to support older browsers, you may have to include a long list of
browser extensions for each flex property.

Setting the Flexbox Flow
By default, flexbox items are arranged horizontally starting from the left and moving to
the right. To change the orientation of the flexbox, apply the following flex-direction
property

flex-direction: direction;

where direction is row (the default), column, row-reverse, or column-reverse.
The row option lays out the flex items from left to right, column creates a vertical layout
starting from the top and moving downward, and the row-reverse and
column-reverse options lay out the items bottom-to-top and right-to-left respectively.

Flex items will all try to fit within a single line, either horizontally or vertically. But
if they can’t, those items can wrap to a new line as needed by applying the following
flex-wrap property to the flexbox

flex-wrap: type;

where type is either nowrap (the default), wrap to wrap the flex items to a new line,
or wrap-reverse to wrap flex items to a new line starting in the opposite direction
from the current line. For example, the following style rules create a flexbox in which
the items are arranged in a column starting from the top and going down with any flex
items that wrap to the second column starting from the bottom and moving up.

display: flex;
flex-direction: column;
flex-wrap: wrap-reverse;

Additional items in this flexbox will continue to follow a snake-like curve with the
third column starting at the top, moving down, and so forth.

Both the flex-direction and flex-wrap properties can be combined into the
following flex-flow style

flex-flow: direction wrap;

where direction is the direction of the flex items and wrap defines whether the
items will be wrapped to a new line when needed. Figure 5–27 shows an example of
flexboxes laid out in rows and columns in which the flex items are forced to wrap to
a new line. Note that the column-oriented flexbox uses wrap-reverse to start the new
column on the bottom rather than the top.

Some older browsers do
not support the flex-
flow property, so for full
cross-browser support,
you might use the flex-
direction and flex-
wrap properties instead.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 396

Marjorie wants you to use flexboxes to design a page she’s created describing the
pre-k classes offered by Trusted Friends. She has already created the content of the page
and several style sheets to format the appearance of the page elements. You’ll create a
style sheet that lays out the page content drawing from a library of flexbox styles.

Figure 5–27 Flexbox layouts

1 2 3

4 5

1

2

3

4 5

�ex-�ll: row wrap; �ex-�ll: column wrap-reverse;

7 6

7 6

Defining a Flexbox

• To display an element as a flexbox, apply the display style

display: flex;

• To set the orientation of the flexbox, apply the style

flex-direction: direction;

where direction is row (the default), column, row-reverse, or column-reverse.
• To define whether or not flex items wrap to a new line, apply the style

flex-wrap: type;

where type is either nowrap (the default), wrap to wrap flex items to a new line, or
wrap-reverse to wrap flex items to a new line starting in the opposite direction from
the current line.

• To define the flow of items within a flexbox, apply the style

flex-flow: direction wrap;

where direction is the direction of the flex items and wrap defines whether the items
will be wrapped to a new line when needed.

R
E
FE

R
E
N
C
E

To open the pre-k page and style sheet:
w 1. Use your editor to open the tf_prek_txt.html and tf_flex_txt.css files

from the html05 c tutorial folder. Enter your name and the date in the
comment section of each file and save them as tf_prek.html and tf_flex.css
respectively.

w 2. Return to the tf_prek.html file in your editor and, within the document head,
create links to the tf_reset.css, tf_styles2.css, and tf_flex.css style sheets in
that order.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 397

w 6. Save your changes to the file.

w 3. Take some time to scroll through the contents of the document to become
familiar with its contents and structure and then save your changes to the file,
leaving it open.

w 4. Go to the tf_flex.css file in your editor.

w 5. Go to the Base Flex Styles section and insert the following style rules to
display the entire page body as a flexbox oriented horizontally with overflow
flex items wrapped to a new row as needed:

body {
 display: flex;
 flex-flow: row wrap;
}

Figure 5–28 highlights the new flexbox styles in the style sheet.

Figure 5–28 Setting the flex display style

orients the �exbox
by rows, wrapping to
a new line as needed

displays the page
body as a �exbox

Now that you’ve defined the page body as a flexbox, you’ll work with styles that
define how items within a flexbox expand and contract to match the flexbox container.

Working with Flex Items
Flex items behave a lot like floated objects though with several advantages, including
that you can float them in either the horizontal or vertical direction and that you can
change the order in which they are displayed. While the size of a flex item can be
fixed using the CSS width and height properties, they don’t have to be. They can
also be “flexed”—automatically adapting their size to fill the flexbox. A flex layout is
fundamentally different from a grid layout and requires you to think about sizes and
layout in a new way.

Setting the Flex Basis
When items are allowed to “flex” their rendered size is determined by three properties:
the basis size, the growth value, and the shrink value. The basis size defines the initial
size of the item before the browser attempts to fit it to the flexbox and is set using the
following flex-basis property

flex-basis: size;

Because flexboxes can
be aligned horizontally
or vertically, the flex-basis
property sets either the initial
width or the initial height
of the flex item depending
on the orientation of the
flexbox.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 398

where size is one of the CSS units of measurement, a percentage of the size of the
flexbox, or the keyword auto (the default), which sets the initial size of the flex item
based on its content or the value of its width or height property. For example, the
following style rule sets the initial size of the aside element to 200 pixels:

aside {
 flex-basis: 200px;
}

The flex-basis property should not be equated with the width and height
properties used with grid layouts; rather, it serves only as a starting point. The actual
rendered size of the aside element in this example is not necessarily 200 pixels but
will be based on the size of the flexbox, as well as the size of the other items within the
flexbox.

Defining the Flex Growth
Once the basis size of the item has been defined, the browser will attempt to expand
the item into its flexbox. The rate at which a flex item grows from its basis size is
determined by the following flex-grow property

flex-grow: value;

where value is a non-negative value that expresses the growth of the flex item relative
to the growth of the other items in the flexbox. The default flex-grow value is 0,
which is equivalent to not allowing the flex item to grow but to remain at its basis size.
Different items within a flexbox can have different growth rates and the growth rate
largely determines how much of the flexbox is ultimately occupied by each item.

Figure 5–29 shows an example of how changing the size of a flexbox alters the size
of the individual flexbox items.

Figure 5–29 Growing flex items beyond their basis size

�ex-basis: 100px;
�ex-grow: 1;

�ex-basis: 100px;
�ex-grow: 3;

�ex-basis: 100px;
�ex-grow: 1;

�ex-basis: 100px;
�ex-grow: 3;

100px 100px

150px 250px

50px

second item grows at 3x the rate of the �rst as the �exbox expands

both �ex items have the same basis size

150px

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 399

In the figure, the basis sizes of the two items are 100 pixels each with the growth
of the first item set to 1 and the growth of the second item set to 3. The growth values
indicate that as the flex items expand to fill the flexbox, item1 will increase 1 pixel
for every 3 pixels that item2 increases. Thus, to fill up the remaining 200 pixels of a
400-pixel wide flexbox, 50 pixels will be allotted to the first item and 150 pixels will
be allotted to the second item, resulting in final sizes of 150 pixels and 250 pixels
respectively. If the width of the flexbox were to increase to 600 pixels, item1 and
item2 will divide the extra 400 pixels once again in a ratio of 1 to 3. Item1 will have a
total size of 200 pixels (100px + 100px) and item2 will expand to a size of 400 pixels
(100px + 300px).

Notice that unlike a grid layout, the relative proportions of the items under a flex
layout need not be constant. For the layout shown in Figure 5–29, the two items share
the space equally when the flexbox is 200 pixels wide, but at 400 pixels the first item
occupies 37.5% of the box while the second item occupies the remaining 62.5%.

To keep a constant ratio between the sizes of the flex items, set their basis sizes to 0
pixels. For example, the following style rules will result in a flexbox in which the first
item is always half the size of the second item no matter how wide or tall the flexbox
becomes.

div#item1 {
 flex-basis: 0px;
 flex-grow: 1;
}
div#item2 {
 flex-basis: 0px;
 flex-grow: 2;
}

One of the great advantages of the flexible box layout is that you don’t need to
know how many items are in the flexbox to keep their relative proportions the same.
The following style rule creates a layout for a navigation list in which each list item is
assigned an equal size and grows at the same rate.

nav ul {
 display: flex;
}
nav ul li {
 flex-basis: 0px;
 flex-grow: 1;
}

If there are four items in this navigation list, each will be 25% of the total list size
and if at a later date a fifth item is added, those items will then be allotted 20% of
the total size. Thus, unlike a grid layout, there is no need to revise the percentages to
accommodate new entries in the navigation list; a flexible box layout handles that task
automatically.

Note that if the flex-grow value is set to 0, the flex item will not expand beyond its
basis size, making that basis value the maximum width or height of the item.

Defining the Shrink Rate
What happens when the flexbox size falls below the total space allotted to its flex
items? There are two possibilities depending on whether the flexbox is defined to wrap
its contents to a new line. If the flexbox-wrap property is set to wrap, one or more of
the flex items will be shifted to a new line and expanded to fill in the available space
on that line. Figure 5–30 shows a flexbox layout in which three items each have a basis
size of 200 pixels with the same growth value of 1.

If all items have flex-grow
set to 1 and an equal flex
basis, they will always have
an equal size within the
flexbox.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 400

As shown in the figure, as long as the flexbox is at least 600 pixels wide, the items will
equally share a single row. However, once the flexbox size falls below 600 pixels, the three
items can no longer share that row and the last item is wrapped to a new row. Once on that
new row, it’s free to fill up the available space while the first two items equally share the space
on the first row. As the flexbox continues to contract, falling below 400 pixels, the first two
items can no longer share a row and the second item now wraps to its own row. At this point
the three items fill separate rows and as the flexbox continues to shrink, their sizes also shrink.

If the flexbox doesn’t wrap to a new line as it is resized, then the flex items will
continue to shrink, still sharing the same row or column. The rate at which they shrink
below their basis size is given by the following flex-shrink property

flex-shrink: value;

where value is a non-negative value that expresses the shrink rate of the flex item
relative to the shrinkage of the other items in the flexbox. The default flex-shrink
value is 1. For example, in the following style rules, item1 and item2 will share the
flexbox equally as long as the width of the flexbox is 400 pixels or greater.

div {
 display: flex;
 flex-wrap: nowrap;
}
div #item1 {
 flex-basis: 200px;
 flex-grow: 1;
 flex-shrink: 3;
}

Figure 5–30 Shrinking flex items smaller than their basis size

flex-basis: 200px;
flex-grow: 1;

900px

flex-basis: 200px;
flex-grow: 1;

flex-basis: 200px;
flex-grow: 1;

500px

300px 300px 300px

flex-basis: 200px;
flex-grow: 1;

250px 250px

flex-basis: 200px;
flex-grow: 1;

flex-basis: 200px;
flex-grow: 1;

500px

flex-basis: 200px;
flex-grow: 1;

150px

150px

flex-basis: 200px;
flex-grow: 1;

150px

flex-basis: 200px;
flex-grow: 1;

150px

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 401

div #item2 {
 flex-basis: 200px;
 flex-grow: 1;
 flex-shrink: 1;
}

However, once the flexbox falls below 400 pixels, the two items begin to shrink
with item1 losing 3 pixels for every 1 pixel lost by item2. Note that if the flex-shrink
value is set to 0, then the flex item will not shrink below its basis value, making that
basis value the minimum width or height of the item.

The flex Property
All of the size values described above are usually combined into the following flex property

flex: grow shrink basis;

where grow defines the growth of the flex item, shrink provides its shrink rate, and
basis sets the item’s initial size. The default flex value is

flex: 0 1 auto;

which automatically sets the size of the flex item to match its content or the value of
its width and height property. The flex item will not grow beyond that size but, if
necessary, it will shrink as the flexbox contracts.

The flex property supports the following keywords:

• auto Use to automatically resize the item from its default size (equivalent to
flex: 1 1 auto;)

• initial The default value (equivalent to flex: 0 1 auto;)
• none Use to create an inflexible item that will not grow or shrink (equivalent to

flex: 0 0 auto;)
• inherit Use to inherit the flex values of its parent element

As with other parts of the flex layout model, the flex property has gone through several
syntax changes on its way to its final specification. To support older browsers, use the browser
extensions: -webkit-box, -moz-box, -ms-flexbox, -webkit-flex, and flex in that order.

Sizing Flex Items

• To set the initial size of a flex item, apply the style

flex-basis: size;

where size is measured in one of the CSS units of measurement or as a percentage of
the size of the flexbox or the keyword auto (the default).

• To define the rate at which a flex item grows from its basis size, apply the style

flex-grow: value;

where value is a non-negative value that expresses the growth of the flex item relative
to the growth of the other items in the flexbox (the default is 0).

• To define the rate at which a flex item shrinks below its basis value, apply

flex-shrink: value;

where value is a non-negative value that expresses the shrink rate of the flex item
relative to other items in the flexbox (the default is 0).

• To define the overall resizing of a flex item, apply

flex: grow shrink basis;

where grow defines the growth of the flex item, shrink provides its shrink rate, and
basis sets the item’s initial size.

R
E
FE

R
E
N
C
E

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 402

Applying a Flexbox Layout
Now that you’ve seen how to size items within a flexbox, you can return to the layout
for the Pre-K Classes page at Trusted Friends Daycare. The body element, which you
already set up as a flexbox, has four child elements: the page header, an aside element
describing the daily class schedule, a section element describing the classes, and
the page footer. Marjorie wants the header and the footer to always occupy a single
row at 100% of the width of the page body. For wide screens, she wants the aside
and section elements displayed side-by-side with one-fourth of the width assigned to
the aside element and three-fourths to the section element. For narrow screens, she
wants the aside and section elements displayed within a single column. Figure 5–31
displays the flex layout that Marjorie wants you to apply.

body header

aside

main section

body footer

body header

aside main section

body footer

narrow screen wide screen

Figure 5–31 Proposed flex layout for the Pre-K page

Using the techniques of the first session, this would require media queries with one
grid layout for narrow screens and a second grid layout for wide screens. However, you
can accomplish the same effect with a single flex layout. First, you set the width of the
body header and footer to 100% because they will always occupy their own row:

header, footer {
 width: 100%;
}

Then, you set the basis size of the aside and section elements to 120 and 361
pixels respectively. As long as the screen width is 481 pixels or greater, these two
elements will be displayed side-by-side; however, once the screen width drops below
481 pixels, the elements will wrap to separate rows as illustrated in the narrow screen
image in Figure 5–31. Because you want the main section element to grow at a rate
three times faster than the aside element (in order to maintain the 3:1 ratio in their
sizes), you set the flex-growth values to 1 and 3 respectively. The flex style rules are

aside {
 flex: 1 1 120px;
}

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 403

section#main {
 flex: 3 1 361px;
}

Note that you choose 481 pixels as the total initial size of the two elements to
match the cutoff point in the media query between mobile and tablet/desktop devices.
Generally, you want your flex items to follow the media query cutoffs whenever
possible. Add these style rules to the tf_flex.css style sheet now.

To define the flex layout:
w 1. Within the tf_flex.css file in your editor, add the following style rules to the

Base Flex Styles section:

header, footer {
 width: 100%;
}

aside {
 flex: 1 1 120px;
}

section#main {
 flex: 3 1 361px;
}

Figure 5–32 highlights the newly added style rules to define the flex item sizes.

Figure 5–32 Set the flex properties of the flex items in the page body

displays the header
and footer at a width
of 100%, occupying
an entire row

sets the initial size of
the aside element to
120 pixels and sets
the growth and shrink
factors to 1

sets the initial size of
the main section to
361 pixels and has it
grow and shrink at a
3:1 ratio compared to
the aside element

w 2. Save your changes to the file and then open the tf_prek.html file in your web
browser.

w 3. Change the size of the browser window or use the device emulator tools in
your browser to view the page under different screen widths. As shown in
Figure 5–33, the layout of the page changes as the screen narrows and widens.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 404

Flexboxes can be nested within one another and a flex item can itself be a flexbox
for its child elements. Within the topics section, Marjorie has created six articles
describing different features of the center’s pre-k curriculum. She wants these articles to
share equal space within a row-oriented flexbox, with each article given a basis size of
200 pixels. The style rules are:

section#topics {
 display: flex;
 flex-flow: row wrap;
}

section#topics article {
 flex: 1 1 200px;
}

Marjorie also wants the items in the navigation list to appear in a row-oriented
flexbox for tablet and desktop devices by adding the following style rules to the media
query for screen devices whose width exceeds 480 pixels:

nav.horizontal ul {
 display: flex;
 flex-flow: row nowrap;
}

nav.horizontal li {
 flex: 1 1 auto;
}

The navigation list items will appear in a single row with no wrapping and the width of
each item will be determined by the item’s content so that longer entries are given more
horizontal space. With the growth and shrink values set to 1, each list item will grow and
shrink at the same rate, keeping the layout consistent across different screen widths.

Add these style rules now.

Figure 5–33 Flex layout under different screen widths

narrow screen wide screen

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 405

To lay out the topic articles and navigation list:
w 1. Return to the tf_flex.css file in your editor and go to the Base Flex Styles

section.

w 2. Add the following style rules to create a flex layout for the page articles.

section#topics {
 display: flex;
 flex-flow: row wrap;
}

section#topics article {
 flex: 1 1 200px;
}

Figure 5–34 highlights the style rules for the article topics layout.

Figure 5–34 Creating a flex layout for articles in the topics section

sets the basis size of
each article to 200 pixels,
growing and shrinking at
the same rate

orients the �exbox as a
row and wraps items to a
new line as needed

displays the topic section
as a �exbox

w 3. Scroll down to the media query for tablet and desktop devices and add the
following style rule to create a flex layout for the navigation list. (Indent your
code to set it off from the media query braces.)

nav.horizontal ul {
 display: flex;
 flex-flow: row nowrap;
}

nav.horizontal li {
 flex: 1 1 auto;
}

Figure 5–35 highlights the style rules for the navigation list and list items.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 406

Figure 5–35 Creating a flex layout for the navigation list

bases the size of each
item on its content
and has them grow
and shrink at the
same rate

orients the �exbox
in the row direction
with no wrapping

displays the
unordered list
as a �exbox

w 4. Save your changes to the file and reload the tf_prek.html file in your web
browser.

w 5. View the page under different screen widths and verify that, for tablet and
desktop screen widths, the navigation list entries appear in a single row. Also,
verify that the articles in the topics section flex from a single column layout to
two or more rows of content. See Figure 5–36.

Figure 5–36 Flex layout under a desktop screen width

articles �ex in layout
from a single column
to a 2 × 3 grid,
depending on the
screen width

navigation list
appears in a single
row for tablet and
desktop devices

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 407

Marjorie likes how using flexboxes has made it easy to create layouts that match a
wide variety of screen sizes. However, she is concerned that under the single column
layout used for mobile devices the daily schedule appears first before any description
of the classes. She would like the daily schedule to appear at the bottom of the page.
She asks if you can modify the layout to achieve this.

Reordering Page Content with Flexboxes
One of the principles of web page design is to, as much as possible, separate the page
content from page design. However, a basic feature of any design is the order in which
the content is displayed. Short of editing the content of the HTML file, there is not an
easy way to change that order.

That at least was true before flexboxes. Under the flexbox model you can place the
flex items in any order you choose using the following order property

order: value;

where value is an integer where items with smaller order values are placed before
items with larger order values. For example, the following style arranges the div
elements starting first with item2, followed by item3, and ending with item1. This is
true regardless of how those div elements have been placed in the HTML document.

div#item1 {order: 100;}
div#item2 {order: -1;}
div#item3 {order: 5;}

Note that order values can be negative. The default order value is 0.
For complete cross-browser support, you can apply the following browser extensions

with flex item ordering:

-webkit-box-ordinal-group: value;
-moz-box-ordinal-group: value;
-ms-flex-order: value;
-webkit-order: value;
order: value;

Most current browsers support the CSS specifications, so you will limit your code to
those properties.

If flex items have the
same order value, they
are arranged in document
order.

Reordering a Flex Item

• To reorder a flex item, apply the style

order: value;

where value is an integer where items with smaller order values are placed before
items with larger order values.

R
E
FE

R
E
N
C
E

For mobile devices, Marjorie wants the page header displayed first, followed by the
main section, the aside element, and ending with the page footer. Add style rules now
to the mobile device media query in the tf_flex.css style sheet to reorder the flex items.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 408

To lay out the topic articles and navigation list:
w 1. Return to the tf_flex.css file in your editor and go to the Mobile Devices

media query.

w 2. Add the following style rules, indented to offset them from the braces in the
media query:

aside {
 order: 99;
}
footer {
 order: 100;
}

Note that the other flex items will have a default order value of 0 and thus
will be displayed in document order before the aside and footer elements.

Figure 5–37 highlights the style rules to set the order of the aside and
footer elements.

Figure 5–37 Setting the order of a flex item

places the aside
element before
the body footer

places the body
footer at the end
of the �exbox

w 3. Save your changes to the file and then reload the tf_prek.html file in your
web browser.

w 4. Reduce the width of the browser window below 480 pixels to show the
mobile layout. Verify that the class schedule now appears at the bottom of
the file directly before the body footer.

You’ve completed the ordering and flex layout of the Pre-K Classes page. You’ll
conclude your review of flexboxes by examining how flex items can be arranged within
the flexbox container.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 409

Exploring Flexbox Layouts
You can control how flex items are laid out using the justify-content, align-
items, and align-content properties. You examine each property to see how
flexboxes can be used to solve layout problems that have plagued web designers for
many years.

Aligning Items along the Main Axis
Recall from Figure 5–26 that flexboxes have two axes: the main axis along which the
flex items flow and the cross axis, which is perpendicular to the main axis. By default,
flex items are laid down at the start of the main axis. To specify a different placement,
apply the following justify-content property

justify-content: placement;

where placement is one of the following keywords:

• flex-start Items are positioned at the start of the main axis (the default).
• flex-end Items are positioned at the end of the main axis.
• center Items are centered along the main axis.
• space-between Items are distributed evenly with the first and last items aligned

with the start and end of the main axis.
• space-around Items are distributed evenly along the main axis with equal space

between them and the ends of the flexbox.

Figure 5–38 shows the impact of different justify-content values on a flexbox
oriented horizontally.

Figure 5–38 Values of the justify-content property

�ex-start �ex-end

center space-between

space-around

Remember that, because items can flow in any direction within a flexbox, these
diagrams will look different for flexboxes under column orientation or when the
content flows from the right to the left. Note that the justify-content property has
no impact when the items are flexed to fill the entire space. It is only impactful for flex
items with fixed sizes that do not fill in the entire flexbox.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 410

Aligning Flex Lines
The align-content property is similar to the justify-content property except that
it arranges multiple lines of content along the flexbox’s cross axis. The syntax of the
align-content property is:

align-content: value;

where value is one of the following keywords:

• flex-start Lines are positioned at the start of the cross axis.
• flex-end Lines are positioned at the end of the cross axis.
• stretch Lines are stretched to fill up the cross axis (the default).
• center Lines are centered along the cross axis.
• space-between Lines are distributed evenly with the first and last lines aligned

with the start and end of the cross axis.
• space-around Lines are distributed evenly along the cross axis with equal space

between them and the ends of the cross axis.

Figure 5–39 displays the effect of the align-content values on three lines of flex items
arranged within a flexbox.

Figure 5–39 Values of the align-content property

�ex-start �ex-end

center

stretch

space-between space-around

Note that the align-content property only has an impact when there is more than
one line of flex items, such as occurs when wrapping is used with the flexbox.

Aligning Items along the Cross Axis
Finally, the align-items property aligns each flex item about the cross axis, having the
syntax

align-items: value;

where value is one of the following keywords:

• flex-start Items are positioned at the start of the cross axis.
• flex-end Items are positioned at the end of the cross axis.
• center Items are centered along the cross axis.
• stretch Items are stretched to fill up the cross axis (the default).
• baseline Items are positioned so that the baselines of their content align.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 411

Figure 5–40 displays the effect of the align-items values on three flex items placed
within a single line.

Figure 5–40 Values of the align-items property

�ex-start center �ex-end

stretch baseline

A B C

Note that the align-items property is only impactful when there is a single line of flex
items. With multiple lines, you use the align-content property to layout the flexbox
content. To align a single item out of a line of flex items, use the following align-self
property

align-self: value;

where value is one of the alignment choices supported by the align-items property.
For example, the following style rule places the footer at the end of the flexbox cross
axis, regardless of the placement of the other flex items.

footer {
 align-self: flex-end;
}

Both the align-content and align-items properties have a default value of
stretch so that the flex items are stretched to fill the space along the cross-axis.
The effect is that all flex items within a row will share a common height. This can be
observed earlier in Figure 5–36 in which all of the article boxes have the same height,
regardless of their content. It’s difficult to achieve this simple effect in a grid layout
unless the height of each item is explicitly defined, but flexboxes do it automatically.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 412

Creating a Navicon Menu
A common technique for mobile websites is to hide navigation menus but to indicate
their presence with a navicon, which is a symbol usually represented as three
horizontal lines . When the user hovers or touches the icon, the navigation menu is
revealed.

Marjorie has supplied you with a navicon image that she wants you to use with the
mobile layout of the Pre-K Classes page. Add this image to the Pre-K Classes web page
within the navigation list in the body header.

IN
SI
G
H
T

Solving the Centering Problem with Flexboxes

One of the difficult layout challenges in web design is vertically centering an element
within its container. While there are many different fixes and “hacks” to create vertical
centering, it has not been easily achieved until flexboxes. By using the justify-content
and align-items properties, you can center an object or group of objects within a
flexbox container. For example, the following style rule centers the child elements of the
div element both horizontally and vertically:

div {
 display: flex;
 justify-content: center;
 align-content: center;
}

For a single object or a group of items on a single line within a container, use the
align-items property as follows:

div {
 display: flex;
 justify-content: center;
 align-items: center;
}

You can also use the align-self property to center one of the items in the flexbox,
leaving the other items to be placed where you wish.

To insert the navicon image:
w 1. Return to the tf_prek.html file in your editor.

w 2. Directly after the opening <nav> tag in the body header, insert the following
hypertext link and inline image.

Figure 5–41 highlights the code to create the navicon.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 413

Next, you’ll insert the styles to hide and display the contents of the navigation list
in a style sheet named tf_navicon.css. You’ll apply the same styles for navicon that you
used in the last session to hide and display the navigation submenus in the Trusted
Friends home page. As with those menus, you’ll use the hover pseudo-class to display
the navigation list links whenever the user hovers over the navicon, or in the case of
mobile devices, touches the navicon. Add these styles now.

Figure 5–41 Inserting the navicon

navicon image

To add styles for the navicon image:
w 1. Within the document head of the tf_prek.html file, add a link to the

tf_navicon.css style sheet file after the link for the tf_flex.css file. Save your
changes to the file.

w 2. Use your editor to open the tf_navicon_txt.css files from the html05 c
tutorial folder. Enter your name and the date in the comment section of the
file and save it as tf_navicon.css.

w 3. By default, the navicon will be hidden from the user. Go to the Base Styles
section and add the following style rule:

a#navicon {
 display: none;
}

w 4. The navicon will be displayed only for mobile devices. Go to the media query
for mobile devices and add the following style rule to display the navicon.

a#navicon {
 display: block;
}

w 5. When the navicon is displayed, you want the contents of the navigation list
to be hidden. Add the following style rule within the mobile device media
query:

nav.horizontal ul {
 display: none;
}

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 414

w 6. Finally, add the following style rule to the mobile device query that displays
the contents of the navigation list when the user hovers over the navicon or
the contents of the navigation list.

a#navicon:hover+ul, nav.horizontal ul:hover {
 display: block;
}

Figure 5–42 highlights the style rules for the navicon hypertext link.

Figure 5–42 Style rules for the navicon image

does not display
the navicon for
most devices

displays the navicon
for mobile devices

hides the navigation
list for mobile
devices

displays the navigation list
when the user hovers over
the navicon or moves the
mouse pointer over the
navigation list

w 7. Save your changes to the file and then reload the tf_prek.html file in your
browser or mobile devices. Resize the viewport as needed to display the
mobile layout.

w 8. Verify that as you hover over or touch the navicon, the navigation list
appears, as shown in Figure 5–43.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 415

The methods you used in this tutorial to create pulldown menus and navicon menus
represent what you can accomplish when limited to CSS and the hover pseudo-class.
As you increase your skill and knowledge of HTML, you’ll learn other, more efficient
ways of creating mobile navigation menus using program scripts and web frameworks.
If you want to explore how to take advantage of these tools, search the web for navicon
libraries of prewritten code that can be inserted into your website.

Figure 5–43 Action of the navicon for mobile devices

menu opens when the
user hovers over or
taps the navicon

navicon

BenBois/openclipart

w 9. Verify that hovering over or touching other parts of the page hides the
navigation list.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 416

PR
O
SK

IL
LS

Written Communication: Speeding Up Your Website by Minifying and
Compressing

Once your website is working and you are ready to distribute it to the web, you have
one task remaining: minifying your code. Minifying refers to the process of removing
unnecessary characters that are not required for your site to execute properly. For
example, the following text in a CSS file contains comments and line returns and blank
spaces, which makes the text easy to read, but these features are not required and
have no impact on how the browser renders the page:

/* Tablet Styles */

nav.horizontal > ul > li {
display: block;
}

A minified version of this code removes the comment and the extraneous white-space
characters leaving the following compact version:

nav.horizontal>ul>li{display:block;}

Minifying has several important advantages:

• Minifying reduces the amount of bandwidth required to retrieve the website
because the files are smaller.

• The smaller minified files load faster and are faster to process because extraneous
code does not need to be parsed by the browser.

• A faster site provides a better user experience.
• Smaller files means less server space required to host the website.
• Search engines, such as Google, evaluate your website based on page load speed

and will downgrade sites with bloated code that take too long to load.

There are several free tools available on the web to automate the minification
process including CSS Minifier, Compress HTML, HTML Minifier, and CSS Compressor.
Also, many HTML editors include built-in minifying tools. Remember, a minified file is
still a text file and can be read (though with difficulty) in a text editor.

To further reduce your file sizes, consider compressing your files using utilities like
Gzip. A compressed file is no longer in text format and must be uncompressed before
it is readable. All modern browsers support Gzip compression for files retrieved from a
server. Make sure you know how to properly configure your web server to serve Gzip-
compressed file in a readable format to the browser.

The process of minifying your files is irreversible, so make sure you retain the version
with the text in a readable format and all of your comments preserved. Most minifying
and compression tools will make a backup of your original files.

You’ve completed your work on the design of the Pre-K Classes page for Trusted
Friends Daycare. In the next session, you’ll explore other uses of media queries by
designing a page for printed output. You may close your files now.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 417

R
E
V
IE

W

Session 5.2 Quick Check

 1. Which of the following is not a style to display an element as a flexbox?
a. display: -chrome-flex;
b. display: -webkit-flex;
c. display: -webkit-box
d. display: -ms-flexbox;

 2. To display items within a flexbox in a column filled from the bottom upward,
use:
a. flex-direction: column up;
b. flex-direction: column-bottom;
c. flex-direction: column-reverse;
d. flex-direction: column-to-top;

 3. To set the initial size of a flexbox item to 250 pixels, use:
a. flex-size: 250px;
b. flex-basis: 250px;
c. flex: 250px;
d. flex-from: 250px;

 4. To set the growth rate of a flexbox item to a rate of 4, use:
a. flex-rate: 4;
b. flex: 4x;
c. flex-growth: 4;
d. flex-grow: 4;

 5. Which of the following sets the div element to be equal in size regardless of
the size of the flexbox container?
a. div {flex: equal;}
b. div {flex: 1 1 100px;}
c. div {flex: 1 1 0px;}
d. div {flex: 0 0 0px}

 6. To reorder of the placement of a flex item within its flexbox, use:
a. flex-reorder
b. flex-move
c. flex-basis;
d. order

 7. To center flex items along the flexbox’s main axis, use:
a. justify-content: center;
b. align-content: center;
c. flex-position: center;
d. flex-main: center;

 8. To center flex items along the flexbox’s cross axis, use:
a. justify-content: center;
b. align-content: center;
c. flex-position: center;
d. flex-main: center;

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 418

Session 5.3 Visual Overview:

Use the page-break-
before property to
insert page breaks before
elements.

The display property
is set to none for objects
you don’t want printed.

The @page rule de�nes
the size and margins
of the printed page.

For print layouts, fonts
should be sized in
points and widths and
heights expressed in
inches or centimeters.

Use the after
pseudo-element along
with the content
property to display the
text of all hypertext
URLs.

Use the page-break-
inside property to
prohibit page breaks
within an element.

Use the orphans
property to limit the
number of lines stranded
at the bottom of a page.

Use the widows
property to limit the
number of lines
stranded at the top
of a page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 419

Print Styles

page 1 page 2

page 3

Page size is set at
8.5 inches by 11 inches
with a 0.5 inch margin
in portrait orientation.

Hypertext URLs
are displayed in
bold after the
hypertext link.

Page break is not
allowed inside the
unordered list.

Page break is inserted
before the article
element, starting it on
a new page.

Pr
es

sm
as

te
r/

Sh
ut

te
rs

to
ck

.c
om

G
la

d
sk

ik
h

Ta
tia

na
/

Sh
ut

te
rs

to
ck

.c
om

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 420

Designing for Printed Media
So far your media queries have been limited to screens of different widths. In this
session you’ll explore how to apply media queries to print devices and work with
several CSS styles that apply to printed output. To do this you’ll create a print style
sheet that formats the printed version of your web document.

Previewing the Print Version
Marjorie has created a page containing articles of interest for parents at Trusted Friends
Daycare. She has already written the page content and the style sheets for mobile,
tablet, and desktop devices. Open the articles document now.

To open the Articles of Interest page:
w 1. Use your editor to open the tf_articles_txt.html file from the html05 c

tutorial folder. Enter your name and the date in the comment section of the
file and save it as tf_articles.html.

w 2. Within the document head, create links to the tf_reset.css and tf_styles3.css
style sheet files in that order.

w 3. Scroll through the document to become familiar with its contents and then
save your changes to file, but do not close it.

w 4. Open the tf_articles.html file in your web browser.

w 5. Take some time to view the contents of the page under different screen
resolutions, noting how Marjorie has used responsive design to create
different page layouts based on the screen width.

Now, you’ll examine how Marjorie’s page will appear when printed.

w 6. Use the Print Preview command within your browser to preview how this
page will appear when printed. Figure 5–44 shows a preview of the first two
pages of the print version using a black and white printer.

Figure 5–44 Print version of the Articles of Interest page

page 1 page 2

image is
split by
page break

page breaks at
an awkward spot

navigation links
do not need to
be printed

background
might not
print well

© Pressmaster/Shutterstock.com; © Gladskikh Tatiana/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 421

Browsers support their own internal style sheet to format the print versions of the
web pages they encounter. However, their default styles might not always result in
the best printouts. Marjorie points out that the print version of her page has several
significant problems:

• The printed version includes two navigation lists, neither of which have a purpose in
a printout.

• Page breaks have been placed in awkward places, splitting paragraphs and images in two.
• Background colors, while looking good on a screen, might not print well.

Marjorie would like you to design a custom print style sheet that fixes these problems
by removing unnecessary page elements and choosing page breaks more intelligently.

Applying a Media Query for Printed Output
To apply a print style sheet, you use the media attribute in your link elements to target
style sheets to either screen devices or print devices. Modify the tf_articles.html file now
to access a new style sheet named tf_print.css into which you include your print styles.

Trouble? Depending on your browser and printer, your print preview might
appear different from the preview shown in Figure 5–44.

To access a print style sheet:
w 1. Use your editor to open the tf_print_txt.css file from the html05 c tutorial

folder. Enter your name and the date in the comment section and save it as
tf_print.css.

w 2. Return to the tf_articles.html file in your editor. Add the attribute
media="all" to the link element for the tf_reset.css style sheet to apply it
to all devices.

w 3. Add the attribute media="screen" to the link element for the tf_styles3.css
style sheet to apply it only to screen devices.

w 4. Add the following link element for print styles:

<link href="tf_print.css" rel="stylesheet" media="print" />

Figure 5–45 highlights the revised link elements in the file.

To avoid mixing screen
styles with print styles,
identify styles common
to both devices with the
media type all.

styles for all devices

styles for screen
devices

styles for print
devices

Figure 5–45 Style sheets for different devices

w 5. Save your changes to the file and close it.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 422

You’ll start designing the print version of this page by hiding those page elements
that should not be printed, including the navigation list, the aside element, and the
body footer.

To hide elements in the print version:
w 1. Return to the tf_print.css file in your editor.

w 2. Go to the Hidden Objects section and add the following style rule:

nav.horizontal, aside, footer {
 display: none;
}

Figure 5–46 highlights the style rule to hide page elements.

Figure 5–46 Hiding page elements for printing

sets the display of the
navigation list, aside
element, and body
footer to do not display

w 3. Save your changes to the file and then reload the tf_articles.html file in your
browser and preview the printed output. Verify that the navigation lists,
aside elements, and body footer are not displayed in the printed version.

Next, you’ll define the page size of the print version of this document.

Working with the @page Rule
In CSS every printed page is defined as a page box, composed of two areas: the
page area, which contains the content of the document, and the margin area, which
contains the space between the printed content and the edges of the page.

Styles are applied to the page box using the following @page rule

@page {
 style rules
}

where style rules are the styles applied to the page. The styles are limited to
defining the page size and the page margin. For example, the following @page rule sets
the size of the page margin to 0.5 inches:

@page {
 margin: 0.5in;
}

The page box does not support all of the measurement units you’ve used with the
other elements. For example, pages do not support the em or ex measurement units. In
general, you should use measurement units that are appropriate to the dimensions of
your page, such as inches or centimeters.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 423

Setting the Page Size
Because printed media can vary in size and orientation, the following size property
allows web authors to define the dimensions of the printed page

size: width height;

where width and height are the width and height of the page. Thus to define a page
that is 8.5 inches wide by 11 inches tall with a 1-inch margin, you would apply the
following style rule:

@page {
 size: 8.5in 11in;
 margin: 1in;
}

You can replace the width and height values with the keyword auto (to let
browsers determine the page dimensions) or inherit (to inherit the page size from the
parent element). If a page does not fit into the dimensions specified in the @page rule,
browsers will either rotate the page or rescale it to fit within the defined page size.

Using the Page Pseudo-Classes
By default, the @page rule is applied to every page of the printed output. However, if
the output covers several pages, you can define different styles for different pages by
adding the following pseudo-class to the @page rule:

@page:pseudo-class {
 style rules
}

where pseudo-class is first for the first page of the printout, left for the pages that
appear on the left in double-sided printouts, or right for pages that appear on the right
in double-sided printouts. For example, if you are printing on both sides of the paper,
you might want to create mirror images of the margins for the left and right pages of
the printout. The following styles result in pages in which the inner margin is set to 5
centimeters and the outer margin is set to 2 centimeters:

@page:left {margin: 3cm 5cm 3cm 2cm;}
@page:right {margin: 3cm 2cm 3cm 5cm;}

Page Names and the Page Property
To define styles for pages other than the first, left, or right, you first must create a page
name for those styles as follows

@page name {
 style rules
}

where name is the label given to the page. The following code defines a page style
named wideMargins used for pages in which the page margin is set at 10 centimeters
on every side:

@page wideMargins {
 margin: 10cm;
}

Once you define a page name, you can apply it to any element in your document.
The content of the element will appear on its own page, with the browser automatically

Users can override the
page sizes and orientations
set in @page rule by
changing the options in
their print dialog box.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 424

inserting page breaks before and after the element if required. To assign a page name to
an element, you use the following page property

selector {
 page: name;
}

where selector identifies the element that will be displayed on its own page, and
name is the name of a previously defined page style. Thus the following style rule
causes all block quotes to be displayed on separate page(s) using the styles previously
defined as the wideMargins page:

blockquote {
 page: wideMargins;
}

Creating and Applying Page Styles

• To define a page box for the printed version of a document, use the CSS rule

@page {
 size: width height;
}

where width and height are the width and height of the page.
• To define the page styles for different output pages, use the rule

@page:pseudo-class {
 style rules
}

where pseudo-class is first for the first page of the printout, left for the pages
that appear on the left in double-sided printouts, or right for pages that appear on
the right in double-sided printouts.

• To create a named page for specific page styles, apply the rule

@page name {
 style rules
}

where name is the label assigned to the page style.
• To apply a named page style, use the rule

selector {
 page: name;
}

where selector identifies the element that will be displayed on its own page, and
name is the name of a previously defined page style.

R
E
FE

R
E
N
C
E

You’ll use the @page rule to define the page size for the printed version of the
Articles of Interest document. Marjorie suggests that you set the page size to 8.5 × 11
inches with 0.5-inch margins.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 425

To define the printed page size:
w 1. Return to the tf_print.css file in your editor.

w 2. Go to the Page Box Styles section and add the following rule:

@page {
 size: 8.5in 11in;
 margin: 0.5in;
}

Figure 5–47 highlights the rule to set the page size.

Figure 5–47 Setting the page size

sets the page to
8.5 inches wide by
11 inches long

sets the margin to
0.5 inches around
the page content

w 3. Save your changes to the file.

With printed output, widths and heights are measured not in pixels but in inches
or centimeters. Font sizes are not measured in pixels but rather in points. With that in
mind, create styles to format the sizes of the text and graphics on the page.

To format the printed text:
w 1. Go to the Typography Styles section and insert the following styles to format

the appearance of h1 and h2 headings and paragraphs:

h1 {
 font-size: 28pt;
 line-height: 30pt;
 margin: 0.3in 0in 0.2in;
}

h2 {
 font-size: 20pt;
 margin: 0.1in 0in 0.1in 0.3in;
}

p {
 font-size: 12pt;
 margin: 0.1in 0in 0.1in 0.3in;
}

w 2. Within the List Styles section, add the following style rules to format the
appearance of unordered lists:

ul {
 list-style-type: disc;
 margin-left: 0.5in;
}

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 426

Next, you’ll format the appearance of images on the page.

Figure 5–48 Typographical formats

Figure 5–48 shows the typography and list styles in the print style sheet.

format of
unordered lists

format of
paragraphs

format of h2
headings

format of h1
headings

font sizes are
measured in
points

margins are
measured
in inches

To format the printed images:
w 1. Within the Image Styles section, add the following style rule to format the

appearance of inline images within each article element:

article img {
 border: 2px solid rgb(191, 191,191);
 display: block;
 margin: 0.25in auto;
 width: 65%;
}

Figure 5–49 shows the style rule for inline images on the printed page.

displays all article images with
a gray border, with a width of
65% of the page body, and
centered horizontally

Figure 5–49 Image formats

w 2. Save your changes to the style sheet and then reload the tf_articles.html file
in your browser and preview the appearance of the printed page. Figure 5–50
shows the appearance of the first page printed using a black and white printer.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 427

Marjorie notices that all of the hyperlinks in the document appear in blue and
underlined as determined by the default browser style. While this identifies the text as
a hypertext link, it doesn’t provide the reader any information about that link. She asks
you to modify the style sheet to fix this problem.

Figure 5–50 Preview of the first printed page

print version
of the images

© Pressmaster/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 428

Formatting Hypertext Links for Printing
Because printouts are not interactive, it’s more useful for the reader to see the URL of a
hypertext link so that he or she can access that URL at another time. To append the text
of a link’s URL to the linked text, you can apply the following style rule:

a::after {
 content: " (" attr(href) ") ";
}

This style rule uses the after pseudo-element along with the content property and
the attr() function to retrieve the text of the href attribute and add it to the contents
of the a element.

You should be careful when using this technique. Appending the text of a long and
complicated URL will make your text difficult to read and might break your page layout
if the text string extends beyond the boundaries of its container. One way to solve this
problem is to apply the following word-wrap property to the URL text:

word-wrap: type;

where type is either normal (the default) or break-word. A value of normal breaks
a text string only at common break points such as the white space between words. A
value of break-word allows long text to be broken at arbitrary points, such as within a
word, if that is necessary to make the text string fit within its container. Because a URL
has no common break points such as blank spaces, applying the break-word option
ensures that the text string of the URL will be kept to a manageable length by breaking
it as needed to fit within the page layout.

Be sure to include blank
spaces around the href
value so that the URL
does not run into the
surrounding text.

Formatting Hypertext for Printing

• To add the URL after a hypertext link, apply the style rule:

a::after {
 content: " (" attr(href) ") ";
}

• To automatically wrap the text of long URLs as needed, add the following style to the
link text:

word-wrap: break-word;

R
E
FE

R
E
N
C
E

Format the appearance of hypertext links in the document to display each link’s URL
and to display the hypertext links in a black bold font with no underlining, then use the
word-wrap property to keep long URLs from extending beyond the boundaries of their
container.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 429

To format the hypertext links:
w 1. Return to the tf_print.css file in your editor and go to Hypertext Styles

section, inserting the following styles to format the appearance of all
hypertext links, appending the URL of each link:

a {
 color: black;
 text-decoration: none;
}

a::after {
 content: " (" attr(href) ") ";
 font-weight: bold;
 word-wrap: break-word;
}

Figure 5–51 describes the style rules used to format printed hypertext links.

Figure 5–51 Formatting printed hypertext links

displays hypertext
links in black with
no underlining

adds the URL of
the hypertext link
in a bold font

allows the URL to
wrap in order to
preserve page layout

w 2. Save your changes to the style sheet and then reload the tf_articles.html
file in your browser and preview the page printout. Figure 5–52 shows the
appearance of the printed hypertext links found on the second page of
Marjorie’s printout.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 430

Figure 5–52 Preview of the hypertext links on page 2

URL of each
hypertext link

© Gladskikh Tatiana/Shutterstock.com

You can search the web for several free scripting tools that give you more options for
how your URLs should be printed, including scripts that automatically append all URLs
as footnotes at the end of the printed document.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 431

Working with Page Breaks
When a document is sent to a printer, the browser determines the location of the page
breaks unless that information is included as part of the print style sheet. To manually
insert a page break either directly before or directly after an element, apply the
following page-break-before or page-break-after properties:

page-break-before: type;
page-break-after: type;

where type has the following possible values:

• always Use to always place a page break before or after the element
• avoid Use to never place a page break
• left Use to place a page break where the next page will be a left page
• right Use to place a page break where the next page will be a right page
• auto Use to allow the printer to determine whether or not to insert a page break
• inherit Use to insert the page break style from the parent element

For example, if you want each h1 heading to start on a new page, you would apply the
following style rule to insert a page break before each heading:

h1 {
 page-break-before: always;
}

Adding a Page Break

• To set the page break style directly before an element, apply the property

page-break-before: type;

where type is always, avoid, left, right, auto, or inherit.
• To set the page break style directly after an element, apply

page-break-after: type;

R
E
FE

R
E
N
C
E

After the first article, Marjorie wants each subsequent article to start on a new page.
To select every article after the initial article, use the selector

article:nth-of-type(n+2)

which selects the second, third, fourth, and so on article elements in the document
(see “Exploring the nth-of-type Pseudo-class” in Tutorial 2.) To ensure that each of the
selected articles starts on a new page, insert the page break before the article using the
following style rule:

article:nth-of-type(n+2) {
 page-break-before: always;
}

Add this style rule to the print style sheet now.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 432

To print each article on a new page:
w 1. Go to the Page Break Styles section and insert the following style rule:

article:nth-of-type(n+2) {
 page-break-before: always;
}

Figure 5–53 highlights the style rule to insert the article page breaks.

Figure 5–53 Adding page breaks before the document articles

selects every article
after the �rst one

inserts a page break
before the article

w 2. Save your changes to the file and then reload the tf_articles.html file in your
browser and preview the printed page. Verify that the second article in the
document on Community Involvement starts on a new page.

Next, you’ll explore how to remove page breaks from the printed version of your
web page.

Preventing Page Breaks
You can prevent a page break by using the keyword avoid in the page-break-after
or page-break-before properties. For example, the following style rule prevents page
breaks from being added after any heading.

h1, h2, h3, h4, h5, h6 {
 page-break-after: avoid;
}

IN
SI
G
H
T

How Browsers Set Automatic Page Breaks

Browsers establish page breaks automatically, unless you manually specify the page
breaks with a print style sheet. By default, browsers insert page breaks using the
following guidelines:

• Insert all of the manual page breaks as indicated by the page-break-before,
page-break-after, and page-break-inside properties

• Break the pages as few times as possible
• Make all pages that don’t have a forced page break appear to have the same height
• Avoid page breaking inside page elements that have a border
• Avoid page breaking inside a web table
• Avoid page breaking inside a floating element

Other styles from the print style sheet are applied only after attempting to satisfy
these constraints. Note that different browsers apply page breaks in different ways, so
while you can apply general rules to your print layout, you cannot, at the current time,
make the print versions completely consistent across browsers.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 433

Unfortunately in actual practice, most current browsers don’t reliably support
prohibiting page breaks in this fashion. Thus, to prevent page breaks after an element,
you will usually have to manually insert a page break before the element so that the
element is moved to the top of the next page.

For other print layouts, you will want to prevent page breaks from being placed
inside an element. This usually occurs when you have a long string of text that you
don’t want broken into two pages. You can prevent printers from inserting a page break
by using the following page-break-inside property

page-break-inside: type;

where type is auto, inherit, or avoid. Thus, to prevent a page break from appearing
within any image you can apply the following style rule:

img {
 page-break-inside: avoid;
}

Unlike the page-break-before and page-break-after properties, almost all
current browsers support the use of the avoid keyword for internal page breaks.

To avoid page breaks:
w 1. Return to the tf_print.css file in your editor and go to the Page Break Styles

section and insert the following style rule:

img, ol, ul {
 page-break-inside: avoid;
}

Figure 5–54 highlights the style rule to avoid page breaks in lists and images.

Preventing Page Breaks Inside an Element

• To prevent a page break from occurring within an element, apply the style:

page-break-inside: avoid;

R
E
FE

R
E
N
C
E

Marjorie asks you to revise the print style sheet to prevent page breaks from
occurring within images, ordered lists, and unordered lists.

Figure 5–54 Avoiding line breaks within lists and images

avoids line breaks
within lists and images

w 2. Save your changes to the file.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 434

Note that the avoid type does not guarantee that there will never be a page break
within the element. If the content of an element exceeds the dimensions of the sheet of
paper on which it’s being printed, the browser will be forced to insert a page break.

Working with Widows and Orphans
Page breaks within block elements, such as paragraphs, can often leave behind widows
and orphans. A widow is a fragment of text left dangling at the top of page, while an
orphan is a text fragment left at the bottom of a page. Widows and orphans generally
ruin the flow of the page text, making the document difficult to read. To control the size
of widows and orphans, CSS supports the following properties:

widows: value;
orphans: value;

where value is the number of lines that must appear within the element before a page
break can be inserted by the printer. The default value is 2, which means that a widow
or orphan must have at least two lines of text before it can be preceded or followed by
a page break.

If you wanted to increase the size of widows and orphans to three lines for the
paragraphs in a document, you could apply the style rule

p {
 widows: 3;
 orphans: 3;
}

and the browser will not insert a page break if fewer than three lines of a paragraph
would be stranded at either the top or the bottom of the page.

Controlling the Size of Widows and Orphans

• To set the minimum size of widows (lines stranded at the top of a page), apply the
property

widows: value;

where value is the number of lines that must appear at the top of the page before the
page break.

• To set the minimum size of orphans (lines stranded at the bottom of a page), apply
the property

orphans: value;

where value is the number of lines that must appear at the bottom of the page before
the page break.

R
E
FE

R
E
N
C
E

Use the widows and orphans properties now, setting their size to 3 for paragraphs in
the printed version of the Articles of Interest page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 435

To avoid widows and orphans:
w 1. Within the Page Break Styles section of the tf_print.css file, add the

following style rule.

p {
 orphans: 3;
 widows: 3;
}

Figure 5–55 highlights the style rule for setting the size of widows and
orphans.

Figure 5–55 Setting the size of widows and orphans

widows and orphans
set to a minimum of
3 lines each

w 2. Save your changes to the file and then reload the tf_articles.html file in your
browser. Preview the appearance of the printed document. Figure 5–56
shows the final appearance of the printed version of this document.

Figure 5–56 Final print version of the document

page 1 page 3page 2

© Pressmaster/Shutterstock.com; © Gladskikh Tatiana/Shutterstock.com;

Trouble? Depending on your browser and your default printer, your printed
version may look slightly different from the one shown in Figure 5–56.

You’ve completed your work on the print styles for the Articles of Interest page. By
modifying the default style sheet, you’ve created a printout that is easier to read and
more useful to the parents and customers of Trusted Friends Daycare.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 436

PR
O
SK

IL
LS

Written Communication: Tips for Effective Printing

One challenge of printing a web page is that what works very well on the screen often
fails when transferred to the printed page. For example, some browsers suppress
printing background images, so that white text on a dark background, which appears
fine on the computer monitor, is unreadable when printed. Following are some tips
and guidelines you should keep in mind when designing the printed version of your
web page:

• Remove the clutter. A printout should contain only information that is of immediate
use to the reader. Page elements such as navigation lists, banners, and advertising
should be removed, leaving only the main articles and images from your page.

• Measure for printing. Use only those measuring units in your style sheet that are
appropriate for printing, such as points, inches, centimeters, and millimeters.
Avoid expressing widths and heights in pixels because those can vary with printer
resolution.

• Design for white. Because many browsers suppress the printing of background
images and some users do not have access to color printers, create a style sheet
that assumes black text on a white background.

• Avoid absolute positioning. Absolute positioning is designed for screen output.
When printed, an object placed at an absolute position will be displayed on the first
page of your printout, potentially making your text unreadable.

• Give the user a choice. Some readers will still want to print your web page exactly
as it appears on the screen. To accommodate them, you can use one of the many
JavaScript tools available on the web that allows readers to switch between your
screen and print style sheets.

Finally, a print style sheet is one aspect of web design that works better in theory
than in practice. Many browsers provide only partial support for the CSS print styles,
so you should always test your designs on a variety of browsers and browser versions.
In general, you will have the best results with a basic style sheet rather than one that
tries to implement a complicated and involved print layout.

In this tutorial you’ve learned how to apply different styles to different types of
devices and output formats. Marjorie appreciates the work you’ve done and will
continue to rely on your knowledge of media queries, flexible layouts, and print
styles as she redesigns the Trusted Friends website. You can close any open files or
applications now.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 437

R
E
V
IE

W

Session 5.3 Quick Check

 1. What attribute do you add to a link element to indicate that the style sheet is
used for printed media?
a. rel="print"
b. type="print"
c. media="print"
d. print="yes"

 2. What @rule is used for setting the properties of the printed page box?
a. @page
b. @print
c. @margin
d. @printout

 3. To set the right-side printed page to have a 3 centimeter top/bottom margin and
a 5 centimeter left/right margin, use:
a. @page:right {margin: 3cm 5cm;}
b. @page:right {margin: 5cm 3cm;}
c. @page {side: right; margin: 5cm 3cm;}
d. @page.right {margin: 5cm 3cm;}

 4. To apply a page break before every section element, use:
a. section {break: before;}
b. section {page-break: before;}
c. section {break-before: true;}
d. section {break-before: always;}

 5. To prevent a page break from being placed within any header element, use:
a. header {break: never;}
b. header {page-break-inside: avoid;}
c. header {inside-break: never;}
d. header {break: none;}

 6. What style do you apply to allow the browser to wrap long strings of text to a
new line whenever needed?
a. word-break: auto;
b. word-wrap: true;
c. word-wrap: break-word;
d. word-inside-break: always;

 7. To limit the size of widows for all article elements to 3 lines or more, use:
a. article {widows: 2;}
b. article {widows: 3;}
c. article {widows: 3+;}
d. article {widows: >2;}

 8. To display the URL of a hypertext link, use the property:
a. attr(link)
b. attr(url)
c. attr(hypertext)
d. attr(href)

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 438

Coding Challenge 1

Data Files needed for this Coding Challenge: code5-1_txt.html, code5-1_media_txt.css,
code5-1_layout.css, code5-1_logo.jpg, code5-1_photo.jpg

Use media queries to create a responsive design for the menu shown in Figure 5–57. You will need to
create three menu layouts: one for screen widths 500 pixels or less, another for screen widths of 501
pixels to 710 pixels, and a third for screen widths greater than 710 pixels.

C
O

D
E

Figure 5–57 Coding Challenge 5-1 example page

Do the following:

 1. Open the code5-1_txt.html and code5-1_media_txt.css files from the html05 c code1 folder.
Enter your name and the date in each document and save the files as code5-1.html and
code5-1_media.css respectively.

 2. Go to the code5-1.html file in your editor. Within the head section insert link elements linking
the page to the code5-1_layout.css and code5-1_media.css files.

 3. Add a viewport meta tag to the document head to set the width of the layout viewport equal to
the width of the device and set the initial scale of the viewport to 1.0. Review the contents of the
file and then save your changes.

 4. Go to the code5-1_media.css file in your editor.

©
 C

ou
rt

es
y

Pa
tr

ic
k

C
ar

ey

©
 C

ou
rt

es
y

Pa
tr

ic
k

C
ar

ey

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 439

 5. Create a media query for devices with a maximum width of 500 pixels. Within the query do the
following:
a. Set the display of the img element within the article element to none.
b. Center the text contained within the ul element belonging to the submenu class.

 6. Create a media query for devices with a minimum width of 501 pixels. Within the query do the
following:
a. Float the nav element on the left page margin.
b. Set the width of the nav element to 130 pixels and the height to 400 pixels.
c. Set the top margin of the nav element to 30 pixels, the right margin to 25 pixels, and the

bottom and left margins to 0 pixels.
 7. Create a media query for devices with a minimum width of 710 pixels. Within the query do the

following:
a. Set the float property of the nav element to none, its width to 100% and its height to auto.

Set the nav element margins to 0.
b. Set the display of ul elements of the mainmenu class to flex with the flex flow in the row

direction with no wrapping; justify the contents of the flexbox in the center.
c. Set the flex property of li elements with the ul.mainmenu element to have a growth factor

of 0, a shrink factor of 1, and a basis value of 120 pixels.
 8. Save your changes to the file and then view the page under different screen widths, verifying that

the menu format changes as the screen width changes as shown in Figure 5–57.
 9. Submit the completed file to your instructor.

Coding Challenge 2

Data Files needed for this Coding Challenge: code5-2_txt.html, code5-2_flex_txt.css,
code5-2_layout.css, and 13 image files

Figure 5–58 shows the layout of a page that displays cards containing social media icons. Create
this page using CSS flex styles so that the icons are always laid out in rows and columns for any
screen width.

C
O

D
E

Figure 5–58 Coding Challenge 5-2 example page

©
 2

01
9

G
ra

p
hi

cs
Fu

el

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 440

Do the following:

 1. Open the code5-2_txt.html and code5-2_flex_txt.css files from the html05 c code2 folder. Enter
your name and the date in each document and save the files as code5-2.html and code5-2_flex.
css respectively.

 2. Go to the code5-2.html file in your editor. Within the head section insert link elements linking
the page to the code5-2_layout.css and code5-2_flex.css files. Review the contents of the file and
then save your changes.

 3. Go to the code5-2_flex.css file in your editor.
 4. Display the section element as a flexbox. Set the flow of items within the flexbox to go in row

order with reverse wrapping so that the first item (Facebook) appears in the bottom-left corner
and the last item (E-mail) appears in the top-right corner.

 5. Set the growth and shrink rate of the div elements of the card class to 1 and 1. Set the flex basis
of those elements to 200 pixels.

 6. Display each div element of the card class itself as a flexbox.
 7. Apply the following flex layout to the items within the card div elements:

a. Lay out the items in column order with no wrapping.
b. Justify the content of the items within the flexbox with space between.
c. Center each of the items with respect to the cross axis.

 8. Save your changes to the style sheet file and then open code5-2.html in your browser. Test the
layout under different screen widths, verifying that the div cards always fill up the page grid and
that for a width small enough, the contents are laid out in a single column.

 9. Submit the completed file to your instructor.

Coding Challenge 3

Data Files needed for this Coding Challenge: code5-3_txt.html, code5-3_print_txt.css,
code5-3_layout.css, and 1 image file

A list of the top 15 travel sites on the web is shown in Figure 5–59. The style sheet code for the screen
version has already been written, but you have been tasked to create the style sheet for the print
version. Complete the web page by writing the print styles and linking them to the web page.

C
O

D
E

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 441

Figure 5–59 Coding Challenge 5-3 example page

Do the following:

 1. Open the code5-3_txt.html and code5-3_print_txt.css files from the html05 c code3 folder.
Enter your name and the date in each document and save the files as code5-3.html and
code5-3_print.css respectively.

 2. Go to the code5-3.html file in your editor. Within the head section insert link elements linking
the page to the code5-3_layout.css and code5-3_print.css files. Use the code5-3_layout.css file
for screen output and the code5-3_print.css file for printed output. Review the contents of the file
and then save your changes.

 3. Go to the code5-3_print.css file in your editor.
 4. Set the printed page size to 8.5 by 11 inches with a 1-inch margin.
 5. Remove all underlining from hypertext links.
 6. Prevent the browser from inserting page breaks within any nav element.
 7. Set the line height of every li element nested within a nav and ol element to 0.3 inches.
 8. Use the after pseudo-element to display printed hypertext link in the following format: link [url]

and add the following styles to the after pseudo-element:
a. Display the url text as an inline block.
b. Set the left margin of the url text to 20 pixels.
c. Set the value of the word-wrap property to "break-word".

 9. Save your changes to the file.
10. View the printed version of the page in your browser to verify that it resembles Figure 5–59.
11. Submit the completed file to your instructor.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 442

Coding Challenge 4

Data Files needed for this Coding Challenge: code5-4_txt.html, code5-4_debug_txt.css,
code5-4_layout.css, code5-4_logo.jpg, code5-4_photo.jpg

You have been asked to revise a website involving responsive design that contains several errors. A
preview of the page under different screen widths is shown in Figure 5–60. Fix the errors in the code
for the HTML and CSS file.

D
E

B
U

G

Figure 5–60 Coding Challenge 5-4 example page

Do the following:

 1. Open the code5-4_txt.html and code5-4_debug_txt.css files from the html05 c code4 folder.
Enter your name and the date in each document and save the files as code5-4.html and
code5-4_debug.css respectively.

 2. Go to the code5-4.html file in your editor. Within the head section insert link elements linking
the page to the code5-4_layout.css and code5-4_debug.css files. Review the contents of the file.

 3. There is a single error within the head section of the page. Locate the error and fix it. Save your
changes to the file.

 4. Go to the code5-4_debug.css file in your editor. There are 8 separate syntax errors in the
stylesheet. Locate and correct all eight errors and then save your changes.

 5. Test both the code5-4.html andcode5-4_debug.css files in a validator to confirm that both pass
validation with no errors or warnings reported.

 6. View the code5-4.html file in your browser under different screen widths and compare your
page to Figure 5–60, confirming that your page layout matches the one shown in the figure.

 7. Submit the completed file to your instructor.

©
 C

ou
rt

es
y

Pa
tr

ic
k

C
ar

ey
©

 C
ou

rt
es

y
Pa

tr
ic

k
C

ar
ey

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 443

Review Assignments

Data Files needed for the Review Assignments: tf_print2_txt.css, tf_styles4_txt.css, tf_tips_txt.html,
2 CSS files, 4 PNG files

Marjorie meets with you to discuss the redesign of the blog page showing parenting tips. As with
the other pages you’ve worked on, she wants this page to be compatible with mobile devices, tablet
and desktop devices, and printers. Marjorie has already written the page content and has done much
of the initial design work. She needs you to complete the project by writing media queries for the
different display options. Figure 5–61 shows a preview of the mobile design and the desktop design.

mobile version desktop version

© Courtesy Patrick Carey

Figure 5–61 Parenting Tips page

You’ll use several flexboxes to create the layout for these two designs so that the page content
automatically rescales as the screen width changes.

Complete the following:

 1. Use your HTML editor to open the tf_tips_txt.html, tf_styles4_txt.css, and tf_print2_txt.css files
from the html05 c review folder. Enter your name and the date in the comment section of each
file, and save them as tf_tips.html, tf_styles4.css, and tf_print2.css respectively.

 2. Go to the tf_tips.html file in your editor. Add a viewport meta tag to the document head to set
the width of the layout viewport equal to the width of the device and set the initial scale of the
viewport to 1.0.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 444

 3. Create links to the following style sheets: a) the tf_base.css file to be used with all devices, b) the
tf_styles4.css file to be used with screen devices, and c) the tf_print2.css file to be used for
printed output.

 4. Take some time to study the contents and structure of the document, paying special attention to
the IDs and class names of the elements, and then save your changes.

 5. Go to the tf_styles4.css file in your editor. Note that Marjorie has placed all of her styles in the
tf_designs.css file and imported them into this style sheet. You will not need to edit that style
sheet file, but you might want to view it to become familiar with her style rules.

 6. Go to the General Flex Styles section. Within this section, you’ll create a flexible layout that
varies in response to changing screen widths.

 7. In the General Flex Styles section create a style rule for the body element that displays the page
body as a flexbox flowing in the row direction, wrapping content to a new line as needed.

 8. The page content is divided into two section elements with IDs of left and right. The left section
does not need as much of the screen width. Create a style rule for the left section that sets its flex
growth and shrink rates to 1 and 8 respectively and sets its flex basis size to 130 pixels.

 9. The right section requires more screen width. Create a style rule for the right section that sets its
flex growth and shrink values to 8 and 1 and sets its flex basis size to 351 pixels.

10. Next, set the display of the section element with class ID of tips as a flexbox. Have the content of
the flexbox flow in the row direction with row wrapping enabled.

11. Create a style rule for the article element that lays it out with a flex growth value of 2, flex
shrink value of 1, and a flex basis size of 351 pixels.

12. The biographical asides within each tips section need to occupy less screen space. Create a style
rule for the aside element that lays it out with a flex growth value of 1, flex shrink value of 2,
and a flex basis size of 250 pixels.

13. Finally, the horizontal navigation list at the top of the page will also be treated as a flexbox.
Create a style rule for the nav.horizontal ul selector that displays it as a flexbox in column
orientation with wrapping.

14. Go to the Mobile Devices section and create a media query for screen devices with a maximum
width of 480 pixels.

15. For mobile devices, the vertical list of links to archived parenting tips should be displayed in
several columns at the bottom of the page. Within the media query you created in the last step,
add the following style rules:
a. for the nav.vertical ul selector, create a style rule that displays it as a flexbox in column

orientation with wrapping. Set the height of the element to 240 pixels.
b. to give the section element with an ID of left a flex order value of 99 to place it near the

bottom of the page.
c. to give the body > footer selector an order value of 100 to put it at the page bottom.

16. Marjorie wants to hide the navigation list at the top of the page when viewed on a mobile
device unless the user hovers (or taps) a navicon. Using the technique shown in this tutorial, add
the following style rules to set the behavior of the navicon within the media query for mobile
devices:
a. Display the navicon by creating a style rule for the a#navicon selector to display it as a block.
b. Set the display property of the nav.horizontal ul selector to none.
c. Display the navigation list contents in response to a hover or touch by creating a style rule for

the a#navicon:hover+ul, nav.horizontal ul:hover selector that sets its display value to
block.

17. Go to the Tablets and Desktop Devices section. Create a media query for screen devices with a
width of at least 481 pixels. Under the wider screens, the contents of the horizontal navigation
list at the top of the page should be displayed in several columns. In order to have the list items
wrap to a new column, add a style rule to the media query that sets the height of the ul element
within the horizontal navigation list to 160 pixels.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 445

18. Save your changes to the style sheet and then open the tf_tips.html file in your browser or
device emulator. Verify that as you change the screen width the layout of the page automatically
changes to match the layout designs shown in Figure 5–61.

 Next, you’ll create the print styles for the Parenting Tips page. Figure 5–62 shows a preview of the
output on a black and white printer.

Figure 5–62 Parenting Tips print version

page 1 page 2

© Courtesy Patrick Carey

19. Go to the tf_print2.css file in your editor. Go to the Hidden Objects section and hide the display
of the following page elements: all navigation lists, the h1 heading in the body header, the left
section element, and the body footer.

20. Go to the Page Box Styles section and set the page size to 8.5 inches by 11 inches with a margin
of 0.5 inches.

21. Go the Header Styles section and add a style rule that displays the logo image as a block with a
width of 100%.

22. Go to the Typography Styles section and add the following style rules for the text in the printed
pages:
a. For headers within the article element, set the bottom margin to 0.2 inches.
b. For h1 headings within the article element, set the font size to 24 points and the line height

to 26 points.
c. For the aside element, set the background color to rgb(211, 211, 211) and add a top margin

of 0.3 inches.
d. For h1 headings in aside elements, set the font size to 18 points and the line height to 20

points.
e. For images within aside elements, set the width to 0.8 inches.
f. For paragraphs, set the font size to 12 points with a top and bottom margin of 0.1 inches.

23. Go to the Hypertext Styles section and add style rules to display all hypertext links in black with
no underline. Also, insert a style rule that adds the text of the URL after the hypertext link in bold
with the word-wrap property set to break-word.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 446

24. Go to the Page Break Styles section and add the following style rules to
a. insert page breaks after every aside element.
b. never allow a page break within an ol, ul, or img element.
c. set the size of widows and orphans within paragraphs to 3 lines each.

25. Save your changes to the file.
26. Reload the tf_tips.html file in your browser and preview its printed version. Verify that your pages

resemble those shown in Figure 5–62 (there may be differences depending on your browser and
your printer).

Case Problem 1

Data Files needed for this Case Problem: gp_cover_txt.html, gp_page1_txt.html, gp_page2_txt.html,
gp_page3_txt.html, gp_layout_txt.css, gp_print_txt.css, 2 CSS files, 21 PNG files

Golden Pulps Devan Ryan manages the website Golden Pulps, where he shares tips on collecting
and fun stories from the “golden age of comic books”—a period of time covering 1938 through the
early 1950s. Devan wants to provide online versions of several classic comic books, which are now
in the public domain.

He’s scanned the images from the golden age comic book, America’s Greatest Comics 001, published
in March, 1941, by Fawcett Comics and featuring Captain Marvel. He’s written the code for the HTML
file and wants you to help him develop a layout design that will be compatible with mobile and desktop
devices. Figure 5–63 shows a preview of the mobile and desktop version of a page you’ll create.

Figure 5–63 Golden Pulps sample page

mobile version desktop version

© Courtesy Patrick Carey; Source: Comic Book Plus

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 447

Complete the following:

 1. Using your editor, open the gp_cover_txt.html, gp_page1_txt.html, gp_page2_txt.html,
gp_page3_txt.html, gp_layout_txt.css, and gp_print_txt.css files from the html05 c case1 folder.
Enter your name and the date in the comment section of each file, and save them as gp_cover.
html, gp_page1.html, gp_page2.html, gp_page3.html, gp_layout.css, and gp_print.css respectively.

 2. Go to the gp_cover.html file in your editor. Add a viewport meta tag to the document head,
setting the width of the layout viewport to the device width and setting the initial scale of the
viewport to 1.0.

 3. Create links to the following style sheets: a) the gp_reset.css file to be used with all devices, b)
the gp_layout.css file to be used with screen devices, and c) the gp_print.css file to be used for
printed output.

 4. Take some time to study the contents and structure of the file. Note each panel from the comic
book is stored as a separate inline image with the class name panel along with class names of
size1 to size4 indicating the size of the panel. Size1 is the largest panel down to size4, which is
the smallest panel. Close the file, saving your changes.

 5. Repeat Steps 2 through 4 for the gp_page1.html, gp_page2.html, and gp_page3.html files.
 6. Go to the gp_layout.css file in your editor. In this style sheet, you’ll create the layout styles

for mobile and desktop devices. Note that Devan has used the @import rule to import the
gp_designs.css file, which contains several graphical and typographical style rules.

 7. Go to the Flex Layout Styles section and insert a style rule to display the body element as a
flexbox oriented as rows with wrapping.

 8. The page body content has two main elements. The section element with the ID sheet contains
the panels from the comic book page. The article element contains information about the
comic book industry during the Golden Age. Devan wants more of the page width to be
given to the comic book sheet. Add a style rule that sets the flex growth and shrink rate of the
section#sheet selector to 3 and 1 respectively and set its flex basis size to 301 pixels.

 9. Less page width will be given to the article element. Create a style rule to set its flex growth
and shrink values to 1 and 3 respectively and set its flex basis size to 180 pixels.

10. Go to the Mobile Devices section and create a media query for screen devices with a maximum
width of 480 pixels.

11. With mobile devices, Devan wants each comic book panel image to occupy a single row. Create a
style rule that sets the width of img elements belonging to the panel class to 100%.

12. For mobile devices, Devan wants the horizontal navigation links to other pages on the Golden
Pulps website to be displayed near the bottom of the page. Within the media query, set the flex
order of the nav.horizontal selector to 99.

13. Create a style rule to set the flex order of the body > footer selector to 100.
14. Go to the Tablet and Desktop Devices: Greater than 480 pixels section and create a media query

that matches screen devices with widths greater than 480 pixels.
15. For tablet and desktop devices, you’ll lay out the horizontal navigation list as a single row of

links. Within the media query, create a style rule for the nav.horizontal ul selector that displays
that element as a flexbox, oriented in the row direction with no wrapping. Set the height of the
element to 40 pixels.

16. For the nav.horizontal ul li selector set the flex growth shrink, and basis size values to 1, 1, and
auto respectively so that each list items grows and shrinks at the same rate.

17. With wider screens, Devan does not want the panels to occupy their own rows as is the case
with mobile devices. Instead, within the media query create style rules, define the width of the
different classes of comic book panel images as follows:
a. Set the width of size1 img elements to 100%.
b. Set the width of size2 img elements to 60%.
c. Set the width of size3 img elements to 40%.
d. Set the width of size4 img elements to 30%.

18. Save your changes to the file and then open the gp_cover.html file in your browser or device
emulator. Click the navigation links to view the contents of the cover and first three pages. Verify

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 448

that with a narrow screen the panels occupy their own rows and with a wider screen the sheets
are laid out with several panels per row. Further verify that the horizontal navigation list is placed
at the bottom of the page for mobile devices.

19. Devan also wants a print style that displays each comic book sheet on its own page and with
none of the navigation links. Go to the gp_print.css style sheet in your editor. Add style rules to
a. hide the nav, footer, and article elements.
b. set the width of the element referenced by the section#sheet selector to 6 inches. Set the top/

bottom margin of that element to 0 inches and the left/right margin to auto in order to center
it within the printed page.

c. set the width of img elements belong to the size1 class to 5 inches, size2 images to 3 inches,
size3 images to 2 inches, and size4 images to 1.5 inches.

20. Save your changes to the file and then reload the contents of the comic book pages in your
browser and preview the printed pages. Verify that the printed page displays only the website
logo, the name of the comic book, and the comic book panels.

Case Problem 2

Data Files needed for this Case Problem: cw_home_txt.html, cw_styles_txt.css, 2 CSS files,
10 PNG files

Cauli-Wood Gallery Sofia Fonte is the manager of the Cauli-Wood Gallery, an art gallery and coffee
shop located in Sedona, Arizona. She has approached you for help in redesigning the gallery’s
website to include support for mobile devices and tablets. Your first project will be to redesign the
site’s home page following the principles of responsive design. A preview of the mobile and desktop
versions of the website’s home page is shown in Figure 5–64.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 5 Designing for the Mobile Web | HTML 5 and CSS HTML 449

Sofia has already written much of the HTML code and some of the styles to be used in this project.
Your job will be to finish the redesign and present her with the final version of the page.

Complete the following:

 1. Using your editor, open the cw_home_txt.html and cw_styles_txt.css files from the html05 c
case2 folder. Enter your name and the date in the comment section of each file, and save them
as cw_home.html and cw_styles.css respectively.

 2. Go to the cw_home.html file in your editor. Within the document head, insert a meta element
that sets the browser viewport for use with mobile devices. Also, create links to cw_reset.css and
cw_styles.css style sheets. Take some time to study the contents and structure of the document
and then close the file saving your changes.

 3. Return to the cw_styles.css file in your editor. At the top of the file, use the @import rule to
import the contents of the cw_designs.css file, which contains several style rules that format the
appearance of different page elements.

 4. At the bottom of the home page is a navigation list with the ID bottom containing
several ul elements. Sofia wants these ul elements laid out side-by-side. Create a style rule for the
nav#bottom selector displaying its element as a flexbox row with no wrapping. Set the justify-
content property so that the flex items are centered along the main axis.

 5. For the nav#bottom ul selector, create a style rule to set the flex growth rate to 0, the shrink rate
to 1, and the basis value to 150 pixels.

Figure 5–64 Cauli-Wood Gallery home page

mobile version desktop version

Right: © Tischenko Irina/Shutterstock.com; © re_bekka/Shutterstock.com; © Boyan Dimitrov/Shutterstock.com;
© rubtsov/Shutterstock.com; © Fotocrisis/Shutterstock.com; © Anna Ismagilova/Shutterstock.com;
© DeepGreen/Shutterstock.com; Source: Facebook; Source: Twitter, Inc.
Left: © Tischenko Irina/Shutterstock.com; © Courtesy Patrick Carey; © re_bekka/Shutterstock.com;
© Anna Ismagilova/Shutterstock.com; © rubtsov/Shutterstock.com; Source: Facebook; Source: Twitter, Inc.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 5 Designing for the Mobile WebHTML 450

 6. Sofia wants more highly contrasting colors when the page is displayed in a mobile device. Create
a media query for mobile screen devices with maximum widths of 480 pixels. Within that media
query, insert a style rule that sets the font color of the body element to rgb(211, 211, 211) and
sets the body background color to rgb(51, 51, 51).

 7. Sofia also wants to reduce the clutter in the mobile version of the home page. Hide the following
elements for mobile users: the aside element, any img element within the article element,
and the spotlight section element.

 8. At the top of the web page is a navigation list with the ID top. For mobile devices, create a style
rule for the nav#top ul selector, displaying the element as a flexbox row with wrapping. For each
list item within the nav#top ul selector, set the font size to 2.2em. Size the list items by setting
their flex values to 1 for the growth and shrink rates and 130 pixels for the basis value.

 9. Under the mobile layout, the six list items in the top navigation list should appear as square
blocks with different background images. Using the selector nav#top ul li:nth-of-type(1)
for the first list item, create a style rule that changes the background to the background image
cw_image01.png. Center the background image with no tiling and size it so that the entire image
is contained within the background.

 10. Repeat the previous step for the next five list items using the same general format. Use the
cw_image02.png file for background of the second list item, the cw_image03.png file for the
third list item background, and so forth up through the nav#top ul li:nth-of-type(6) selector.

 11. Sofia has placed hypertext links for the gallery’s phone number and e-mail address
in a paragraph with the ID links. For mobile users, she wants these two hypertext links spaced
evenly within the paragraph that is displayed below the top navigation list. To format these links,
create a style rule that displays the element referenced by the p#links selector as a flexbox row
with no wrapping, then add a style that sets the value of the justify-content property to
space-around.

12. She wants the telephone and e-mail links to be prominently displayed on mobile devices. For
each p#links a selector, apply the following style rule that: a) displays the link text in white on
the background color rgb(220, 27, 27), b) sets the border radius around each hypertext to 20
pixels with 10 pixels of padding, and c) removes any underlining from the hypertext links.

13. Next, you’ll define the layout for tablet and desktop devices. Create a media query for screen
devices whose width is 481 pixels or greater. Within this media query, display the body element
as a flexbox in row orientation with wrapping.

14. The page body has four children: the header, the footer, the article element, and the aside
element. The article and aside elements will share a row with more space given to the
article element. Set the flex growth, shrink, and basis values of the article element to 2, 1,
and 400 pixels. Set those same flex values for the aside element to 1, 2, and 200 pixels.

 15. For tablet and desktop devices, the top navigation list should be displayed as a
horizontal row with no wrapping. Enter a style rule for the nav#top ul selector to display that
element as a flexbox with a background color of rgb(51, 51, 51) and a height of 50 pixels. Use
the justify-content and align-items property to center the flex items within that flexbox
both horizontally and vertically.

16. For the nav#top ul li selector, create a style rule for those list items, setting the flex growth rate
to 0, the flex shrink rate to 1, and the basis value to 80 pixels.

17. Sofia doesn’t want the links paragraph displayed for tablet and desktop devices. Complete the
media query for tablet and desktop devices by creating a style rule for the p#links selector to
hide the paragraph.

18. Save your changes to the style sheet and then open the cw_home.html file in your browser or
device emulator. Verify that the layout and contents of the page switch between the mobile
version and the tablet/desktop version shown in Figure 5–64 as the screen width is increased and
decreased.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 451

OBJECTIVES

Session 6.1
• Explore the structure of a web

table
• Create table heading and data

cells
• Apply CSS styles to a table
• Create cells that span multiple

rows and columns
• Add a caption to a table

Session 6.2
• Create row and column groups
• Apply styles to row and column

groups
• Display page elements in table

form
• Create a multi-column layout

Working with
Tables and
Columns
Creating a Program Schedule for a Radio
Station

Case | Dakota Listener Radio
Kyle Mitchell is the program director at DLR (Dakota Listener Radio),
a public radio station broadcasting out of Bismarck, North Dakota.
Kyle has begun upgrading the DLR website to provide listeners with
more information about the station’s programs and policies.

The new website will include pages listing the DLR morning,
afternoon, and evening schedules. Kyle believes that this information
is best conveyed to the listener in a table, with days arranged in
separate table columns and times within each day placed in separate
table rows. Kyle has never created a web table, so he has come to
you for help. He wants the table to be informative and easy to read,
so you enhance the appearance of the web page with CSS styles.

TUTORIAL 6

STARTING DATA FILES

HTML 451

tutorial

dlr_evenings_txt.html
dlr_lw0414_txt.html
dlr_columns_txt.css
dlr_tables_txt.css
+ 7 files

review

dlr_mornings_txt.html
dlr_columns2_txt.css
dlr_tables2_txt.css
+ 5 files

code1

code6-1_txt.html
code6-1_table_txt.css
+ 1 file

code2

case1

code3

case2

code4

code6-2_txt.html
code6-2_table_txt.css
+ 1 file

code6-3_txt.html
code6-3_columns_txt.css
+ 2 files

html06

code6-4_txt.html
code6-4_debug_txt.css
+ 1 file

mi_pricing_txt.html
mi_tables_txt.css
+ 8 files

lht_sept_txt.html
lht_columns_txt.css
lht_tables_txt.css
+ 6 files

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 452

Session 6.1 Visual Overview:

Cells that cover several
rows are indicated by
the rowspan attribute.

Cells that cover several
columns are indicated by
the colspan attribute.

The td element encloses
the cells that contain
table data.

The tr element
encloses a table row.

The th element encloses
the table header cells.

The caption element
identi�es the table
caption.

The table element
encloses a web table.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 453

Structure of a Web Table

The border-collapse
property determines which
table borders are separated
or collapsed into each other.

The caption-side property
places the table caption at
either the top or bottom of
the web table.

The �rst table row
is made up of all
header cells.

The browser renders the
web table with bold
headers and spanning cells.

The two data
cells span seven
columns.

The table caption
is placed at the
bottom-right
corner of the table.

These four data
cells span two
rows each.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 454

Introducing Web Tables
In this tutorial, you explore how to use HTML to mark table data in the form of a web
table. A web table is an HTML structure consisting of multiple table rows with each
row containing one or more table cells. The cells themselves can contain additional
HTML elements such as headings, paragraphs, inline images, and navigation lists. Thus,
a web table is an effective tool for organizing and classifying your web page content.

Marking Tables and Table Rows
Each web table consists of a table element containing a collection of table rows
marked using the tr (table row) element in the following general structure

<table>
 <tr>
 table cells
 </tr>
 <tr>
 table cells
 </tr>
 …
</table>

where table cells are the cells within each row. Tables are considered block-level
elements appearing by default on a new line within the web page. The dimension or
size of the table is defined by the number of table rows and the number of cells within
those rows.

To see how table content can be created using the table and tr elements, you
meet with Kyle in his office at DLR to discuss the design for his page describing DLR’s
evening schedule. He wants you to place the schedule in a table, similar to the one
shown in Figure 6–1.

Sketch your tables
beforehand so that you can
visualize the placement of
the table rows and cells.

Figure 6–1 DLR nightly schedule

Time Monday Tuesday Wednesday Thursday Friday Saturday Sunday

6:00 National
News

National
News

National
News

National
News

National
News

National
News

National
News

6:30

7:00 Opera Fest Radio U Science
Week

The Living
World

Word
Play

Agri-Week Folk Fest

Brain Stew Bismarck
Forum

7:30

8:00 The Classical Music Connection Old Time
Radio

Saturday
Nite
Jazz

The Indie
Connection

8:30

9:00

9:30

10:00

The Inner
Mind

Open Mike
Nite

World
News
Feed

World
News
Feed

World
News
Feed

World
News
Feed

World
News
Feed

World
News
Feed

World
News
Feed

World
News

World
News

World
News

World
News

World
News

World
News

World
News

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 455

Kyle’s proposed table contains 10 rows: the first row contains headings for each of
the table columns and the remaining rows list the DLR programs airing from 6:00 p.m.
to 10:30 p.m. in half-hour intervals. Notice that some programs last longer than one-
half hour and thus will cover multiple rows. Kyle has already created that web page
that will contain this table and written style sheets for the page’s layout, graphics, and
typography.

Marking a Web Table and Table Rows

• To mark a web table and the table rows, enter

<table>
 <tr>
 table cells
 </tr>
 <tr>
 table cells
 </tr>
 …
</table>

where <table> marks the table element, <tr> marks each table row, and table
cells are the cells within each row.

R
E
FE

R
E
N
C
E

You start working on his page by adding the first three rows of his proposed table
within a table element. You also include a class attribute, placing the table in the
schedule class to distinguish it from other tables that may exist on the DLR website.

To start working on the evening schedule page:
w 1. Use your editor to open the dlr_evenings_txt.html file from the html06 c

tutorial folder. Enter your name and the date in the comment section of the
file and save it as dlr_evenings.html.

w 2. Scroll down the document to the section element with the id “main” and
add the following table and tr elements after the initial paragraph in the
section.

<table class="schedule">
 <tr>
 </tr>
 <tr>
 </tr>
 <tr>
 </tr>
</table>

Figure 6–2 shows the placement of the table and tr elements in the
document.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 456

At this point, you have a table with three rows but no content. Your next task is to
add table cells to each of those rows.

Marking Table Headings and Table Data
Web tables support two types of table cells: header cells that contain content usually
placed at the top of a column or the beginning of a row and data cells that contain
content within those columns and rows. A header cell is marked using the th element.
The default browser style for header cells is to display the text of the header in bold font
and centered horizontally within the cell.

Kyle wants you to mark the cells in the first row of the radio schedule as header cells
because those cells contain information describing the contents of each table column.
He also wants the first cell in each of the remaining rows to be marked as a header cell
because those cells identify the time of day in which each program airs. You start by
adding header cells to the first three rows of the schedule table.

w 3. Take some time to scroll through the rest of the document to become familiar
with its content and structure and then save your changes to the file, but do
not close it.

Figure 6–2 Marking a table and table rows

class attribute with a
value of “schedule”
sets this table in its
own class

tr element marks
each table row

table element marks
the web table

To mark table header cells:
w 1. In the first row of the table you just created in the dlr_evenings.html file,

create header cells by inserting the following th elements:

<th>Time</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Sat</th>
<th>Sun</th>

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 457

w 4. Save your changes to the file and then load dlr_evenings.html in your
browser. Verify that the table shows three rows: the first row contains the text
“Time” followed by the days of the week. The second and third rows display
the 6:00 PM and 6:30 PM times. All text is displayed in a bold font.

Note that since these headers cells are nested within a tr element, they will
all appear within the same table row.

w 2. In the second row of the table, insert the following th element:

<th>6:00 PM</th>

w 3. In the third table row, insert the header cell:

<th>6:30 PM</th>

These cells are the headers for your table rows. Figure 6–3 highlights the
newly added header cells in the table.

Figure 6–3 Marking table header cells

the th element marks
header cells placed in
the �rst row to identify
the content of each
column

header cells at the start
of each row identi�es
the row content

Data cells that do not function as headers for table rows or columns are marked
using the td element. The default browser style for data cells is to display data cell text
as unformatted text, left-aligned within the cell.

Marking Header Cells and Data Cells

• To mark a header cell, enter

<th>content</th>

where content is the content of the header cell, such as text or images.
• To mark a data cell, enter

<td>content</td>

R
E
FE

R
E
N
C
E

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 458

DLR airs national and world news at 6:00 and 6:30, respectively, every night of the
week. You use table data cells to mark the names of these DLR programs.

To mark table data cells:
w 1. Within the second row of the table, add the following seven td elements

after the initial th element:

<td>National News</td>
<td>National News</td>
<td>National News</td>
<td>National News</td>
<td>National News</td>
<td>National News</td>
<td>National News</td>

w 2. Within the third table row, insert another seven td elements listing the World
News program after the initial th element:

<td>World News</td>
<td>World News</td>
<td>World News</td>
<td>World News</td>
<td>World News</td>
<td>World News</td>
<td>World News</td>

Figure 6–4 highlights the newly added data cells in the second and third rows
of the table.

Figure 6–4 Marking table data cells

the td element marks
table cell content that is
not considered the head
of a row or column

w 3. Save your changes to the file and then open the dlr_evenings.html file
in your browser. Figure 6–5 shows the current appearance of the program
schedule table.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 459

The table you created for Kyle has three rows and eight columns. The number of
columns is determined by the row with the most cells. Thus, if one row has four cells
and another row has five, the table will have five columns. The row with only four cells
will have an empty space at the end, where the fifth cell should be.

The structure of the program schedule table is a bit difficult to see because there
are no borders around the table, table rows, or table cells. You can modify the table’s
appearance through the use of a CSS style sheet. You start creating this style sheet now,
first focusing on adding borders to the table.

Adding Table Borders with CSS
Using the CSS border property, borders can be added to any part of a web table,
including the table itself, table rows, and individual table cells. The borders need not be
the same styles, for example, you can have one set of borders for the table rows and a
different set of borders for individual cells within those rows.

Kyle would like you to add a 10-pixel purple border in the outset style around the
entire program schedule table. He also wants the table background color changed to
white, the font size of the table text set to 0.75em, and the width set to 100% so that
it extends through the entire width of the main page section. Finally, Kyle wants you
to add a 1-pixel solid gray border around each table cell. Add these style rules to the
dlr_tables.css style sheet file, which you create now.

Note that the header cells are displayed in a bold font while the data cells
are not because of the default table styles employed by the browser.

Trouble? If your table looks different from the one shown in Figure 6–5, you
might have inserted an incorrect number of table cells. Check your code
against the code shown in Figure 6–4.

Figure 6–5 Initial layout of the program schedule table

header cells

header cells

data cells
© Courtesy Patrick Carey

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 460

To add borders to a table:
w 1. Use your editor to open the dlr_tables_txt.css file from the html06 c tutorial

folder. Enter your name and the date in the comment section of the file and
save it as dlr_tables.css.

w 2. Within the Table Styles section, add the following style rule to place a border
around tables belonging to the schedule class:

table.schedule {
 background: white;
 border: 10px outset rgb(153, 0, 153);
 font-size: 0.75em;
 width: 100%;
}

w 3. Within the Table Cells Styles section, add the following style rule to place a
border around each header cell and data cell within tables belonging to the
schedule class.

table.schedule th, table.schedule td {
 border: 1px solid gray;
}

Figure 6–6 highlights the newly added styles to create the table borders.

Figure 6–6 Adding styles to the table and table cells

adds a 1-pixel solid
gray border to every
table cell

adds a 10-pixel purple
outset border around
the entire table

sets the table
background to white

sets the table width
to 100% of its parent
element

sets the table font
size to 0.75em

w 4. Save your changes to the style sheet and then reload the dlr_evenings.html
file in your editor.

w 5. Within the document head and directly before the closing </head> tag, add
the following link element to link the document to the dlr_tables.css style
sheet:

<link href="dlr_tables.css" rel="stylesheet" />

w 6. Save your changes to the file and then reload the dlr_evenings.html file in
your browser.

Figure 6–7 shows the revised appearance of the table with the newly added
borders.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 461

The default browser style is to separate the border around the entire table from the
borders around individual table cells, creating additional space in the table layout.
Another style choice is to collapse the borders into each other. Figure 6–8 shows the
impact of both style choices.

Figure 6–7 Program schedule with borders

borders around
table cells

border around
the entire table

Figure 6–8 Separate and collapsed borders

separate borders collapsed borders

To choose between the separate or collapsed borders model, apply the following
border-collapse property to the table element

border-collapse: type;

where type is either separate (the default) or collapse. If the separate borders
model is used, the spacing between the borders is set by adding the following
border-spacing property to the table element

border-spacing: value;

where value is the space between the borders in one of the CSS units of measure.
For example, the following style rule specifies that all borders within the table should
be separated by a distance of 10 pixels:

table {
 border-collapse: separate;
 border-spacing: 10px;
}

In the collapsed borders model, borders from adjacent elements are merged together
to form a single border, but the borders are not simply moved together, instead they
are joined in a new style that combines features of both borders. For example, if

If a doctype is not included
in the HTML code, the
border-collapse
property can produce
unexpected results in
versions of Internet
Explorer 8 or earlier.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 462

two adjacent 1-pixel-wide borders are collapsed together, the resulting border is not
2-pixels wide, but only 1-pixel wide.

The situation is more complicated when adjacent borders have different widths,
styles, or colors that cannot be easily combined. For example, how would you combine
an outset red border and a solid blue border into a single border of only one color
and style? To reconcile the differences between adjacent borders, CSS employs the
following five rules, listed in order of decreasing precedence:

 1. If either border has a border style of hidden, the collapsed border is hidden.
 2. A border style of none is overridden by any other border style.
 3. If neither border is hidden, the style of the wider border takes priority over the

narrower border.
 4. If the two borders have the same width but different styles, the border style with

the highest priority is used. Double borders have the highest priority, followed by
solid, dashed, dotted, ridge, outset, groove, and finally, inset borders.

 5. If the borders differ only in color, the color of the element in the table with the
higher priority takes precedence. Precedence is given first to borders around
individual table cells, followed by borders for table rows, row groups, columns,
and column groups; and finally, the border around the entire table. You will learn
about row groups, columns, and column groups later in this tutorial.

Any situation not covered by these rules is left to browsers to determine which
border dominates when collapsing the two borders. Figure 6–9 provides an example of
the first rule in action. In this example, the border around the entire table is hidden but
a 1-pixel blue border is assigned to the cells within the table. As shown in the image
on the right, when collapsed, any cell borders adjacent to the table border adopt the
hidden border property.

Figure 6–9 Reconciling hidden borders

separate borders collapsed borders

table {border-style: hidden;
 border-collapse: separate;}
td {border: 1px solid blue;}

table {border-style: hidden;
 border-collapse: collapse;}
td {border: 1px solid blue;}

in the separate borders model,
the border around the table is
hidden and the border around
each cell is shown in blue

in the collapsed borders model,
the hidden border around the
table takes precedence over the
blue borders for individual cells

Figure 6–10 shows what happens when two borders of the same width but different
styles meet. In this case, because of Rule 4, the table cell borders with the double blue
lines take precedence over the solid red line of the table border when the two borders
are collapsed into one.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 463

Although the collapsed borders model appears more complicated at first, the rules
are reasonable and allow for a wide variety of border designs.

Figure 6–10 Reconciling different border styles

separate borders collapsed borders

table {border-style: 5px solid red;
 border-collapse: separate;}
td {border: 5px double blue;}

table {border-style: 5px solid red;
 border-collapse: collapse;}
td {border: 5px double blue;}

in the separate borders
model, a single red border is
placed around the entire table
and a double blue border is
placed around individual cells

in the collapsed borders model,
double borders around individual
cells takes precedence over the
singe border around the entire table

Styling Table Borders

• To define the table borders model, apply the style

border-collapse: type;

where type is separate (the default) to create separate borders or collapse to
merge all adjacent borders.

• To set the space between separated borders, apply the style

border-spacing: value;

where value is the space between the borders in any of the CSS units of measure.

R
E
FE

R
E
N
C
E

For the DLR evening program schedule, Kyle thinks the table would look better with
collapsed borders and asks you to modify the table style sheet.

To collapse the table borders:
w 1. Return to the dlr_tables.css file in your editor.

w 2. Add the style border-collapse: collapse; to the style rule for the
schedule table. Figure 6–11 highlights the newly added style.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 464

Kyle remarks that the schedule information for the 6:00 p.m. and 6:30 p.m. timeslots
is highly redundant because the National News and World News programs always air
at those times every day of the week. He thinks that the schedule would be easier to
read if those programs are entered only once with the table cell text extending across
the week. You can achieve this effect using spanning cells.

Spanning Rows and Columns
A spanning cell is a single cell that occupies more than one cell row and/or column.
Spanning cells are created by adding either or both of the following rowspan and
colspan attributes to either td or th elements

rowspan="rows" colspan="cols"

where rows is the number of rows that the cell will occupy and cols is the number
of columns. The spanning starts in the cell where you put the rowspan and colspan
attributes, and goes to the right and downward from that location. For example, to
create a data cell that spans three rows and two columns, enter the following td
element:

<td rowspan="3" colspan="2" > ... </td>

It is important to remember that when a cell spans multiple rows or columns, it
pushes other cells to the right or down. If you want to maintain the same number
of rows and columns in your table, you must adjust the number of cells in a row or
column that includes a spanning cell. To account for a column-spanning cell, you

w 3. Save your changes to the style sheet and then reload the dlr_evenings.html
file in your browser.

Figure 6–12 shows the appearance of the table with the collapsed borders.

Figure 6–11 Setting the border collapse style

sets the borders within
the table to collapse
into one another

Figure 6–12 Program schedule with collapsed borders

spacing between
the borders has
been removed

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 465

Creating Cells that Span Rows and Columns

• To create a cell that spans several columns, add the following attribute to td or th
element

colspan="cols"

where cols is the number of columns covered by the cell.
• To create a cell that spans several rows, add the following attribute to td or th

element

rowspan="rows"

where rows is the number of rows covered by the cell.

R
E
FE

R
E
N
C
E

To see how column-spanning cells work, you replace the cells for the National News
and World News programs that currently occupy seven cells each with a single cell
spanning seven columns in each row.

To create a column-spanning cell:
w 1. Return to the dlr_evenings.html file in your editor.

w 2. Go to the schedule table and for the second table cell in both the second
and third rows of the table, add the attribute

colspan="7"

to the opening <td> tag.

w 3. Delete the remaining six table cells in both the second and third table rows
to keep the size of those rows at eight total columns.

Figure 6–13 highlights the revised code for the schedule table.

You must remove cells
from the table row when
you add a column-
spanning cell to ensure
that the cell content aligns
properly into columns.

have to reduce the number of cells in the current row. For example, if a table covers
five columns, but one of the cells in a row spans three columns, you need only three
table cells in that row: two cells that occupy a single column each and the one cell that
spans the other three columns.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 466

w 4. Save your changes to the file and then reload the dlr_evenings.html file in
your browser.

Figure 6–14 shows the revised appearance of the table with column-spanning
cells in the second and third rows.

Figure 6–14 Column-spanning cells

the second cell in
both rows 2 and 3
spans seven columns

The rest of the evening schedule shown earlier in Figure 6–1 includes programs that
last longer than 30 minutes and thus will need to span several rows. To maintain a row
layout with row-spanning cells, you need to remove extra cells from the rows below
the spanning cell. Consider the table shown in Figure 6–15, which covers three rows
and four columns. The first cell from the first row spans three rows. You need four table
cells in the first row, but only three in the second and third rows. This is because the
spanning cell from the first row occupies the position of the first cell in the second and
third rows.

Figure 6–13 Spanning several columns with a single cell

remaining six td
elements removed from
the second and third
rows to keep the size at
8 total columns

sets each cell
to span 7
columns within
its row

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 467

Figure 6–15 Row-spanning cells

HTML code

resulting table

only three
table cells
are required
for the second
and third rows

table headingsfour table cells
in the �rst row

The 7:00 p.m. to 8:00 p.m. section of the DLR schedule contains several programs
that run for an hour. To insert these programs, you create row-spanning cells that span
two rows in the schedule table. To keep the columns lined up, you must reduce the
number of cells entered in the subsequent row. Enter the next two rows of the program
schedule table now.

To create row-spanning cells:
w 1. Return to the dlr_evenings.html file in your editor.

w 2. Directly above the closing </table> tag, insert the following table row:

<tr>
 <th>7:00 PM</th>
 <td rowspan="2">Opera Fest</td>
 <td rowspan="2">Radio U</td>
 <td rowspan="2">Science Week</td>
 <td rowspan="2">The Living World</td>
 <td>Word Play</td>
 <td>Agri-Week</td>
 <td rowspan="2">Folk Fest</td>
</tr>

w 3. Add the following row for the programs that start at 7:30 p.m.:

<tr>
 <th>7:30 PM</th>
 <td>Brain Stew</td>
 <td>Bismarck Forum</td>
</tr>

Figure 6–16 highlights the revised code for the schedule table.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 468

Figure 6–17 Program schedule through 7:30 p.m.

cells spanning
two rows

Figure 6–16 Inserting cells that span two rows

cells span
two rows

w 4. Save your changes to the file and then reload the dlr_evenings.html file in
your browser.

Figure 6–17 shows the schedule for programs airing at 7:00 p.m. and
7:30 p.m.

The final part of the evening schedule includes the program The Classical Musical
Connection, which spans two hours on Monday through Thursday. Like the news
programs, you don’t want to repeat the name of the show each day; and like the five
hour-long programs you just entered, you don’t want to repeat the name of the show
in each half-hour cell. Kyle suggests that you use both the rowspan and colspan
attributes to create a table cell that spans four rows and four columns.

You can create even more
complex layouts by nesting
tables inside table cells.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 469

Other programs in the 8:00 to 10:00 time slots, such as Saturday Nite Jazz and The
Indie Connection, also span four rows, but only one column. The last program aired
before KPAF signs off is the World News Feed, which is played every night from 10:00
to 10:30. You add these and the other late evening programs to the schedule table now.

To enter the remaining programs:
w 1. Return to the dlr_evenings.html file in your editor and, directly above the

closing </table> tag, add the following table row for programs airing at
8:00 p.m.:

<tr>
 <th>8:00 PM</th>
 <td rowspan="4" colspan="4">The Classical Music
Connection</td>
 <td>Old Time Radio</td>
 <td rowspan="4">Saturday Nite Jazz</td>
 <td rowspan="4">The Indie Connection</td>
</tr>

w 2. The Inner Mind is the only program starting at 8:30 p.m. during the week.
Add the 8:30 p.m. starting time and the program listing as a new row in the
schedule table:

<tr>
 <th>8:30 PM</th>
 <td>The Inner Mind</td>
</tr>

w 3. The only program that starts at 9:00 p.m. is the hour-long Open Mike Nite
program. Add the following row to the table to display this program in the
schedule:

<tr>
 <th>9:00 PM</th>
 <td rowspan="2">Open Mike Nite</td>
</tr>

w 4. There are no programs that start at 9:30 p.m. during the week. However, you
still need to include this starting time in the schedule because the nightly
schedule is broken down into half-hour increments. Add the following table
row:

<tr>
 <th>9:30 PM</th>
</tr>

w 5. Complete the table by adding the last row, which lists the World News Feed
program that airs every night starting at 10:00 p.m.:

<tr>
 <th>10:00 PM</th>
 <td colspan="7">World News Feed</td>
</tr>

Figure 6–18 highlights the newly added rows in the schedule table.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 470

The web table you created matches the printout of DLR’s evening schedule. Kyle
likes the clear structure of the table. He notes that many DLR listeners tune into the
station over the Internet, listening to DLR’s streaming audio feed. Because those
listeners might be located in different time zones, Kyle suggests that you add a caption
to the table indicating that all times in the schedule are based on the Central time zone.

Figure 6–18 Adding the remaining DLR programs

program covers 4
half-hour slots on 4
consecutive days

programs cover 4
half-hour slots

only one program
starts at 8:30 p.m.

program covers 2
half-hour slots

no program starts
at 9:30 p.m.

program airs every
night starting at
10:00 p.m.

w 6. Save your changes to the file and then reload the dlr_evenings.html file in
your browser.

Figure 6–19 shows the complete schedule for all of the DLR evening
programs during the week.

Figure 6–19 The complete DLR evening schedule

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 471

IN
SI
G
H
T

Defining Borders in HTML

If you work with legacy websites, you might encounter web tables in which tables are
formatted using HTML attributes. One such attribute is the following border attribute

<table border="value">
…
</table>

where value is the width of the table border in pixels. Adding a table border in
this fashion also adds a border around individual table cells. HTML also supports
two attributes, frame and rules, that allow you to specify exactly which table
cells receive borders and which sides of those table cells are bordered.

These attributes are not supported in HTML 5, but most browsers still support
them for older websites. You should use CSS border styles whenever possible to
format the appearance of your web table.

Creating a Table Caption
Table captions are another part of the basic table structure and are marked using the
following caption element

<caption>content</caption>

where content is the content contained within the caption. Captions can contain
additional text-level elements. For example, the following code marks the text Program
Schedule using the em element, which marks it as emphasized text:

<caption>Program Schedule</caption>

Only one caption is allowed per web table, and the caption element must be listed
directly after the opening <table> tag.

Add a caption to the program schedule.

To add a table caption:
w 1. Return to the dlr_evenings.html file in your editor.

w 2. Directly after the opening <table> tag, insert the following caption element:

<caption>All Times Central</caption>

Figure 6–20 highlights the table caption element.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 472

Add styles to the dlr_tables.css style sheet to place the caption of the program
schedule table to the bottom and right of the table.

Creating a Table Caption

• To create a table caption, add the following caption element directly below the
opening <table> tag

<caption>content</caption>

where content is the content of the table caption.
• To position a table caption, apply the CSS property

caption-side: position;

where position is top or bottom.
• To horizontally align a caption, apply the CSS text-align property

text-align: position;

where position is left, center, or right.

R
E
FE

R
E
N
C
E

Figure 6–20 Adding a caption to a web table

w 3. Save your changes to the file.

By default, browsers place captions above the table, but you can specify the caption
location using the caption-side property

caption-side: position;

where position is either top (the default) or bottom to place the caption below the
table.

To align the caption text horizontally, you use the CSS text-align property. Thus,
to place the schedule caption in the bottom-right corner of the table, you would enter
the following CSS styles:

caption-side: bottom;
text-align: right;

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 473

Table captions inherit the text styles associated with the table. For example, if you
create a style for the table element that sets the font color to red, the caption text will
also be displayed in a red font.

To format the table caption:
w 1. Return to the dlr_tables.css file in your editor.

w 2. Go to the Table Caption Styles section and insert the following style rule:

table.schedule caption {
 caption-side: bottom;
 text-align: right;
}

Figure 6–21 highlights the style rule for the table caption.

Figure 6–21 Formatting a caption

places the caption
at the bottom of
the table

right-aligns the
caption text

w 3. Save your changes to the file and then reload the dlr_evenings.html file in
your browser. Figure 6–22 shows the placement of the table caption below
and to the right of the schedule table.

Figure 6–22 Placement of the table caption

table caption

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 474

You have completed your work on setting up the program schedule in a web table.
In the next session, you will refine the table structure by grouping the rows and columns
of the table. You will also further explore CSS styles designed specifically for tables and
table data.

PR
O
SK

IL
LS

Problem Solving: Make Your Tables Accessible

It is a challenge to make web tables accessible to users who rely on screen readers
to access online content. Screen readers read table content linearly by moving left-
to-right from the cells within each row and then down row-by-row through the table.
To make the table content accessible, you must first structure the content so that it is
easily interpreted even when read in a linear order.

Many screen readers include the ability to announce the row and column headers
associated with each data cell, so you should always identify your row and column
headers using the th element. You can also use the following scope attribute to
explicitly associate a header cell with a row or column

<th scope="type">…</th>

where type is either row, column, rowgroup (for a group of rows), or colgroup (for
a group of columns). For example, the following code explicitly associates the header
cell with the content of its table row

<th scope="row">7:30 PM</th>

A screen reader encountering the scope attribute can use it to aurally identify a
data cell with its row and column headers, making it easier for users to interpret the
cell content.

Appendix D provides more information on making the web more accessible for
users with special needs, including examples of other HTML attributes that can make
your web tables more accessible.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 475

R
E
V
IE

W

Session 6.1 Quick Check

 1. How is the number of columns in a table determined?
a. By the cols attribute
b. By the columns attribute
c. By the maximum number of cells placed within the table rows
d. By the maximum number of th elements within the table rows

 2. To mark a cell as a table header, use:
a. td
b. th
c. thead
d. theader

 3. To mark a cell as containing table data, use:
a. td
b. tdata
c. cell
d. celldata

 4. To display all table elements with collapsed borders, use:
a. table-collapse: collapse;
b. border: collapse;
c. border: auto;
d. border-collapse: collapse;

 5. Two table cells have adjacent borders. One cell has a 5-pixel-wide double
border and the other cell has a 6-pixel-wide solid border. If the table borders
are collapsed, what type of border will the two cells share?
a. 6-pixel solid border
b. 5-pixel solid border
c. 5-pixel double border
d. 6-pixel double border

 6. To span a cell across two rows and three columns, use the attribute:
a. span = "2 3"
b. span = "3 2"
c. rows = "2" cols = "3"
d. rowspan = "2" colspan = "3"

 7. How do you keep table columns aligned when a cell spans multiple rows?
a. Reduce the number of cells in the rows below the spanning cell
b. Use the align attribute
c. Use the rows="align" attribute
d. Use the cols="align" attribute

 8. How do you keep table columns aligned when a cell spans multiple columns?
a. Reduce the number of cells in the current row after the spanning cell
b. Use the align attribute
c. Use the rows="align" attribute
d. Use the cols="align" attribute

 9. To display a table caption in the lower-corner of the table, use:
a. caption: bottom left
b. caption left bottom
c. caption-side: bottom; text-align: left;
d. caption: bottom; align: left;

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 476

Session 6.2 Visual Overview:

The colgroup element
identi�es groups of
columns in the web table.

The thead element
identi�es the row(s) in the
table header.

The tbody element
identi�es the row(s) in the
table body.

Individual columns are
identi�ed with the
col element.

The tfoot element
identi�es the row(s) in the
table footer.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 477

Rows and Column Groups

This style rule sets the
background and text
color of the table header.

This style rule sets the
background and text
color of the table footer.

This style rule sets the
height of rows in the
table header.

The �rstCol
column lists
the times.

The dayCols
columns list the
days of the week.

The table
header consists
of six columns.

The table footer
text is left-aligned.

The table body includes
rows and columns, some
of which span multiple
columns or multiple rows.

This style rule sets the
height of rows in the
table body.

This style rule de�nes the
background color and
width of the �rst table
column.

This style rule de�nes the
background color and
width of the remaining
table columns.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 478

Creating Row Groups
The table you created in the first session made no distinction between rows that
you used to contain column headers and rows that contained table data. To add this
information into the structure of the table you can create row groups in which each
row group contains specific table information. HTML supports three row groups, which
define rows that belong to the table head, table body, or table footer and which are
marked using the thead, tbody, and tfoot elements. A web table that is divided into
row groups has the following general structure:

<table>
 <thead>
 table rows
 </thead>
 <tbody>
 table rows
 </tbody>
 <tfoot>
 table rows
 </tfoot>
</table>

where table rows are rows from the table. For example, the following code marks
two rows as belonging to the table head:

<thead>
 <tr>
 <th colspan="2">DLR Programs</th>
 </tr>
 <tr>
 <th>Time</th>
 <th>Program</th>
 </tr>
</thead>

Order is important. The thead element must appear first, followed by the tbody
element, and finally the tfoot element (if it exists). A table can contain only one thead
element and one tfoot element, but it can include any number of tbody elements to
mark row groups that contain several topical sections.

The thead, tbody, and
tfoot elements don’t
change the appearance
of the table rows, instead,
they are used to indicate
the structure of the table
itself.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 479

To indicate the structure of the schedule table, you decide to use the thead element
to mark the head row in the program schedule, the tbody element to mark the rows for
the broadcast times of each program, and the tfoot element to add a table footer.

Marking Row Groups

• To mark row groups in the table head, use

<thead>
 table rows
</thead>

where table rows are the rows in the table head.
• To mark row groups in the table body, use

<tbody>
 table rows
</tbody>

where table rows are the rows in the table body.
• To mark row groups in the table footer, use

<tfoot>
 table rows
</tfoot>

where table rows are the rows in the table footer.

R
E
FE

R
E
N
C
E

To create table row groups:
w 1. If you took a break after the last session, make sure the dlr_evenings.html

file is open in your editor.

w 2. Enclose the first table row within an opening and closing set of <thead> tags
to mark that row as the table header. Indent the HTML code for the row to
make it easier to read.

w 3. Enclose the remaining table rows within an opening and closing set of
<tbody> tags to mark those rows as belonging to the table body. Indent the
HTML code for those rows to make them easier to read.

w 4. Directly below the closing </tbody> tag, insert the following table footer
consisting of a single row with one data cell spanning eight columns:

<tfoot>
 <tr>
 <td colspan="8">DLR ends its broadcast day at
10:30 p.m.</td>
 </tr>
</tfoot>

Figure 6–23 highlights the newly added code in the schedule table.

The table footer row
group should be placed
after row groups marked
with the tbody element.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 480

w 5. Save your changes to the file.

Figure 6–23 Marking row groups

The thead element
marks the row group
for the table header

The tfoot element
marks the row group
for the table footer

The tbody element
marks the row group
for the table body

One purpose of row groups is to allow you to create different styles for groups of
rows in your table. Any style that you apply to the thead, tbody, or tfoot element is
inherited by the rows those elements contain.

Kyle wants the rows within the table header to be displayed in a white font on a
purple background. He wants the rows within the table footer to be displayed in a
white font on a black background. Add these style rules to the dlr_tables.css file now.

Row groups also are
used for applications
in which table body
content is imported from
external data sources,
such as databases or XML
documents.

To format the table row groups:
w 1. Return to the dlr_tables.css file in your editor.

w 2. Go to the Row Group Styles section and add the following style rule to
format the content of the table header row group:

table.schedule thead {
 background: rgb(153, 0, 153);
 color: white;
}

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 481

w 3. Add the following style rule for the table footer row group:

table.schedule tfoot {
 background: black;
 color: white;
}

Figure 6–24 highlights the newly added style rules.

Figure 6–24 Formatting row groups

displays the rows from
the table header row
group in a white font on
a purple background

displays the rows from
the table footer row
group in a white font
on a black background

w 4. Save your changes to the style sheet and then reopen the dlr_evenings.html
file in your browser. Figure 6–25 shows the new appearance of the web table
with the formatted row groups.

Figure 6–25 Row groups in the schedule table

table header

table body

table footer

Next, Kyle wants to format the appearance of some of the columns in the table. You
can define the appearance of a table column through the use of column groups.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 482

Creating Column Groups
There is no HTML tag to mark table columns—the columns are determined implicitly
based on the number of cells within the table rows. However, you can still reference
those columns for the purposes of creating design styles through the following
colgroup element

<table>
 <colgroup>
 columns
 </colgroup>
 table rows
</table>

where columns are the individual columns defined within the group and table rows
are the table rows. The columns within the colgroup element are identified by the
following col element:

<col span="value" />

where value is the number of columns spanned by the col element. If no span
attribute is included, the col element references a single column. Thus, the following
column structure defines a group of three columns with the first two columns grouped
together:

<colgroup>
 <col span="2" />
 <col />
</colgroup>

Once you have defined your columns using the colgroup and col elements, you
can identify individual columns using id and/or class attributes for the purposes of
applying CSS styles to specific columns. For example, the following code defines a
column group consisting of three columns, with the first two columns belonging to the
firstCols class and the third column belonging has the ID lastCol.

<colgroup>
 <col span="2" class="firstCols" />
 <col id="lastCol" />
</colgroup>

The span attribute can also
be added to the colgroup
element to create column
groups that span multiple
columns.

Identifying a Column Group

• To identify a group of columns from the web table, use

<colgroup>
 columns
</colgroup>

where columns are the individual columns defined within the group.
• To identify a column within a column group, use

<col span="value" />

where value is the number of columns spanned by the col element.

R
E
FE

R
E
N
C
E

Create a column group for the program schedule table with one col element used
for the first column containing the list of broadcast times and the second col element
used for the remaining seven columns containing the names of the DLR programs.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 483

Once the column groups have been defined, you can create styles to format the
appearance of the columns. The following style rule uses the class and id values
defined in the previous example to set the background color of the column with the ID
firstCol to red and the columns belonging to the dayCols class to yellow.

col#firstCol {background-color: red;}
col.dayCols {background-color: yellow;}

Note that columns and column groups accept only CSS style properties to modify
the column borders, background, width, and visibility. Other styles are not supported.
You cannot, for example, set the font size for all of the text within a particular column
or column group.

Modify the dlr_tables.css style sheet to change the background color of the first
column to gray and the background of the remaining columns (belonging to the
dayCols class) to pink.

To define a column group:
w 1. Return to the dlr_evenings.html file in your editor.

w 2. Directly after the table caption, insert the following code to create a column
group consisting of a first column with the ID firstCol followed by seven
columns belonging to the dayCols class.

<colgroup>
 <col id="firstCol" />
 <col class="dayCols" span="7" />
</colgroup>

Figure 6–26 highlights the newly added style rules.

Figure 6–26 Defining a column group

col element
references the
next seven
columns

col element
references the
�rst column

w 3. Save your changes to the file.

To format a column group:
w 1. Return to the dlr_tables.css file in your editor.

w 2. Go to the Column Group Styles section and insert the following style rules to
format the appearance of the schedule table columns:
col#firstCol {
 background: rgb(218, 210, 218);
}

col.dayCols {
 background: rgb(255, 220, 255);
}

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 484

You may have noticed that the new background colors have not been applied to all
columns of the schedule table. The columns in the table header, for example, are still
displayed on a medium purple background. To understand why, you need to explore
how CSS handles style precedence for different parts of the table structure.

Figure 6–27 highlights the style rules for the two column groups.

Figure 6–27 Formatting the table columns

displays the �rst
column with a
gray background

displays the day
columns with a
pink background

w 3. Save your changes to the file and then reload the dlr_evenings.html file in
your browser.

Figure 6–28 shows the appearance of the formatted columns.

Figure 6–28 Column groups in the schedule table

�rstCol column dayCols columns

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 485

Exploring CSS Styles and Web Tables
Table objects have different levels of precedence with styles for more specific table
objects taking precedence over styles for less specific objects. Figure 6–29 diagrams the
different levels of precedence in the table structure.

IN
SI
G
H
T

Creating Banded Rows and Columns

A popular table design is to create table rows of alternating background colors to
make it easier for users to locate table data. You can create banded rows using the
nth-of-type pseudo-class. For example, to create a table in which the background
colors alternate between yellow on the odd-numbered rows and gray on the even-
numbered rows, apply the following style rules:

tr:nth-of-type(odd) {
 background: yellow;
}

tr:nth-of-type(even) {
 background: gray;
}

The same technique can be used to create banded columns of different
background colors. The following style rules create odd-numbered columns that
have a yellow background and even-numbered columns with a gray background:

colgroup col:nth-of-type(odd) {
 background: yellow;
}

colgroup col:nth-of-type(even) {
 background: gray;
}

Note that this technique assumes that none of the table row or col elements
span more than one row or column.

Figure 6–29 Levels of precedence in the table styles

table cells

rows

row groups

columns

column groups

table

highest
precedence

lowest
precedence

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 486

The style rules with the highest precedence are those applied to individual table
cells. Next are the style rules applied to table rows and table row groups, followed by
the style rules applied to columns and column groups. Finally, the style rules applied to
the entire web table are the ones with the lowest precedence.

The order of precedence explains why the cells in the table header retained their
medium purple background. That background color was defined in the style rule for the
table header row group and thus took precedence over any background styles defined
for a column or column group.

Working with Width and Height
By default, browsers will attempt to fit the most content possible within each column
before wrapping the cell text to a new line. The result is that columns containing cells
with more text are wider than those with less text. If the width of the entire table is set
to be larger than the width required for individual columns, the extra space is divided
equally among the columns. You can set the column widths to a different value by
applying the width property to columns or column groups.

Kyle suggests you set the width of the first column to 16% of the width of the entire
table and the widths of the remaining seven columns to 12% each, resulting in a total
width of 100% divided among the eight columns. Add these styles to the style rules for
the schedule table columns.

To set the width of a column:
w 1. Return to the dlr_tables.css file in your editor and go to the Column Group

Styles section.

w 2. Add the style width: 16%; to the style rule for the firstCol column.

w 3. Add the style width: 12%; to the style rule for the columns of the dayCols
class.

Figure 6–30 highlights the width styles for the two column selectors.

Figure 6–30 Setting the column width

sets the width of the
�rst column to 16% of
the width of the table

sets the width of the
day columns to 12%

Next, you explore how to work with row heights.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 487

The height of each table row is based on the height of the tallest cell within the row.
Because the cell height itself will increase as necessary to enclose its content, the result
will be row heights that are not uniform across the table. You can define a uniform row
height by applying the height style to table rows within each row group. Kyle suggest
that you set the height of the table header row to 30 pixels and the height of each row
in the table body to 40 pixels.

If the row height is not set
large enough to contain
the cell content, the height
will automatically increase
to accommodate the
overflow content.

IN
SI
G
H
T

Creating Narrow Tables

As the width of a table decreases, the amount of space allotted to each column
decreases proportionally. However, the column widths can be decreased only so far.
Because browsers do not hyphenate words by default, the minimum column width is
equal to the width of the longest word within the column. To allow the column widths
to decrease below this limit, you can apply the following style rule to the table
element:

table {table-layout: fixed;}

A table-layout value of fixed tells the browser to ignore cell content when
reducing the width of the table columns. As the column width decreases, eventually
the cell text will extend beyond the borders of the cell. To prevent this from
happening, you can force the browser to insert line breaks within the individual words
in your table cells by applying the following style rule:

th, td {word-wrap: break-word;}

By setting the table-layout property to fixed and allowing line breaks within words
in the cell, your column widths can be reduced below the default limits set by the
browser.

To set the height of the table rows:
w 1. In the dlr_tables.css file, scroll up to the Row Group Styles section.

w 2. Add the following style rule to set the row height within the table header to
30 pixels:

table.schedule thead tr {
 height: 30px;
}

w 3. Add the following style rule to set the row height in the table body to
40 pixels:

table.schedule tbody tr {
 height: 40px;
}

Note that you don’t apply the height property to the row groups themselves
because that would set the height of the entire group and not the individual
rows within the group.

Figure 6–31 highlights the height styles for the table rows.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 488

With the increased row height, Kyle would like all of the program names in the
schedule to be vertically aligned with the tops of the cell borders. You can move the
cell text using the vertical-align property introduced in Tutorial 2. Kyle also wants
to increase the padding within each cell to add more space between the program
names and the cell borders.

Figure 6–31 Setting the row height

sets the height of the
row in the table
header to 30 pixels

sets the height of the
rows in the table body
to 40 pixels

w 4. Save your changes to the file and then refresh the dlr_evenings.html file in
your browser.

Figure 6–32 shows the revised appearance of the table with the resized
columns and rows.

Figure 6–32 Schedule table with resized columns and rows

each column
width set to 12%

column width
set to 16%

each row height
set to 40 pixels

row height set
to 30 pixels

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 489

To set the padding and cell alignment:
w 1. Return to the dlr_tables.css file in your editor and go to the Table Cell Styles

section.

w 2. Add the following styles to the style rule for the header and data cells in the
schedule table:

padding: 5px;
vertical-align: top;

Figure 6–33 highlights the new styles in the style sheet.

Figure 6–33 Formatting the table cells

adds 5 pixels of
padding space to
each table cell

aligns the content
with the top of
each table cell

w 3. Close the file, saving your changes.

w 4. Reload the dlr_evenings.html file in your browser.

Figure 6–34 shows the completed design of the nightly schedule page.

Figure 6–34 Completed design of the DLR Nightly Schedule page

content aligned
with the top of
the table cell

5 pixels of
padding with
each table cell

© Courtesy Patrick Carey

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 490

You have completed work on DLR’s nightly schedule page. However, you will
continue to explore other issues that surround the use of web tables and table designs
in the remainder of this session.

Applying Table Styles to Other Page Elements
Tables are useful for displaying information in an organized structure of rows and
columns, but you are not limited to applying a table design only to web tables. Using
the CSS display property, you can apply a table layout to other HTML elements, such
as paragraphs, block quotes, or lists. Figure 6–35 lists different CSS display styles and
their equivalent HTML elements.

Figure 6–35 Table display styles

Display Style Equivalent HTML Element
display: table; table (treated as a block-level element)

display: table-inline; table (treated as an inline element)

display: table-row; tr

display: table-row-group; tbody

display: table-header-group; thead

display: table-footer-group; tfoot

display: table-column; col

display: table-column-group; colgroup

display: table-cell; td or th

display: table-caption; caption

For example, the following definition list contains definitions of two networking
terms:

<dl>
 <dt>bandwidth</dt>
 <dd>A measure of data transfer speed over a network</dd>
 <dt>HTTP</dt>
 <dd>The protocol used to communicate with web servers</dd>
</dl>

Rather than accepting the default browser layout for this list, it might be useful to
display the text in a table. However, you don’t want to lose the meaning of the markup
tags. After all, HTML is designed to mark content, but not indicate how browsers
should render that content. To display this definition list as a table, you could enclose
each set of terms and definitions within a div element as follows:

<dl>
 <div>
 <dt>bandwidth</dt>
 <dd>A measure of data transfer speed over a network</dd>
 </div>
 <div>
 <dt>HTTP</dt>
 <dd>The protocol used to communicate with web servers</dd>
 </div>
</dl>

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 491

You could then apply the following style sheet to the list, treating the entire
definition list as a table—the div elements act as table rows, and the definition terms
and descriptions act as table cells within those rows:

dl {display: table; border-collapse: collapse; width: 300px;}
dl div {display: table-row;}
dt, dd {display: table-cell; border: 1px solid black;
 vertical-align: top; padding: 5px;}

As Figure 6–36 shows, when viewed in a web browser, the definition list looks
exactly as if it were created using HTML table elements.

Figure 6–36 Applying table styles to a definition list

de�nition list code

table styles

de�nition list displayed as table

In the same way, you can display other page elements in table form, as long as the
markup tags are nested in a way that mimics a table structure.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 492

Tables and Responsive Design
Tables do not scale well to mobile devices. Users will often be confronted with one
of the following: (a) a table in which the cell content is too small to be readable, (b) a
table that extends beyond the boundaries of the visual viewport, or (c) table columns
that are so narrow that the cell content is unreadable (see Figure 6–37).

IN
SI
G
H
T

Formatting a Table using HTML Attributes

If you work with legacy web pages, you might encounter web tables that use attributes
to style the appearance of the table. For example, the width of the table can be set
using the following width attribute

<table width="value"> … </table>

where value is the width of the table in pixels or as a percent of the width of the
parent element.

The height of table rows can be set using the following height attribute

<tr height="value"> … </tr>

where value is the table row height in pixels.
The padding space within each table cell is set using the following cellpadding

attribute

<table cellpadding="value"> … </table>

where value is the size of the padding space in pixels.
Finally, the space between table cells is set using the following cellspacing

attribute

<table cellspacing="value"> … </table>

where value is the size of the space in pixels. The cellspacing attribute essentially
sets the width of the borders around individual table cells.

Each of these attributes has been replaced by CSS styles; however, you may still see
them employed in older websites and if you are tasked with upgrading those sites you
will need to understand those attribute’s meaning and purpose.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 493

What is often required is a new layout of the table data for mobile screens in which
several table columns are reduced to two: one column containing all of the data labels
and a second column containing the data associated with each label. Figure 6–38
shows an example of a mobile layout for the same table data shown in Figure 6–37.

Figure 6–37 Web tables on mobile devices

complete table
is too small to

read

table is easier to read but
does not �t within the

viewport

table �ts within the viewport
but columns are too narrow

to read comfortably

BenBois/openclipart

Figure 6–38 Two-column layout for a mobile device

headings appear
in the �rst column
of the table

cell content appears
in the second column

BenBois/openclipart

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 494

There are several scripts and frameworks available on the web to design a table for
use with mobile devices or you can use CSS to restructure the web table, which is based
on an idea suggested by Chris Coyier at https://css-tricks.com/responsive-data-tables/.

The first step in creating a responsive web table that relies only on CSS is to add the
text of data labels as attributes of all of the td elements in the table body. You can store
these data labels using a data attribute, which is an attribute introduced in HTML 5
that stores customized data. The general format of a data attribute is

data-text="value"

where text is the name of the data attribute and value is its value. Data attributes are
often used for database applications that read the contents of HTML files. There are
no standard names for data attributes, instead those names are specified by whatever
application happens to be reading the HTML content.

For example, the following table uses a data attribute named data-label to store
the text of the labels associated with each data cell.

<tr>
 <td data-label="Date">April 2, 2021</td>
 <td data-label="Program Title">Memories and Music</td>
 <td data-label="Featuring">Kelsey MacGraw, Mandy Dee,
 Young Irish
 </td>
 <td data-label="Venue">Folk City, Boise ID</td>
 <td data-label="Description">It’s all about new music this
 week on Folk Fest. Scott Dirkens will preview new releases
 from Kelsey MacGraw and Mandy Dee. And then join us for
 a set from the always-popular group, Young Irish, from
 their recent tour.
 </td>
</tr>

Once you have assigned data labels to each td element, you need to change
the table layout so that each table object is rendered as a block element. Because
a responsive table design doesn’t use a table header or footer, you hide those table
features. Thus, within a media query for mobile devices, you establish the following
style rules:

table, tbody, tr, td, th {
 display: block;
}

thead, tfoot {
 display: none;
}

Each data cell in the table body then needs to be placed using relative positioning
with a large left padding space into which you insert the text of the data label. The
following style rule creates a padding space that is 40% of the width of the data cell.

tbody td {
 position: relative;
 padding-left: 40%;
}

Finally, you need to insert the content of the data-label attribute directly before
the data cell value. To accomplish that, you use the before pseudo-element along
with the content property. The data label will be placed using absolute positioning
at the top-left corner of the block. You can include some padding to offset the column

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 495

heading from edges of the block. The width should be equal to the left padding space
you set in the style rule for the td element. A basic style rule would appear as

td::before {
 content: attr(data-label);
 position: absolute;
 top: 0px;
 left: 0px;
 padding: 5px;
 width: 40%;
}

As shown earlier in Figure 6–38, the result is a list of data cells that are aligned as
block elements and then, within each block element, the data label is followed by the
data cell content. Note that the text of this web table is easier to read in the smaller
viewport of the mobile device.

You can supplement these style rules with other styles to create a more pleasing
design, but the goal is the same: to transform a table with multiple columns into a
simpler two-column layout. Note that this approach doesn’t work for more complex
table layouts with cells spanning multiple rows and/or columns.

PR
O
SK

IL
LS

Written Communication: Designing Effective Web Tables

The primary purpose of a web table is to convey data in a compact and easily-
interpreted way. You can apply several design principles to your web tables to make
them more effective at presenting data to interested readers:

• Contrast the data cells from the header cells. Make it easy for readers to understand
your data by highlighting the header column or row in a different color or font size.

• Avoid spanning rows and columns unless necessary. Usability studies have shown
that information can be gleaned quickly when presented in a simple grid layout;
don’t break the grid by unnecessarily spanning a cell across rows and columns.

• Break the monotony with icons. If you are repeating the same phrase or word within
a single row or column, consider replacing the text with an icon that conveys the
same message. For example, in a table that describes the features of a product, use
a check mark to indicate whether a particular feature is supported, rather than text.

• Alternate the row colors. A large table with dozens of rows can be difficult for
readers to scan and interpret. Consider using alternative background colors for the
table rows to break the monotony and reduce eye strain.

• Don’t overwhelm the eye with borders. Cell borders should be used only when they
aid users by separating one cell from another. If they’re not needed for this purpose,
they actually can distract from the data. Rather than using borders, apply ample
spacing to your cells to differentiate the table’s rows and columns.

• Keep it brief. A table should not extend beyond what will fit compactly within
the user’s browser window. If your table is too extensive, consider breaking it into
several tables that focus on different areas of information.

A web table is judged primarily by its readability. This can best be accomplished by
using a simple design whose features convey relevant information to readers, giving
them the data they want as quickly as possible and making it easy to compare one
value with another.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 496

Designing a Column Layout
Tables are not the only way to add data columns to your web page. Starting with CSS,
web page designers were given the ability to create column layouts in which content is
displayed side-by-side in the page. Column layouts differ from layouts that use floating
elements or flexboxes in that content from a single element can flow from one column
to the next in the same way that article text flows from one column to the next in a
newspaper layout. If the page is resized, the flow of the content adjusts to match the
new page width, retaining the column layout.

Setting the Number of Columns
The size of a column layout is established using the following column-count property

column-count: value;

where value is the number of columns in the layout. For example, the following style
rule will lay out the content of the article element in three columns:

article {
 column-count: 3;
}

If you need to ensure compatibility with older browsers, you can include the
following browser extensions in the style rule:

article {
 -moz-column-count: 3;
 -webkit-column-count: 3;
 column-count: 3;
}

For each program aired by DLR, Kyle has created a page describing an upcoming
episode. Kyle wants to apply a column layout to these pages. One of the pages that
Kyle has created provides details of an upcoming episode of The Living World. Open
that page now to view its current content and design.

To view the episode page:
w 1. Use your editor to open the dlr_lw0414_txt.html file from the html06 c

tutorial folder. Enter your name and the date in the comment section of the
file and save it as dlr_lw0414.html.

w 2. Take some time to study the content and structure of the document.

w 3. Use your browser to open the dlr_lw0414.html file. Figure 6–39 shows the
current layout of the page article on a desktop device.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 497

Kyle is concerned that the article is difficult to read due to the long lines of text.
In general, the optimal line of text should have about 60 characters or 12 words.
However, the article on driverless cars averages about 140 characters and 24 words per
line. He suggests you make the page a bit easier to read on desktop devices by splitting
the article into two columns.

Figure 6–39 Current layout of the driverless car article

long lines of text
are dif�cult to read

© Courtesy Patrick Carey

To apply a column layout:
w 1. Use your editor to open the dlr_columns_txt.css file from the html06 c

tutorial folder. Enter your name and the date in the comment section of the
file and save it as dlr_columns.css.

w 2. Within the Column Styles section, insert the following media query to create
column layout for the article element for devices with a minimum screen
width of 641 pixels.

@media only screen and (min-width: 641px) {
 article {
 column-count: 2;
 }
}

Figure 6–40 highlights the media query in the style sheet.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 498

Figure 6–40 Applying a 2-column layout to the article element

applies the column style
only to screen devices
wider than 640 pixels

displays the
article content
across 2 columns

w 3. Save your changes to the file.

w 4. Return to the dlr_lw0414.html file in your editor.

w 5. Within the document head, add a link to the dlr_columns.css style sheet.

w 6. Close the file, saving your changes.

w 7. Reload the dlr_lw0414.html file in your browser. Figure 6–41 shows the two-
column layout of the page article.

Figure 6–41 Article displayed across two columns

two-column layout

© Courtesy Patrick Carey

By splitting the page article across two columns, you have made the text easier
to read.

Defining Columns Widths and Gaps
By default, columns are laid out evenly across the width of the parent element. Thus,
with a 2-column layout, each column will occupy approximately half of the parent
element width. Another way to define your column layout is to explicitly set the width
of the columns and then allow the number of columns to be determined by what can

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 499

fit within the allotted space. To set the column width, use the following column-width
property

column-width: size;

where size is the minimum width of the column in one of the CSS units of measure.
For example, the following style rule creates a column layout in which each column is
at least 250-pixels wide:

article {
 column-width: 250px;
}

Column widths act like the basis value for items in a flexbox. The width is the initial
size of each column, which will expand to match the available space. For example, if
the parent element has a width of 500 pixels, this style rule will result in a 2-column
layout. If the width is 750 pixels, the result is a 3-column layout. Between 500 and 750
pixels, the article will be laid out in 2-columns with increasing widths assigned to each
column to fill up the parent element.

The column-width and column-count properties can be combined into the
following shorthand columns property

columns: width count;

where width is the minimum width of each column and count is the maximum
number of columns that will be fit into the allotted space. The following style rule
creates a layout of 3 columns with a minimum width of 250 pixels each:

article {
 columns: 250px 3;
}

If the allotted space is larger than 750 pixels, the columns will increase in width to fill
up the space. If the space is smaller than 750 pixels, the column count will decrease to 2.

These calculations assume that there is no space between the columns. However, by
default browsers will create a gap of 1em between each column. To set a different gap
size, apply the following column-gap property

column-gap: size;

where size is the width of the gap in one of the CSS units of measure. The following
style rule creates a column layout in which each column is 250 pixels wide and the
gap between the columns is 20 pixels:

article {
 column-gap: 20px;
 column-width: 250px;
}

Thus, to fit two columns under this style rule, the parent element must be at least
520-pixels wide. To fit three columns, the parent element must be at least 790-pixels
wide (because there are two gaps of 20 pixels within the three columns), and so forth.

Kyle suggests you increase the width of the gap between the columns in his page to
30 pixels.

For responsive design,
set the column widths
rather than the number
of columns to allow the
column layout to match the
width of the device.

To set the column gap size:
w 1. Return to the dlr_columns.css file in your editor.

w 2. Within the style rule for the article element, add the following style:

column-gap: 30px;

Figure 6–42 highlights the new code in the style rule.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 500

Figure 6–42 Setting the size of the column gap

sets the size of the gap
between the columns to
30 pixels

w 3. Save your changes to the file and then reload dlr_lw0414.html in your
browser. Verify that the gap between the two columns has increased from its
default gap size.

Another way to separate one column from the next is with a graphic dividing line,
created using the following column-rule property

column-rule: border;

where border defines the style of the dividing line using the same CSS syntax
employed to create borders around page elements. For example, the following style
adds a 1-pixel solid red dividing line between the columns in a column layout:

column-rule: 1px solid red;

Like the border property you can break the column-rule property into the
individual properties column-rule-width, column-rule-style, and column-rule
color to set the dividing line’s width, style, and color.

Kyle suggests that you add a 2-pixel solid gray dividing line to the column layout.

To create a column rule:
w 1. Return to the dlr_columns.css file in your editor and within the style rule for

the article element add the following style:

column-rule: 2px solid gray;

Figure 6–43 highlights the code to create the gray dividing line between the
columns.

Figure 6–43 Add a dividing line to the columns

adds a 2-pixel solid
gray dividing line
between the columns

w 2. Save your changes to the file and then reload dlr_lw0414.html in your
browser. Figure 6–44 shows the revised appearance of the column layout.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 501

Column rules don’t take up any space in the layout; if they are wider than the
specified gap, they will overlap the column content. Kyle notices that the column break
in Google Chrome appears at an inconvenient location, leaving a single line and word
at the start of the new column, making the text awkward to read. He would like you to
revise the location of the column break.

Managing Column Breaks
By default, browsers automatically break the content within a column layout to keep
the columns roughly the same height. As shown in Figure 6–44, this behavior can result
in column breaks that make the text difficult to read. You can control the placement of
column breaks through several CSS properties. As with page break styles discussed in
Tutorial 5, you can control the size of column orphans (a line of text stranded at the
bottom of a column) using the following orphans property:

orphans: value;

where value is the minimum number of lines stranded before a column break.
Similarly, to control the size of column widows (a line of text placed at the top of a
column), use the following widows property:

widows: value;

where value is the minimum number of lines placed after the column break. For
example, the following style sets the column breaks within paragraphs to leave a
minimum of 2 lines at the bottom and a minimum of 3 lines at the top of each column:

article p {
 orphans: 2;
 widows: 3;
}

Figure 6–44 Dividing line in the column layout

2 pixel solid gray
dividing line

30 pixel gap between
the columns

a one line
widow

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 502

Another way to define a column break before or after an element is to use the properties

break-before: type;
break-after: type;

where type is one of the following: auto (to allow the browser to automatically set the
column break), always (to always place a column break), or avoid (to avoid placing a
column break). To control the placement of column breaks within an element use the
property

break-inside: type;

where type is either auto or avoid. For example, the following style rule always
inserts a column break directly before any h2 heading that appears within an article:

article h2 {
 break-before: always;
}

You can achieve the most cross-browser support for this property by using the
following browser extensions:

-webkit-column-break-inside: type;
page-break-inside: type;
break-inside: type;

The extensions for the break-before and break-after properties follow a similar pattern.
Kyle asks you to add styles that limit the size of orphans and widows around the

column break in the article element to at least three lines each.

Proposed specifications
for the break-before and
break-after properties also
include type value of left,
right, page, column,
avoid-page, and avoid-
column in order to define
different break styles
for columns and printed
pages.

To set the widows and orphans around the column breaks:
w 1. Return to the dlr_columns.css file in your editor and add the following styles

to the style rule for the article element:

widows: 3;
orphans: 3;

Figure 6–45 highlights the code to define the size of the widows and
orphans.

Figure 6–45 Defining widows and orphans around column breaks

keeps at least three
lines together after
the column break

keeps at least three
lines together before
the column break

w 2. Save your changes to the file and then reload the dlr_lw0414.html file in your
browser. Verify that the widows and orphans around the column break in the
article are at least three lines apiece.

Trouble? At the time of this writing, some browsers, such as the Firefox
desktop browser, do not support the orphans and widows style properties as
applied to column breaks.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 503

The final edit that Kyle wants to make to the article is to have the article heading
appear above the columns, rather than within the first column of the layout.

Spanning Cell Columns
For some layouts, you will want to have element content extend across all of the
columns. You can create column-spanning content by applying the following
column-span property

column-span: span;

where span is either none to prevent spanning or all to enable the content to span
across all of the columns.

Creating a Column Layout

• To specify the number of columns in the layout, use

column-count: value;

where value is the number of columns in the layout.
• To specify the width of the columns, use

column-width: size;

where size is the minimum width of the columns expressed in one of the CSS units of
measure or as a percentage of the width of the element.

• To set the size of the gap between columns, use

column-gap: size;

where size is the width of the gap.
• To add a dividing line between the columns, use

column-rule: border;

where border is the format of the border.
• To specify the width and number of columns in a single style property, use

columns: width count;

where width is the minimum width of each column and count is the total number of
columns in the layout.

• To control the size of orphans or widows around a column break, use

orphans: value;
widows: value;

where value is the number of lines in the column break orphan or widow.

R
E
FE

R
E
N
C
E

Add a style rule so that the h1 heading, which currently appears in the first column
of the article layout, spans across the columns.

To create a column-spanning heading:
w 1. Return to the dlr_columns.css file in your editor and, within the media query

for desktop devices, add the following style rule for the h1 heading in the
article element:

article h1 {
 column-span: all;
}

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 504

Figure 6–46 Creating a column-spanning heading

sets the heading so
that it extends across
all columns

Figure 6–46 highlights the new style rule to create a column-spanning
heading.

w 2. Save your changes to the file and then reload dlr_lw0414.html in your
browser. Figure 6–47 shows the final layout of page article.

Figure 6–47 Final column layout of the article

heading spans
the two columns
in the layout

Trouble? At the time of this writing, the column-span property is not
supported by the Firefox browser.

© Courtesy Patrick Carey

Kyle is pleased with the layout you created for the driverless car article. He’ll
continue to develop the new layout for the DLR website and get back to you for help
on his future projects.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 505

R
E
V
IE

W

Session 6.2 Quick Check

 1. What are the three row group elements?
a. head, footer, body
b. theader, tfooter, tbody
c. thead, tfoot, tbody
d. tablehead, tablefoot, tablebody

 2. What element do you use to create a column group?
a. col
b. colgroup
c. tcol
d. tablecol

 3. Which of the following properties cannot be changed within a column group?
a. font-size
b. border
c. width
d. background

 4. In the case of conflicting styles, how does HTML resolve the styles of the row
group and the column group?
a. The row group has precedence.
b. The column group has precedence.
c. Whichever is listed first has precedence.
d. Whichever is listed last has precedence.

 5. To set the height of the table header row to 25 pixels, use:
a. table thead {height: 25px;}
b. table head {height: 25px;}
c. table head tr {height: 25px;}
d. table thead tr {height: 25px;}

 6. To display an unordered list as a table, use:
a. ul {display: table;}
b. ul li {display: table;}
c. ul table {display: all;}
d. You can’t display an unordered list as a table.

 7. To set the column width of an element to 25 pixels, use:
a. width: 25px;
b. column: 25px;
c. column-width: 25px;
d. columnWidth: 25px;

 8. To limit the number of lines stranded at the bottom of a column, use the:
a. widow property
b. orphan property
c. column-gap property
d. column-height property

 9. To put a column break before every h1 heading, use:
a. h1 {column-break: always;}
b. h1 {break-before: always;}
c. h1 {break: yes;}
d. h1 {break: true;}

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 506

Coding Challenge 1

Data Files needed for this Coding Challenge: code6-1_txt.html, code6-1_layout.css,
code6-1_table_txt.css

The Orangeville Public Library has four conference rooms that it makes available for public use daily.
You’ve been asked to create a web page showing the room reservations for February 5, 2021. Use
HTML table elements and CSS table styles to create the table shown in Figure 6–48.

C
O

D
E

Figure 6–48 Coding Challenge 6-1 example page

Do the following:

 1. Open the code6-1_txt.html and code6-1_table_txt.css files from the html06 c code1 folder.
Enter your name and the date in each document and save the files as code6-1.html and
code6-1_table.css respectively.

 2. Go to the code6-1.html file in your editor. Within the head section insert link elements linking
the page to the code6-1_layout.css and code6-1_table.css files.

 3. Below the body header, create a table using the table element. Add the following features to the
table:
a. Insert a caption containing the text February 5, 2021.
b. Insert a column group containing a column with the id firstCol and a column with the id

hourCols that spans 9 columns.
c. Insert a table head group that contains a single row with th elements containing the text

Conference Room and the times 8:00am through 4:00pm in one-hour increments.
d. Insert a table body group that contains the four rows shown in Figure 6–48 for each of the

four conference rooms. Within each row insert a th element containing the name of the
conference room. Following that th cell insert the groups reserving the room in td elements.
If a group has reserved a room for longer than an hour, have the td cell span the number of
columns for that reservation.

 4. Save your changes and go to the code6-1_table.css file in your editor.
 5. Create the following style rules for the indicated elements:

a. For the table element: Add a 20-pixel grooved gray border and collapse the table borders.
b. For the th and td elements: Add a 1-pixel solid gray border, set the padding space to 5 pixels,

and align the cell content with the top-left corner of the cell.
c. For the caption element: Display the caption at the top-left of the table and set the font size

of the caption text to 1.5em.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 507

d. For col element with the id firstCol: Change the background color to yellow and set the
column width to 150 pixels.

e. For col element with the id hourCols: Set the column width to 75 pixels.
f. Change the background color of the thead element to aqua.

 6. Save your changes to the file and then reload the code6-1.html file in your browser. Verify that
the layout of the table resembles that shown in Figure 6–48.

 7. Submit the completed file to your instructor.

Coding Challenge 2

Data Files needed for this Coding Challenge: code6-2_txt.html, code6-2_table_txt.css,
code6-2_layout.css

You’ve been tasked to create a crossword puzzle web page. The first step is to create the layout of the
crossword puzzle table, including the numbering of the clues and the shading of the blank spaces.
Figure 6–49 shows a preview of the completed table.

C
O

D
E

Figure 6–49 Coding Challenge 6-2 example page

Do the following:

 1. Open the code6-2_txt.html and code6-2_table_txt.css files from the html06 c code2 folder.
Enter your name and the date in each document and save the files as code6-2.html and
code6-2_table.css respectively.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 508

 2. Go to the code6-2.html file in your editor. Within the head section insert link elements linking
the page to the code6-2_layout.css and code6-2_table.css files.

 3. Within the page body insert a table element.
 4. Add a table header row group containing one row. Within that row insert a table heading cell

that spans 8 columns and contains the text Daily Crossword.
 5. Add the table body section and within the table body, create the layout of the crossword puzzle

subject to the following conditions:
a. The table will contain 9 rows and 8 columns.
b. Within each row will be a number of table data cells. If the cell is a blank cell shown in

Figure 6–49, assign it the class name blank. If a blank cell covers multiple rows and/or
columns, make that cell a spanning cell and adjust the number of cells in subsequent rows
and columns accordingly to preserve the table layout.

c. Several cells contain numbers that will be used as crossword puzzle clues. Number the
appropriate cells from 1 up to 26 to match the layout in Figure 6–49.

 6. Save your changes to the file and then go to code6-2_table.css in your editor.
 7. Create the following style rules for the indicated elements:

a. For the table element: Add a 20-pixel margin around the table and collapse the table borders.
b. For the th element nested within the table row of the table header row group: Set the font

color to white, the background color to red, and the font size to 1.5em. Add a 1-pixel solid
gray border around the element.

c. For every td element: Set the width and height to 50 pixels, the font size to 0.7em, the border
to a 1-pixel solid gray, and align the text with the top-left corner of the cell.

d. For every td element of the blank class: Change the background to a linear gradient going
toward the bottom-right corner of the element and transitioning from red to gray.

 8. Save your changes to the file and then reload the code6-2.html file in your browser. Verify that
the layout of the crossword puzzle resembles that shown in Figure 6–49.

 9. Submit the completed file to your instructor.

Coding Challenge 3

Data Files needed for this Coding Challenge: code6-3_txt.html, code6-3_columns_txt.css,
code6-3_layout.css, code6-3_image.jpg

You’ve been handed a web page that will display the opening chapter of the Charles Dickens novel,
Great Expectations. You will lay out the text of the chapter in three columns as shown in Figure 6–50,
with a divided line separating the columns. Write the code for the style sheet.

C
O

D
E

Figure 6–50 Coding Challenge 6-3 example page

So
ur

ce
: P

ub
lic

 D
om

ai
n

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 509

Do the following:

 1. Open the code6-3_txt.html and code6-3_columns_txt.css files from the html06 c code3
folder. Enter your name and the date in each document and save the files as code6-3.html and
code6-3_columns.css respectively.

 2. Go to the code6-3.html file in your editor. Within the head section insert link elements linking
the page to the code6-3_layout.css and code6-3_columns.css files. Review the contents of the
file and then save your changes.

 3. Go to the code6-3_columns.css file in your editor.
 4. Create a style rule for the article element to: Display the contents in a 3-column layout with a

minimum column width of 350 pixels, separate the columns with a 5-pixel border in the ridge style
and using the color value rgb(231, 231, 231), and set the space between the columns to 20 pixels.

 5. Create a style rule for the h1 element within the article element to: Span the heading across all
columns, center the heading text, and set the font size to 3.5em with a letter spacing of 0.15em.

 6. Create a style rule for paragraphs within the article element to set the minimum size of
widows and orphans to 4 lines.

 7. Save your changes to the file and then view the page in your browser to verify the contents
match that shown in Figure 6–50.

 8. Submit the completed file to your instructor.

Coding Challenge 4

Data Files needed for this Coding Challenge: code6-4_txt.html, code6-4_debug_txt.css,
code6-4_layout.css

You have been given a web page containing the class schedule shown in Figure 6–51; however,
there are several mistakes in the HTML file and the CSS style sheet. Find and fix the errors in both
documents now.

D
E

B
U

G

Figure 6–51 Coding Challenge 6-4 example page

Do the following:

 1. Open the code6-4_txt.html and code6-4_txt_debug.css files from the html06 c code4 folder.
Enter your name and the date in each document and save the files as code6-4.html and
code6-4_debug.css respectively.

 2. Go to the code6-4.html file in your editor. Within the head section insert link elements linking
the page to the code6-4_layout.css and code6-4_debug.css files.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 510

 3. There are five errors in the HTML file. Locate the errors and fix them. Use a validator to confirm
that your file passes validation and that there is the correct number of cells within each table row.

 4. Go to the code6-4_debug.css file in your editor. There are seven separate syntax errors in the
stylesheet. Locate and correct all seven and then save your changes.

 5. Test the code6-4_debug.css file in a validator to confirm that it passes validation with no errors or
warnings reported.

 6. View the code6-4.html file in your browser under different screen widths and compare your
page to Figure 6–51, confirming that your page layout matches the one shown in the figure.

 7. Submit the completed file to your instructor.

Review Assignments

Data Files needed for the Review Assignments: dlr_mornings_txt.html, dlr_tables2_txt.css,
dlr_columns2_txt.css, 2 CSS files, 3 PNG files

Kyle has reviewed your work on the DLR nightly schedule page. He wants you to make a few
changes to the layout and apply those changes to a new page that describes the DLR morning
schedule. Kyle already has entered much of the web page content and style. He wants you to
complete his work by creating and designing the web table listing the times and programs for the
morning schedule. Figure 6–52 shows a preview of the morning schedule page.

Figure 6–52 DLR Morning Schedule

© Courtesy Patrick Carey

Complete the following:

 1. Use your HTML editor to open the dlr_mornings_txt.html, dlr_tables2_txt.css and
dlr_columns2_txt.css files from the html06 c review folder. Enter your name and the date in the
comment section of each file, and save them as dlr_mornings.html, dlr_tables2.css and
dlr_columns2.css respectively.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 511

 2. Go to the dlr_mornings.html file in your editor. Insert links to the dlr_tables2.css and
dlr_columns2.css style sheets.

 3. Scroll down the file and directly below the paragraph element, insert a web table with the class
name programs.

 4. Add a table caption containing the text All Times Central.
 5. Below the caption, insert a colgroup element containing three columns. The first col element

should have the class name timeColumn. The second col element should have the class
name wDayColumns and span five columns in the table that will contain the weekday programs.
The last col element should have the class name wEndColumns and span the last two columns
containing the weekend programming.

 6. Add the thead row group element containing a single table row with th elements containing the
text shown in Figure 6–52.

 7. Add the tbody row group element containing the times and names of the different DLR programs
from 5:00 a.m. to 12:00 p.m., Monday through Sunday, in half-hour intervals. The times should
be placed in th elements and the program names in td elements. Create row- and column-
spanning cells to match the layout of the days and times shown in Figure 6–52.

 8. Add the tfoot row group element containing a single row with a single td element that spans
8 columns and contains the text Support your Public Radio Station.

 9. Close the dlr_mornings.html file, saving your changes.
10. Return to the dlr_tables2.css file in your editor and go to the Table Styles section. Create a style

rule for the programs table that: (a) sets the width of the table to 100%, (b) adds a 15-pixel outset
border with a color value of rgb(151, 151, 151), (c) defines the borders so that they are collapsed
around the table, and (d) sets the font family to the font stack: Arial, Verdana, and sans-serif.

11. Create a style rule that sets the height of every table row to 25 pixels.
12. Create a style rule for every th and td element that: (a) adds a 1-pixel solid gray border,

(b) aligns the cell content with the top of the cell, and (c) sets the padding space 5 pixels.
13. Go to the Table Caption Styles section and create a style rule that places the caption element at

the bottom of the table and centered horizontally.
14. Go to the Table Column Styles section. For col elements belonging to the timeColumn class, create a

style rule that sets the column width to 10% and the background color to the value rgb(215, 205, 151).
15. For col elements of the wDayColumns class, create a style rule that sets the column width to

11% and the background color to rgb(236, 255, 211).
16. For col elements of the wEndColumns class, create a style rule that sets the column width to

17% and the background color to rgb(255, 231, 255).
17. Kyle wants you to format the table heading cells from the table header row. Go to the Table

Header Styles section and create a style rule to set the font color of the text within the thead
element to white and the background color to a medium green with the value rgb(105, 177, 60).

18. The different cells in the table header row should be formatted with different text and
background colors. Using the first-of-type pseudo-class, create a style rule that changes the
background color of the first th element with the thead element to rgb(153, 86, 7).

19. Using the nth-of-type pseudo-class, create style rules that change the background color of the
7th

 and 8th th elements within the thead element to rgb(153, 0, 153).
20. Kyle wants the table footer to be formatted in a different text and background color from the rest

of the table. Go to the Table Footer Styles section. Create a style rule for the tfoot element that
sets the font color to white and the background color to black.

21. Save your changes to the dlr_tables2.css style sheet.
22. Return to the dlr_columns2.css file in your editor. Kyle wants the introductory paragraph to

appear in a three column layout for desktop devices. Within the Column Styles section, create a
media query for screen devices with minimum widths of 641 pixels.

23. Within the media query, create a style rule for the paragraph element that: (a) sets the column
count to 3, (b) sets the column gap to 20 pixels, and (c) adds a 1-pixels solid black dividing line
between columns.

24. Save your changes to the dlr_columns2.css style sheet and then open the dlr_mornings.html file
in your browser and verify that the table layout and design resemble that shown in Figure 6–52.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 512

Case Problem 1

Data Files needed for this Case Problem: mi_pricing_txt.html, mi_tables_txt.css, 2 CSS files,
3 PNG files, 1 TXT file, 1 TTF file, 1 WOFF file

Marlin Internet Luis Amador manages the website for Marlin Internet, an Internet service provider
located in Crystal River, Florida. You have recently been hired to assist in the redesign of the
company’s website. Luis has asked you to complete work he’s begun on a page describing different
pricing plans offered by Marlin Internet. A preview of the page is shown in Figure 6–53.

Figure 6–53 Marlin Internet Pricing page

© Toria/Shutterstock.com; © Artem Efimov/Shutterstock.com; ©2009-2015 Font Squirrel. All rights reserved.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 513

Luis has already finished most of the page design. Your job will be to add a web table describing the
different service plans and to write the CSS code to format the table’s appearance.

Complete the following:

 1. Using your editor, open the mi_pricing_txt.html and mi_tables_txt.css files from the html06 c
case1 folder. Enter your name and the date in the comment section of each file, and save them
as mi_pricing.html and mi_tables.css respectively.

 2. Go to the mi_pricing.html file in your editor. Add a link to the mi_tables.css style sheet file to the
document head.

 3. Directly after the paragraph in the article element insert a web table with the ID pricing.
 4. Add a colgroup element to the web table containing two col elements. The first col element

should have the ID firstCol. The second col element should belong to the class dataCols and
span 4 columns.

 5. Add a thead row group element containing two rows. In the first row, insert five th elements
containing the text shown in Figure 6–53. The first heading cell should span two rows. In the
second row, add four headings cells containing the prices of the plans shown in Figure 6–53. Use
a br element to display the price information on two separate lines.

 6. Add a tbody row group element. In each row within the row group, add a th element containing
the text shown in Figure 6–53 and four td elements containing the data values for each plan.

 7. Add a tfoot row group element containing a single table row with a heading th element
displaying the text Summary. Add four data td elements containing a description of each of the
service plans. (Note: You can copy the summary text for each service plan from the mi_data.txt
file in the html06/case1 folder.)

 8. Save your changes to the file and then return to the mi_tables.css file in your editor.
 9. Go to the Table Styles section and add a style rule for the table element that: (a) sets the

background color to a linear gradient that goes to the bottom of the table background starting
from rgb(190, 215, 255) and ending in black and (b) adds a 5-pixel solid gray border.

10. For every th and td element in the table, create a style rule that: (a) adds a 3-pixel solid gray
border, (b) sets the line height to 1.4em, and (c) sets the padding space to 8 pixels.

11. For every th element, create a style rule that: (a) sets the background color to black, (b) sets the
font color to rgb(130, 210, 255), and (c) sets the font weight to normal.

12. For every td element, create a style rule that: (a) sets the font color to white, (b) sets the font size
to 0.9em, and (c) aligns the cell text with the top of the cell.

13. Go to the Column Styles section. Create a style rule for col elements with the ID firstCol that sets
the column width to 24%.

14. Create a style rule for col elements belonging to the dataCols class that sets the column width
to 19%.

15. Go to the Table Header Styles section. Create a style rule for the table header row group
including every row within that row group that sets the row height to 60 pixels.

16. For the first th element in the first row of the table header row group, create a style rule that sets
its font size to 2em. (Hint: Use the first-of-type pseudo-class to select the first table row and
first heading cell.)

17. For th elements in the first row of the table header row group that are not the first heading cell,
create a style rule that sets the background color to transparent and the font color to black. (Hint:
use the not selector with the first-of-type pseudo-class to select headings that are not first in
the table row.)

18. Save your changes to the style sheet and then open the mi_pricing.html file in your browser and
verify that the table layout and design resemble that shown in Figure 6–53.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 514

Case Problem 2

Data Files needed for this Case Problem: lht_sept_txt.html, lht_tables_txt.css, lht_columns_txt.css,
2 CSS files, 3 PNG files, 1 TXT file

The Lyman Hall Theater Lewis Kern is an events manager at the Lyman Hall Theater in Brookhaven,
Georgia. The theater is in the process of updating its website, and Lewis has asked you to work on
the pages detailing events in the upcoming year. He’s asked you to create a calendar page that lists
the upcoming events for September. A list of the events is stored in the lht_schedule.txt file.

Lewis wants a responsive design so that the calendar is readable for both mobile and desktop users.
In addition to the calendar, Lewis wants the article describing the September events displayed in
column layout. He suggests that you set the width of the columns, allowing the number of columns
to be determined based on the width of the display screen. Figure 6–54 shows a preview of the page
you will create for the theater viewed using mobile and desktop devices.

Figure 6–54 The Lyman Hall Theater September Calendar

desktop versionmobile version

© Stokkete/Shutterstock.com; © Studio10Artur/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 6 Working with Tables and Columns | HTML 5 and CSS HTML 515

Complete the following:

 1. Using your editor, open the lht_sept_txt.html, lht_tables_txt.css, and lht_columns_txt.css files
from the html06 c case2 folder. Enter your name and the date in the comment section of each
file, and save them as lht_sept.html, lht_tables.css, and lht_columns.css respectively.

 2. Go to the lht_sept.html file in your editor. Add links to the lht_tables.css and lht_columns.css
files to the document head.

 3. Directly below the article element, insert a web table using the ID calendar.
 4. Add a caption with the text September 2021 Calendar.
 5. Add a column group containing two col elements. Give the first col element the class name

weekdays and have it span five columns. Give the second col element the class name weekends
and have it span 2 columns.

 6. Add the table header row group with a single row with seven heading cells containing the three-
letter day abbreviations Sun through Sat.

 7. Add the table body row group with five rows and seven data cells within each row. Within each
table cell, add the following code to create an h1 heading and description list:

<h1>day</h1>
<dl>
<dt>event</dt>
<dd>time</dd>
<dd>price</dd>
</dl>

 where day is the day of the month, event is the name of an event occurring on that day, time is
the time of the event, and price is the admission price, using the days, events, times, and prices
shown in the lht_schedule.txt file. If there is no event scheduled for the day, insert only the code
for the h1 heading. Start your calendar with August 29 and conclude it with October 2.

 8. For each data cell you create in the table body, add an attribute in the opening td tab
named data-date containing the date associated with the cell. For example, in the first table cell,
enter data-date value "Sun, Aug 29, 2021", the second cell will have the data-date value "Mon,
Aug 30, 2021" and so forth. (Note: This code will be used to display the date information in the
mobile layout.)

 9. Save your changes to the file and then return to the lht_tables.css file in your editor.
10. Within the Mobile Styles section, insert a media query for screen devices with a maximum width

of 640 pixels.
 11. You want mobile devices to display the calendar information in two columns. To

create this layout, add the style rules that: (a) displays table, tbody, tr, td, th, and caption
elements as blocks, (b) does not display the thead h1 element, and (c) displays the table caption
in white on a medium gray background with a font size of 1.5em and a line height of 2em.

12. Create a style rule for every data cell that: (a) adds a 1-pixel dotted gray border, (b) changes
the text color to rgb(11, 12, 145), (c) places the cell using relative positioning, (d) sets the left
padding to 40%, and e) sets the minimum height to 40 pixels.

13. Create a style rule that uses the nth-of-type pseudo-class to display every odd-numbered table
row with a background color of rgb(255, 235, 178) and a 2-pixel solid gray border.

14. Create a style rule that inserts the text of the data-date attribute before every data cell. Place
the attribute text using absolute positioning at the coordinates (0, 0) with a width of 40% and
padding space of 5 pixels.

15. Next, you design the layout of the calendar for tablet and desktop devices. Go to the Tablet and
Desktop Styles section and insert a media query for screen devices with a minimum width of
641 pixels.

16. Create a style rule for the table element that: (a) displays the background image lht_photo1.
png with no tiling in the bottom-right corner of the table with a width of 40%, (b) adds a 6-pixel
double border with color value rgb(154, 64, 3), (c) collapses the table borders, (d) centers the

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 6 Working with Tables and ColumnsHTML 516

table by setting the top/bottom margins to 20 pixels and the left/right margins to auto, (e) uses a
fixed layout for the table content, and (f) sets the width of the table to 85%.

17. For every heading and data cell, create a style rule that: (a) adds a 1-pixel solid gray border,
(b) sets the font size to 0.85em and with normal weight, (c) adds a 5-pixel padding space,
(d) aligns the cell text with the top of the cell, (e) sets the width to 14.28%, and (f) allows the
browser to wrap cell text within individual words. (Hint: Use the word-wrap property.)

18. For every data cell, create a style rule that: (a) applies a semi-transparent background color with
the value rgba(171, 171, 171, 0.6) and (b) sets the text color to rgb(11, 12, 145).

 19. Lewis wants the September dates to appear in a different format from the August
and October dates. Create a style rule for data cells whose data-date attribute contains the text
Sep that: (a) changes the background color to the semi-transparent value rgba(232, 214, 148, 0.6)
and (b) adds a gray inset box shadow with horizontal and vertical offsets of 0 pixels and a blur of
20 pixels. (Hint: See Figure 2-15 for a list of attribute selectors.)

20. Create a style rule for the table caption that: (a) displays the caption at the top of the table,
(b) centers the caption text, (c) adds 10 pixels to the bottom padding space, and (d) sets the font
size to 1.2em and the letter spacing to 3 pixels.

21. For heading cells within the table header, create a style rule to change the background color to
rgb(154, 64, 3) and the text color to white.

22. Save your changes to the style sheet, then go to the lht_columns.css file in your editor and within
the Column Styles section, create a style rule for the article element that: (a) sets the column
width to 260 pixels, (b) sets the column gap to 20 pixels, (c) adds a 1-pixel solid dividing line
between columns with color value rgb(154, 64, 31), and (d) sets the minimum size of widows
and orphans to 2 lines.

23. Create a style rule for the h1 heading with the article element that extends the heading across
all columns.

24. Save your changes to the style sheet and then open the lht_sept.html file in your browser. Verify
that for desktop widths, the table appears as shown in right image of Figure 6–54 and the number
of columns used in the introductory article changes from 2 to 3 based on the page width. Reduce
the page width to below 640 pixels and verify that the calendar information is displayed in two
columns as shown in the left image in Figure 6–54.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 517

OBJECTIVES

Session 7.1
• Explore web forms
• Work with form servers
• Create forms and field sets
• Create labels and input boxes
• Explore form layout

Session 7.2
• Work with date and time fields
• Create a selection list
• Create option buttons
• Create check boxes and text

area boxes

Session 7.3
• Create spinners and range sliders
• Use data lists
• Create form buttons
• Validate a form
• Apply validation styles

Designing a Web
Form
Creating a Survey Form

Case | Red Ball Pizza
Alice Nichols is a manager at Red Ball Pizza, a popular pizzeria
in Ormond Beach, Florida. She wants to conduct an online survey
of Red Ball customers using a web form that will be placed on the
restaurant’s website. She has asked you to help design a prototype
for the survey form. The form should record customer information,
as well as each customer’s perception of his or her last experience
at the restaurant. Alice wants the form to include different tools to
ensure that each user enters valid data. Once a customer completes
the form, the information will be sent to the Red Ball server for
processing and analysis.

TUTORIAL 7

HTML 517

STARTING DATA FILES

tutorial

rb_survey_txt.html
rb_forms_txt.css
+ 9 files

review

rb_build_txt.html
rb_customer_txt.html
rb_validate_txt.css
+ 15 files

code1

code7-1_txt.html
+ 2 files

code2

case1

code3

case2

code4

code7-2_txt.html
+1 file

code7-3_txt.html
code7-3_txt_valid.css
+ 2 files

html07

code7-4_txt.html
+ 1 file

cg_register_txt.html
cg_validate_txt.css
+ 9 files

sb_payment_txt.html
sb_validate_txt.css
+ 16 files

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 518

Session 7.1 Visual Overview:

The action attribute
indicates the server program
that processes the form.

The fieldset
element groups the
�elds in the form.

The form element
encloses a web form.

The label element
associates a text string
with an input control.

The input element
creates an input
control based on the
type attribute for
entering data.

The legend element
provides the �eld set
legend.

The value attribute
provides a default
value for the data �eld.

The name attribute
provides the name of
the data �eld.

The for attribute
associates the label
with an input control.

The placeholder attribute
inserts descriptive text into
the input control.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 519

Structure of a Web Form

The �eld set legend appears
at the top-left corner of the
�eld set by default.

An input control box
displaying placeholder text

A default value appears in
the input box.

A label associated
with an input control

Placeholder text is dimmed
within the input box

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 520

Introducing Web Forms
So far, the websites you have created have been passive: allowing the user to view
information but not allowing the user to directly interact with the page’s content, except
via hyperlinks. Starting with this tutorial, you will begin working with more interactive
websites that allow for user feedback. The most common way of accepting user input is
through a web form, which allows users to enter data that can be saved and processed.

Parts of a Web Form
A web form contains controls, also known as widgets, which are the objects that allow
the user to interact with the form. HTML supports several types of controls and widgets,
including:

Controls

• input boxes for inserting text strings and numeric values
• option buttons, also called radio buttons, for selecting data values from a small

predefined set of options
• selection lists for selecting data values from a more extensive list of options
• check boxes for selecting data values limited to two possibilities, such as “yes” or “no”
• text area boxes for entering text strings that may include several lines of content

Widgets

• spin boxes for entering integer values confined to a specified range
• slider controls for entering numeric values confined to a specified range
• calendar controls for selecting date and time values
• color pickers for choosing color values

Figure 7–1 shows Alice’s sketch of the web form she wants you to create.

Figure 7–1 Proposed survey form

Customer Information Share Your Experience at Red Ball Pizza

Name*

Street address

City

State

Postal code

Phone number

Where did you
hear about us?

How many times do you
dine out per month?

What's your favorite Red
Ball special dish?

E-mail*

Add me to your newsle�er
for great specials

Date of visit

Order type

Was your order correct?

Was your service friendly?

Was your food hot?

Rate your overall service
(0 = poor; 10 = great)

Tell us more about your experience!

0 10

Yes No

Yes No

Yes No

text area box

check box

spin box

selection list box

input box option buttons calendar control

slider control

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 521

Alice’s proposed form includes several of the controls discussed above, such as input
boxes for entering the customer name, contact information, and email address; option
buttons for storing the customer’s service experience; and a selection list from which
customers can choose how they heard about Red Ball Pizza from a long list of options.

Each data entry control is associated with a data field or field in which data values
supplied by the user are stored. For example, the input box in which a customer enters
his or her name is associated with the custName field, the calendar control in which
the customer enters the date he or she visited Red Ball Pizza is associated with the
visitDate field, and so forth.

Forms and Server-Based Programs
Once the field values have been entered by the user, they are processed by a program
running on the user’s computer or on a web server in a secure location. For example,
a web form is used to collect sales data from the customer for an order and the server
program processes that data and handles the billing and delivery of the sales items.
See Figure 7–2.

Figure 7–2 Interaction between the web form and the server

data from the web form is
sent to a program running
on the server

feedback from the
server can be sent back
to the browser

Alice is already working with a programmer on a web server program that will store
and interpret the survey results. You will not have access to that program, so Alice just
wants you to concentrate on the design of the web form. Your colleagues will test your
form to verify that the information is being collected and processed correctly by the
web server.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 522

Starting a Web Form
All web forms are marked using the following form element

<form id="text" attributes>
 content
</form>

where the id attribute identifies the form (which is important when more than one
form is being used on the web page), attributes specify how the form should be
processed by the browser, and content is the form’s content. Forms typically contain
many of the controls that were listed earlier, but they also can contain page elements
such as tables, paragraphs, inline images, and headings. A form element can be placed
anywhere within the body of the page.

HTML also supports the
name attribute for uniquely
identifying forms.

IN
SI
G
H
T

Restricting Access to Web Server Programs

Since the web form designer might not have permission to create or edit the
programs running on the web servers, he or she will usually receive instructions
about how to interact with the server programs. These instructions often include a
list of fields that are required by the program and a description of the types of values
expected in those fields.

There are several reasons to restrict direct access to these programs. The primary
reason is that, when you run a server-based program, you are interacting directly with
the server environment. Mindful of the security risks that computer hackers present
and the drain on system resources caused by large numbers of programs running
simultaneously, system administrators are understandably careful to maintain strict
control over access to their servers and systems.

Server-based programs are written in a variety of languages. The earliest and
most common of these programs is Common Gateway Interface (CGI), which are
scripts written in a language called Perl. Other popular languages widely used today
for writing server-based programs include ASP, ColdFusion, C, Java, PHP, Python,
and Ruby. You can check with your ISP or system administrator to find out what
programs are available on your web server, and what rights and privileges you have
in accessing them.

Inserting a Web Form

• To insert a web form, add

<form id="text" attributes>
 content
</form>

where text identifies the form, attributes control how the form is processed, and
content is the content of the form.

R
E
FE

R
E
N
C
E

Add a form to Alice’s survey page now with the ID survey.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 523

Next, you will include attributes that tell the browser how the form should interact
with the web server.

Interacting with the Web Server
To specify where to send the form data and how to send it, include the following
action, method, and enctype attributes

<form action="url" method="type" enctype="type">
 content
</form>

where the action attribute provides the location of the web server program that
processes the form, the method attribute specifies how the browser should send form
data to the server, and the enctype attribute specifies how the form data should be
encoded as it is sent to the server.

The method attribute has two possible values: get and post. The default is the
get method, which tells the browser to append the form data to the end of the URL
specified in the action attribute. The post method sends the form data in its own
separate data stream. Each method has its uses, but the post method is considered
to be a more secure form of data transfer. Your website administrator can supply the
necessary information about which of the two methods you should use when accessing
the scripts running on the server.

The enctype attribute has three possible values summarized in Figure 7–4.

To insert a web form:
w 1. Use your editor to open the rb_survey_txt.html file from the html07 c

tutorial folder. Enter your name and the date in the comment section of the
file and save it as rb_survey.html.

w 2. Scroll down and, directly after the third paragraph in the section element,
insert the following form element:

<form id="survey">
</form>

Figure 7–3 shows the placement of the web form.

Figure 7–3 Inserting a web form

form id identi�es
the form

form element
marks the web
form contents

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 524

Alice tells you that your survey form will be processed by the CGI script using the
action attribute accessing a server program located at the fictional URL address
http://www.example.com/redball/survey with the post method. You do not have to
specify a value for the enctype attribute because the default value of application
/x-www-form-urlencoded is sufficient. Add this information to your web form.

Figure 7–4 Values of the enctype attribute

Value Description
application/x-www-form-urlencoded The default format in which the data is encoded as a

long text string with spaces replaced by the + character
and special characters (including tabs and line breaks)
replaced with their hexadecimal code values

multipart/form-data The format used when uploading files in which no
encoding of the data values occurs

text/plain The format in which data is transferred as plain text
with spaces replaced with the + character but no other
encoding of the data values occurs

To specify how the form interacts with the server:
w 1. Return to the opening <form> tag and add the following attributes:

action="http://www.example.com/redball/survey"
method="post"

Figure 7–5 highlights the newly added form attributes.

Figure 7–5 Associating the web form with an action and a method

location of server
processing the form

method by which
the form data is
sent to the server

w 2. Save your changes to the file.

Because http://www.example.com/redball/survey does not correspond to a real CGI
script running on the web and thus cannot process the survey form you will create in
this tutorial, you will add a JavaScript program named rb_formsubmit.js to handle the
form. The purpose of this JavaScript program is to intercept the content of the form
before the browser attempts to contact the CGI script and report whether or not the
data contained in the survey form has been correctly filled out. The JavaScript program
has already been created, so you will create a link to the file using the following
script element:

<script src="rb_formsubmit.js"></script>

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 525

A script element is an HTML element used to access and run JavaScript programs
that will run within the user’s browser. You will learn more about scripts and their
applications in Tutorial 9, but for now, you add this code to the document head so that
it can be applied throughout this tutorial.

To insert a script:
w 1. Scroll up to the document head and insert the following code directly above

the closing </head> tag:

<script src="rb_formsubmit.js"></script>

Figure 7–6 highlights the code for the script element.

Figure 7–6 Using a script to manage the form submission

external JavaScript �le

the script element runs
JavaScript programs
within the browser

w 2. Save your changes to the file.

Now that you have added the form element to the survey page, you can start
populating the survey form with controls and other form features. You will start by
adding field sets.

Creating a Field Set
Because a web form can have dozens of different fields, you can make your form easier
to interpret and more accessible by grouping fields that share a common purpose into a
field set. Field sets are created using the following fieldset element

<fieldset id="id">
 content
</fieldset>

where id identifies the field set and content is the form content within the field set. An
id is not required, but it is useful in distinguishing one field set from another.

Marking a Field Set
Alice wants you to organize the form into two field sets: the custInfo field set will
enclose the fields containing contact information for Red Ball Pizza customers and the
expInfo field set will enclose the fields that record those customers’ impressions of the
restaurant.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 526

The default browser style is to place a border around the field set to set it off visually
from other elements in the web form. Field sets act like block elements that expand to
accommodate their content. Before viewing the two field sets in your browser, you will
add a legend.

Adding a Field Set Legend
Every field set can contain a legend describing its content using the following legend
element

<legend>text</legend>

where text is the text of the legend. The legend element contains only text and no
nested elements. By default, legends are placed in the top-left corner of the field set
box, though they can be moved to a different location using the CSS positioning styles.

To add field sets to a form:
w 1. Scroll back to the web form and, within the form element, insert the

following fieldset elements:

<fieldset id="custInfo">
</fieldset>

<fieldset id="expInfo">
</fieldset>

Figure 7–7 highlights the code for the two new field sets.

Figure 7–7 Inserting field sets

id associated with
each �eldset element

w 2. Save your changes to the file.

Creating a Field Set

• To create a field set, add

<fieldset id="id">
 content
</fieldset>

where id identifies the field set and content is the form content within the field set.
• To add a legend to a field set, place the following element within the fieldset

element:

<legend>text</legend>

where text is the text of the legend.

R
E
FE

R
E
N
C
E

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 527

Based on Alice’s sketch from Figure 7–1, add the legend text “Customer Information”
and “Share Your Experience at Red Ball Pizza” to the two field sets you just created.

To add legends to the field sets:
w 1. Within the custInfo field set, add the following legend element:

<legend>Customer Information</legend>

w 2. Within the expInfo field set, add the legend:

<legend>Share Your Experience at Red Ball Pizza</legend>

Figure 7–8 highlights the code for the two legends.

Figure 7–8 Adding legends to the field sets

legend associated
with each �eld set

w 3. Save your changes to the file and then open the rb_survey.html file in your
browser. Figure 7–9 shows the appearance of the two field sets.

Figure 7–9 Legends displayed in the field set box

�eld sets

�eld set legend

The default browser
style is to add a border
around a �eld set

The field sets you added are currently empty, so they appear small and narrow on
the survey page. Next, you will populate the field set with the controls that will be used
to insert different field values.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 528

Creating Input Boxes
Because most form controls are designed to receive user input, they are marked using
the following input element

<input name="name" id="id" type="type" />

where the name attribute provides the name of the data field associated with the
control, the id attribute identifies the control in which the user enters the field value,
and the type attribute indicates the data type of the field. When the form is submitted
to the server, the field name is paired with the field value; thus, you always need a
name attribute if you are submitting the form to a server. The id attribute is required
only when you need to reference the control, as would be the case when applying a
CSS style to format the control’s appearance.

Input Types
At the time of this writing, HTML supports twenty-two different values for the type
attribute. Each input type is associated with a different form control, usually one that
is tailored to make it easy for the user to enter data that matches the input type. For
example, an input type of password is displayed as an input box that hides the input
text for security purposes. Figure 7–10 describes the different type values for the input
element and how their controls are typically displayed in most current browsers. If no
type value is specified, the browser assumes a default value of text and adds a simple
text input box to the web form.

Figure 7–10 Controls and the input type attribute

Type Value Control Displayed by the Browser
button A button that can be clicked to perform an action

checkbox A check box for yes/no or true/false responses

color A widget from which users can select a color

date A widget from which users can select a calendar date

datetime-local A widget from which users can select a calendar date and time

email An input box used for email addresses

file A widget from which users can select a local file

hidden A control that is hidden from the user

image An image that can be clicked to perform an action

month A widget from which users can select a calendar month and year

number A spin box from which users can select a numeric value

password An input box in which the entry value is hidden by * symbols

radio A radio or option button that can be clicked by the user

range A slider from which users can select a numeric value within a defined range

reset A button that can be clicked to reset the web form

search A widget that can be used to search for a defined term

submit A button that can be clicked to submit the form for processing

tel An input box used for telephone numbers

text An input box used for text entries (the default)

time A widget from which users can select a time value

url An input box used for entering URLs

week A widget from which users can select a week value

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 529

The first input elements you will add to the survey form will be input boxes in
which the customer enters his or her name, street address, city, state, postal code,
phone number, and e-mail address. For the program running on the web server, these
input boxes with be associated with data fields named custName, custStreet, custCity,
custState, custZip, custPhone, and custEmail, respectively. You will identify the controls
for these fields with the ids: name, street, city, state, zip, phone, and mail. Before each
input element, you will insert a text string that describes the content of the input box.

Creating an Input Control

• To create an input control for data entry, add the element

<input name="name" id="id" type="type" />

where name provides the name of the field associated with the control, id identifies
the control in which the user enters the field value, and type indicates the type of
control displayed by the browser.R

E
FE

R
E
N
C
E

To add input elements:
w 1. Within the custInfo field set, add the following text strings and input

elements:

Name*
<input name="custName" id="name" type="text" />

Street address
<input name="custStreet" id="street" type="text" />

City
<input name="custCity" id="city" type="text" />

State
<input name="custState" id="state" type="text" />

Postal code
<input name="custZip" id="zip" type="text" />

Phone number
<input name="custPhone" id="phone" type="tel" />

E-mail*
<input name="custEmail" id="mail" type="email" />

Figure 7–11 highlights the code for the newly inserted input elements.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 530

Figure 7–11 Adding input elements to the form

name of the �eld
associated with
the input box

id of the input box
control for entering
the customer name

input boxes for
general text entries

input box for
telephone number

input box for email
address

w 2. Save your changes to the file and then reload the rb_survey.html file in your
browser.

w 3. Click the Name* input box on the form to make it active and type your name
in the input box. Press the Tab key to move the insertion point to the next
input box.

w 4. Complete the form by entering your contact information in the remainder
of the form, pressing the Tab key to move from one input box to the next.
Figure 7–12 shows the completed data entry for the form.

You can prevent users
from entering data into
a control by adding the
attribute disabled to the
element tag.

Figure 7–12 Displaying input boxes

input box used to
enter the customer
street address

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 531

By default, browsers display input boxes as inline elements with a default length of
20 characters. Later, you will explore how to format these controls to make them easier
to read and work with.

IN
SI
G
H
T

Navigating Forms with Access Keys

You activate controls like input boxes either by clicking them with your mouse or by
tabbing from one control to another. As your forms get longer, you might want to give
users the ability to jump to a particular input box. This can be done with an access
key. An access key is a single key on the keyboard that you press in conjunction with
another key, commonly the Alt key for Windows users or the control key for Mac users,
to jump to a spot in the web page. You create an access key by adding the accesskey
attribute to the HTML element that creates the control. For example, to create an
access key for the custName input box, you would enter the following code:

<input name="custName" id="custName" accesskey="l" />

If a user types Alt+1 (or control+1 for Mac users), the insertion point automatically
moves to the custName input box. Note that you must use letters that are not reserved
by your browser. For example, Alt+f is used by many browsers to access the File menu
and thus should not be used as an access key. Access keys also can be used with
hypertext links and are particularly helpful to users with impaired motor skills who find it
difficult to use a mouse or others who prefer not to use a mouse.

Note that you should test your access keys with different browsers since a keyboard
shortcut on one browser might not work with another. Your form can be enhanced
through the use of access keys but it should not rely on them.

Input Types and Virtual Keyboards
Most mobile and tablet devices do not have physical keyboards; instead, they use
virtual keyboards that exist as software representations of the physical device. One
way that web forms can be made responsive to the needs of mobile and touch devices
is by displaying different virtual keyboards for each input type. With an input box
for telephone numbers, it is more convenient to have digits (instead of alphabetic
characters) prominently displayed on the keyboard. Figure 7–13 shows the virtual
keyboards that will be displayed based on the value of the type attribute.

Figure 7–13 Virtual keyboards for different input types

type=“text” type=“email”

type=“tel” type=“url”

type=“number”type="text" type="email" type="number"

type="tel" type="url"

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 532

Note that for email addresses the @ key is prominently displayed as well as a key that
inserts the .com character string. Similarly, for url data, the virtual keyboard includes a
key that inserts the www. character string. The choice and layout of the virtual keyboard
is determined by the operating system of the device.

Adding Field Labels
In the last set of steps, you entered a descriptive text string above each input element
to indicate what content should be entered into the input box. However, nothing in the
HTML code explicitly associates that descriptive text with the input box. To associate
a text string with a control, you enclose the text string within the following label
element

<label for="id">label text</label>

where id is the id of the control that you want associated with the label, and label
text is the text of the label. For example, the following code associates the label text
“Street address” with the input box for the custStreet control:

<label for="street">Street address</label>
<input name="custStreet" id="street" type="text" />

You also can make this association implicitly by nesting the control, such as an
input element, within the label element as in the following code:

<label>
 Street address
 <input name="custStreet" id="street" />
</label>

Notice that you do not need to include a for attribute when you nest the control
since the association is made implicit.

Which approach you use depends on how you want to lay out a form’s content.
When you use the for attribute, you can place the label text anywhere within the page
and it will still be associated with the control. However, by nesting the control within
the label, you can treat both the control and its label as a single object, which can
make form layout easier because you can move both the label text and the control as a
single unit around the page. Depending on the layout of your form, you might use both
approaches.

Always include a type
attribute in your input box
so that a user’s device can
choose a keyboard best
suited for the form control.

Creating a Field Label

• To explicitly associate a text label with a control, use the following label element and
the for attribute

<label for="id">label text</label>

where id identifies the control associated with the label.
• To implicitly associate a text label with a control, nest the control within the label

element as follows

<label>
 label text
 control
</label>

where control is the HTML code for the form control.

R
E
FE

R
E
N
C
E

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 533

Once you associate a label with a control, clicking the label activates the control. In
the case of input boxes, clicking the label would automatically move the insertion point
into the input box, making it ready for data entry. With date or color types, clicking the
label will display the calendar or color picker widget.

Use the label element and for attribute now to associate the text strings you entered
in the last set of steps with their corresponding input boxes.

To insert form labels:
w 1. Return to the rb_survey.html file in your editor.

w 2. Go to the custInfo field set and enclose the text string Name* within the
following label element:

<label for="name">Name*</label>

w 3. Repeat Step 2 for the remaining descriptive text strings in the custInfo field set,
using the for attribute to associate each text string with the id of the subsequent
input element. Figure 7–14 highlights the newly added code in the web form.

The value of the for
attribute should match the
value of the id attribute for
the control.

Figure 7–14 Adding form labels

for attribute associates the label
with the name input box

label element

w 4. Save your changes to the file and then reload the rb_survey.html file in your
browser.

w 5. Test the labels by clicking each label and verifying that the insertion point appears
within the corresponding input box, making that control active on the form.

Alice stops by to see your progress on the survey form. In its current state, the form
is difficult to read. She wants you to design a layout that will be easier to read and that
will be responsive to both mobile and desktop devices.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 534

Usability studies have shown that a single column layout is more accessible because
the labels are placed more closely to their input controls. However, for long forms
involving many fields, a single column layout can be difficult to work with due to the
extensive vertical space required.

Alice wants you to use a single column layout for mobile devices due to the limited
horizontal space on those devices, but she wants a two-column layout for devices with
larger screen widths. To accomplish this, you will use a flex layout that will allow the
labels and controls to assume flexible widths based on the available screen width of the
device being used.

First, you will nest each label and input box within a div element that will act as a
flexbox container.

In a two-column layout,
you can move the label
text even closer to the
input controls by right
aligning the label text.

Figure 7–15 Form layouts

Customer Information

Name *

Street address

City

State (abbr.)

Customer Information

Name *

Street address

City

State

one-column layout two-column layout

Designing a Form Layout
To be effective, the layout of your form should aid the user in interpreting the form and
navigating easily from one input control to the next. There are two general layouts:
one in which the labels are placed directly above the input controls in a single column
and the other in which the labels and controls are placed side-by-side in two columns.
See Figure 7–15.

To create a flexbox for the label and input elements:
w 1. Return to the rb_survey.html file in your editor and scroll down to the

custInfo field set.

w 2. Nest the label and input box for the custName field within the following div
element, indenting the code to make it easier to read:

<div class="formRow">
 <label for="name">Name*</label>
 <input name="custName" id="name" type="text" />
</div>

w 3. Repeat Step 2 for the remaining label and input box pairs, nesting each pair
within a div element belonging to the formRow class. Figure 7–16 highlights
the new code in the file.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 535

Figure 7–16 Nesting labels and input controls within div elements

Next, you will create a style rule that displays each div element of the formRow class
as a flexbox and the objects that are direct children of those div elements as flex items.

To add styles for a flexible form layout:
w 1. Scroll to the top of the rb_survey.html file and then, within the document

head and directly above the script element, add a link to the rb_forms.css
style sheet.

w 2. Save your changes to the file and then use your editor to open the
rb_forms_txt.css file from the html07 c tutorial folder. Enter your name and
the date in the comment section of the file and save it as rb_forms.css.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 536

Figure 7–17 Adding styles to create a flexible layout

sets the �ex sizes of
objects that are direct
children of the formRow
div element

sets the top/bottom
margins to 7 pixels

displays the div element
with the class formRow
as a horizontal �exbox

w 5. Save your changes to the style sheet and then reload rb_survey.html in your
browser.

w 6. Resize your screen width to verify that the form layout changes between one
and two columns as the screen changes width. See Figure 7–18.

w 3. Within the Forms Layout Styles section, add the following style rule to display
the formRow div element as a flexbox with row orientation and a 7-pixel top
and bottom margin:
div.formRow {
 display: flex;
 flex-flow: row wrap;
 margin: 7px 0px;
}

w 4. Add the following style rules to set the growth, shrink, and basis values of the
objects that are direct children of the formRow div element:
div.formRow > * {
 flex: 1 1 150px;
}

Figure 7–17 shows the new style rules in the style sheet.

Figure 7–18 Flex layout of the labels and text input controls

narrow screen layout wide screen layout

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 537

Another way to set the width of an input box is by adding the following size
attribute to the input element in the HTML file

size="chars"

where chars is the width of the input box in characters. For example, the following
input element sets the width of the input box for the custState field to two characters:

<input id="state" size="2" type="text" />

Note that this is not an exact measure because the width of individual characters varies
depending on the typeface and font style.

Alice suggests that you also use a flexible layout for the two field sets so that they are
displayed side-by-side for wider screen devices and stacked for narrow screens. Create
style rules now that will change the web form to a flexbox and the field sets as items
within that flexbox. You will also add styles to change the appearance of the field set
boxes themselves.

To create a flexible layout for the form:
w 1. Return to the rb_forms.css file in your editor.

w 2. At the top of the Form Layout Styles section, insert the following style rule to
display the survey form as a flexbox:

form#survey {
 display: flex;
 flex-flow: row wrap;
}

w 3. Add the following style rule to display the field sets within the survey form as
flex items:

form#survey > fieldset {
 background-color: rgb(241, 232, 181);
 border-radius: 20px;
 flex: 1 1 300px;
 font-size: 0.85em;
 padding: 10px;
 margin: 10px;
}

Figure 7–19 shows the new style rules in the style sheet.

Figure 7–19 Creating a flexible layout for the form field sets

de�nes the font size,
padding, and margin
spaces of the �eld set

applies rounded
corners to the �eld set

sets the �eld set
background color
to yellow-gold

sets the �ex size
of the �eld set

displays the survey
form as a textbox

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 538

Figure 7–20 Flex layout of the field sets for a wide screen layout

w 4. Save your changes to the style sheet and then reload rb_survey.html in your
browser.

w 5. Resize your screen width and verify that the form layout changes from one
column to two columns, with both field sets side by side as shown in Figure
7–20 when the screen width is larger, to one column, with the field sets
stacked vertically when the screen width is reduced.

Finally, Alice wants the field set legends to stand out from the border. She suggests
you change the text and background color of the legends.

To set the style of the field set legend:
w 1. Return to the rb_forms.css file in your editor.

w 2. Go to the Legend Styles section and insert the following style rule:

legend {
 background-color: rgb(179, 20, 25);
 color: white;
 padding: 5px;
}

Figure 7–21 highlights the style rule for the field set legend.

Figure 7–21 Style rule for the field set legend

sets the
background
color to red

adds 5 pixels of
padding around
the legend text

sets the text
color to white

w 3. Save your changes to the style sheet and then reload rb_survey.html in your
browser. Verify that the two field set legends appear in white font on a red
background.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 539

IN
SI
G
H
T

Using the autocomplete Attribute

Many browsers include an autocomplete feature that automatically completes an input
control based on previous user entries. For example, a user who routinely fills in his or
her street address in a multitude of web forms can enable the browser to remember
that information and to insert it automatically into any address field from a web from.

The autocomplete feature is a useful time-saver in most cases, but it also can be a
security risk when using a computer located in a public place. After all, you may not
want to have a private credit card number or password automatically filled in by a
browser on a computer that other people will be using.

One way to prevent this problem is through the autocomplete attribute which
enables or disables the browser’s autocomplete function. For example, the following
input element prevents the browser from automatically filling out the creditCard field.

<input name="creditCard" autocomplete="false" type="text" />

To enable the browser’s autocomplete capability, set the value of the autocomplete
attribute to true.

It is easier to use the form with the new layout. However, more than 90% of Red Ball Pizza
customers come from Ormond Beach in Florida. Rather than forcing these customers to
enter that data, it would be simpler to have those values entered for them. You can do that
using default values.

Defining Default Values and Placeholders
To specify a default field value, you add the following value attribute to the HTML
element for the form control

value="value"

where value is the value that will be entered by default into the control unless the
user enters a different value. For example, the following input element sets the default
value of the custCity field to Ormond Beach:

<input name="custCity" id="city" type="text" value="Ormond Beach" />

Set the default values for the custCity and custState fields to Ormond Beach and FL
respectively.You can replace the default

field value by entering a
new value for the field.

To define a default field value:
w 1. Return to the rb_survey.html file in your editor and scroll down to the

custInfo field set.

w 2. Add the attribute value="Ormond Beach" to the input element for the
custCity input control.

w 3. Add the attribute value="FL" to the input element for the custState input
control.

Figure 7–22 highlights the attributes that add default values to the custCity
and custState fields.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 540

w 4. Save your changes to the file and then reload rb_survey.html in your browser.
Verify that the City and State input boxes show the text strings Ormond Beach
and FL, respectively.

Trouble? If the form does not reload with the replacement text, close the file
and reopen it in your browser, which clears all fields and opens a new copy of
the form.

Figure 7–22 Defining the default field value

sets the default value
for the custState �eld

sets the default value
for the custCity �eld

Placeholders are text strings that appear within a form control, providing a hint
about the kind of data that should be entered into the field. However, unlike a default
field value, a placeholder is not stored in the control as the field’s value. Placeholders
are defined using the following placeholder attribute

placeholder="text"

where text is the text of the placeholder. For example, the following placeholder
attribute provides guidance about the format users should use when entering values for
the custPhone field:

<input name="custPhone" id="phone" placeholder="(nnn) nnn-nnnn" />

When the browser displays the form, the text (nnn) nnn-nnnn appears grayed
out in the input box indicating to the user that he or she should enter a phone
number, including both the area code and the seven-digit number. The placeholder
automatically disappears as soon as a user selects the control and begins to enter a
value.

Alice asks you to add placeholders to the input boxes for the custName, custZip,
and custPhone fields.

To define a placeholder:
w 1. Return to the rb_survey.html file in your editor.

w 2. Add the attribute placeholder="first and last name" to the input
element for the custName field.

w 3. Add the attribute placeholder="nnnnn (-nnnn)" to the input element for
the custZip field.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 541

w 4. Add the attribute placeholder="(nnn) nnn-nnnn" to the input element for
the custPhone field.

Figure 7–23 highlights the placeholder attributes added to the form.

Figure 7–23 Defining placeholder text

placeholder text for
the name input box

placeholder text for
the zip input box

placeholder text for
the phone input box

w 5. Save your changes to the file and then reload rb_survey.html in your browser.
As shown in Figure 7–24, placeholder text has been added to the Name,
Postal code, and Phone input boxes.

Figure 7–24 Viewing default values and placeholder text

formatted �eld
set legend

default value
for the custCity
�eld

placeholder text
for the phone
input box

default value for
the custState �eld

placeholder text
for the name
input box

placeholder text
for zip input box

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 542

The style of the placeholder text is determined by the browser. There are no CSS
styles to format the appearance of the placeholder but all major browsers include their
own browser extensions for placeholders. Depending on the browser, the placeholder is
treated either as a pseudo-class or a pseudo-element named either input-placeholder
for the webkit and ms extensions or placeholder for the moz extension.

The following code shows a cross-browser style sheet that changes the text color of
the placeholder text for every input box to light red.

input::-webkit-input-placeholder {
 color: rgb(255, 151, 151);
}

input:-ms-input-placeholder {
 color: rgb(255, 151, 151);
}

input::-moz-placeholder {
 color: rgb(255, 151, 151);
}

Note that you cannot place different browser extensions within the same style rule
because if style rule contains a selector that the browser doesn’t recognize, the entire
rule will be ignored.

The moz extension
for Firefox version 18
and earlier treats the
placeholder as a pseudo-
class rather than a
pseudo-element.

PR
O
SK

IL
LS

Decision Making: Creating Cross-Browser Compatible Forms

Several form attributes, such as the placeholder attribute, might not be supported
by older browsers. This poses a problem for designers who must decide whether or
not to use such attributes. One school of thought holds that a web form should look
and function the same across all browsers and browser versions. Thus, a feature like
the placeholder attribute should not be used. If a placeholder is needed, it should
be created using a JavaScript program that can be applied uniformly across browsers
and browser versions. The opposing view holds that the best design is one that uses
each browser to its utmost capabilities, and that the web will only improve in the long
run if the most current features are employed because their use will encourage their
more rapid adoption across the browser market.

To decide between these two approaches, you must evaluate whether the form
feature you’re adding is critical to understanding and using your web form. If it is,
you need to include workarounds so that all users are supported regardless of their
browser. On the other hand, if the feature enhances the user’s experience but is not
essential to working with the web form, it can be safely added without leaving older
browsers behind.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 543

You have finished the initial stage of developing the survey form. Alice is pleased with
the form’s appearance and content. In the next session, you will extend the form by adding
new fields and controls, including calendar widgets, selection lists, option buttons, and
check boxes.

R
E
V
IE

W

Session 7.1 Quick Check

 1. What attribute do you add to the <form> element to access the CGI script at
www.example.com/cgi-bin/registration?
a. action="www.example.com/cgi-bin/registration"
b. method="www.example.com/cgi-bin/registration"
c. src="www.example.com/cgi-bin/registration"
d. url="www.example.com/cgi-bin/registration"

 2. What attribute identifies the form control?
a. name
b. id
c. control
d. method

 3. What attribute do you use to indicate a password field?
a. password="true"
b. method="password"
c. id="password"
d. type="password"

 4. What attribute do you use for an input box containing a telephone number?
a. type="telephone"
b. type="text"
c. type="tel"
d. type="number"

 5. What attribute do you use for an input box containing a hypertext link?
a. type="url"
b. type="link"
c. rel="link"
d. type="search"

 6. What attribute do you use to associate a label with the input control pWord?
a. type="pWord"
b. for="pWord"
c. url="pWord"
d. src="pWord"

 7. What attribute do you use to set the default value of a field to "United States"?
a. default="United States"
b. text="United States"
c. placeholder="United States"
d. value="United States"

 8. What code do you enter to specify the placeholder text "nnn-nn-nnnn"?
a. default="nnn-nn-nnnn"
b. text="nnn-nn-nnnn"
c. placeholder="nnn-nn-nnnn"
d. value="nnn-nn-nnnn"

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 544

The multiple attribute
allows for multiple
selections from the
drop-down list.

The size attribute
sets the number of
visible options.

The checkbox data
type creates a
checkbox control.

The radio data type
creates an option
button control.

The select element
creates a drop-down
list box control.

Each radio button within
an option group belongs
to the same data �eld.

The textarea element
marks a text area box
control.

The selected attribute
identi�es the default
option in a selection list.

Each option in a selection
list is marked with the
option element.

Session 7.2 Visual Overview:

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 545

Selection list box control
showing �ve items; the
user can select more than
one option.

A check mark appears
when the user clicks
the checkbox control.

The user can type
in the text area
box control.

The user can select
only one option
button control.

Selection list displayed as a
drop-down list box control with
the default option displayed.

Web Form Widgets

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 546

Entering Date and Time Values
To ensure that users enter data in the correct format, you can use controls specifically
designed for the field’s data type. Consider, for example, the following code that creates
an input box for a birthdate field:

<label for="bdate">Date of Birth</label>
<input name="bdate" id="bdate" />

There is nothing to prevent users from entering the same date in a wide variety of
formats such as September 14, 2021, 9/14/21, or 2021-09-14. The lack of uniformity in
these date formats makes it difficult for a web server program to store and analyze the
data.

Starting with HTML 5, date and time fields could be indicated using one of the
following type attributes: date, time, datetime-local, month, and week. Each of
these type attribute values has a different control associated with it, enabling the user
to select the date, time, month, or week value. The text into the input box is based on
the user’s selection in the control widget, ensuring the date or time text is entered in
the same format for every user. Figure 7–25 shows examples of the widgets used by the
Google Chrome browser.

If a browser does not
support date and time
controls, it will display an
input box, leaving the user
free to enter the date or
time value in whatever
format he or she wishes.

Figure 7–25 Date and time controls

type="date"

type="month" type="week"

type="datetime-local" type="time"

The expInfo field set will contain fields in which the customer can describe his or
her experience at the pizzeria. Alice wants the field set to include a calendar control
that users can use to enter the date of their visit to Red Ball Pizza.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 547

To create a date field:
w 1. If you took a break after the previous session, make sure rb_survey.html is

open in your editor.

w 2. Go to the expInfo field set and insert the following label and input elements:

<div class="formRow">
 <label for="visit">Date of visit</label>
 <input name="visitDate" id="visit" type="date" />
</div>

Figure 7–26 highlights the code for the label and input elements.

Figure 7–26 Creating a date field

sets the data type of the
visitDate �eld to “date”

w 3. Save your changes to the file and then reload rb_survey.html in your browser.

w 4. Click the Date of visit control and select a date to verify that the text of the
date is entered into the input box.

Creating a Selection List
The next part of the survey form records how customers place their orders from Red
Ball Pizza. A customer order can be placed in one of four ways: pickup, delivery, dine
in, or, in the case of pizzas, uncooked pizzas that customers can take home and bake.
Alice doesn’t want customers to enter their order types into an input box because
customers will enter this information in different ways, and the large variety of spellings
and text will make it difficult to group and analyze the survey results. Instead, she
wants each user to select the order type from a predetermined group of options. This
can be accomplished using a selection list.

A selection list is a list box that presents users with a group of possible values for the
data field and is created using the following select and option elements

<select name="name">
 <option value="value1">text1</option>
 <option value="value2">text2</option>
 ...
</select>

where name is the name of the data field, value1, value2, and so on are the possible
field values, and text1, text2, and so on are the text of the entries in the selection list
that users see on the web form. Note that the field value does not have to match the
option text. In most cases, the option text will be expansive and descriptive, while the
corresponding field value will be brief and succinct for use with the server program
analyzing the form data.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 548

The first option in the selection list is selected by default and thus contains the field’s
default value. To choose a different option as the default option, add the selected
attribute to the option element as follows:

<option value="value" selected>text</option>

Note that XHTML documents require the attribute selected="selected" to be
compliant with XHTML standards for attribute values.

Creating a Selection List

• To create a selection list, add the elements

<select name="name">
 <option value="value1">text1</option>
 <option value="value2">text2</option>
 ...
</select>

where name is the name of the data field, value1, value2, and so on are the possible
field values, and text1, text2, and so on are the text entries displayed in the
selection list on the web form.

• To allow users to make multiple selections, add the attribute multiple to the select
element.

• To set the number of options displayed at one time in the selection list, add the
following attribute to the select element

size="value"

where value is the number of options displayed in the selection list at any one time.
• To specify the default value, add the selected attribute to the option element that

you want to set as the default.

R
E
FE

R
E
N
C
E

Add a selection list to the Red Ball Pizza survey form to record the type of order
placed by the customer, storing the value in the orderType field. Identify the selection
list control with ID order. Alice knows that most of the survey respondents dine in
at the restaurant. Although she wants the options for the orderType field listed in
alphabetical order, she would like the Dine in option selected by default.

To create a selection list:
w 1. Return to the rb_survey.html file in your editor.

w 2. Within the expInfo field set, add the following code to create the label and
selection list:

<div class="formRow">
 <label for="order">Order type</label>
 <select name="orderType" id="order">
 <option value="order1">Carry out</option>
 <option value="order2">Delivery</option>
 <option value="order3" selected>Dine in</option>
 <option value="order4">Take 'n bake</option>
 </select>
</div>

Figure 7–27 highlights the code for the selection list.

The default width of the
selection box is equal to
the width of the longest
option text unless the width
is set using a CSS style.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 549

Working with select Attributes
By default, a selection list appears as a drop-down list box. To display a selection list as
a scroll box with more than one option visible in the web form, add the following size
attribute to the select element

<select size="value"> ... </select>

where value is the number of options that the selection list displays at one time. For
example, a size value of 5 would display 5 items in the scroll box.

The default behavior of the selection list is to allow only one selection from the list
of options. To allow more than one item to be selected, add the following multiple
attribute to the select element:

<select multiple> ... </select>

Figure 7–27 Creating a selection list for the orderType field

�eld name
associated with
the selection list

possible values
of the orderType
�eld

text strings displayed in the
selection list for each option

id of the selection
list control

order3 (Dine in) is the
default selected value
of the orderType �eld

w 3. Save your changes to the file and then reload rb_survey.html in your browser.

w 4. Click the Order type selection list and verify that the list of order types
appears in the drop-down list box and that Dine in is the default selected
option. See Figure 7–28.

Figure 7–28 Viewing the selection list options

Dine in is the
default selected
option a drop-down

list box displays
the text of the
four options

calendar control
for selecting the
date of the
customer’s visit

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 550

There are two ways for users to select multiple items from a selection list. For
noncontiguous selections, users can press and hold the Ctrl key (or the command key
on a Mac) while making the selections. For a contiguous selection, users can select the
first item, press and hold the Shift key, and then select the last item in the range. This
selects the two items, as well as all the items between them.

Alice has another selection list to add to the survey form, which will record how a
customer heard about Red Ball Pizza. The survey presents the user with five options:
Internet, Magazine, Newspaper, Word of Mouth, or Other. Alice wants the form to
display all of the options, so you set the value of the size attribute to 5. She also wants
customers to be able to select multiple options from the selection list.

To assist your users in
completing your form, you
can include instructions on
your page detailing how
to select multiple options
from a selection list.

To apply the size and multiple attributes:
w 1. Return to the rb_survey.html file in your editor and go to the custInfo field

set.

w 2. At the bottom of the field set, insert the following code:

<div class="formRow">
<label for="info">Where did you hear about us?

(select all that apply)
</label>
<select name="infoSrc" id="info" size="5" multiple>
 <option value="internet">Internet</option>
 <option value="mag">Magazine</option>
 <option value="news">Newspaper</option>
 <option value="word">Word of Mouth</option>
 <option value="other">Other</option>
</select>
</div>

Figure 7–29 highlights the code for the selection list.

Figure 7–29 Inserting a selection list for the infoSrc field

�eld name

displays 5 options
in the selection list

allows the user to
make multiple
selections

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 551

If you use a multiple selection list in a form, be aware that the form sends a name/
value pair to the server for each option the user selects from the list. Verify that your
server-based program can handle a single field with multiple values before using a
multiple selection list.

Grouping Selection Options
In long selection lists, it can be difficult for users to locate a particular option value.
You can organize selection list options by placing them in option groups using the
optgroup element

<select>
 <optgroup label="label1">
 <option>text1</option>
 <option>text2</option>
 </optgroup>
 <optgroup label="label2">
 <option>text3</option>
 <option>text4</option>
 </optgroup>
</select>

where label1, label2, and so forth are the labels for the different groups of options.
The text of the label appears in the selection list above each group of items but it is
not a selectable item from the list. Figure 7–31 shows an example of a selection list in
which the options are divided into two groups.

w 3. Save your changes and then reload rb_survey.html in your browser. Figure
7–30 shows the infoSrc selection list box.

Figure 7–30 Viewing the selection list for the infoSrc field

all 5 options are
displayed in the
selection list

w 4. Verify that you can now select multiple values for the infoSrc field by
using the Ctrl+click, Command+click, Shift+click keyboard and mouse
combinations.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 552

The appearance of the option group label is determined by the browser. You can
apply a style to an entire option group including its label, but there is no CSS style to
change the appearance of the option group label alone.

Figure 7–31 Grouping options in a selection list

option group labels

IN
SI
G
H
T

Hidden Fields

Some fields have predefined values that do not require user input and are often not
displayed within the web form. You create a hidden field by setting the value of the
type attribute to hidden as follows:

<input name="name" value="value" type="hidden" />

where name is the name of the data field and value is the value stored in the field.
With a hidden field, both the field value and the input control are hidden from the
user. Even though hidden fields are not displayed by browsers, the field values still
can be read by examining the source code; for this reason, you should not put any
sensitive information in a hidden field.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 553

Creating Option Buttons
Option buttons, also called radio buttons, are like selection lists in that they limit fields
to a set of possible values; but, unlike selection lists, the options appear as separate
controls in the web form. Option buttons are created with a group of input elements
with a type attribute value of “radio”, sharing a common data field name as follows

<input name="name" value="value1" type="radio" />
<input name="name" value="value2" type="radio" />
<input name="name" value="value3" type="radio" />
…

where name is the name of the data field and value1, value2, value3, and so on are
the field values associated with each option. While a user can select multiple items in
a selection list, a user can only click or check one option in a group of radio buttons.
Selecting one radio button automatically deselects the others and sets the value of the
field to the value of the checked radio button.

For example, the following code creates a group of option buttons for the sFriend
field, limiting the possible field values to “yes” or “no”.

Was your service friendly?
<label for="fYes">Yes</label>
<input name="sFriend" value="yes" id="fYes" type="radio" />
<label for="fYes">No</label>
<input name="sFriend" value="no" id="fNo" type="radio" />

Note that the two radio button controls are given different ids and field values to
distinguish them from each other, however they share the same field name, “sFriend”.

By default, an option button is unselected; however, you can set an option button
to be selected as the default by adding the following checked attribute to the input
element:

<input name="name" type="radio" checked />

To show that a group of
radio buttons are associated
with the same field, place
the radio button controls
within a field set.

Creating an Option List

• To create a group of option buttons associated with the same field, add the input
elements

<input name="name" value="value1" type="radio" />
<input name="name" value="value2" type="radio" />
<input name="name" value="value3" type="radio" />
 …

where name is the name of the data field, and value1, value2, value3, and so on are
the field values associated with each option.

• To specify the default option, add the checked attribute to the input element.

R
E
FE

R
E
N
C
E

In the next part of the form, Alice wants to ask customers general questions about
their experiences at the restaurant. She wants to know whether the service was friendly,
whether orders were recorded correctly, and if the food was delivered hot. She suggests
that you present these questions using radio buttons, placing each group of radio
buttons within a fieldset element belonging to the optGroup class.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 554

To create a set of option buttons:
w 1. Return to the rb_survey.html file in your editor and go to the expInfo field set.

w 2. At the bottom of the expInfo field set, add the following code to create radio
buttons for the sFriend field:

<div class="formRow">
 <label>Was your service friendly?</label>
 <fieldset class="optGroup">
 <label for="fYes">Yes</label>
 <input name="sFriend" id="fYes" value="yes"
type="radio" />
 <label for="fNo">No</label>
 <input name="sFriend" id="fNo" value="no"
type="radio" />
 </fieldset>
</div>

w 3. Add the following group of radio buttons for the oCorrect field:

<div class="formRow">
 <label>Was your order correct?</label>
 <fieldset class="optGroup">
 <label for="cYes">Yes</label>
 <input name="oCorrect" id="cYes" value="yes"
type="radio" />
 <label for="cNo">No</label>
 <input name="oCorrect" id="cNo" value="no"
type="radio" />
 </fieldset>
</div>

w 4. Finally, add the following group of radio buttons for the foodHot field:

<div class="formRow">
 <label>Was your food hot?</label>
 <fieldset class="optGroup">
 <label for="hYes">Yes</label>
 <input name="foodHot" id="hYes" value="yes"
type="radio" />
 <label for="hNo">No</label>
 <input name="foodHot" id="hNo" value="no"
type="radio" />
 </fieldset>
</div>

Figure 7–32 highlights the code for the set of option buttons.

The value of the name
attribute must be the same
for all option buttons within
a group.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 555

w 5. Save your changes to the file and then reload rb_survey.html in your browser.
Figure 7–33 shows the appearance of the three groups of radio buttons in
the survey form.

w 6. Click the radio buttons with each option group and verify that if you select
one radio button, the other button in that group is automatically deselected.

Figure 7–32 Creating option groups for the sFriend, oCorrect, and foodHot fields

options for the
sFriend �eld

label for the
option group

radio button
controls�eld value

options for the
oCorrect �eld

options for the
foodHot �eld

Figure 7–33 Option buttons for the serve field

radio buttons
for the sFriend
�eld

radio buttons
for the oCorrect
�eld

radio buttons for
the foodHot �eld

option group
labels

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 556

Creating Check Boxes
Check boxes are designed for fields that record the presence or absence of an object
or event. The check box control is created using the following input element with the
type attribute set to “checkbox”

<input name="name" value="value" type="checkbox" />

where the value attribute contains the value of the field when the check box is
checked, and the type attribute indicates that the input box is a check box. By
default, the check box is not checked, however you can make a check box selected
automatically by adding the checked attribute to the input element.

For example, the following code creates a check box for the orderDone field,
recording whether an order has been completed:

<label for="orderCB">Order Completed</label>
<input name="orderDone" id="orderCB" value="yes" type="checkbox" />

If the check box is selected by the customer, the browser will send a name/value pair
of orderDone/yes to the script running on the web server when the form is submitted. A
name/value pair is sent to the server only when the check box is checked by the user. If
the control is not checked, then no name/value pair is sent when the form is submitted.

The default field value for a
check box control is “On”.

Creating a Check Box

• To create a check box, add the element

<input name="name" value="value" type="checkbox" />

where type is the type of input control, name is the name of the data field, and value
is the data field value if the check box is selected.

• To specify that a check box is selected by default, add the checked attribute to the
input element.

R
E
FE

R
E
N
C
E

Alice wants her survey form to include a check box that customers can select if they wish
to be added to the pizzeria’s email list for specials and promotions. Add a check box for the
mailMe field to the custInfo field set now.

To add a check box control:
w 1. Return to the rb_survey.html file in your editor and go to the end of the

custInfo field set.

w 2. Add the following code to create a check box followed by the label for the
checkbox control:

<input name="mailMe" id="mailCB" value="yes" type="checkbox" />
<label for="mailCB">Add me to your mailing list for great
coupons and specials!</label>

Figure 7–34 highlights the code for the check box and label.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 557

w 3. Save your changes and then reload rb_survey.html in your browser.
Figure 7–35 shows the placement of the check box within the form.

Figure 7–34 Creating a checkbox control

id for the checkbox
element

�eld value if the
check box is checked

display a checkbox
control

�eld name

check box label

Figure 7–35 Check box for the mailMe field

check box

label associated
with the check box

IN
SI
G
H
T

Tab Indexing and Autofocus

Typically, users navigate through a form using the Tab key, which moves the insertion point
from one field to another in the order that the form controls are entered into the HTML file.

You can specify an alternate order by adding the tabindex attribute to any control
in your form. When each control is assigned a tab index number, the insertion point
moves through the fields from the lowest index number to the highest. For example, to
assign the tab index number 1 to the custName field from the survey form, you add the
following tabindex attribute to the control:

<input name="custName" tabindex="1" />

This code places the insertion point in the custName field when the form is first
opened. (Fields with 0 or negative tab indexes are omitted from the tab order entirely.)

Another way to place the insertion point in a field when the form is initially opened is
to use the following autofocus attribute:

<input name="custName" autofocus />

Older browsers that do not support tab indexing or the autofocus attribute simply
ignore them and open a file without giving the focus to any form control. When a user
tabs through the form in those older browsers, the tab order will reflect the order of
the elements in the HTML file.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 558

Creating a Text Area Box
Input boxes are limited to a single line of text and thus are not appropriate for extended
text strings that might cover several lines of content. For that type of data entry, you
create a text area box using the following textarea element

<textarea name="name">
 text
</textarea>

where text is the default value of the data field. You do not have to specify a default value;
you can leave the text box empty or you can use the placeholder attribute introduced in
the last session to provide a hint to users about what to enter into the text box.

The default browser style is to create a text area box that is about 20 characters
wide and two or three lines high. You can increase the size of the box using CSS styles.
HTML also supports the following rows and cols attributes to set the text area size

<textarea rows="value" cols="value"> ... </textarea>

where the rows attribute specifies the number of lines in the text area box and the
cols attribute specifies the number of characters per line. While the rows and cols
attributes represent the older standard, you may still encounter their use in older
websites.

Content in a text area box automatically wraps to a new line as needed. You can
determine whether those line returns are included as part of the field value by adding
the following wrap attribute:

<textarea wrap="type"> ... </textarea>

where type is either hard or soft. In a hard wrap, line returns are included with the
data field value, while in a soft wrap, line returns are not included. The default value of
the wrap attribute is soft.

When you enter more
text than can fit into a
text area box, the browser
automatically adds vertical
scroll bars to the box.

Creating a Text Area Box

• To create a text area box for multiple lines of text, use

<textarea name="name">
 text
</textarea>

where name is the name of the field associated with the text area box and text is the
default text that appears in the box.

• To specify the dimensions of the box, use a CSS style or apply the following attributes

rows="value" cols="value"

where the rows attribute specifies the number of lines in the text area box and the
cols attribute specifies the number of characters per line.

• To specify how the field value should handle wrapped text, use the attribute

wrap="type"

where type is either hard (to include the locations of the line wraps) or soft (to
ignore line wrap locations).

R
E
FE

R
E
N
C
E

Alice wants to include a text area box where customers can enter extended
commentary about the pizzeria, storing their comments in the custExp field. You will
set the dimensions of the text area box using CSS.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 559

To add a text area box:
w 1. Return to the rb_survey.html file in your editor and go to the end of the

expInfo field set.

w 2. Add the following code to create a text area box at the bottom of the
field set:

<label for="commBox">Tell us more about your
 experience!</label>
<textarea name="custExp" id="commBox"></textarea>

Figure 7–36 highlights the code for the text area box and label.

Figure 7–36 Creating a text area box

Figure 7–37 Styles for the text area box

displays a text
area box

id of the text
area box�eld name

w 3. Save your changes and then return to the rb_forms.css file in your editor.

w 4. Go to the Text Area Styles section and insert the following style rule to set
the size and top margin of the text area box.

textarea {
 margin-top: 10px;
 height: 100px;
 width: 95%;
}

Figure 7–37 shows the style rule for the text area box.

w 5. Save your changes and then reload rb_survey.html in your browser.
Figure 7–38 shows the appearance of the text area box.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 560

Figure 7–38 Text area box in the web form

w 6. Test the text area box by clicking it and then typing a sample comment inside
of the box.

text area box

label associated with
the text area box

PR
O
SK

IL
LS

Written Communication: Creating Effective Forms

Web forms are one of the main ways of getting feedback from your users, so it is
important for the forms to be easily accessible. A well-designed form often can be the
difference between a new customer and a disgruntled user who leaves your site to go
elsewhere. Here are some tips to remember when designing a form:

• Keep your forms short and to the point.
• Mark fields that are required but also limit their number. Don’t overwhelm your users

with requests for information that is not really essential.
• Use the autofocus attribute to place users automatically into the first field of your

form, rather than forcing them to click that field.
• Many users will navigate through your form using the Tab key. Make sure that your

tab order is logical and easy for users to follow.
• Provide detailed instructions about what users are expected to do. Don’t assume

that your form is self-explanatory.
• If you ask for personal data and financial information, provide clear assurances that

the data will be secure. If possible, provide a link to a web page describing your
security practices.

• If you need to collect a lot of information, break the form into manageable sections
spread out over several pages. Allow users to easily move backward and forward
through the form without losing data. Provide information to users indicating where
they are as they progress through your pages.

• Clearly indicate what users will receive once a form is submitted, and provide
feedback on the website and through email that tells them when their data has been
successfully submitted.

Finally, every form should undergo usability testing before it is made available
to the general public. Weed out any mistakes and difficulties before your users see
the form.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 561

You have greatly extended the scope of the survey form through the use of a
calendar control, selection lists, option button groups, a check box, and a text area
box. In the next session, you will continue to work on the survey form by exploring
how to design a form that verifies the user enters valid data before it is submitted to the
web server for processing.

R
E
V
IE

W
Session 7.2 Quick Check

 1. What code do you enter to create a date control for the expireDate field?
a. <input name="expireDate" date />
b. <input name="expireDate" type="date" />
c. <input name="expireDate" src="date" />
d. <input name="expireDate" method="date" />

 2. What code do you enter to create a date/time control for the orderDelivery
field?
a. <input name=”orderDelivery” date-time />
b. <input name=”orderDelivery” type=”datetime-local” />
c. <input name=”orderDelivery” type=”date/time” />
d. <input name="orderDelivery" type="date-time" />

 3. What HTML elements are used to create a selection list?
a. <select>…</select>
b. <select><item /><item />…</select>
c. <list><item /><item /> … </list>
d. <select><option /><option /> … </select>

 4. What HTML elements are used to group option buttons?
a. <group><option /><option /> … </group>
b. <optgroup><item /><item /> … </optgroup>
c. <optgroup><option /><option /> … </optgroup>
d. <group><item /><item /> … </group>

 5. What HTML element do you use to create an option button control?
a. <input type="option" />
b. <option />
c. <input type="radio" />
d. <radio type="option" />

 6. What HTML element do you use to create a checkbox control?
a. <input type="check" />
b. <input type="checkbox" />
c. <check />
d. <option type="check" />

 7. What HTML element do you use to create a text box control?
a. <text> … </text>
b. <input type="text" />
c. <textarea> … </textarea>
d. <input type="textarea" />

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 562

Session 7.3 Visual Overview:

The pattern attribute
speci�es the general pattern
that the characters in the
�eld value must follow.

The required attribute
indicates that a �eld
value is required.

The range data type
creates a range slider
for data entry.

The reset data type creates
a button that restores the
form to its default values.

The number data type
creates a spin box
control for data entry.

The min and max attributes
de�ne the range of possible
�eld values; the step sets
the interval between values.

The datalist element
de�nes a set of suggested
�eld values.

The submit data type
creates a button to submit
the form for processing.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 563

Data Validation

The favDish �eld displays
a suggested value from
the dishType data list.

A spinner control is used to select a �eld
value by clicking spin arrows to increase
or decrease the value by a set amount.

A range slider control is used to
select a �eld value by dragging
a slider across a range of values.

Forms that contain invalid
data generate error
messages when submitted
by the browser for
processing.

Use inline validation to
highlight invalid data as it
is being entered by the
user.

The Submit My Survey button
is used to submit the form to
the server for processing.

The Cancel button is used to
reset form �elds to their default
values, deleting any user input.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 564

Entering Numeric Data
In the last session, you worked with several form controls that restricted field values
to a set of possible values, ensuring that the user submits valid data to the server for
processing. HTML also supports restrictions on numeric values by specifying that the
values must fall within a defined range.

Creating a Spinner Control
One way of restricting numeric values is through a spinner control, which displays an
up or down arrow to increase or decrease the field value by a set amount. To create a
spinner control, apply the following input element using the number data type:

<input name="name" id="id" type="number"
 value="value" step="value" min="value" max="value" />

where the value attribute provides the default field value, the step attribute indicates
the amount by which the field value changes when a user clicks the spin arrow, the
min attribute defines the minimum possible value, and the max attribute defines the
maximum possible value of the field. For example, the following input element creates
a spinner control with the ID attSpin for the attendance field with the spinner value
ranging from 10 to 50 in steps of 5 units with a default value of 20:

<input name="attendance" id="attSpin" type="number"
 value="20" step="5" min="10" max="50" />

Add a new field to the survey form named dineOut that queries customers about
how often they dine out, setting its default value to 1 and allowing the field value to
range from 0 up to 20 in steps of 1 unit.

To add a spinner control:
w 1. If you took a break after the previous session, make sure rb_survey.html is

open in your editor and scroll down to the custInfo field set.

w 2. Above the check box for the mailMe field, insert the following code to create
a spinner control for the dineOut field:

<div class="formRow">
 <label for="dineSpin">How many times do you dine out per
month?</label>
 <input name="dineOut" id="dineSpin" type="number"
 value="1" step="1" min="0" max="20" />
</div>

Figure 7–39 highlights the code for the spinner control and label.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 565

w 3. Save your changes to the file.

A spinner control does not need to be as wide as the input boxes used for
text entries. So, next, you will create a style rule that sets the width of the
spinner control.

w 4. Return to the rb_forms.css file in your editor and scroll down to the Spinner
Styles section.

w 5. Enter the following style rule for input elements with the number data type:

div.formRow > input#dineSpin {
 flex: 0 0 50px;
}

Figure 7–40 highlights the new style rule in the style sheet.

w 6. Save your changes to the style sheet and then reload rb_survey.html in
your browser. Figure 7–41 shows the layout and appearance of the spinner
control.

Figure 7–39 Creating a spinner control for the dineOut field

Figure 7–40 Styles for the dineSpin spinner control

displays a
spinner control

the �eld name

the default
�eld value

the amount by which
the �eld value increases
in the spinner

the minimum and
maximum values
of the �eld

�xes the size of the
dineSpin spinner
control at 50 pixels

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 566

Creating a Range Slider
Another way to limit a numeric field to a range of possible values is through a slider
control, which the user can use to drag a marker horizontally across the possible field
values. Slider controls are created by applying the range data type in the following
input element

<input name="name" id="id" type="range"
 value="value" step="value" min="value" max="value" />

where the value, step, min, and max attributes have the same meanings as they did for
the spinner control. Many browsers do not include a scale on the range slider widget,
so it is a good idea to include the lower and upper values of the range before and
after the slider control. For example, the following code creates a range slider for the
attendance field with values range from 10 to 50 in steps of 5 and a default value of 20.

10
<input name="attendance" id="attSlider" type="range"
 value="20" step="5" min="10" max="50" />
50

Figure 7–41 Spinner in the web form

click to increase
or decrease the
�eld value

spinner control

Trouble? At the time of this writing, some browsers (such as IE and Edge) do
not support the number data type and they also ignore the step, min, and
max attributes. In those browsers, the spinner control is displayed as a text
input box.

w 7. Click the input box for the spinner control and verify that you use the arrow
buttons to increase and decrease the field value within the range 0 to 20.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 567

R
E
FE

R
E
N
C
E

Creating Spinner Controls and Range Sliders

• To create a spinner control for numeric data, enter the input element with a type
value of “number”

<input name="name" id="id" type="number"
 value="value" step="value" min="value" max="value" />

where the value attribute provides the default field value, the step attribute indicates
the amount by which the field value changes when a user clicks the spin arrow, the min
attribute defines the minimum value, and the max attribute defines the maximum value
of the field.

• To create a range slider control for numeric data, use the following input element
with a type value of “range”:

<input name="name" id="id" type="range"
 value="value" step="value" min="value" max="value" />

Add a range slider to the survey form now, which customers can use to rate their
experience at Red Ball Pizza from 0 (poor) up to 10 (great).

To add a range slider control:
w 1. Return to the rb_survey.html file in your editor and scroll down to the

expInfo field set.

w 2. Directly above the text area control, add the following code to create a range
slider control for the serviceRate field:

<div class="formRow">
 <label for="rangeBox">Rate the overall service

 (0=poor; 10=great)</label>
 0
 <input name="serviceRate" id="rangeBox" type="range"
 value="5" step="1" min="0" max="10" />
 10
</div>

Figure 7–42 highlights the code for the range slider control and label.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 568

Figure 7–42 Creating a range slider control for the serviceRate field

Figure 7–43 Viewing the range slider control

displays a range
slider control

text strings that will
appear before and
after the range slider

default value of the
serviceRate �eld

step size between
values on the
range slider

minimum and
maximum values for
the serviceRate �eld

�eld name

w 3. Save your changes to the file and then reload rb_survey.html in your browser.
Figure 7–43 shows the appearance of the range slider control in the Google
Chrome browser.

Trouble? Other browsers will display different styles for the range slider
widget. For example, Microsoft Edge and Internet Explorer will display
a colored bar with a pop-up window showing the current value of the
serviceRate field. If your browser does not support the range slider widget, it
will display a text input box.

w 4. Verify that you can drag the marker on the range slider to the left and right.

range slider label minimum
�eld value

click and drag
to change the
�eld value

maximum
�eld value

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 569

The next data field that Alice wants added to the survey form is a text box, which
customers can use to indicate their favorite Red Ball Pizza dish. There are a lot of
possible answers and Alice doesn’t want to limit the options to a selection list, but she
does want to provide suggestions to customers as they type their entries. You can add
these suggestions with a data list.

Suggesting Options with Data Lists
A data list is a list of possible data values that a form field can have. When applied to
an input box, the data values appear as a pop-up list of suggested values. Data lists are
defined using the following datalist element

<datalist id="id">
 <option value="value">
 <option value="value">
…
</datalist>

where the value assigned to the different option elements provides the suggested entry
in the list for its associated option element. To apply a data list, add the following
list attribute to the input element

<input list="id" />

where id references the id of the datalist element. For example, to create an input box
for the favDish field that offers a few suggested items, you could enter the following code:

<input name="favDish" type="text" list="dishes" />
<datalist id="dishes">
 <option value="Antipasto Pizza">
 <option value="Big Kahuna Pizza">
 <option value="BBQ Chicken Pizza">
</datalist>

When applied to the range
type, a data list appears
as tick marks in the range
slider widget.

IN
SI
G
H
T

Styles for Widgets

The appearance of a form widget is largely determined by the browser and there
are no CSS styles to alter it. However, most browsers do provide style extensions
that allow you to modify their widgets. One useful browser extension is the following
appearance extension that defines the widget associated with the form control

-moz-appearance: type;
-webkit-appearance: type;

where type is the type of widget including none (for no widget), button, checkbox,
listbox, radio, range, spinner, textfield, and many other types depending on
the browser. For example, to display a selection list as an input box, you would apply
the following style rule:

select {
 -moz-appearance: textfield;
 -webkit-appearance: textfield;
}

The selection list options will still appear but as pop-ups for the input box. You should
use these browser extensions with care because they are not part of the CSS standard,
and thus respond unpredictably.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 570

Add an input box for the favDish field to the survey form now and augment it with a
data list of suggested Red Ball Pizza dishes.

R
E
FE

R
E
N
C
E

Creating and Applying a Data List

• To create a data list of possible values, enter

<datalist id="id">
 <option value="value">
 <option value="value">
…
</datalist>

where each value attribute provides the text of a possible value in the data list.
• To reference the data list from an input control, add the list attribute

<input name="name" list="id" />

where id references the ID of the data list structure.

To apply a data list to an input control:
w 1. Return to the rb_survey.html file in your editor and go to the custInfo field

set.

w 2. Directly above the div element that encloses the spinner control for the
dineOut field, enter the following code to create the input box for the
favDish field along with the field’s data list of suggested values.

<div class="formRow">
 <label for="dish">What's your favorite dish?</label>
 <input name="favDish" id="dish" type="text" list="dishType"
/>
 <datalist id="dishType">
 <option value="Anitpasto Pizza">
 <option value="Big Kahuna Pizza">
 <option value="BBQ Chicken Pizza">
 <option value="Mediterranean Herb Pizza">
 <option value="Pasta Rolls">
 <option value="Pasto Artichoke Pizza">
 </datalist>
</div>

Figure 7–44 highlights the code for the input box and data list.

The options in the dishes data list are just suggestions. The customer is not obligated
to accept any options and can type a dish of his or her own choosing.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 571

w 3. Save your changes to the file and reload rb_survey.html in your browser.

w 4. Click the input box for the favDish field and type the letter p. Note that the
browser displays the list of dishes that start with the letter “p”. See Figure 7–45.

Trouble? Currently the Firefox and Chrome browsers will display any data
list entry that contains the letter “p” as opposed to only those data list values
starting with the letter “p”.

links the favDish
�eld to the dishType
data list

data list containing
suggested values

Figure 7–44 Applying a data list to the favDish field

Figure 7–45 Viewing suggested data values

suggested values from
the data list starting
with the letter “p“

Now that you have entered most of the survey form fields, you will examine how to
submit the form for processing. To do that, you will create a form button.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 572

Working with Form Buttons
So far, all of your form controls have been used to enter field values. Another type of
control is one that performs an action. This is usually done with form buttons, which
can perform the following actions:

• Run a command from a program linked to the web form.
• Submit the form to a program running on the web server.
• Reset the form fields to their default values.

The first type of button you will examine is the command button.

Creating a Command Button
A command button is a button that runs a program, which affects the content of the
page or the actions of the browser. Command buttons are created using the following
input element with the type attribute set to button

<input value="text" onclick="script" type="button" />

where text is the text that appears on the button and script is the name of the
program or the program code that is run when the button is clicked by the user. For
example, the following input element creates a command button containing the text
“Run Program”, which runs the setup() program when the button is clicked:

<input value="Run Program" onclick="setup()" type="button" />

There is no need to use command buttons in the Red Ball Pizza survey form.

Creating Submit and Reset Buttons
The two other kinds of form buttons are submit and reset buttons. A submit button
submits the form to the server for processing when clicked. A reset button resets
the form, changing all fields to their original default values and deleting any field
values that the user might have entered. Submit and reset buttons are created using
the following input elements with the type attribute set to “submit” and “reset”
respectively

<input value="text" type="submit" />
<input value="text" type="reset" />

where once again text is the text string that appears on the button.

R
E
FE

R
E
N
C
E

Creating Form Buttons

• To create a form button to run a command, use

<input value="text" onclick="program" type="button" />

where text is the text that appears on the button and program is the program that is
run in response to the user clicking the button.

• To create a form button to submit the form and its fields and values to a script, use

<input value="text" type="submit" />

• To create a form button to reset the form to its default values and appearance, use

<input value="text" type="reset" />

Alice wants the survey form to include both a submit button and a reset button. The
submit button, which she wants labeled “Submit My Survey”, will send the form data
to the server for processing when clicked. The reset button, which she wants labeled

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 573

“Cancel”, will erase the user’s input and reset the fields to their default values. Add
these two buttons at the bottom of the form within a div element with the ID buttons.

To create submit and reset buttons:
w 1. Return to the rb_survey.html file in your editor and scroll down to the

closing </form> tag.

w 2. Directly above the closing </form> tag, insert the following code:

<div id="buttons">
 <input type="submit" value="Submit My Survey" />
 <input type="reset" value="Cancel" />
</div>

Figure 7–46 highlights the code to create the submit and reset buttons.

w 3. Save your changes to the file.

Next, you will format the appearance of the div element and the two buttons
it contains.

w 4. Return to the rb_forms.css file in your editor and go to the Form Button
Styles section.

w 5. Add the following style rule to set the width of the div element to 100% and
to horizontally center its content.

div#buttons {
 text-align: center;
 width: 100%;
}

w 6. Add the following style rule to set the font size, padding, and margins for all
submit and reset buttons in the page.

input[type='submit'], input[type='reset'] {
 font-size: 1.2em;
 padding: 5px;
 margin: 15px;
}

Figure 7–47 shows the style rules for the form buttons on the page.

Figure 7–46 Creating submit and reset buttons

creates a
submit button

creates a
reset button

the text on the
button control

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 574

Figure 7–47 Styles for the form buttons

Figure 7–48 Completed design and layout of the survey form

sets the width of the
div element to 100%
and centers its contents

sets the font size,
padding, and margins
of the submit and reset
buttons

reset buttonsubmit button

w 7. Save your changes to the file and then reload rb_survey.html in your browser.
Figure 7–48 shows the layout and content of the completed web form.

© Maxim Maksutov/Shutterstock.com; © Shebeko/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 575

w 8. Enter some sample data into the form and then click the Cancel button
to test the actions of your reset button. Verify that the form is reset to its
initial state and the data fields return to their default values. You will test the
actions of the submit button shortly.

Designing a Custom Button
The appearance of a command, submit, and reset button is determined by the browser.
While you can modify some basic properties such as the button border, font, or
background color, you can’t add clipart graphics or other features. For more control
over a button’s appearance use the following button element

<button type="text">
 content
</button>

where the type attribute specifies the button type (submit, reset, or button—for
creating a command button) and content are HTML elements placed within the
button, including formatted text, inline images, and other design elements supported
by HTML. For example, the following code demonstrates how an inline image and text
marked as a paragraph can be nested within a submit button.

<button type="submit">

 <p>Place your order now</p>
</button>

You do not need a custom button in the survey form.

Validating a Web Form
The most important part of form design is ensuring that users enter reasonable values
in the correct format. Part of this is accomplished through the use of form controls,
such as option buttons and selection lists, which limit the user to a set of pre-approved
values. However, there are other data fields that do not easily fit into those types of
input controls. For example, how can you ensure that the user has entered a valid
credit card number or an email address in the proper format?

The process of ensuring that the user has supplied valid data is called validation and
can take place on the web server where it is known as server-side validation or within
the user’s own browser where it is referred to as client-side validation. Whenever
possible, you should supplement server-side validation with client-side validation to
reduce the server’s workload. In a payment form, you should verify that the customer
correctly completed all of the fields before submitting the data to the server so that the
server does not have to deal with an improperly completed form.

Identifying Required Values
The first validation test you should perform is to verify that data has been supplied for
all required data fields. To identify those fields that are required (as opposed to those
that are optional), add the required attribute to the control. For example, the following
code specifies that the custName field is required and cannot be left blank by the user:

<input name="custName" required />

In the same way, the required attribute can be added to the select element or the
textarea box to make those data fields required. However, for a select element to be
required, the first option in the selection list must have empty value or no text content.

You can turn off client-
validation by adding the
attribute novalidate to
the form element.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 576

Figure 7–49 Making custName and custEmail required fields

Figure 7–50 Validation error message in Google Chrome

marks custEmail as
a required �eld

marks custName as
a required �eld

the form fails the
validation test when
no customer name
is provided

To create submit and reset buttons:
w 1. Return to the rb_survey.html file in your editor.

w 2. Add the attribute required to the input element for both the custName and
custEmail fields.

Figure 7–49 highlights the newly added required attribute.

If a required field is left blank in an input or textarea box, the browser will not submit
the form but will return an error message instead, indicating that the required data field
has not been filled out. If no option is chosen from a required selection list, the browser
will once again return an error message.

For the Red Ball Pizza survey form, Alice wants every customer to enter a name and
an email address, so she asks you to make the custName and custEmail fields required.

w 3. Save your changes to the file and then reload rb_survey.html in your browser.

w 4. Test your form by clicking the Submit My Survey button without entering
any values into the form itself. As shown in Figure 7–50, the browser fails to
submit the form and instead displays a bubble containing the message that
the custName field needs to be filled out.

Trouble? Figure 7–50 shows the error message rendered using the Google
Chrome browser. The exact text and format of the validation bubble will vary
from one browser to the next.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 577

The dialog box you encountered in Step 6 is not part of HTML or your browser. It
was generated from the rb_formsubmit.js script file that you linked the web page to in
Session 1. The confirmation dialog box only appears when no validation errors have
been detected in the submitted form. Also, note that all of your data values have been
preserved in the survey form. This is also a feature of the script file to avoid re-typing
field values as you continue to test the web form. If you want to clear the form to see
the default values, reopen the file in your browser.

Validating Based on Data Type
A form will fail the validation test if the data values entered into a field do not match
the field type. For example, a data field with the number type will be rejected if non-
numeric data is entered. Similarly, fields marked using the email and url types will
be rejected if a user provides an invalid email address or text that does not match the
format of a URL.

You have already specified data types for the survey form fields. Verify that the form
will not accept invalid data for the custEmail field.

w 5. Enter your name into the custName field and then resubmit the form
(without entering an email address). Verify that the custName field now
passes validation but a bubble with a validation error message appears next
to the blank email box.

w 6. Enter your email address into the custEmail field and then resubmit the
form. Verify that the browser displays an alert message indicating that no
invalid data have been detected.

w 7. Click the OK button to dismiss the dialog box.

To verify the form does not accept invalid data:
w 1. Click the input box for the custEmail field in the survey form and type the text

Alice Nichols (or any text string that does not represent an email address).

w 2. Click the Submit My Survey button to submit the form.

As shown in Figure 7–51, the browser rejects the form based on the invalid
data entered for the custEmail field.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 578

Figure 7–51 Rejecting an invalid email address

the form fails the
validation test when
an improper text
string is entered for
the email address

w 3. Change the field value to alice.nichols@example.com and resubmit the
form. Verify that the form now passes the validation test.

w 4. Click the OK button to close the JavaScript dialog box.

Accepting the email address does not mean that the email address is real; it only
means that the text field value follows the proper general pattern for email addresses,
which is a string of characters with no blank spaces followed by the @ symbol and then
followed by another string of nonblank characters. For validation tests that involve
more complicated text patterns, you can do a pattern test.

Testing for a Valid Pattern
To test whether a field value follows a valid pattern of characters, you can test the
character string against a regular expression. A regular expression or regex is a concise
description of a character pattern. It is beyond the scope of this tutorial to discuss the
syntax of regular expressions, but to validate a text value against a regular expression,
add the following pattern attribute to the input element

pattern="regex"

where regex is the regular expression pattern. For example, the following code tests the
value of the custZip field against the regular expression pattern ^\d{5}$

<input name="custZip" pattern="^\d{5}$" />

where the regular expression ^\d{5}$ represents any string of 5 numeric characters.
Thus, the value 85017 would match this regular expression, but values like 850177 or
X8514 would not. Regular expressions are based on a rich language and can be written
to match credit card numbers, phone numbers, email addresses, and so forth.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 579

Alice has obtained regular expressions for phone numbers and 5- or 9-digit postal
codes. Add the pattern attribute now to the custZip and custPhone fields to validate
those field values. Note that some regular expressions are long and complicated, and
you must type them exactly as written. If you make a mistake, you can copy the text of
the regular expressions from the rb_regex.txt file in the tutorial.07/tutorial folder.

R
E
FE

R
E
N
C
E

Validating Field Values

• To indicate that a field is required, add the required attribute to the form control.
• To validate an email address, set the data type to email.
• To validate a web address, set the data type to url.
• To validate that a text input box follows a character pattern, add the attribute

pattern="regex"

where regex is a regular expression that defines the character pattern.

To test a field value against a regular expression:
w 1. Return to the rb_survey.html file in your editor and scroll down to the input

element for the custZip field.

w 2. Add the following attribute to create a regular expression that matches 5-
and 9-digit zip codes to the input element:

pattern="^\d{5}(-\d{4})?$"

w 3. Go to the input element for the custPhone field and add the following
attribute to create a regular expression that matches phone numbers with or
without an area code:

pattern="^\d{10}$|^(\(\d{3}\)\s*)?\d{3}[\s-]?\d{4}$"

Figure 7–52 highlights the pattern attribute for both the custZip and
custPhone fields.

Figure 7–52 Pattern matching with regular expressions

regular expression pattern
that matches phone numbers
with or without area codes

regular expression
pattern that matches
5- or 9-digit postal
codes

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 580

Defining the Length of the Field Value
Because older browsers might not support the pattern attribute, you can do a simple
test based on character length using the following maxlength attribute

maxlength="value"

where value is the maximum number of characters in the field value. For example,
the following input element limits the number of characters in the custZip field to 5,
which means that field values with more than 5 characters will not be validated.

<input name="custZip" maxlength="5" />

Note that the maxlength attribute does not distinguish between characters and digits.
A user could enter the text string abcde as easily as 32175 and have the field values
pass validation.

w 4. Save your changes to the file and then reload rb_survey.html in your browser.

w 5. Enter your email address in the input box for the custEmail field so that the
two required fields have a value.

w 6. Type 321 in the input box for the postal code and then submit the form. As
shown in Figure 7–53, the browser rejects the field value because it does not
match the pattern of either a 5-or 9-digit postal code.

Figure 7–53 Rejecting an invalid postal code

postal code does
not match either the
5- or 9-digit pattern

w 7. Change the postal code value to 32175 and resubmit the form. Verify that
the form now passes the validation test.

w 8. Test the custPhone field by entering 5-7499 in the input box for the customer
phone number and then submitting the form. Verify that the browser rejects
the data as invalid.

w 9. Change the phone number to 555-7499 and resubmit the form, verifying
that it now passes the validation test.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 581

IN
SI
G
H
T

WebKit Styles for Validation Messages

Like widgets, the appearance of the bubble containing the validation message
is determined by the browser. There is no standard CSS style to format the error
message but there are browser extensions that give you more control over the error
message style. For Google Chrome, the validation message is organized into the
following pseudo-elements selectors:

• ::-webkit-validation-bubble: Selecting the entire bubble containing
the validation message

• ::-webkit-validation-bubble-arrow: Selecting the pointing arrow above
the validation bubble

• ::-webkit-validation-bubble-message: Selecting the validation message
within the bubble

• ::-webkit-validation-bubble-arrow-clipper: Selecting the bubble behind
the top arrow

To modify the appearance of the validation message, you can apply the following style
rule, which displays the message in a gray font on an ivory background.

::-webkit-validation-bubble-message {
 color: gray;
 background: ivory;
}

Other browsers support their own collection of extensions to modify the appearance
of the validation bubble. Because these are not part of the CSS standards, there is no
common syntax yet for modifying the validation message. You can learn more about
these extensions by viewing the documentation on the browser manufacturer’s website.

Applying Inline Validation
One disadvantage with the validation tests you have applied is that they all occur after
a user has completed and submitted the form. It is extremely annoying for the user to
go back to an already completed form to fix an error. Studies have shown that users are
less likely to make errors and can complete a form faster if they are informed of data
entry errors as they occur. The technique of immediate data validation and reporting of
errors is known as inline validation.

Using the focus Pseudo-Class
One way of integrating inline validation with a web form is to change the display style
of fields that currently contain invalid data. This can be done using some of the pseudo-
classes described in Figure 7–54.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 582

For example, to create styles for all of the checked option buttons in the form, you
could apply the checked pseudo-class, as in the following style rule

input[type="radio"]:checked {
 styles
}

where styles are the CSS styles applied to checked option buttons. Note that option
buttons that are not checked will not receive these styles.

The first pseudo-class you will apply to the survey form will be used to change the
background color of any element that has the focus. Focus refers to the state in which
an element has been clicked by the user, making it the active control on the form. You
may have noticed that some browsers highlight or add a glowing border around input
boxes that have the focus.

Alice would like the input boxes, selection lists, and text area boxes that have the
focus to be displayed with a light green background color.

Figure 7–54 Pseudo-classes for form controls and fields

Pseudo-Class Matches
checked A check box or option button that is selected or checked

default A default control, such as the default option in a selection list

disabled A control that is disabled

enabled A control that is enabled

focus A control that has the focus (is actively selected) in the form

indeterminate A check box or option button whose toggle states (checked or unchecked)
cannot be determined

in-range A field whose value lies within the allowed range (between the min and max
attribute values)

invalid A field whose value fails the validation test

optional A field that is optional (not required) in the form

out-of-range A field whose value lies outside the allowed range (outside the min and max
attribute values)

required A field that is required in the form

valid A field whose value passes the validation test

To create style rules for elements that have the focus:
w 1. Return to the rb_forms.css file in your editor and scroll down to the

Validation Styles section.

w 2. Add the following style rule to change the background color to light green
for all input, select, and textarea elements that have the focus.

input:focus, select:focus, textarea:focus {
 background-color: rgb(220, 255, 220);
}

Figure 7–55 highlights the style rule to change the background color.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 583

Pseudo-Classes for Valid and Invalid Data
The valid and invalid pseudo-classes are used to format controls based on whether
their field values pass a validation test or not. For example, the following style rule
displays all input elements containing invalid data with a light red background

input:invalid {
 background-color: rgb(255, 232, 233);
}

while the following style rule displays all input elements containing valid data with a
light green background:

input:valid {
 background-color: rgb(220, 255, 220);
}

Both of these style rules set the background color whether the input element has
the focus or not. Displaying a form full of input backgrounds with different background
colors can be confusing and distracting to the user. As a result, it is better practice to
highlight invalid field values only when those input controls have the focus, as in the
following style rule that combines both the focus and invalid pseudo-classes:

input:focus:invalid {
 background-color: rgb(255, 232, 233);
}

Figure 7–55 Creating a style rule for the focus pseudo-class

Figure 7–56 Text box with the focus

change the background
color to light green when
the control element has
the focus

w 3. Save your changes to the file and then reload rb_survey.html in your browser.

w 4. Click the input box for the customer name and verify that the background
color changes to a light green as shown in Figure 7–56.

w 5. Press the Tab key repeatedly to change the focus to the remaining input
controls. Verify the background color changes to light green when an input
control has the focus and has a background.

background color changes
to light green when the text
input box has the focus

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 584

Alice suggests that the form perform inline validation for the input boxes with IDs
of “name”, “zip”, “phone”, and “mail”. For valid data, she wants those input boxes
to be displayed with a light green background along with a green check mark image.
For invalid data, she wants the background to be light red with a red X image. Use the
rb_valid.png and rb_invalid.png image files for the green check mark and red X images.

w 1. Return to the rb_forms.css file in your editor and scroll to the bottom of the
file.

w 2. Add the following style rule to display a light green background and a green
check mark image when valid data is entered in the custName, custZip,
custPhone, and custEmail fields:

input#name:focus:valid,
input#zip:focus:valid,
input#phone:focus:valid,
input#mail:focus:valid {
 background: rgb(220, 255, 220) url(rb_valid.png) bottom
right/contain no-repeat;
}

w 3. Add the following style rule to display a light red background and a red X
image when invalid data is entered in those same fields:

input#name:focus:invalid,
input#zip:focus:invalid,
input#phone:focus:invalid,
input#mail:focus:invalid {
 background: rgb(255, 232, 233) url(rb_invalid.png) bottom
right/contain no-repeat;
}

Figure 7–57 highlights the style rules to style valid and invalid data.

Include the focus pseudo-
class so that the validation
style is only applied when
the control is active in the
form.

Figure 7–57 Creating styles for valid and invalid field values

style for valid data
values in the
selected �elds that
have the focus

style for invalid
data values in the
selected �elds that
have the focus

display a green check
mark image in the
input box background

display a red X image
in the input box
background

w 4. Save your changes to the style sheet and then reload rb_survey.html in your
browser.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 585

w 5. Test inline validation by typing the zip code value 32175-6136 into the input
box for the customer’s zip code. Note that the input box provides immediate
visual feedback on whether the current field value passes the validation test.
See Figure 7–58.

Figure 7–58 Inline validation on the customer postal code

the initial text string does
not pass the validation test

the 5-digit postal code
passes validation

entering more digits
causes the �eld value to
once again fail validation

the �nal 9-digit postal code
value passes validation

w 6. Continue to test the web form by entering data into the other input boxes,
noting how the form automatically performs a validation test on your data
values.

PR
O
SK

IL
LS

Problem Solving: Using Form Building Tools

One of the limitations of CSS is that it does not provide an easy way to format the
form controls other than basic styles for text and background colors. To gain more
control over your form controls, you may want to explore third party frameworks that
provide customized widgets and form design tools. Some popular frameworks include:

• Google Forms (docs.google.com/forms): A free service for form design that also
automatically tabulates the user responses in an online spreadsheet

• Wufoo (wufoo.com): A paid service that supplies a powerful form builder engine and
tools for uploading documents and images

• Jotform (www.jotform.com): A paid service with form tools and the ability to
automatically upload completed forms to your website

• Form Stack (www.formstack.com): A paid service with form building software and
tools to manage workflow, data analysis, and tabulation

Form building tools can speed up the process of designing and testing your web
forms. However, like all frameworks they are best used when you have a good
understanding of the underlying HTML and CSS code that they employ.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 586

You have finished your work on the survey form. Alice will place a copy of your files in a
folder on the company’s web server and from there the form can continue to be tested to
verify that the server program and the web form work well together. Alice is pleased with
your work on this project and will get back to you to create other web forms for the Red Ball
Pizza website.

R
E
V
IE

W

Session 7.3 Quick Check

 1. To create a spinner control that goes from 0 to 100 in steps of 10 with a default
value of 50, which of the following attributes would you not include in the
<input /> tag?
a. min = "0"
b. max = "100"
c. value = "50"
d. type = "spinner"

 2. What attribute do you add to an <input /> tag to create a range slider?
a. type = "range"
b. type = "slider"
c. control = "range"
d. number = "slider"

 3. What attribute do you add to an <input /> tag to apply the data list "cityList"
to the input box control?
a. list = "cityList"
b. data = "cityList"
c. datalist = "cityList"
d. values = "cityList"

 4. The code to create a submit button containing the text "Add Order" is:
a. <input type="button">Add Order</input>
b. <input type="button" value="Add Order" />
c. <input type="submit" value="Add Order" />
d. <input type="submit" label="Add Order" />

 5. What attribute do you add to an input element to force the user to enter a value?
a. type = "required"
b. required
c. type = "autocomplete"
d. autocomplete

 6. What attribute do you add to an input element to validate the element’s value
against the regular expression “^\user\-d{4}$"?
a. regular="^\user\-d{4}$"
b. valid="^\user\-d{4}$"
c. value="^\user\-d{4}$"
d. pattern="^\user\-d{4}$"

 7. What selector do you use to match all input elements that have the focus?
a. input:focus
b. input#focus
c. input:hasFocus
d. input.hasFocus

 8. What is inline validation?
a. Validation applied to inline elements
b. Validation with the error message displayed inline with the text
c. Validation that is applied immediately to the element prior to the form

submission
d. All of the above

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Coding Challenge 1

Data Files needed for this Coding Challenge: code7-1_txt.html, code7-1_forms.css,
formsubmit.js

Use your knowledge of HTML form elements to create the user account login form
shown in Figure 7–59.

C
O

D
E

Figure 7–59 Coding Challenge 7-1 example page

Do the following:

 1. Open the code7-1_txt.html file from the html07 c code1 folder. Enter your name and the date in
the document and save it as code7-1.html.

 2. Go to the code7-1.html file in your editor. Within the head section insert a link element linking
the page to the code7-1_forms.css style sheet. Also insert a script element that opens the
formsubmit.js JavaScript file for handling the form submissions.

 3. Within the body of the web page insert a form element with the value of the action attribute set
to login-script.php and the method value set to post.

 4. Within the web form create a field set with the id login. Within the field set insert a legend with
the text Enter Account Information.

 5. Within the field set insert a label containing the text Account Type. After the label add a selection
list with the id acctype and the field name accounttype. Set the value of the size attribute of the
selection list to 3 and add the following three options: administrator, member, and guest. Set the
value of the three options to type1, type2, and type3 respectively. Link the label to the selection
list using the for attribute with a value of acctype.

 6. Add label to the field set containing the text Username followed by a text input box with the id
username and the field name user. Use the for attribute to link the label to the input box control.

 7. Add another label to the field set containing the text Password followed by a password input
box with the id password and the field name pwd. Use the for attribute to link the label to the
password input box.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 587

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 588

 8. Below the field set insert a submit button displaying the text Login.
 9. Save your changes to the file and then load code7-1.html in your browser. Verify that the layout

of the table resembles that shown in Figure 7–59 and that when you click each label, the control
associated with that label becomes selected. Further verify that clicking the Login button submits
the form for processing.

10. Submit the completed file to your instructor.

Coding Challenge 2

Data Files needed for this Coding Challenge: code7-2_txt.html, code7-2_forms.css

You’ve been asked to create a survey web form for use in a seminar conference website. Some of the
questions from the form are shown in Figure 7–60. Use your knowledge of HTML form elements to
create the form elements and labels.

C
O

D
E

Figure 7–60 Coding Challenge 7-2 example page

Do the following:

 1. Open the code7-2_txt.html file from the html07 c code2 folder. Enter your name and the date in
the document and save the file as code7-2.html.

 2. Go to the code7-2.html file in your editor. Within the head section insert a link element linking
the page to the code7-2_forms.css style sheet.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 589

 3. The survey questions are marked as an ordered list. The first three questions include a nested list
of options. For the first question do the following:
a. Mark the text from “Very Satisfied” to “Very Dissatisfied” as form labels.
b. Before each label insert a radio button belonging to the q1 field with default values of a

through d. Assign the radio button controls the ids q1a through q1d.
c. Use the for attribute to associate each label with its radio button control.

 4. Repeat Step 3 for questions 2 and 3, naming the fields for those radio buttons q2 and q3
respectively and assigning the radio button controls the ids q2a through q2d for the second
question and q3a through q3d for the third question.

 5. Within the div element with the id newRow insert a range slider that ranges from 1 to 10 in
steps of 1, with a default value of 5. Insert the text very unlikely before the range slider and the
text very likely after the range slider. Assign the range slider the field name q4.

 6. Mark the text “Provide any suggestions for the next conference” as a form label and use the for
attribute to attach the label to the input control with the id q5text.

 7. Below the label in Step 6, insert a textarea control with the id q5text and the field name q5. Add
the placeholder text enter your suggestions here.

 8. Enclose the list of questions within opening and closing <form> tags. Give the form the action
submit-survey.php using the post method.

 9. Save your changes to the file and then reload code7-2.html in your browser. Verify that the layout
of form matches that shown in Figure 7–60.

10. Submit the completed file to your instructor.

Coding Challenge 3

Data Files needed for this Coding Challenge: code6-7_txt.html, code7-3_valid_txt.css,
code7-3_forms.css, formsubmit.js

You’ve been asked to complete a web form containing credit card payment information. Part of your
task will be to include validation test to ensure that required data is entered correctly into the form.
Figure 7–61 shows the completed form.

C
O

D
E

Figure 7–61 Coding Challenge 7-3 example page

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 590

Do the following:

 1. Open the code7-3_txt.html and code7-3_valid_txt.css files from the html07 c code3 folder.
Enter your name and the date in each document and save the files as code7-3.html and
code7-3_valid.css respectively.

 2. Go to the code7-3.html file in your editor. Within the head section insert link elements linking
the page to the code7-3_forms.css and code7-3_valid.css files. Insert a script element to load
the formsubmit.js JavaScript file.

 3. Within the creditcard selection list add the following options and values: Credit Card Type (leave
the value as an empty text string), American Express (value="amex"), Discover (value="disc"),
MasterCard (value="master"), and Visa (value="visa"). Make the selection list required.

 4. Make the cardname field required.
 5. Make the cardnumber field required and add the regular expression pattern indicated in the

comment section of the HTML file to help ensure that a valid card number is used.
 6. Within the cardmonth selection list add options for each month starting with the text Month and

a value of a blank text string followed by the option text January (01) through December (12)
with the corresponding values 01 through 12. Make the selection list required.

 7. Within the cardyear selection list add options for each year starting with the text Year and a value
of a blank text string followed by the option text 2020 through 2024 with the corresponding
values 2020 through 2024.

 8. Make the cardcsc field required with a maximum character length of 3 characters following the
regular expression pattern ^\d{3}$.

 9. Save your changes and then go to the code7-3_valid.css file in your editor. Add the following
style rules to the file:
a. Display any input or select element that has the focus with a yellow background color.
b. Display any input element with invalid data in a red font, surrounded by a red border, and red

box shadows that are offset 0 pixels horizontally and vertically with a shadow blur of 5 pixels.
10. Save your changes to the file and then view the page in your browser to verify the contents

match than shown in Figure 7–61.
11. Test your payment form by trying to submit the form data with missing values or with incorrect

values. Attempt to submit the form using the invalid credit card number 412345678901 and then
with the valid card number 4123456789012.

12. Submit the completed file to your instructor.

Coding Challenge 4

Data Files needed for this Coding Challenge: code7-4_txt.html, code7-4_forms.css

You have been given the HTML code for a proposed web form shown in Figure 7–62. Unfortunately,
there are several syntax errors in the HTML code. You’ve been asked to find and correct all errors so
that the page passes validation.

D
E

B
U

G

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 591

Do the following:

 1. Open the code7-4_txt.html file from the html07 c code4 folder. Enter your name and the date in
each document and save the file as code7-4.html.

 2. Go to the code7-4.html file in your editor. Within the head section insert a link element linking
the page to the code7-4_forms.css. Save your changes to the file.

 3. Run the code7-4.html file in a validator of your choosing. Locate and fix the errors in the page so
that the file passes validation with no errors or warnings. Note that some of the same errors are
repeated multiple times throughout the HTML code.

 4. Open the code7-4.html file in your browser to confirm that it resembles the page shown in
Figure 7–62.

 5. Submit the completed file to your instructor.

Figure 7–62 Coding Challenge 7-4 example page

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 592

Review Assignments

Data Files needed for the Review Assignments: rb_build_txt.html, rb_customer_txt.html,
rb_validate_txt.css, 3 CSS files, 1 JavaScript file, 10 PNG files, 1 TXT file

Alice wants you to start work on an online order form for customers to place orders through the Red
Ball Pizza website. The form will span several pages in which customers will specify whether the
order is for pickup or delivery and will indicate the toppings they want on their pizza(s). Figure 7–63
shows a preview of the form customers will use to indicate their delivery option (including an
address or pickup and at what time they want their order).

Figure 7–63 Red Ball Pizza form for Customer Data

Alice has already written some of the HTML code for the web pages and designed many of the style
sheets. Your job will be to write the code for the form elements and validation styles.

Complete the following:

 1. Use your HTML editor to open the rb_customer_txt.html, rb_build_txt.html, and
rb_validate_txt.css files from the html07 c review folder. Enter your name and the date
in the comment section of each file, and save them as rb_customer.html, rb_build.html and
rb_validate.css respectively.

 2. Return to the rb_customer.html file in your editor. Within the document head, insert links to the
rb_forms2.css and rb_validate.css files.

 3. Still within the document head, use the script element to link the file to the rb_formsubmit2.js file.
 4. Scroll down to the section element and, directly after the initial paragraph, insert a form

element that employs the action at the fictional address http://www.example.com/redball
/customer using the post method.

 5. Within the form element, insert a div element that encloses a label with the text Name*
associated with the nameBox control. Also, within the div element, add an input text box
with the ID nameBox, field name custName, and placeholder text First and Last Name. Make
custName a required field.

 6. Create a second div element in the web form that encloses a label with the text Phone*
associated with the phoneBox control. Within the div element, add an input box with the ID
phoneBox, field name custPhone, and placeholder text (nnn) nnn-nnnn. Make custPhone a

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 593

required field and have any text entry follow the regular expression pattern
^\d{10}$|^(\(\d{3}\)\s*)?\d{3}[\s-]?\d{4}$. (Note: You can copy the regular expression
code from the rb_regex2.txt file.)

 7. Add another div element to the web form containing the following code:
a. Insert an input element to create an option button for the orderType field with the ID

delivery. Make the option button checked by default. After the option button, insert a label
associated with the delivery control containing the text Delivery.

b. Add an input element to create a second option button for the orderType field with the ID
pickup, followed by a label associated with the pickup control containing the text Pickup.

 8. Next within the form, create a field set with the ID deliveryInfo. Within this field set, add the
following:
a. A legend containing the text Delivery Options.
b. A text area box with the ID addressBox and field name of delAddress containing the

placeholder text Enter delivery address.
c. A label containing the text Delivery Time (leave blank for earliest delivery) associated with

the delBox control.
d. Add an input element with the ID delBox and field name delTime for storing delivery time

values. Use a data type of “time” for the control.
 9. Next within the web form, create a field set with the ID pickupInfo containing the following

information for pickup orders:
a. A legend containing the text Pickup Options.
b. A label containing the text Pickup Time (leave blank for earliest pickup) associated with the

pickupBox control.
c. Add an input element with the ID pickupBox and field name pickupTime for storing time

values. Add the disabled attribute to the tag to disable this control when the form is initially
opened. Use a data type of "time" for the control.

10. Finally, within the form, add a div element containing a submit button displaying the text Begin
Building your Order.

11. Save your changes to the file and then go to the rb_validate.css file in your editor to add
validation styles for the web form.

12. Within the Validation Styles section, add the following style rules:
a. A rule that displays input, select, and textarea elements that have the focus with a

background color of rgb(255, 255, 180).
b. A rule that displays the nameBox and phoneBox controls that have the focus and contain

valid data with a background color of rgb(220, 255, 220) and the background image file
rb_okay.png at the right with no tiling contained within the background.

c. A rule that displays the nameBox and phoneBox controls that have the focus and invalid data
with a background color of rgb(255, 230, 230) and the background image file rb_warning.png
at the right with no tiling contained within the background.

13. Save your changes to the style sheet and then open the rb_customer.html file in your browser.
Verify the following:
a. The content and the layout of the form resemble the form shown in Figure 7–63.
b. If you submit the form by clicking the Begin Building your Own button with no customer

name or phone number, the browser warns you of the missing values.
c. As you enter text into the custName field, the input box background changes to show that the

field value is valid.
d. When you enter a phone number into the custPhone field, the input box provides inline

validation to indicate whether a valid phone number has been entered.
e. When you click the submit button for a successfully completed form, the browser displays the

alert message that the form data passes the initial validation test.
 (Note: The script file used with this web page is written to enable only either the delivery

option or the pickup option but not both.)

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 594

Next, you will create a form that customers will use to build their customized pizzas. A preview of the
form is shown in Figure 7–64.

Figure 7–64 Red Ball Pizza form to Build a Pizza

14. Return to the rb_build.html file in your editor. Insert a link to the rb_forms2.css file and add a
script element to link the file to the rb_formsubmit2.js file.

15. Scroll down to the section element, insert a form element below the paragraph element that
employs the action at the fictional address http://www.example.com/redball/build using
the post method.

16. Within the form element, add a div element containing a label with the text Quantity associated
with the quantityBox control. Add a spinner control with the ID quantityBox and the field name
pizzaQuantity. Have the value of the field range from 1 to 10 with a default value of 1.

17. Add a div element that displays images of the pizza sizes, containing the following:
a. The inline image rb_sizes.png.
b. The label Pizza Size associated with the sizeBox control.
c. A range slider with the ID sizeBox and the field name pizzaSize ranging from 10 to 16 in

steps of 2 with a default value of 14.
18. Add a div element that provides the selection of pizza crusts containing the following:

a. The label Pizza Crust associated with the crustBox control.
b. A selection list for the pizzaCrust field with the ID crustBox and containing the following

option values and text: Thin, Thick, Stuffed, and Pan.
19. Add a div element containing a check box with the ID cheeseBox for the doubleCheese field

followed by the label Double Cheese associated with the cheeseBox control. Then, add a second
check box with the ID sauceBox for the doubleSauce field followed by the label Double Sauce
also associated with that check box.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 595

20. Customers can choose what to place on their pizzas. Create a field set containing the legend
Meat Toppings. Add the following content to the field set.
a. A div element containing the label Location but not associated with any form control. Next

to the label, place the inline images rb_full.png, rb_left.png, rb_right.png, and rb_none.png
with the alternate text “full”, “left”, “right”, and “none” used to graphically indicate where the
meat ingredients should be placed on the pizza (on the full pie, the left side, the right side, or
nowhere).

b. A div element containing the label Pepperoni and followed by four option buttons belonging
to the pepperoni field and with the values “full”, “left”, “right”, and “none”. Make “none”
checked by default.

c. Repeat Step b to insert div elements with the values used in Step b but associated with the
ham, pork, sausage, and chicken fields.

21. Using Figure 7–60 as your guide, repeat Step 20 to create a field set with the legend Vegetable
Toppings, followed by div elements with the values used in Step 20 but associated with the
mushrooms, green peppers, onions, tomatoes, and jalapenos fields.

22. At the bottom of the form, add a div element containing a submit button with the text Add to
your Order.

23. Save your changes to the file and then open rb_build.html in your browser. Verify that the
content and layout of the form resemble that shown in Figure 7–64. Verify that all of the form
controls work as expected, that is, you can only select one location for each ingredient option at
a time.

Case Problem 1

Data Files needed for this Case Problem: cg_register_txt.html, cg_validate_txt.css, 3 CSS files,
1 JavaScript file, 4 PNG files, 1 TXT file

ACGIP Conference Professor Darshan Banerjee is the project coordinator for the annual conference
of the Association of Computer Graphics and Image Processing (ACGIP), which takes place this
year in Sante Fe, New Mexico. Darshan has asked you to work on the conference’s website, starting
with the registration form for conference attendees. The initial form will collect contact information
for people attending the conference. Figure 7–65 shows a preview of the form you will create for
Darshan.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 596

Professor Banjerjee has already written the HTML code for the page and the styles for the form
elements. He wants you to write the HTML code for the web form and the CSS validation styles.
Complete the following:

 1. Using your editor, open the cg_register_txt.html and cg_validate_txt.css files from the
html07 c case1 folder. Enter your name and the date in the comment section of each file, and
save them as cg_register.html and cg_validate.css respectively.

 2. Return to the cg_register.html file in your editor. Add a link to the cg_forms.css and cg_validate.
css style sheet files to the document head.

 3. Add a script element to the document head that loads the cg_script.js file.
 4. Scroll down to the section element and insert a web form element that employs the action at

http://www.example.com/cg/register via the post method.
 5. Add the labels, input controls, and textarea boxes shown in Figure 7–65 and described in

Figure 7–66. Place the input boxes directly after the labels and associate each label with its form
control. You do not need to enclose these elements within div elements. Note that the address
field should be entered within a textarea box.

Figure 7–65 Registration form for the ACGIP Conference

© IgorGolovniov/Shutterstock.com; © Jason Winter/Shutterstock.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 597

 6. Create a data list named titleList containing the suggestions: Mr., Mrs., Ms., Prof., Dr., Assist.
Prof., and Assoc. Prof. Apply the titleList data list to the titleBox control.

 7. Apply the regular expression pattern ^\d{10}$|^(\(\d{3}\)\s*)?\d{3}[\s-]?\d{4}$ to the
phoneNumber field. Apply the regular expression pattern ^acgip\-\d{6}$ to the acgipID field.
(Note: You can copy the regular expression code for the phoneNumber field from the cg_regex.
txt file.)

 8. Add the Registration Category label associated with the regList control. Add a selection list with
the ID regList that stores values in the registerType field. Populate the selection list with the
option text: “ACGIP Member ($695)”, “Non-Member ($795)”, “Student ($310)”, “Poster ($95)”,
and “Guest ($35)”. Make the corresponding option values equal to “member”, “nonmember”,
“student”, “poster”, and “guest”.

 9. Within the form, add a paragraph containing a submit button with the text continue.
10. Save your changes to the file and return to the cg_validate.css file in your editor to create styles

for validating data entry.
11. Within the Validation Styles section, add the following style rules:

a. Display all input, select, and textarea elements that have the focus with a background
color of rgb(245, 245, 140).

b. When the fnBox, lnBox, mailBox, phoneBox, and idBox controls have the focus and are valid,
change the background color to rgb(220, 255, 220) and display the cg_valid.png image with
no tiling in the right side of the background contained within the box.

c. When the fnBox, lnBox, mailBox, phoneBox, and idBox controls have the focus and are not
valid, change the background color to rgb(255, 232, 232) and display the image cg_invalid.
png with no tiling in the right side of the background contained within the box.

12. Save your changes to the style sheet and then open cg_register.html in your browser. Verify that
the content and layout of the form resemble that shown in Figure 7–65. Verify that you must
enter all required field values in the proper format for the form to be submitted successfully.
Confirm that the browser performs inline validation on the firstName, lastName, address, email,
phoneNumber, and acgipID fields.

Figure 7–66 Fields and controls from the registration form

Label Data Field Control ID Type Required Placeholder
Title title titleBox text no

First Name* firstName fnBox text yes

Last Name* lastName lnBox text yes

Address* address addBox yes

Company or University group groupBox text no

E-mail* email mailBox email yes

Phone Number* phoneNumber phoneBox tel yes (nnn) nnn-nnnn

ACGIP Membership
Number

acgipID idBox text no acgip-nnnnnn

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 598

Case Problem 2

Data Files needed for this Case Problem: sb_payment_txt.html, sb_validate_txt.css, 3 CSS files,
1 JavaScript file, 10 PNG files, 2 TXT files

The Spice Bowl Rita Sato is the manager of the web development team for The Spice Bowl, an
online grocery store specializing in gourmet spices. She has asked you to create web forms for the
site. You will start your work by developing a payment form used to collect billing and credit data
from the store’s customers. The form should include validation tests for credit card numbers to ensure
that the card numbers match the correct credit card number patterns. The page should also include a
form in which users can log into their Spice Bowl account. Figure 7–67 shows a preview of the page
you will create for Rita.

Figure 7–67 Payment form for The Spice Bowl

© Natalia Klenova/Shutterstock.com; Sources: American Express Company; Discover Financial Services;
MasterCard Inc.; Visa, Inc.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 7 Designing a Web Form | HTML 5 and CSS HTML 599

Complete the following:

 1. Using your editor, open the sb_payment_txt.html and sb_validate_txt.css files from the
html07 c case2 folder. Enter your name and the date in the comment section of each file, and
save them as sb_payment.html and sb_validate.css respectively.

 2. Return to the sb_payment.html file in your editor. Add links to the sb_forms.css and sb_validate.
css style sheet files to the document head. Add a script element to load the sb_script.js file.

 3. The page will contain a form in which customers can log into their account. Directly after the
sb_logo.png image, insert a form element with the ID login. Have the form use the action at
http://www.example.com/sb/login via the post method.

 4. Within the login form, insert the following fields and controls:
a. A text input box with the ID userBox for the username field. Add the placeholder text

username.
b. A text input box with the ID pwdBox for the password field. Add the placeholder text

password.
 5. Next, insert a payment form. Directly below the Payment Form h1 header, insert a form element

that employs action at http://www.example.com/sb/payment via the post method. Assign the
web form the id payment.

 6. Insert a field set with the id billing to the payment form. Add the legend Billing Information
(required) to the field set.

 7. Within the billing field set, add the labels and input boxes specified in Figure 7–68. Note that
none of the input boxes contain placeholder text. You do not need to enclose the label or
input elements within div elements.

Figure 7–68 Fields and controls from the payment form

Label Data Field Control ID Data Type Required
First Name fName firstBox text yes

Last Name lName lastBox text yes

Street Address street streetBox text yes

Street Address (2) street2 streetBox2 text no

City city cityBox text yes

State state stateBox text yes

ZIP/Postal Code zip zipBox text no

Country country countryBox text yes

Phone phone phoneBox tel yes

 8. Create a data list with the ID stateList containing the two-letter abbreviations of all the states.
(You can use the list of abbreviations in the sb_state.txt file.) Apply the data list to the stateBox
input text box.

 9. The text of the zip field should follow the ^\d{5}(-\d{4})?$ regular expression pattern. The text of
the phone field should follow the ^\d{10}$|^(\(\d{3}\)\s*)?\d{3}[\s-]?\d{4}$ pattern. Note that
both regular expression patterns can be found in the sb_regex.txt file.

10. Set the default value of the country field to United States.
11. Create a field set with the ID creditCard, which you use to insert credit card fields. Add the

legend Credit Card (required).
12. Within the creditCard field set, insert another field set containing four label elements, with each

label element belonging to the cardLabel class. Within each of the four label elements, insert
an option button from the cCard field with the value amex, discover, master, and visa. Make
cCard a required field. Follow each option button with an image element containing the image
of its corresponding credit card image using the sb_amex.png, sb_discover.png, sb_master.png,
and sb_visa.png files.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 7 Designing a Web FormHTML 600

 13. After the creditCard field set, insert a label containing the text Credit Card Number
associated with the cardBox input control. Create an input text box with the ID cardBox for
the cardNumber field. Make the field cardNumber required and have the field value follow the
regular expression pattern for credit card numbers (using the regular expression in the sb_regex.
txt file).

14. Create the Expiration Date label associated with the monthList control.
15. Add a selection list with the ID monthList for the cardMonth field. Make the cardMonth field

required. Populate the selection list with the option text “--Month--”, “January (01)”, “February (02)”
and so forth up to “December (12)”. For the “--Month--”, set the field value to an empty text
string. For the month options, insert the month value from “01” up to “12”.

16. Add a selection list with the ID yearList for the cardYear field. Make the cardYear field required.
Populate the selection list with the option text “--Year--”, “2020”, “2021”, “2022”, “2023”, and
“2024”. For the “--Year--”, set the field value to an empty text string and, for the year options,
insert the 4-digit year value.

17. Create a label with the text CSC associated with the cscBox. Add a text input box with the
ID cscBox for the required csc field. Have the csc field value follow the regular expression
pattern ^\d{3}$. Set the maximum length of the field value to 3 characters and display the
placeholder text nnn.

 18. After the creditCard field set, insert a button element of the submit type. Within the
button, insert the sb_button.png inline image with the alternate text next. (Note: The text for the
button is part of the button image, so the value attribute is not needed.)

19. Save your changes to the file and then go to sb_validate.css file in your editor to design the
validation styles for the web form.

 20. Within the Validation Styles section, insert the following style rules to perform inline
validation:
a. For every input element that is not a radio type and that has the focus, change

the background color to rgb(255, 218, 165). (Hint: Use the attribute selector
input:not([type='radio']) to select input elements that are not radio types.)

b. For every input element that is not a radio type and that has the focus with a valid value,
change the background color to rgb(215, 255, 215) and display the image file sb_valid.png
with no tiling in the right edge of the input box.

c. For every input element that is not a radio type and that has the focus with an invalid value,
change the background color to rgb(255, 245, 215) and display the image file sb_invalid.png
with no tiling in the right edge of the input box.

21. Save your changes to the style sheet and then open sb_payment.html in your browser.
22. Verify that you cannot submit the form without all required fields entered in the proper format.
23. Verify the validation checks for the credit card number by confirming that the form rejects

the following credit card number 6012123456789019 (which does not follow a valid card
number pattern). Further verify that the form accepts the following credit card number
6011123456789019 (which follows a valid card number pattern).

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 601

STARTING DATA FILES

Enhancing a
Website with
Multimedia
Working with Sound, Video, and Animation

Case | Cinema Penguin
Maxine Michaels runs the movie blog Cinema Penguin containing
reviews, articles, and stories about classic movies from the golden
era of Hollywood. She wants to enhance the user experience of her
website by adding sound and video clips of famous movie moments.

Maxine has asked for your help to develop a sample page describing
the 1951 classic movie musical Royal Wedding, starring Fred Astaire
and Jane Powell. Maxine has collected audio and video clips from
the movie that she wants added to the page. The page also includes
a short article describing a famous piece of cinema trickery in which
Astaire appears to dance on the ceiling. Maxine wants you to use
CSS animation styles to demonstrate how this effect was achieved.

OBJECTIVES

Session 8.1
• Understand audio and video

formats
• Insert an HTML audio clip
• Support multiple audio formats

Session 8.2
• Insert an HTML video clip
• Write a video caption track
• Format video captions

Session 8.3
• Create a CSS transition
• Explore transition attributes
• Create a CSS key frame

animation
• Apply a CSS animation

TUTORIAL 8

tutorial

cp_royal_txt.html
cp_animate_txt.css
cp_media_txt.css
cp_captions_txt.vtt
+ 11 files

review

cp_astaire_txt.html
cp_animate2_txt.css
cp_media2_txt.css
cp_captions2_txt.vtt
+ 9 files

code1

code8-1_txt.html
code8-1_video_txt.css
captions8-1_txt.vtt
+ 3 files

code2

case1

code8-2_txt.html
code8-2_trans_txt.css
+ 7 files

ws_jfk_txt.html
ws_media_txt.css
ws_captions_txt.vtt
+ 8 files

code3

case2 demo

code4

code8-3_txt.html
code8-3_anim_txt.css
+ 7 files

code8-4_txt.html
code8-4_debug_txt.css
+ 5 files

html08

paa_game_txt.html
paa_animate_txt.css
+ 10 files

demo_asym.html
demo_cubic.html
demo_delay.html
demo_steps.html
demo_timing.html
demo_transition.html
+ 9 files

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 602

Session 8.1 Visual Overview:

The type attribute
provides the format
of the multimedia file.

The source element
provides the source of
the multimedia file.

Browsers that do not support
HTML5 multimedia elements
will display this text as a fallback
message to the user.

The controls attribute
displays media player
controls for the audio clip.

The audio element
embeds an audio file
in the web page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 603

Native media player
provided by the browser
to play audio files.

Audio player
controls are part
of the browser’s
media player.

Playing Web Audio

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 604

Introducing Multimedia on the Web
The original purpose of the web and HTML was to deliver textual information
via interconnected hypertext documents. HTML was a perfect tool for academic
researchers needing to share text and data. Once graphical capabilities were added
to the HTML language, developers were free to create documents with images and
arresting page layouts that opened up the web’s potential for commerce and business.
The next major phase in the language was the introduction of multimedia support in
the form of streaming audio, video, and interactive games, making the web a dominant
entertainment platform.

It is estimated that by 2022, online video will account for 82% of global
Internet traffic, up from 75% in 2017 (Cisco Visual Networking Index: Forecast and
Methodology, 2017–2022, February 2019). Thus, web developers need to consider how
to best utilize multimedia in making their websites attractive to the public. One of the
biggest challenges in delivering multimedia content is putting that content in a form
that can be retrieved quickly and easily without loss of quality.

Understanding Codecs and Containers
To achieve fast and easy transmission of multimedia content, that content is stored
using a codec, which is a computer program that encodes and decodes streams of data.
Codecs compress data so that it can be transmitted in a fast and an efficient manner
and then decompress it when it is to be read or played back. The compression method
can be either lossy or lossless.

Using lossy compression, nonessential data are removed in order to achieve a
smaller file size. An audio file might be compressed by removing sounds that the
human ear can barely hear. A video file might be compressed by removing frames
from the video playback. The more the file is compressed, the more content is lost.
The sound from a highly compressed audio file can become muddy and indistinct.
A highly compressed video clip can become blurry or jerky in its movements. Thus,
one consideration in lossy compression is determining at what point essential data has
been removed because, once that data is lost, it cannot be recovered.

Using lossless compression, data is compressed by removing redundant information.
For example, the following text string, consisting of 4 As followed by 5 Bs, and then
6 Cs requires 15 characters of information:

AAAABBBBBCCCCCC

Yet, this content can be rewritten using the following 6 characters with no loss of
information:

4A5B6C

This same general technique can be applied to digital audio and video, which can
contain long stretches of redundant sound and images. The disadvantage of lossless
compression is that you cannot achieve the same level of compression as with lossy
compression. Most codecs involve some combination of lossy and lossless techniques.
Web developers can choose from dozens of different codecs to compress their
multimedia content.

Codecs are placed within a container that handles the packaging, transportation,
and presentation of the data. The container is essentially the file format, which is
identified by a file extension. The web supports a multitude of container and codec
combinations but not all containers and codecs are equally supported. For example,
Google Chrome uses the WebM container for video content, compressing that
data with the VP8 codec; however, that combination of container and codec is not
supported by any Apple device.

Thus, web developers have to account for browser support before making any
multimedia content available to the user.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 605

Understanding Plug-Ins
Once multimedia has been stored within a container file, a media player is required to
decode and play that content. Because multimedia was not part of the original HTML
specifications, browsers, for many years, used a plug-in, which is a software program
accessed by the browser to provide a feature or capability not native to the browser.
The most commonly used plug-ins for multimedia content included Adobe Flash,
Apple’s QuickTime player, and the Windows Media Player. A plug-in either opens in its
own external window or runs within the web page as an embedded object, in much
the same way that a graphic image appears embedded within the page.

There are several problems with the plug-in approach for delivery of multimedia
content:

• Plugs-ins require users to install a separate application in addition to their web
browsers.

• There is not a common plug-in that is available across all browsers, operating
 systems, and devices.

• HTML documents that support multiple plug-ins are difficult to create and maintain.
• Plug-ins consume valuable system resources, resulting in slow and unreliable

performance.
• Plug-ins are a security risk with some of the most prominent Internet attacks working

their way into browsers via a plug-in.

Starting with HTML 5, support for audio and video content was added to the HTML
language, providing a common framework for delivering multimedia content without
the need for plug-ins. HTML 5 is now an accepted and well-supported standard, but
if you need to work with older browsers or maintain a legacy website, you might still
encounter code that utilizes plug-ins. In this tutorial, you review code to access those
plug-ins but your focus will be on working with the HTML 5 audio and video elements
and attributes.

Before exploring these elements and attributes in depth, open the page for Cinema
Penguin that Maxine has created for you.

To open Maxine’s web page:
w 1. Use your editor to open the cp_royal_txt.html file from the html08 c tutorial

folder. Enter your name and the date in the comment section of the file and
save it as cp_royal.html.

w 2. Review the rest of the document to become familiar with its contents and
structure.

w 3. Open cp_royal.html in your browser. The initial page describing the movie
Royal Wedding is shown in Figure 8–1.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 606

insert audio clip from
the overture of Royal
Wedding here

insert video clip of the
Ceiling Dance from
Royal Wedding here

Royal Wedding is one of the Metro-Goldwyn-Mayer productions from the early
1950s whose original copyrights were never renewed, which places the movie in the
public domain. Maxine can add production stills, sound clips, and video clips from the
film to her website without worrying about copyright infringement. One of her audio
clips contains the first few seconds from the film’s overture. She would like to add that
clip to the Listen Up box in the lower-left corner of the web page. To do that, you use
the audio element.

Sources: openclipart.org; Archive.org

Figure 8–1 Initial Royal Wedding page

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 607

Working with the audio Element
Audio clips are embedded within a web page using the following audio element:

<audio src="url" attributes />

where url specifies the source of the audio file and attributes define how the audio
clip should be handled by the browser. Figure 8–2 describes some of the attributes
associated with HTML audio and video elements.

Attribute Description
autoplay Starts playing the media clip as soon as it is loaded by the

browser

controls Displays the player controls in the web page

loop Automatically restarts the media clip when it is finished
playing

muted Specifies that the audio output should be muted

preload="auto|metadata|none" Specifies whether the media clip should be preloaded by
the browser, where auto preloads the entire clip, metadata
preloads descriptive data about the clip, and none preloads
nothing. metadata (to preload only descriptive data about
the clip), or none (not to preload the media clip)

src="url" Specifies the source of the media clip, where url is the
 location and name of the media file

For example, the following tag loads audio from the cp_overture.mp3 file and displays
the media player controls, which allows the user to interact with the audio clip from
within the web page:

<audio src="cp_overture.mp3" controls />

If you don’t include a controls attribute, the audio clip is embedded within the
page but without the browser’s native media player. This can be used to create a
soundtrack that automatically starts and plays in the background. The following tag uses
the cp_overture.mp3 file as background music, automatically starting when the page is
loaded and looping back to the beginning when the clip is finished:

<audio src="cp_overture.mp3" autoplay loop />

Adding background sounds to a web page is generally discouraged because they
can quickly become annoying with no easy way of turning them off!

Browsers and Audio Formats
HTML does not specify any particular audio format and thus developers are free to pick
a format that meets the needs of their customers and clients. The most popular formats
for web-based audio are described in Figure 8–3.

Because XHTML
requires values for every
attribute, enter the
 controls attribute as
controls="controls"
to display media player
 controls on a page written
in XHTML.

Figure 8–2 Attributes of HTML audio and video elements

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 608

Because there is not a single audio format, browsers and devices differ on the types
of audio formats they support. For example, Apple devices do not support the Ogg
format. Thus, before choosing an audio format, you need to determine whether your
user’s browser will be able to play it. Figure 8–4 lists the browser support for different
audio formats at the time of this writing, but, because browser support of audio and
video is constantly evolving, you should always check the current levels of support on
the browser market. Note that in some cases, a browser will support an audio format
only if an extension is installed in the browser software.

Format Description Codec File Extension(s) MIME Type
MP3 MPEG-1 Audio Layer 3 or MP3 is one

of the most widely used audio types
and is the standard format for digital
audio players

MP3 .mp3 audio/mpeg

AAC Advanced Audio Coding or AAC is the
encoding standard for all Apple products,
as well as YouTube and several gaming
systems and mobile devices; AAC was
introduced as the successor to MP3 with
the goal of achieving better sound qual-
ity at similar compression ratios

AAC .aac
.mp4
.m4a

audio/mp4

OGG A file compression format designed
for web audio, Ogg is an open-source
and royalty-free format; in general,
Ogg provides better sound quality than
MP3, especially at lower bit rates

Vorbis .ogg audio/ogg

WAV The original audio format for Windows
PCs, WAV is commonly used for storing
uncompressed audio, making it imprac-
tical for all but the shortest audio clips

PCM .wav audio/wav

FLAC Free Lossless Audio Codec or FLAC
is a free open-source digital music
format that offers bit-perfect copies of
CD-quality music at half the size

FLAC .flac audio/flac

WebM WebM is an open-source format intro-
duced by Google to provide royalty-
free audio and video to be used with
the HTML audio and video elements

VP8
VP9

.webm audio/webm

Figure 8–3 Audio formats in HTML

Browser MP3 AAC Ogg WAV FLAC WebM
Chrome ¸ ¸ ¸ ¸ ¸ ¸

Firefox ¸ ¸ ¸ ¸ ¸ ¸

Microsoft Edge ¸ ¸ ¸ ¸ ¸ ¸

Opera ¸ ¸ ¸ ¸ ¸ ¸

Safari ¸ ¸ ¸ ¸

Figure 8–4 Browser support for audio formats

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 609

You can provide the most cross-browser support by supplying multiple versions
of the same audio clip and letting the browser choose which one to play. To provide
several versions of the same media file, nest several source elements within a single
audio element as follows

<audio>
 <source src="url1" type="mime-type" />
 <source src="url2" type="mime-type" />
…
</audio>

where url1, url2, and so on are the URLs for each audio file and mime-type specifies
the audio format associated with each file. The browser goes through the source
elements starting from the top, stopping once it encounters an audio format that it can
play, so that even though multiple audio files are listed, only one audio file will be
completely downloaded by the browser.

The following audio element provides two choices for the Royal Wedding
overture clip:

<audio controls>
 <source src="cp_overture.mp3" type="audio/mp3" />
 <source src="cp_overture.ogg" type="audio/ogg" />
</audio>

The browser will first attempt to play the cp_overture.mp3 file but, if that is not a
supported format, it will try to play the cp_overture.ogg file. Notice that including the
type attribute, while not required, informs the browser of the file type and speeds up
the process of choosing a compatible audio format.

If no type attribute is
provided, the browser will
download a section of the
file to determine the audio
format.

IN
SI
G
H
T

Exploring MIME Types

The Multipurpose Internet Mail Extension or MIME type was first introduced as a
way of attaching nontextual content to email messages. With the growth of the web,
the use of MIME types expanded to include the flow of information across the web.
Each MIME type includes the following header:

type/subtype

where type is the general data type and subtype is a special classification of data
within that type. The possible values for type are application, audio, image, message,
model, multipart, text, and video. Within these types, there can be dozens or hundreds
of subtypes. For example, HTML text files have the MIME type text/html while CSS
files have the MIME type text/css. Audio files include MIME types such as audio/mp3,
audio/ogg, and audio/wav among dozens of others.

When a web server sends content to the browser, it includes the MIME type so that
the browser is able to interpret and render that content for the user. The file extension
given to a file should correspond to its MIME type. Thus, an MP3 file should be
delivered by the server with the audio/mp3 MIME type and the mp3 file extension.

Maxine has created two audio files of the overture music for Royal Wedding stored
in the MP3 and Ogg format. Add these audio clips to her web page now.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 610

To add an audio clip:
w 1. Return to the cp_royal.html file in your editor.

w 2. Scroll down to the aside element for the Listen Up content.

w 3. Directly before the closing </aside> tag, insert the following content:

<p>Click the play button below to hear the musical overture
 for Burton Lane's <cite>Royal Wedding</cite>.
</p>
<audio controls>
 <source src="cp_overture.mp3" type="audio/mp3" />
 <source src="cp_overture.ogg" type="audio/ogg" />
</audio>

 Figure 8–5 highlights the newly added code.

displays the controls
for the audio player

two possible
sources for
the audio �le

Figure 8–5 Inserting an audio clip

w 4. Save your changes to the file.

Before running this audio clip, you will format the appearance of the browser’s
native media player that will run the audio.

Applying Styles to the Media Player
The appearance of the media player is determined by the browser itself. Figure 8–6
shows the built-in media player for several major browsers.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 611

Chrome

Edge

Safari

Opera

FireFox

S f i

Figure 8–6 Native audio player for different browsers

You can use CSS to set the width of the media player, add borders and drop shadows,
and apply filters and transformations to the player’s appearance but, if you want a
completely customized player, you need to build it yourself using the form controls
introduced in the last tutorial along with a JavaScript program to set the behavior and
operation of each control. There are also many third-party HTML 5 players available to
allow you to create a customized media player adapted to the needs of your company
or organization.

For the Cinema Penguin website, you will use the native media player supplied
by the browser but you will use CSS to make some minor changes to the player’s
appearance.

To apply styles to the media player:
w 1. Scroll to the document head of the cp_royal.html file in your editor and add

a link to the cp_media.css style sheet directly before the closing </head> tag.

w 2. Save your changes to the file and then use your editor to open the
cp_media_txt.css file from the html08 c tutorial folder. Enter your name and
the date in the comment section of the file and save it as cp_media.css.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 612

w 3. Go to the Audio and Video Player Styles section and insert the following
style rule:

audio {
 filter: drop-shadow(8px 8px 15px rgb(51, 51, 51));
 display: block;
 margin: 10px auto;
 width: 90%;
}

 Figure 8–7 highlights the newly added styles for the audio element.

By default, audio and
video elements are
displayed in-line with the
surrounding page content.

Figure 8–7 Styles for the native media player

w 4. Save your changes to the style sheet.

Test the audio clip you entered into the Cinema Penguin web page.

To play the audio clip:
w 1. Reload the cp_royal.html file in your web browser.

w 2. Scroll to the bottom of the page and click the play button on the media
player to play the embedded audio clip.

 Figure 8–8 shows the appearance of the media player within the Google
Chrome browser.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 613

w 3. The clip will run for about 32 seconds. Press the stop button on the media
player to halt the playback.

Trouble? Depending on your browser and device, you may see a different
media player in your web page.

Figure 8–8 Appearance of the native media player within Google Chrome

play button

volume
controls

Maxine likes the audio clip but asks what would happen if the user opens this
page in an older browser that doesn’t support the audio element. In that situation, the
browser would not display any media player, but you can provide alternate content for
the user.

Providing a Fallback to an Audio Clip
It is considered bad design to add a feature to a web page without also providing some
fallback option to users who cannot take advantage of that feature. You already used
one type of fallback option by specifying two audio sources so that, if the browser
cannot play the MP3 version of the audio clip, it can attempt to play the OGG version.

If the browser can’t play either version or doesn’t support the audio element at all,
you can follow the source elements with HTML code that the browser will recognize.
The simplest fallback option is a text string indicating that the user needs to upgrade the
browser to take advantage of the feature you added to the page.

Add a paragraph within the audio element to display a message for users who are
unable to play either of the two source files you provided.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 614

You can test this feature by opening the page in an older browser or using the
developer tools provided with your browser to emulate an earlier browser version.
Figure 8–10 shows how the page might look when the audio element is not supported.

To provide alternate text to the audio clip:
w 1. Return to the cp_royal.html file in your editor.

w 2. Scroll down to the audio element and insert the following code directly
before the closing </audio> tag:

<p>To play this audio clip, your browser needs to support
HTML 5.</p>

 Figure 8–9 highlights the fallback text for the audio clip.

Figure 8–9 Adding fallback text to the audio element

displays this paragraph
when the audio element
is not supported

w 3. Save your changes to the file.

Figure 8–10 Fallback text displayed within the web page

fallback text displayed for
browsers that don’t support
the audio element

Another way of supporting older browsers is to provide code that will work with
multimedia plug-ins.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 615

Exploring Embedded Objects
As you learned earlier, older browsers relied on plug-ins to play audio and video files.
The plug-ins were marked using the following embed element

<embed src="url" type="mime-type"
 width="value" height="value" />

where url is the location of the media file, the type attribute provides the mime-type,
and the width and height attributes set the width and height of the media player. For
example, the following code loads the cp_overture.mp3 file into a media player 250
pixels wide by 50 pixels high:

<embed src="cp_overture.mp3" type="audio/mp3"
 width="250" height="50" />

The plug-in associated with this particular media file is defined within the user’s
browser. One user might associate MP3 files with Apple’s QuickTime Player while
another user might associate them with the Windows Media Player. One of the challenges
with plug-ins is that they relied on the user installing a specific piece of software, which
some users were either unable or reluctant to do. HTML 5 avoids this problem and makes
inserting audio and video content as seamless as inserting inline images.

Plug-In Attributes
The src, type, height, and width attributes are generic attributes and can be applied
to the embed element for any plug-in. The embed element also allows for attributes
that are tailored to specific plug-ins. For example, the following embed element adds
attributes that are recognized by Apple’s QuickTime Player to display the media player
controls and prevent the playback from starting automatically:

<embed src="cp_overture.mp3" width="250" height="50"
 controller="yes" autoplay="no" />

PR
O
SK

IL
LS

Verbal Communication: Tips for Effective Web Audio

Enhancing your website with audio clips can be an effective way to provide information
and entertainment for your users and customers. However, it must be used judiciously
to avoid annoying users. Here are some tips to keep in mind when using web audio:

• Avoid background music. Remember that many customers multitask when using the
web and are often listening to their own music and audio files. Don’t annoy them by
inserting your audio clip over theirs.

• Give users control. Turn off the autoplay feature of your audio player. Let each user
choose whether or not to play your audio clip. Your users might be accessing your
site at work or in a public place where audio is inappropriate. Always give users the
ability to pause, stop, and—above all—mute the audio.

• Keep it short. If you use sound to supplement different visual effects in your page,
keep the clips short in duration. Don’t force your users to listen to long clips.

• Accommodate hearing-impaired customers. The web is an important source of
 information for the hard of hearing. Always provide alternatives for those who can’t
hear your site’s audio content.

Finally, every feature on your website, including sound, should have a reason for being
there. An audio clip should provide users with important information that cannot be
conveyed in any other way.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 616

Other plug-ins might use different attributes or attribute values to achieve the same
effect. For Windows Media Player, the equivalent tag is as follows:

<embed src="cp_overture.mp3" width="250" height="50"
 showcontrols="yes" autostart="no" />

Both plug-ins can be supported by including both sets of attributes within the same
tag as follows:

<embed src="cp_overture.mp3" width="250" height="50"
 controller="yes" autoplay="no"
 showcontrols="yes" autostart="no" />

Each plug-in will use the attributes designed for it and ignore the others, enabling a
single tag to work across multiple plug-ins.

Plug-Ins as Fallback Options
Plug-ins can act as a fallback option for browsers that don’t support the HTML 5
multimedia elements by adding the embed element to the end of the audio element as
the last option for the browser. The following code demonstrates how to employ a plug-in
as a fallback to the audio element you inserted earlier into the cp_royal.html file:

<audio controls>
 <source src="cp_overture.mp3" type="audio/mp3" />
 <source src="cp_overture.ogg" type="audio/ogg" />
 <embed src="cp_overture.mp3" width="250" height="50"
 controller="yes" autoplay="no"
 showcontrols="yes" autostart="no" />
</audio>

The use of plug-ins has steadily declined since the widespread adoption of the
HTML 5 standard. Maxine decides against including support for plug-in media players,
instead she will rely on the fallback message directing users to upgrade older browsers.

You have completed your work to add a sound clip to the Royal Wedding page. In
the next session, you insert a video clip of a famous dance from that movie.

Browsers that don’t support
HTML 5 ignore the audio
and source elements but
apply the embed element to
insert the media player via
a plug-in.

R
E
V
IE

W

Session 8.1 Quick Check

 1. What is the utility to encode and decode a multimedia file?
a. MIME type
b. codec
c. container
d. plug-in

 2. To compress data by removing redundant information, apply:
a. lossy compression
b. lossless compression
c. codec compression
d. plug-in compression

 3. Which of the following is not a sound format?
a. au
b. WebM
c. WAV
d. FLAC

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 617

 4. To automatically play a sound clip continuously in the background when a page
is loaded, which attribute(s) should you add to the audio element?
a. autostart play
b. autostart = "play"
c. autoplay loop
d. autoplay = "loop"

 5. What code do you insert within an <audio> clip to allow the browser to choose
between the bground.mp3 and bground.ogg files?
a. <source src="bground.mp3" type="audio/mp3" />

<source src="bground.ogg" type="audio/ogg" />
b. <src audio="bground.mp3" type="audio/mp3" />

<src audio="bground.ogg" type="audio/ogg" />
c. <audio src="bground.mp3" type="audio/mp3" />

< audio src="bground.ogg" type="audio/ogg" />
d. <audio source="bground.mp3" type="audio/mp3" />

< audio source="bground.ogg" type="audio/ogg" />

 6. When multiple audio files are suggested in the audio element, the one played by
the browser is:
a. The first file in the list
b. The last file in the list
c. The first file supported by the browser in the list
d. The last file supported by the browser in the list

 7. To mark a plug-in, use the:
a. plugin element
b. plug-in element
c. audio element
d. embed element

 8. When a browser encounters the audio element, it:
a. Loads a plug-in file associated with web audio
b. Loads the W3C audio player
c. Loads an audio player built into the browser
d. Requests that the user update the browser

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 618

Session 8.2 Visual Overview:

Each track cue is
identi�ed with a label,
the time interval in
which the cue is
displayed, and the
text of the cue.

The position
attribute sets the
horizontal position
of the cue text.

The line attribute
sets the vertical
position of the cue
text.

WebVTT 	les start with
the WEBVTT statement.

The align attribute
aligns the text
within the cue.

The video element
embeds a video 	le
in the web page.

The poster attribute
displays a preview
image of the video 	le.

MP4 and WebM are the
two most common video
formats on the web.

Tracks are stored
in text 	les in the
WebVTT format.

The kind attribute
speci	es the type
of track text.

The cue time interval
indicates when the cue
will be visible (from 0.5
to 4 seconds).

The track element
attaches a text track
to the media clip.

The cue label identi	es
the track cue.

The cue text is the text
displayed in the video
window.

Cue text can be marked
as classes using the
<c> </c> tag.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 619

Playing Web Video

The cue pseudo-element
selects the cues from the
media track.

The cue text is from
the Main class.

The Title cue text as
rendered in the video
window.

Native media player
provided by the browser
to play video 	les.

The media player
displays controls
for video playback.

Source: Archive.org

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 620

Exploring Digital Video
In this session, you explore how to embed video within your web pages. Before
exploring the HTML video elements, you examine some of the issues involved with
producing video files suitable for the web.

Video Formats and Codecs
A video file typically contains two codecs: one codec for audio and another for the
video images. The audio codecs are the same ones you examined in the last session.
Figure 8–11 describes the most commonly used video codecs on the web.

Codec Description
H.264 Developed by the MPEG group, the H.264 codec is the industry standard for

 high-definition video streams, movie sharing websites such as YouTube, and video
plug-ins

Theora Theora is a royalty-free codec developed by the Xiph.org Foundation that produces
video streams that can be used with almost any container

VP8 VP8 is an open-source royalty-free codec owned by Google for use in Google’s
WebM video format

VP9 VP9 is Google’s successor to the VP8 codec, offering the same video quality as VP8
at half the download size

The most popular video codec is H.264 used by YouTube and most commercial
vendors; however, because H.264 is a commercial product, it is not royalty free.
This is not an issue if you are creating a video that is not actually being sold. If you
are creating a commercial video that uses the H.264 codec, you might have to pay
licensing fees depending on the number of subscribers to your video content. The
Theora, VP8, and VP9 codecs are royalty free, but they are not as widely supported at
the time of this writing.

Browser support for video containers is focused on three formats: MP4, Ogg, and
WebM, with multiple combinations of video and audio codecs available within each
container. Figure 8–12 summarizes these formats and their use on the web.

Format Description
Video
Codec File Extension(s) MIME Type

MPEG-4 MPEG-4 or MP4 is a widely used
 proprietary format developed by
Apple based on the Apple QuickTime
movie format

H.264 .mp4
.m4v

video/mp4

Ogg Ogg is an open-source format
 developed by the Xiph.org
Foundation using the Theora codec
as an alternative to the MPEG-4 codec

Theora .ogg video/ogg

WebM WebM is an open-source format
 introduced by Google to provide
royalty-free video and audio to be
used with the HTML 5 video element

VP8
VP9

.webm video/webm

Figure 8–11 Video codecs used on the web

Figure 8–12 Video formats used on the web

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 621

Video content suffers the same limitation as audio content in that no single format
has universal support among all browsers and devices. Thus, as with audio content,
you may have to supply multiple versions of the same video if you want the widest
cross-browser support. See Figure 8–13.

Browser MPEG-4 Ogg WebM
Chrome ¸ ¸ ¸

Firefox ¸ ¸ ¸

Microsoft Edge ¸ ¸ ¸

Opera ¸ ¸ ¸

Safari ¸

The level of support for video formats is constantly changing as are the video
formats themselves. As always, the best way to determine whether a browser supports a
particular video format is to test the video file on that browser.

Using the HTML 5 video Element
Videos are embedded into a web page using the following video element

<video attributes>
 <source src="url1" type="mime-type" />
 <source src="url2" type="mime-type" />
 …
</video>

where attributes are the HTML attributes that control the behavior and appearance
of the video playback, url1, url2, and so on are the possible sources of the video, and
mime-type specifies the format associated with each video file. As with sources for the
audio element, a browser uses the first source it finds in a format it supports. Fallback
content can also be added after the list of video sources for browsers that don’t support
HTML 5 video. The video element supports many of the same attributes used within
the audio element shown earlier in Figure 8–2.

The following code embeds two possible video files on the web page with a fallback
message for browsers that don’t support the video element:

<video controls>
 <source src="cp_dance5.mp4" type="video/mp4" />
 <source src="cp_dance5.webm" type="video/webm" />
 <p>To play this video clip, your browser needs
 to support HTML 5.</p>
</video>

Maxine has a video clip of a classic dance sequence from Royal Wedding in which
Fred Astaire appears to dance on the walls and ceiling of his hotel room. She has two
versions of the clip: one in MP4 format and the other in the WebM format. Use the
video element now to embed these videos on her web page.

Figure 8–13 Browser support for video formats

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 622

To embed a video file into the web page:
w 1. If you took a break after the previous session, make sure the cp_royal.html

file is open in your editor.

w 2. Scroll down to the aside element titled In Focus and add the following code
directly before the closing </aside> tag:

<p>Click the play button to view this classic dance sequence.</p>
<video controls>
 <source src="cp_dance.mp4" type="video/mp4" />
 <source src="cp_dance.webm" type="video/webm" />
 <p>To play this video clip, your browser needs to
 support HTML 5.</p>
</video>

 Figure 8–14 highlights the code for the embedded video.

displays the
browser’s native
media player

fallback text for
browsers that don’t
support HTML5 video

sources for the
video clip

w 3. Save your changes to the file.

 Next, you modify the cp_media.css style sheet file to format the appearance
of the video media player for your browser.

w 4. Go to the mp_media.css file in your editor.

w 5. Modify the style rule for the audio element by adding the video selector
separated by a comma.

 Figure 8–15 highlights the modified style rule.

Figure 8–14 Adding a video clip to a web page

add video to the
style rule selector

Figure 8–15 Defining the video player styles

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 623

w 6. Save your changes to the style sheet and then reopen the cp_royal.html file
in your browser.

w 7. Click the play button on your browser’s media player to play the video clip.

 Figure 8–16 shows the video clip in action as it replays the ceiling dance
sequence from Royal Wedding.

�rst frame of the
video is used as
the preview image

video player
controls

Figure 8–16 Video clip embedded in the web page

When the media player initially loads a video file, the player shows the first video
frame as a preview of the video’s content. Maxine would like to replace that preview
image with an image of Astaire dancing on his apartment room’s wall. To define the
video’s preview image, you apply the following poster attribute to the video element

<video poster="url">
…
</video>

where url points to an image file containing the preview image. The poster attribute
is also used as a placeholder image that is displayed when the video is still being
downloaded or used in place of the video if the browser fails to download the video
file at all.

Maxine suggests you use the cp_photo2.png file as the poster image for the
video clip.

Source: Archive.org

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 624

To set the video’s poster image:
w 1. Return to the cp_royal.html file in your editor.

w 2. Add the following attribute to the video element: poster="cp_photo2.png".

 Figure 8–17 highlights the poster attribute.

preview image
of the video clip

w 3. Save your changes to the file and then reload cp_royal.html in your browser.

 Figure 8–18 shows the poster image applied to the video of the ceiling
dance sequence.

image displayed
prior to playing
the video

Figure 8–17 Defining a poster image for the video

Figure 8–18 Video clip poster image

Maxine suggests that the video clip would benefit from some descriptive captions.
Rather than modifying the video clip itself, you can add those captions using media tracks.

Adding a Text Track to Video
With the increased reliance on multimedia on the web comes the responsibility of
making audio and video content accessible to all users. This can be done by adding a
text track to the media clip that can be read or recited to visually impaired users. Text
tracks are added to an audio or video clip using the following track element

<track kind="type" src="url" label="text" srclang="lang" />

Source: Archive.org

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 625

where the kind attribute defines the track type, the src attribute references a file
containing the track text, the label attribute gives the track name, and the srclang
attribute indicates the language of the track. A single media clip might be associated
with multiple track types as indicated by the value of the kind attribute. Figure 8–19
lists the different kinds of tracks that can be associated with an audio or video file.

Kind Value Description
captions Brief text descriptions synced to specified time points within the media clip;

designed for hearing impaired users

chapters Chapter titles used by the media player to navigate the user to specific time
points within the media clip

descriptions Longer descriptions synced to specified time points within the media clip;
designed for visually impaired users

subtitles (the default) Translation of dialog from the media clip; the language of the
subtitle must be specified in the srclang attribute

metadata Metadata content used by external scripts accessing the media file

For example, the following code attaches six tracks to the story.mp4 video file:

<video controls>
 <source src="story.mp4" type="video/mp4" />
 <track kind="captions" src="captions.vtt" label=" Captions" />
 <track kind="chapters" src="chapters.vtt" label="Chapters" />
 <track kind="subtitles" src="english.vtt" srclang="en"
default />
 <track kind="subtitles" src="french.vtt" srclang="fr" />
 <track kind="subtitles" src="spanish.vtt" srclang="es" />
 <track kind="descriptions" src="summary.vtt" label="Summary" />
</video>

The tracks contain captions, chapter titles, subtitles in English, French, and Spanish,
and finally a track that summarizes the contents of the video. The media player can
only show one of these tracks at a time. The active track by is marked with the default
attribute, which enables that track and disables all of the other tracks. In this case,
the track English subtitles is enabled while all other tracks are disabled. The user can
choose a different track from the media player, usually by selecting the track from one
of the media player controls. Note that the default attribute is required, even if the
track list contains only one track.

Making Tracks with WebVTT
Tracks are stored as simple text files written in the Web Video Text Tracks or WebVTT
language. The format of a WebVTT file follows the structure

WEBVTT

cue1

cue2
…

A WebVTT file has the file
extension .vtt.

Figure 8–19 Values of the kind attribute

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 626

where cue1, cue2, and so on are cues matched with specific time intervals within the
media clip. Note that the list of cues is separated by a single blank line after the cue
text. Unlike HTML, white space is not ignored in WebVTT files.

Each cue has the general form

label
start --> stop
cue text

where label is the name assigned to the cue, start and stop define the time interval
associated with the cue, and cue text is the text of the cue. Times are entered in the
format mm:ss.ms for the minutes, seconds, and milliseconds values. For longer clips,
you can include an hours value, writing the time in the form hh:mm:ss.ms.

The following code adds two cues to the WebVTT file:

WEBVTT

Intro
00:00.500 --> 00:09.000
Once upon a time

Conclusion
14:20.000 --> 14:30.000
And they all lived happily ever after

The Intro cue, “Once upon a time”, starts at the half-second mark and runs through the
9-second mark; the Conclusion cue, “And they all lived happily ever after”, covers the
time interval from 14 minutes 20 seconds through 14 minutes 30 seconds of the clip.

Create a track file now for the ceiling dance video displaying a title and subtitle at
the start of the video and an advertisement for Cinema Penguin near the end.

Cue text entered on
 multiple lines in the
WebVTT file will also be
displayed on multiple lines
when played back.

To create a track file:
w 1. Use a text editor to open the cp_captions_txt.vtt file from the

html08 c tutorial folder. Save this blank text file as cp_captions.vtt.

w 2. Enter WEBVTT in the first line of the file.

w 3. Insert a blank line followed by the text for the Title cue spanning the interval
from the first half-second up to the fourth second:

Title
00:00.500 --> 00:04.000
The Ceiling Dance

w 4. Insert a blank line followed by the Subtitle cue in the interval from 4.5
seconds through 8 seconds:

Subtitle
00:04.500 --> 00:08.000
from Royal Wedding (1951)

w 5. Insert a blank line followed by the Ending cue in the interval from 1 minute
38 seconds through 1 minute 44 seconds:

Ending
01:38.000 --> 01:44.000
See more videos at Cinema Penguin

 Figure 8–20 describes the contents of the cp_captions.vtt file.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 627

1st cue

cue label

cue text

�rst line indicates
the format of the �le

cue spans the interval
from 0.5 seconds to
4 seconds

2nd cue

3rd cue

w 6. Save your changes to the file.

Next, you apply the cp_captions.vtt file to the dance sequence video. If you are
testing your page on Google Chrome or Opera, be aware that you will have to upload
your files to a web server. Neither of these browsers will open track files stored locally.

To add captions to a video clip:
w 1. Return to the cp_royal.html file in your editor and scroll down to the video

element.

w 2. Directly after the second source element, insert the following track:

<track kind="captions" label="Dance Captions"
 src="cp_captions.vtt" default />

 Figure 8–21 highlights the HTML code for the track.

Figure 8–20 WebVTT file to define track text

Figure 8–21 Applying a track to a video clip

displays the track
text as a caption

source of
caption text

enables the track
for display in the
media playercaption label

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 628

w 3. Save your changes to the file and then reload cp_royal.html in your browser.
If you are using Google Chrome or Opera, upload your files to a web server
for testing.

w 4. Click the play button on your browser’s media player and, if necessary, click the
Closed Captioning button to display the video captions. Verify that captions
appear at the half-second, 4.5 second, and 1 minute 38 second marks in the video.

 Figure 8–22 shows the final caption from the video clip.

ending caption

Trouble? If you don’t see any captions, check the code in your WebVTT file
against the code shown in Figure 8–20. Make sure your text matches that
 figure because the WebVTT syntax must be strictly followed.

By default, the caption cues are centered at the bottom of the video window.
To change the position of the cues, you can edit the settings in the WebVTT file, as
discussed next.

Placing the Cue Text
The size and position of the cue text can be set by adding the following cue settings
directly after the cue’s time interval

setting1:value1 setting2:value2 …

where setting1, setting2, and so on define the size and position of the cue text and
value1, value2, and so on are the setting values. Note that there is no space between
the setting name and value. Figure 8–23 describes the different settings supported in the
WebVTT language.

Figure 8–22 Caption in the ceiling dance movie

Source: Archive.org

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 629

Cue Setting Description
align:value Sets the horizontal alignment of the text within the cue, where value is start

(left-aligned), middle (center-aligned), or end (right-aligned)

line:value Sets the vertical position of the cue within the video window, where value
ranges from 0% (top) to 100% (bottom)

position:value Sets the horizontal position of the cue within the video window, where value
ranges from 0% (left) to 100% (right)

size:value Sets the width of the cue as a percentage of the width of the video window

vertical:type Displays the cue text vertically rather than horizontally where type is rl
(writing direction is right to left) or lr (writing direction is left to right)

By applying the line and align settings, the Intro cue in the following track is
placed at the top of the video window and centered horizontally. By applying the line,
position, and align settings, the Conclusion cue is placed at the bottom-left corner of
the video window with the cue text left-aligned. Note that the default placement of the
cue is the bottom center of the video window.

Intro
00:00.500 --> 00:09.000 line:0% align:middle
Once upon a time

Conclusion
14:20.000 --> 14:30.000 line:100% position:0% align:start
And they all lived happily ever after

Maxine suggests that you center the Title and Subtitle cues for the ceiling dance
video near the top of the video window and place the Ending cue near the bottom-right
corner with the text right-aligned.

To center the cue in the
video window, set the line
and position values to
50% and the align value to
middle.

To position the track cues:
w 1. Return to the cp_captions.vtt file in your editor.

w 2. After the time intervals for the Title and Subtitle cues, insert the attributes:

line:5% align:middle

w 3. After the time interval for the Ending cue, insert the attributes:

line:80% position:95% align:end

Figure 8–24 highlights the attributes for each cue within the track.

Figure 8–23 Cue attributes in WebVTT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 630

w 4. Save your changes to the file and then reload the cp_royal.html file in your
browser. If you are using Google Chrome or Opera, upload your files to a
web server for testing.

w 5. Play the video clip and verify that the Title and Subtitle cues appear centered
near the top of the video window and the Ending cue appears near the
bottom-right corner of the window.

Trouble? If the cues have not changed position, check your code against the
code in Figure 8–24. Make sure you have not entered a space between the
attribute name and the attribute value or placed the values on a new line. At
the time of this writing, Microsoft Edge and Internet Explorer do not support
positioning the track cues.

The WebVTT settings do not include styles to format the appearance of the cue text,
but you can create such styles using CSS. Note that browser support for such styles is
mixed; therefore you should not make these styles crucial to users’ interpretation of the
video cues text.

Applying Styles to Track Cues
CSS supports the following cue pseudo-element to format the appearance of the cues
appearing within a media clip:

::cue {
 styles
}

Styles for the cue pseudo-element are limited to the background, color,
font, opacity, outline, text-decoration, text-shadow, visibility, and
white-space properties. For example, the following style rule displays all cues in
a 2em yellow serif font on a red background:

::cue {
 background: red;
 color: yellow;
 font: 2em serif;
}

places the Title and
Subtitle cues near the
top of the video window
with the text centered

places the Ending cue near the
bottom-right corner of the video
window with the text right-aligned

Figure 8–24 Placing the cue text

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 631

To format the cue text:
w 1. Return to the cp_media.css file in your editor and scroll down to the Track

Styles section.

w 2. Add the following style rule:

::cue {
 background: rgba(0, 0, 0, 0.3);
 color: orange;
 font: 1.2em serif;
}

 Figure 8–25 highlights the style rule for cue text.

w 3. Save your changes to the style sheet and then reload the cp_royal.html file in
your browser. If you are using Google Chrome or Opera, upload your files to
a web server for testing.

w 4. Play the video clip and verify that the captions appear in a serif orange font
on a semi-transparent black background.

Trouble? At the time of this writing, only Google Chrome and Opera support
styles that modify the color and typeface of the cue text. Safari supports
styles to change the font size. Internet Explorer and Firefox do not support
any cue styles.

changes the
background to
semi-transparent black

selects the cue text
from the media clip

The cue pseudo-element selects all of the cue text in the media clip. To format
specific cues or text strings within a cue you identify sections of the cue text using the
following markup tags:

• <i></i> for italicized text
• for bold-faced text
• <u></u> for underlined text
• to mark spans of text
• <ruby></ruby> to mark ruby text
• <rt></rt> to mark ruby text

For example, the following code italicizes the name of the website using the <i></i> tag

Ending
01:38.000 --> 01:44.000
See more videos at <i>Cinema Penguin</i>

Ruby text refers to
annotative characters
placed above or to the
right of other characters and
is often used with Chinese
or Japanese symbols.

Use the cue pseudo-element to change the format of the captions in the ceiling
dance video to an orange color on a semi-transparent black background. Set the size
and type of the caption text to a 1.2em serif font.

Figure 8–25 Applying styles to cue text

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 632

WebVTT also supports tags that are not part of the HTML library, such as the
following <c></c> tag used to mark text strings belonging to a particular class

<c.classname></c>

where classname defines the class.
And for captions that distinguish between one voice and another, WebVTT supports

the following <v></v> tag

<v name></v>

where name is the name of the voice associated with the caption. The following track
shows how to apply the <c></c> and <v></v> tags to mark scenes and the voices of
Bernardo and Francisco from the opening of Hamlet.

Cue1
00:00.000 --> 00:05.000
<c.scene>Elsinore. A platform before the castle</c>

Cue2
00:05.500 --> 00:12.000
<v Bernardo>Who's there?</v>
<v Francisco>Nay, answer me: stand, and unfold yourself.</v>

Cue3
00:12.500 --> 00:18.000
<v Bernardo>Long live the king!</v>
<v Francisco>Bernardo?</v>

For cues based on their class name, add the class name to the cue pseudo-element
as follows

::cue(.classname) {
 style rules
}

where classname is the class marked within in the <c></c> tag.
To format voice text, use the style rule

::cue(v[voice=name]) {
 style rules
}

where name is the name assigned in the <v></v> tag.
Thus, the following style rules display the scene and voices from the opening scene

in Hamlet using red for the scene direction text, blue for Bernardo’s voice, and green
for Francisco’s voice:

::cue(.scene) {color: red;}
::cue(v[voice=Bernardo]) {color: blue;}
::cue(v[voice=Francisco]) {color: green;}

Maxine suggests that the opening Title caption be displayed in a larger font with a
drop shadow and that the website in the ending cue be italicized. Mark the caption
text using the <c></c> tag belonging to the Main class and italicize the name of the
website. Then, add the appropriate style rule to your style sheet.

To apply styles to cue text:
w 1. Return to the cp_captions.vtt file in your editor.

w 2. Enclose the cue text for the Title cue within <c> tags with the class
name Main.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 633

displays the website
title in italics

markup tag for
the Main class

w 4. Save your changes to the file and then return to the cp_media.css in your
editor.

w 5. Scroll to the bottom of the file and add the following style rule:

::cue(.Main) {
 text-shadow: black 3px 3px 0px;
 font: 2.5em serif;
}

 Figure 8–27 highlights the style rule for cues belonging to the Main class.

selector for cue text
belonging to the
Main class

w 6. Save your changes to the file and then reload the cp_royal.html file in your
browser. If you are using Google Chrome or Opera, upload your files to a
web server for testing.

w 7. Play the ceiling dance video and note that the first caption is displayed in a
larger font with a black drop shadow. See Figure 8–28.

w 3. Go to the Ending cue and enclose Cinema Penguin within opening and
closing <i> tags.

 Figure 8–26 highlights the revised code in the file.

Figure 8–26 Applying a class to cue text

Figure 8–27 Styling cues based on class name

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 634

Trouble? At the time of this writing, support for video captions is mixed.
Only Google Chrome and Opera support all of the text styles used to format
captions. Safari supports styles for font size and Firefox supports styles for
font colors. Edge does not support caption styling.

Maxine likes your work in creating and formatting the ceiling dance video clip.
However, she would like to review other options for embedding multimedia content on
her website.

Using Third-Party Video Players
Prior to the widespread adoption of HTML 5 for embedded video, browsers used
plug-ins using the following object element

<object attributes>
 parameters
</object>

where attributes define the object and parameters are values passed to the
object controlling the object’s appearance and actions. The object element, which
replaced the embed element introduced in the last session, could be used for any type
of content—from sound and video clips to graphic images, PDF files, and even the
content of other web pages.

The parameters of the object are defined using the following param element

<param name="name" value="value" />

where the name is the name of the parameter and the value is the parameter’s value.
There is no standard list of parameter names and values because they are based on the
plug-in used to display the object. For example, the following object element could

Title cue is displayed
in a larger font with a
black text shadow

Figure 8–28 Formatted text from the Title cue

Source: Archive.org

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 635

be used in place of the embed element you studied in the first session to insert the
cp_overture.mp3 audio clip:

<object data="overture.mp3" type="audio/mp3"
 height="20" width="250">
 <param name="src" value="cp_overture.mp3" />
</object>

The presumption is that content of the audio/mp3 mime-type would be associated
with a plug-in that the browser would run to play the audio clip using the src and
value attributes of the param element. Thus, the page’s author would have to know
how to work with the individual plug-ins and provide workarounds for the different
plug-ins the user may have installed.

Exploring the Flash Player
Perhaps the most-used plug-in for video playback was the Adobe Flash player, which
was embedded using the following object element

<object data="url"
 type="application/x-shockwave-flash"
 width="value" height="value">
 <param name="movie" value="url" />
 parameters
</object>

where url is the location and filename of the file containing the Flash video, and
parameters are the other param elements that manage the appearance and actions of
the player. Notice that you must always include at least the movie parameter to identify
the video file to be played in the Flash player. Figure 8–29 lists some of the other
parameters recognized by the Adobe Flash Player.

Name Value(s) Description
bgcolor color value Sets the background color of the player

flashvar text Contains text values that are passed to the player as
variables to control the behavior and content of the movie

id text Identifies the movie so that it can be referenced

loop true | false Plays the movie in a continuous loop

menu true | false Displays a popup menu when a user right-clicks the player

name text Names the movie so that it can be referenced

play true | false Starts the player when the page loads

quality low | autolow |
 autohigh | medium
| high | best

Sets the playback quality of the movie; low values favor
 playback speed over display quality; high values favor display
quality over playback speed

scale showall |
noborder |
exactfit

Defines how the movie clip is scaled within the defined
space; a value of showall makes the entire clip visible in
the specified area without distortion; a value of noborder
scales the movie to fill the specified area without distortion
but possibly with some cropping; a value of exactfit makes
the entire movie visible in the specified area without trying to
 preserve the original aspect ratio

wmode window | opaque |
transparent

Sets the appearance of the player against the page
 background; a value of window causes the movie to play
within its own window; a value of opaque hides everything
behind the player; a value of transparent allows the page
background to show through transparent colors in the player

Figure 8–29 Parameters of the Flash player

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 636

The Flash player can act as a fallback for older browsers that don’t support HTML 5
by nesting the object element within the audio or video element. The following code
demonstrates how the Flash video from the cp_dance.swf file can be set as a fallback
video for browsers that can’t play either the cp_dance.mp4 or cp_dance.webm files
using a native media player:

<video controls>
 <source src="cp_dance.mp4" type="video/mp4" />
 <source src="cp_dance.webm" type="video/webm" />
 <object data="cp_dance.swf"
 type="application/x-shockwave-flash"
 width="320" height="240">
 <param name="movie" value="cp_dance.swf" />
 <param name="quality" value="high" />
 <p>You must have the Flash Player to play
 the video clip</p>
 </object>
</video>

Note that within the object element is a final fallback message for users with browsers
that cannot play the video clip in any of the formats.

Maxine decides against providing a Flash version of the ceiling dance movie
because she feels that the browser support for HTML 5 video is sufficient for users of
her website.

Embedding Videos from YouTube
The biggest supplier of online videos is YouTube with over 1 billion users and 4 billion
views per day. YouTube videos are easy to embed in your web page using YouTube’s
HTML 5 video player, which supports a wide variety of video formats and codecs
including H.264, WebM VP8, and WebM VP9.

To share a YouTube video, bring up the video on the YouTube site and click the Share
button below the video player. YouTube provides options to post a hypertext link to the
video to a multitude of social media sites or to share the link via email. To embed the
video within your website, click Embed, which brings up a preview of the embedded
player and the HTML code you need to add to your web page. Figure 8–30 shows the
embed options on the YouTube website for the full movie version of Royal Wedding.

To hide the Flash player,
set the width and height
values to 0.

options for embedding
the video clip and
player controls

preview of the
YouTube video

HTML code for
embedding
YouTube video

Figure 8–30 Embedding a YouTube video

Source: YouTube, LLC

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 637

The general code for the embedded player is

<iframe width="value" height="value" src="url"
 frameborder="0" allowfullscreen>
</iframe>

where url provides the link to the YouTube video, while the width and height
attributes define the dimensions of the player embedded on your web page. The
frameborder attribute sets the width of the border around the player in pixels. The
allowfullscreen attribute allows the user to play the video in fullscreen mode.
Finally, the iframe element itself is used to mark inline frames, which are windows
embedded within the web page that display the content of another page or Internet
resource. Please note that any videos submitted to YouTube are still subject to copyright
restrictions and might be removed if those restrictions are violated.

HTML 5 Video Players
Rather than using your browser’s native video player, you can use one of the many
commercial and free HTML 5 video players on the market. Unlike plug-ins, which are
applications distinct from your browser, an HTML 5 video player works within your
browser with CSS and JavaScript files to present a customizable player that can be
adapted to the needs of your business or organization. The YouTube player is one example
of an HTML 5 player in which YouTube provides both the player and a hosting service
for the video content. Some of the other popular HTML 5 video players include the
following:

• JWPlayer (www.jwplayer.com) A popular commercial player that supports both
HTML 5 and Flash video. A free non-commercial version is also available.

• VideoJS (www.videojs.com) A free player that works with the popular WordPress
HTML framework. VideoJS is extremely customizable and provides support for
captions and subtitles.

• Flowplayer (flowplayer.org) Originally marketed as a Flash player, Flowplayer is
a commercially licensed audio and video player, payable as a one-time fee for
perpetual use.

• Kaltura Player (player.kaltura.com) A free open-source video player that can be
customized with user-created player controls and skins to match the design of one’s
website.

• Wistia (wistia.com) An HTML 5 video player focused on business needs and
applications.

Any of these video players and many others can cover your basic needs. As your
company or organization grows, you may find that you will need the professional service
and quality of a licensed-based player with either a one-time or annual subscription.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 638

PR
O
SK

IL
LS

Problem Solving: Tips for Effective Web Video

Web video is one of the most important mediums for conveying information and
advertising products and services. With inexpensive hardware and sophisticated video
editing software, almost anyone can be a movie producer with free, instant distribution
available through the web. However, this also means you have a lot of competition,
making it hard to get noticed; it is essential that your videos be polished and
professional. Here are some things to keep in mind when creating a video for the web:

• Keep it short. Studies have shown that web users have an attention span of about
4 seconds. If they don’t receive valuable information within that time, they will go to
a different site. This means your video must get to the point quickly and keep users’
attention. Also recognize that most users will not watch your entire video, so make
your key points early.

• Keep the image simple. Your video will probably be rendered in a tiny frame,
so make your content easier to view by shooting close-ups. Avoid wide-angle
shots that will make your subject even smaller to the user’s eye. Avoid complex
 backgrounds and distracting color schemes.

• Keep the human element. Eye-tracking studies have shown that people naturally
gravitate to human faces for information and emotional content. Use tight shots in
which the narrator speaks directly into the camera.

• Use effective lighting. Light should be projected onto the subject. Avoid relying solely
on overhead lights, which can create distracting facial shadows. Video compression
can result in loss of detail; thus, make sure you use bright lighting on key areas to
highlight and focus users’ attention on the important images in your video.

• Follow the rule of thirds. Avoid static layouts by imagining the frame divided into
a 3 × 3 grid. Balance items of interest along the lines of the intersection in the
grid rather than centered within the frame. If interviewing a subject, leave ample
 headroom at the top of the frame.

• Avoid pans and zooms. Excessive panning and zooming can make your video appear
choppy and distorted, and unnecessary movement slows down the video stream.

Finally, consider investing in professional video services that can storyboard an idea for
you and that have the experience and expertise to create a finished product that will
capture and keep the attention of users and customers.

Maxine is pleased with the work you have done embedding the dance sequence
video in the Royal Wedding page. In the next session, you will explore how to make
your websites come alive with transitions and interactive animation.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 639

R
E
V
IE

W

Session 8.2 Quick Check

 1. What attribute do you add to the video element to display the dickens.png file
as a preview of the video clip?
a. preview = "dickens.png"
b. src = "dickens.png"
c. alt = "dickens.png"
d. poster = "dickens.png"

 2. Provide the code to insert a subtitle track named “Spanish Version” using the
track text in the spanish.vtt file.
a. <caption src="spanish.vtt" />
b. <subtitle src="spanish.vtt" />
c. <track src="spanish.vtt" />
d. <video caption="spanish.vtt" />

 3. Provide the code for a track cue in the WebVTT language with the name
“Intro” and spanning the time interval from 1 second to 8.3 seconds.
a. Intro

00:01.000 --> 00:08.300
b. Intro

1 --> 8.3
c. Intro

Start: 00:01.000 End: 00:08.300
d. Intro

Start: 1s End: 8.3s

 4. Provide WebVTT caption attributes to place the caption of the video window
with the caption text left-aligned.
a. line: 1 position: top align: left
b. top: 0% left: 0% text-align: left
c. line: 0% position: 0% align: start
d. top: 0 left: 0 align: start

 5. Provide a style rule to display cue text in a 1.3em cursive font.
a. .cue {font: 1.3em cursive;}
b. .cue {font: 1.3em cursive;}
c. :cue {font: 1.3em cursive;}
d. ::cue { font: 1.3em cursive;}

 6. Provide the code to mark the cue text “It was the best of times” as belonging to
the voice of the narrator.
a. <v narrator>It was the best of times …</v>
b. <caption src="narrator">It was the best of times</caption>
c. <narrator>It was the best of times</narrator>
d. <track type="narrator">It was the best of times</track>

 7. Provide the code to display text in the narrator voice with a white font.
a. :cue(v[voice=narrator]) {color: white; }
b. .cue(v[voice=narrator]) {color: white; }
c. ::cue(v[voice=narrator]) {color: white; }
d. cue(v[voice=narrator]) {color: white; }

 8. YouTube videos are embedded within which element?
a. plugin
b. ytube
c. object
d. iframe

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 640

Session 8.3 Visual Overview:

0 sec 2 sec 0.5 sec 1 sec 1.5 sec

Prior to the hover event,
the browser displays the
initial state style.

During the hover event, the
browser transitions between the
initial state and end state style.

The transition style de�nes
the properties being changed,
the duration of the change,
and a timing function for the
rate of change.

The initial state styles
de�ne the object’s
appearance before
the transition.

The transition style creates
a transition between an initial
state and an end state.

The end state styles de�ne
the object’s appearance
after the transition.

The transition in styles occurs
over a 2-second duration
during the hover event.

At the end of the transition,
the browser displays the
end state style.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 641

Transitions and Animations

The @keyframes rule
de�nes the key frame styles
used in an animation.

A name of “spin”
is assigned to the
animation.

Each key frame has
a progress value
and a style rule.

The animation style
applies a key frame
animation to an object.

The spin animation is applied
to the video element.

The animation lasts
104.04 seconds.

A value of “in�nite”
causes the animation
to run continuously.

Linear timing applies
the transition at a
constant rate.

The spin animation
rotates the video
player.

The animation-play-state
style de�nes whether the
animation is running or is paused.

Source: Archive.org

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 642

Creating Transitions with CSS
In this session, you explore how to use CSS transitions and animations to add
movement and action to your websites without relying on video files or external
plug-ins. You start by examining how to create a CSS transition.

Introducing Transitions
A transition is a change in an object’s style from an initial state to an ending state,
usually in response to an event initiated by the user or the browser. You have already
worked with this type of effect starting in Tutorial 2 when you employed the hover
pseudo-class to change the style of a hypertext link in response to the user moving
the mouse pointer over a hypertext link. However, the hover effect is instantaneous
with no intermediate steps. If the background color of the link were to change from
white to black, there is no instant in which the background is gray. A transition on the
other hand, slows down that change and provides intermediate styles so that a white
background gradually changes into black, passing through different shades of gray
(see Figure 8–31).

initial state

no transition in color between the initial and end states

gradual transition in color between the initial and end state

intermediate states

end state

initial state end state

To create this type of transition, you employ the following transition style

transition: property duration;

where property is a property of the object that changes between the initial and end
states and duration is the transition time in seconds or milliseconds. The following
style rules use the transition style to create a transition for the background style as
the hypertext link goes from an initial state to an end state (hovered) over a 4-second
interval:

a {
 background: white;
 color: black;
 transition: background 4s;
}

To specify a time in
milliseconds, use the
“ms” unit.

Figure 8–31 Transition from an initial state to an end state

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 643

a:hover {
 background: green;
 color: white;
}

In this example, the background color gradually changes from white to light green and
then progressively to darker shades of green. This transition happens over the 4-second
transition, during which the intermediate states showing the changes in color are
displayed (see Figure 8–32).

background: white;
color: black;
transition: background 4s;

background: green;
color: white;

initial state

0 sec 1 sec 2 sec 3 sec 4 sec

movies movies movies movies movies end state

background: white;
color: black;
transition: background 4s,
 color 4s;

background: green;
color: white;

initial state

0 sec 1 sec 2 sec 3 sec 4 sec

movies movies movies movies movies end state

Note that only the background changes in the intermediate states. The text color
stays black until the end state is reached because the color property is not included
in the transition. To apply the transition to more than one property, enter the properties
and their duration times in the following comma-separated list:

transition: background 4s, color 4s;

In this example, the background color changes gradually from white to dark green at the
same time that the font color changes gradually from black to white (see Figure 8–33).

You can explore the CSS
transition style using the
demo_transition.html file in
the html08 c demo folder.

TRY IT

The duration values for multiple properties does not need to be the same: one
property could change over a 4-second interval while another property might change
over 3 seconds (in which case it would reach its end state a full second before the
other property).

Rather than writing each property individually, you can apply the transition to
all properties by using the keyword all. Figure 8–34 shows a transition applied
to all of the properties that change between the initial and end states, creating an
effect in which the object changes background, text color, and rotates 90° over a
4-second interval.

Figure 8–32 Applying a transition to the background

Figure 8–33 Applying a transition to the background and text color

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 644

background: white;
color: black;
transform: rotate(0deg);
transition: all 4s;

background: green;
color: white;
transform: rotate(90deg);

initial state

0 sec 1 sec 2 sec 3 sec 4 sec

movies movies
movies

m
ovies

m
ovies

end state

In general, it is more efficient to explicitly list the properties that are changing rather
than using the all keyword; otherwise, the browser must keep track of all of the style
properties to determine which ones are changing and which are not.

IN
SI
G
H
T

Properties Affected by Transitions

Not every property is a candidate for the transition style. A general rule of thumb is
that, if the property allows for an intermediate value between its initial and end states,
it can be used in a transition. Your browser can calculate an intermediate value for
properties such as width, height, color, or font size. However, the following style rule
can’t be used in a transition because there is no in-between state between no display
and a block display. Either the image is displayed or it is not.

div img {
 display: none;
}
div:hover img {
 display: block;
}

To create an effect where an object gradually comes into view, you would apply
the transition to the object’s opacity, changing the object from completely transparent
(opacity = 0) to completely opaque (opacity = 1).

All current browsers support the transition style, but if you need to support older
browsers you should include the following browser extensions:

-ms-transition: background 4s;
-o-transition: background 4s;
-moz-transition: background 4s;
-webkit-transition: background 4s;
transition: background 4s;

In this session, you use the transition style without the browser extensions.

Setting the Transition Timing
The speed of the transition does not need to be constant; it can vary, with some parts of
the transition occurring at a faster rate than others. To define the varying speed of the
transition, add the following timing-function value to the transition style

transition: property duration timing-function;

You can also set the
properties affected by
the transition and their
duration using the
transition-property
and transition-
duration styles.

You can also define the
timing-function using
the transition-timing-
function property.

Figure 8–34 Applying a transition to background, text color, and rotation

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 645

where timing-function is one of the following keywords:

• ease: (the default) The transition occurs more rapidly at the beginning and slows
down near the end

• ease-in: The transition starts slowly and maintains a constant rate until the finish
• ease-out: The transition starts at a constant rate and then slows down toward the

finish
• ease-in-out: The transition starts slowly, reaches a constant rate, and then slows

down toward the finish
• linear: The transition is applied at a constant rate throughout the duration

Figure 8–35 compares the linear, ease-in, and ease-out timings when applied to a
4-second transition in the background color. The linear timing changes the color at a
constant rate, the ease-in timing changes the background slowly at first and rapidly
at the end, and the ease-out timing does the opposite with the most rapid change
occurring in the first seconds.

You can see the effect of
different transition timings
using the demo_timing
.html file in the html08 c
demo folder.

TRY IT

0 sec 1 sec 2 sec 3 sec 4 sec

initial state end state

initial state

transition: background 4s linear;

transition: background 4s ease-in;

0 sec 1 sec 2 sec 3 sec 4 sec

end state

initial state

transition: background 4s ease-out;

0 sec 1 sec 2 sec 3 sec 4 sec

end state

Another way to visualize a timing function is as a graph, which can show the
progress of the transition vs. the duration. Figure 8–36 charts the five timing functions
where the vertical axis measures the progress of the transition toward completion and
the horizontal axis measures the duration. For example, the linear timing is expressed
as a straight line because the transition occurs at a constant rate while the other timings
contain intervals where the rate of change slows down or speeds up.

Figure 8–35 Comparing transition timings

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 646

ease-in ease-in-outease-out linear

�nal state

initial state

time

The graphical representation of the timing function is the basis of another measure of
transition timing using the following cubic-bezier function

cubic-bezier(n, n, n, n)

where the n parameter values define the shape of the timing curve. Without going into
the detail about the math behind Cubic Bézier curves, the advantage of this approach is
that you can define a wide variety of timings, including timings in which the transition
can stop, reverse itself, and then go forward again to its end state. Figure 8–37 shows
one such timing using the transition

transition: background 4s cubic-bezier(0, 2, 1, -1)

in which the object’s background changes from white toward green and then back
toward white again before reaching its final state of dark green.

You can explore timings
using a cubic-bezier
function with the demo_
cubic.html file in the
html08 c demo folder.

TRY IT

initial state

transition: background 4s cubic-Bezier(0, 2, 1, -1);

cubic-bezier(0, 2, 1, -1)

0 sec 1 sec

time
initial state

end state

2 sec 3 sec 4 sec

end state

Figure 8–36 Graphing the transition timings

Figure 8–37 A cubic-bezier timing

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 647

By using a transition delay you can create interesting effects in which your
transitions start and end at different times.

Creating a Hover Transition
Now that you have reviewed the CSS styles for creating transitions, Maxine wants to
apply a transition effect to the navigation list at the top of the Royal Wedding page.
When the user hovers the pointer over the items in the navigation list, she wants the
links to appear to jump out of the page, increasing in size as they move “toward” the
reader. Before writing the transition styles, you must first define styles for the initial
and end states of these links.

background: white;
color: black;
transition: background 4s linear,
 color 2s ease-out 2s;

background: green;
color: white;

initial state

0 sec 1 sec 2 sec 3 sec 4 sec

movies movies movies movies movies end state

You can generate your own Cubic Bézier curves using the graphing tool at
cubic-bezier.com.

Delaying a Transition
A transition does not need to start immediately after the event that triggers it. By adding
the following delay value to the transition style you can delay the start of the
transition

transition: property duration timing-function delay;

where delay is measured in seconds or milliseconds. The following style creates a
4-second transition for the background style and a 2-second transition for the text color
that starts after a 2-second delay (see Figure 8–38):

transition: background 4s linear,
 color 2s ease-out 2s;

You can also define the
timing-function using
the transition-delay
property.

Figure 8–38 Delaying a transition

To define the initial and end state for the navigation links:
w 1. If you took a break after the previous session, make sure the cp_royal.html

file is open in your editor.

w 2. Directly above the closing </head> tag, insert a link to the cp_animate.css
style sheet file.

w 3. Save your changes to the workbook and then use your editor to open the
cp_animate_txt.css file from the html08 c tutorial folder. Enter your name
and the date in the comment section of the file and save it as cp_animate.css.

You can explore transition
delays with the demo_
delay.html file in the
html08 c demo folder.

TRY IT

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 648

w 4. Go to the Transition Styles section and insert the following style rule that
defines the initial state of hypertext links in the navigation list:

nav#topLinks a {
 color: rgb(255, 255, 255);
 font-size: 1em;
 letter-spacing: 0em;
 text-shadow: rgba(0, 0, 0, 1) 1px -1px 1px;
}

w 5. Next, add the following style rule that defines the end state for those links in
response to the hover event:

nav#topLinks a:hover {
 color: rgb(255, 183, 25);
 font-size: 3em;
 letter-spacing: 0.1em;
 text-shadow: rgba(0, 0, 0, 0.5) 15px -3px 8px;
}

Figure 8–39 shows the style rules for the initial and end states.

Figure 8–39 Style rules for the initial state and end state

initial state displays the
hypertext links in white
with a small text shadow

end state displays the
hypertext links in light
orange with a larger font
and a larger text shadow

w 6. Save your changes to the style sheet and then reopen the cp_royal.html file
in your browser.

w 7. Hover your mouse pointer over links at the top of the page and verify that
the hover event causes the style of the links to change. See Figure 8–40.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 649

Figure 8–40 Effect of the hover event on the links at the top of the page

end state

initial state

The links change instantaneously from the initial state to the end state and the
effect that Maxine wants to achieve of links jumping out of the page is lost. Add the
transition property to slow down the transition from initial to end state for the
color, font-size, letter-spacing, and text-shadow properties.

Transitions can be done in
incremental steps using the
steps() function. Explore
how to step through
transitions using the
demo_steps.html file in the
html08 c demo folder.

TRY IT

To define styles for the navigation links:
w 1. Return to the cp_animate.css file and, within the style rule for the

nav#topLinks a selector, add a new line containing the text transition: to
insert the transition style.

 Maxine wants you to add a different transition method to each of the four
properties that are changing.

w 2. Within the transition style, add color 1.5s ease-in 0.5s, which applies an
ease-in transition to the change in the color property with a duration of 1.5
seconds after a half-second delay.

w 3. To the transition style, add font-size 2s ease, which applies a 2-second
transition to the change in font size.

w 4. Add letter-spacing 2s ease-out, which applies a 2-second ease-out
transition to the change in letter spacing.

Sources: openclipart.org; Archive.org

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 650

w 5. Complete the transition style by adding text-shadow 2s cubic-bezier
(0.6, 0, 0.8, 0.5);, which applies a 2-second transition to the
text-shadow property using the cubic-bezier function.

Figure 8–41 highlights the transition style.

2-second transition
with the ease-out
timing

1.5-second transition with
the ease-in transition and
a half-second delay

2-second transition
with the ease timing

2-second transition using
a Cubic Bezier function

w 6. Save your changes to the style sheet and then reload cp_royal.html in your
browser.

w 7. Hover the mouse pointer over the links in the top navigation list and
verify that each link changes state over a 2-second duration. Note that the
transition works in both directions, repeating the transition in reverse as you
move the mouse pointer away from the links.

Figure 8–42 shows the change in the hypertext link over the 2-second
duration of the transition.

Figure 8–41 Setting the transition styles values

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 651

initial state: 0 sec

0.5 sec

1 sec

1.5 sec

end state: 2 sec

Figure 8–42 Running the transition

Source: Archive.org

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 652

As useful as they are for adding visual effects to a website, transitions have several
limitations:

• Transitions can only be run when a CSS property is being changed, such as during
the hover event. You cannot design a transition to run automatically when the
page loads.

• Transitions are run once. You can’t have a transition loop repeatedly.
• You can define the initial and end states of the transition but you can’t define the

styles of the intermediate states.

To overcome these limitations, you can create an animation.

To explore asymmetric
transitions, open the
demo_asym.html file from
the html08 c demo folder.

TRY IT

IN
SI
G
H
T

Creating an Asymmetric Transition

By default, a CSS transition is a symmetric transition because the transition going
from the initial state to the end state is the reverse of the transition going from the
end state back to the initial state. Thus, a text color that goes from red to blue as the
mouse moves over an object during the hover event will go from blue back to red as
the mouse moves away.

To create an asymmetric transition involving different transitions in the two
directions, you must define transitions for both the initial and end states. For example,
with the hover event you would create two transition styles:

a {transition: properties}
a:hover {transition: properties}

The style rule for the a selector is applied when the mouse moves away from the
page object and the style rule for the a:hover selector is applied when the mouse
moves toward and over the page object. Note that the two transitions can involve
totally different effects and durations. One transition might involve changes to font
size and color while the other transition might only modify the background color. One
transition can take place over a span of 2 seconds while the other might take 4 seconds.

Animating Objects with CSS
Animation is a technique of creating the illusion of movement by displaying a sequence
of changing images, known as key frames, in rapid succession. The brain interprets
the rapidly changing key frames not as distinct images but rather as a single image in
motion. CSS replaces the concept of key frame images with key frame styles that are
applied in rapid succession to a page object. While a transition is limited to two style
rules defined at the initial and end states, an animation can contain multiple styles
defined for each key frame.

The @keyframes Rule
To define a sequence of key frames in CSS, apply the following @keyframes rule

@keyframes name {
 keyframe1 {styles;}
 keyframe2 {styles;}
…
}

where name provides the name or title of the animated sequence, keyframe1,
keyframe2, and so on defines the progress of individual key frames, and styles
are the styles applied within each key frame. The keyframe1, keyframe2, and so on
values are expressed as percentages where 0% indicates a key frame at the start of the

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 653

sequence and 100% represents the sequence’s last frame. The 0% and 100% values can
also be replaced with the keywords from and to.
Key frames can be used to move objects across the page as in the following
@keyframes rule that traces out an object’s flight path (see Figure 8–43).

@keyframes flight {
 from {left: 0px; top: 0px;}
 5% {left: 50px; top: 80px;}
 10% {left: 70px; top: 80px;}
 20% {left: 90px; top: 25px;}
 to {left: 60px; top: 10px;}
}

0 sec.

(0, 0)

(50, 80) (70, 80)

(90, 25)

(60, 10)

0.5 sec. 1 sec. 2 sec. 10 sec.

Figure 8–43 A path animation over a 10-second duration

The pace at which the object moves through this path is determined by the
percentages assigned to each key frame, allowing the same animation to be run at any
speed by changing the total duration of the sequence. With the 10-second duration
shown in Figure 8–43, the object would take 2 seconds to reach the (90, 25) coordinate
and 8 more seconds to complete the circuit to the (60, 10) point. If the total duration
were 20 seconds, the (90, 25) point would be reached after 4 seconds and 16 more
seconds would be required to reach the last point.

Each pair of key frames can be treated as a transition with the browser providing the
in-between styles, such as in the rainbow animation shown in the following code:

@keyframes rainbow {
 0% {background: red;}
 50% {background: green;}
 100% {background: violet;}
}

Figure 8–44 shows the frames of the rainbow animated sequence in which the key frames
define the background color at the 0%, 50%, and 100% mark while the in-between colors
are added by the browser to create a smooth transition from one key frame to the next.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 654

key frame key frame key frametransition colors

0% {background: red;}

transition colors

50% {background: green;} 100% {background: violet;}

To specify the timing between one current key frame and the next, add the following
animation-timing-function to the key frame style rule

animation-timing-function: type;

where type is ease (the default), ease-in, ease-out, ease-in-out, linear, or the
cubic-bezier function. Note that any timing value entered for the last key frame is
ignored because there are no key frames to transition to.

Now that you have seen how to write the code for an animation, you will create an
animated sequence for the Royal Wedding page. The illusion of Fred Astaire dancing
on the ceiling was achieved by placing Astaire within a rotating set with a fixed camera
mount. Maxine wants to remove this illusion by rotating the video player so that Astaire
always appears at the bottom of the video frame. First, define an animation named
“spin” that rotates an object through one complete revolution.

Figure 8–44 Transitions between key frames

To create the spin animation:
w 1. Return to the cp_animate.css file in your editor.

w 2. Scroll down to the Key Frame Styles section and insert the following
@keyframes rule to define the spin animation:

@keyframes spin

{
 0% {transform: rotate(0deg);}
 100% {transform: rotate(360deg);}
}

Figure 8–45 highlights the initial code for the spin animation.

Figure 8–45 Defining animation key frames

�nal key frame

end the object
animation with
360° of rotation

initial key frame

start the object
animation with
no rotation

name of animation

w 3. Save your changes to the style sheet.

Now that you have defined the animation sequence, you apply it to the video player.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 655

Applying an Animation
A key frames animation is applied to an object using the following animation-name
and animation-duration properties

animation-name: keyframes;
animation-duration: times;

where keyframes is a comma-separated list of animations applied to the object using
the names from the @keyframes rule and times are the lengths of each animation
expressed in seconds or milliseconds. The following style rule applies the rainbow
animation defined earlier to the web page body, creating an effect where the page
background changes from red to green to violet over an interval of 5 seconds.

body {
 animation-name: rainbow;
 animation-duration: 5s;
}

Figure 8–46 describes other CSS properties used to control the behavior and style of the
animation.

Figure 8–46 Animation properties

Property Description
animation-name = keyframes Assigns the keyframes animation to the object

animation-duration = time Sets the length of the animation in seconds or milliseconds
(default = 0s)

animation-timing-function =
ease|ease-in|ease-out|
ease-in-out|linear|
cubic-bezier(n,n,n,n)

Defines the default timing between key frames in the
animation (default = ease)

animation-delay = time Sets the delay time in seconds and milliseconds before
animation is started (default = 0s)

animation-iteration-count =
value|infinite

Specifies the number of times the animation is played, where
value is an integer and infinite repeats the animation
without stopping (default = 1)

animation-direction =
normal|reverse|alternate|
alternate-reverse

Defines the direction of the animation, where normal plays
the animation as defined in the @keyframes rule, reverse
reverses the order, alternate plays the animation in the
normal direction followed by the reverse direction (for
multiple iterations), and alternate-reverse plays the
animation in reverse direction followed by normal direction
(default=normal)

animation-fill-mode =
none|backwards|forwards|both

Defines what styles from the animation are applied to the
object outside the time it is running, where none does
not apply any styles, backwards applies the styles from
the first key frame, forwards applies the styles from the
last key frame, and both applies styles in both directions
(default=none)

animation-play-state =
running|paused

Defines whether the animation is running or paused (default
= running)

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 656

The following style rule applies to two animations applied to the img element:

img {
 animation-name: rainbow, spin;
 animation-duration: 6s, 2s;
 animation-timing-function: ease-in, linear;
 animation-iteration-count: 1, 3;
}

The rainbow animation is applied for 6 seconds using ease-in timing between the key
frames and lasting 1 iteration. The spin animation is applied for 2 seconds using linear
timing and repeated three times.

All of the animation properties can be combined into the following shortcut
animation style

animation: name duration timing-function delay iteration-count
direction fill-mode play-state

where the name, duration, timing-function, and so on values match the values for
the corresponding properties listed in Figure 8–46. The animation name must be listed
first, then the other properties can be listed in any order; except, if both a duration and
a delay time are specified, the first time value is assumed to refer to the duration and
the second to the delay. Omitted values are assumed to have their default value. For
example, the following style plays the rainbow animation for 4 seconds using linear
timing, repeating that animation twice:

animation: rainbow 4s linear 2;

You can support older browsers by using browser extensions. Thus, the preceding
style could be entered as:

-ms-animation: rainbow 4s linear 2;
-o-animation: rainbow 4s linear 2;
-moz-animation: rainbow 4s linear 2;
-webkit-animation: rainbow 4s linear 2;
animation: rainbow 4s linear 2;

In this session, you use the animation styles without browser extensions.
Once an animation has been defined and applied to an object, it will run

automatically when the page is loaded. Apply the spin animation to the video player
for 4 seconds using linear timing and set the iteration count to infinite so that the video
player spins continuously.

To apply the spin animation:
w 1. Scroll down to the Animation Styles section within the cp_animate.css file

and insert the following style rule:

video {
 animation: spin 4s linear infinite;
}

Figure 8–47 highlights the code used to spin the video player.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 657

Figure 8–47 Applying the spin animation

timing function
between key frames

continuously
repeat the
animationapplies the animation

to the video player

name of animation

duration of
animation

w 2. Save your changes to the style sheet.

w 3. Reload the cp_royal.html file in your browser. Verify that when the page
loads, the animation rotating the video player starts automatically. See
Figure 8–48.

Figure 8–48 Rotating the video player

Trouble? Videos played on some mobile devices will automatically be
displayed in full screen mode so that you cannot see any animation effects
on the video player.

Rather than having the video player rotate continuously when the page loads,
Maxine wants the spin animation to be initiated and paused by the user. You can do
this using web form controls.

Source: Archive.org

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 658

IN
SI
G
H
T

Stepping between Key Frames

To create a smooth transition between states or key frames, the browser will
automatically generate a set of intermediate frames. You can specify the number of
intermediate frames using the following steps() function

steps(number)

where number is the number of frames between each key frame. The steps() function
is useful when you want to apply a specific number of discrete frames. The following
style applies the clock animation for a duration of 60 seconds broken into 60 frames,
each of which would occupy 1 second of time:

animation: clock 60s steps(60);

One application of the steps() function is to create animated images, known as
sprites, made of several frames shown in rapid succession at timed steps. You can
explore sprites in Case Problem 2 at the end of this tutorial.

Controlling an Animation
In many applications, you will not want your animation to start automatically when the
page loads but rather in response to the user clicking a form button. You can control an
animation using JavaScript, but for this project, you limit yourselves to a CSS solution.

Because an animation can have two states of operation—play or pause—you can
use a check box to control the animation. If the check box is selected the animation
will play; if the check box is not selected the animation will be paused. First, you will
create the check box alongside an empty label. Note that you will write the content of
the label shortly.

To create the animation check box:
w 1. Return to the cp_royal.html file in your editor.

w 2. Scroll down to the video element and, directly before the <video> tag, insert
the following checkbox and label elements:

<input type="checkbox" id="rotateVideo" />
<label for="rotateVideo"></label>

Figure 8–49 highlights the HTML code.

Figure 8–49 Creating a check box and label to run the animation

w 3. Save your changes to the file.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 659

Next, you will define two style rules for the check box: one in which the check box
is checked and other in which it is not. If the check box is checked, you want the video
clip to be played; you do this by setting the value of animation-play-state property
for the video to running as in the following style rule:

input#rotateVideo:checked~video {
 animation-play-state: running;
}

Remember that this style rule only affects the animation that rotates the video player,
it has no effect on the playing of the video itself. The style rule uses the ~ symbol as
a sibling selector to select the video that follows the rotateVideo check box in the
document.

To pause the animation, you use the same selector but include the following not
pseudo-class. You use the not pseudo-class in order to apply the animation-play-
state property with a value of pause to the video player when the rotateVideo check
box is not checked:

input#rotateVideo:not(:checked)~video {
 animation-play-state: paused;
}

Thus, depending on whether the rotateVideo check box is checked or not, the
animation will either be running or paused. Add these two styles to the cp_animate.css
style sheet.

To create styles for animation playback:
w 1. Return to the cp_animate.css file in your editor.

w 2. Directly after the style rule for the video element, insert the following style
rule to run the animation:

input#rotateVideo:checked~video {
 animation-play-state: running;
}

w 3. Add the following style rule to pause the animation:

input#rotateVideo:not(:checked)~video {
 animation-play-state: paused;
}

Figure 8–50 highlights the style rules to run and pause the animation.

Figure 8–50 Creating a check box and label to run the animation

plays the spin animation

pauses the spin animation

the rotateVideo check
box is not checked

the rotateVideo
check box is checked

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 660

w 4. Save your changes to the file and then reload the cp_royal.html file in
your browser.

w 5. Check the check box next to the video player to start the spin animation.
Uncheck the check box to pause the animation. See Figure 8–51.

Figure 8–51 Using a check box to control the animation playback

check to play the
spin animation and
uncheck to pause it

Maxine wants to replace the check box with a more attractive icon that displays
the symbol to run the animation and the I symbol to pause the animation. The two
symbols have the Unicode values \21bb and \270b respectively. This is where you use
the blank label by adding text to the label displaying either the symbol when the check
box is not checked or the I symbol when the check box is checked. You will add this
text using the after pseudo-element and content property in the following style rules:

input#rotateVideo:not(:checked)+label::after {
 content: "\21bb";
}

to add the symbol when the check box is not checked. Then use the style rule that
follows to insert the I symbol when the check box label is checked:

input#rotateVideo:checked+label::after {
 content: "\270b";
}

Add both of these style rules to the style sheet and hide the rotateVideo check box
so that only the icons are displayed.

Source: Archive.org

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 661

To create styles for animation playback:
w 1. Return to the cp_animate.css file in your editor.

w 2. Go to the Animation Icon Styles section and insert the following style rule to
hide the rotateVideo check box:

input#rotateVideo {
 display: none;
}

w 3. Add the following style rule to insert the symbol after the check box label if
the check box is not checked:

input#rotateVideo:not(:checked)+label::after {
 content: "\21bb";
}

w 4. Add the following style rule to insert the I symbol if the check box is checked:

input#rotateVideo:checked+label::after {
 content: "\270b";
}

Figure 8–52 highlights the style rules to insert the and I icons.

Figure 8–52 Displaying playback icons

hides the rotateVideo
check box

inserts the symbol
when the rotateVideo
check box is not
checked

inserts the symbol
when the rotateVideo
check box is checked

w 5. Save your changes to the file and then reload the cp_royal.html file in your
browser.

w 6. Verify that the symbol appears at the top left of the video player. Click the
 icon and verify that the video player starts to rotate and the icon changes

to I. Confirm that as you continue to click the and I icons the animation
alternately plays and pauses.

Maxine wants you to modify the format of the icons to make them larger and more
attractive. She also wants the icons to always appear above the video player. She also
wants to make sure the icon is never obscured by the rotating video player. You can
ensure this by setting the z-index value of the label to 2.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 662

To format the play and pause icons:
w 1. Return to the cp_animate.css file in your editor.

w 2. Add the following style rule at the bottom of the file:

label {
 background: rgb(56, 87, 119);
 border-radius: 65px;
 color: rgba(255, 255, 255, 0.7);
 display: block;
 font-size: 35px;
 font-weight: bold;
 line-height: 50px;
 margin: 10px auto;
 position: relative;
 text-align: center;
 width: 50px;
 z-index: 2;
}

Figure 8–53 shows the style rules for the check box label text.

Figure 8–53 CSS style rule for the play and pause icons

displays the label in a
semi-transparent white
font on a dark blue
rounded background

sets the z-index to 2 so
that the label’s contents
always appears on top of
the video player

displays the label as a
block

sets the width of the
label to 50 pixels

sets the typography
styles for the label

places the label with
relative positioning

centers the label text
within its container

sets the margin
around the label

w 3. Save your changes to the file and then reload cp_royal.html in your browser.

w 4. Click the and I icons to play and pause the animation. Figure 8–54 shows
the revised format of the two icons.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 663

Figure 8–54 Revised play and pause icons

play icon pause icon

Now that you have created controls that play and pause the spin animation, your next task
is to revise the spin animation so that the rotating of the video player matches the rotation
of the cage in which Fred Astaire danced. The cage was not in constant rotation during the
dance but started and stopped as Astaire moved through each of its four sides. After studying
the video, Maxine has determined the time intervals in which the cage rotates and the
intervals in which it stays still. Use her figures now to revise the spin animation sequence.

To revise the spin sequence:
w 1. Return to the cp_animate.css file in your editor and scroll to the Key Frames

Styles section.

w 2. Directly after the 0% key frame, insert the key frames:

23% {transform: rotate(0deg);}
28% {transform: rotate(90deg);}

to keep the video player rotation at 0° up to 23% of the sequence and then
gradually rotating the player from 0° to 90° in the 23% to 28% interval.

w 3. The cage stays at 90° of rotation up to 39% of the dance sequence and then
from 39% to 42% it rotates to 180°. Insert the key frames:

39% {transform: rotate(90deg);}
42% {transform: rotate(180deg);}

w 4. The cage stays at 180° of rotation up to 68% of the sequence and in the
interval from 68% to 72% it rotates to 270°. Insert the key frames:

68% {transform: rotate(180deg);}
72% {transform: rotate(270deg);}

w 5. Finally, the cage stays at 270° of rotation up to 90% of the sequence and
then rotates to 360° at the 94% mark. Insert the key frames:

90% {transform: rotate(270deg);}
94% {transform: rotate(360deg);}

The length of the animation needs to match the length of the video clip to
ensure that the rotation of the video player matches the rotation of the cage
used in the video.

Source: Archive.org

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 664

w 6. Change the duration of the animation from 4s to 104.04s, which is the length
of the Ceiling Dance video clip.

Figure 8–55 highlights the new and revised code in the style sheet.

Figure 8–55 Defining the key frames to match the video

new key frames that
rotate the video player
at different intervals

animation duration set
to 104.04 seconds to
match the length of
the video clip

w 7. Save your changes to the file.

Your final task is to keep the animation and the video player in sync so that when
the animation starts, the video player starts and when the animation pauses, the video
player pauses. Because there are no CSS styles that control video playback, this task
requires an external JavaScript program. Maxine gives you the cp_spin.js file that
contains a JavaScript program that will play and pause the video whenever the spin
animation runs or pauses.

To link to the cp_spin.js file:
w 1. Return to the cp_royal.html file in your editor.

w 2. Directly before the closing </head> tag, insert the following script element:

<script src="cp_spin.js"></script>

Figure 8–56 highlights the script element in the document head.

Figure 8–56 Using a script to keep the animation and the video in sync

script file used to start and
pause the video playback
in sync with the animation

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 665

You need to provide instructions to the user about how to use the animation.
w 3. Scroll down to the paragraph directly before the rotateVideo check box and

within the paragraph, add the following text:
To see the dance as it appeared on the movie set, go to the start of
the clip and click ↻ to rotate and play the video. Click ✋ to
pause the rotation and the playback.
Figure 8–57 highlights the newly added text.

Figure 8–57 Instructions to run the animation

character code
for the symbol

character code
for the symbol

w 4. Save your changes to the file and then reload cp_royal.html in your browser.
w 5. Click the icon to start both the animation and the video player. Verify the

rotation of the player is synchronized to the dance so that Astaire always
appears upright within the video window.

w 6. Click the I icon and verify that it pauses the animation and video playback.
Figure 8–58 shows the rotated video player in sync with the rotation of the
movie set.

Figure 8–58 Final version of the Ceiling Dance animation

click to start the
animation and the
video playback

video playback syncs
with the animation
rotating the player

Trouble? Do not use the controls on the video player itself to pause or play
the video; the animation will not sync up with the dance.

Source: Archive.org

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 666

You have completed your work on the Royal Wedding page for the Cinema Penguin
website. Maxine is very pleased with the enhancements you have made to the page
and feels that with the audio, video, and animation you have added, the page has really
come alive and provided useful insight regarding how the illusion of the Ceiling Dance
was achieved. Maxine will continue to work on developing new pages of interest for
her website and will contact you for help on future projects.

PR
O
SK

IL
LS

Problem Solving: Safe Animation and Motion Sensitivity

One area of web accessibility that is too often overlooked is the health impact
that flashy animated effects can have on large segments of the population. For
individuals afflicted with migraines, epilepsy, or vestibular disorders such as vertigo,
large and rapidly changing animations can induce symptoms of nausea, headaches,
and dizziness. Some of the most adverse reactions occur in response to large
 movement across an entire screen such as might occur with a full screen wipe of page
content. Other areas of concern are animations involving apparent rapid motion,
twisting in 3D space, or unexpected shifts in the direction of motion—all of which
can leave viewers feeling disoriented.

In designing a safe animation for all of your users, keep in mind the following
principles:

• Keep the Animation Restrained. Don’t have your animation dominate the user
 experience. It should augment your design, not overwhelm it.

• Give the User Control. Whenever possible, give users the ability to ignore or turn off
an animated sequence.

• Test your Page Animation-Free. Some users may need to turn off your animated
sequences. Make sure your website is still useful and informative for them.

All of which is not to say that animation should be eliminated from website designs.
A well-designed animation can provide useful information to the viewer and augment
the user experience. Good design is inviting to everyone.

R
E
V
IE

W

Session 8.3 Quick Check

 1. Provide a style that changes the font size over a 2-second interval and the font
color over a 3-second interval.
a. font-size: 2sec color 3sec;
b. transition: font-size 2s color 3s;
c. transition: font-size/2s color/3s;
d. animate: font-size 2s color 3s;

 2. Which timing function should you use to start a transition at a constant rate
and then slow down toward the end state?
a. ease-in
b. linear
c. ease
d. ease-out

 3. Which timing function should you use for a transition that starts out rapidly
and slows down near the end?
a. ease-in
b. linear
c. ease
d. ease-out

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 667

 4. Provide the style that creates a transition on all properties over a 5-second interval
using linear timing and a half-second delay.
a. transition: all 5s linear 0.5;
b. transition: all linear 5.5s;
c. transition: all linear 4.5s;
d. All of the above

 5. Which of the following is a way that animations differ from transitions?
a. Animations can be run at any time.
b. Animations can be run more than once or looped repeatedly.
c. Animations can contain Intermediate styles in addition to the initial and end

states.
d. All of the above

 6. Provide an animation named biggerText that sets the font size to 1em at 0% and
2em at 100% of the animation duration.
a. @animate biggerText {

 0% {font-size: 1em;}
 100% {font-size: 2em;}
}

b. @keyframes biggerText {
 0% {font-size: 1em;}
 100% {font-size: 2em;}
}

c. animate biggerText {
 0% {font-size: 1em;}
 100% {font-size: 2em;}
}

d. keyframes biggerText {
 0% {font-size: 1em;}
 100% {font-size: 2em;}
}

 7. Provide the style property to run the biggerText animation over an interval of 4.5
seconds.
a. animate: biggerText 4.5s;
b. @animation: biggerText 4.5s;
c. keyframe: biggerText 4.5s;
d. transition: biggerText 4.5s;

 8. Provide the style to run an animation in reverse.
a. animation-reverse: true;
b. animation-direction: backwards;
c. animation: backwards;
d. animation-direction: reverse;

 9. What value do you add to the animation style to have the animation loop
repeatedly?
a. loop = true
b. stop = no
c. infinite
e. loop = always;

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 668

Coding Challenge 1

Data Files needed for this Coding Challenge: code8-1_txt.html, code8-1_video_txt.css,
captions8-1_txt.vtt, code8-1_styles.css, ollie.mp4, ollie.webm

You are working on a skateboard website that provides instruction in various skateboarding tech-
niques. In this coding challenge you will complete a web page detailing how to perform a trick
known as a High Ollie in which the skateboarder jumps over high obstacles. You will augment the
page with a video of the trick being performed. See Figure 8–59.

C
O

D
E

Figure 8–59 Coding Challenge 8-1 example page

Do the following:

 1. Open the code8-1_txt.html and code8-1_video_txt.css files from the html08 c code1 folder.
Enter your name and the date in each document and save the files as code8-1.html and
code8-1_video.css respectively.

 2. Go to the code8-1.html file in your editor. Within the head section insert a link element linking
the page to the code8-1_video.css style sheet file.

 3. Below the ordered list insert a video element with the following features:
a. Add the controls attribute to the video element to show player controls.
b. Add the source files ollie.mp4 and ollie.webm to the video element. Include the mime-type

for both video files.

Source: https://www.videvo.net/video/skateboarder-picnic-table-jump/3556/
(public domain video)

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 669

c. If the user’s browser doesn’t support HTML video, display a paragraph containing the text
Upgrade your browser to view embedded videos.

d. Add a track using the contents of the captions8-1.vtt file. Set the value of the kind attribute to
captions and add the label Video Captions.

 4. Save your changes to the HTML file.
 5. Go to the code8-1_video.css file in your editor. Add a style rule for the video element that:

a. Displays the video player as a block element,
b. Sets the width of the player to 75%, and
c. Sets the top/bottom margin to 10 pixels and the left/right margins to auto.

 6. Save your changes to the CSS file.
 7. Open the captions8-1_txt.vtt file in your editor. Create a cue with the label Caption going from

3 to 6 seconds of the video and displaying the text A High Ollie during that interval.
 8. Save the file as captions8-1.vtt.
 9. Test your page in your browser, verifying that you can play the video clip of the High Ollie and

that a caption appears from 3 to 6 seconds of the video. (Note: If you are using Google Chrome
or Opera, you will have to upload your files to a server if you wish to see the captions.)

 10. Submit the completed file to your instructor.

Coding Challenge 2

Data Files needed for this Coding Challenge: code8-2_txt.html, code8-2_trans_txt.css,
code8-2_styles.css, image01.png – image06.png

Transitions with the hover effect can be used in image galleries to display large versions of thumbnail
images. Figure 8–60 shows an image gallery of Renaissance sketches that are enlarged in response to
the hover event. Use your knowledge of CSS transitions to complete this web page.

C
O

D
E

Figure 8–60 Coding Challenge 8-2 example page

Source: Public Domain

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 670

Do the following:

 1. Open the code8-2_txt.html and code8-2_trans_txt.css files from the html08 c code2 folder.
Enter your name and the date in each document and save the files as code8-2.html and
code8-2_trans.css respectively.

 2. Go to the code8-2.html file in your editor. Within the head section insert a link element linking
the page to the code8-2_trans.css file. Study the contents of the file and then save your changes.

 3. Go to the code8-2_trans.css file. At the bottom of the file create a style rule for the figure ele-
ment during the hover event that:
a. Sets the width to 400 pixels,
b. Sets the z-index value to 2, and
c. Applies the transition for the change in the width property over a 2-second interval.

 4. Create a style rule for img elements within hovered figure elements that:
a. Sets the width to 100%
b. Applies the drop-shadow() and grayscale() filter functions,
c. Sets the drop shadow offset to 10 pixels in the horizontal and vertical directions and the blur

radius to 20 pixels,
d. Sets the blur value to 0, and
e. Applies a transition to the change in the filter property over a 2-second interval.

 5. Create a style rule for figcaption elements within the hovered figure element, that sets the
font size to 1.2em, and applies the change in font size over a 2-second transition.

 6. Create a style rule for the #fig1 through #fig6 elements which are hovered, that rotates the
elements to 0 degrees using the transform property, and applies a 2-second transition to all
properties of those figures.

 7. Save your changes to the style sheet.
 8. Open code8-2.html in your browser and verify that when you hover your mouse pointer over

any of the six images, the figures are rotated to 0 degrees, increased in size, moved on top of the
other figure images, and the figure captions appear below the figures.

 9. Submit the completed file to your instructor.

Coding Challenge 3

Data Files needed for this Coding Challenge: code8-3_txt.html, code8-3_anim_txt.css,
code8-3_styles.css, image01.png – image06.png

Animation can be used with 3D objects to create the illusion of objects moving and spinning in 3D
space. Figure 8–61 shows the opening page of the Artist Sketchbook web page in which six drawings
from Renaissance masters have been combined in a 3D cube. You will use CSS animation to spin the
cube, showing all faces of the cube during the animation.

C
O

D
E

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 671

Do the following:

 1. Open the code8-3_txt.html and code8-3_anim_txt.css files from the html08 c code3 folder.
Enter your name and the date in each document and save the files as code8-3.html and
code8-3_anim.css respectively.

 2. Go to the code8-3.html file in your editor. Within the head section insert a link element that
links the page to the code8-3_anim.css style sheet file. Take some time to review the contents of
the file and then save your changes.

 3. Go to the code8-3_anim.css file in your editor. Several keyframe animations have already been
created for you. Add a keyframe animation named spinCube that contains the following frames:
a. At 0% apply the transform property with the rotateX() function set to 24deg and the rotateY()

function set to 40deg
b. At 50% change the value of the rotateX() function to 204deg and the rotateY() function to 220deg
c. At 100%, change the value of the rotateX() function to 384 and the rotateY() function to 400deg

Figure 8–61 Coding Challenge 8-3 example page

Source: Public Domain

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 672

 4. When the page is initially opened you want it to display animation of the six faces of the cube
being assembled. Create a style rule that applies the moveFront keyframe animation to the
#faceFront object. Set the duration of the animation to 3 seconds and set the animation-
fill-mode property to forwards.

 5. Repeat Step 4 for the #faceBack, #faceBottom, #faceLeft, #faceTop, and #faceRight objects using
the moveBack, moveBottom, moveLeft, moveTop, and moveRight animations.

 6. After the cube is assembled you want it to rotate. Create a style rule that applies the spinCube
animation to the #cube object, running the animation over a 3-second duration after a delay of 3
seconds. Use the linear timing function and have the animation loop without ending.

 7. Save your changes to the file.
 8. Open the code8-3.html file in your browser. Verify that in the first 3 seconds the cube is assem-

bled by moving the six faces into position and that after 3 seconds, the cube begins spinning to
show all the faces of the cube.

 9. Submit the completed file to your instructor.

Coding Challenge 4

Data Files needed for this Coding Challenge: code8-4_txt.html, code8-4_debug_txt.css,
code8-4_styles.css, amex.png, discover.png, master.png, visa.png

You can use transitions and animations in web forms to draw your eyes to particular form elements
or to highlight invalid form data. You’ve been given a website that uses a transition effect to highlight
invalid credit card values; however, the transition effects and animation are not working. You will edit
the style sheet of the page shown in Figure 8–62 to fix the problem.

D
E

B
U

G

Figure 8–62 Coding Challenge 8-4 example page

Do the following:

 1. Open the code8-4_txt.html and code8-4_debug_txt.css files from the html08 code4 folder.
Enter your name and the date in each document and save the files as code8-4.html and
code8-4_debug.css respectively.

 2. Go to the code8-4.html file in your editor. Within the head section insert a link element that
links the page to the code8-4_debug.css style sheet file. Save your changes.

 3. Open the code8-4.html file in your browser. When the page opens, the h1 heading should slide
into the page from the left and the form should drop in from the top. Neither is happening. Open
the code8-4_debug.css file in your editor and study the code that applies the animation effect to
the form#payment object and the h1 element. Fix any mistakes in the code that you find.

Sources: American Express; Discover Bank; MasterCard; Visa, Inc.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 673

 4. Save your changes and reopen code8-4.html in your browser. Verify that the opening of the page
runs the drop-in and slight-right animations.

 5. When the Credit Card Number box and the CSC box receive the focus, a transition effect should
appear that slowly adds a glowing brown shadow around the boxes. The glowing brown shadow
appears but without a transition effect. Return to the code8-4_debug.css file in your editor. Study
the code that applies a transition effect to the input#cardBox and input#CSC objects, and correct
any mistakes you find in the code.

 6. Save your changes and reopen code8-4.html in your browser. Verify that when the Credit Card
Number and CSC boxes receive the focus a transition effect appears that adds the glowing brown
shadow to the boxes.

 7. A 3-digit number should be entered in the CSC box. If something other than a 3-digit number
is entered, the box should wiggle back and forth to indicate invalid data. That is not currently
happening. Return to the code8-4_debug.css file in your editor. Study the code that applies the
transition effect to the input#csc object when invalid data is entered. Correct any mistakes in the
code that you find.

 8. Save your changes and reopen code8-4.html in your browser. Verify that when you enter invalid
data in the CSC box, the box wiggles back and forth to indicate that the data is not valid.

 9. Submit the completed file to your instructor.

Review Assignments

Data Files needed for the Review Assignments: cp_astaire_txt.html, cp_animate2_txt.css, cp_media2_txt.css,
cp_captions2_txt.vtt, 2 CSS files, 3 PNG files, 1 MP3 file, 1 MP4 file, 1 OGG file, 1 WebM file

Maxine has been working on new pages at the Cinema Penguin website. She has returned for help on
a page featuring a profile of Fred Astaire. Maxine created a sound clip from one of Astaire’s songs in the
Royal Wedding and a video clip of a dance in that movie featuring Astaire’s duet with a hat rack. She
wants both clips embedded on the page. In addition, Maxine wants you to try a new hover transition
for the links at the top of the page. Finally, she wants you to create an animation that displays a scroll-
ing marquee of the Fred Astaire filmography. Figure 8–63 shows a preview of the final page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 674

Complete the following:

 1. Use your HTML editor to open the cp_astaire_txt.html, cp_media2_txt.css, and cp_animate2_txt.css
files from the html08 c review folder. Enter your name and the date in the comment section of
each file, and save them as cp_astaire.html, cp_media2.css and cp_animate2.css respectively. In
addition, use your text editor to open the cp_captions2_txt.vtt file from the same folder and
save it as cp_captions2.vtt.

 2. Go to the cp_astaire.html file in your editor. Insert links to the cp_media2.css and
cp_animate2css files. Take some time to study the contents and structure of the document.

Figure 8–63 Fred Astaire biography page

Sources: openclipart.org; Dr. Macro; Archive.org

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 675

 3. Scroll down to the aside element titled “Listen up”. Directly after the introductory paragraph,
insert an audio clip with the audio controls displayed in the browser. Add two possible source
files to the audio clip: cp_song.mp3 and cp_song.ogg. Identify the mime-type of each audio
source. If the browser does not support HTML 5 audio, display a paragraph with the message
Upgrade your browser to HTML 5.

 4. Scroll down to the aside element titled “In Focus” and after the introductory paragraph insert
a video clip with the video controls enabled and display the poster image cp_poster.png. Add
two possible sources to the video clip: cp_hatrack.mp4 and cp_hatrack.webm. Include the
mime-type for each video source. If the user’s browser does not support HTML 5 video, display a
paragraph with the message Upgrade your browser to HTML 5.

 5. Directly after the two video sources in the video element you created in the last step, insert a
caption track using the captions you will specify in the cp_captions2.vtt file in later steps. Give
the caption track the label Movie Captions and set it as the default track for the video clip.

 6. Save your changes to the file and then open the cp_captions2.vtt file in your text editor. Add an
initial line to the text file indicating that this file is in WEBVTT format.

 7. Add the following track cues to the cp_caption2.vtt file:
a. A Title cue appearing in the 0.5 seconds to 5-second interval containing the text The Hat Rack

Dance enclosed in a class tag with the name Title. Set the line and align attributes for the
caption to 10% and middle respectively to place the caption centered and near the top of the
video window.

b. A Subtitle cue in the 5.5- to 9-second interval with the text from Royal Wedding (1951).
Enclose “Royal Wedding (1951)” within <i> tags to italicize it. Place the caption at the 10%
line and align the caption text in the middle.

c. A Finish cue displayed from the 1 minute 5 second mark to the 1 minute 11 second mark and
containing the text See more videos at Cinema Penguin. Enclose “Cinema Penguin” within
<i> tags and place the caption at the 80% line and 90% position with the caption text aligned
at the end.

 8. Save your changes to the file and then go to the cp_media2.css file in your editor. Within the
Media Styles section, insert a style rule for all audio and video elements that displays them as
blocks with a width of 95%. Center the audio and video elements by setting the top/bottom
margins to 20 pixels and left/right margins set to auto.

 9. Go to the Track Styles section and create a style rule for track cues that: a) sets the background
color to transparent, b) adds a black text shadow with horizontal and vertical offsets of 1 pixel
and a blur of 2 pixels, c) sets the text color to rgb(255, 177, 66), and d) sets the font size to 1.2 em
using the sans serif font family.

 10. Create a style rule for track cues belonging to the Title class that sets the font size to 2em and font
family to serif.

 11. Save your changes to the style sheet and then open the cp_astaire.html file in your browser. Verify
that you can play the audio and video clips and the layout matches that shown in Figure 8–63.
Verify that captions are added to the video clip providing the title and subtitle of the clip at
the start of the video and a message about Cinema Penguin at the end. (Note: If you are using
Google Chrome or Opera, you will have to upload your files to a server if you want to see the
captions and the styles you created for the video clip.)

 12. Maxine wants to create a transition for the links at the top of the page that enlarges the link text
and moves it out and above its default position. Return to the cp_animate2.css file in your editor,
go to the Transition Styles section and create a style rule for the nav#topLinks a selector that:
a) sets the text color to rgb(255, 255, 255), b) adds a text shadow with the color rgba(0, 0, 0, 1),
a horizontal offset of 1 pixel, a vertical offset of –1 pixel, and a blur of 1 pixel, and c) uses the
transform style to apply the functions scale(1,1) and translateY(0px).

 13. Within the style rule you created in the last step, add a transition that applies to all of the
properties of the selected element over an interval of 1.2 seconds using linear timing.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 676

 14. Create a style rule for the nav#topLinks a:hover selector that: a) sets the text color to
rgb(255, 183, 25), b) sets the text shadow to the color rgba(0, 0, 0, 0.5) with a horizontal offset
of 0 pixels, a vertical offset of 15 pixels, and a blur of 4 pixels, and c) uses the transform style
with scale(2,2) and translateY(-15px) to double the scale of the object and translate
it –15 pixels in the vertical direction.

 15. Save your changes to the style sheet and then reload cp_astaire.html in your browser. Hover
your mouse pointer over the links at the top of the page and verify that your browser applies a
transition over a 1.2 second duration as each link increases in size and appears to move upward
and outward from the page in response to the hover event.

The list of Fred Astaire’s films has been stored within a table nested within a div element with the ID
Marquee. The table is long and Maxine wants to only display a portion of it at a time, allowing the
contents of the table to automatically scroll upward as in a theater marquee. To create this animated
effect, you change the top position style of the table over a specified time interval, moving the table
upward through the marquee.
 16. Return to the cp_animate2.css file in your editor and go to the Marquee Styles section and insert

a style rule that places the marquee div element with relative positioning. Add a style rule for the
table nested within the marquee div element that places the table using absolute positioning. Do
not specify any coordinates for either element.

 17. Go to the Keyframe Styles section and create an animation named scroll with the following two
key frames: a) at 0%, set the value of the top property to 250px and b) at 100%, set the value of
the top property to –1300px.

 18. Go to the Animation Styles section and apply the scroll animation to the table within the
marquee div element over a duration of 50 seconds using linear timing within infinite looping.

 19. Maxine wants the marquee to stop scrolling whenever the user hovers the mouse pointer over it.
Add a style rule for the div#marquee:hover table selector that pauses the animation during
the hover event.

 20. Save your changes to the file and then reload the cp_astaire.html file in your browser. Verify that
the marquee listing the Fred Astaire films starts scrolling automatically when the page loads, goes
back to the beginning after the last film is listed, and stops whenever the user hovers the mouse
pointer over the marquee. (Note: On touchscreen devices, tap the marquee to initiate the hover
event and pause the scrolling text, and then tap elsewhere on the page to remove the hover and
restart the marquee.)

Case Problem 1

Data Files needed for this Case Problem: ws_jfk_txt.html, ws_media_txt.css, ws_captions_txt.vtt,
2 CSS files, 1 MP4 file, 4 PNG files, 1 WebM file

Rhetoric in the United States Professor Annie Cho teaches rhetoric and history at White Sands
College. She has asked for your help in designing a companion website for her course. The page you
will work on contains portions of the inaugural address delivered by President John F. Kennedy in
1961. She has obtained a video excerpt of the speech that she wants you to augment with captions.
A preview of the page you will create is shown in Figure 8–64.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 677

Figure 8–64 Rhetoric in the United States page

Complete the following:

 1. Using your editor, open the ws_jfk_txt.html, ws_media_txt.css, and ws_captions_txt.vtt files
from the html08 c case1 folder. Enter your name and the date in the comment section of each
file, and save them as ws_jfk.html, ws_media.css, and ws_captions.vtt files respectively.

 2. Go to the ws_jfk.html file in your editor. Insert a link to the ws_media.css style sheet file. Take
some time to study the content and structure of the document.

 3. Scroll down to the article element and directly below the h1 heading, insert a video clip
with the controls enabled, displaying the poster image ws_jfk_poster.png file. Add two possible
sources to the video clip: ws_jfk_speech.mp4 and ws_jfk_speech.webm, including the
mime-type for each video source.

 4. After the two video sources, add a captions track with the label Speech Captions using the
source file ws_captions.vtt. If the browser does not support embedded video, display the
paragraph: To play this video clip, your browser needs to support HTML 5.

 5. Save your changes to the file and then open the ws_captions.vtt file in your text editor. Add an
initial line to the text file indicating that this file is in WEBVTT format.

Source: Wikimedia Commons

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 678

 6. Add the following track cues to the ws_captions.vtt file, labeling the captions 1 through 12
(times are in parenthesis):

 (00:01.00 - 00:004.000) We observe today
(00:04.000 - 00:06.000) not a victory of party,
(00:06.000 - 00:10.000) but a celebration of freedom –
(00:10.000 - 00:12.000) symbolizing an end,
(00:12.000 - 00:15.000) as well as a beginning –
(00:15.000 - 00:17.000) signifying renewal,
(00:17.000 - 00:19.000) as well as change.
(00:19.000 - 00:22.000) For I have sworn before you
(00:22.000 - 00:24.000) and Almighty God
(00:24.000 - 00:27.000) the same solemn oath
(00:27.000 - 00:30.000) our forebears prescribed
(00:30.000 - 00:33.000) nearly a century and three-quarters ago.

 7. Save your changes to the file and then go to the ws_media.css file in your editor. Within the
Video Player Styles section, insert a style rule that displays video elements as blocks with a
width of 90% and horizontally centered by setting the top/bottom margins to 5 pixels and the
left/right margins to auto.

 8. Create a media query for screen devices with a minimum width of 521 pixels. Within the media
query, create a style for video elements that sets the width of the player to 360 pixels, floated on
the right margin with a margin width of 10 pixels.

 9. Within the Track Styles section, create a style rule for caption cues that displays the text in
a 1.3em sans-serif font with a text color of rgb(221, 128, 160), and a background color of
rgba(255, 255, 255, 0.8).

 10. Save your changes to the file and then load the ws_jfk.html file in your browser.
 11. Test the page by playing the video clip of Kennedy’s speech. Verify that captions are added to the

speech, matching the words uttered by the president. (Notes: If you are using Google Chrome
or Opera, you will have to upload your files to a server if you wish to see the caption styles you
created for the video clip. If your captions appear white on a gray background, move the mouse
pointer away from the video player so that the video slider is not showing.)

Case Problem 2

Data Files needed for this Case Problem: paa_game_txt.html, paa_animate_txt.css, 2 CSS files,
6 PNG files, 1 TTF file, 1 WOFF file

Pixal Arts and Entertainment Heather Neidell manages the website for Pixal Arts and
Entertainment, a company specializing in games and entertainment apps. She has asked you to work
on the initial page for the company’s new game, Frustrated Fox. To make the page come alive, she
wants you to enhance the page with animation using sprites from several characters in the game. A
preview of the page you will create is shown in Figure 8–65.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 8 Enhancing a Website with Multimedia | HTML 5 and CSS HTML 679

Complete the following:

 1. Using your editor, open the paa_game_txt.html and paa_animate_txt.css files from the
html08 c case2 folder. Enter your name and the date in the comment section of each file, and
save them as paa_game.html and paa_animate.css respectively.

 2. Go to the paa_game.html file in your editor. Add a link to the paa_animate.css style sheet file to
the document head.

 3. Scroll down to the gameBox div element. Within this element, insert three div elements with
the ids butterfly, bat, and fox and belonging to the sprite class. These div elements will contain
animated backgrounds showing three characters from the game.

 4. Save your changes to the file and then return to the paa_animate.css file in your editor.
 5. Within the Transition Effects section, insert a style rule for the nav#gameLinks a selector that:

(a) places the links using relative positioning, (b) sets the font color to white, and (c) transitions
the font color over a 0.5-second interval.

 6. Insert a style rule for the nav#gameLinks a:hover selector that sets the font color to
rgb(255, 194, 99).

Figure 8–65 Frustrated Fox page

Source: Sprites constructed from public domain images found at: https://www.glitchthegame.com/
public-domain-game-art/; Background from public domain image at: http://all-free-download.com/
free-vector/download/cartoon_landscapes_trees_278582.html

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 8 Enhancing a Website with MultimediaHTML 680

 7. Heather wants a transition effect applied to the links in the gameLinks list in which
a gradient-colored bar gradually expands under each link during the hover event. To create this
effect, you will use the after pseudo-element and the content property to insert the bar. Create
a style rule for the nav#gameLinks a::after selector that: (a) places an empty text string as the
value of the content property, (b) places the content with absolute positioning with a top value
of 100% and a left value of 0 pixels, (c) sets the width to 0% and the height to 8 pixels,
(d) changes the background to a linear gradient that moves to right from the color value
rgb(237, 243, 71) to rgb(188, 74, 0), (e) sets the border radius to 4 pixels, and (f) hides the bar by
setting the opacity to 0.

 8. When the links are hovered over, change the appearance of the bar by adding a style rule for the
nav#gameLinks a:hover::after selector that changes the opacity to 1 and the width to 100%.

 9. Return to the style rule for the nav#gameLinks a::after selector and add a transition style that
applies the opacity and width changes over a half-second interval.

 10. To create animated cartoons, Heather has stored frames of the images in the paa_bat.png,
paa_bfly.png, and paa_fox.png image files. View these files to see the different frames to be
displayed in the animation.

 11. Return to the paa_animate.css file and, within the Sprite Styles section, create a style rule that
displays all div elements of the sprite class with absolute positioning.

 12. For the div element with the ID bat, create a style rule that: (a) sets the width and height to
40 pixels by 50 pixels, (b) sets the top and left coordinates to 100 pixels and –50 pixels, and
(c) displays the paa_bat.png as the background image placed at the left center of the background
with no tiling and sized to cover the background.

 13. Create a similar style rule for the div element with the ID butterfly, setting the width and height
at 35 pixels, the top-left coordinates at 60 pixels and –50 pixels, and using the paa_bfly.png as
the background image. Create another style rule for the div element with the ID fox, setting the
width and height at 280 and 260 pixels, the bottom and right coordinates at 10 pixels, and the
paa_fox.png file as the background image. (Note: The background image in all aminations
should place the image at the left center with no tiling and sized to cover the background.)

 14. Sprites are animated by moving the background image file across the background of the object.
Go to the Animation Styles section and create an animation named playSprite that sets the
background image position to right center at 100% time.

 15. Heather wants the bat and butterfly to flutter as they move across the animation box. Create an
animation named flyRight with the following key frames: (a) at 25% time, set the top coordinate
to 150 pixels; (b) at 50% time, set the top coordinate to 55 pixels; (c) at 65% time, set the top
coordinate to 120 pixels; (d) at 90% time, set the top coordinate to 50 pixels; and (e) at 100%
time, set the top and left coordinates to 80 pixels and 100%.

 16. Sprites achieve the animation effect by changing the background image in n – 1
discrete steps, where n is the number of frames in the sprite. Apply the playSprite animation to
the fox div element after a 4-second delay over a time interval of 3.5 seconds and a steps value
of 27. Set the animation to loop infinitely.

 17. Apply the playSprite animation to the bat div element over a 2-second interval with 39 steps.
Apply the flyRight animation over an 8-second interval with linear timing. Set both animations
to loop infinitely.

 18. Apply the playSprite animation to the butterfly div element after a 3-second delay, with a
playing time of 1 second spaced out in 33 steps. Apply the flyRight animation over a 6-second
interval. Make the butterfly appear to hover by applying a Cubic Bézier curve to the flyRight
timing with the function cubic-bezier(0,1,0.73,0). Set both animations to loop infinitely.

19. Save your changes to the file and then open the paa_game.html file in your browser.
20. Hover your mouse pointer over the four links below the Frustrated Fox logo and verify that a

gradient-filled bar grows beneath the links in response to the hover event.
21. Verify that the animation box shows an animated bat and then a butterfly moving across the sky

and that, after a short delay, an animated fox jumps up toward the bat and butterfly trying to
catch them.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 681

 STARTING DATA FILES

Getting Started
with JavaScript
Creating a Countdown Clock

Case | Tulsa’s New Year’s Bash
Every year on December 31st, Tulsa, Oklahoma, rings in the
New Year with a daylong celebration that includes races, circus
 performers, tasting booths, live bands, and dances. The celebration
is capped by fireworks at midnight. The bash has become so big
that partygoers come from miles away to join in the fun, and
planning for the celebration starts early.

Hector Sadler manages promotion for the New Year’s Bash. One of
his responsibilities is to maintain a website that advertises the event
and builds anticipation for it. Hector wants to include a countdown
clock on the site’s home page that displays the current time and the
number of days, hours, minutes, and seconds remaining before the
fireworks go off. You will write the JavaScript code to create this
clock for Hector.

OBJECTIVES

Session 9.1
• Insert a script element
• Write JavaScript comments
• Display an alert dialog box
• Use browser debugging tools

Session 9.2
• Reference browser and page

objects
• Use JavaScript properties and

methods
• Write HTML code and text

content into a page
• Work with a Date object

Session 9.3
• Use JavaScript operators
• Create a JavaScript function
• Create timed commands

TUTORIAL 9

tutorial

tny_clock_txt.html
tny_script_txt.js
+ 5 files

review

tny_july_txt.html
tny_timer_txt.js
+ 5 files

code1

case1

code9-1_txt.html
clock9-1_txt.js
+ 3 files

code2

case2

code9-2_txt.html
countdown9-2_txt.js
+ 3 files

bc_union_txt.html
bc_today_txt.js
+ 6 files

code3 code4

code9-3_txt.html
clockface9-3_txt.js
+ 5 files

ja_vynes_txt.html
ja_quote_txt.js
+ 8 files

code9-4_txt.html
debug9-4_txt.js
+ 15 files

html09

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 682

Session 9.1 Visual Overview:

An alert dialog box
created by JavaScript.

© altafulla/Shutterstock.com; © jbdphotography/Shutterstock.com; Source: www.1001fonts.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 683

Creating a JavaScript File

The use strict statement
forces JavaScript to strictly
apply syntax rules.

Multi-line JavaScript
comment enclosed within /*
and */ characters.

The window.alert
command displays a dialog
box within the browser
window.

Text displayed
in the alert
dialog box.

The browser Developer
Pane can be used to locate
and �x programming
errors.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 684

Introducing JavaScript
In the last two tutorials, you read about JavaScript as a programming tool for creating
interactive web forms and animated graphics. Starting with this tutorial, you examine
the features and syntax of the JavaScript language, as well as explore how to create and
apply your JavaScript programs to your websites.

Server-Side and Client-Side Programming
Web-based programming comes in two main types: server-side programming and
client-side programming. In server-side programming, the program code is run from
the server hosting the website. In some applications, users can interact with the
program, requesting specific information from the server, but the interaction is done
remotely from the user to the server. See Figure 9–1.

Figure 9–1 Server-side programming

3) a server-side program processes
the information and may send
additional feedback to the user

1) user retrieves web
page from the server

2) information is sent to a
program running on the server

There are advantages and disadvantages to this approach. A program running on
a server can be connected to an online database containing information not directly
accessible to end users, enabling websites to support such features as online banking,
credit card transactions, and discussion forums. However, server-side programs use
server resources and require Internet access. If the system is over-loaded, the end user
will have to sit through long delays, waiting for a process request to be fulfilled; or if
the system is offline, the end user will have to wait for the system to come back online
before the request can be processed.

In client-side programming, programs are run on the user’s computer using scripts
that are downloaded along with the HTML and CSS files. See Figure 9–2.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 685

Figure 9–2 Client-side programming

1) user retrieves web
page from the server

2) user runs the program locally,
receiving instant feedback

Client-side programming distributes the load so that one server is not overloaded
with program-related requests; it tends to be more responsive because users do not
have to wait for a response from a remote server. However, client-side programs
can never completely replace server-side programming. For example, tasks such as
running a search or processing a purchase order must be run from a central server
because only the server can access the database needed to complete these types of
operations.

In many cases, a combination of server-side and client-side programming is used.
For example, data entry forms typically use client-side programs to validate some data
entries, such as contact information, and server-side programs to submit the validated
form for further processing that can only be done from a central server. In this tutorial,
you will work only with client-side programming. However, it is important to be aware
that in many cases, a complete web programming environment includes both client-
side and server-side elements.

The Development of JavaScript
The programming language for client-side programs is JavaScript. JavaScript is an
interpreted language, meaning that the program code is executed directly without
requiring an application known as a compiler to translate the code into machine
language. You need only two things to use JavaScript: a text editor to write the
JavaScript code and a browser to run the commands. This means that JavaScript code
can be inserted directly into an HTML file, or it can be placed in a separate text file that
is linked to the HTML file.

Through the years, JavaScript has undergone several revisions, which include new
components and features that might not be supported by older browsers. Because of
this, you need to test your JavaScript code on a variety of browsers and platforms in
the same way you test your HTML and CSS code to ensure the widest compatibility.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 686

Working with the script Element
JavaScript code is attached to an HTML file using the following script element:

<script src="url"></script>

where url is the URL of the external file containing the JavaScript code. Thus, the
following code loads the contents of the tny_script.js file:

<script src="tny_script.js"></script>

If you don’t want to use an external file, you can create an embedded script by
omitting the src attribute and placing all of the JavaScript code within the script
element as follows

<script>
 code
</script>

where code is the code of the JavaScript program.

Loading the script Element
The script element can be placed anywhere within the HTML document.
When the browser encounters a script, it immediately stops loading the page
and begins loading and then processing the script commands. Only when the
script is completely processed does the browser continue to load the rest of the
HTML file.

With larger and more complicated scripts, this loading sequence can degrade the
user’s experience because the page is literally stalled as it waits for the script to be
processed. You can modify this sequence by adding the async or defer attributes
to the script element. The async attribute tells the browser to parse the HTML and
JavaScript code together, only pausing to process the script before returning to the
HTML file. The defer attribute defers script processing until after the page has been
completely parsed and loaded. See Figure 9–3.

R
E
FE

R
E
N
C
E

Inserting the script Element

• To link a web page to an external script file, add the following script element to
the HTML file

<script src="url"></script>

 where url is the URL of the external file containing the JavaScript code.
• To embed a script within the HTML file, add the following script element

<script>
 code
</script>

 where code is the code of the JavaScript program.
• To load an external script file asynchronous with the HTML file, add the attribute
async to the script element.

• To load an external script file after the HTML file has finished loading, add the
 attribute defer to the script element.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 687

The async and defer attributes are ignored for embedded scripts and the code nested
within the script element is executed as soon as it is encountered within the HTML file.

Inserting the script Element
Hector wants you to create a script that will display a running countdown clock for use
with his page on Tulsa’s New Year’s Bash website. You will start working on his page
by inserting a script element in the document head that will load the contents of
the tny_script.js file. You will use the defer attribute to ensure that the script will not
execute until all the page content is loaded by the browser.

You can place the script
element at the end of the
file so that it is processed
only after all of the HTML
code has been parsed by
the browser.

Figure 9–3 Loading HTML and JavaScript code

The browser pauses loading the HTML
le when it encounters the script elements,
continuing only when the entire script is loaded and processed.

<script>

The browser loads the HTML
le and external script
le together,
pausing only to process the script.

<script async>

The browser loads and processes the script only after the HTML
le
has been completely loaded by the browser.

<script defer>

HTML

JavaScript

HTML

JavaScript

HTML

JavaScript

To insert the script element:
w 1. Use your editor to open the tny_clock_txt.html file from the html09 c tutorial

folder. Enter your name and the date in the comment section of the file and
save it as tny_clock.html.

w 2. Review the rest of the document to become familiar with its contents and
structure.

w 3. Directly before the closing </head> tag insert, enter:

<script src="tny_script.js" defer></script>

Figure 9–4 highlights code to insert the script element.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 688

Figure 9–4 Inserting the script element

Figure 9–5 Initial countdown clock

source of the
JavaScript �le

defers loading the script �le
until after the rest of the page
is loaded by the browser

days, hours, minutes, and
seconds until January 1st

date and
time values

w 4. Open tny_clock.html in your browser. The initial page is shown in Figure 9–5.

© altafulla/Shutterstock.com; © jbdphotography/Shutterstock.com;
Source: www.1001fonts.com

At the top of the page, Hector has inserted placeholder text showing the current
date and time and the number of days, hours, minutes, and seconds until January 1st
of 2022. However, this text is static and will not change to reflect the current date and
time. Hector wants you to create a script that will update the date and time values
every second and continually calculate the amount of time left until midnight on New
Year’s Eve. You will put the commands to create this countdown clock in a JavaScript
file named tny_script.js.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 689

Creating a JavaScript Program
Because JavaScript files are simple text files, you can create and edit them using a
standard text editor. You will start your study of JavaScript by first learning how to insert
comments that describe the contents and goals of the script.

Adding Comments to your JavaScript Code
Adding comments to your code is an important programming practice. It helps other
people who examine your code understand what your programs are designed to do and
how they work. It can even help you in the future when you return to edit the programs
and need to recall the programming choices you made. JavaScript comments can be
entered on single or multiple lines. The syntax of a single-line comment is

// comment text

where comment text is the JavaScript comment. Single-line comments can be placed
on the same line containing a JavaScript command in the general format:

command; // comment text

Multiple-line comments include several comments with each comment on its own line
and are inserted using the following format:

/*
 comment text spanning
 several lines
*/

IN
SI
G
H
T

Using Other Scripting Languages

The script element can be used with programming languages other than JavaScript.
Other client-side scripting languages are identified by including the MIME type of the
language. For example, the scripting language VBScript from Microsoft has the MIME
type text/vbscript and can be accessed using the following code:

<script src="url" type="text/vbscript"></script>

You do not have to include a type attribute for JavaScript files because browsers
assume JavaScript’s MIME type, text/javascript, by default.

Hector has already started a JavaScript file with a multiple-line comment describing
the file and its authorship. Open this file now and complete the initial comment lines.

R
E
FE

R
E
N
C
E

Adding a JavaScript Comment

• To add a comment on a single line or inline with other JavaScript commands, enter

// comment text

where comment text is the JavaScript comment.
• To create a comment the spans multiple lines, enter:

/*
 comment text spanning
 several lines
*/

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 690

To edit JavaScript comments:
w 1. Use your editor to open the tny_script_txt.js file from the html09 c tutorial folder.

w 2. Enter your name and the date in the comment section of the file as shown
in Figure 9–6.

Figure 9–6 Adding a JavaScript comment

marks the beginning
of the comment

marks the end of the
comment

comment text

w 3. Save the file as tny_script.js.

Next, you insert your first JavaScript command.

Writing a JavaScript Command
Every JavaScript program consists of a series of commands or statements. Each
command is a single line that indicates an action for the browser to take. A command
should end in a semicolon, employing the following syntax:

JavaScript command;

To test your understanding of JavaScript, you will add the following command to the
tny_script.js file in the steps that follow:

window.alert("Welcome to Tulsa");

This command displays a dialog box to the user containing the message “Welcome to
Tulsa”. Note that the text of the message is enclosed in double quotes.

To add a command to the script:
w 1. Directly below the comments and after the */ line, enter:

window.alert("Welcome to Tulsa");

Figure 9–7 highlights the JavaScript command.

Be sure to enclose the
text of the alert dialog box
within both opening and
closing quotes or else an
error will result.

Figure 9–7 Displaying a dialog box

runs an alert dialog box
in the browser window

text displayed in
the dialog box

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 691

Figure 9–8 Google Chrome dialog box

w 2. Save your changes to the file and then reload the tny_clock.html file in your
browser. As shown in Figure 9–8, the browser displays a dialog box with the
message you specified.

Note that the dialog box style is determined by the browser. The dialog box
in Figure 9–8 is the one displayed by Google Chrome.

w 3. Click the OK button to close the dialog box.

The JavaScript command you just wrote is a very simple one. Before writing more
complicated commands, you should first review some of the basics of JavaScript syntax
and how to locate mistakes that might appear in your programs.

Understanding JavaScript Syntax
In addition to always including semicolons at the end of each command, there are
some other syntax rules you should keep in mind when writing a JavaScript command.
JavaScript is case sensitive, so you must pay attention to whether or not the letters of
a JavaScript command are capitalized. For example, the command below improperly
capitalizes the dialog box command as Window.Alert and, as a result, an error will
occur when the script is run.

Example of improper capitalization:

Window.Alert("Welcome to Tulsa");

Example of proper capitalization:

window.alert("Welcome to Tulsa");

Like HTML, JavaScript ignores occurrences of extra white space between commands,
so you can indent your code to make it easier to read. However, unlike HTML, you
must be careful about line breaks within commands. A line break placed within the
name of a JavaScript command or within a quoted text string will cause an error when
the script is run. Thus, the following code will cause the program to fail.

Example of improper line break:

window.alert("Welcome
to Tulsa");

If you want to break a text string into several lines, you can indicate that the text
string continues on the next line by using the following backslash \ character.

Example of proper line break:

window.alert("Welcome \
to Tulsa");

To see how your browser will handle errors in your JavaScript code, modify the
window.alert command you just wrote, adding an intentional error using improper
capitalization.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 692

To insert an intentional error:
w 1. Return to the tny_script.js file in your editor and change the command to

display an alert dialog box to the following incorrect syntax:

Window.Alert("Welcome to Tulsa");

w 2. Save your changes to the file and then reload the tny_clock.html file in your
browser. Verify that the dialog box is not displayed by the browser.

At this point, you know the dialog box did not display because of the intentional
error you entered in the code. But, what if the dialog box did not display as intended
and you don’t know the reason? Then, you can use your browser’s debugging tools to
track the error to its source.

Debugging Your Code
As you work with JavaScript, you will inevitably encounter scripts that fail to work
because of an error in the code. To fix those problems, you need to debug your
program. Debugging is the process of locating and fixing a programming error. To
debug a program, you must first determine the type of error present in your code.

There are three types of errors: load-time errors, run-time errors, and logical errors.
A load-time error occurs when a script is first loaded by a browser. As the page loads,
the browser reads through the code looking for mistakes in syntax. If a syntax error is
uncovered, the browser halts loading the script before trying to execute it.

A run-time error occurs after a script has been successfully loaded with no syntax
errors and is being executed by a browser. In a run-time error, the mistake occurs when
the browser cannot complete a line of code. For example, if a command includes a
mathematical expression involving division by zero (something that is not allowed), the
program will fail with a run-time error even though proper syntax is used.

A logical error is free from syntax and executable mistakes, but results in an
incorrect result, such as the wrong name being returned from a database or an
incorrect value being returned from a calculation. A logical error is often the hardest to
fix and will require meticulous tracing of every step of the code to detect the mistake.

Opening a Debugger
Every major browser includes debugging tools to locate and fix errors in your JavaScript
code. For most browsers, you can open the debugging tool by pressing the F12 key
on your keyboard or by selecting Developer Tools from the browser menu. To see a
browser debugger, you will open the developer tools for Google Chrome. If you don’t
have access to Google Chrome, use the developer tools for your browser, reading the
browser’s online documentation to learn how to the use your browser’s tools.

To open the Google Chrome developer tools:
w 1. With the browser window still open, press the F12 key to view the Google

Chrome developer tools.

w 2. Reload the tny_clock.html file.

w 3. From the menu list at the top of the Developer Tools pane, click Sources to
show the list of files used in the current page.

w 4. Click tny_script.js from the Sources file list to show the program code in that
file. See Figure 9–9.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 693

Figure 9–9 Google Chrome developer tools

source �les used
in the website

execution
control buttons

Console describes
syntax error in the
program

click line numbers
to insert
breakpoints syntax error highlighted

in the script �le

click to view source �les
used in the website

Developer
Tools pane program code

Trouble? Depending on your browser setup, the location and size of your
Google Chrome Developer pane might not match the one shown in Figure 9–9.
If you do not see the Console shown in Figure 9–9 at the bottom of the pane,
click Console to show the errors.

The syntax error you introduced in the script file is highlighted and the Console pane at
the bottom of the window provides the error message, “Uncaught TypeError: Window.Alert
is not a function”—a message indicating that the browser cannot process this command
due to its improper syntax. At this point, you correct the syntax error by rewriting the code.

To fix the syntax error:
w 1. Return to the tny_script.js file in your editor and change the command to

display the alert dialog box back to:

window.alert("Welcome to Tulsa");

w 2. Save your changes and then reload the tny_clock.html file in your browser
with the developer tools still visible. Verify that no syntax errors are reported
and that the alert dialog box is once again displayed to the user.

w 3. Click the OK button to close the dialog box.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 694

Inserting a Breakpoint
Debuggers contain a wealth of tools to aid you as you create more complex and involved
programs. A script might work flawlessly except for one line that causes all subsequent
commands to fail. One useful technique for locating the source of an error is to set up
breakpoints, which are locations where the browser will pause the program, allowing
the programmer to determine whether the error has already occurred at that point in the
script’s execution. To set a breakpoint in the Google Chrome browser, click the line
number next to the line where you want the browser to pause execution of the script. Try
this now by setting up a breakpoint in the line where the alert dialog box is displayed.

To place a breakpoint:
w 1. In the pane showing the source code of the tny_script.js file, click the line

number corresponding to the line containing the window.alert command.

 Notice that a blue arrow highlights the line, indicating that a breakpoint has
been established at this location in the script.

w 2. Reload the tny_clock.html file in your browser. Verify that the browser halts
execution of the script prior to displaying the alert dialog box and that a
message is displayed with a control that allows the user to resume execution
of the script. See Figure 9–10.

Figure 9–10 Setting a breakpoint in Google Chrome

message displayed
because of breakpoint;
click to resume
executing the script

breakpoint
in script

click to
resume script

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 695

w 3. Click the Play/Pause button to resume execution of the script and then
click the OK button to close the alert dialog box.

w 4. Click the line number next to the line containing the window.alert
command to remove the breakpoint.

In this tutorial, you won’t be adding any more intentional errors, but you might make
your own mistakes in typing the JavaScript commands for the countdown clock program.
If you do, you can use the debugging tools in your browser to locate and fix the mistake.
For now, you close the Developer Tools pane and remove the command you created to
display an alert dialog box. You won’t need it in the final version of the program.

To close the browser’s developer tools:
w 1. Within the browser window, press the F12 key to close the developer tools.

w 2. Return to the tny_script.js file in your editor.

w 3. Select the line window.alert("Welcome to Tulsa"); and delete it,
removing it from the script.

Applying Strict Usage of JavaScript
JavaScript was designed to be easy for novice programmers to use. For that reason,
JavaScript differs from some other programming languages, such as Java, which
demand strict application of rules for syntax and program structure. Some JavaScript
lapses in syntax are resolved in a way that it is not fatal to the program’s execution.
While this is attractive to novice programmers, it does encourage a certain degree of
laxness in coding.

Many developers advocate that JavaScript be run in strict mode in which all
lapses in syntax result in load-time or run-time errors. Using strict mode encourages
good programming technique and also makes the script run more efficiently and
faster. To run a script in strict mode, add the following statement to the first line
of the file:

"use strict";

For this and future projects, you apply strict mode to the JavaScript code you create.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 696

To apply strict usage to JavaScript:
w 1. Go to the top of the tny_script.js file in your editor and directly before the

initial comment line /*, insert the line
"use strict";

and press Enter. Figure 9–11 shows the revised code in the file.

w 2. Save your changes to the file.

Figure 9–11 Applying strict usage to JavaScript

interprets the
JavaScript code
strictly

Be aware that operating JavaScript in strict mode applies not just to your code but
to any third-party scripts that your program accesses. This can cause fatal errors if the
authors of those scripts did not write all of their commands following strict guidelines.
You can avoid this problem by applying the "use strict" statement locally only to
functions that you create rather than globally as the first line of your script file. The
issues of JavaScript functions and local and global scope are discussed in the next two
sessions.

Written Communication: Writing Better JavaScript Code

In working environments, the maintenance of a program or script is often shared
among several individuals. The program you write today might be the responsibility of
one of your colleagues next month. Thus, an important goal in writing program code
is to make it intelligible to other users so that they can easily maintain and update it.
Here are some tips to help you write better JavaScript code:

• Use consistent names: One common source of error is misnamed variables and
 functions. You can avoid this problem by being consistent in the use of uppercase
and lowercase letters in your variable and function names.

• Make the code easier to read with whitespace: Crowded commands and
statements are difficult to read and edit. Use whitespace and indented text
 generously to make your code more legible to others.

• Keep your lines compact: Long text strings can wrap to new lines in your text
editor, making the text difficult to read. Strive to keep your lines to 80 characters or
less. When a statement doesn’t fit on a single line, break it to a new line at a point
that maximizes readability.

• Comment your work: Always add comments to your work, documenting the
 purpose of each command and expression.

As your scripts become longer and more complicated you can also simplify your
code by breaking it up into several JavaScript files dedicated to a specific task. Such
files can be shared among several web pages, freeing you from having to rewrite the
same code several times.

PR
O
SK

IL
LS

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 697

R
E
V
IE

W

Session 9.1 Quick Check

 1. JavaScript code is used to create a:
a. server-side application
b. client-side application
c. Microsoft Windows application
d. cell phone application

 2. To attach a JavaScript program to an HTML file, use the:
a. object element
b. javascript element
c. embed element
d. script element

 3. With deferred loading, the program is not loaded until:
a. the page has been parsed and loaded
b. the page has been read by the user
c. the user clicks the OK button
d. the code has been parsed and loaded

 4. To insert the comment “Countdown clock” into a JavaScript program, enter:
a. / Countdown clock
b. <-- Countdown clock -->
c. /* Countdown clock */
d. ‘Countdown clock

 5. To display the message “Happy New Year!”, enter the JavaScript command:
a. MsgBox "Happy New Year!"
b. window.message "Happy New Year!"
c. window.call("Happy New Year!")
d. window.alert("Happy New Year!")

 6. What will be the result of running the following JavaScript command?
WINDOW.ALERT("Page Loaded");
a. An alert box with the text "Page Loaded"
b. Nothing until the user clicks the OK box
c. Nothing because the code uses improper syntax
d. A debug warning in the console with the message “Page Loaded”

 7. A location in the script where the browser will pause the program is created
with an:
a. End statement
b. Pause statement
c. Breakpoint
d. Ctrl+C keyboard combination

 8. What statement should be added to a JavaScript file to ensure that the code is
strictly interpreted?
a. debug = true;
b. "use strict";
c. use = strict;
d. use-strict;

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 698

Session 9.2 Visual Overview:

The var keyword
declares a JavaScript
variable. Here the
currentDay, dateStr, and
timeStr variables are
declared by the script.

The getElementById()
method selects the
element with the ID
“dateNow”.

The textContent
property de�nes the
text within the
referenced element.

The innerHTML
property de�nes the
HTML code within the
referenced element.

The Date object
stores a date value
and a time value.

The toLocaleDateString()
method returns a text string
containing the date using local
conventions.

The toLocaleTime-
String() method
returns a text string
containing the time
using local conventions.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 699

JavaScript Variables and Dates

Countdown clock
text generated using
the textContent
property.

Date and time values generated
with the toLocaleDateString()
and toLocaleTimeString()
methods.

© altafulla/Shutterstock.com;
© jbdphotography/Shutterstock.com; Source: www.1001fonts.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 700

Introducing Objects
In the last session, you limited your use of JavaScript to creating an alert dialog box, but
you left the content of the web page unchanged. In this session, you will use JavaScript
to write content into the web page itself. To do that, you have to work with objects. An
object is an entity within the browser or web page that has properties that define it and
methods that can be acted upon it. For example, a video embedded on a web page is
an object and has properties such as source of the video file or the width and height of
the video player. It also has methods such as playing or pausing the video.

JavaScript is an object-based language that manipulates an object by changing one
or more of its properties or by applying a method that affects the object’s behavior
within the web page or web browser. There are four kinds of JavaScript objects: built-in
objects that are intrinsic to the JavaScript language, browser objects that are part of the
browser, document objects that are part of the web document, and customized objects
that are created by the programmer for use in his or her application.

Browser objects and document objects are organized in hierarchical structures
respectively called the browser object model (BOM) and the document object model
(DOM). Figure 9–12 shows a portion of this hierarchical structure with the window
object, representing the browser window, as the topmost object in the hierarchy.

Figure 9–12 Object hierarchy

applets

forms

images

plugins

stylesheets

anchors

embeds

frames

links

scripts

mimeTypesplugins

history screen navigator locationdocument

window

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 701

The following are contained within the window object:

• the document object containing objects found within the web page document
• the history object containing the browser’s history list
• the screen object containing information about the computer screen
• the navigator object containing information about the browser application
• the location object containing information about the current URL

These objects themselves might contain other objects. For example, the forms
object contained in the document object contains objects for each element within a
web form.

It is important to note that document objects can be referenced only after the
browser has finished parsing the page content. Any command that references a
document object before the browser has parsed the HTML code will result in
an error because those objects do not yet reside in memory. To ensure that an
object can be referenced within a JavaScript program, apply the defer attribute
to the script element so that JavaScript code is run only after the page is
completed loaded.

Object References
Each object within the hierarchy is referenced by its object name such as window,
document, or navigator. Because every object aside from the window object is
nested within other objects, you can reference an object within the hierarchy using the
notation

object1.object2.object3 ...

where object1 is at the top of the hierarchy, object2 is a child of object1, and so on.
Thus, to reference the images object nested within the window and document object,
you would use the JavaScript expression:

window.document.images

You do not always have to use a complete reference detailing the entire object
hierarchy. By default, JavaScript will assume that object references point to the current
browser window. Thus, you can also refer to the images object in the current browser
window using the expression:

document.images

Referencing Object Collections
Objects are organized into groups called object collections. Thus, the following object
reference

document.images

references all of the inline images in the document marked with the tag.
Figure 9–13 describes some other object collections found within the document
object model.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 702

Figure 9–13 Document object collections

Object Collection References
document.anchors All elements marked with the <a> tag

document.applets All applet elements

document.embeds All embed elements

document.forms All web forms

document.frames All frame elements

document.images All inline images

document.links All hypertext links

document.plugins All plug-ins supported by the browser

document.scripts All script elements

document.styleSheets All stylesheet elements

To reference a specific member of an object collection, you can use either

collection[idref]

or

collection.idref

where collection is a reference to the object collection, and idref is either an index
number representing the position of the object in the collection or the value of the id
attribute assigned to the element. The first object in the collection has an index number
of 0 with subsequent objects given index numbers of 1, 2, 3, and so on. Thus, if the
first inline image within a document has the tag

you can reference that image using any of the following expressions:

document.images[0]
document.images["logoImg"]
document.images.logoImg

Object collections can also be based on tag names using the expression

document.getElementsByTagName(tag)

where tag is the name of an HTML element. For instance, the expression

document.getElementsByTagName("h1")

returns an object collection of all h1 elements within the current document, while the
expression

document.getElementsByTagName("h1")[0]

references only the first h1 element found in the document.
Object collections can also be formed from HTML elements belonging to the same

class by using the expression

document.getElementsByClassName(class)

where class is the value of the class attribute from the HTML document. Thus, the
expression

document.getElementsByClassName("newGroup")

returns the collection of all elements that contain the attribute class="newGroup".
Because there is no distinction between HTML elements in this expression, the object

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 703

collection might contain elements with different tag names as long as they all share a
common value for the class attribute.

Finally, you also can create references to objects by the value of their name attribute
using the expression

document.getElementsByName(name)

where name is the value of the name attribute associated with the element. Note that
because more than one element can share the same name—such as radio buttons
within a web form—this method returns an object collection rather than a single object.

Referencing an Object by ID and Name
One of the problems with object collections is that JavaScript will have to search
through the entire collection to locate a specific item. If the object collection is large,
this can be a time-consuming task and slow down the program. Another, more efficient
approach, is to reference an element by its id attribute, using the expression

document.getElementById(id)

where id is the value of the id attribute. Thus, the expression

document.getElementById("dateNow")

references the element with the ID dateNow in the document. Note that only one
object is returned, not a collection, because each id value is unique within an HTML
document.

R
E
FE

R
E
N
C
E

Referencing Objects

• To reference an object as part of the collection in a document, use either

collection[idref]
or
collection.idref

where idref is either an index number representing the position of the object in the
collection or the value of the id attribute assigned to that element.

• To reference a collection of elements based on the tag name, use

document.getElementsByTagName(tag)

where tag is the name of the element tag.
• To reference a collection of elements based on the value of the class attribute, use

document.getElementsByClassName(class)

where class is the class attribute value.
• To reference a collection of elements based on the value of the name attribute, use

document.getElementsByName(name)

where name is the value of the name attribute.
• To reference a document object based on the value of its id attribute, use

document.getElementById(id)

where id is the id attribute value.

Now that you have explored multiple ways to reference objects within a web page
document, you will look at how to modify those objects.

Case is important with the
getElementById() method.
The id value must match
both the uppercase and
lowercase letters in the id
attribute value.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 704

Changing Properties and Applying Methods
An object can be modified in two ways: either by changing the object’s properties or by
applying a method. First, you examine how to modify an object property.

Object Properties
An object property is accessed using the following expression

object.property

where object is a reference to an object and property is a property associated
with that object. For example, in Tutorial 8 you learned that input box controls
have the value property, which sets the values displayed in the input box. To return
the value of the input box control with the ID firstName, you would apply the
expression:

document.getElementById("firstName").value

Thus, if the input box control displays the value “Hector”, this expression will return
the text string “Hector”.

To change the value of an object property, run the command

object.property = value;

where value is the new value of the property for the referenced object. For example, to
change the value in the firstName input box to “Diane”, you would run the command:

document.getElementById("firstName").value = "Diane";

Not every property can be changed. Some properties are read-only properties and
cannot be modified. For example, the navigator object representing the browser
supports the appVersion property, which returns the version number of the browser
program. So, while you can use the expression navigator.appVersion to view the
version number of your browser, you certainly cannot use JavaScript to change your
browser version.

Applying a Method
The other way to modify an object is by applying a method to it. A method can be
thought of as an action operating on an object to produce a result. Methods are applied
using the expression

object.method(values)

where object is a reference to an object, method is the name of the method that can
be applied to the object, and values is a comma-separated list of values associated
with that method. You applied an object method in the previous session when you ran
the command:

window.alert("Welcome to Tulsa")

In this command, the window object represents the browser window and the alert()
method is a method that displays a dialog box within the browser window. The text
string “Welcome to Tulsa” is the value associated with the alert() method that sets
the text of the dialog box.

Similarly, the getElementById() expression is a method applied to the document
object in order to reference a particular object within the document based on its
ID value.

Now that you have learned the basic syntax of objects, properties, and methods, you
can use JavaScript to write content into a web page.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 705

Writing HTML Code
The HTML code that is stored within a page element can be referenced using the
following innerHTML property

element.innerHTML

where element is an object reference to an element within the web document. For
example, if the document contains the following div element

<div id="daysLeft">58
Days</div>

then the expression

document.getElementById("daysLeft").innerHTML

returns the text string “58
Days”. Notice that both HTML tags and
text content are returned by the innerHTML property. To change the content of this div
element so that it contains the HTML code “45
Days”, you could
change the value of the innerHTML property in the following command:

document.getElementById("daysLeft").innerHTML =
"45
Days";

Changing the value of the innerHTML property overwrites whatever content is
currently contained within the selected object, so you should be careful when using it
to rewrite the content of elements that already exist in your document.

Hector has set up his web page with the following div element containing date and
time values:

<div id="dateNow">11/3/2021
2:45:12 p.m.</div>

Use the innerHTML property to change the content of this div element to the
text string “m/d/y
h:m:s”. Note that you will replace this text string later with
calculated values representing the current date and time.

To write HTML code with JavaScript:
w 1. If you took a break after the previous session, make sure the tny_script.js file

is open in your editor.

w 2. Directly below the */ line in the comments area, insert the following code:

/* Display the current date and time */
document.getElementById("dateNow").innerHTML =
"m/d/y
h:m:s";

Figure 9–14 highlights the newly added code.

Be sure to match the text of
the id value to the id value
in the HTML file, including
uppercase and lowercase
letters.

The innerHTML property
can only be applied to an
object representing an
element within the web
document.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 706

w 3. Save your changes to the file and then reload the tny_clock.html file in
your browser.

Figure 9–15 shows the content written by revising the value of the innerHTML
property.

Figure 9–14 Changing the value of the HTML code within an element

references the
element with the ID
attribute “dateNow”

the innerHTML property
references the HTML
code within the element

sets the new value
for the HTML code
within the element

Figure 9–15 Revised date and time content

content written
with JavaScript

© altafulla/Shutterstock.com

Figure 9–16 lists other JavaScript properties and methods that can be used to modify
the content of page elements.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 707

Figure 9–16 Properties and methods to insert content

Property or Method Description
element.innerHTML Returns the HTML code within element

element.outerHTML Returns the HTML code within element as well as the
HTML code of element itself

element.textContent Returns the text within element disregarding any HTML tags

element.insertAdjacentHTML
(position, text)

Inserts HTML code defined by text into element
at position, where position is one of the
following:'beforeBegin' (before the element’s opening
tag), 'afterBegin' (right after the element’s opening tag),
'beforeEnd' (just before the element’s closing tag), or
'afterEnd' (after the element’s closing tag)

For example, if a page element contains only text and no HTML markup, you can
modify its content more efficiently using the textContent property. In the tny_clock.html
file, Hector has placed the countdown values in the following span elements:

<div>53
Days</div>
<div>9
Hours</div>
<div>14
Minutes</div>
<div>48
Seconds</div>

Use the textContent property now to change the days, hours, minutes, and
seconds values to the text strings “dd”, “hh”, “mm”, and “ss”.

To write text content with JavaScript:
w 1. Return to the tny_script.js file in your editor.

w 2. At the bottom of the file, insert the following code:

/* Display the time left until New Year's Eve */
document.getElementById("days").textContent = "dd";
document.getElementById("hrs").textContent = "hh";
document.getElementById("mins").textContent = "mm";
document.getElementById("secs").textContent = "ss";

 Figure 9–17 highlights the newly added code.

Figure 9–17 Revised text content

references the element
with the IDs "days", "hrs",
"mins", and "secs"

property for the
text content within
each element

new text content
within each
element

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 708

w 3. Save your changes to the file and reload the tny_clock.html file in your
browser.

Figure 9–18 shows the placeholder text used for countdown clock values.

Figure 9–18 Revised text content

countdown clock text
generated by JavaScript
using the textContent
property

© jbdphotography/Shutterstock.com; Source: www.1001fonts.com

Note that if you want to insert HTML code along with the text content, you must
use the innerHTML property. The textContent property should only be used when no
markup tags are involved.

IN
SI
G
H
T

Writing Content with document.write()

Another way to write HTML content to the web page document is with the following
method

document.write(text)

where text is the text of the content. The document.write() method is most often
used with embedded scripts, writing content directly into the document as it is being
loaded by the browser. For example, the following code uses an embedded script to
write an h1 heading directly into the page header:

<header>
 <script>
 document.write("<h1>Welcome to Tulsa</h1>");
 </script>
</header>

Note that if this method is applied after the HTML file is completely loaded by the
browser, it will overwrite all of the HTML content in the document, replacing the HTML
code with the text specified in the document.write() method. If you want to modify
the page after it has been loaded by the browser, you should only use the innerHTML
or textContent properties.

Next, you will begin replacing the current date, time, and countdown placeholder
values with calculated values. To do that, you must learn how to work with JavaScript
variables.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 709

Working with Variables
Because you used a specific text string with the innerHTML and textContent
properties, your script did little more than what you could have accomplished by
entering the HTML code directly into the web page document. JavaScript is much more
powerful and versatile when used in conjunction with variables. A variable is a named
item in a program that stores a data value, such as a number or text string, or an object,
such as a part of the web browser or browser window. Variables are useful because
they can store information created in one part of the script and use that information
elsewhere.

Declaring a Variable
Variables are introduced into a script by declaring the variable using the following
var keyword

var variable = value;

where variable is the name assigned to the variable and value is the variable’s initial
value. For example, the following statement declares a variable named currentDay and
assigns it an initial value of “May 3, 2021”.

var currentDay = "May 3, 2021";

You do not have to provide an initial value to a variable. You can leave the variable’s
value undefined as in the following command which declares the currentDay variable
but does not provide a value.

var currentDay;

You can declare multiple variables by entering the variable names in a comma-
separated list. The following statement declares two variables named currentMonth,
and currentYear, assigning them the values of “May” and 2021 respectively.

var currentMonth = "May", currentYear = 2021;

JavaScript imposes the following limits on variable names:

• The first character must be either a letter or an underscore character (_).
• The remaining characters can be letters, numbers, or underscore characters.
• Variable names cannot contain spaces.
• You cannot use names that are part of the JavaScript language itself; for example, you

cannot name a variable “document” or “window” or “textContent”.

Like other aspects of the JavaScript language, variable names are case sensitive.
The variable names currentDay and currentday represent two different variables. One
common programming mistake is to forget this important fact and to use uppercase and
lowercase letters interchangeably in variable names.

After a variable is declared, its value can be changed by assigning a new value using
the following command

variable = value;

where variable is the variable name and value is a new value assigned to the
variable. Thus, the following command changes the value of the currentDay variable to
“May 4, 2021”:

currentDay = "May 4, 2021";

One of the advantages of using variables is that you can change their values
several times throughout the program, often in response to user actions within the
web page.

To avoid programming
errors, use a consistent
pattern of case for variable
names and give your
variables descriptive
names that are easy to
interpret.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 710

Variables and Data Types
JavaScript variables can store different types of information known as the variable’s
data type. JavaScript supports the following data types:

• numeric value
• text string
• Boolean value
• object
• null value

A numeric value is any number, such as 13, 22.5, or 3.14159. Numbers can also
be expressed in scientific notation, such as 5.1E2 for the value 5.1 × 102 (or 510).
Thus, if you wish to store the value 2021 in the currentYear variable, you would run
the command

currentYear = 2021;

A text string is any group of characters enclosed within either double or single
quotation marks. The following statement stores the text “May” in the currentMonth
variable:

currentMonth = "May";

A Boolean value indicates the truth or falsity of a statement. There are only two
possible Boolean values: true or false. For example, the following statement sets the
value of the isMay variable to true and the value of the isApril variable to false:

var isMay = true, isApril = false;

Boolean values are most often used in programs that must respond differently
to different conditions. The isMay variable cited above might be used in a program
that tests whether the current month is May. If the value is set to true, the program
runs differently than if the value is set to false. Note that if no value is assigned to a
Boolean variable, it is interpreted as having a value of false.

Variables that represent objects can be used to simplify code by removing the need
to rewrite long and sometimes complicated object references. Thus, the following
dateDiv variable will store the reference to the document element with the ID
dateNow:

var dateDiv = document.getElementById("dateNow");

Finally, a null value indicates that no value has yet been assigned to a variable. This
can be done explicitly assigning the keyword null to a variable, as in the statement

var currentDate = null;

or implicitly by simply declaring the variable without assigning it a value.

If you enclose a number
within double or
single quotation marks,
JavaScript will treat the
number as a text string.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 711

Using a Variable
After you have created a variable, you can use it in JavaScript statements in place of
the value it contains by inserting the variable name into a command or expression. For
example, the following code uses the dateDiv variable to reference the page element
with ID dateNow and then applies the innerHTML property to that object:

var dateDiv = document.getElementById("dateNow");
dateDiv.innerHTML = "May 3, 2021";

The effect is the same as if you had inserted the following command into your program:

document.getElementById("dateNow").innerHTML = "May 3, 2021";

The advantage of using a variable is that having defined the dateDiv variable, you
can use it throughout the program without having to reenter a long and complicated
object reference every time, which speeds up the execution of the code and makes
your program easier to read and manage.

Working with Date Objects
One type of object you can store in a variable is a Date object, which is a built-in
JavaScript object used to store information about dates and times. Date objects are
defined using the following expression

new Date("month day, year hrs:mins:secs");

where month, day, year, hrs, mins, and secs provide the Date object’s date and time.
For example, the following command stores a Date object containing a date of May 23,
2021 and a time of 2:35:05 p.m. in the thisDate variable:

var thisDate = new Date("May 23, 2021 14:35:05");

Note that time values are based on 24-hour time so that a time of 2:35 p.m. would
be entered as 14:35. If you omit the hours, minutes, and seconds values, JavaScript
assumes that the time is 0 hours, 0 minutes, and 0 seconds—in other words,
midnight of the specified day. If you omit both a date and time value, the Date object
returns the current date and time based on the computer’s system clock. Thus, the

IN
SI
G
H
T

JavaScript and Weakly Typed Languages

In JavaScript, a variable’s data type can be changed by the context in which it is used.
In the following two statements, the currentMonth variable starts out as a numeric
 variable with an initial value of 4, but then becomes a text string variable containing
the text “May”:

var currentMonth = 4;

currentMonth = "May";

A programming language like JavaScript, in which variables are not strictly tied
to specific data types, is referred to as a weakly typed language. Some other
 programming languages, known as strongly typed languages, force the programmer
to explicitly identify a variable’s data type. In strongly typed languages, the above
code would result in an error because variables are not allowed to switch from one
data type to another.

While a strongly typed language might seem restricting, it has the advantage of
flagging programming errors, such as might occur when your program inadvertently
switches the data type of a variable from a number to a text string.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 712

following command stores a Date object containing the current date and time in the
thisDate variable:

var thisDate = new Date();

You can also define a date using the expression
new Date(year, month, day, hrs, mins, secs);

where year, month, day, hrs, mins, and secs are numeric values for the date and time.
The month value is entered as an integer from 0 to 11, where 0 = January, 1 = February,
and so forth. Time values are again expressed in 24-hour time. Thus, the following
command also creates a variable storing the date and time May 23, 2021, at 2:35:05 p.m.:

var thisDate = new Date(2021, 4, 23, 14, 35, 5);

R
E
FE

R
E
N
C
E

Creating and Storing a Date

• To create a Date object, use
new Date("month day, year hrs:mins:secs")

where month, day, year, hrs, mins, and secs indicate the date and time to be
stored in the Date object. Time values are entered in 24-hour time.

• To create a Date object using numeric values, use
new Date(year, month, day, hrs, mins, secs)

where year, month, day, hrs, mins, and secs are numeric values of the date and
time with month an integer from 0 to 11, where 0 = January, 1 = February, and so
forth. Time values are entered in 24-hour time.

• To create a Date object containing the current date and time, use:
new Date()

Creating a Date Object
Now that you have seen how to store date and time information in a variable, you will
create a variable named currentDay that stores a Date object. You use May 23, 2021 as
the initial date and 2:35:05 p.m. as the initial time. Later in this tutorial, you will set the
value of the currentDay variable to the current date and time. For now, using a preset date
and time lets you check that any calculations based on the date and time are correct.

To create the currentDay variable:
w 1. Return to the tny_script.js file in your editor.

w 2. Directly below the closing */ line near the top of the file, insert:
/* Store the current date and time */
var currentDay = new Date("May 23, 2021 14:35:05");

Figure 9–19 highlights the newly added code.

Figure 9–19 Creating a Date object

declares the
currentDay variable

creates a
Date object

date and time stored
in the Date object

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 713

Next, you apply JavaScript’s Date methods to extract information about this Date object.

Applying Date Methods
JavaScript dates are stored as numeric values equal to the number of milliseconds
between the specified date and January 1, 1970 at midnight. For example, a
Date object for May 23, 2021 at 2:35:05 p.m. has a hidden value equal to
1,621,798,505,000 milliseconds. Fortunately, you don’t have to work directly with this
value! Instead, Figure 9–20 describes some of the JavaScript methods used to extract
information from a Date object.

Figure 9–20 Methods of the Date object

Date Method Description Results
var thisDay = new
Date("May 23, 2021
14:35:05");

thisDay.getSeconds() seconds 5

thisDay.getMinutes() minutes 35

thisDay.getHours() hours 14

thisDay.getDate() day of the month 23

thisDay.getMonth() month number, where
January = 0, February =1, etc.

4

thisDay.getFullYear() year 2021

thisDay.getDay() day of the week, where
Sunday = 0, Monday = 1, etc.

0

thisDay.toLocaleDateString() text of the date using local
conventions

"5/23/2021"

thisDay.toLocaleTimeString() text of the time using local
conventions

"2:35:05 PM"

Hector wants to display the date and time on separate lines in the page header. To
accomplish this, you create two new variables. The following dateStr variable will store
the text string of the date portion of the Date object and the timeStr variable will store
the text string of the time portion:

var dateStr = currentDay.toLocaleDateString();
var timeStr = currentDay.toLocaleTimeString();

Both the toLocaleDateString() and toLocaleTimeString() methods return text
strings based on local conventions for rendering dates and times. Thus, in the United
States the dateStr and timeStr variables will store the text “5/23/2021” and “2:35:05 PM”
respectively. Other countries, with different local conventions, will use different text
representations of these dates and times.

The dateStr and timeStr variables can be used with the innerHTML property for the
dateNow div element to change the code inserted into the page element:

document.getElementById("dateNow").innerHTML =
dateStr + "
" + timeStr;

The + symbol is used in this command to combine two or more text strings in a single
text string. Thus, in this command if the dateStr variable stores the text “5/23/2021” and
the timeStr variable stores the text string “2:35:05 PM”, the text string “5/23/2021

2:35:05 PM” will be added to the inner HTML of the dateNow element.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 714

R
E
FE

R
E
N
C
E

Using Date Methods

• To retrieve the year, month, day, hours, minutes, and seconds value from a Date
object, use the following methods

date.getFullYear()
date.getMonth()
date.getDate()
date.getHours()
date.getMinutes()
date.getSeconds()

where date is a Date object.
• To retrieve the date as a text string using local conventions, apply the method:

date.toLocaleDateString()

• To retrieve the time as a text string using local conventions, apply the method:

date.toLocaleTimeString()

Rewrite the code in the tny_script.js file now to use Date objects and methods to
display dates and times.

To apply date variables and methods:
w 1. Directly after the line declaring the currentDay variable, insert:

var dateStr = currentDay.toLocaleDateString();
var timeStr = currentDay.toLocaleTimeString();

w 2. Change the line that displays the current date and time to:

document.getElementById("dateNow").innerHTML =
dateStr + "
" + timeStr;

Figure 9–21 highlights the new code in the file.

Figure 9–21 Displaying dates and times

declares the dateStr variable
containing the text string of
the current date

declares the timeStr variable
containing the text string of
the current time

displays the
value of the
dateStr variable

the + symbol combines
multiple text strings
into a single text string

displays the
value of the
timeStr variable

the toLocaleTimeString()
method returns the text of
the current time using local
conventions

the toLocaleDateString() method
returns the text of the current
date using local conventions

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 715

w 3. Save your changes to the file and then reload tny_clock.html in your browser.
Figure 9–22 shows the date values generated by JavaScript.

Figure 9–22 Date and time in the page header

text string of the date and
time as returned from the
toLocaleDateString() and
toLocaleTimeString()
methods

© altafulla/Shutterstock.com

PR
O
SK

IL
LS

Written Communication: Writing Dates and Times for a Global
Marketplace

The Tulsa New Year’s Bash is a strictly local event; thus, you can write the dates and
times using local formats. However, America’s date and time conventions are not
shared across the globe. If you are not careful with your dates and times, you run the
risk of confusing your international readers. For example, the text string 10/3/2021
is interpreted as October 3rd, 2021 in some countries, and as March 10th, 2021 in
 others. Some countries express times in a 12-hour (AM/PM) format while others use
the 24-hour clock.

If you expect your dates and times to be read by an international audience, you
need to ensure that your text corresponds to local standards. One way to do this is to
spell out the month portion of the date, expressing a date as “October 3, 2021”.
Other designers suggest that a date format with the year expressed first (for example,
2021-10-3) is less likely to be misinterpreted.

With JavaScript, you can write dates and times in the user’s own local format
using method

date.toLocaleString()
which converts date to a text string displaying the date and time formatted based
on the conventions employed by the user’s computer. Thus, a date and time such as
October 3rd, 2021 at 2:45 p.m. would be displayed using the toLocaleString()
method as

Tue, October 3, 2021 2:45:00 PM
from a computer located in the United States and as

mardi 3 octobre 2021 1714:45:00
from a computer located in France. Note that the exact appearance of the string
generated by the toLocaleString() method depends on the date/time settings on
the computer and the settings of the browser.

As businesses continue to expand to meet the needs of a global market, you
should use JavaScript’s Date object in a way that makes it easier to communicate with
your international customers and clients in a “timely” fashion.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 716

Setting Date and Time Values
JavaScript also supports methods to change the date stored within a Date object.
Changing dates is most often used in programs that involve setting the value of a
future date or time, such as an expiration date for an online membership or an online
calendar used for event scheduling. Figure 9–23 summarizes the methods supported by
the JavaScript Date object used for setting date and time values.

Figure 9–23 JavaScript methods to set values of the Date object

Date Method Description
date.setDate(value) Sets the day of the month of date, where value is an integer, ranging

from 1 up to 31 (for some months)

date.setFullYear(value) Sets the four-digit year value of date, where value is an integer

date.setHours(value) Sets the 24-hour value of date, where value is an integer ranging
from 0 to 23

date.setMilliseconds(value) Sets the millisecond value of date, where value is an integer
between 9 and 999

date.setMinutes(value) Sets the minutes value of date, where value is an integer ranging
from 0 to 59

date.setMonth(value) Sets the month value of date, where value is an integer ranging from
0 (January) to 11 (December)

date.setSeconds(value) Sets the seconds value of date, where value is an integer ranging
from 0 to 59

date.setTime(value) Sets the time value of date, where value is an integer representing
the number of milliseconds since midnight on January 1, 1970

For example, the following code uses the setFullYear() method to change the
date stored in the thisDate variable from May 23, 2021 to May 23, 2022:

var thisDate = new Date("May 23, 2021");
thisDate.setFullYear(2022);

In the next session, you will use the setFullYear() method in the countdown
clock to calculate the number of days, hours, minutes, and seconds remaining until
the New Year’s Bash. If you want to take a break, you can close your editor and your
browser now.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 717

R
E
V
IE

W

Session 9.2 Quick Check

 1. Which of the following is a type of JavaScript object?
a. built-in JavaScript objects
b. browser objects contained within the browser itself
c. document objects contained with the web page
d. all of the above

 2. Which expression references all paragraph elements in the document?
a. document.paragraphs
b. document.all.paragraphs
c. document.getElementsByTagName("p")
d. document.getParagraphs()

 3. Which expression references an element with the ID sidebar?
a. document#sidebar
b. document.id.sidebar
c. document.getElementById("sidebar")
d. document.getIDS("sidebar")

 4. The HTML code stored within a page element is referenced with the property:
a. innerHTML
b. html
c. htmlCode
d. innerCode

 5. The HTML code stored within a page element is referenced with the property:
a. innerText
b. textContent
c. text
d. textString

 6. Which command declares the variable totalMonths with an initial value of 12?
a. variable totalMonths = 12;
b. var totalMonths(12);
c. var 12 = totalMonths;
d. var totalMonths = 12;

 7. Which command creates a Date object for the date April 4, 2021
at 8:38:14 a.m.?
a. Date("April 4, 2021 8:38:14");
b. new Date("April 4, 2021 8:38:14");
c. new date("April 4, 2021 8:38:14");
d. dateValue("April 4, 2021 8:38:14");

 8. Which expression extracts the hours value from the expDate variable?
a. expDate.getHours()
b. expDate.hours()
c. expDate.hours
d. expDate.calcHours()

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 718

Session 9.3 Visual Overview:

The runClock()
statement runs the
commands in the
runClock() function.

The setInterval()
method is used to
repeatedly run a
command after an
interval expressed in
milliseconds.

Every function begins
with the keyword
function followed by
the function name and
parameters (if any)
enclosed in parenthesis.

The setFullYear()
method sets the year
value in the Date object.

This code converts the
difference in dates
(stored as milliseconds)
into a difference in days.

The getFullYear()
method returns the
4-digit year value.

This code converts the
fractional part of the
daysLeft value to hours.

This code converts
the fractional part
of hrsLeft value to
minutes.

This code converts the
fractional part of
minsLeft value to
seconds.

The Math.floor()
method rounds the
enclosed value down
to the nearest integer.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 719

JavaScript Functions and Expressions

The days, hours, minutes, and
seconds values are displayed
as whole numbers due to the
Math.floor() method.

The days, hours, minutes, and
seconds left values are
updated every second due to
the setInterval() method.

© altafulla/Shutterstock.com; © jbdphotography/Shutterstock.com; Source: www.1001fonts.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 720

Working with Operators and Operands
In the previous session, you worked with Date objects to display specified dates
and times on a web page. In this session, you will learn how to perform calculations
with dates and JavaScript variables. To perform a calculation, you need to insert
a JavaScript statement that contains an operator. An operator is a symbol used to
act upon an item or a variable within an expression. The variables or expressions
that operators act upon are called operands. Figure 9–24 describes the operators
supported by JavaScript.

Figure 9–24 JavaScript operators

Operator Description Expression Returns
+ Combines or adds two items 12 + 3 15

– Subtracts one item from
another

12 – 3 9

* Multiplies two items 12*3 36

/ Divides one item by another 12/3 4

% Returns the remainder after
dividing one item by another

18%5 3

++ Increases a value by 1 12++ 13

– – Decreases a value by 1 12– – 11

– Changes the sign of a value –12 –12

Note that the + operator is used to add two or more numbers to calculate a sum, but
as you saw in the last session it can also be used to combine two or more text strings
into a single text string. The following command shows an expression that uses the +
operator to combine several text strings:

""

If the imgFile variable stores the text string “logo.png”, this expression would return the
text string "".

Operators are organized into binary operators, like + and –, which work with two
operands in an expression and unary operators, which work on only one operand.
One such unary operator is ++ (also known as the increment operator), which
increases the value of the operand by 1. For example, the following two commands
both increase the value of the x variable by 1; the first uses the + operator and the
second uses the increment ++ operator:

x = x + 1;
x++;

A similar operator is the decrement operator, indicated by the – – symbol, which
decreases the operand’s value by 1.

Using Assignment Operators
Another type of operator is the assignment operator, which is used to assign a value to
an item. Figure 9–25 lists the different JavaScript assignment operators.

To insert single quotation
marks into a text string,
you must enclose the text
string with double quota-
tion marks.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 721

Figure 9–25 JavaScript assignment operators

Operator Example Equivalent To
= x = y x = y

+= x += y x = x + y

–= x –= y x = x – y

*= x *= y x = x * y

/= x /= y x = x /y

%= x %= y x = x % y

The most common assignment operator is the equal sign (=), which assigns the
value of one expression to another. JavaScript also allows you to combine the act of
assigning a value and changing a value within a single operator. For example, both of
the following expressions increase the value of the x variable by 2 but the += operator
does so more efficiently.

x = x + 2;
x += 2;

After you master the syntax, you can use assignment operators to create efficient and
compact expressions.

Calculating the Days Left in the Year
You will use operators and Date objects to calculate the number of days remaining
until the New Year’s Bash. To calculate this value, you need to do the following:

1. Create a Date object for January 1st of the next year
2. Calculate the difference between the current date and the upcoming January 1st

To create the January 1st Date object, you first declare the following newYear variable:

var newYear = new Date("January 1, 2022");

Using 2022 for the year is only a temporary step. The end goal is to create a Date
object for January 1st of the upcoming year (whenever that may be). You can determine
this value by extracting the year value from the currentDay variable you created in the
last session and adding 1 to it using the following command:

var nextYear = currentDay.getFullYear() + 1;

Then, by applying the setFullYear() method, change the year of the newYear Date
object to the coming year as follows:

newYear.setFullYear(nextYear);

With the newYear variable now containing a date matching the upcoming January
1st, the following command calculates the time difference between that date and the
current day:

var daysLeft = newYear - currentDay;

However, because JavaScript measures time difference in milliseconds, not days, the
daysLeft variable stores the number of milliseconds between January 1st and the current
date. To express this value in days, you need to divide the difference by the number
of milliseconds in one day. Because there are 1000 milliseconds in one second, 60
seconds in one minute, 60 minutes in one hour, and 24 hours are in one day, the
revised command becomes:

var daysLeft = (newYear - currentDay)/(1000*60*60*24);

Do not insert a space
between the symbols
in the += operator or
JavaScript will report a
syntax error.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 722

Add all of these commands to the tny_script.js file to calculate the days between the
current date and upcoming January 1st.

To calculate the days left until the new year:
w 1. If you took a break after the previous session, make sure the tny_script.js file

is open in your editor.

w 2. Directly above the comment /* Display the time left until New Year’s Eve */,
insert the following code:

/* Calculate the days until January 1st */
var newYear = new Date("January 1, 2021");
var nextYear = currentDay.getFullYear() + 1;
newYear.setFullYear(nextYear);
var daysLeft = (newYear - currentDay)/(1000*60*60*24);

w 3. Replace the text string “dd” in the first line below the “Display the time left
until New Year’s Eve” comment with the daysLeft variable.

Figure 9–26 describes the newly added code.

Figure 9–26 Calculating the days left before the next January 1st

sets the initial value of
the newYear variable

replaces the “dd” text
string with the daysLeft
variable

changes the year value
of the newYear Date
variable so that it
contains the next
January 1 date after
currentDay

calculates days left by
converting the time
difference from
milliseconds to days

adds 1 to the
year value of
the currentDay
variable

w 4. Save your changes to the file and then reload tny_clock.html in your browser.

Figure 9–27 shows the calculated days until January 1st for the sample date
of May 23, 2021.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 723

calculated value of the
daysLeft variable

Figure 9–27 Days left until January 1st

Trouble? If no value appears for the daysLeft variable, you might have made
an error when entering the code. Use your browser debugger to check your
code against the code shown in Figure 9–26, making corrections as needed.
Save the file and then reload the web page.

The value displayed in the daysLeft field is 222.43396… (the clock font displays a
decimal point as --), indicating that almost 222 and a half days are left until the start
of the New Year’s Bash. The fractional part of the value represents how much of the
current day is remaining, which in this case is about 0.434 days. Since Hector wants
the countdown clock to display the days, hours, minutes, and seconds until the party
begins as integers, you have to modify the results by converting the fractional values to
integer values expressed in hours, minutes, and seconds. You can do this by using some
of the built-in JavaScript functions for mathematical calculations.

Working with the Math Object
One way of performing these types of calculations is to use JavaScript’s Math object.
The Math object is a built-in object used for performing mathematical tasks and storing
mathematical values.

Using Math Methods
The Math object supports several different methods for calculating logarithms,
extracting square roots, returning trigonometric values, and so forth. The syntax for
applying a Math method is

Math.method(expression)

where method is the method you apply to a mathematical expression. Figure 9–28 lists
the JavaScript Math methods and their descriptions.

Case is important when
applying the Math object;
you must use Math
instead of math as the
object name.

© jbdphotography/Shutterstock.com; Source: www.1001fonts.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 724

Figure 9–28 Methods of the Math object

Method Description Example Returns
Math.abs(x) Returns the absolute value of x Math.abs(–5) 5

Math.ceil(x) Rounds x up to the next highest integer Math.ceil(3.58) 4

Math.exp(x) Raises e to the power of x Math.exp(2) e2 (approximately 7.389)

Math.floor(x) Rounds x down to the next lowest integer Math.floor(3.58) 3

Math.log(x) Returns the natural logarithm of x Math.log(2) 0.693

Math.max(x, y) Returns the larger of x and y Math.max(3, 5) 5

Math.min(x, y) Returns the smaller of x and y Math.min(3, 5) 3

Math.pow(x, y) Returns x raised to the power of y Math.pow(2,3) 23 (or 8)

Math.rand() Returns a random number between 0 and 1 Math.rand() Random number between 0 and 1

Math.round(x) Rounds x to the nearest integer Math.round(3.58) 4

Math.sqrt(x) Returns the square root of x Math.sqrt(2) approximately 1.414

To apply the Math.floor() method:
w 1. Return to the tny_script.js file in your editor.

w 2. Apply the Math.floor() method to the command that displays the value of
the daysLeft variable, changing it to:

document.getElementById("days").textContent =
Math.floor(daysLeft);

Figure 9–29 highlights the revised code in the command.

w 3. Save your changes to the file and then reload the tny_clock.html file in your
browser. Verify that 222 days with no decimal places are now shown in the
countdown clock.

Because the countdown clock will display only the integer portion of the days left,
you will apply the Math.floor() method, which rounds a value down to the next
lowest integer, to the daysLeft variable. For the 222.4339… value currently in the
countdown clock, this method returns the integer value 222.

Figure 9–29 Applying the Math.floor() method

rounds the daysLeft
value down to the next
lowest integer

The difference between the exact days left in the year 222.43396… and the rounded
value 222 is 0.43396…, which represents the fractional part of the current day left until
the New Year’s Eve Bash. Hector wants this value expressed in hours, which you can
calculate by multiplying the fraction part by 24 (the number of hours in a single day)
using the following command:

var hrsLeft = (daysLeft - Math.floor(daysLeft))*24;

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 725

As with the daysLeft variable in the previous set of steps, you need to round this
value down to the next lowest integer using the Math.floor() method so that the
integer portion only is displayed in the countdown clock.

To calculate the hours left:
w 1. Return to the tny_script.js file in your editor.

w 2. Directly below the line declaring the daysLeft variable, insert:

/* Calculate the hours left in the current day */
var hrsLeft = (daysLeft - Math.floor(daysLeft))*24;

w 3. Change the command that displays the text string “hh” as the hours left to:

document.getElementById("hrs").textContent =
Math.floor(hrsLeft);

Figure 9–30 highlights the code to calculate and displays the hrsLeft variable.

Be sure that the number
of opening parentheses
symbols matches the
number of closing
 parentheses symbols.

Figure 9–30 Calculating the hours left in the current day

Figure 9–31 Days and hours left until January 1st

calculates the fractional
part of the current day in
terms of hours

displays the integer
part of hours left

number of hours left
in the current day

number of days left
in the current year

w 4. Save your changes to the file and then reload tny_clock.html in your browser.
Figure 9–31 shows the hours left in the current day.

© jbdphotography/Shutterstock.com; Source: www.1001fonts.com

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 726

You may have noticed that JavaScript appears to have reported an extra hour in the
day. The total is accurate since the current time is given as 2:35:05 p.m. but JavaScript
reports that 10 hours are left. The extra hour comes from daylight savings time, which
moves the clock backward one hour in the autumn, adding an extra hour to the overall
calculation. Because the time interval between May 23 and January 1st includes
the switch to daylight savings time, the extra hour appears in the hours part of the
countdown clock.

Complete the countdown clock by calculating the minutes left in the current hour
and the seconds left in the current minute. The technique to calculate the minutes
left in the current hour is similar to the one you used to calculate the hours left in the
current day. You multiply the difference between the hrsLeft value and the whole hours
value by 60 (the number of minutes in an hour) to express the fractional part in terms
of minutes, as shown in the following command:

var minsLeft = (hrsLeft - Math.floor(hrsLeft))*60;

Finally, to calculate the seconds left in the current minute, you multiply the
fractional part of the minsLeft variable by 60 (the number of seconds in a minute), as
follows:

var secsLeft = (minsLeft - Math.floor(minsLeft))*60;

As with the daysLeft and hrsLeft variables, you want to display only the integer part
of the minsLeft and secsLeft variables by using the Math.floor() method. Add these
commands to the script.

To calculate the minutes and seconds left:
w 1. Return to the tny_script.js file in your editor.

w 2. Directly below the command to declare the hrsLeft variable, add the
following code:

/* Calculate the minutes and seconds left in the current hour */
var minsLeft = (hrsLeft - Math.floor(hrsLeft))*60;
var secsLeft = (minsLeft - Math.floor(minsLeft))*60;

w 3. Replace the “mm” and “ss” text strings in the countdown clock commands
with values for the minsLeft and secsLeft variables rounded down to the next
lowest integer using the Math.floor() method. The revised commands
should appear as:

document.getElementById("mins").textContent =
Math.floor(minsLeft);
document.getElementById("secs").textContent =
Math.floor(secsLeft);

Figure 9–32 highlights the code to calculate the minutes and seconds left in
the year.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 727

Figure 9–32 Calculating the minutes and seconds left

Figure 9–33 Days, hours, minutes, and seconds left until January 1st

calculates the fractional
part of the hours left in
terms of minutes

calculates the fractional
part of the minutes left
in terms of seconds

displays minutes left
and seconds left as
whole numbers

time left broken down
by days, hours, minutes,
and seconds

w 4. Save your changes to the file and then reload tny_clock.html in your browser.
The countdown clock values for the specified date are shown in Figure 9–33.

© altafulla/Shutterstock.com; ©jbdphotography/Shutterstock.com;
Source: www.1001fonts.com

Another factor in time calculations is that the day is not evenly divided into seconds.
A fraction of a second is always left over each day. As the days accumulate, these
fractions of a second add up. Most time devices, such as atomic clocks, account for this
accumulation by adding a leap second on certain days of the year. JavaScript includes
leap seconds in its time calculations as well and thus, it may sometimes appear that the
seconds value in the countdown clock is off by a second.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 728

Using Math Constants
Many functions require the use of mathematical constants, such as π and e. Rather
than entering the numeric values of these constants directly into the code, you can
reference the built-in constants stored in the JavaScript Math object. The syntax to
access one of these mathematical constants is

Math.CONSTANT

where CONSTANT is the name of one of the mathematical constants supported by the
Math object, shown in Figure 9–34.

Figure 9–34 Math constants

Constant Description
Math.E The base of the natural logarithms (2.71828…)

Math.LN10 The natural logarithm of 10 (2.3026…)

Math.LN2 The natural logarithm of 2 (0.6931…)

Math.LOG10E The base 10 logarithm of e (0.4343…)

Math.LOG2E The base 2 logarithm of e (1.4427…)

Math.PI The value of π (3.14159…)

Math.SQRT1_2 The value of 1 divided by the square root of 2 (0.7071…)

Math.SQRT2 The square root of 2 (1.4142 …)

For example, the formula to calculate the volume of a sphere is 4πr3/3, where r is
the radius of the sphere. To reference the value of π in the calculation of a sphere’s
volume, you would apply the Math.PI constant. To cube the value of r, you would use
the method Math.pow(r, 3). Putting these together, the code to calculate the volume
of a sphere of 10 units would be as follows:

var radius = 10;
var volume = 4*Math.PI*Math.pow(radius, 3)/3;

You don’t need to use any Math object constants for the New Year’s Bash website.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 729

IN
SI
G
H
T

Generating Random Numbers

One of the most useful applications of JavaScript is to create dynamic pages that can
change in a random fashion. A commercial website might need to display banner
ads in a random order so that customers see a different ad each time they access the
page. To create these kinds of effects, you need a script that generates a random
value. JavaScript accomplishes this using the Math.random() method, which returns a
random value between 0 and 1. You can change the range of possible random values
using the expression

lowest + size*Math.random()

where lowest is the lower boundary of the range and size is the size of the range.
For example, to generate a random number from 20 to 30, you could apply the
 following expression:

10*Math.random() + 20;

In many cases, you want to limit a random number to integer values. To do so,
enclose the random value within the Math.floor() method as follows

Math.floor(lowest + size*Math.random())

where lowest is the smallest integer in the range and size is the number of integer
values in the range. Thus, to generate a random integer from 21 to 30, you would apply
the following expression:

Math.floor(21 + 10*Math.random());

Note that using the Math.floor() method guarantees that the random number is
rounded down to the next lowest integer, which in this example limits it to a range of
integers from 21 to 30.

You will complete the calculations on the countdown clock so that instead of the
sample date and time you used in this session, you will display the actual date and time
based on your computer’s clock. Recall that you can create a Date object showing the
current date and time by using the expression

new Date()

with no parameter value for the object constructor.

To use the current date and time:
w 1. Return to the tny_script.js file in your editor.

w 2. Change the command declaring the currentDay variable to:

var currentDay = new Date();

Figure 9–35 highlights the revised command.

Figure 9–35 Storing the current date and time

stores the current date
and time in the
currentDay variable

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 730

w 3. Save your changes and then reload tny_clock.html in your browser. Verify that
the browser displays the current date and time.

w 4. Continue to reload the web page and verify that each time you reload the
page, the time and countdown clock are updated with the current values.

Reloading the page updates the time and countdown values, but Hector would like
your script to automatically update those values every second without requiring the
user to reload the page. To create this effect, you first need to place all of the code you
have written within a function.

Working with JavaScript Functions
When you want to reuse the same JavaScript commands throughout your web page,
you store the commands in a function. A function is a collection of commands that
performs an action or returns a value. Every function includes a function name that
identifies it and a set of commands that are run when the function is called. Some
functions also require parameters, which are variables associated with the function.
The general syntax of a JavaScript function is

function function_name(parameters){
 commands
}

where function_name is the name of the function, parameters is a comma-separated
list of variables used in the function, and commands is the set of statements run by
the function. As with variable names, a function name must begin with a letter or
underscore (_) and cannot contain any spaces. Also, like variable names, function
names are case sensitive and thus, JavaScript treats names such as runClock and
runclock as different functions.

For example, the following showDay function sets the innerHTML property of the
dateNow element to the text string “11/8/2021
2:45:12 p.m.”

function showDay() {
 document.getElementById("dateNow").innerHTML =
 "11/8/2021
2:45:12 p.m.";
}

Note that there are no parameters for this function, which means it always writes the
same HTML code into the dateNow element. However, you could store the date and
time text strings as parameters named dateStr and timeStr as the following function
demonstrates:

function showDay(dateStr, timeStr) {
 document.getElementById("dateNow").innerHTML =
 dateStr + "
" + timeStr;
}

Parameters are treated as variables within the function. By defining the parameter
values elsewhere in the JavaScript file, you can run this function to write different
HTML code into the dateNow element.

Create a new function now named runClock() containing the code you have written
to create and display the countdown clock.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 731

To insert the runClock() function:
w 1. Return to the tny_script.js file in your editor.

w 2. Directly below the initial comment section, insert the following comment:

/* Function to create and run the countdown clock */

w 3. Next, add the following code as the initial line of the runClock() function:

function runClock() {

w 4. Scroll to the bottom of the file and insert a closing } to close the runClock()
function.

w 5. Indent the code within the function to make it easier to read.

Figure 9–36 shows the code and structure of the runClock() function.

Figure 9–36 Complete runClock() function

there are no parameters
in this function

opening { marks the start
of the function commands

function code is
indented to make
it easier to read

function name

closing } marks the
end of the function
commands

Next, you explore how to run a function within your program.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 732

Calling a Function
To run a function, you have to call it. If the function has any parameters, the initial
values of the parameters are set when the function is called. The expression to call a
function and run the commands it contains has the general form

function_name(parameter values)

where function_name is the name of the function and parameter values is a
comma-separated list of values that match the parameters of the function. If no
parameters are used with the function, leave the parameter values blank as follows:

function_name()

For example, to call the showDay() function described earlier with the text string
“11/8/2021” for the dateStr parameter and “2:45:12 p.m.” as the value of the
timeStr parameter, you would run the following command:

showDay("11/8/2021", "2:45:12 p.m.");

resulting in the following HTML code being written into the dateNow element:

11/8/2021
2:45:12 p.m.

Parameter values can also be variables. The following code calls the showDay()
function using the values stored in the text1 and text2 variables:

var text1="11/8/2021";
var text2="2:45:12 p.m.";
showDay(text1, text2);

resulting in the same code written to the innerHTML property of the dateNow element.
One of the great advantages of functions is that they can be repeatedly called with
different parameter values to achieve different results. Another advantage is that
functions break long and complicated scripts into manageable chunks. It’s also good
programming practice to include oft-used functions in a separate JavaScript file so that
they can be accessed and used by multiple scripts throughout the website.

Execute the runClock() function now by adding a line to call it.

To call the runClock() function:
w 1. Directly above the runClock() function, insert the following command:

/* Execute the function to run and display the countdown clock */
runClock();

w 2. Compare your code to Figure 9–37, which highlights the code to run the
runClock() function.

Figure 9–37 Calling the runClock() function

command to execute
the runClock() function

w 3. Save your changes to the file and then reload tny_clock.html in your browser.
Verify that the page once again displays the current date and time and
calculates the time interval until the New Year’s Bash.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 733

Creating a Function to Return a Value
You created the runClock() function to perform the action of writing HTML code to
elements on the countdown clock web page. The other use of a function is to return
a calculated value. For a function to return a value, it must conclude with a return
statement as follows

function function_name(parameters){
 commands
 return value;
}

where value is the calculated value that is returned by the function. For example, the
following calcArea() function returns the area of a rectangle for a given length and width:

function calcArea(length, width) {
 var rectArea = length*width;
 return rectArea;
}

In this function, the value of the rectArea variable is returned by the function. The
following code demonstrates how to call the calcArea() function for an 8×6 rectangle,
storing the calculated area in the totalArea variable:

var x = 8;
var y = 6;
var totalArea = calcArea(x,y);

The first two commands assign the values 8 and 6 to the x and y variables,
respectively. The values of both of these variables are then sent to the calcArea()
function as the values of the length and width parameters. The calcArea() function uses
these values to calculate the area, which is stored in the totalArea variable.

Functions that return a value can be placed within larger expressions. For example,
the following code calls the calcArea() function within an expression that multiplies the
area value by 2 and store it as the variable z2:

var z2 = calcArea(x,y)*2;

You do not need to create a function that returns a value for Hector’s countdown
clock page.

IN
SI
G
H
T

Functions and Variable Scope

As you have seen, the commands within a function are run only when the function
is called. This has an impact on how variables within the function are treated. Every
variable you create has a property known as scope, which indicates where you can
reference the variable within the JavaScript file. A variable’s scope can be either local
or global. A variable declared within a function has local scope and can be referenced
only within that function. Variables with local scope are sometimes referred to as local
variables. All of the variables you created in this session have local scope and can only
be referenced from within the runClock() function. Function parameters also have local
scope and are not recognized outside of the function in which they are used.

Variables not declared within functions have global scope and can be referenced
from anywhere within the script file or from within other script files. Variables with
global scope are often referred to as global variables.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 734

Running Timed Commands
You have completed the functions required for the countdown clock, but the clock is
largely static, changing only when the page is reloaded by the browser. Hector wants
the clock to be updated constantly so that it always shows the current time and the
time remaining until the New Year’s Bash. To do this, you need to rerun the runClock()
function at specified times. JavaScript provides two methods for doing this: time-
delayed commands and timed-interval commands.

Working with Time-Delayed Commands
A time-delayed command is a JavaScript command that is run after a specified
amount of time has passed. The time delay is defined using the following
setTimeout() method

setTimeout("command", delay);

where command is a JavaScript command and delay is the delay time in milliseconds
before a browser runs the command. The command must be placed within either
double or single quotation marks. For example, the following command sets a
5-millisecond delay before a browser runs the runClock() function:

setTimeout("runClock()", 5);

In some JavaScript programs, you may want to cancel a time-delayed command.
This can be necessary when other user actions remove the need to run the command.
Time-delayed commands are canceled using the following statement:

clearTimeout();

There is no limit to the number of time-delayed commands a browser can process.
To distinguish one time-delayed command from another, you assign a unique
identification to each command using the statement

var timeID = setTimeout("command", delay);

where timeID is a variable that stores the ID of the time-delayed command. After
you have assigned an ID to the command, you can cancel it using the following
clearTimeout() method

clearTimeout(timeID);

where once again timeID is the variable that stores the ID of the command.

Running Commands at Specified Intervals
The other way to time JavaScript commands is by using a timed-interval command,
which instructs browsers to run the same command repeatedly at a specified interval.
Timed-interval commands are applied using the following setInterval() method

setInterval("command", interval);

where interval is the interval in milliseconds before the command is run again.
Timed-interval commands are halted using the following statement:

clearInterval();

As with time-delayed commands, you may have several timed-interval commands
running simultaneously. To distinguish one timed-interval command from another, you
store the time ID in a variable as follows

var timeID = setInterval("command", interval);

and halt the timed-interval command by applying the clearInterval() method with
timeID as the parameter value:

clearInterval(timeID);

With timed-interval com-
mands, the first execution
of the command occurs
after a delay equal to the
size of the time interval.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 735

An important point to remember about the setTimeout() and setInterval()
methods is that after a browser processes a request to run a command at a later
time, the browser doesn’t stop. Instead, the browser processes the next commands
in the script without delay. For example, you might try to run three functions at
50-millisecond intervals using the following structure:

setTimeout("function1()", 50);
setTimeout("function2()", 50);
setTimeout("function3()", 50);

However, a browser would execute this code by running all three functions almost
simultaneously. To run the functions with a separation of about 50 milliseconds between
one function and the next, you would need to use three different delay times, as follows:

setTimeout("function1()", 50);
setTimeout("function2()", 100);
setTimeout("function3()", 150);

In this case, a user’s browser would run the first function after 50 milliseconds, the
second function 50 milliseconds after that, and the third function after another
50 milliseconds have passed.

R
E
FE

R
E
N
C
E

Running Timed Commands

• To run a command after a delay, use the method

var timeID = setTimeout("command", delay)

where command is the command to be run, delay is the delay time in milliseconds, and
timeID is a variable that stores the ID associated with the time-delayed command.

• To repeat a command at set intervals, use the method

var timeID = setInterval("command", interval)

where interval is the time, in milliseconds, between repetitions of the command.
• To cancel a specific time-delayed command, use the method

clearTimeout(timeID)

where timeID is the ID of the time-delayed command.
• To clear all time-delayed commands, use the following method:

clearTimeout()

• To cancel a repeated command, use the method

clearInterval(timeID)

where timeID is the ID of the repeated command.
• To clear all repeated commands, use the following method:

clearInterval()

Use the setInterval() method to repeatedly run the runClock() function. Because
the function should run once every second, set the interval length to 1000 milliseconds
using the command:

setInterval("runClock()", 1000);

Add this command to the tny_script.js file now.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 736

To run the runClock() function every second:
w 1. Return to the tny_script.js file in your editor and, directly below the

runClock() command, insert the following:
setInterval("runClock()", 1000);

Figure 9–38 highlights the code to run the timed-interval command.

Figure 9–38 Repeating the runClock() function

repeats the runClock()
function every second

w 2. Save your changes to the file and then reload tny_clock.html in your browser.

w 3. Verify that every second the time value and the countdown value change as
the date of the New Year’s Eve Bash comes ever closer.

You have completed the countdown clock for the New Year’s Bash. Hector will continue
to work on the event’s website and get back to you with any new projects or concerns.

Controlling How JavaScript Works with
Numeric Values
As you perform mathematical calculations using JavaScript, you will encounter
situations in which you need to work with the properties of numeric values themselves.
JavaScript provides several methods that allow you to examine the properties of
numbers and specify how they are displayed on a web page.

Handling Illegal Operations
Some mathematical operations can return results that are not numeric values. For
example, you cannot divide a number by a text string. An expression such as 5/"A"
will return the value NaN, which stands for “Not A Number” and is JavaScript’s way of
indicating an illegal operation that should involve only numeric values, but doesn’t. You
can check for the presence of this particular error using the following isNaN() function

isNaN(value)

where value is the value or variable you want to test for being numeric. The isNaN()
function returns a Boolean value of true if the value is not numeric and false
otherwise. The use of the isNaN() function is one way to locate illegal operations in
code in which non-numeric values are treated as numeric.

Another illegal operation is dividing a number by 0, which returns a value of
Infinity, indicating a numeric calculation whose result is greater than the largest
numeric value supported by JavaScript. An Infinity value is also generated for an
operation whose result is less than the smallest numeric value. JavaScript is limited
to numeric values that fall between approximately 1.8 × 10–308 and 1.8 × 10308. Any
operation that exceeds those bounds, such as attempting to divide a number by 0,
causes JavaScript to assign a value of Infinity to the result. You can check for this
outcome using the function

isFinite(value)

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 737

where value is the value you want to test for being finite. Like the isNaN() function,
the isFinite() function returns a Boolean value of true if the value is a finite number
falling within JavaScript’s acceptable range and false if the numeric value falls outside
that range or if the value is not a number at all.

Defining a Number Format
When JavaScript displays a numeric value, it stores that value to 16 decimal places of
accuracy. This can result in long numeric strings of digits being displayed by browsers.
For example, a value such as 1/3 is stored as 0.3333333333333333.

It is rare that will you need to display a calculated value to 16 decimal places.
To control the number of digits displayed by browsers, you can apply the following
toFixed() method

value.toFixed(n)

where value is the value or variable and n is the number of decimal places that should
be displayed in the output. The following examples show the toFixed() method
applied to different numeric values:

var testValue = 2.835;
testValue.toFixed(0) // returns "3"
testValue.toFixed(1) // returns "2.8"
testValue.toFixed(2) // returns "2.84"

Note that the toFixed() method limits the number of decimals displayed by a value
and converts the value into a text string. Also, the toFixed() method rounds the last
digit in an expression rather than truncating it.

Converting Between Numbers and Text
Sometimes, you might need to convert a number to a text string and vice versa. One way
to convert a number to a text string is by using the + operator to add a text string to a
number. For example, the following code uses the + operator to concatenate a numeric
value with an empty text string. The result is a text string containing the characters 123.

testNumber = 123; // numeric value
testString = testNumber + ""; // text string

To convert a text string to a number, you can apply an arithmetic operator (other
than the + operator) to the text string. The following code takes the text string 123 and
multiplies it by 1. JavaScript converts the text string “123” to the numeric value 123.

testString = "123"; // text string
testNumber = testString*1; // numeric value

Another way of converting a text string to a numeric value is to use the following
parseInt() function, which extracts the leading integer value from a text string

parseInt(text)

where text is the text string or variable from which you want to extract the leading
integer value. The parseInt() function returns the integer value from the text string,
discarding any non-integer characters. If a text string does not begin with an integer,
the function returns the value NaN, indicating that the text string contains no accessible
number. The following are some sample values returned by the parseInt() function:

parseInt("120 lbs"); // returns 120
parseInt("120.88 lbs"); // returns 120
parseInt("weight equals 120 lbs"); // returns NaN

Figure 9–39 summarizes the different JavaScript functions and methods used to work
with numeric values.

A program that reports a
run-time or logical error
may have a mismatched
data value; you can use
the isFinite() and
isNaN() functions to
determine the state of
your data values.

You can use the
parseFloat() function
to extract decimal values
from text strings.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 738

Figure 9–39 Numerical functions and methods

Numerical Function Description
isFinite(value) Indicates whether value is finite and a real number

isNaN(value) Indicates whether value is a number

parseFloat(string) Extracts the first numeric value from the text string

parseInt(string) Extracts the first integer value from the text string

Numerical Method Description
value.toExponential(n) Returns a text string displaying value in exponential

notation with n digits to the right of the decimal point

value.toFixed(n) Returns a text string displaying value to n decimal
places

value.toPrecision(n) Returns a text string displaying value to n significant
digits either to the left or to the right of the decimal point

You don’t need to use the parseInt() or other numeric functions in your code. At
this point, you can close any open files or applications.

PR
O
SK

IL
LS

Problem Solving: Fixing Common Programming Mistakes

When you begin writing JavaScript programs, you will invariably encounter mistakes in
your code. Some common sources of programming errors include:

• Misspelling a variable name: For example, if you named a variable ListPrice, then
misspellings or incorrect capitalization—such as listprice, ListPrice, or
list_price—will result in the program failing to run correctly.

• Mismatched parentheses or braces: The following code results in an error because
the function lacks the closing brace:

function Area(width, height) {
 var size = width*height;

• Mismatched quotes: If you neglect the closing quotes around a text string,
JavaScript treats the text string as an object or variable, resulting in an error. The
 following code results in an error because the closing double quote is missing from
the firstName variable:

var firstName = "Sean";
var lastName = "Lee";

• Missing quotes: When you combine several text strings using the + symbol, you
might neglect to quote all text strings. For example, the following code generates
an error because of the missing quotes around the
 tag:

document.write("MidWest Student Union" +
);

As you become more experienced, you will be able to quickly spot these types of
errors, making it easier for you to debug your programs.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 739

R
E
V
IE

W

Session 9.3 Quick Check

 1. The command to increase the value of the thisDay variable by 1, using the
increment operator is:
a. thisDay+
b. thisDay++
c. incr(thisDay)
d. increment(thisDay)

 2. Rewrite the following command using an assignment operator: income =
income – taxes;
a. income = - taxes
b. income -- taxes
c. income –= taxes
d. income/taxes -

 3. Which expression returns the value of dailyIncome, rounded up to the next
highest integer?
a. Math.round(dailyIncome)
b. Math.int(dailyIncome)
c. Math.roundup(dailyIncome)
d. Math.ceil(dailyIncome)

 4. The area of a circle is πr2 where r is the circle’s radius. Which JavaScript
expression returns a circle’s area where the radius has been stored in a vari-
able named radius?
a. PI()*radius**2
b. PI*radius^^2
c. Math.PI*Math.pow(radius, 2)
d. Math.PI*radius*2

 5. Which command calls the calcCirArea() function using a value of 15 for the
circle’s radius and storing the result in a variable named finalArea?
a. finalArea = calCirArea 15;
b. finalArea = calCirArea(radius = 15);
c. finalArea = radius.calCirArea();
d. finalArea = calcCirArea(15);

 6. Variables that can be referenced only within the function in which they are
created have:
a. function scope
b. global scope
c. local scope
d. nested scope

 7. Which command runs the init() function after a 5-second delay?
a. setDelay("init()", 5000);
b. setDelay("init()", 5);
c. setTimeout("init()", 5000);
d. setTime("init()", 5);

 8. Which command runs the init() function once every 5 seconds?
a. setInterval("init()", 5);
b. setInterval("init()", 5000);
c. repeat("init()", 5);
d. repeatFunction("init()", 5000);

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 740

Coding Challenge 1

Data files needed for this Coding Challenge: code9-1_txt.html, clock9-1_txt.js, code9-1_styles.css,
segment14.ttf, segment14.woff

You are working on a JavaScript clock that will show the date, day of the week, and time. The clock
will update every second. Figure 9–40 shows a preview of the completed page.

C
O

D
E

Figure 9–40 Coding Challenge 9-1 example page

Do the following:

 1. Open the code9-1_txt.html and clock9-1_txt.js files from the html09 c code1 folder. Enter
your name and the date in each document and save the files as code9-1.html and clock9-1.js
respectively.

 2. Go to the code9-1.html file in your editor. Within the head section insert a script element
connecting the page to the clock9-1.js file. Add the defer attribute to the script element to
defer the loading of the script until after the page contents load.

 3. Study the contents of the file and then save your changes.
 4. Go to the clock9-1.js file in your editor. Directly below the initial comment section, insert the

runClock() function. Within the function do the following:
a. Declare the thisDay variable containing the current date using the new Date() command.
b. Create the thisDate variable containing the text string of the current date by applying the
toLocaleDateString() method to the thisDay variable.

c. Create the thisDayNum variable to store the number of the current weekday by applying the
getDay() method to the thisDay variable.

d. Create the thisWeekday variable by storing the value returned by the getWeekday() function
using thisDayNum as the function value.

e. Create the thisTime variable containing the text string of the current date by applying the
toLocaleTimeString() method to the thisDay variable.

f. Using the textContent property, change the text stored in the document element with the
ID "date" to the value of the thisDate variable, the text stored in the document with element
with "wday" ID to the value of the thisWeekday variable, and the text stored in the document
element with the ID "time" to the value of the thisTime variable.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 741

 5. Directly before the runClock() function insert a statement to run the runClock() function and then
another statement that uses the setInterval() method to run the runClock() function every
second.

 6. Save your changes to the file and then open the code9-1.html file in your browser. Verify that the
page shows the current date, weekday, and time, and that the clock automatically updates every
second.

 7. Submit the completed file to your instructor.

Coding Challenge 2

Data Files needed for this Coding Challenge: code9-2_txt.html, countdown9-2_txt.js,
code9-2_styles.css, , segment14.ttf, segment14.woff

Figure 9–41 shows a preview of a page containing a countdown clock that counts down from 10
seconds to zero. When zero is reached, the page will show the message "Time’s Up".

C
O

D
E

Do the following:

 1. Open the code9-2_txt.html and countdown9-2_txt.js files from the html09 c code2 folder.
Enter your name and the date in each document and save the files as code9-2.html and
countdown9-2.js respectively.

 2. Go to the code9-2.html file in your editor. Within the head section insert a script element
connecting the page to the countdown9-2.js file. Add the defer attribute to the script ele-
ment. Save your changes to the file.

 3. Go to the countdown9-2.js file in your editor. Directly below the initial comment section,
declare the secsLeft variable, setting its initial value to 10.

 4. Create the countdown() function. Within the function add the following:
a. Declare the secsString variable by calling the addLeadingZero() function using the secsLeft

variable as the function value. The addLeadingZero() function is used to add leading zeroes to
numeric values from 0 to 9.

b. Change the text content of the document element with the ID "seconds" to the value of the
secsString variable.

c. Run the checkCountdown() function to determine whether the end of the countdown has
been reached.

d. Use the decrement operator to reduce the value of the secsLeft variable by 1.

Figure 9–41 Coding Challenge 9-2 example page

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 742

 5. Create the stopCountdown() function to the stop the countdown when 0 is reached. Add the fol-
lowing commands to the function:
a. Change the text content of the document with the ID "Alert" to the text string "Time’s Up".
b. Use the clearInterval() method to the clear the repeating command with the timeID

variable clockID.
 6. Go back to the top of the file and directly after the command to declare the secsLeft variable,

insert a command using the setInterval() method to run the countdown() function every
second. Store the time ID associated with the repeating command in the clockID variable.

 7. Save your changes to the file and then open the code9-2.html file in your browser. Verify that the
page shows a countdown from 10 down to 0 seconds and when 0 seconds is reached, the page
shows the message "Time’s Up".

 8. Submit the completed file to your instructor.

Coding Challenge 3

Data Files needed for this Coding Challenge: code9-3_txt.html, clockface9-3_txt.js,
code9-3_styles.css, clockface.png, hours.png, minutes.png, seconds.png

Figure 9–42 shows a preview of a page containing an analog clock with moving second, minute,
and hour hands.

C
O

D
E

Do the following:

 1. Open the code9-3_txt.html and clockface9-3_txt.js files from the html09 c code3 folder. Enter
your name and the date in each document and save the files as code9-3.html and clockface9-3.js
respectively.

 2. Go to the code9-3.html file in your editor. Within the head section insert a script element connect-
ing the page to the clockface9-3.js file. Add the defer attribute to the script element. Save your
changes to the file.

 3. Go to the clockface9-3.js file in your editor. Below the initial comment section insert the moveHands()
function that moves the three hands of the analog clock. Add the following to the function:
a. Create a variable named nowTime that contains the current date and time.
b. Create the nowSeconds, nowMinutes, and nowHours variables containing the seconds, minutes,

and hours values from the nowTime variable.
c. Calculate the angle that the second hand makes on the clock face by multiplying the nowSeconds

value by 6. Store the result in the secondsAngle variable.

Figure 9–42 Coding Challenge 9-3 example page

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 743

d. Determine the angle that the minute hand makes on the clock face by calculating the
following expression:

 (nowMinutes + nowSeconds/60)*6

 Store the calculated value in the minutesAngle variable.
e. Determine the angle that the hour hand makes on the clock face by calculating the following

expression:

 (nowHours + nowSeconds/3600 + nowMinutes/60)*30

 Store the calculated value in the hoursAngle variable.
f. Call the rotateHand() function using secondsAngle and "seconds" as the argument value

to rotate the image of the second hand. Call the rotateHand() function again using the
minutesAngle and "minutes" as the argument values. Call the rotateHand() function one last
time using the hoursAngle and "hours" as the argument values.

 4. Directly below the moveHands() function insert a command to run the moveHands() function
and then use the setInterval() method to run the moveHands() method every second.

 5. Save your changes to the file and then open the code9-3.html file in your browser. Verify that
the page shows an analog clock face with the current time and that the hands of the clock move
as the time changes.

 6. Submit the completed file to your instructor.

Coding Challenge 4

Data Files needed for this Coding Challenge: code9-4_txt.html, debug9-4_txt.js, code9-4_styles.css,
slide1.jpg - slide14.jpg

You can use JavaScript to display a random gallery of images. A page of a random gallery of images
of the International Space Station has been created for you, but there are errors in the code. Locate
and fix the errors to display the gallery. One of the images with its caption is shown in Figure 9–43.

D
E

B
U

G

Figure 9–43 Coding Challenge 9-4 example page

N
A

SA

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 744

Do the following:

 1. Open the code9-4_txt.html and debug9-4_txt.js files from the html09 c code4 folder. Enter your
name and the date in each document and save the files as code9-4.html and code9-4_debug.js
respectively.

 2. Go to the code9-4.html file in your editor. There is a mistake in the script element in that
the external JavaScript will be opened and run before the page is completely loaded. Fix the
script element so that it loads the script file only once the page is loaded.

 3. Save your changes and go to the debug9-4.js file in your editor.

 4. The slide images should update every 5 seconds. Fix the parameter values for the
setInterval() method so that the showImage() function is run every 5 seconds.

 5. There are several mistakes in the code in which items that should be quoted are not. Locate and
fix those errors.

 6. Use of uppercase and lowercase letters is another source of error. Find and fix all situations in
which variable names or JavaScript commands are written with improper case.

 7. Save your changes to the file.

 8. Open the code9-4.html file in your browser. When the page is free of errors, you should see a
random image every 5 seconds. If the page is not working, you can use the Developer tools in
your browser to locate any errors remaining in the code.

 9. Submit the completed file to your instructor.

Review Assignments

Data Files needed for the Review Assignments: tny_july_txt.html, tny_timer_txt.js, 2 CSS files,
1 PNG file, 1 TTF file, 1 WOFF file

 Hector wants you to create a countdown clock page for the Tulsa Summer Party held on July 4th of
every year. He wants the page to show the current date and time and to include a timer that counts
down to the start of the fireworks at 9 p.m. on the 4th. Hector has already completed the page
 content and needs you to write the JavaScript code. A preview of the completed page for a sample
date and time is shown in Figure 9–44.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 9–44 Tulsa Summer Party

© jbdphotography/Shutterstock.com; © Aija Lehtonen/Shutterstock.com; Source: www.1001fonts.com

Complete the following:

 1. Use your editor to open the tny_july_txt.html and tny_timer_txt.js files from the html09 c review
folder. Enter your name and the date in the comment section of each file, and save them as
tny_july.html and tny_timer.js respectively.

 2. Go to the tny_july.html file in your editor. Directly above the closing </head> tag, insert a
script element that links to the tny_timer.js file. Defer the loading of the script file until the web
page loads.

 3. Take some time to study the content and structure of the file, paying close attention to the id
attributes applied to different page elements. Save your changes to the document.

 4. Go to the tny_timer.js file in your editor. At the top of the file, insert a statement to tell the
browser to apply strict usage of the JavaScript code in the file.

 5. Directly above the nextJuly4() function, insert a function named showClock() that has no
parameters. Within the showClock() function, complete Steps a through g.
a. Declare a variable named thisDay that stores a Date object containing the date May 19, 2021

at 9:31:27 a.m.
b. Declare a variable named localDate that contains the text of the date from the thisDay

variable using local conventions. Declare another variable named localTime that contains the
text of the time stored in the thisDay variable using local conventions.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 745

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 746

c. Within the inner HTML of the page element with the ID currentTime, write the following
code
datetime
where date and time are the values of the localDate and localTime variables.

d. Hector has supplied you with a function named nextJuly4() that returns the date of the next
4th of July. Call the nextJuly4() function using thisDay as the parameter value and store the
date returned by the function in the j4Date variable.

e. The countdown clock should count down to 9 p.m. on the 4th of July. Apply the setHours()
method to the j4Date variable to change the hours value to 9 p.m. (Hint: Express the value for
9 p.m. in 24-hour time.)

f. Create variables named days, hrs, mins, and secs containing the days, hours, minutes, and
seconds until 9 p.m. on the next 4th of July. (Hint: Use the code from the tny_script.js file in
the tutorial case as a guide for calculating these variable values.)

g. Change the text content of the elements with the IDs "dLeft", "hLeft", "mLeft", and "sLeft" to the
values of the days, hrs, mins, and secs variables rounded down to the next lowest integer.

 6. Directly after the opening comment section in the file, insert a command to call the showClock()
function.

 7. After the command that calls the showClock() function, insert a command that runs the
showClock() function every second.

 8. Document your work in this script file with comments.
 9. Save your changes to the file and then open the tny_july.html file in your browser. Verify that the

page shows the date and time of May 19, 2021 at 9:31:27 a.m., and that the countdown clock
shows that Summer Party fireworks will begin in 46 days, 11 hours, 28 minutes, and 33 seconds.
The countdown clock will not change because the script uses a fixed date and time for the
thisDay variable.

 10. Return to the tny_timer.js file in your editor. Change the statement that declares the thisDay
variable so that it contains the current date and time rather than a specific date and time.

 11. Save your changes to the file and then reload the tny_july.html file in your browser. Verify that
the countdown clock changes every second as it counts down the time until the start of the
fireworks at 9 p.m. on the 4th of July.

Case Problem 1

Data Files needed for this Case Problem: bc_union_txt.html, bc_today_txt.css, 2 CSS files,
4 PNG files

Bridger College Student Union Sean Baris manages the website for the student union at Bridger
College in Bozeman, Montana. The student union provides daily activities for the students on
 campus. As website manager, part of Sean’s job is to keep the site up to date on the latest activities
sponsored by the union. At the beginning of each week, he revises a set of seven web pages detailing
the events for each day in the upcoming week.

 Sean would like the website to display the current day’s schedule within an aside element. To do
this, the page must determine the day of the week and then load the appropriate HTML code into
the element. He would also like the Today at the Union page to display the current day and date.
Figure 9–45 shows a preview of the page he wants you to create.

07140_Tut09_ptg01_681-750.indd 746 8/7/19 7:52 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 747

© Rawpixel.com/Shutterstock; Sources: openclipart.org; Source: Facebook; Source: Twitter, Inc.

Figure 9–45 Daily events at the Bridger College Student Union

Complete the following:

 1. Use your editor to open the bc_union_txt.html and bc_today_txt.js files from the html09 c case1
folder. Enter your name and the date in the comment section of each file, and save them as
bc_union.html and bc_today.js respectively.

 2. Go to the bc_union.html file in your editor. Directly above the closing </head> tag, insert a
script element that links the page to the bc_today.js file. Defer the loading of the script until
after the rest of the page is loaded by the browser.

 3. Study the contents of the file and then save your changes.
 4. Go to the bc_today.js file in your editor. At the top of the file, insert a statement indicating that

the code will be handled by the browser assuming strict usage.
 Note that within the file is the getEvent() function, which returns the HTML code for the daily

events at the union given a day number ranging from 0 (Sunday) to 6 (Saturday).
 5. Declare the thisDate variable containing the Date object for the date October 12, 2021.
 6. Declare the dateString variable containing the text of the thisDate variable using local

conventions.
 7. Declare the dateHTML variable containing the following text string
 <h2>date</h2>
 where date is the value of the dateString variable.

07140_Tut09_ptg01_681-750.indd 747 8/31/19 8:23 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 748

 8. Create the thisDay variable containing the day of the week number from the thisDate variable.
(Hint: Use the getDay() method.)

 9. Using the thisDay variable as the parameter value, call the getEvent() function to get the HTML
code of that day’s events and store that value in a variable named eventHTML.

 10. Applying the insertAdjacentHTML() method to the page element with the ID unionToday,
insert the value of the dateHTML plus the eventHTML variables before the end of the element
contents.

 11. Document your code with descriptive comments.
 12. Save your changes to the file and then load bc_union.html in your browser. Verify that the sidebar

shows both the date “10/12/2021” formatted as an h2 heading and the daily events for that date
formatted as a description list. Your content should resemble that shown in Figure 9–45.

 13. Return to the bc_today.js file and test your code by changing the date in the thisDate variable
from 10/13/2021 up to 10/19/2021. Verify that a different set of events is listed for each date
when you refresh the page in your browser.

 14. Return to the bc_today.js file and change the value of the thisDate variable so that it uses the
current date and time.

 15. Reload the bc_union.html file in your browser to show the date and the events for the current
day of the week.

Case Problem 2

Data Files needed for this Case Problem: ja_vynes_txt.html, ja_quote_txt.js, 2 CSS files,
4 PNG files, 1 TTF file, 1 WOFF file

Austen Vynes Emelia Dawes shares her passion for the works of Jane Austen by managing a website
named Austen Vynes dedicated to the writer and her works. Emelia is revising the layout and design
of her website and would like your assistance in redesigning the front page. She wants the front page
to display a random Jane Austen quote every time the page is loaded by the browser. Emelia asks you
to write a JavaScript program to supply a randomly selected quote. A preview of the page is shown in
Figure 9–46.

07140_Tut09_ptg01_681-750.indd 748 8/7/19 7:52 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 9 Getting Started with JavaScript | HTML 5 and CSS HTML 749

Figure 9–46 Random quote on the Austen Vynes page

Sources: openclipart.org; Patrick Carey; British National Archives; A Memoir of Jane Austen by her nephew J. E. Austen-Leigh,
Vicar of Bray, Berks. London: Richard Bentley, New Burlington Street, Publisher in Ordinary to her Majesty, 1870

Complete the following:

 1. Use your editor to open the ja_vynes_txt.html and ja_quote_txt.js files from the html09 c case2
folder. Enter your name and the date in the comment section of each file, and save them as
ja_vynes.html and ja_quote.js respectively.

 2. Go to the ja_vynes.html file in your editor. Directly above the closing </head> tag, insert a
script element that links the page to the ja_quote.js file. Defer the loading of the script file
until the rest of the page is loaded by the browser.

 3. Study the contents of the file and then save your changes.
 4. Go to the ja_quote.js file in your editor. At the top of the file, insert a statement indicating that

the code will be handled by the browser assuming strict usage.
 5. Directly below the comment section, insert a function named randomInt that will be

used to generate a random integer. Specify two parameters for the function named lowest and
size. The lowest parameter will specify the lowest possible value for the random integer and the
size parameter will set the number of integers to be generated. Use those two parameter values
and the Math.floor() and Math.random() methods to return a random integer within the
specified range.

07140_Tut09_ptg01_681-750.indd 749 8/7/19 7:52 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 9 Getting Started with JavaScriptHTML 750

 6. Above the randomInt() function insert a command to call the function, generating a random
integer from 0 to 9. (Hint: Remember that the size of this interval is 10 because it includes 0 in
its range.) Store the result from the function in the randomQ variable.

 7. Create a variable named quoteElem that references the first element in the document
that has the quote tag name.

 8. Call the getQuote() function using the randomQ variable as the parameter value to generate
a random Jane Austen quote. Display the text of the quote as the inner HTML code of the
quoteElem variable.

 9. Add appropriate comments to your code to document your work.
 10. Save your changes to the file and then open the ja_vynes.html file in your browser. Verify that a

random Jane Austen quote appears at the top of the page.
 11. Reload the page several times and verify that with each reloading, a different Austen quote

appears on the page.

07140_Tut09_ptg01_681-750.indd 750 8/7/19 7:52 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 751

STARTING DATA FILES

Exploring
Arrays, Loops,
and Conditional
Statements
Creating a Monthly Calendar

Case | The Lyman Hall Theater
With first-class concerts, performances from Broadway touring
companies, and shows from famous comics, singers, and other
entertainers, the Lyman Hall Theater is a popular attraction in
Brookhaven, Georgia. Lewis Kern is the center’s events manager
tasked with the job of updating the theater’s website.

Lewis wants your help with developing an event calendar application.
Rather than constructing the calendar manually, he wants you to write
a JavaScript program to automatically generate a web table for a given
calendar month, listing the events occurring at the theater during that
month. The application should be flexible enough to work with any
month so that Lewis only has to enter the event list each month. He
wants you to develop a prototype for the September calendar.

OBJECTIVES

Session 10.1
• Create an array
• Work with array properties and

methods

Session 10.2
• Create a program loop
• Work with the for loop
• Write comparison and logical

operators

Session 10.3
• Create a conditional statement
• Use the if statement

TUTORIAL 10

lht_sept_txt.html
lht_calendar_txt.js
+ 6 files

lht_events_txt.html
lht_table_txt.js
+ 6 files

code10-1_txt.html
gallery10-1_txt.js
+ 15 files

code10-2_txt.html
list10-2_txt.js
+ 1 file

code10-3_txt.html
days10-3_txt.js
+ 8 files

code10-4_txt.html
debug10-4_txt.js
+ 1 file

tutorial review code1

code2 code3 code4

html10

case1 case2

tc_cart_txt.html
tc_cart_txt.js
tc_order_txt.js
+ 10 files

vw_election_txt.html
vw_results_txt.js
+ 4 files

07140_Tut10_ptg01_751-822.indd 751 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 752

Session 10.1 Visual Overview:

The createCalendar()
function writes the
HTML code of the
calendar table.

An array is a collection
of values organized
under a single name.

The calCaption()
function writes the
calendar caption.

Arrays can be created using the object
constructor

var arrayName = new Array(values);

or using an array literal

var arrayName = [values];

Values within an array are referenced
using the format

array[i]

where array is the array name and i is
the index number of the value within
the array.

07140_Tut10_ptg01_751-822.indd 752 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 753

Creating and Using Arrays

The code written to the web page is:

<table id='calendar _ table'>
 <caption>September 2021</caption>
</table>

© Nejron Photo/Shutterstock.com

07140_Tut10_ptg01_751-822.indd 753 8/31/19 8:27 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 754

Introducing the Monthly Calendar
You and Lewis meet to discuss his idea for a monthly events calendar. He wants the
calendar to appear in the form of a web table with links to specific events placed
within the table cells. The appearance and placement of the calendar will be set using
a CSS style sheet. Figure 10–1 shows a preview of the monthly calendar you will create
for the Lyman Hall Theater website.

Figure 10–1 Monthly events calendar

monthly events
calendar generated
using JavaScript

current date
is highlighted

© Nejron Photo/Shutterstock.com

The program you create should be easily adaptable so that it can be used to create
other monthly calendars. Lewis wants the code that generates the calendar placed in the
lht_calendar.js file. The events listed in the calendar will be placed in the lht_events.js
file. Finally, the styles for the calendar will be placed in the lht_calendar.css style sheet
file. Lewis already has created the styles required for the calendar table, but he has
left the JavaScript coding to you. You will start by adding links to the lht_calendar.js

07140_Tut10_ptg01_751-822.indd 754 31/08/19 2:02 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 755

and lht_calendar.css files to a web page describing the September events at the Lyman
Hall Theater. You will work with the lht_events.js file later in this tutorial.

To access the September Events web page:
w 1. Use your editor to open the lht_sept_txt.html and lht_calendar_txt.js

files from the html10 c tutorial folder. Enter your name and the date in
the comment section of each file and save them as lht_sept.html and
lht_calendar.js respectively.

w 2. Return to the lht_sept.html file in your editor, and then add the following code
above the closing </head> tag to create links to both the calendar style sheet
and the JavaScript file that will generate the HTML code for the calendar:

<link href="lht_calendar.css" rel="stylesheet"/>
<script src="lht_calendar.js" defer></script>

Figure 10–2 highlights the revised code in the document head.

Figure 10–2 Linking to the style sheet and JavaScript file

Figure 10–3 Location of the calendar table

JavaScript �le that
will generate the
HTML code for
the calendar table

style sheet for the
calendar table

HTML code for the
calendar table will be
placed within this div
element

The calendar will be placed within a div element with the ID calendar.

w 3. Scroll down the file and, and, directly below the closing </article> tag,
insert the following div element:

<div id="calendar"></div>

Figure 10–3 highlights the location where the calendar will be placed.

w 4. Save your changes to the file.

Reviewing the Calendar Structure
The calendar you create will be constructed as a web table. Before you start writing the
code to create this table, you should understand the table’s structure. Lewis wants the
following class names and IDs assigned to the different parts of the table:

• The entire calendar is set in a web table with the ID calendar_table.
• The cell containing the calendar title has the ID calendar_head.

07140_Tut10_ptg01_751-822.indd 755 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 756

• The seven cells containing the days of the week abbreviations all belong to the class
calendar_weekdays.

• The cells containing the dates of the month all belong to the class calendar_dates.
• The cell containing the current date has the ID calendar_today.

These class and ID designations make it easier for page developers to assign
different styles to the different parts of the calendar. If developers want to change the
table’s appearance, they will not have to edit the JavaScript code to do so; instead, they
only will have to modify the style sheet.

Adding the calendar() Function
You will place the commands that generate the calendar within a single function
named createCalendar(). The initial code to generate the calendar follows:

var thisDay = new Date("September 24, 2021");
document.getElementById("calendar").innerHTML =
createCalendar(thisDay);

function createCalendar(calDate) {
 var calendarHTML = "<table id='calendar_table'>";
 calendarHTML += "</table>";
 return calendarHTML;
}

The thisDay variable stores the current date. For the purposes of this example, you will
set the date to September 24, 2021. The next line of the function stores the HTML code
for the calendar in the div element with the ID calendar that you have just created.
Initially this HTML code, taken from the createCalendar() function, consists only of the
opening and closing tags of the table element. Note that you place the value of the
id attribute within single quotes because the entire text string of HTML code is already
enclosed within double quotes.

To insert the initial code of the calendar app:
w 1. Return to the lht_calendar.js file in your editor. Insert following code at the

bottom of the file to set the calendar date:

/* Set the date displayed in the calendar */
var thisDay = new Date("September 24, 2021");

w 2. Next, add the following code to insert the HTML code of the calendar into the
web page:

/* Write the calendar to the element with the id "calendar" */
document.getElementById("calendar").innerHTML =
createCalendar(thisDay);

w 3. Finally, enter the initial code for the createCalendar() function that generates the
HTML code:

/* Function to generate the calendar table */
function createCalendar(calDate) {
 var calendarHTML = "<table id='calendar_table'>";
 calendarHTML += "</table>";
 return calendarHTML;
}

Figure 10–4 describes the code in the file.

When writing attribute
values, you need to enclose
the values within single
quotes while the text of
the HTML code is enclosed
within double quotes.

07140_Tut10_ptg01_751-822.indd 756 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 757

Figure 10–4 Initial code for the calendar app

sample date for
the calendar

writes the calendar
table to the web page

initial value of the
calendarHTML variable

the += assignment operator
adds a text string to the value
of the calendarHTML variable

the createCalendar()
function writes the
HTML code for the
calendar table

w 4. Save your changes to the file.

Next, you will start to write the code to create the contents of the calendar table. The
three main tasks to complete the calendar table are as follows:

• Create a caption displaying the month and the year
• Create the table row containing the names of the days of the week
• Create rows for each week in the month with cells for each day in the week

In this session, you will learn how to create a calendar table caption. In the next
session, you will complete the rest of the table.

Introducing Arrays
Lewis wants the calendar table caption to display the text Month Year, where Month
is the name of the month and Year is the four-digit year value. In the last tutorial, you
learned that you can use the getMonth() method of the JavaScript Date object to
extract a month number and the getFullYear() method to extract the four-digit year
value. For example, a Date object storing the date March 18, 2021 has a month value
of 2 (because month values start with 0 for the month of January) and a four-digit year
value of 2021. However, Lewis wants the month name rather than the month number
to appear in the table but, because no Date method returns the name of the month,
you will have to write code to associate each month number with a month name. One
way of doing this is by using an array.

An array is a collection of values organized under a single name. Each individual
value is associated with a number known as an index that distinguishes it from other
values in the array. Array values are referenced using the expression

array[i]

07140_Tut10_ptg01_751-822.indd 757 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 758

where array is the name of the array and i is the index of a specific value in the array.
Index values start with 0 so that the initial item in an array has an index value of 0, the
second item has an index value of 1, and so on. For example, the expression

monthName[4]

references the fifth (not the fourth) item in the monthName array.

Creating and Populating an Array
To create an array, you can apply the object constructor

var array = new Array(length);

where array is the name of the array and length is the number of items in the array. The
length value is optional; if you omit this parameter, the array expands automatically as
more items are added to it. However, by defining the length of an array, JavaScript will
allot only the amount of memory needed to generate the array so that the code runs more
efficiently. Thus, to create an array named monthName for the 12 month names, you
would enter the following statement:

var monthName = new Array(12);

Alternatively, you could omit the array length and enter the statement as follows:

var monthName = new Array();

Once you have created an array, you can populate it with values using the same
commands you use for any variable. The only difference is that you must specify both the
array name and the index number of the array item. The command to set the value of a
specific item in an array is

array[i] = value;

where value is the value assigned to the array item with the index value i. For example,
to insert month names in the monthName array, starting with January, you could enter the
following statements:

monthName[0] = "January";
monthName[1] = "February";
…
monthName[11] = "December";

Rather than writing each array value in a separate statement, you can populate the
entire array in a single statement using the following command

var array = new Array(values);

where values is a comma-separated list of the values in the array. The following
command places twelve month names into the monthName array in a single statement:

var monthName = new Array("January", "February", "March", "April",
"May", "June", "July", "August", "September", "October", "November",
"December");

The index numbers are based on the position of the values in the list. The first item in the
list (“January”) would have an index number 0, the second (“February”) would have an
index of 1, and so forth.

A final way to create an array is with an array literal, in which the array values are a
comma-separated list within a set of square brackets. The expression to create an array
literal is

var array = [values];

A common programming
mistake is to use paren-
thesis symbols () rather
than square brackets [] to
create and reference array
values.

07140_Tut10_ptg01_751-822.indd 758 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 759

Now that you have seen how to create and populate an array, you will create an
array of month names to use in your calendar application. You will insert the array in a
function named calCaption() whose purpose is to write the HTML code of the calendar
caption. The function has a single parameter named calDate that stores a Date object
containing the current date.

R
E
FE

R
E
N
C
E

Creating and Populating Arrays

• To create an array, use the object constructor

var array = new Array(length);

where array is the name of the array and length is the number of items in the array.
The optional length value sets the array to a specified size; if omitted, the array
expands as new items are added to it.

• To set the value of an item within an array, use the command

array[i] = value;

where i is the index of the array item and value is the value assigned to the item.
• To create and populate an array within a single command, use

var array = new Array(values);

where values is a comma-separated list of values.
• To create an array using the array literal format, use the following statement:

var array = [values];

where values are the values of the array. The following command uses the array literal
form to store an array of month names:

var monthName = ["January", "February", "March", "April", "May",
"June", "July", "August", "September", "October", "November",
"December"];

If you know the contents of your array, it is usually quicker and easier to set up your
array using the array literal notation.

Array values do not need to be the same data type. You can mix numeric values, text
strings, and other data types within a single array, as demonstrated by the following
statement:

var x = ["April", 3.14, true, null];

To create an empty array
literal that you populate
later in the program, leave
the brackets blank as in
the command var x = [];

To create the calCaption() function:
w 1. Return to the lht_calendar.js file in your editor.

w 2. At the bottom of the file, insert the following function to write the caption of
the calendar table and create the monthName array:

/* Function to write the calendar caption */
function calCaption(calDate) {
 // monthName array contains the list of month names
 var monthName = ["January", "February", "March", "April",
 "May", "June", "July", "August", "September",
 "October", "November", "December"];

07140_Tut10_ptg01_751-822.indd 759 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 760

w 3. Next, within the function, use the getMonth() and getFullYear()
methods to extract the month number and 4-digit year number from the
calDate parameter by entering the following commands:

// Determine the current month
var thisMonth = calDate.getMonth();

// Determine the current year
var thisYear = calDate.getFullYear();

w 4. Finally, complete the function by returning the caption tag for the calendar
containing the month name and 4-digit year number. To display the month
name, use the monthName array with the value of the thisMonth variable as
the index number. Enter the code:

 // Write the caption
 return "<caption>" + monthName[thisMonth] + " " + thisYear +
"</caption>";
}

w 5. Scroll up to the createCalendar() function and insert the following statement
directly before the command calendarHTML += "</table>";:

calendarHTML += calCaption(calDate);

This code calls the calCaption() function, which returns the HTML code of the
table caption. Figure 10–5 describes the newly added code.

Figure 10–5 The calCaption() function

displays the year based
on the extracted 4-digit
year value

displays the name of the
month drawn from the
monthName array

creates an array of
the month names

extracts the month
number of the
current month

returns the HTML
code for the table
caption

calls the calCaption()
function to insert
the HTML code for
the table caption

the calCaption()
function writes the
HTML code for the
table caption

extracts the 4-digit
year value

07140_Tut10_ptg01_751-822.indd 760 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 761

w 6. Save your changes to the file, and then open lht_sept.html in your browser.
Verify that the web page now shows the caption of the calendar table with
the September 2021 date as shown in Figure 10–6.

Figure 10–6 Calendar caption displayed in the web page

calendar table caption
written using JavaScript

Trouble? If the caption does not appear in the page, your code might contain
a mistake. Check your code against the code shown in the previous figures.
Common sources of error include forgetting to close all quoted text strings,
failing to match the use of uppercase and lowercase letters in function names
and variable names, misspelling function names and variable names, and
failing to close parentheses and brackets when required.

Next, you will explore the properties and methods associated with arrays.

Working with Array Length
A JavaScript array automatically expands in length as more items are added. To
determine the array’s current size, apply the following length property

array.length

where array is the name of the array. The value returned by the length property is
equal to one more than the highest index number in the array (because array indices
start at 0 rather than 1), so, if the highest number in the index is 11, then the value
returned would be 12.

JavaScript allows for the creation of sparse arrays, in which some array values are
undefined. As a result, the length value is not always the same as the number of array
values. For example, the following commands create a sparse array in which only the
first and last items have defined values:

var x = new Array();
x[0] = "Lewis";
x[99] = "80517";

07140_Tut10_ptg01_751-822.indd 761 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 762

R
E
FE

R
E
N
C
E

Specifying Array Length

• To determine the size of an array, use the property

array.length

where array is the name of the array and length is one more than the highest index
number in the array.

• To add an item to the end of an array, run the command

array[i] = value;

where i is an index value higher than the highest index currently in the array. If you
don’t know the highest index number, use the property array.length in place of i.

• To remove items from an array, run the command

array.length = value;

where value is an integer that is smaller than the highest index currently in the array.

Note that you cannot reduce the value of the length property without removing items
from the end of your array. For example, the following command would reduce the
monthName array to the first three months—January, February, and March:

monthName.length = 3;

Increasing the value of the length property adds more items to an array, but the items
have null values until they are defined.

The value of the length property for this array is 100 even though it only contains
two values. Sparse arrays occur frequently in database applications involving customer
records where items such as mobile phone numbers or postal codes have not been
entered for every person.

You can add new items to
the end of any array using
the command array[array.
length] = value;

07140_Tut10_ptg01_751-822.indd 762 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 763

Reversing an Array
Arrays are associated with a collection of methods that allow you to change their
content, order, and size. You can also use these methods to combine different arrays
into a single array and to convert arrays into text strings. Although you will not need
to use these methods in the calendar app, you will examine them for future projects.

PR
O
SK

IL
LS

Problem Solving: Using Multidimensional Arrays

Many database applications need to store data in a rectangular format known as a
matrix, in which the values are arranged in a rectangular grid. The following is an
example of a matrix laid out in a grid of three rows and four columns:

 4 15 8 2
 1 3 18 6
 3 7 10 4

The rows and columns in a matrix form the basis for indices. For example, the
value 18 from this matrix is referenced using the index pair (2, 3) because the value 18
appears at the intersection of the second row and third column.

Although matrices are commonly used in databases (where each row might repre-
sent an individual and each column a characteristic of that individual), JavaScript does
not support matrices. However, you can mimic the behavior of matrices in JavaScript
by nesting one array within another in a structure called a multidimensional array. For
example, the following code creates the array mArray, which contains a collection of
nested arrays:

var mArray =
 [
 [4, 15, 8, 2],
 [1, 3, 18, 6],
 [3, 7, 10, 4]
];

Note that the values of this array match the values of the matrix shown above. In
this case, the first nested array matches the first row of the matrix, the second array
matches the second row, and the third array matches the third row. The values of the
nested arrays are matched with each of the four columns.

Values within a multidimensional array are referenced by the expression

array[x][y]

where x contains the index of the outer array (the row) and y contains the index of the
nested array (the column). Thus, the expression

mArray[1][2]

returns the value 18 from the matrix’s second row and third column (remember
that indices start with 0, not 1). The number of rows in a multidimensional array
is given by the length property. The number of columns can be determined by
retrieving the length property for the first row of the table. For example, the
expression

mArray[1].length

would return a value of 4 for the fours columns in mArray. Note that this approach
presumes that every row has the same number of columns. You can continue to nest
arrays in this fashion to create matrices of even higher dimensions.

07140_Tut10_ptg01_751-822.indd 763 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 764

By default, items are placed in an array either in the order in which they are defined
or explicitly by index number. JavaScript supports two methods for changing the order
of these items: reverse() and sort(). The reverse() method, as the name
suggests, reverses the order of items in an array, making the last items first and the
first items last. In the following set of commands, the reverse() method is used to
change the order of the values in the weekDay array:

var weekDay = ["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"];
weekDay.reverse();

After running the reverse() method, the weekDay array would contain the items in
the following order: “Sat”, “Fri”, “Thu”, “Wed”, “Tue”, “Mon”, and finally, “Sun”.

Sorting an Array
The sort() method rearranges array items in alphabetical order. This can cause
unexpected results if you apply the sort() method to data values that are not usually
sorted alphabetically. Applying the sort() method to numeric values, will sort the
values in order by their leading digits, rather than by their numerical values. Thus,
applying the sort() method in the following set of commands

var x = [3, 45, 1234, 24];
x.sort();

would result in the order 1234, 24, 3, 45 because this is the order of those numbers
when sorted by their leading digits. To correctly sort numeric data, you must create a
compare function that compares the values of two adjacent array items. The general
form of a compare function is

function fname(a, b) {
 return a negative, positive, or 0 value
}

where fname is the name of the compare function, and a and b are parameters that
represent a pair of array values. The function then returns a negative, positive, or zero
value based on the comparison of those values. If a negative value is returned, then a
is placed before b in the array. If a positive value is returned, then b is placed before
a, and finally, if a zero value is returned, a and b retain their original positions. The
compare function is applied to every pair of values in the array to ensure they are
sorted in the proper order.

The following compare function could be used to sort numeric values in
ascending order

function ascending(a, b) {
 return a - b;
}

whereas to sort numbers in a descending order, you could apply the following
function, which subtracts a from b, rather than b from a:

function descending(a, b) {
 return b - a;
}

Other compare functions are possible to deal with a wide variety of sorting rules, but
these two are the simplest for sorting arrays of numeric values.

The compare function is applied to the sort() method as follows

array.sort(fname)

07140_Tut10_ptg01_751-822.indd 764 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 765

IN
SI
G
H
T

Performing a Random Shuffle

For some applications, you will want to randomly rearrange the contents of an array.
For example, you might be writing a program to simulate a randomly shuffled deck
of cards. You can shuffle an array using the same sort() method you use to place
the array in a defined order; however, to place the items in a random order, you use a
compare function that randomly returns a positive, negative, or 0 value. The following
compare function employs a simple approach to this problem:

function randOrder(){
 return 0.5 – Math.random();
}

The following code demonstrates how this compare function could be used to
 randomly shuffle an array of poker cards:

var pokerDeck = new Array(52);
pokerDeck[0] = "2 of Clubs";
pokerDeck[1] = "3 of Clubs";
…
pokerDeck[51] = "Ace of Spades";
pokerDeck.sort(randOrder)

After running this command, the contents of the pokerDeck array will be placed in
random order. To reshuffle the array, you would simply rerun the sort() method with
the randOrder() function.

Extracting and Inserting Array Items
In some scripts, you might want to extract a section of an array, known as a subarray.
One way to create a subarray is with the following slice() method

array.slice(start, stop)

where start is the index value of the array item at which the slicing starts and stop is
the index value at which the slicing ends. Note that the stop index value is not included
in the subarray. The stop value is optional; if it is omitted, the array is sliced to its
end. The original contents of the array are unaffected after slicing, but the extracted
items can be stored in another array. For example, the following command slices the
monthName array, extracting only three summer months—June, July, August—and
storing them in the summerMonths array:

summerMonths = monthName.slice(5, 8);

Remember that arrays start with the index value 0, so the sixth month of the year (June)
has an index value of 5 and the ninth month of the year (September) has an index
value of 8.

Related to the slice() method is the following splice() method

array.splice(start, size, values)

where fname is the name of the compare function. For example, to use the ascending()
compare function to sort the x array described earlier in ascending numeric order, you
would run the following command:

x.sort(ascending)

After applying the sort() method with the ascending function, the values in the
x array would be sorted in ascending numeric order as: 3, 24, 45, and finally, 1234.

You can also sort an array
in descending order by
sorting it first in ascend-
ing order and then by
applying the reverse()
method to reverse the
sorted order of the array.

07140_Tut10_ptg01_751-822.indd 765 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 766

which is a general-purpose method for removing and inserting array items, where
start is the starting index in the array, size is the number of array items to remove
after the start index, and values is an optional comma-separated list of values to
insert into the array. If no values are specified, the splice method simply removes
items from the array.

The following statement employs the splice() method to remove the summer
months from the monthName array:

summerMonths = monthName.splice(5, 3);

However, to insert new abbreviations of month names into the monthName array,
you could apply the following splice() method which places the values “Jun”, “Jul”,
and “Aug” into the array starting with the 5th index number:

monthName.splice(5, 3, "Jun", "Jul", "Aug");

The important difference between the slice() and splice() methods is that
the splice() method always alters the original array, so you should not use the
splice() method if you want the original array left unaffected.

Using Arrays as Data Stacks
Arrays can be used to store information in a data structure known as a stack in which
new items are added to the top of the stack—or to the end of the array—much like a
person clearing a dinner table adds dishes to the top of a stack of dirty plates. A stack
data structure employs the last-in first-out (LIFO) principle in which the last items
added to the stack are the first ones removed. You encounter stack data structures when
using the Undo feature of some software applications, in which the last command you
performed is the first command that is undone.

JavaScript supports several methods to allow you to work with a stack of array items.
For example, the push() method appends new items to the end of an array. It has the
syntax

array.push(values)

where values is a comma-separated list of values to be appended to the end of the
array. To remove—or unstack—the last item, you apply the pop() method, as follows:

array.pop()

The following set of commands demonstrates how to use the push() and pop()
methods to employ the LIFO principle by adding and then removing items from a
data stack:

var x = ["a", "b", "c"];
x.push("d", "e"); // x = ["a", "b", "c", "d", "e"]
x.pop(); // x = ["a", "b", "c", "d"]
x.pop(); // x = ["a", "b", "c"]

In this code, the push() method adds two items to the end of the array, and then the
pop() method removes those last items one at a time.

A queue, which employs the first-in-first-out (FIFO) principle in which the first
item added to the data list is the first removed, is similar to a stack. You see the
FIFO principle in action in a line of people waiting to be served. For array data
that should be treated as a queue, you use the shift() method, which is similar
to the pop() method except that it removes the first array item, not the last item.
JavaScript also supports the unshift() method, which inserts new items at the
front of the array.

07140_Tut10_ptg01_751-822.indd 766 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 767

Figure 10–7 summarizes several other methods that can be applied to arrays. Arrays
are a powerful and useful feature of the JavaScript language. The methods associated with
arrays can be used to simplify and expand the capabilities of web page scripts.

Using Array Methods

• To reverse the order of items in an array, use the method

array.reverse()

where array is the name of the array.
• To sort an array in alphabetical order, use the following method:

array.sort();

• To sort an array in any order, use

array.sort(fname)

where fname is the name of a compare function that returns a positive, negative, or
0 value.

• To extract items from an array without affecting the array contents, use

array.slice(start, stop)

where start is the index of the array item at which the slicing starts and stop is the
index at which the slicing ends. If no stop value is provided, the array is sliced to the end
of the array.

• To remove items from an array, use

array.splice(start, size)

where start is the index of the array item at which the splicing starts and size is the
number of items to remove from the array. If no size value is specified, the array is
spliced to its end.

• To replace items in an array, use

array.splice(start, size, values)

where values is a comma-separated list of new values to replace the old values in
the array.

• To add new items to the end of an array, use

array.push(values)

where values is a comma-separated list of values.
• To remove the last item from an array, use the following method:

array.pop()

R
E
FE

R
E
N
C
E

07140_Tut10_ptg01_751-822.indd 767 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 768

Figure 10–7 Array methods

Method Description
copyWithin(target, start[, end]) Copies items within the array to the target index,

starting with the start index and ending with the
optional end index

concat(array1, array2,...) Joins the array to two or more arrays, creating a single
array containing the items from all the arrays

fill(value[, start][, end]) Fills the array with items having the value value, start-
ing from the start index and ending at the end index

indexOf(value[, start]) Searches the array, returning the index number of the
first element equal to value, starting from the optional
start index

join(separator) Joins all items in the array into a single text string; the
array items are separated using the text in the
separator parameter; if no separator is specified, a
comma is used

lastIndexOf(value[, start]) Searches backward through the array, returning the
index number of the first element equal to value,
 starting from the optional start index

pop() Removes the last item from the array

push(values) Appends the array with new items, where values is a
 comma-separated list of item values

reverse() Reverses the order of items in the array

shift() Removes the first item from the array

slice(start, stop) Extracts the array items starting with the start index
up to the stop index, returning a new subarray

array.splice(start, size, values) Extracts size items from the array starting with the
item with the index start; to insert new items into the
array, specify the array items in a comma-separated
values list

array.sort(fname) Sorts the array where fname is the name of a
function that returns a positive, negative, or 0 value;
if no function is specified, array is sorted in
 alphabetical order

array.toString() Converts the contents of the array to a text string with
the array values in a comma-separated list

array.unshift(values) Inserts new items at the start of the array, where values
is a comma-separated list of new values

You set up the first parts of the online calendar in this session. In the next sessions, you
will complete the monthly calendar by working with loops and conditional statements.

07140_Tut10_ptg01_751-822.indd 768 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 769

R
E
V
IE

W

Session 10.1 Quick Check

 1. Which command creates an array named dayNames using the object
 constructor form?
a. var dayNames = Array;
b. var dayNames is Array;
c. var dayNames = new Array();
d. var dayNames = Array();

 2. Which command uses the array literal form to create and populate the
 dayNames array with the abbreviations of weekdays (starting with Mon and
going through Fri)?
a. var dayNames = ("Mon", "Tue", "Wed", "Thu", "Fri");
b. var dayNames = ["Mon", "Tue", "Wed", "Thu", "Fri"];
c. var dayNames = {"Mon", "Tue", "Wed", "Thu", "Fri"};
d. All of the above

 3. Which command returns the third value from the dayNames array?
a. dayNames[2]
b. dayNames[3]
c. dayNames.3
d. dayNames:3

 4. Which command sorts the dayNames array in alphabetical order?
a. sort(dayNames);
b. daysNames.sort
c. Sort(dayNames);
d. dayNames.sort();

 5. Which command extracts the middle five values from the dayNames array?
a. dayNames.cut(1,6);
b. dayNames.cut(0,5);
c. dayNames.extract(0,5);
d. dayNames.slice(1, 6);

 6. An array in which some array values are undefined is a(n):
a. empty array
b. minor array
c. sparse array
d. multidimensional array

 7. To append a new item to an existing array, use the:
a. pop() method
b. push() method
c. add() method
d. All of the above

07140_Tut10_ptg01_751-822.indd 769 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 770

Session 10.2 Visual Overview:

A for loop is a
programming structure
in which a set of
commands is repeated
based on the changing
values of a counter
variable.

The same command block is
executed with different values of
the counter variable during each
iteration of the for loop.

The start expression
provides the starting
value of the counter
variable, i.

The continue expression
is a Boolean expression
that must be true for the
loop to continue.

The update expression
updates the counter
variable each time
through the loop.

07140_Tut10_ptg01_751-822.indd 770 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 771

Applying a Program Loop

The code created for the table row is as follows:

<tr>
 <th class='calendar _ weekdays'>SUN</th>
 <th class='calendar _ weekdays'>MON</th>
 <th class='calendar _ weekdays'>TUE</th>
 <th class='calendar _ weekdays'>WED</th>
 <th class='calendar _ weekdays'>THU</th>
 <th class='calendar _ weekdays'>FRI</th>
 <th class='calendar _ weekdays'>SAT</th>
</tr>

The days of the week are
written using a program loop
that repeats a set of similar
commands until a stopping
condition is met.

07140_Tut10_ptg01_751-822.indd 771 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 772

Working with Program Loops
Now that you are familiar with the properties and methods of arrays, you will return to
working on the calendar app. So far, you have created only the table caption displaying
the calendar’s month and year. The first row of the table will contain the three-letter
abbreviations of the seven days of the week, starting with SUN and continuing through
SAT. Each abbreviation needs to be placed within an element with the class name
calendar_weekdays using the following code:

<tr>
 <th class='calendar_weekdays'>SUN</th>
 <th class='calendar_weekdays'>MON</th>
 <th class='calendar_weekdays'>TUE</th>
 <th class='calendar_weekdays'>WED</th>
 <th class='calendar_weekdays'>THU</th>
 <th class='calendar_weekdays'>FRI</th>
 <th class='calendar_weekdays'>SAT</th>
</tr>

This code contains a lot of repetitive text with the same th element and class name
repeated seven times. Imagine if you had to repeat essentially the same string of
code dozens, hundreds, or even thousands of times—the code would become
unmanageably long. Programmers deal with this kind of situation by creating program
loops. A program loop is a set of commands executed repeatedly until a stopping
condition is met. Two commonly used program loops in JavaScript are for loops and
while loops.

Exploring the for Loop
In a for loop, a variable known as a counter variable is used to track the number of
times a block of commands is run. Each time through the loop, the value of the counter
variable is increased or decreased by a set amount. When the counter variable reaches
or exceeds a specified value, the for loop stops. The general structure of a for loop is

for (start; continue; update) {
 commands
}

where start is an expression that sets the initial value of a counter variable, continue
is a Boolean expression that must be true for the loop to continue, update is an
expression that indicates how the value of the counter variable should change each
time through the loop, and commands are the JavaScript statements that are run for
each loop.

Suppose you want to set a counter variable to range in value from 1 to 4 in
increments of 1. You could use the following expression to set the initial value of the
counter variable:

var i = 1;

The name of the counter variable in this example is i, which is a common variable
name often applied in program loops.

The next expression in the for loop structure defines the condition under which the
program loop continues. The following expression sets the loop to continue as long as
the value of the counter variable is less than or equal to 4:

i <= 4;

Finally, the following update expression uses the increment operator to indicate that
the value of the counter variable increases by 1 each time through the program loop:

i++;

07140_Tut10_ptg01_751-822.indd 772 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 773

Putting all of these expressions together, you get the following for loop:

for (var i = 1; i <= 4; i++) {
 commands
}

The collection of commands that is run each time through a loop is known collectively
as a command block, a feature you have already worked with in functions. A command
block is indicated by its opening and closing curly braces { }. The following is an
example of a for loop that adds the HTML code for four td elements to a table row:

var htmlCode = "<tr>";
for (var i = 1; i <= 4; i++) {
 htmlCode += "<td>" + i + "</td>";
}
htmlCode += "</tr>";

As shown in Figure 10–8, each time through the loop, the value displayed in the
table cell is changed by 1.

Figure 10–8 Writing HTML code with a for loop

<tr>
 <td>1</td>
 <td>2</td>
 <td>3</td>
 <td>4</td>
</tr>

var htmlCode = "<tr>";
for (var i = 1; i <= 4; i++) {
 htmlCode += "<td>" + i + "</td>";
}
htmlCode += "</tr>";

for loop

starting value of the
counter variable

continue
if true

update after
each loop

resulting HTML code

One for loop can be nested within another. Figure 10–9 shows the code used to
create a table with two rows and three columns.

07140_Tut10_ptg01_751-822.indd 773 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 774

Figure 10–9 Nested for loop

var htmlCode = "<table>";
for (var rowNum = 1; rowNum <= 2; rowNum++) {
 htmlCode += "<tr>";
 for (var colNum = 1; colNum <= 3; colNum++) {
 htmlCode += "<td>" + rowNum + "," + colNum + "</td>";
 }
 htmlCode += "</tr>";
}
htmlCode += "</table>";

nested
for loop

resulting HTML
code

<table>
 <tr>
 <td>1,1</td><td>1,2</td><td>1,3</td>
 </tr>
 <tr>
 <td>2,1</td><td>2,2</td><td>2,3</td>
 </tr>
</table>

This example uses two counter variables named rowNum and colNum. The
rowNum variable loops through the values 1 and 2 and for each of those values, the
colNum variable loops through the values 1, 2, and 3. Each time the value of the colNum
variable changes, a new cell is added to the table. Each time the value of the rowNum
variable changes, a new row is added to the table.

The update expression is not limited to increasing the counter by 1. You can use the
other operators introduced in the previous tutorial to create a wide variety of increment
patterns. Figure 10–10 shows a few of the many different ways of updating the value of
the counter variable in a for loop.

Figure 10–10 for loop counter values

for Loop Counter Values
for (var i = 1; i <= 5; i++) i = 1, 2, 3, 4, 5

for (var i = 5; i > 0; i--) i = 5, 4, 3, 2, 1

for (var i = 0; i <= 360; i+=60) i = 0, 60, 120, 180, 240, 360

for (var i = 1; i <= 64; i*=2) i = 1, 2, 4, 8, 16, 32, 64

Exploring the while Loop
The for loop is only one way of creating a program loop in JavaScript. The while
loop, in which a command block is run as long as a specific condition is met, is similar
to the for loop. However, unlike the for loop, the condition in a while loop does
not depend on the value of a counter variable. The while loop has the general syntax

while (continue) {
 commands
}

where continue is a Boolean expression that must be true for the command block to
be run; otherwise, the command block is skipped and the program loop ends.

07140_Tut10_ptg01_751-822.indd 774 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 775

The following code shows how to create the table shown earlier in Figure 10–8 as a
while loop:

var htmlCode = "<tr>";
var i = 1;
while (i <= 4) {
 htmlCode += "<td>" + i + "</td>";
 i++;
}

The while loop continues as long as the value of the i variable remains less than or
equal to 4. Each time through the command block, the loop writes the value of i into a
table cell and then increases the counter by 1.

Like for loops, while loops can be nested within one another. The following
code demonstrates how to create the 2 × 3 table shown earlier in Figure 10–9 using
nested while loops:

var htmlCode = "<table>";
var rowNum = 1;
while (rowNum <= 2) {
 htmlCode += "<tr>";
 var colNum = 1;
 while (colNum <= 3) {
 htmlCode += "<td>" + rowNum + "," + colNum + "</td>";
 colNum++;
 }
 htmlCode += "</tr>";
 rowNum++;
}

Again, the initial values of the counter variables are set before the while loops are run
and are updated within the command blocks.

Because for loops and while loops share many of the same characteristics,
which one you choose for a given application is often a matter of personal preference.
In general, for loops are used whenever you have a counter variable and while
loops are used for conditions that don’t easily lend themselves to using counters. For
example, you could construct a while loop that runs as long as the current time falls
within a specified time interval.

Exploring the do/while Loop
In the for and while loops, the test to determine whether to continue the loop is
made before the command block is run. JavaScript also supports a program loop called
do/while that tests the condition to continue the loop right after the latest command
block is run. The structure of the do/while loop is as follows:

do {
 commands
 }
while (continue);

For example, the following code is used to create the table shown earlier in Figure 10–8 as
a do/while loop:

var htmlCode = "<tr>";
var i = 1;
do {
 htmlCode += "<td>" + i + "</td>";
 i++;
}
while (i <= 4);
htmlCode += "</tr>";

Use a for loop when your
loop contains a counter
variable. Use a while loop
for a more general
stopping condition.

07140_Tut10_ptg01_751-822.indd 775 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 776

The do/while loop is usually used when the program loop should run at least once
before testing for the stopping condition.

The <= symbol used in these program loops is an example of a comparison operator.
Before continuing your work on the calendar app, you examine the different types of
comparison operators supported by JavaScript.

Comparison and Logical Operators
A comparison operator is an operator that compares the value of one expression to
another returning a Boolean value indicating whether the comparison is true or not.
Thus, the following expression uses the < comparison operator to test whether the
value of the x variable is less than 100:

x < 100

If this comparison is true, the expression returns the Boolean value true and, if
otherwise, false. Figure 10–11 lists the comparison operators supported by JavaScript.

Figure 10–11 Comparison operators

Operator Example Description
== x == y Tests whether x is equal in value to y

=== x === y Tests whether x is equal in value to y and has the same
data type

!= x !== y Tests whether x is not equal to y or has a different data
type

!== x !== y Tests whether x is not equal to y and/or doesn’t have the
same data type

> x > y Tests whether x is greater than y

>= x >= y Tests whether x is greater than or equal to y

< x < y Tests whether x is less than y

<= x <= y Tests whether x is less than or equal to y

When you want to test whether two values are equal, you use either a double equal
sign (==) or a triple equal sign (===). The double equal sign tests whether two items are
equal in value while the triple equal sign tests whether the two items are equal in value
and also in data type. Thus, the following expression tests whether x is equal in value to
100 and is a number:

x === 100

Using the single equal sign (=) for the comparison operator is a common
programming mistake; remember that the equal sign is an assignment operator and is
reserved for setting one value equal to another, not for testing whether two values are
equal.

JavaScript also supports logical operators that allow you to connect several
expressions. For example, the logical operator && returns a value of true only if both of
the expressions are true. Figure 10–12 lists the JavaScript logical operators.

07140_Tut10_ptg01_751-822.indd 776 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 777

Figure 10–12 Logical operators

Operator Definition Example Description
&& and (x === 5) && (y === 8) Tests whether x is equal to 5 and

y is equal to 8

|| or (x === 5) || (y === 8) Tests whether x is equal to 5 or y
is equal to 8

! not !(x < 5) Tests whether x is not less than 5

Program Loops and Arrays
Program loops can be used to cycle through the different values contained within an
array. The general structure for accessing each value from an array using a for loop is

for (var i = 0; i < array.length; i++) {
 commands involving array[i]
}

where array is the array containing the values to be looped through and i is the
counter variable used in the loop. The counter variable in this case represents the index
number of an item from the array. The length property is used to determine the size
of the array. The last item in the array has an index value of one less than the array’s
length—because array indices start with zero—so you continue the loop only when the
array index is less than the length value.

R
E
FE

R
E
N
C
E

Creating Program Loops

• To create a for loop, use looping structure

for (start; continue; update) {
 commands
}

where start is an expression that sets the initial value of a counter variable, continue is
a Boolean expression that must be true for the loop to continue, update is an expression
that indicates how the value of the counter variable should change each time through the
loop, and commands is the JavaScript commands that are run each time through the loop.

• To create a while loop, use the following structure:

while (continue) {
 commands
}

• To create a do/while loop, use the following:

do {
 commands
 }
while (continue);

• To loop through the contents of an array, enter the for loop

for (var i = 0; i < array.length; i++) {
 commands involving array[i]
}

where i is a counter variable representing the indices of the array items and array is
the array to be looped through.

07140_Tut10_ptg01_751-822.indd 777 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 778

With this information, you can create a function that employs arrays and a for loop to
create a row displaying the names of the seven days of the week. First, you will place the
three-letter abbreviation of each weekday in an array and then loop through that array,
writing a table heading cell for each day. You will place these commands in a function
named calWeekdayRow().

To create the calWeekdayRow() function:
w 1. If you took a break after the previous session, make sure the lht_calendar.js

file is open in your text editor.

w 2. At the bottom of the file, insert the following commands to begin creating
the function by inserting an array named dayName containing the three-
letter abbreviations of the seven days of the week:

/* Function to write a table row of weekday abbreviations */
function calWeekdayRow() {
 // Array of weekday abbreviations
 var dayName = ["SUN", "MON", "TUE", "WED", "THU", "FRI",
"SAT"];

w 3. Next, create the rowHTML variable containing the opening tag for the table
row by inserting the following command:

var rowHTML = "<tr>";

w 4. Add the following for loop to loop through the contents of the dayName
array, adding HTML code for each th element:

// Loop through the dayName array
for (var i = 0; i < dayName.length; i++) {
 rowHTML += "<th class='calendar_weekdays'>" + dayName[i] +
"</th>";
}

w 5. Finally, complete the calWeekdayRow() function by adding a closing </tr>
tag to the value of the rowHTML variable and return that variable’s value.
Add the code that follows:

 rowHTML += "</tr>";
 return rowHTML;
}

Figure 10–13 shows the complete contents of the calWeekdayRow() function.

You must enclose all com-
mands in a for loop within
a set of opening and closing
curly braces so that each
command is run every time
through the loop.

07140_Tut10_ptg01_751-822.indd 778 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 779

w 6. Scroll back up to the createCalendar() function and insert the following
command as shown in Figure 10–14:

calendarHTML += calWeekdayRow();

Figure 10–14 Calling the calWeekdayRow() function

calls the calWeekdayRow()
function to add the HTML
code for the heading row

w 7. Save your changes to the file, and then reload the lht_sept.html file in
your browser.

Figure 10–15 shows the revised appearance of the page with the calendar
table now showing a row of weekday abbreviations.

Figure 10–13 The calWeekdayRow() function

returns the complete
HTML code of the
table row

array of weekday
abbreviations

inserts the opening
tag for the table row

for loop that loops
through every item in
the dayName array

adds the closing tag
for the table row

07140_Tut10_ptg01_751-822.indd 779 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 780

IN
SI
G
H
T

Returning a Random Array Item

In some programs, such as gaming apps, you might want to return a random value
from an array. You can use the array index numbers along with the Math.random and
Math.floor methods to achieve this. Assuming that an array is not sparse, the total
number of array items is provided by the length property. To return a random index
from the array, you use the expression

Math.floor(Math.random()*array.length);

where array is the name of the array. The value returned by this expression would be
a random integer from 0 up to the value length-1, which corresponds to all of the
array indices. You could place this expression in a function such as

function randItem(arr) {
 return arr[Math.floor(Math.random()*arr.length)];
}

using the arr parameter as the array to be evaluated.
To pick a random item from any array, you could apply the randItem() function to

any array as follows

var color = ["red", "blue", "green", "yellow"];
var randColor = randItem(color);

and the randColor variable would contain one of the four colors chosen at random
from the color array.

Figure 10–15 Row of weekday abbreviations

row of weekday
abbreviations added
to the calendar table

Array Methods to Loop Through Arrays
JavaScript supports several methods to loop through the contents of an array without
having to create a program loop structure. Because these methods are built into the
JavaScript language, they are faster than program loops; however, older browsers might
not support them, so you should apply them with caution.

07140_Tut10_ptg01_751-822.indd 780 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 781

Each of these methods is based on calling a function that will be applied to each
item in the array. The general syntax is

array.method(callback [, thisArg])

where array is the array, method is the array method, and callback is the name of the
function that will be applied to each array item. An optional argument, thisArg, can
be included to pass a value to the callback function. The general syntax of the callback
function is

function callback(value [, index, array]) {
 commands
}

where value is the value of the array item during each pass through the array, index is
the numeric index of the current array item, and array is the name of the array. Only
the value parameter is required; the others are optional.

Running a Function for Each Array Item
The first method you will explore is forEach(), which is used to run a function for
each item in the array. The general syntax is

array.forEach(callback [, thisArg])

where callback is the function that is applied to each item in the array. For example, the
following forEach() method applies the sumArray() function with each item in the x
array:

var sum = 0;
var x = [2, 5, 7, 12];

x.forEach(sumArray);

function sumArray(value) {
 sum += value;
}

Note that the sumArray() function has a single parameter named value, representing
the current array item. The result of running the forEach() method with the
sumArray() function is that the value of each item in the x array is added to the sum
variable, resulting in a final value of 26 in this example. The forEach() method can
also be used to modify the values of individual array items.

The following code calls the stepUp() function to increase the value of each item in
the x array by 1:

var x = [4, 7, 11];

x.forEach(stepUp);

function stepUp(value, i, arr) {
 arr[i] = value + 1;
}

Notice that in this case, the stepUp() function has three parameters, with the second
parameter (i) representing the array index and the third parameter (arr) representing
the array itself. After running this code, the x array would contain the values [5, 8, 12].

Mapping an Array
The map() method performs an action similar to the forEach() method except
that the function it calls returns a value that can be used to map the contents of an
existing array into a new array. The following code demonstrates how to use the map()

Callback function
 parameters can be given
any descriptive name you
choose, but the parameters
must be listed in the order:
value, index, and array
name.

07140_Tut10_ptg01_751-822.indd 781 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 782

method to create a new array in which each item is equal to twice the value of the
corresponding item in the original array:

var x = [3, 8, 12];

var y = x.map(DoubleIt);

function DoubleIt(value) {
 return 2*value;
}

After running this code, the y array contains the values [6, 16, 24]. Note that the
map() method does not affect the contents or structure of the original array, and the
new array will have the same number of array items as the original. If the original array
is sparse with several missing indices, the mapped array will have the same sparseness.

Filtering an Array
Often when working with arrays, you will want to extract array items that match some
specified condition. For example, in an array of test scores, you might want to extract
only those test scores with a value of 90 or above. The following filter() method
can be used to create such arrays

array.filter(callback [, thisArg])

where callback is a function that returns a Boolean value of true or false for each
item in the array. The array items that return a value of true get copied into the new
array. The following code demonstrates how to use the filter() method to create a
subarray of items whose value is greater than 90:

var scores = [92, 68, 83, 95, 91, 65, 77];

var highScores = scores.filter(gradeA);

function gradeA(value) {
 return value > 90;
}

After running this code, the highScores array would contain the values [92, 95, 91].

IN
SI
G
H
T

Passing a Value to a CallBack Function

If you need to pass a value to a callback function used by any of the array methods,
you can include the optional thisArg parameter. In the following code, a value of 92
is entered as argument in the filter() method in order to return array items whose
value is greater than or equal to 92

var scores = [92, 68, 83, 95, 91, 65, 77];

var highScores = scores.filter(gradeA, 92);

function gradeA(value) {
 return value >= this;
}

resulting in an array with the values [92, 95]. Note that the gradeA function uses the
JavaScript keyword this to represent the value of the thisArg parameter. The this
keyword is an important part of the JavaScript language and is used to represent a
 current value being operated upon by the browser.

07140_Tut10_ptg01_751-822.indd 782 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 783

Another common use of arrays is to examine an array’s contents to determine
whether every array item satisfies a specified condition. The following every()
method returns the value true if every item in the array matches the condition
specified by the callback function and, if otherwise, returns false:

array.every(callback [, thisArg])

As with the filter() method, the function used by the every() method must
return a Boolean value of true or false. For example, the following code uses the
every() method to test whether every test score exceeds a value of 70:

var scores = [92, 68, 83, 95, 91, 65, 77];

var allPassing = scores.every(passTest);

function passTest(value) {
 return value > 70;
}

In this example, the value of the allPassing variable would be false because not every
value in the scores array is greater than 70. Similarly, the following some() method

array.some(callback [,thisArg])

returns a value of true if some—but not necessarily all—array items match a condition
specified in the function and a value of false if none of the array items match the
condition specified in the function. Applying the some() method to the above array
would return a value of true because some (but not all) of the scores are greater than 70.

Figure 10–16 summarizes the different JavaScript array methods that can be used to
work with the collection of items within an array.

Figure 10–16 Array methods to loop through arrays

Array Method Description
every(callback [, thisArg]) Tests whether the condition returned by the callback

function holds for all items in array; in all array methods,
the optional thisArg parameter is used to pass values to
the callback function

filter(callback [, thisArg]) Creates a new array populated with the elements of
array that return a value of true from the callback
function

forEach(callback [, thisArg]) Applies the callback function to each item in array

map(callback [, thisArg]) Creates a new array by passing the original array items to
the callback function, which returns the mapped value of
the array items

reduce(callback [, thisArg]) Reduces array by keeping only those items that return
a value of true from the callback function

reduceRight(callback [, thisArg]) Reduces array from the last element by keeping
only those items that return a value of true from the
 callback function

some(callback [, thisArg]) Tests whether the condition returned by the callback
function holds for at least one item in array

find(callback [, thisArg]) Returns the value of the first element in the array that
passes a test in the callback function

findIndex(callback [, thisArg]) Returns the index of the first element in the array that
passes a test in the callback function

07140_Tut10_ptg01_751-822.indd 783 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 784

In the next session, you will explore how to work with JavaScript’s conditional
statements and put together everything you have learned to complete the calendar app.

PR
O

SK
IL

LS

Decision Making: Efficient Loops

As your programs increase in size and complexity, the ability to write efficient code
becomes essential. Bloated, inefficient code is particularly noticeable with program
loops that might repeat the same set of commands hundreds or thousands of times.
A millisecond wasted due to one poorly written command can mean an overall loss of
dozens of seconds when it is part of a loop. Because studies show that users will rarely
wait more than a few seconds for program results, it is important to shave off as many
milliseconds as you can. Here are some ways to speed up your loops:

• Calculate outside the loop. There is no reason to repeat the exact same calcula-
tion hundreds of times within a loop. For example, the following code unnecessarily
recalculates the same Math.log(cost) value a thousand times in the for loop:

for (i = 0; i < 1000; i++) {
 x[i] = i*Math.log(cost);
}

 Instead, place that calculation outside the loop, where it will be calculated only once:

var costLog = Math.log(cost);
for (i = 0; i < 1000; i++) {
 x[i] = i*costLog;
}

• Determine array lengths once. Rather than forcing JavaScript to count up the
length of a large array each time through the loop, calculate the length before the
loop starts:

var x = myArray.length;
for (var i = 0; i < x; i++) {
 commands
}

• Decrement rather than increment. Instead of counting up to an array length, count
down from the array length to 0, as in the following for loop:

var x = myArray.length;
for (var i = x; i--) {
 commands
}

 When the counter variable equals 0, the loop will stop.

• Unroll the loop. When only a few items are being iterated in a loop, it is actually
faster not to use a program loop. Instead, enter each counter value explicitly in sepa-
rate statements.

• Manage loop size. A long command block is a red flag warning you that you might
be trying to do too much each time through a loop. Look for ways to reduce the
number of tasks and calculations in the command block to a bare minimum.

07140_Tut10_ptg01_751-822.indd 784 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 785

R
E
V
IE

W

Session 10.2 Quick Check

 1. Which of the following is a type of program loop?
a. for
b. while
c. do/while
d. All of the above

 2. Provide a for statement using a counter variable named i starting with the
value 0 and continuing to 100 in increments of 10.
a. for (var i = 0; 100; 10)
b. for (var i = 0; i<=100; i+=10)
c. for (var i = 0; i = 100; 10)
d. for (var i = 0 to 100 by 10)

 3. Provide a for statement using a counter variable named j starting with the
value 100 and decreasing to 0 in increments of 10.
a. for (var i = 100; 0; -10)
b. for (var i = 100; i >= 0; i-=10)
c. for (var i = 100; i = 0; -10)
d. for (var i = 100 to 0 by -10)

 4. Provide an expression that tests whether the x variable is not equal to 100.
a. x <> 100
b. x .ne. 100
c. x != 100
d. x ~= 100

 5. Provide an expression that tests whether the x variable is equal to 10 or the y
variable is equal to 20.
a. (x = 10) || (y = 20)
b. (x = 10) or (y = 20)
c. (x = 10) | (y = 20)
d. (x === 10) || (y === 20)

 6. Which method do you apply to run a function for each item in an array?
a. forEach()
b. for-each()
c. forEvery()
d. every()

 7. Which method do you apply to create a new array based on calculations done
to every item from an existing array?
a. forEach()
b. map()
c. transfer()
d. copy()

 8. Which method do you use to return the value of the first element in the array
that passes a logical test?
a. find()
b. if()
c. while()
d. findIndex()

07140_Tut10_ptg01_751-822.indd 785 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 786

Session 10.3 Visual Overview:

The equals operator (===)
tests whether two items share
the same value and data type.

The second command block
in an if else statement is
run if the condition is false.

A conditional expression
is an expression that is
either true or false.

The command in a simple
if statement is run if the
condition is true.

The �rst command block in
an if else statement is
run if the condition is true.

In an if statement, an
expression is tested for
being true or false; if true,
a speci�ed command is run.

In an if else statement
one command block is run
if the statement is true,
while a second command
block is run if the
statement is false.

07140_Tut10_ptg01_751-822.indd 786 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 787

Conditional Statements

In a nested if structure, one if
statement is placed within another;
the nested if statement is run only
if the conditional expressions of
both the outer and inner if
statements are true.

The or operator (||) is used
when either of two conditions
may be true for the entire
conditional expression to
be true.

07140_Tut10_ptg01_751-822.indd 787 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 788

Introducing Conditional Statements
Your next task in your calendar app is to create a program loop that writes the days
of the month, entered within different table cells arranged in separate table rows. The
process should end when the last day of the month is reached. Because months have
different numbers of days, you first need to create a function named daysInMonth() that
determines the number of days in a given month.

Like the calCaption() function you created earlier, the daysInMonth() function will
have a single parameter, calDate, containing a Date object on which your calendar
will be based. The function will also store the year value and month value in the
variables thisYear and thisMonth, respectively, and will contain the following array that
stores the number of days in each month:

var dayCount = [31,28,31,30,31,30,31,31,30,31,30,31];

This array is an example of a parallel array because each entry in the array matches—
or is parallel to—an entry in the monthName array you created in the first session. To
return the days of the month from the calendar date, the function will use the value of
the thisMonth variable to reference the corresponding day value in the dayCount array
with the following expression:

dayCount[thisMonth]

So, for instance, given the date July 6, 2018, the function would return the value 31.
You add the daysInMonth() function now.

To start creating the daysInMonth() function:
w 1. If you took a break after the previous session, make sure the lht_calendar.js

file is open in your text editor.

w 2. At the bottom of the file, insert the following code, as shown in Figure 10–17:

* Function to calculate the number of days in the month */
function daysInMonth(calDate) {
 // Array of days in each month
 var dayCount = [31,28,31,30,31,30,31,31,30,31,30,31];

 // Extract the four digit year and month value
 var thisYear = calDate.getFullYear();
 var thisMonth = calDate.getMonth();

 // Return the number of days for the current month
 return dayCount[thisMonth];
}

07140_Tut10_ptg01_751-822.indd 788 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 789

w 3. Save your changes to the file.

extracts the month
value

number of days in
each month of
the year

extracts the year
value

returns the total
days in the month

the calDate parameter
contains the current date

Figure 10–17 Inserting the daysInMonth() function

Perhaps you have already noticed a problem with the dayCount array: February has
29 days during a leap year, not 28 days as shown in the array. For the daysInMonth()
function to return the correct value for the month of February, it must examine the
year value and then set the value for the number of days in February to either 28 or 29
based on whether the current year is a leap year. You can do this through a conditional
statement. A conditional statement is a statement that runs a command or command
block only when certain circumstances are met.

Exploring the if Statement
The most common conditional statement is the if statement, which has the structure

if (condition) {
 commands
}

where condition is a Boolean expression that is either true or false, and commands
is the command block that is run if condition is true. If only one command is run, you
can eliminate the command block and enter the if statement as follows:

if (condition) command;

A conditional statement uses the same comparison and logical operators you used
with the program loops in the last session. For example, the following if statement
would set the value of the dayCount array for February to 29 if the year value were
2020 (a leap year):

if (thisYear === 2020) {
 dayCount[1] = 29;
}

For the calendar app, you will need to create a conditional expression that tests
whether the current year is a leap year and then sets the value of dayCount[1]

07140_Tut10_ptg01_751-822.indd 789 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 790

appropriately. The general rule is that leap years are divisible by 4, so you will start by
looking at operators that can determine whether the year is divisible by 4. One way
is to use the % operator, which is also known as the modulus operator. The modulus
operator returns the integer remainder after dividing one integer by another. For
example, the expression 15 % 4 returns the value 3 because 3 is the remainder after
dividing 15 by 4. To test whether a year value is divisible by 4, you use the conditional
expression

thisYear % 4 === 0

where the thisYear variable contains the four-digit year value. The following is the
complete if statement to change the value of the dayCount array for the month of
February:

if (thisYear % 4 === 0) {
 dayCount[1] = 29;
}

Add this if statement to the daysInMonth() function now.

To revise the daysInMonth() function:
w 1. After the statement that declares the thisMonth variable, insert the following

if statement:

// Revise the days in February for leap years
if (thisYear % 4 === 0) {
 dayCount[1] = 29;
}

Figure 10–18 highlights the newly added code in the function.

Be sure to use the triple
equal sign symbol (===)
and not the single equal
sign symbol (=) when
 making a comparison in an
if statement.

if it is, sets the value
of dayCount[1]
(February) to 29

tests whether
thisYear is evenly
divisible by 4

Figure 10–18 Inserting an if statement

w 2. Save your changes to the file.

07140_Tut10_ptg01_751-822.indd 790 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 791

Nesting if Statements
The if statement you wrote for the daysInMonth() function works as a simple
approximation, but it is not completely accurate. In most cases, a year that is evenly
divisible by 4 is a leap year. The only exceptions are years that occur at the turn of the
century, which are evenly divisible by 100. These years are not leap years unless they
are also evenly divisible by 400. Thus, years such as 1800, 1900, and 2100 are not
leap years even though they are evenly divisible by 4. Years such as 2000 and 2400 are
leap years because they are evenly divisible by 400. Figure 10–19 shows the complete
process used to determine whether a particular year is a leap year.

IN
SI
G
H
T

Assigning Values with Conditional Operators

When you want to simply assign a value to a variable rather than run a command
block, you can write a more compact conditional expression using a conditional
 operator or a ternary operator, which has the syntax

condition ? value1 : value2;

where condition is a Boolean expression, value1 is the value if the expression is
true and value2 is the value if the expression is false. For example, the following
statement assigns a value of “Morning” to the session variable if the hour variable is
less than 12 and “Afternoon” if otherwise:

var session = hour < 12 ? "Morning" : "Afternoon";

Conditional operators can test more than one possible condition by adding a second
conditional operator to the last term in the expression as follows

condition1 ? value1 : condition2 ? value2 : value3;

where value1 is assigned if condition1 is true, value2 is assigned if condition2
is true (but not condition1), and value3 is assigned if neither condition1 nor
 condition2 are true. Thus, the following statement assigns one of three possible
 values to the session variable based on the value of the hour variable:

var session = hour < 12 ? "Morning" : hour < 16 ? "Afternoon" :
"Evening";

If hour is less than 12, the session variable has the value “Morning”; if hour is less than
16 (but greater than 12), the value is “Afternoon”; and otherwise, the value of the
 session variable is “Evening”.

Note that conditional operators can only be used to assign a value. If you need to
do more than one action in response to a conditional expression, use an if statement.

07140_Tut10_ptg01_751-822.indd 791 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 792

To translate these rules into our calendar app, you need to nest one if statement
inside another one. The general structure of this nested if statement is as follows:

if (thisYear % 4 === 0) {
 further test for century years
}

The nested if statement needs to add two more conditions: (1) the year is not divisible
by 100, and (2) the year is divisible by 400. The expressions for these two conditions
are as follows:

thisYear % 100 != 0
thisYear % 400 === 0

If either of those two conditions is true for a year evenly divisible by 4, then the year
is a leap year. Note that you will use the not equal to operator (!=) to test for an
inequality in the first expression. You will then combine these two expressions into a
single expression using the or operator (||), as follows:

(thisYear % 100 != 0) || (thisYear % 400 === 0)

Finally, you will nest this conditional expression as follows:

if (thisYear % 4 === 0) {
 if ((thisYear % 100 != 0) || (thisYear % 400 === 0)) {
 dayCount[1] = 29;
 }
}

Under this set of nested if statements, the number of days in February is 29 only if
the thisYear variable is divisible by 4, and then only if it is also divisible by 400 or not
divisible by 100. Take some time to compare this set of nested if statements with the
chart shown earlier in Figure 10–19 to confirm that it satisfies all possible conditions
for leap years. After incorporating this set of nested if statements, the daysInMonth()
function returns the correct number of days for any month in any given year.

Figure 10–19 Process to calculate leap years

leap year

leap year

not a leap year

not a leap year

No Yes

No Yes

No Yes

divisible
by 4?

divisible
by 100?

divisible
by 400?

07140_Tut10_ptg01_751-822.indd 792 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 793

To complete the daysInMonth() function:
w 1. Within the if statement you entered in the last set of steps, delete the

following statement:

dayCount[1] = 29

w 2. Replace the statement you just deleted with the following nested if
statement:

if ((thisYear % 100 != 0) || (thisYear % 400 === 0)) {
 dayCount[1] = 29;
}

Figure 10–20 highlights the newly inserted nested if statement.

w 3. Save your changes to the file.

Figure 10–20 Inserting a nested if statement

if the year is divisible
by 4 and either not
divisible by 100 or
divisible by 400, it's
a leap year

Exploring the if else Statement
The if statement runs a command or a command block only if the conditional
expression returns the value true; it does nothing if the condition is false. On some
occasions, you might want to choose between alternate command blocks so that one
command block is run if the conditional expression is true, and a different command
block is run if the expression is false. The general structure of an if else statement
follows:

if (condition) {
 commands if condition is true
} else {
 commands if condition is false
}

If only a single command is run in response to the if statement, you can use the
following abbreviated form:

if (condition) command if condition is true
else command if condition is false;

The following example shows an if else statement that displays two possible alert
boxes depending on whether the value of the day variable is Friday or not:

if (day === "Friday") alert("Thank goodness it's Friday")
else alert("Today is " + day);

07140_Tut10_ptg01_751-822.indd 793 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 794

Like if statements, if else statements can be nested as in the following code,
which chooses between three possible alert boxes:

if (day === "Friday") alert("Thank goodness it's Friday")
else {
 if (day === "Monday") alert("Blue Monday")
 else alert("Today is " + day);
}

Some programmers advocate always using curly braces even if the command block
contains only a single command. This practice visually separates one else clause from
another. Also, when reading through nested statements, it can be helpful to remember
that an else clause usually pairs with the nearest preceding if statement.

Using Multiple else if Statements
For more complex scripts, you might need to choose from several alternatives. In these
cases, you can specify multiple else clauses, each with its own if statement. This
is not a new type of conditional structure, but rather a way of taking advantage of the
syntax rules inherent in the if else statement. The general structure for choosing
from several alternatives is

if (condition1) {
 commands1
} else if (condition2) {
 commands2
} else if (condition3) {
 commands3
...
} else {
 default commands
}

where condition 1, condition 2, condition 3, and so on are the different
conditions to be tested. This construction should always include a final else clause
that is run by default if none of the preceding conditional expressions is true. When
a browser runs a series of statements like this one, it stops examining the remaining
else clauses at the first true condition. The structure in the following example
employs multiple else if conditions:

if (day === "Friday") {
 alert("Thank goodness it's Friday");
} else if (day === "Monday") {
 alert("Blue Monday");
} else if (day === "Saturday") {
 alert("Sleep in today");
} else {
 alert("Today is " + day);
}

To make it easier to
 interpret nested if
 statements, always indent
your code, lining up all of
the commands for one set
of nested statements.

To simplify code, keep
your nesting of multiple
if statements to three or
less, if possible. For more
conditions, use the case/
switch structure.

07140_Tut10_ptg01_751-822.indd 794 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 795

You now have all of the tools you need to complete the calendar app. The only
remaining task involves writing out the table cells containing the calendar days so
that they are organized into separate rows. You will complete the calendar app in the
next section.

R
E
FE

R
E
N
C
E

Working with Conditional Statements

• To test a single condition, use the construction

if (condition) {
 commands
}

where condition is a Boolean expression and commands is a command block run if
the conditional expression is true.

• To test between two conditions, use the following construction:

if (condition) {
 commands if condition is true
} else {
 commands if not true
}

• To test multiple conditions, use the construction

if (condition1) {
 commands1
} else if (condition2) {
 commands2
} else if (condition3) {
 commands3
…
} else {
 default commands
}

where condition 1, condition 2, condition 3, and so on are the differ-
ent conditions to be tested. If no conditional expressions return the value true, the
default command block is run.

07140_Tut10_ptg01_751-822.indd 795 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 796

Completing the Calendar App
The last part of creating the calendar involves writing table cells for each day of the
month. The completed calendar app must do the following:

• Calculate the day of the week in which the month starts.
• Write blank table cells for the days before the first day of the month.
• Loop through the days of the current month, writing each date in a different table

cell and starting a new table row on each Sunday.

You will place all of these commands in a function named calDays(). The function
will have a single parameter named calDate storing a Date object for the current date.
You add this function to the lht_calendar.js file.

IN
SI
G
H
T

Exploring the switch Statement

Another way to handle multiple conditions is with the switch statement—also known
as the case statement—in which different commands are run based upon different
possible values of a specified variable. The syntax of the switch statement is

switch (expression) {
 case label1: commands1; break;
 case label2: commands2; break;
 case label3: commands3; break;
 ...
 default: default commands
}

where expression is an expression that returns a value; label1, label2, and
so on are possible values of that expression; commands1, commands2, and so on
are the commands associated with each label; and default commands is the set
of commands to be run if no label matches the value returned by expression. The
 following switch statement demonstrates how to display a different alert box based
on the value of the day variable:

switch (day) {
 case "Friday": alert("Thank goodness it's Friday"); break;
 case "Monday": alert("Blue Monday"); break;
 case "Saturday": alert("Sleep in today"); break;
 default: alert("Today is " + day);
}

The break statement is optional and is used to halt the execution of the switch
 statement once a match has been found. For programs with multiple matching cases,
you can omit the break statements and JavaScript will continue moving through the
switch statements, running all matching commands.

Because of its simplicity, the switch statement is often preferred over a long list of
else if statements that can be confusing to read and to debug.

07140_Tut10_ptg01_751-822.indd 796 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 797

Setting the First Day of the Month
To loop through all of the days of the month, you need to keep track of each day as its
table cell is written into the calendar table. You will store this information in a Date
object named day. The initial value of the day variable will be set to match the first day
of the calendar month using the following expression:

var day = new Date(calDate.getFullYear(), calDate.getMonth(), 1);

Note that the new Date() object constructor uses the four-digit year value and
month value from the calDate parameter to set the year and month, and then sets the
day value to 1 to match the first day of the month. For example, if the current date is
August 12, 2021, the date stored in the day variable will be August 1, 2021; that is, no
matter what current day is, the date stored in the day variable will be the first day for
that month and year.

Next, to determine the day of the week on which the month starts, you use the
following getDay() method:

var weekDay = day.getDay();

Recall that the getDay() method returns an integer ranging from 0 (Sunday) to 6
(Saturday). You add these two commands to the calDays() function now.

To start the calDays() function:
w 1. At the bottom of the lht_calendar.js file, insert the following function:

/* Function to write table rows for each day of the month */
function calDays(calDate) {
 // Determine the starting day of the month

 // Write blank cells preceding the starting day

 // Write cells for each day of the month
}

Figure 10–21 highlights the initial code of the function, as well as comments
to help explain the code that will be added.

w 2. Save your changes to the file.

Figure 10–21 Inserting the calDays() function and comments

07140_Tut10_ptg01_751-822.indd 797 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 798

Placing the First Day of the Month
Before the first day of the month, the calendar table should show only empty table
cells that represent the days from the previous month. The value of the weekDay
variable indicates how many empty table cells you need to create. For example, if the
value of the weekDay variable is 4, indicating that the month starts on a Thursday, you
know that there are four blank table cells—corresponding to Sunday, Monday, Tuesday,
and Wednesday—that need to be written at the start of the first table row. The following
loop writes the HTML code for the empty table cells to start the table row:

var htmlCode = "<tr>";
for (var i = 0; i < weekDay; i++) {
 htmlCode += "<td></td>";
}

Note that if weekDay equals 0—indicating that the month starts on a Sunday—then no
blank table cells will be written because the value of the counter variable is never less
than the value of the weekDay variable and thus, the command block in the for loop
is completely skipped.

To create the day and weekDay variables:
w 1. Below the first comment in the calDays() function, insert the following

commands:

var day = new Date(calDate.getFullYear(), calDate.getMonth(), 1);
var weekDay = day.getDay();

Figure 10–22 highlights the newly added code.

To write the initial blank cells of the first table row:
w 1. Below the second comment line, insert the following for loop:

var htmlCode = "<tr>";
for (var i = 0; i < weekDay; i++) {
 htmlCode += "<td></td>";
}

Figure 10–23 highlights the code for the for loop.

w 2. Save your changes to the file.

Figure 10–22 Calculating the start day of the month

determines the
weekday on which
the month begins

sets the �rst day
of the month

07140_Tut10_ptg01_751-822.indd 798 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 799

Writing the Calendar Days
Finally, you will write the table cells for each day of the month using the following
for loop:

var totalDays = daysInMonth(calDate);

for (var i = 1; i <= totalDays; i++) {
 day.setDate(i);
 weekDay = day.getDay();

 if (weekDay === 0) htmlCode += "<tr>";
 htmlCode += "<td class='calendar_dates'>" + i + "</td>";
 if (weekDay === 6) htmlCode += "</tr>";
}

The code starts by determining the total days in the month using the daysInMonth()
function you created earlier. It then loops through those days, and each time through
the loop it changes the day and weekDay variables to match the current day being
written. If the day is a Sunday, a new table row is started; if the day is a Saturday, the
current table row is ended. Each table cell displays the day number and belongs to
the calendar_dates class, which allows it to be styled using the style rule from the
lht_calendar.css style sheet.

w 2. Save your changes to the file.

Figure 10–23 Inserting blank cells for the days that precede the start of the month

inserts opening <tr>
tag for the initial
table row

inserts a blank table
cell for each weekday
prior to the �rst of the
month

To write the calendar days:
w 1. Below the last comment in the calDays() function, add the following

commands:

var totalDays = daysInMonth(calDate);

for (var i = 1; i <= totalDays; i++) {
 day.setDate(i);
 weekDay = day.getDay();

07140_Tut10_ptg01_751-822.indd 799 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 800

 if (weekDay === 0) htmlCode += "<tr>";
 htmlCode += "<td class='calendar_dates'>" + i + "</td>";
 if (weekDay === 6) htmlCode += "</tr>";
}

return htmlCode;

Figure 10–24 highlights the code to write the table cells for each day of the
month.

Next, you call the calDays() function from within the createCalendar() function
and view the results.

w 2. Scroll up to the createCalendar() function, and then insert the following
statement directly above the command that writes the closing </table> tag.

calendarHTML += calDays(calDate);

Figure 10–25 highlights the code in the function.

Figure 10–24 Writing the HTML code for the table row and cells

Figure 10–25 Calling the calDays() function

loops through the
total number of days

if the day is a Sunday,
starts a new table row

calculates the total
number of days in
the current month

for each day,
determines the
weekday on
which it falls

creates a table cell for
each day, displaying
the day number

returns the HTML code
for the table row and cells

if the day is a Saturday,
ends the table row

calls the calDays function,
which adds the HTML code for
the table row and cells that
display the days of the month

07140_Tut10_ptg01_751-822.indd 800 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 801

w 3. Save your changes to the file, and then reload the lht_sept.html file in your
browser. As shown in Figure 10–26, the page should now display the monthly
calendar for September 2021.

Trouble? If you do not see a calendar, you might have made a mistake in
the code. Common mistakes include misspelling variable names, forgetting
to close quoted text strings, inconsistently using uppercase and lowercase
letters in variable names, and omitting closing braces in command blocks.
Compare your code to the complete code of the calDays() function shown in
Figures 10–23 and 10–24.

Figure 10–26 Monthly calendar for September 2021

Highlighting the Current Date
Lewis likes the calendar’s appearance but mentions that the calendar should also highlight
the current day: September 24, 2021. Recall that Lewis has created a special style rule for
the current day, identified using the HTML id value “calendar_today”. Thus, to highlight
that table cell, the calDays() function should test each day as it is being written; and if the
date matches the calendar day, the function should write the table cell as

<td class='calendar_dates' id='calendar_today'>day</td>

where day is the day number. Otherwise, the function should write the table cell
without the id attribute as follows:

<td class='calendar_dates'>day</td>

To determine the day number of the calendar day, you create the highlightDay
variable, using the getDate() method to extract the day value from the calDate
parameter. When the counter in the for loop matches the value of this variable, the
loop will write the table cell including the calendar_today id attribute.

days from the preceding
month are displayed as
blank cells

days from the next
month are displayed
as blank cells

07140_Tut10_ptg01_751-822.indd 801 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 802

To highlight the current date in the calendar:
w 1. Return to the lht_calendar.js file in your editor, and then scroll down to the

calDays() function.

w 2. In the Write cells for each day of the month section and directly above the
for loop in that section, insert the following statement to calculate the day
value of the current day:

var highlightDay = calDate.getDate();

w 3. Replace the statement that writes the value of the htmlCode variable in the
for loop with the following code:

if (i === highlightDay) {
 htmlCode += "<td class='calendar_dates' id='calendar_today'>"
+ i + "</td>";
} else {
 htmlCode += "<td class='calendar_dates'>" + i + "</td>";
}

Figure 10–27 highlights the newly added if statement in the function.

Calculations such as the
getDate() method that
need to be performed
once should always
be placed outside the
program loop to avoid
unnecessarily repeating
the same calculation each
time through the loop.

w 4. Save your changes to the file, and then reload lht_august.html in your
browser. The table cell corresponding to September 24, 2021 should now be
highlighted as shown in Figure 10–28.

Figure 10–27 Highlighting the current date in the calendar

if the day is the
highlight day, write a
table cell with the id
‘calendar_today’

stores the current day
in the highlightDay
variable

otherwise write a
table cell with no id
value

07140_Tut10_ptg01_751-822.indd 802 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 803

Displaying Daily Events
The final piece of your calendar app is to display the daily events in September. Lewis
already has created an array of daily event text, part of which is shown in Figure 10–29.

Figure 10–28 Calendar with the current date highlighted

Figure 10–29 The dayEvent array

current date

The dayEvent array has 30 items to match the 30 days in September. Array items that
match days on which no event is scheduled contain a blank text string, while daily
events are written in the HTML code that will be inserted into the calendar table. To
display this content, you create a link to the lht_events.js file and then, within the
calDays() function, you add an expression to write the contents of the dayEvent array
into the individual table cells.

To display the daily events:
w 1. Return to the lht_sept.html file in your text editor. Directly above the

script element for the lht_calendar.js file, insert the following script
element for the lht_events.js file:

<script src="lht_events.js" defer></script>

Figure 10–30 highlights the newly added code.

07140_Tut10_ptg01_751-822.indd 803 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 804

Figure 10–30 Linking to the lht_events.js file

Figure 10–31 Displaying events for each day of the month

links to the script
�le containing the
dayEvents array

w 2. Close the lht_sept.html file, saving your changes.

w 3. Return to the lht_calendar.js file in your text editor, and then scroll down to
the calDays() function.

w 4. Within the if else statement conditions, change the expression + i + in
two places to:

+ i + dayEvent[i] +

Figure 10–31 highlights the newly added code that displays the events on
each day.

w 5. Save your changes to the file.

w 6. Reload the lht_sept.html file in your browser. Verify that the calendar now
shows the daily events as displayed in Figure 10–32.

displays the event
for the day

07140_Tut10_ptg01_751-822.indd 804 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 805

event text from the
dayEvent array

Figure 10–32 Final version of the September 2021 calendar

You complete your work on the app by modifying the code so that it shows the
calendar for the current month.

To display the calendar for the current month:
w 1. Return to the lht_calendar.js file in your editor.

w 2. Change the statement setting the value of the thisDay variable to:

var thisDay = new Date();

Figure 10–33 highlights the changed code in the file.

w 3. Close the file, saving your changes.

w 4. Reload the lht_sept.html file in your browser. Verify that the page shows
the calendar for the current month and that the current date is highlighted
within the calendar (the events listed in the calendar will still be based on the
entries in the dayEvent array).

sets the thisDay variable to
the current date and time

Figure 10–33 Displaying a calendar for the current month and date

07140_Tut10_ptg01_751-822.indd 805 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 806

Managing Program Loops and Conditional
Statements
Although you are finished with the calendar app, you still should become familiar
with some features of program loops and conditional statements for future work with
these JavaScript structures. You examine three features in more detail—the break,
continue, and label statements.

Exploring the break Command
Although you briefly saw how to use the break statement when creating a switch
statement, the break statement can be used anywhere within program code. Its
purpose is to terminate any program loop or conditional statement. When a break
statement is encountered, control is passed to the statement immediately following
it. It is most often used to exit a program loop before the stopping condition is met.
For example, consider a loop that examines an array for the presence or absence of a
particular value, such as a customer ID number. The code for the loop might look as
follows:

for (var i = 0; i< ids.length; i++) {
 if (ids[i] === "C-14281") {
 alert("C-14281 is in the list");
 }
}

What would happen if the ids array had tens of thousands of entries? It would be time
consuming to keep examining the array once the C-14281 ID has been encountered.
To address this, the following for loop breaks off when it encounters the ID value,
keeping the browser from needlessly examining the rest of the array:

for (var i = 0; i< ids.length; i++) {
 if (ids[i] === "C-14281") {
 alert("C-14281 is in the list");
 break; // stop processing the for loop
 }
}

Exploring the continue Command
The continue statement is similar to the break statement except that instead of
stopping the program loop altogether, the continue statement stops processing the
commands in the current iteration of the loop and continues on to the next iteration.
For example, your program might employ the following for loop to add the values
from an array:

var total = 0;
for (var i = 0; i < data.length; i++) {
 total += data[i];
}

07140_Tut10_ptg01_751-822.indd 806 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 807

Each time through the loop, the value of the current entry in the data array is added to
the total variable. When the for loop is finished, the total variable is equal to the sum
of the values in the data array. However, what would happen if this were a sparse array
containing several empty entries? In that case, when a browser encountered a missing
or null value, that value would be added to the total variable, resulting in a null total.
One way to fix this problem would be to use the continue statement, jumping out
of the current iteration if a missing or null value were encountered. The revised code
would look like the following:

var total = 0;
for (var i = 0; i < data.length; i++) {
 if (data[i] === null) continue; // continue to next iteration
 total += data[i];
}

Exploring Statement Labels
Statement labels are used to identify statements in JavaScript code so that you can
reference those lines elsewhere in a program. The syntax of the statement label is

label: statements

where label is the text of the label and statements are the statements identified by
the label. You have already seen labels with the switch statement, but labels can also
be used with other program loops and conditional statements to provide more control
over how statements are processed. Labels often are used with break and continue
statements in order to break off or continue a program loop. The syntax to reference a
label in such cases is simply

break label;

or

continue label;

For example, the following for loop uses a statement label not only to jump out of
the programming loop when the text string C-14281 is found but also to jump to the
location in the script identified by the next_report label and to continue to process the
statements found there:

for (var i = 0; i< ids.length; i++) {
 if (ids[i] === "C-14281") {
 document.write("C-14281 is in the list.");
 break next_report;
 }
}

next_report:
JavaScript statements

07140_Tut10_ptg01_751-822.indd 807 8/7/19 7:54 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 808 HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional Statements

Lewis is pleased with the final version of the calendar app. Because of the way the
function and the style sheets were designed, he can use this utility in many other pages
on the website with only a minimal amount of recoding in the documents.

Teamwork: The Danger of Spaghetti Code

Spaghetti code is a pejorative programming term that refers to convoluted or poorly
written code. One hallmark of spaghetti code is the frequent branching from one
section of code to another, making it difficult to track the program line-by-line as it is
executed. A change in one part of the program could lead to unpredictable changes
in a completely different section of the code.

Most developers discourage the use of break, continue, and label statements
unless absolutely necessary. They can confuse a programmer trying to debug code in
which a program loop can end before its stopping condition, or code in which state-
ments are not processed in the order that they are written in a document. Almost all
of the tasks you perform with these statements can also be performed by carefully
setting up the conditions for program loops.

Even with the best of intentions, spaghetti code can easily occur in environments in
which the same code is maintained by several people or passed from one employee
to another. Each programmer adds a particular feature that is needed today without
adequately documenting the changes made to the code and without considering the
impact of those changes on the larger program.

To avoid or at least reduce the occurrence of spaghetti code, you should always
document your code and develop a structure that is easy to follow. Break up tasks
into smaller functions that are easier to manage and can be reused in other parts of
your programs. Also, avoid global variables whenever possible because a change
in the value of a global variable can have repercussions throughout the entire code.
Instead, use local variables with their scope limited to small, compact functions. If a
variable must be used elsewhere in your code, it should be passed as a parameter
value with the meaning and purpose of the parameter well documented within the
program.

By practicing good coding techniques, you can make your programs more
accessible to your colleagues and make it easier to pass your code on to your
successors.

PR
O
SK

IL
LS

07140_Tut10_ptg01_751-822.indd 808 8/7/19 7:55 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 809

R
E
V
IE

W

Session 10.3 Quick Check

 1. Which of the following displays an alert box with the message “Good
Morning” if the value of the thisHour variable is less than 9?
a. if (thisHour .le. 9) alert("Good Morning");
b. if (thisHour le 9) alert("Good Morning");
c. if (thisHour < 9) alert("Good Morning");
d. if (thisHour LE 9) alert("Good Morning");

 2. Which expression extracts the day of the week value from a Date object
 variable named thisDate?
a. thisDate.day()
b. thisDate.getday()
c. thisDate.getWeekday()
d. thisDate.getDay()

 3. In place of a command block, you can write a conditional expression using
a(n):
a. if statement
b. conditional operator
c. while statement
d. continue statement

 4. In place of multiple if statements, you can handle multiple conditions with a:
a. switch statement
b. while statement
c. function statement
d. setInterval() function

 5. Which command can be used to break out of the current iteration in a for
loop?
a. stop
b. break
c. exit
d. quit

 6. Which command forces a script to go to the next iteration of the current pro-
gram loop?
a. continue
b. go
c. exit
d. quit

07140_Tut10_ptg01_751-822.indd 809 8/7/19 7:55 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 810

Coding Challenge 1

Data Files needed for this Coding Challenge: code10-1_txt.html, gallery10-1_txt.js,
code10-1_styles.css, slide0.jpg - slide13.jpg

You are working on a JavaScript app to create a gallery of slide images. To create the gallery, you will
apply a for loop that loops through an array of images and captions to create the HTML code for the
figure elements. Figure 10–34 shows a preview of the gallery.

C
O

D
E

Figure 10–34 Coding Challenge 10-1 gallery preview

Do the following:

 1. Open the code10-1_txt.html and gallery10-1_txt.js files from the html10 c code1 folder. Enter
your name and the date in each document and save the files as code10-1.html and
gallery10-1.js respectively.

 2. Go to the code10-1.html file in your editor. Within the head section insert a script element
connecting the page to the gallery10-1.js file. Add the defer attribute to the script element to
defer the loading of the script until after the contents of the page loads.

 3. Save your changes to the file and then go to the gallery10-1.js file in your editor.
 4. Below the code that creates and populates the captions array, declare the htmlCode variable, set-

ting its initial value to an empty text string.
 5. Create a for loop with a counter variable i that goes from 0 to 13 in increments of 1. Each time

through the for loop, add the following code to the value of the htmlCode variable:

<figure>

 <figcaption>caption_i</figcaption>
</figure>

 where i is the value of the counter variable and caption_i is the value from the captions array
with index number i.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional Statements

Source: NASA

07140_Tut10_ptg01_751-822.indd 810 8/31/19 8:29 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 811

 6. After the for loop, change the inner HTML of the document element by the ID "gallery" to the
value of the htmlCode variable.

 7. Save your changes to the file and then load code10-1.html in your browser. Verify that the page
displays the 14 images in the slide gallery.

 8. Submit the completed file to your instructor.

Coding Challenge 2

Data Files needed for this Coding Challenge: code10-2_txt.html, list10-2_txt.js, code10-2_styles.css

In this Coding Challenge you will use JavaScript to write the contents of a table listing the top ranked
movies on the IMDb website. The names of the movies, descriptions, scores, and links to pages
describing the movies have been stored in arrays. You will use a for loop to write the individual
rows of the table. Figure 10–35 shows a preview of the completed page.

C
O

D
E

Figure 10–35 Coding Challenge 10-2 example page

Do the following:

 1. Open the code10-2_txt.html and list10-2_txt.js files from the html10 c code2 folder. Enter
your name and the date in each document and save the files as code10-2.html and list10-2.js
respectively.

 2. Go to the code10-2.html file in your editor. Within the head section insert a script element
connecting the page to the list10-2.js file. Add the defer attribute to the script element. Save
your changes to the file.

07140_Tut10_ptg01_751-822.indd 811 8/7/19 7:55 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 812

 3. Go to the list10-2.js file in your editor. Directly below the code populating the links array,
declare the htmlCode variable. Store within the variable the following text:

<table>
 <thead>
 <tr>
 <th>Movie</th><th>Description</th><th>Score</th>
 </tr>
 </thead>
 <tbody>

 4. Create a for loop with a counter variable i that goes from 0 to 9. Each time through the for
loop add the following text to the htmlCode variable:

<tr>
 <td>titles_i<td>
 <td>summaries_i</td>
 <td>ratings_i</td>
</tr>

 where i is the value of the counter variable, and links_i, titles_i, summaries_i, and
ratings_i are the values from the links, titles, summaries, and ratings array with index
number i.

 5. After the for loop add the following text to the htmlCode variable:

 </tbody>
</table>

 6. Store the value of the htmlCode variable in the inner HTML of the element with the ID "list".
 7. Save your changes to the file and then load code10-2.html in your browser. Verify that the page

displays the table describing the ten movies from the IMDb movie list. Also verify that when you
click the links in the Movie column you are redirected to a page providing information about the
selected movie.

 8. Submit the completed file to your instructor.

Coding Challenge 3

Data Files needed for this Coding Challenge: code10-3_txt.html, days10-3_txt.js,
code10-3_styles.css, sunday.png - saturday.png

You can use the switch/case statement to apply different possible values to the same variable.
Figure 10–36 shows a web page that displays different banner image on each day of the week. You
will write the code to generate this page.

C
O

D
E

07140_Tut10_ptg01_751-822.indd 812 8/8/19 1:04 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 813

Do the following:

 1. Open the code10-3_txt.html and days10-3_txt.js files from the html10 c code3 folder. Enter
your name and the date in each document and save the files as code10-3.html and days10-3.js
respectively.

 2. Go to the code10-3.html file in your editor. Within the head section insert a script element
connecting the page to the days10-3.js file. Add the defer attribute to the script element.
Save your changes to the file.

 3. Go to the days10-3.js file in your editor. Below the initial comment section, create a variable
named thisDay containing the date object for the current date.

 4. Use the getDay() method to extract the day of the week from the thisDay variable, storing the
value in the wDay variable.

 5. Declare a variable named imgSrc setting its initial value to an empty text string.

 6. Create a switch/case statement that tests values of the wDay variable from 0 to 6. If
wDay equals 0, set imgSrc to the text string "sunday.png"; if wDay equals 1, set imgSrc to
 "monday.png"; and so forth.

 7. Store the text string in the htmlCode variable where
imgsrc is the value of the imgSrc variable.

 8. Store the value of the imgSrc variable in the inner HTML of the element with the ID "banner".

 9. Save your changes to the file and then load code10-3.html in your browser. Verify that the page
shows the banner image for the current day.

 10. Submit the completed file to your instructor.

Figure 10–36 Coding Challenge 10-3 example page

Source: openclipart.org

07140_Tut10_ptg01_751-822.indd 813 8/7/19 7:55 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 814

Do the following:

 1. Open the code10-4_txt.html and debug10-4_txt.js files from the html10 c code4 folder.
Enter your name and the date in each document and save the files as code10-4.html and
debug10-4.js respectively.

 2. Go to the code10-4.html file in your editor. Within the head section insert a script element
connecting the page to the days10-4.js file. Add the defer attribute to the script element.
Save your changes to the file.

 3. Go to the debug10-4.js file in your editor.

 4. Fix the syntax errors in the following locations to allow the code to run correctly (there are no
logic errors in the code):
a. The statement that declares the thisDay variable
b. The statement that declares the monthName variable
c. The for loop that calls the writeMonthTable() function
d. The code that writes the value of the htmlCode variable into the element with ID "calendar"
e. The three if statements found within the writeMonthTable() function

 5. Save your changes to the file.

 6. Open the code10-4.html file in your browser. When the page is free of errors, you should see a
calendar for the current year with the current day highlighted on the page.

 7. Submit the completed file to your instructor.

Coding Challenge 4

Data Files needed for this Coding Challenge: code10-4_txt.html, debug10-4_txt.js,
code10-4_styles.css

Figure 10–37 shows a page that contains monthly calendars for every month of the year. You’ve been
given the files for this page but there are several errors that prevent the code from running correctly.
You will analyze the code and correct the mistakes.

D
E

B
U

G

Figure 10–37 Coding Challenge 10-4 example page

07140_Tut10_ptg01_751-822.indd 814 8/7/19 7:55 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 815

Review Assignments

Data Files needed for the Review Assignments: lht_events_txt.html, lht_table_txt.js, 3 CSS files,
1 JS file, 2 PNG files

 Lewis wants you to write another script that shows a table of events at the Lyman Hall Theater over
the next two weeks from the current date. He has already created three arrays for use with the script:

• The eventDates array containing a list of dates and time at which theater events are
scheduled

• The eventDescriptions array containing the description of those events
• The eventPrices array containing the admission prices of those events

 Lewis has already written the page content and provided style sheets for use with the page. Your job
will be to write a script that selects the events that occur in the two-week window from the current date
and display them in the web page. A preview of the page you will create is shown in Figure 10–38.

Figure 10–38 Upcoming events at the Lyman Hall Theater

Complete the following:

 1. Use your editor to open the lht_events_txt.html and lht_table_txt.js files from the html10 c

review folder. Enter your name and the date in the comment section of each file, and save them
as lht_events.html and lht_table.js respectively.

 2. Go to the lht_events.html file in your editor. Directly above the closing </head> tag, insert
script elements that link the page to the lht_list.js and lht_table.js files in that order. Defer the
loading and running of both script files until after the page has loaded.

© Igor Borodin/Shutterstock.com

07140_Tut10_ptg01_751-822.indd 815 8/7/19 7:55 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 816

 3. Scroll down the document and, directly after the closing </article> tag, insert a div element
with the ID eventList. It is within this element that you will write the HTML code for the table of
upcoming theater events. Close the file saving your changes. (Hint: Be sure to review this file and
all the support files, noting especially the names of variables that you will be using in the code
you create.)

 4. Go to the lht_table.js file in your editor. Below the comment section, declare a variable named
thisDay containing the date October 1, 2021. You will use this date to test your script.

 5. Create a variable named tableHTML that will contain the HTML code of the events table. Add
the text of the following HTML code to the initial value of the variable:

<table id='eventTable'>
 <caption>Upcoming Events</caption>
 <tr><th>Date</th><th>Event</th><th>Price</th></tr>

 6. Lewis only wants the page to list events occurring within 14 days after the current date. Declare
a variable named endDate that contains a Date object that is 14 days after the date stored in the
thisDay variable. (Hint: Use the new Date() object constructor and insert a time value that is
equal to thisDay.getTime() + 14*24*60*60*1000.)

 7. Create a for loop that loops through the length of the eventDates array. Use i as the counter
variable.

 8. Within the for loop insert the following commands in a command block:
a. Declare a variable named eventDate containing a Date object with the date stored in the ith

entry in the eventDates array.
b. Declare a variable named eventDay that stores the text of the eventDate date using the

toDateString() method.
c. Declare a variable named eventTime that stores the text of the eventDate time using the
toLocaleTimeString() method.

d. Insert an if statement that has a conditional expression that tests whether thisDay is ≤
eventDate and eventDate ≤ endDate. If so, the event falls within the two-week window that
Lewis has requested and the script should add the following HTML code text to the value of
the tableHTML variable.

<tr>
 <td>eventDay @ eventTime</td>
 <td>description</td>
 <td>price</td>
</tr>

 where eventDay is the value of the eventDay variable, eventTime is the value of the
eventTime variable, description is the ith entry in the eventDescriptions array, and price
is the ith entry in the eventPrices array.

 9. After the for loop, add the text of the HTML code </table> to the value of the tableHTML
variable.

 10. Insert the value of the tableHTML variable into the inner HTML of the page element with the ID
eventList.

 11. Document your code in the script file using appropriate comments.
 12. Save your changes to the file, and then load the lht_events.html file in your browser. Verify that

the page shows theater events over a two-week period starting with Friday, October 1, 2021 and
concluding with Thursday, October 14, 2021.

07140_Tut10_ptg01_751-822.indd 816 8/7/19 7:55 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 817

Case Problem 1

Data Files needed for this Case Problem: tc_cart_txt.html, tc_cart_txt.js, tc_order_txt.js, 2 CSS files,
8 PNG files

Trophy Case Sports Sarah Nordheim manages the website for Trophy Case Sports, a sports
 memorabilia store located in Beavercreek, Ohio. She has asked you to work on creating a script
for the shopping cart page. The script should take information on the items that the customer has
 purchased and present it in table form, calculating the total cost of the order. A preview of the
page you will create is shown in Figure 10–39.

Figure 10–39 Trophy Case Sports shopping cart

voyeg3r/openclipart; © Marie C Fields/Shutterstock; Sources: Courtesy of the Gerald R. Ford Presidential Museum;
Vintagecardprices.com; Library of Congress Prints and Photographs Division; facebook.com

 Sarah has already designed the page layout. Your job will be to use JavaScript to enter the order infor-
mation (this task will later be handled by a script running on the website) and to write a script that
generates the HTML code for the shopping cart table.

07140_Tut10_ptg01_751-822.indd 817 8/7/19 7:55 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 818

Complete the following:

 1. Use your editor to open the tc_cart_txt.html, tc_cart_txt.js and tc_order_txt.js files from the
html10 c case1 folder. Enter your name and the date in the comment section of each file, and
save them as tc_cart.html, tc_cart.js and tc_order.js respectively.

 2. Go to the tc_cart.html file in your editor. Directly above the closing </head> tag, insert
script elements to link the page to the tc_order.js and tc_cart.js files in that order. Defer the
loading and running of both script files until after the page has loaded.

 3. Scroll down the file and directly below the h1 heading titled “Shopping Cart” insert a div
element with the ID cart.

 4. Save your changes to the file and go to the tc_order.js file in your editor.
 5. Within the tc_order.js file, you will create arrays containing information on a sample customer

order. Create an array named item that will contain the ID numbers of the items purchased by the
customer. Add the following four item numbers to the array: 10582, 23015, 41807, and 10041.

 6. Create an array named itemDescription containing the following item descriptions:
• 1975 Green Bay Packers Football (signed), Item 10582
• Tom Landry 1955 Football Card (unsigned), Item 23015
• 1916 Army-Navy Game, Framed Photo (signed), Item 41807
• Protective Card Sheets, Item 10041

 7. Create an array named itemPrice containing the following item prices: 149.93, 89.98, 334.93,
and 22.67.

 8. Create an array named itemQty containing the following quantities that the customer ordered of
each item: 1, 1, 1, and 4.

 9. Save your changes to the file, and then open the tc_cart.js file in your editor.
 10. In your script, you will calculate a running total of the cost of the order. Declare a variable

named orderTotal and set its initial value to 0.
 11. Declare a variable named cartHTML that will contain the HTML code for the contents of the

shopping cart, which will be displayed as a table. Set its initial value to the text string:

<table>
<tr>
<th>Item</th><th>Description</th><th>Price</th><th>Qty</th><th>Total</th>
</tr>

 12. Create a for loop that loops through the entries in the item array. Each time through the loop,
execute the commands described in Steps a through e.
a. Add the following HTML code to the value of the cartHTML variable

<tr>
<td></td>

 where item is the current value from the item array.
b. Add the following HTML code to the cartHTML variable to display the description, price, and

quantity ordered of the item

<td>description</td>
<td>$price</td>
<td>quantity</td>

 where description is the current value from the itemDescription array, price is the
current value from the itemPrice array preceded by a $ symbol, and quantity is the current
value from the itemQty array.

07140_Tut10_ptg01_751-822.indd 818 8/7/19 7:55 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 819

C
R

E
A

T
E

c. Declare a variable named itemCost equal to the price value multiplied by the quantity
value for the current item.

d. Add the following HTML code to the cartHTML variable to display the cost for the item(s)
ordered, completing the table row

<td>$cost</td></tr>

 where cost is the value of the itemCost variable, preceded by a $ symbol.
e. Add the value of the itemCost variable to the orderTotal variable to keep a running total of the

total cost of the customer order.
 13. After the for loop has completed, add the following HTML code to the value of the cartHTML

variable, completing the shopping cart table

<tr>
<td colspan='4'>Subtotal</td>
<td>$total</td>
</tr>
</table>

 where total is the value of the orderTotal variable, preceded by a $ symbol.
 14. Apply the cartHTML value to the inner HTML of the div element with the ID "cart".
 15. Document your script file with appropriate comments, and then save your work.
 16. Open the tc_cart.html file in your browser and verify that the page now shows the shopping cart

data for the sample customer order.

Case Problem 2

Data Files needed for this Case Problem: vw_election_txt.html, vw_results_txt.js, 2 CSS files,
1 JS file, 1 PNG file

VoterWeb Pam Carls is a manager for the website Voter Web, which compiles voting totals and
 statistics from local and national elections. Pam has the results of recent congressional elections from
eight districts in Minnesota stored as multidimensional arrays in a JavaScript file. Pam wants you to
create a script displaying these results and calculating the vote percentage for each candidate within
each race. A preview of the page is shown in Figure 10–40.

07140_Tut10_ptg01_751-822.indd 819 8/7/19 7:55 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 820

Complete the following:

 1. Use your editor to open the vw_election_txt.html and vw_results_txt.js files from the html10 c
case2 folder. Enter your name and the date in the comment section of each file, and save them as
vw_election.html and vw_results.js respectively.

 2. Go to the vw_election.html file in your editor. Directly above the closing </head> tag, insert
script elements to link the page to the vw_congminn.js and vw_results.js files in that order.
Defer the loading and running of both script files until after the page has loaded.

 3. Scroll down the file and, directly above the footer, insert an empty section element. You will
write the HTML code of the election report in this element. Save your changes to the file.

 4. Open the vw_congminn.js file in your editor and study the contents. Note that the file contains
the results of 8 congressional elections in Minnesota. The candidate information is stored in
multidimensional arrays named candidate, party, and votes. Do not make any changes to
this file.

 5. Go to the vw_results.js file in your editor. Declare a variable named reportHTML containing the
following HTML text

<h1>title</h1>

 where title is the value of the raceTitle variable stored in the vw_congminn.js file.

Figure 10–40 Election results at VoterWeb

© Courtesy Patrick Carey

07140_Tut10_ptg01_751-822.indd 820 8/7/19 7:55 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tutorial 10 Exploring Arrays, Loops, and Conditional Statements | HTML 5 and CSS HTML 821

 6. Create a for loop that loops through the contents of the race array using i as the counter
variable. Place the commands specified in Steps a through e within this program for loop:
a. Create a variable named totalVotes that will store the total votes cast in each race. Set its

initial value to 0.
b. Calculate the total votes cast in the current race by applying the forEach() method to

i th index of the votes array using the calcSum() function as the callback function.
c. Add the following HTML text to the value of the reportHTML variable to write the name of the

current race in the program loop

<table>
 <caption>race</caption>
 <tr><th>Candidate</th><th>Votes</th></tr>

 where race is the i th index of the race array.
d. Call the candidateRows() function (you will create this function shortly) using the counter

variable i and the totalVotes variable as parameter values. Add the value returned by this
function to the value of the reportHTML variable.

e. Add the text </table> to the value of the reportHTML variable.
 7. After the for loop has completed, write the value of the reportHTML variable into the

innerHTML of the first (and only) section element in the document.
 8. Next, create the candidateRows() function. The purpose of this function is to write individual

table rows for each candidate, showing the candidate’s name, party affiliation, vote total,
and vote percentage. The candidateRows() function has two parameters named raceNum and
totalVotes. Place the commands in Steps a through c within this function.
a. Declare a local variable named rowHTML that will contain the HTML code for the table row.

Set the initial value of this variable to an empty text string.
 b. Create a for loop in which the counter variable j goes from 0 to 2 in steps of

1 unit. Within the for loop do the following:
i. Declare a variable named candidateName that retrieves the name of the current candidate

and the current race. (Hint: Retrieve the candidate name from the multidimensional
candidate array using the reference, candidate[raceNum][j].)

ii. Declare a variable named candidateParty that retrieves the party affiliation of the current
candidate in the current race from the multidimensional party array.

iii. Declare a variable named candidateVotes that retrieves the votes cast for the current
candidate in the current race from the multidimensional votes array.

iv. Declare a variable named candidatePercent equal to the value returned by the
calcPercent() function, calculating the percentage of votes received by the current
candidate in the loop. Use candidateVotes as the first parameter value and totalVotes as the
second parameter value.

v. Add the following HTML code to the value of the rowHTML variable

<tr>
 <td>name (party)</td>
 <td>votes (percent)</td>
</tr>

 where name is the value of candidateName, party is the value of candidateParty, votes
is the value of candidateVotes, and percent is the value of candidatePercent. Apply the
toLocaleString() method to votes in order to display the vote total with a thousands
separator. Apply the toFixed(1) method to percent in order to display percentage values
to 1 decimal place.

c. Return the value of the rowHTML variable.

07140_Tut10_ptg01_751-822.indd 821 8/7/19 7:55 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Tutorial 10 Exploring Arrays, Loops, and Conditional StatementsHTML 822

 9. Save your changes to the file, and then load vw_election.html in your browser. Verify that the
three candidate names, party affiliations, votes, and vote percentages are shown for each of the
eight congressional races.

 10. Pam also wants the report to display the vote percentages as bar charts with the length of the
bar corresponding to the percentage value. Return to the vw_results.js file in your editor. At the
bottom of the file, create a function named createBar() with one parameter named partyType.
Add the commands described in Steps a through b to the function:
a. Declare a variable named barHTML and set its initial value to an empty text string.

 b. Create a switch/case statement that tests the value of the partyType
parameter. If partyType equal “D” set barHTML equal to:

 <td class='dem'></td>

 If partyType equals “R” set barHTML equal to:
 <td class='rep'></td>

 Finally, if partyType equals “I” set barHTML to:
 <td class='ind'></td>

 11. Return the value of barHTML.
 Next, add these empty data cells to the race results table, with one cell for every percentage

point cast for the candidate.
 12. Scroll up to the candidateRows() function. Directly before the line that adds the HTML code

</tr> to the value of the rowHTML variable, insert a for loop with a counter variable k that
goes from 0 up to a value less than candidatePercent in increments of 1 unit. Each time through
the loop call the createBar() function using candidateParty and candidatePercent as the parameter
values.

 13. Add comments throughout the file with descriptive information about the variables and
functions.

 14. Save your changes to the file, and then reload vw_election.html in your browser. Verify that each
election table shows a bar chart with different the length of bars representing each candidate’s
vote percentage.

07140_Tut10_ptg01_751-822.indd 822 8/7/19 7:55 AM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Color Names with
Color Values, and
HTML Character
Entities
Both HTML and XHTML allow you to define colors using either
color names or color values. HTML and XHTML support a list of
16 basic color names. Most browsers also support an extended
list of color names, which are listed in Table A–1 in this appendix,
along with their RGB and hexadecimal values.

Table A–2 in this appendix lists the extended character set for
HTML, also known as the ISO Latin-1 Character Set. You can specify
 characters by name or by numeric value. For example, you can use
either ® or ® to specify the registered trademark symbol, ®.

APPENDIX A

HTML A1

STARTING DATA FILES

There are no starting Data Files needed for this appendix.

07140_AppA_ptg01_001-008.indd 1 8/8/19 12:07 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix A Color Names with Color Values, and HTML Character EntitiesHTML A2

Color Name RGB Value Hexadecimal Value
aliceblue (240,248,255) #F0F8FF

antiquewhite (250,235,215) #FAEBD7

aqua (0,255,255) #00FFFF

aquamarine (127,255,212) #7FFFD4

azure (240,255,255) #F0FFFF

beige (245,245,220) #F5F5DC

bisque (255,228,196) #FFE4C4

black (0,0,0) #000000

blanchedalmond (255,235,205) #FFEBCD

blue (0,0,255) #0000FF

blueviolet (138,43,226) #8A2BE2

brown (165,42,42) #A52A2A

burlywood (222,184,135) #DEB887

cadetblue (95,158,160) #5F9EA0

chartreuse (127,255,0) #7FFF00

chocolate (210,105,30) #D2691E

coral (255,127,80) #FF7F50

cornflowerblue (100,149,237) #6495ED

cornsilk (255,248,220) #FFF8DC

crimson (220,20,54) #DC1436

cyan (0,255,255) #00FFFF

darkblue (0,0,139) #00008B

darkcyan (0,139,139) #008B8B

darkgoldenrod (184,134,11) #B8860B

darkgray (169,169,169) #A9A9A9

darkgreen (0,100,0) #006400

darkkhaki (189,183,107) #BDB76B

darkmagenta (139,0,139) #8B008B

darkolivegreen (85,107,47) #556B2F

darkorange (255,140,0) #FF8C00

darkorchid (153,50,204) #9932CC

darkred (139,0,0) #8B0000

darksalmon (233,150,122) #E9967A

darkseagreen (143,188,143) #8FBC8F

darkslateblue (72,61,139) #483D8B

darkslategray (47,79,79) #2F4F4F

darkturquoise (0,206,209) #00CED1

darkviolet (148,0,211) #9400D3

deeppink (255,20,147) #FF1493

deepskyblue (0,191,255) #00BFFF

dimgray (105,105,105) #696969

dodgerblue (30,144,255) #1E90FF

firebrick (178,34,34) #B22222

floralwhite (255,250,240) #FFFAF0

forestgreen (34,139,34) #228B22

fuchsia (255,0,255) #FF00FF

Table A–1:
Color names and

corresponding values

07140_AppA_ptg01_001-008.indd 2 8/8/19 12:07 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix A Color Names with Color Values, and HTML Character Entities | HTML 5 and CSS HTML A3

Color Name RGB Value Hexadecimal Value
gainsboro (220,220,220) #DCDCDC

ghostwhite (248,248,255) #F8F8FF

gold (255,215,0) #FFD700

goldenrod (218,165,32) #DAA520

gray (128,128,128) #808080

green (0,128,0) #008000

greenyellow (173,255,47) #ADFF2F

honeydew (240,255,240) #F0FFF0

hotpink (255,105,180) #FF69B4

indianred (205,92,92) #CD5C5C

indigo (75,0,130) #4B0082

ivory (255,255,240) #FFFFF0

khaki (240,230,140) #F0E68C

lavender (230,230,250) #E6E6FA

lavenderblush (255,240,245) #FFF0F5

lawngreen (124,252,0) #7CFC00

lemonchiffon (255,250,205) #FFFACD

lightblue (173,216,230) #ADD8E6

lightcoral (240,128,128) #F08080

lightcyan (224,255,255) #E0FFFF

lightgoldenrodyellow (250,250,210) #FAFAD2

lightgreen (144,238,144) #90EE90

lightgrey (211,211,211) #D3D3D3

lightpink (255,182,193) #FFB6C1

lightsalmon (255,160,122) #FFA07A

lightseagreen (32,178,170) #20B2AA

lightskyblue (135,206,250) #87CEFA

lightslategray (119,136,153) #778899

lightsteelblue (176,196,222) #B0C4DE

lightyellow (255,255,224) #FFFFE0

lime (0,255,0) #00FF00

limegreen (50,205,50) #32CD32

linen (250,240,230) #FAF0E6

magenta (255,0,255) #FF00FF

maroon (128,0,0) #800000

mediumaquamarine (102,205,170) #66CDAA

mediumblue (0,0,205) #0000CD

mediumorchid (186,85,211) #BA55D3

mediumpurple (147,112,219) #9370DB

mediumseagreen (60,179,113) #3CB371

mediumslateblue (123,104,238) #7B68EE

mediumspringgreen (0,250,154) #00FA9A

mediumturquoise (72,209,204) #48D1CC

mediumvioletred (199,21,133) #C71585

midnightblue (25,25,112) #191970

mintcream (245,255,250) #F5FFFA

mistyrose (255,228,225) #FFE4E1

Table A–1
(Continued):

Color names and
corresponding values

07140_AppA_ptg01_001-008.indd 3 8/8/19 12:07 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix A Color Names with Color Values, and HTML Character EntitiesHTML A4

Color Name RGB Value Hexadecimal Value
moccasin (255,228,181) #FFE4B5

navajowhite (255,222,173) #FFDEAD

navy (0,0,128) #000080

oldlace (253,245,230) #FDF5E6

olive (128,128,0) #808000

olivedrab (107,142,35) #6B8E23

orange (255,165,0) #FFA500

orangered (255,69,0) #FF4500

orchid (218,112,214) #DA70D6

palegoldenrod (238,232,170) #EEE8AA

palegreen (152,251,152) #98FB98

paleturquoise (175,238,238) #AFEEEE

palevioletred (219,112,147) #DB7093

papayawhip (255,239,213) #FFEFD5

peachpuff (255,218,185) #FFDAB9

peru (205,133,63) #CD853F

pink (255,192,203) #FFC0CB

plum (221,160,221) #DDA0DD

powderblue (176,224,230) #B0E0E6

purple (128,0,128) #808080

red (255,0,0) #FF0000

rosybrown (188,143,143) #BC8F8F

royalblue (65,105,0) #4169E1

saddlebrown (139,69,19) #8B4513

salmon (250,128,114) #FA8072

sandybrown (244,164,96) #F4A460

seagreen (46,139,87) #2E8B57

seashell (255,245,238) #FFF5EE

sienna (160,82,45) #A0522D

silver (192,192,192) #C0C0C0

skyblue (135,206,235) #87CEEB

slateblue (106,90,205) #6A5ACD

slategray (112,128,144) #708090

snow (255,250,250) #FFFAFA

springgreen (0,255,127) #00FF7F

steelblue (70,130,180) #4682B4

tan (210,180,140) #D2B48C

teal (0,128,128) #008080

thistle (216,191,216) #D8BFD8

tomato (255,99,71) #FF6347

turquoise (64,224,208) #40E0D0

violet (238,130,238) #EE82EE

wheat (245,222,179) #F5DEB3

white (255,255,255) #FFFFFF

whitesmoke (245,245,245) #F5F5F5

yellow (255,255,0) #FFFF00

yellowgreen (154,205,50) #9ACD32

Table A–1
(Continued):

Color names and
corresponding values

07140_AppA_ptg01_001-008.indd 4 8/8/19 12:07 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix A Color Names with Color Values, and HTML Character Entities | HTML 5 and CSS HTML A5

Character Code Code Name Description
	 Tab

 Line feed

 Space

! ! Exclamation mark

" " " Double quotation mark

Pound sign

$ $ Dollar sign

% % Percent sign

& & & Ampersand

‘ ' Apostrophe

((Left parenthesis

)) Right parenthesis

* * Asterisk

+ + Plus sign

, , Comma

- - Hyphen

. . Period

/ / Forward slash

0 - 9 0–9 Numbers 0–9

: : Colon

; ; Semicolon

< < < Less than sign

= = Equal sign

> > > Greater than sign

? ? Question mark

@ @ Commercial at sign

A - Z A–Z Letters A–Z

[[Left square bracket

\ \ Back slash

]] Right square bracket

^ ^ Caret

_ _ Horizontal bar (underscore)

` ` Grave accent

a - z a–z Letters a–z

{ { Left curly brace

| | Vertical bar

} } Right curly brace

~ ~ Tilde

‚ ‚ Comma

ƒ ƒ Function sign (florin)

“ „ Double quotation mark

… … Ellipsis

† † Dagger

Table A–2:
HTML character entities

07140_AppA_ptg01_001-008.indd 5 8/8/19 12:07 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix A Color Names with Color Values, and HTML Character EntitiesHTML A6

Character Code Code Name Description
‡ ‡ Double dagger

ˆ ˆ Circumflex

‰ ‰ Permil

Š Š Capital S with hacek

‹ ‹ Left single angle

Œ Œ Capital OE ligature

– Unused

‘ ‘ Single beginning quotation mark

‘ ’ Single ending quotation mark

“ “ Double beginning quotation mark

” ” Double ending quotation mark

• • Bullet

– – En dash

— — Em dash

~ ˜ Tilde

™ ™ ™ Trademark symbol

š š Small s with hacek

› › Right single angle

œ œ Lowercase oe ligature

Ÿ Ÿ Capital Y with umlaut

 Non-breaking space

¡ ¡ ¡ Inverted exclamation mark

¢ ¢ ¢ Cent sign

£ £ £ Pound sterling

¤ ¤ ¤ General currency symbol

¥ ¥ ¥ Yen sign

¦ ¦ ¦ Broken vertical bar

§ § § Section sign

¨ ¨ ¨ Umlaut

© © © Copyright symbol

ª ª ª Feminine ordinal

« « « Left angle quotation mark

¬ ¬ ¬ Not sign

– ­ ­ Soft hyphen

® ® ® Registered trademark

¯ ¯ ¯ Macron

° ° ° Degree sign

± ± ± Plus/minus symbol
2 ² ² Superscript 2

3 ³ ³ Superscript 3

´ ´ ´ Acute accent

µ µ µ Micro sign

¶ ¶ ¶ Paragraph sign

Table A–2
(Continued):

HTML character entities

07140_AppA_ptg01_001-008.indd 6 8/8/19 12:07 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix A Color Names with Color Values, and HTML Character Entities | HTML 5 and CSS HTML A7

Character Code Code Name Description
· · · Middle dot

ç ¸ ¸ Cedilla
1 ¹ ¹ Superscript 1

º º º Masculine ordinal

» » » Right angle quotation mark

¼ ¼ ¼ Fraction one-quarter

½ ½ ½ Fraction one-half

¾ ¾ ¾ Fraction three-quarters

¿ ¿ ¿ Inverted question mark

À À À Capital A, grave accent

Á Á Á Capital A, acute accent

Â Â Â Capital A, circumflex accent

Ã Ã Ã Capital A, tilde

Ä Ä Ä Capital A, umlaut

Å Å Å Capital A, ring

Æ Æ &Aelig; Capital AE ligature

Ç Ç Ç Capital C, cedilla

È È È Capital E, grave accent

É É É Capital E, acute accent

Ê Ê Ê Capital E, circumflex accent

Ë Ë Ë Capital E, umlaut

Ì Ì Ì Capital I, grave accent

Í Í Í Capital I, acute accent

Î Î Î Capital I, circumflex accent

Ï Ï Ï Capital I, umlaut

F Ð Ð Capital ETH, Icelandic

Ñ Ñ Ñ Capital N, tilde

Ò Ò Ò Capital O, grave accent

Ó Ó Ó Capital O, acute accent

Ô Ô Ô Capital O, circumflex accent

Õ Õ Õ Capital O, tilde

Ö Ö Ö Capital O, umlaut

× × × Multiplication sign

Ø Ø Ø Capital O, slash

Ù Ù Ù Capital U, grave accent

Ú Ú Ú Capital U, acute accent

Û Û Û Capital U, circumflex accent

Ü Ü Ü Capital U, umlaut

Ý Ý Ý Capital Y, acute accent

Þ Þ Þ Capital THORN, Icelandic

ß ß ß Small sz, ligature

à à à Small a, grave accent

á á á Small a, acute accent

Table A–2
(Continued):

HTML character entities

07140_AppA_ptg01_001-008.indd 7 8/8/19 12:07 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix A Color Names with Color Values, and HTML Character EntitiesHTML A8

Character Code Code Name Description
â â â Small a, circumflex accent

ã ã ã Small a, tilde

ä ä ä Small a, umlaut

å å å Small a, ring

æ æ æ Small ae, ligature

ç ç ç Small c, cedilla

è è è Small e, grave accent

é é é Small e, acute accent

ê ê ê Small e, circumflex accent

ë ë ë Small e, umlaut

ì ì ì Small i, grave accent

í í í Small i, acute accent

î î î Small i, circumflex accent

ï ï ï Small i, umlaut

ð ð ð Small eth, Icelandic

ñ ñ ñ Small n, tilde

ò ò ò Small o, grave accent

ó ó ó Small o, acute accent

ô ô ô Small o, circumflex accent

õ õ õ Small o, tilde

ö ö ö Small o, umlaut

÷ ÷ ÷ Division sign

ø ø ø Small o, slash

ù ù ù Small u, grave accent

ú ú ú Small u, acute accent

û û û Small u, circumflex accent

ü ü ü Small u, umlaut

ý ý ý Small y, acute accent

þ þ þ Small thorn, Icelandic

ÿ ÿ ÿ Small y, umlaut

Table A–2
(Continued):

HTML character entities

07140_AppA_ptg01_001-008.indd 8 8/8/19 12:07 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML B1

HTML Elements
and Attributes
This appendix provides descriptions of the major elements and
 attributes of HTML. The elements and attributes represent the
 specifications of the W3C; therefore, they might not all be supported
by the major browsers. Also, in some cases, an element or attribute is
not part of the W3C specifications, but instead is an extension offered
by a particular browser. Where this is the case, the element or attribute
is listed with the supporting browser indicated in parentheses.

Many elements and attributes have been deprecated by the
W3C. Deprecated elements and attributes are supported by most
 browsers, but their use is discouraged. In addition, some elements
and attributes have been marked as obsolete. The use of both
 deprecated and obsolete items is not recommended. However, while
deprecated items are in danger of no longer being supported by the
browser market, obsolete items will probably still be supported by the
browser market for the foreseeable future.

Finally, elements and attributes that are new with HTML 5 are
 indicated by (HTML 5) in the text. Note that some of these elements
and attributes are not supported by all browsers and browser versions.

The following data types are used throughout this appendix:

• char A single text character
• char code A character encoding
• color An HTML color name or value
• date A date and time in the format:

yyyy-mm-ddThh:mm:ssTIMEZONE
• id An id value
• lang A language type
• media A media type equal to all, aural, braille,

handheld, print, projection, screen, tty, or tv
• integer An integer value
• mime-type A MIME data type, such as "text/html"
• mime-type list A comma-separated list of mime-types
• option1|option2| … The value is limited to the specified list of

options, with the default in bold
• script A script or a reference to a script
• styles A list of style declarations
• text A text string
• text list A comma-separated list of text strings
• url The URL for a web page or file
• value A numeric value
• value list A comma-separated list of numeric values

APPENDIX B

STARTING DATA FILES

There are no starting Data Files needed for this appendix.

07140_AppB_ptg01_001-020.indd 1 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix B HTML Elements and AttributesHTML B2

General Attributes
Several attributes are common to many page elements. Rather than repeating this
 information each time it occurs, the following tables summarize these attributes.

Core Attributes
The following attributes apply to all page elements and are supported by most browser
versions.

Attribute Description
class="text" Specifies the class or group to which an element belongs

contenteditable=
"text list"

Specifies whether the contents of the element are editable

contextmenu="id" Specifies the value of the id attribute on the menu with which to associate
the element as a context menu

draggable="true|false" Specifies whether the element is draggable

dropzone=
"copy|move|link"

Specifies what types of content can be dropped on the element and which
actions to take with content when it is dropped

hidden="hidden" Specifies that the element is not yet, or is no longer, relevant and that the
element should not be rendered

id="text" Specifies a unique identifier to be associated with the element

spellcheck="true|false" Specifies whether the element represents an element whose contents are
subject to spell checking and grammar checking

style="styles" Defines an inline style for the element

title="text" Provides an advisory title for the element

Language Attributes
The web is designed to be universal and has to be adaptable to languages other than
English. Thus, another set of attributes provides language support. This set of attributes
is not as widely supported by browsers as the core attributes are. As with the core
 attributes, they can be applied to most page elements.

Attribute Description
dir="ltr|rtl" Indicates the text direction as related to the lang attribute; a value of ltr displays text

from left to right; a value of rtl displays text from right to left

lang="lang" Identifies the language used in the page where lang is the language code name

Form Attributes
The following attributes can be applied to most form elements or to a web form itself, but
not to other page elements.

Attribute Description
accesskey="char" Indicates the keyboard character that can be pressed along with the

 accelerator key to access a form element

disabled="disabled" Disables a form field for input

tabindex="integer" Specifies a form element’s position in a document’s tabbing order

07140_AppB_ptg01_001-020.indd 2 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix B HTML Elements and Attributes | HTML 5 and CSS HTML B3

Event Attributes
To make web pages more dynamic, HTML supports event attributes that identify scripts
to be run in response to an event occurring within an element. For example, clicking a
main heading with a mouse can cause a browser to run a program that hides or expands
a table of contents. Each event attribute has the form

onevent = "script"

where event is the name of the event attribute and script is the name of the script or
command to be run by the browser in response to the occurrence of the event within
the element.

Core Events
The core event attributes are part of the specifications for HTML. They apply to almost all
page elements.

Attribute Description
onabort Loading of the element is aborted by the user.

onclick The mouse button is clicked.

oncontextmenu The user requested the context menu for the element.

ondblclick The mouse button is double-clicked.

onerror The element failed to load properly.

onkeydown A key is pressed down.

onkeypress A key is initially pressed.

onkeyup A key is released.

onload The element finishes loading.

onmousedown The mouse button is pressed down.

onmousemove The mouse pointer is moved within the element’s boundaries.

onmouseout The mouse pointer is moved out of the element’s boundaries.

onmouseover The mouse pointer hovers over the element.

onmouseup The mouse button is released.

onmousewheel The user rotates the mouse wheel.

onreadystatechange The element and its resources finish loading.

onscroll The element or document window is being scrolled.

onshow The user requests that the element be shown as a context menu.

onsuspend The browser suspends retrieving data.

Document Events
The following list of event attributes applies not to individual elements within the page,
but to the entire document as it is displayed within the browser window or frame.

Attribute Description
onafterprint The document has finished printing (IE only).

onbeforeprint The document is about to be printed (IE only).

onload The page is finished being loaded.

onunload The page is finished unloading.

07140_AppB_ptg01_001-020.indd 3 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix B HTML Elements and AttributesHTML B4

Form Events
The following list of event attributes applies to either an entire web form or fields within
a form.

Attribute Description
onblur The form field has lost the focus.

onchange The value of the form field has been changed.

onfocus The form field has received the focus.

onformchange The user made a change in the value of a form field in the form.

onforminput The value of a control in the form changes.

oninput The value of an element changes.

oninvalid The form field fails to meet validity constraints.

onreset The form has been reset.

onselect Text content has been selected in the form field.

onsubmit The form has been submitted for processing.

Drag and Drop Events
The following list of event attributes applies to all page elements and can be used to
respond to the user action of dragging and dropping objects in the web page.

Attribute Description
ondrag The user continues to drag the element.

ondragenter The user ends dragging the element, entering the element into a valid drop
target.

ondragleave The user’s drag operation leaves the element.

ondragover The user continues a drag operation over the element.

ondragstart The user starts dragging the element.

ondrop The user completes a drop operation over the element.

Multimedia Events
The following list of event attributes applies to embedded multimedia elements such as
audio and video clips and is used to respond to events initiated during the loading or
playback of those elements.

Attribute Description
oncanplay The browser can resume playback of the video or audio, but determines when

the playback will have to stop for further buffering.

oncanplaythrough The browser can resume playback of the video or audio, and determines the
playback can play through without further buffering.

ondurationchange The DOM duration of the video or audio element changes.

onemptied The video or audio element returns to the uninitialized state.

onended The end of the video or audio is reached.

onloadeddata The video or audio is at the current playback position for the first time.

(Continues)

07140_AppB_ptg01_001-020.indd 4 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix B HTML Elements and Attributes | HTML 5 and CSS HTML B5

Element/Attribute Description
<!-- text --> Inserts a comment into the document (comments are not displayed in the

rendered page)

<!doctype> Specifies the Document Type Definition for a document

<a> Marks the beginning and end of a link

charset="text" Specifies the character encoding of the linked document (obsolete)

coords="value list" Specifies the coordinates of a hotspot in a client-side image map; the value list
depends on the shape of the hotspot: shape="rect" "left, right, top, bottom"
shape="circle" "x_center, y_center, radius" shape="poly" "x1, y1, x2, y2, x3,
y3, …" (obsolete)

href="url" Specifies the URL of the link

hreflang="text" Specifies the language of the linked document

name="text" Specifies a name for the enclosed text, allowing it to be a link target (obsolete)

rel="text" Specifies the relationship between the current page and the link specified by
the href attribute

rev="text" Specifies the reverse relationship between the current page and the link
 specified by the href attribute (obsolete)

 shape="rect|circle|
polygon"

Specifies the shape of the hotspot (obsolete)

title="text" Specifies the pop-up text for the link

target="text" Specifies the target window or frame for the link

type="mime-type" Specifies the data type of the linked document

<abbr> </abbr> Marks abbreviated text

Attribute Description
onloadedmetadata The duration and dimensions of the video or audio element are determined.

onloadstart The browser begins looking for media data in the video or audio element.

onpause The video or audio is paused.

onplay The video or audio playback is initiated.

onplaying The video or audio playback starts.

onprogress The browser fetches data for the video or audio.

onratechange The video or audio data changes.

onseeked A seek operation on the audio or video element ends.

onseeking Seeking is initiated on the audio or video.

onstalled An attempt to retrieve data for the video or audio is not forthcoming.

ontimeupdate The current playback position of the video or audio element changes.

onvolumechange The volume of the video or audio element changes.

onwaiting Playback of the video or audio stops because the next frame is unavailable.

HTML Elements and Attributes
The following table contains an alphabetic listing of the elements and attributes supported
by HTML. Some attributes are not listed in this table but instead, they are described in the
general attributes tables presented in the previous section of this appendix.

(Continued)

(Continues)

07140_AppB_ptg01_001-020.indd 5 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix B HTML Elements and AttributesHTML B6

Element/Attribute Description
<acronym> </acronym> Marks acronym text (deprecated)

<address> </address> Marks address text

<applet> </applet> Embeds an applet into the browser (deprecated)

align="align" Specifies the alignment of the applet with the surrounding text where align is
absmiddle, absbottom, baseline, bottom, center, left, middle, right, texttop,
or top

alt="text" Specifies alternate text for the applet (deprecated)

archive="url" Specifies the URL of an archive containing classes and other resources to be
used with the applet (deprecated)

code="url" Specifies the URL of the applet’s code/class (deprecated)

codebase="url" Specifies the URL of all class files for the applet (deprecated)

datafld="text" Specifies the data source that supplies bound data for use with the data source

datasrc="text" Specifies the ID or URL of the applet’s data source

height="integer" Specifies the height of the applet in pixels

hspace="integer" Specifies the horizontal space around the applet in pixels (deprecated)

mayscript="mayscript" Permits access to the applet by programs embedded in the document

name="text" Specifies the name assigned to the applet (deprecated)

object="text" Specifies the name of the resource that contains a serialized representation of
the applet (deprecated)

src="url" Specifies an external URL reference to the applet

vspace="integer" Specifies the vertical space around the applet in pixels (deprecated)

width="integer" Specifies the width of the applet in pixels (deprecated)

<area /> Marks an image map hotspot

alt="text" Specifies alternate text for the hotspot

coords="value list" Specifies the coordinates of the hotspot; the value list depends on the shape of
the hotspot: shape="rect" "left, right, top, bottom" shape="circle" "x_center,
y_center, radius" shape="poly""x1, y1, x2, y2, x3, y3, …"

href="url" Specifies the URL of the document to which the hotspot points

hreflang="lang" Language of the hyperlink destination

media="media" The media for which the destination of the hyperlink was designed

rel="text" Specifies the relationship between the current page and the destination of
the link

nohref="nohref" Specifies that the hotspot does not point to a link

shape="rect|circle|
polygon"

Specifies the shape of the hotspot

target="text" Specifies the target window or frame for the link

<article> </article> Structural element marking a page article

<aside> </aside> Structural element marking a sidebar that is tangentially related to the main
page content

<audio> </audio> Marks embedded audio content

autoplay="autoplay" Automatically begins playback of the audio stream

preload="none|
metadata|auto"

Specifies whether to preload data to the browser

controls="controls" Specifies whether to display audio controls

(Continued)

(Continues)

07140_AppB_ptg01_001-020.indd 6 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix B HTML Elements and Attributes | HTML 5 and CSS HTML B7

Element/Attribute Description
loop="loop" Specifies whether to automatically loop back to the beginning of the audio clip

src="url" Provides the source of the audio clip

 Marks text offset from its surrounding content without conveying any extra
emphasis or importance

<base /> Specifies global reference information for the document

href="url" Specifies the URL from which all relative links in the document are based

target="text" Specifies the target window or frame for links in the document

<basefont /> Specifies the font setting for the document text (deprecated)

color="color" Specifies the text color (deprecated)

face="text list" Specifies a list of fonts to be applied to the text (deprecated)

size="integer" Specifies the size of the font range from 1 (smallest) to 7 (largest) (deprecated)

<bdi> </bdi> Marks text that is isolated from its surroundings for the purposes of bidirectional
text formatting

<bdo> </bdo> Indicates that the enclosed text should be rendered with the direction specified
by the dir attribute

<big> </big> Increases the size of the enclosed text relative to the default font size
(deprecated)

<blockquote> </blockquote> Marks content as quoted from another source

cite="url" Provides the source URL of the quoted content

<body> </body> Marks the page content to be rendered by the browser

alink="color" Specifies the color of activated links in the document (obsolete)

background="url" Specifies the background image file used for the page (obsolete)

bgcolor="color" Specifies the background color of the page (obsolete)

link="color" Specifies the color of unvisited links (obsolete)

marginheight="integer" Specifies the size of the margin above and below the page (obsolete)

marginwidth="integer" Specifies the size of the margin to the left and right of the page (obsolete)

text="color" Specifies the color of page text (obsolete)

vlink="color" Specifies the color of previously visited links (obsolete)

 Inserts a line break into the page

clear="none|left|
right|all"

Displays the line break only when the specified margin is clear (obsolete)

<button> </button> Creates a form button

autofocus="autofocus" Gives the button the focus when the page is loaded

disabled="disabled" Disables the button

form="text" Specifies the form to which the button belongs

formaction="url" Specifies the URL to which the form data is sent

formenctype="mime-type" Specifies the encoding of the form data before it is sent

formmethod="get|post" Specifies the HTTP method with which the form data is submitted

formnovalidate=
"formnovalidate"

Specifies that the form should not be validated during submission

formtarget="text" Provides a name for the target of the button

name="text" Provides the name assigned to the form button

type="submit|reset|button" Specifies the type of form button

value="text" Provides the value associated with the form button

(Continued)

(Continues)

07140_AppB_ptg01_001-020.indd 7 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix B HTML Elements and AttributesHTML B8

Element/Attribute Description
<canvas> </canvas> Marks a resolution-dependent bitmapped region that can be used for dynamic

rendering of images, graphs, and games

height="integer" Height of canvas in pixels

width="integer" Width of canvas in pixels

<caption> </caption> Creates a table caption

align="align" Specifies the alignment of the caption where align is bottom, center, left, right,
or top (deprecated)

valign="top|bottom" Specifies the vertical alignment of the caption

<center> </center> Centers content horizontally on the page (obsolete)

<cite> </cite> Marks citation text

<code> </code> Marks text used for code samples

<col> </col> Defines the settings for a column or group of columns (obsolete)

align="align" Specifies the alignment of the content of the column(s) where align is left, right,
or center

char="char" Specifies a character in the column used to align column values (obsolete)

charoff="integer" Specifies the offset in pixels from the alignment character specified in the char
attribute (obsolete)

span="integer" Specifies the number of columns in the group

valign="align" Specifies the vertical alignment of the content in the column(s) where align is
top, middle, bottom, or baseline

width="integer" Specifies the width of the column(s) in pixels (obsolete)

<colgroup> </colgroup> Creates a container for a group of columns

align="align" Specifies the alignment of the content of the column group where align is left,
right, or center (obsolete)

char="char" Specifies a character in the column used to align column group values
(obsolete)

charoff="integer" Specifies the offset in pixels from the alignment character specified in the char
attribute (obsolete)

span="integer" Specifies the number of columns in the group

valign="align" Specifies the vertical alignment of the content in the column group where align
is top, middle, bottom, or baseline (obsolete)

width="integer" Specifies the width of the columns in the group in pixels (obsolete)

<command> </command> Defines a command button

checked="checked" Selects the command

disabled="disabled" Disables the command

icon="url" Provides the URL for the image that represents the command

label="text" Specifies the text of the command button

radiogroup="text" Specifies the name of the group of commands toggled when the command
itself is toggled

type="command|
radio|checkbox"

Specifies the type of command button

<datalist> </datalist> Encloses a set of option elements that can act as a dropdown list

<dd> </dd> Marks text as a definition within a definition list

(Continued)

(Continues)

07140_AppB_ptg01_001-020.indd 8 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix B HTML Elements and Attributes | HTML 5 and CSS HTML B9

Element/Attribute Description
 Marks text as deleted from the document

cite="url" Provides the URL for the document that has additional information about the
deleted text

datetime="date" Specifies the date and time of the text deletion

<details> </details> Represents a form control from which the user can obtain additional information
or controls

open="open" Specifies that the contents of the details element should be shown to the user

<dfn> </dfn> Marks the defining instance of a term

<dir> </dir> Contains a directory listing (deprecated)

compact="compact" Permits use of compact rendering, if available (deprecated)

<div> </div> Creates a generic block-level element

align="left|center
right|justify"

Specifies the horizontal alignment of the content (obsolete)

datafld="text" Indicates the column from a data source that supplies bound data for the block
(IE only)

dataformatas="html
|plaintext|text"

Specifies the format of the data in the data source bound with the the button
(IE only)

datasrc="url" Provides the URL or ID of the data source bound with the block (IE only)

<dl> </dl> Encloses a definition list using the dd and dt elements

compact="compact" Permits use of compact rendering, if available (obsolete)

<dt> </dt> Marks a definition term in a definition list

nowrap="nowrap" Specifies whether the content wraps using normal HTML line-wrapping
conventions

 Marks emphasized text

<embed> </embed> Defines external multimedia content or a plugin

align="align" Specifies the alignment of the object with the surrounding content where align
is bottom, left, right, or top (obsolete)

height="integer" Specifies the height of the object in pixels

hspace="integer" Specifies the horizontal space around the object in pixels (obsolete)

name="text" Provides the name of the embedded object (obsolete)

src="url" Provides the location of the file containing the object

type="mime-type" Specifies the mime-type of the embedded object

vspace="integer" Specifies the vertical space around the object in pixels (obsolete)

width="integer" Specifies the width of the object in pixels

<fieldset> </fieldset> Places form fields in a common group

disabled="disabled" Disables the fieldset

form="id" The id of the form associated with the fieldset

name="text" The name part of the name/value pair associated with this element

<figure> </figure> A structural element that represents a group of media content that is
 self-contained along with a caption

<figcaption> </figcaption> Represents the caption of a figure

 Formats the enclosed text (deprecated)

color="color" Specifies the color of the enclosed text (deprecated)

face="text list" Specifies the font face(s) of the enclosed text (deprecated)

size="integer" Specifies the size of the enclosed text, with values ranging from 1 (smallest) to
7 (largest); a value of +integer increases the font size relative to the font size
specified in the basefont element (deprecated)

(Continues)

(Continued)

07140_AppB_ptg01_001-020.indd 9 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix B HTML Elements and AttributesHTML B10

Element/Attribute Description
<footer> </footer> A structural element that represents the footer of a section or page

<form> </form> Encloses the contents of a web form

accept="mime-type list" Lists mime-types that the server processing the form will handle (deprecated)

accept-charset=

"char code"

Specifies the character encoding that the server processing the form will handle

action="url" Provides the URL to which the form values are to be sent

autocomplete="on|off" Enables automatic insertion of information in fields in which the user has
 previously entered data

enctype="mime-type" Specifies the mime-type of the data to be sent to the server for processing; the
default is "application/x-www-form-urlencoded"

method="get|post" Specifies the method of accessing the URL specified in the action attribute

name="text" Specifies the name of the form

novalidate="novalidate" Specifies that the form is not meant to be validated during submission

target="text" Specifies the frame or window in which output from the form should appear

<frame> </frame> Marks a single frame within a set of frames (deprecated)

bordercolor="color" Specifies the color of the frame border

frameborder="1|0" Determines whether the frame border is visible (1) or invisible (0); Netscape also
supports values of yes or no

longdesc="url" Provides the URL of a document containing a long description of the frame’s
contents

marginheight=

"integer"

Specifies the space above and below the frame object and the frame’s borders,
in pixels

marginwidth="integer" Specifies the space to the left and right of the frame object and the frame’s
 borders, in pixels

name="text" Specifies the name of the frame

noresize="noresize" Prevents users from resizing the frame

scrolling="auto|
yes|no"

Specifies whether the browser will display a scroll bar with the frame

src="url" Provides the URL of the document to be displayed in the frame

<frameset> </frameset> Creates a collection of frames (deprecated)

border="integer" Specifies the thickness of the frame borders in the frameset in pixels (not part of
the W3C specifications, but supported by most browsers)

bordercolor="color" Specifies the color of the frame borders

cols="value list" Arranges the frames in columns with the width of each column expressed either
in pixels, as a percentage, or using an asterisk (to allow the browser to choose
the width)

frameborder="1|0" Determines whether frame borders are visible (1) or invisible (0); (not part of
the W3C specifications, but supported by most browsers)

framespacing="integer" Specifies the amount of space between frames in pixels (IE only)

rows="value list" Arranges the frames in rows with the height of each column expressed either
in pixels, as a percentage, or using an asterisk (to allow the browser to choose
the height)

(Continued)

(Continues)

07140_AppB_ptg01_001-020.indd 10 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix B HTML Elements and Attributes | HTML 5 and CSS HTML B11

Element/Attribute Description
<hi> </hi> Marks the enclosed text as a heading, where i is an integer from 1 (the largest

heading) to 6 (the smallest heading)

align="align" Specifies the alignment of the heading text where align is left, center, right,
or justify (obsolete)

<head> </head> Encloses the document head, containing information about the document

profile="url" Provides the location of metadata about the document

<header> </header> Structural element that represents the header of a section or the page

<hgroup> </hgroup> Structural element that groups content headings

<hr /> Draws a horizontal line (rule) in the rendered page

align="align" Specifies the horizontal alignment of the line where align is left, center, or right
(obsolete)

color="color" Specifies the color of the line (obsolete)

noshade="noshade" Removes 3D shading from the line (obsolete)

size="integer" Specifies the height of the line in pixels or as a percentage of the enclosing
 element’s height (obsolete)

width="integer" Specifies the width of the line in pixels or as a percentage of the enclosing
 element’s width (obsolete)

<html> </html> Encloses the entire content of the HTML document

manifest="url" Provides the address of the document’s application cache manifest

xmlns="text" Specifies the namespace prefix for the document

<i> </i> Represents a span of text offset from its surrounding content without conveying
any extra importance or emphasis

<iframe> </iframe> Creates an inline frame in the document

align="align" Specifies the horizontal alignment of the frame with the surrounding content
where align is bottom, left, middle, top, or right (obsolete)

datafld="text" Indicates the column from a data source that supplies bound data for the inline
frame (IE only)

dataformatas="html|

plaintext|text"

Specifies the format of the data in the data source bound with the inline frame
(IE only)

datasrc="url" Provides the URL or ID of the data source bound with the inline frame (IE only)

frameborder="1|0" Specifies whether to display a frame border (1) or not (0) (obsolete)

height="integer" Specifies the height of the frame in pixels

longdesc="url" Indicates the document contains a long description of the frame’s content
(obsolete)

marginheight="integer" Specifies the space above and below the frame object and the frame’s borders,
in pixels (obsolete)

marginwidth="integer" Specifies the space to the left and right of the frame object and the frame’s
 borders, in pixels (obsolete)

name="text" Specifies the name of the frame

sandbox="allow-forms|
allow-scripts|
allow-top-navigation|
allow-same-origin"

Defines restrictions to the frame content

seamless="seamless" Displays the inline frame as part of the document

scrolling="auto|
yes|no"

Determines whether the browser displays a scroll bar with the frame (obsolete)

(Continues)

(Continued)

07140_AppB_ptg01_001-020.indd 11 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix B HTML Elements and AttributesHTML B12

Element/Attribute Description
src="url" Indicates the document displayed within the frame

srcdoc="text" Provides the HTML code shown in the inline frame

width="integer" Specifies the width of the frame in pixels

 Inserts an inline image into the document

align="align" Specifies the alignment of the image with the surrounding content where align
is left, right, top, text textop, middle, absmiddle, baseline, bottom, absbottom
(obsolete)

alt="text" Specifies alternate text to be displayed in place of the image

border="integer" Specifies the width of the image border (obsolete)

datafld="text" Names the column from a data source that supplies bound data for the image
(IE only)

dataformatas="html|

plaintext|text"

Specifies the format of the data in the data source bound with the image
(IE only)

datasrc="url" Provides the URL or ID of the data source bound with the image (IE only)

dynsrc="url" Provides the URL of a video or VRML file (IE and Opera only)

height="integer" Specifies the height of the image in pixels

hspace="integer" Specifies the horizontal space around the image in pixels (deprecated)

ismap="ismap" Indicates that the image can be used as a server-side image map

longdesc="url" Provides the URL of a document containing a long description of the image
(obsolete)

name="text" Specifies the image name (obsolete)

src="url" Specifies the image source file

usemap="url" Provides the location of a client-side image associated with the image (not
 well-supported when the URL points to an external file)

vspace="integer" Specifies the vertical space around the image in pixels (obsolete)

width="integer" Specifies the width of the image in pixels

<input> </input> Marks an input field in a web form

align="align" Specifies the alignment of the input field with the surrounding content where
align is left, right, top, texttop, middle, absmiddle, baseline, bottom, or
 absbottom (obsolete)

alt="text" Specifies alternate text for image buttons and image input fields

checked="checked" Specifies that the input check box or input radio button is selected

datafld="text" Indicates the column from a data source that supplies bound data for the
input field (IE only)

dataformatas="html|
plaintext|text"

Specifies the format of the data in the data source bound with the input field
(IE only)

datasrc="url" Provides the URL or ID of the data source bound with the input field (IE only)

disabled="disabled" Disables the input control

form="text" Specifies the form to which the button belongs

formaction="url" Specifies the URL to which the form data is sent

formenctype="mime-type" Specifies the encoding of the form data before it is sent

formmethod="get|post" Specifies the HTTP method with which the form data is submitted

formnovalidate=
"formnovalidate"

Specifies that the form should not be validated during submission

formtarget="text" Provides a name for the target of the button

height="integer" Specifies the height of the image input field in pixels

(Continued)

(Continues)

07140_AppB_ptg01_001-020.indd 12 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix B HTML Elements and Attributes | HTML 5 and CSS HTML B13

Element/Attribute Description
list="id" Specifies the id of a data list associated with the input field

max="value" Specifies the maximum value of the field

maxlength="integer" Specifies the maximum number of characters that can be inserted into a text
input field

min="value" Specifies the minimum value of the field

multiple="multiple" Specifies that the user is allowed to specify more than one input value

name="text" Specifies the name of the input field

pattern="text" Specifies the required regular expression pattern of the input field value

placeholder="text" Specifies placeholder text for the input field

readonly="readonly" Prevents the value of the input field from being modified

size="integer" Specifies the number of characters that can be displayed at one time in an
input text field

src="url" Indicates the source file of an input image field

step="any|value" Specifies the value granularity of the field value

type="text" Specifies the input type where text is button, checkbox, color, date, datetime,
datetime-local, email, file, hidden, image, month, number, password, radio,
range, reset, search, submit, tel, text, time, url, or week

value="text" Specifies the default value of the input field

width="integer" Specifies the width of an image input field in pixels

<ins> </ins> Marks inserted text

cite="url" Provides the URL for the document that has additional information about the
inserted text

datetime="date" Specifies the date and time of the text insertion

<kbd> </kbd> Marks keyboard-style text

<keygen> </keygen> Defines a generate key within a form

autofocus="autofocus" Specifies that the element is to be given the focus when the form is loaded

challenge="text" Provides the challenge string that is submitted along with the key

disabled="disabled" Disables the element

form="id" Specifies the id of the form associated with the element

keytype="rsa" Specifies the type of key generated

name="text" Specifies the name part of the name/value pair associated with the element

<label> </label> Associates the enclosed content with a form field

datafld="text" Indicates the column from a data source that supplies bound data for the label
(IE only)

dataformatas="html|
plaintext|text"

Specifies the format of the data in the data source bound with the label (IE only)

datasrc="url" Provides the URL or ID of the data source bound with the label (IE only)

for="text" Provides the ID of the field associated with the label

form="id" Specifies the id of the form associated with the label

<legend> </legend> Marks the enclosed text as a caption for a field set

align="bottom|left

|top|right"

Specifies the alignment of the legend with the field set; Internet Explorer also
supports the center option (deprecated)

 Marks an item in an ordered (ol), unordered (ul), menu (menu), or directory
(dir) list

value="integer" Sets the value for the current list item in an ordered list; subsequent list items
are numbered from that value

(Continues)

(Continued)

07140_AppB_ptg01_001-020.indd 13 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix B HTML Elements and AttributesHTML B14

Element/Attribute Description
<link /> Creates an element in the document head that establishes the relationship

between the current document and external documents or objects

charset="char code" Specifies the character encoding of the external document (obsolete)

href="url" Provides the URL of the external document

hreflang="text" Indicates the language of the external document

media="media" Indicates the media in which the external document is presented

rel="text" Specifies the relationship between the current page and the link specified by
the href attribute

rev="text" Specifies the reverse relationship between the current page and the link
 specified by the href attribute (obsolete)

sizes="any|value" Specifies the sizes of icons used for visual media

target="text" Specifies the target window or frame for the link (obsolete)

type="mime-type" Specifies the mime-type of the external document

<map> </map> Creates an element that contains client-side image map hotspots

name="text" Specifies the name of the image map

<mark> </mark> Defines marked text

<menu> </menu> Represents a list of commands

compact="compact" Reduces the space between menu items (obsolete)

label="text" Defines a visible label for the menu

type="context|list|
toolbar"

Defines which type of list to display

<meta /> Creates an element in the document’s head section that contains information
and special instructions for processing the document

charset="char code" Defines the character encoding for the document

content="text" Provides information associated with the name or http-equiv attributes

http-equiv="text" Provides instructions to the browser to request the server to perform different
http operations

name="text" Specifies the type of information specified in the content attribute

scheme="text" Supplies additional information about the scheme used to interpret the content
attribute (obsolete)

<meter> </meter> Defines a measurement within a predefined range

high="value" Defines the high value of the range

low="value" Defines the low value of the range

max="value" Defines the maximum value

min="value" Defines the minimum value

optimum="value" Defines the optimum value from the range

value="value" Defines the meter’s value

<nav> </nav> Structural element defining a navigation list

<nobr> </nobr> Disables line wrapping for the enclosed content (not part of the W3C
 specifications, but supported by most browsers)

<noembed> </noembed> Encloses alternate content for browsers that do not support the embed element
(not part of the W3C specifications, but supported by most browsers)

<noframe> </noframe> Encloses alternate content for browsers that do not support frames (obsolete)

<noscript> </noscript> Encloses alternate content for browsers that do not support client-side scripts

(Continued)

(Continues)

07140_AppB_ptg01_001-020.indd 14 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix B HTML Elements and Attributes | HTML 5 and CSS HTML B15

Element/Attribute Description
<object> </object> Places an embedded object (image, applet, sound clip, video clip, etc.) into

the page

archive="url" Specifies the URL of an archive containing classes and other resources
 preloaded for use with the object (obsolete)

align="align" Aligns the object with the surrounding content where align is absbottom,
absmiddle, baseline, bottom, left, middle, right, texttop, or top (obsolete)

border="integer" Specifies the width of the border around the object (obsolete)

classid="url" Provides the URL of the object (obsolete)

codebase="url" Specifies the base path used to resolve relative references within the
 embedded object (obsolete)

codetype="mime-type" Indicates the mime-type of the embedded object’s code (obsolete)

data="url" Provides the URL of the object’s data file

datafld="text" Identifies the column from a data source that supplies bound data for the
embedded object (IE only)

dataformatas="html|
plaintext|text"

Specifies the format of the data in the data source bound with the embedded
object (IE only)

datasrc="url" Provides the URL or ID of the data source bound with the embedded object
(IE only)

declare="declare" Declares the object without embedding it on the page (obsolete)

form="id" Specifies the id of the form associated with the object

height="integer" Specifies the height of the object in pixels

hspace="integer" Specifies the horizontal space around the image in pixels (obsolete)

name="text" Specifies the name of the embedded object

standby="text" Specifies the message displayed by the browser while loading the embedded
object (obsolete)

type="mime-type" Indicates the mime-type of the embedded object

vspace="integer" Specifies the vertical space around the embedded object (obsolete)

width="integer" Specifies the width of the object in pixels

 Contains an ordered list of items

reversed="reversed" Specifies that the list markers are to be displayed in descending order

start="integer" Specifies the starting value in the list

type="A|a|I|i|1" Specifies the bullet type associated with the list items (deprecated)

<optgroup> </optgroup> Contains a group of option elements in a selection field

disabled="disabled" Disables the option group control

label="text" Specifies the label for the option group

<option> </option> Formats an option within a selection field

disabled="disabled" Disables the option control

label="text" Supplies the text label associated with the option

selected="selected" Selects the option by default

value="text" Specifies the value associated with the option

<output> </output> Form control representing the result of a calculation

name="text" Specifies the name part of the name/value pair associated with the field

form="id" Specifies the id of the form associated with the field

for="text list" Lists the id references associated with the calculation

(Continues)

(Continued)

07140_AppB_ptg01_001-020.indd 15 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix B HTML Elements and AttributesHTML B16

Element/Attribute Description
<p> </p> Marks the enclosed content as a paragraph

align="align" Horizontally aligns the contents of the paragraph where align is left, center,
right, or justify (obsolete)

<param> </param> Marks parameter values sent to an object element or an applet element

name="text" Specifies the parameter name

type="mime-type" Specifies the mime-type of the resource indicated by the value attribute
(obsolete)

value="text" Specifies the parameter value

valuetype="data|
ref|object"

Specifies the data type of the value attribute (obsolete)

<pre> </pre> Marks the enclosed text as preformatted text, retaining white space from the
document

<progress> </progress> Represents the progress of completion of a task

value="value" Specifies how much of the task has been completed

max="value" Specifies how much work the task requires in total

<q> </q> Marks the enclosed text as a quotation

cite="url" Provides the source URL of the quoted content

<rp> </rp> Used in ruby annotations to define what to show browsers that do not support
the ruby element

<rt> </rt> Defines explanation to ruby annotations

<ruby> </ruby> Defines ruby annotations

<s> </s> Marks the enclosed text as strikethrough text

<samp> </samp> Marks the enclosed text as a sequence of literal characters

<script> </script> Encloses client-side scripts within the document; this element can be placed
within the head or the body element or it can refer to an external script file

async="async" Specifies that the script should be executed asynchronously as soon as it
becomes available

charset="char code" Specifies the character encoding of the script

defer="defer" Defers execution of the script

language="text" Specifies the language of the script (obsolete)

src="url" Provides the URL of an external script file

type="mime-type" Specifies the mime-type of the script

<section> </section> Structural element representing a section of the document

<select> </select> Creates a selection field (drop-down list box) in a web form

autofocus="autofocus" Specifies that the browser should give focus to the selection field as soon as
the page loads

datafld="text" Identifies the column from a data source that supplies bound data for the
 selection field (IE only)

dataformatas="html|
plaintext|text"

Specifies the format of the data in the data source bound with the selection field
(IE only)

datasrc="url" Provides the URL or ID of the data source bound with the selection field
(IE only)

disabled="disabled" Disables the selection field

form="id" Provides the id of the form associated with the selection field

multiple="multiple" Allows multiple sections from the field

name="text" Specifies the selection field name

size="integer" Specifies the number of visible items in the selection list

(Continued)

(Continues)

07140_AppB_ptg01_001-020.indd 16 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix B HTML Elements and Attributes | HTML 5 and CSS HTML B17

Element/Attribute Description
<small> </small> Represents “final print" or “small print" in legal disclaimers and caveats

<source /> Enables multiple media sources to be specified for audio and video elements

media="media" Specifies the intended media type of the media source

src="url" Specifies the location of the media source

type="mime-type" Specifies the MIME type of the media source

 Creates a generic inline element

datafld="text" Identifies the column from a data source that supplies bound data for the inline
element (IE only)

dataformatas="html|
plaintext|text"

Specifies the format of the data in the data source bound with the inline
 element (IE only)

datasrc="url" Provides the URL or ID of the data source bound with the inline element
(IE only)

 Marks the enclosed text as strongly emphasized text

<style> </style> Encloses global style declarations for the document

media="media" Indicates the media of the enclosed style definitions

scoped="scoped" Indicates that the specified style information is meant to apply only to the style
element’s parent element

type="mime-type" Specifies the mime-type of the style definitions

 Marks the enclosed text as subscript text

<summary> </summary> Defines the header of a detail element

 Marks the enclosed text as superscript text

<table> </table> Encloses the contents of a web table

align="align" Aligns the table with the surrounding content where align is left, center, or right
(obsolete)

bgcolor="color" Specifies the background color of the table (obsolete)

border="integer" Specifies the width of the table border in pixels (obsolete)

cellpadding=
"integer"

Specifies the space between the table data and the cell borders in pixels
(obsolete)

cellspacing=
"integer"

Specifies the space between table cells in pixels (obsolete)

datafld="text" Indicates the column from a data source that supplies bound data for the
table (IE only)

dataformatas="html|
plaintext|text"

Specifies the format of the data in the data source bound with the table
(IE only)

datapagesize=
"integer"

Sets the number of records displayed within the table (IE only)

datasrc="url" Provides the URL or ID of the data source bound with the table (IE only)

frame="frame" Specifies the format of the borders around the table where frame is above,
below, border, box, hsides, lhs, rhs, void, or vside (obsolete)

rules="rules" Specifies the format of the table’s internal borders or gridlines where rules is all,
cols, groups, none, or rows (obsolete)

summary="text" Supplies a text summary of the table’s content

width="integer" Specifies the width of the table in pixels (obsolete)

(Continues)

(Continued)

07140_AppB_ptg01_001-020.indd 17 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix B HTML Elements and AttributesHTML B18

Element/Attribute Description
<tbody> </tbody> Encloses the content of the web table body

align="align" Specifies the alignment of the contents in the cells of the table body where
align is left, center, right, justify, or char (obsolete)

char="char" Specifies the character used for aligning the table body contents when the
align attribute is set to "char" (obsolete)

charoff="integer" Specifies the offset in pixels from the alignment character specified in the char
attribute (obsolete)

valign="align" Specifies the vertical alignment of the contents in the cells of the table body
where align is baseline, bottom, middle, or top (obsolete)

<td> </td> Encloses the data of a table cell

abbr="text" Supplies an abbreviated version of the contents of the table cell (obsolete)

align="align" Specifies the horizontal alignment of the table cell data where align is left,
 center, or right (obsolete)

bgcolor="color" Specifies the background color of the table cell (obsolete)

char="char" Specifies the character used for aligning the table cell contents when the align
attribute is set to "char" (obsolete)

charoff="integer" Specifies the offset in pixels from the alignment character specified in the char
attribute (obsolete)

colspan="integer" Specifies the number of columns the table cell spans

headers="text" Supplies a space-separated list of table headers associated with the table cell

height="integer" Specifies the height of the table cell in pixels (obsolete)

nowrap="nowrap" Disables line-wrapping within the table cell (obsolete)

rowspan="integer" Specifies the number of rows the table cell spans

scope="col|colgroup
|row|rowgroup"

Specifies the scope of the table for which the cell provides data (obsolete)

valign="align" Specifies the vertical alignment of the contents of the table cell where align is
top, middle, or bottom (obsolete)

width="integer" Specifies the width of the cell in pixels (obsolete)

<textarea> </textarea> Marks the enclosed text as a text area input box in a web form

autofocus="autofocus" Specifies that the text area is to receive the focus when the page is loaded

datafld="text" Specifies the column from a data source that supplies bound data for the text
area box (IE only)

dataformatas="html|
plaintext|text"

Specifies the format of the data in the data source bound with the text area box
(IE only)

datasrc="url" Provides the URL or ID of the data source bound with the text area box (IE only)

cols="integer" Specifies the width of the text area box in characters

disable="disable" Disables the text area field

form="id" Associates the text area with the form identified by id

maxlength="integer" Specifies the maximum allowed value length for the text area

name="text" Specifies the name of the text area box

placeholder="text" Provides a short hint intended to aid the user when entering data

readonly="readonly" Specifies the value of the text area box, cannot be modified

required="required" Indicates whether the text area is required for validation

rows="integer" Specifies the number of visible rows in the text area box

wrap="soft|hard" Specifies how text is wrapped within the text area box and how that text-wrapping
information is sent to the server-side program

(Continued)

(Continues)

07140_AppB_ptg01_001-020.indd 18 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix B HTML Elements and Attributes | HTML 5 and CSS HTML B19

Element/Attribute Description
<tfoot> </tfoot> Encloses the content of the web table footer

align="align" Specifies the alignment of the contents in the cells of the table footer where
align is left, center, right, justify, or char (obsolete)

char="char" Specifies the character used for aligning the table footer contents when the
align attribute is set to "char" (obsolete)

charoff="integer" Specifies the offset in pixels from the alignment character specified in the char
attribute (obsolete)

valign="align" Specifies the vertical alignment of the contents in the cells of the table footer
where align is baseline, bottom, middle, or top (obsolete)

<th> </th> Encloses the data of a table header cell

abbr="text" Supplies an abbreviated version of the contents of the table cell (obsolete)

align="align" Specifies the horizontal alignment of the table cell data where align is left,
 center, or right (obsolete)

axis="text list" Provides a list of table categories that can be mapped to a table hierarchy
(obsolete)

bgcolor="color" Specifies the background color of the table cell (obsolete)

char="char" Specifies the character used for aligning the table cell contents when the align
attribute is set to "char" (obsolete)

charoff="integer" Specifies the offset in pixels from the alignment character specified in the char
attribute (obsolete)

colspan="integer" Specifies the number of columns the table cell spans

headers="text" A space-separated list of table headers associated with the table cell

height="integer" Specifies the height of the table cell in pixels (obsolete)

nowrap="nowrap" Disables line-wrapping within the table cell (obsolete)

rowspan="integer" Specifies the number of rows the table cell spans

scope="col|colgroup|
row|rowgroup"

Specifies the scope of the table for which the cell provides data

valign="align" Specifies the vertical alignment of the contents of the table cell where align is
top, middle, or bottom (obsolete)

width="integer" Specifies the width of the cell in pixels (obsolete)

<thead> </thead> Encloses the content of the web table header

align="align" Specifies the alignment of the contents in the cells of the table header where
align is left, center, right, justify, or char (obsolete)

char="char" Specifies the character used for aligning the table header contents when the
align attribute is set to "char" (obsolete)

charoff="integer" Specifies the offset in pixels from the alignment character specified in the char
attribute (obsolete)

valign="align" Specifies the vertical alignment of the contents in the cells of the table header
where align is baseline, bottom, middle, or top (obsolete)

<time> </time> Represents a date and/or time

<title> </title> Specifies the title of the document, placed in the head section of the document

(Continues)

(Continued)

07140_AppB_ptg01_001-020.indd 19 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix B HTML Elements and AttributesHTML B20

Element/Attribute Description
<tr> </tr> Encloses the content of a row within a web table

align="align" Specifies the horizontal alignment of the data in the row’s cells where align is
left, center, or right (obsolete)

char="char" Specifies the character used for aligning the table row contents when the align
attribute is set to "char" (obsolete)

charoff="integer" Specifies the offset in pixels from the alignment character specified in the char
attribute (obsolete)

valign="align" Specifies the vertical alignment of the contents of the table row where align is
baseline, bottom, middle, or top (obsolete)

<track> </track> Enables supplementary media tracks such as subtitles and captions

default="default" Enables the track if the user’s preferences do not indicate that another track
would be more appropriate

kind="kind" Specifies the kind of track, where kind is subtitles, captions, descriptions,
 chapters, or metadata

label="text" Provides a user-readable title for the track

src="url" Provides the address of the track

srclang="lang" Provides the language of the track

<tt> </tt> Marks the enclosed text as teletype or monospaced text (deprecated)

<u> </u> Marks the enclosed text as underlined text (deprecated)

 Contains an unordered list of items

compact="compact" Reduces the space between unordered list items (obsolete)

type="disc|square|
circle"

Specifies the bullet type associated with the list items (obsolete)

<var> </var> Marks the enclosed text as containing a variable name

<video> </video> Defines an embedded video clip

audio="text" Defines the default audio state; currently only "muted" is supported

autoplay="autoplay" Specifies that the video should begin playing automatically when the page is
loaded

controls="controls" Instructs the browser to display the video controls

height="value" Provides the height of the video clip in pixels

loop="loop" Instructs the browser to loop the clip back to the beginning

preload="auto|
metadata|none"

Indicates whether to preload the video clip data

poster="url" Specifies the location of an image file to act as a poster for the video clip

width="value" Provides the width of the video clip in pixels

<wbr /> Indicates a line-break opportunity

<xml> </xml> Encloses XML content (also referred to as a data island) or references an
 external XML document (IE only)

ns="url" Provides the URL of the XML data island (IE only)

prefix="text" Specifies the namespace prefix of the XML content (IE only)

src="url" Provides the URL of an external XML document (IE only)

<xmp> </xmp> Marks the enclosed text as preformatted text, preserving the white space of the
source document; replaced by the pre element (deprecated)

(Continued)

07140_AppB_ptg01_001-020.indd 20 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML C1

Cascading Styles
and Selectors
This appendix describes the selectors, units, and attributes
 supported by Cascading Style Sheets (CSS). Note that not all CSS
features are supported by all browsers and all browser versions,
so you should always check your code against different browsers
and browser versions to ensure that your page is being rendered
correctly. Also, many CSS styles are still in the draft stage and will
undergo continuing revisions and additions. Additional informa-
tion about CSS can be found at the World Wide Web Consortium
website at www.w3.org.

APPENDIX C

STARTING DATA FILES

There are no starting Data Files needed for this appendix.

07140_AppC_ptg01_001-018.indd 1 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix C Cascading Styles and SelectorsHTML C2

Selectors
The general form of a style declaration is:

selector {attribute1:value1; attribute2:value2; ...}

where selector is the selection of elements within the document to which the style will
be applied; attribute1, attribute2, and so on are the different style attributes; and value1,
value2, and so on are values associated with those styles. Table C–1 shows some of the
different forms that a selector can take.

Selector Matches
* All elements in the document

e An element, e, in the document

e1, e2, e3, … A group of elements, e1, e2, e3, in the document

e1 e2 An element, e2, nested within the parent element, e1

e1 > e2 An element, e2, that is a child of the parent element, e1

e1+e2 An element, e2, that is adjacent to element, e1

e1.class An element, e1, belonging to the class class

.class Any element belonging to the class class

#id An element with the id value id

[att] The element contains the att attribute

[att="val"] The element’s att attribute equals "val"

[att~="val"] The element’s att attribute value is a space-separated list of "words," one of
which is exactly "val"

[att|="val"] The element’s att attribute value is a hyphen-separated list of "words" beginning
with "val"

[att^="val"] The element’s att attribute begins with "val"

[att$="val"] The element’s att attribute ends with "val"

[att*="val"] The element’s att attribute contains the value "val"

[ns|att] References all att attributes in the ns namespace

Pseudo-Elements and Pseudo-Classes
Pseudo-elements are elements that do not exist in HTML code but whose attributes can
be set with CSS. Table C–2 lists CSS pseudo-elements.

Pseudo-Element Matches
e::after {content: "text"} Text content, text, that is inserted at the end of an element, e

e::before {content: "text"} Text content, text, that is inserted at the beginning of an
element, e

e::first-letter The first letter in the element e

e::first-line The first line in the element e

::selection A part of the document that has been highlighted by the
user

Table C–1:
CSS selectors

Table C–2:
Pseudo-elements

07140_AppC_ptg01_001-018.indd 2 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix C Cascading Styles and Selectors | HTML 5 and CSS HTML C3

Pseudo-classes are classes of HTML elements that define the condition or state of the
 element in the web page. Table C–3 lists CSS pseudo-classes.

Pseudo-Class Matches
:canvas The rendering canvas of the document

:first The first printed page of the document (used only with print styles created
with the @print rule)

:last The last printed page of the document (used only with print styles created
with the @print rule)

:left The left side of a two-sided printout (used only with print styles created
with the @print rule)

:right The right side of a two-sided printout (used only with print styles
 created with the @print rule)

:root The root element of the document

e:active The element, e, that is being activated by the user (usually applies only
to hyperlinks)

e:checked The checkbox or radio button, e, that has been checked

e:disabled The element, e, that has been disabled in the document

e:empty The element, e, that has no children

e:enabled The element, e, that has been enabled in the document

e:first-child The element, e, which is the first child of its parent element

e:first-node The first occurrence of the element, e, in the document tree

e:first-of-type The first element of type e

e:focus The element, e, that has received the focus of the cursor

e:hover The mouse pointer is hovering over the element, e

e:lang(text) Sets the language, text, associated with the element, e

e:last-child The element, e, that is the last child of its parent element

e:last-of-type The last element of type e

e:link The element, e, has not been visited yet by the user (applies only to
hyperlinks)

e:not Negates the selector rule for the element, e, applying the style to all e
elements that do not match the selector rules

e:nth-child(n) Matches nth child of the element, e; n can also be the keywords odd
or even

e:nth-last-child(n) Matches nth child of the element, e, counting up from the last child; n
can also be the keywords odd or even

e:nth-of-type(n) Matches nth element of type e; n can also be the keywords odd or even

e:nth-last-of-type(n) Matches nth element of type e, counting up from the last child; n can
also be the keywords odd or even

e:only-child Matches element e only if it is the only child of its parent

e:only-of-type Matches element e only if it is the only element of its type nested within
its parent

e:target Matches an element, e, that’s the target of the identifier in the
 document’s URL

e:visited The element, e, has been already visited by the user (to only the
hyperlinks)

Table C–3:
Pseudo-classes

07140_AppC_ptg01_001-018.indd 3 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix C Cascading Styles and SelectorsHTML C4

@ Rules
CSS supports different @ rules designed to run commands within a style sheet. These
commands can be used to import other styles, download font definitions, or define the
format of printed output, as shown in Table C–4.

@ Rule Description
@charset "encoding" Defines the character set encoding used in the style sheet (this

must be the very first line in the style sheet document)

@font-face {font
descriptors}

Defines custom fonts that are available for automatic download
when needed

@import url(url) media Imports an external style sheet document into the current style
sheet, where url is the location of the external stylesheet and media
is a comma-separated list of media types (optional)

@media media {style
declaration}

Defines the media for the styles in the style declaration block,
where media is a comma-separated list of media types

@namespace prefix url(url) Defines the namespace used by selectors in the style sheet, where
prefix is the local namespace prefix (optional) and url is the unique
namespace identifier; the @namespace rule must come before all
CSS selectors

@page label pseudo-class
{styles}

Defines the properties of a printed page, where label is a label
given to the page (optional), pseudo-class is one of the CSS
pseudo-classes designed for printed pages, and styles are the
styles associated with the page

Miscellaneous Syntax
The syntax elements in Table C–5 do not fit into the previous categories but are useful in
constructing CSS style sheets.

Item Description
style !important Places high importance on the preceding style, overriding the usual rules for

inheritance and cascading

/* comment */ Attaches a comment to the style sheet

Table C–4:
@ rule commands

Table C–5:
Miscellaneous syntax

elements

07140_AppC_ptg01_001-018.indd 4 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix C Cascading Styles and Selectors | HTML 5 and CSS HTML C5

Units
Many style attribute values use units of measurement to indicate color, length, angles,
time, and frequencies. Table C–6 describes the measuring units used in CSS.

Unit Description
Color Units of Color

currentColor The computed value of the color property

flavor An accent color chosen by the user to customize the user interface
of the browser

name A color name; all browsers recognize 16 base color names: aqua,
black, blue, fuchsia, gray, green, lime, maroon, navy, olive, purple,
red, silver, teal, white, and yellow

#rrggbb A hexadecimal color value, where rr is the red value, gg is the green
value, and bb is the blue value

#rgb A compressed hexadecimal value, where the r, g, and b values are
doubled so that, for example, #A2F = #AA22FF

hsl(hue, sat, light) Color value based on hue, saturation, and lightness, where hue is the
degree measure on the color wheel ranging from 0° (red) up to 360°,
sat is the saturation range from 0% to 100%, and light is the lightness
range from 0% to 100%

hsla(hue, sat, light,
alpha)

Semi-transparent color based on the HSL model with alpha
 representing the opacity of the color ranging from 0 (transparent)
up to 1 (completely opaque)

rgb(red, green, blue) The decimal color value, where red is the red value, green is the
green value, and blue is the blue value

rgb(red%, green%, blue%) The color value percentage, where red% is the percent of maximum
red, green% is the percent of maximum green, and blue% is the
 percent of maximum blue

rgba(red, green, blue,
alpha)

Semi-transparent color based on the RGB model with alpha
 representing the opacity of the color ranging from 0 (transparent)
up to 1 (completely opaque)

Length Units of Length

auto Keyword that allows the browser to automatically determine the size
of the length

ch Width of the “0” glyph found in the font

em A relative unit indicating the width and the height of the capital “M”
character for the browser’s default font

ex A relative unit indicating the height of the small “x” character for the
browser’s default font

px A pixel, representing the smallest unit of length on the output device

in An inch

cm A centimeter

mm A millimeter

pt A point, approximately 1/72 inch

pc A pica, approximately 1/12 inch

% A percent of the width or height of the parent element

rem A relative unit basing its size relative to the size in the root (html)
element

fr A fractional unit that expands or contacts the size of grid tracks
based on the available space within the grid

Table C–6:
CSS units of

measurement

(Continues)

07140_AppC_ptg01_001-018.indd 5 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix C Cascading Styles and SelectorsHTML C6

Unit Description
xx-small Keyword representing an extremely small font size

x-small Keyword representing a very small font size

small Keyword representing a small font size

vw A percentage of the viewport width

vh A percentage of the viewport height

vmin The smaller value between vw and vh

medium Keyword representing a medium-sized font

large Keyword representing a large font

x-large Keyword representing a very large font

xx-large Keyword representing an extremely large font

Angle Units of Angles

deg The angle in degrees

grad The angle in gradients

rad The angle in radians

turns Number of complete turns

Time Units of Time

ms Time in milliseconds

s Time in seconds

Frequency Units of Frequency

hz The frequency in hertz

khz The frequency in kilohertz

Attributes and Values
Table C–7 describes the attributes and values for different types of elements. The
attributes are grouped into categories to help you locate the features relevant to your
particular design task.

Attribute Description
Aural Styles for Aural Browsers

cue: url(url1) url(url2) Adds a sound to an element: if a single value is present, the
sound is played before and after the element; if two values are
present, the first is played before and the second is played after

cue-after: url(url) Specifies a sound to be played immediately after an element

cue-before: url(url) Specifies a sound to be played immediately before an element

elevation: location Defines the vertical location of the sound, where location is
below, level, above, lower, higher, or an angle value

mark: before after Adds a marker to an audio stream

mark-before: text Marks an audio stream with the text string

mark-after: text Marks an audio stream afterwards with the text string

pause: time1 time2 Adds a pause to an element: if a single value is present, the
pause occurs before and after the element; if two values are
 present, the first pause occurs before and the second occurs after

pause-after: time Adds a pause after an element

pause-before: time Adds a pause before an element

Table C–6
(Continued):

CSS units of
measurement

Table C–7:
Attributes and values

(Continues)

07140_AppC_ptg01_001-018.indd 6 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix C Cascading Styles and Selectors | HTML 5 and CSS HTML C7

Attribute Description
phonemes: text Specifies the phonetic pronunciation for the audio stream

pitch: value Defines the pitch of a speaking voice, where value is x-low, low,
medium, high, x-high, or a frequency value

pitch-range: value Defines the pitch range for a speaking voice, where value ranges
from 0 to 100; a low pitch range results in a monotone voice,
whereas a high pitch range sounds very animated

play-during: url(url) mix
repeat type

Defines a sound to be played behind an element, where url is the
URL of the sound file; mix overlays the sound file with the sound
of the parent element; repeat causes the sound to be repeated,
filling up the available time; and type is auto to play the sound
only once, none to play nothing but the sound file, or inherit

rest: before after Specifies the rest-before and rest-after values for the audio

rest-before: type Specifies a rest to be observed before speaking the content,
where type is none, x-weak, weak, medium, strong, x-strong,
or inherit

rest-after: type Specifies a rest to be observed after speaking the content,
where type is none, x-weak, weak, medium, strong, x-strong, or
inherit

richness: value Specifies the richness of the speaking voice, where value ranges
from 0 to 100; a low value indicates a softer voice, whereas a high
value indicates a brighter voice

speak: type Defines how element content is to be spoken, where type is
 normal (for normal punctuation rules), spell-out (to pronounce
one character at a time), none (to suppress the aural rendering),
or inherit

voice-balance: type Specifies the voice balance, where type is left, center, right,
 leftwards, rightwards, inherit, or a number

voice-duration: time Specifies the duration of the voice

voice-family: text Defines the name of the speaking voice, where text is male,
female, child, or a text string indicating a specific speaking voice

voice-rate: type Specifies the voice rate, where type is x-slow, slow, medium, fast,
x-fast, inherit, or a percentage

voice-pitch: type Specifies the voice pitch, where type is x-low, low, medium, high,
x-high, inherit, a number, or a percentage

voice-pitch-range: type Specifies the voice pitch range, where type is x-low, low, medium,
high, x-high, inherit, or a number

voice-stress: type Specifies the voice stress, where type is strong, moderate, none,
reduced, or inherit

voice-volume: type Specifies the voice volume, where type is silent, x-soft, soft,
medium, loud, x-loud, inherit, a number, or a percentage

Backgrounds Styles Applied to an Element’s Background

background: color url(url)
repeat attachment position

Defines the background of the element, where color is a CSS color
name or value, url is the location of an image file, repeat defines
how the background image should be repeated, attach ment
defines how the background image should be attached, and
 position defines the position of the background image

(Continues)

Table C–7
(Continued):

Attributes and values

07140_AppC_ptg01_001-018.indd 7 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix C Cascading Styles and SelectorsHTML C8

Attribute Description
background: url(url)
position size repeat
attachment origin
clip color

Defines the background of the element, where url is the location
of the image file, position is the position of the image, size is
the size of the image, repeat defines how the image should be
repeated, attachment defines how the image should be attached,
origin defines the origin of the image, clip defines the location of
the clipping box, and color defines the background color

background-attachment: type Specifies how the background image is attached, where type is
inherit, scroll (move the image with the page content), or fixed (fix
the image and not scroll)

background-clip: location Specifies the location of the background box, where location is
border-box, padding-box, content-box, no-clip, a unit of length,
or a percentage

background-color: color Defines the color of the background, where color is a CSS color
name or value; the keyword "inherit" can be used to inherit the
background color of the parent element, or "transparent"can
be used to allow the parent element background image to show
through

background-image: url(url) Specifies the image file used for the element’s background, where
url is the URL of the image file

background-origin: box Specifies the origin of the background image, where box is
 border-box, padding-box, or content-box

background-position: x y Sets the position of a background image, where x is the horizontal
location in pixels, as a percentage of the width of the parent
 element, or the keyword "left", "center", or "right", y is the
 vertical location in pixels, as a percentage of the height and of
the parent element, or the keyword "top", "center", or "bottom"

background-repeat: type Defines the method for repeating the background image, where
type is no-repeat, repeat (to tile the image in both directions),
repeat-x (to tile the image in the horizontal direction only), or
repeat-y (to tile the image in the vertical direction only)

background-size: size Sets the size of the background image, where size is auto, cover,
contain, a length, or a percentage

Block-Level Styles Styles Applied to Block-Level Elements

border: length style color Defines the border style of the element, where length is the border
width, style is the border design, and color is the border color

border-bottom: length
style color

Defines the border style of the bottom edge of the element

border-left: length
style color

Defines the border style of the left edge of the element

border-right: length
style color

Defines the border style of the right edge of the element

border-top: length
style color

Defines the border style of the top edge of the element

border-color: color Defines the color applied to the element’s border using a CSS
color unit

border-bottom-color: color Defines the color applied to the bottom edge of the element

border-left-color: color Defines the color applied to the left edge of the element

border-right-color: color Defines the color applied to the right edge of the element

border-top-color: color Defines the color applied to the top edge of the element

(Continues)

Table C–7
(Continued):

Attributes and values

07140_AppC_ptg01_001-018.indd 8 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix C Cascading Styles and Selectors | HTML 5 and CSS HTML C9

Attribute Description
border-image: url(url) size Sets an image file for the border, where url is the location of the

image file and size is stretch, repeat, round, none, a length, or a
percentage

border-style: style Specifies the design of the element’s border where style is
dashed, dotted double, groove, inset, none, outset, ridge, or solid

border-style-bottom: style Specifies the design of the element’s bottom edge

border-style-left: style Specifies the design of the element’s left edge

border-style-right: style Specifies the design of the element’s right edge

border-style-top: style Specifies the design of the element’s top edge

border-radius: tr br bl tl Specifies the radius of the border corners in pixels, where tr
is the top-right corner, br is the bottom-right corner, bl is the
 bottom-left corner, and tl is the top-left corner

border-top-right-radius:
horiz vert

Specifies the horizontal and vertical radius for the top-right corner

border-bottom-right-radius:
horiz vert

Specifies the horizontal and vertical radius for the bottom-right
corner

border-bottom-left-radius:
horiz vert

Specifies the horizontal and vertical radius for the bottom-left
corner

border-top-left-radius:
horiz vert

Specifies the horizontal and vertical radius for the top-left corner

border-width: length Defines the width of the element’s border, in a unit of measure or
using the keyword "thick", "medium", or "thin"

border-width-bottom: length Defines the width of the element’s bottom edge

border-width-left: length Defines the width of the element’s left edge

border-width-right: length Defines the width of the element’s right edge

border-width-top: length Defines the width of the element’s top edge

box-shadow: top right
bottom left color

Adds a box shadow, where top, right, bottom, and left set the
width of the shadow and color sets the shadow color

margin: top right
bottom left

Defines the size of the margins around the top, right, bottom, and
left edges of the element, in one of the CSS units of length

margin-bottom: length Defines the size of the element’s bottom margin

margin-left: length Defines the size of the element’s left margin

margin-right: length Defines the size of the element’s right margin

margin-top: length Defines the size of the element’s top margin

padding: top right
bottom left

Defines the size of the padding space within the top, right,
 bottom, and left edges of the element, in one of the CSS units
of length

padding-bottom: length Defines the size of the element’s bottom padding

padding-left: length Defines the size of the element’s left padding

padding-right: length Defines the size of the element’s right padding

padding-top: length Defines the size of the element’s top padding

Browser Styles to Affect the Appearance of the Browser

appearance: type Specifies that an element should be displayed like a standard
browser object, where type is normal, button, push-button,
hyperlink, radio-button, checkbox, pop-up-menu, list-menu,
radio-group, checkbox-group, field, or password

(Continues)

Table C–7
(Continued):

Attributes and values

07140_AppC_ptg01_001-018.indd 9 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix C Cascading Styles and SelectorsHTML C10

Attribute Description
cursor: type Defines the cursor image used, where type is n-resize, ne-resize,

e-resize, se-resize, s-resize, sw-resize, w-resize, nw-resize,
 crosshair, pointer, move, text, wait, help, auto, default, inherit, or
a URL pointing to an image file

icon: value Specifies that an element should be styled with an iconic
equivalent, where value is auto, a url, or inherit

nav-down: position Specifies where to navigate using the arrow-down and arrow-up
navigation keys, where position is auto, a target-name, or an
 element id

nav-index: value Specifies the tabbing order, where value is auto, inherit, or a
 number

nav-left: position Specifies where to navigate using the arrow-left and arrow-right
navigation keys, where position is auto, a target-name, or an
 element id

nav-right: position Specifies where to navigate using the arrow-left and arrow-right
navigation keys, where position is auto, a target-name, or an
 element id

nav-up: position Specifies where to navigate using the arrow-down and arrow-up
navigation keys, where position is auto, a target-name, or an
 element id

resize: type Specifies whether an element is resizable and in what direction,
where type is none, both, horizontal, vertical, or inherit

Column Styles for Multi-Column Layouts

column-count: value Specifies the number of columns, where value is the column
 number or auto

column-fill: type Specifies whether to balance the content of the columns, where
type is auto or balance

column-gap: value Sets the size of the gap between the columns, where value is the
width of the gap or auto

column-rule: width style
color

Adds a dividing line between the columns, where width, style,
and color define the style of the line

column-rule-color: color Defines the color of the dividing line

column-rule-style: style Defines the border style of the dividing line

column-rule-width: width Sets the width of the dividing line

columns: width count Sets the width and number of columns in the multi-column layout

column-span: value Sets the element to span across the columns, where span is 1
or all

column-width: value Sets the width of the columns

Content Styles to Generate Content

bookmark-label: value Specifies the label of a bookmark, where value is content, an
attribute, or a text string

bookmark-level: value Specifies the bookmark level, where value is an integer or none

bookmark-target: value Specifies the target of a bookmark link, where value is self, a url,
or an attribute

border-length: value Describes a way of separating footnotes from other content,
where value is a length or auto

content: text Generates a text string to attach to the content of the element

content: attr(attr) Returns the value of the attr attribute from the element

(Continues)

Table C–7
(Continued):

Attributes and values

07140_AppC_ptg01_001-018.indd 10 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix C Cascading Styles and Selectors | HTML 5 and CSS HTML C11

Attribute Description
content: close-quote Attaches a close quote using the characters specified in the

quotes style

content: counter(text) Generates a counter using the text string text attached to the
content (most often used with list items)

content: counters(text) Generates a string of counters using the comma-separated
text string text attached to the content (most often used with
list items)

content: no-close-quote Prevents the attachment of a close quote to an element

content: no-open-quote Prevents the attachment of an open quote to an element

content: open-quote Attaches an open quote using the characters specified in the
quotes style

content: url(url) Attaches the content of an external file indicated in the url to the
element

counter-increment: id
integer

Defines the element to be automatically incremented and the
amount by which it is to be incremented, where id is an identifier
of the element and integer defines by how much

counter-reset: id integer Defines the element whose counter is to be reset and the amount
by which it is to be reset, where id is an identifier of the element
and integer defines by how much

crop: value Allows a replaced element to be a rectangular area of an object
instead of the whole object, where value is a shape or auto

hyphenate-after: value Specifies the minimum number of characters after the hyphenation
character, where value is an integer or auto

hyphenate-before: value Specifies the minimum number of characters before the hyphenation
character, where value is an integer or auto

hyphenate-character: string Specifies the hyphenation character, string

hyphenate-line: value Specifies the maximum number of hyphenated lines, where value
is an integer or no-limit

hyphenate-resource:
url(url)

Provides an external resource at url that defines hyphenation
points

hyphens: type Defines the hyphenation property, where type is none, manual, or
auto

image-resolution: value Defines the image resolution, where value is normal, auto, or the
dpi of the image

marks: type Defines an editor’s mark, where type is crop, cross, or none

quotes: text1 text2 Defines the text strings for the open quotes (text1) and the close
quotes (text2)

string-set: values Accepts a comma-separated list of named strings, where values is
the list of text strings

text-replace: string1
string2

Replaces string1 with string2 in the element content

Display Styles Styles that Control the Display of the Element’s Content

box-sizing: type Specifies how the width and height properties should be
 interpreted for a block element where type is content-box,
 border-box, initial, or inherit

clip: rect(top, right,

bottom, left)

Defines what portion of the content is displayed, where top, right,
bottom, and left are distances of the top, right, bottom, and left
edges from the element’s top-left corner; use a value of auto to
allow the browser to determine the clipping region

(Continues)

Table C–7
(Continued):

Attributes and values

07140_AppC_ptg01_001-018.indd 11 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix C Cascading Styles and SelectorsHTML C12

Attribute Description
display: type Specifies the display type of the element, where type is one of

the following: block, inline, inline-block, inherit, flex, list-item,
none, run-in, table, inline-table, table-caption, table-column,
table-cell, table-column-group, table-header-group,
 table-footer-group, table-row, or table-row-group

flex: grow shrink basis Sets the growth rate, shrink rate, and basis size for items within a
flexbox

flex-basis: length Sets the basis size for items within a flex box

flex-direction: direction Sets the direction of items within a flexbox where direction is row,
row-reverse, column, column-reverse, initial, or inherit

flex-flow: direction wrap Sets the flow of items within a flexbox where direction is the
flex direction and wrap indicates whether items are wrapped to
a new line

flex-grow: value Sets the growth rate of a flex item where value is a numeric value

flex-shrink: value Sets the shrink rate of a flex item where value is a numeric value

flex-wrap: type Sets whether flex items wrap to a new line where type is nowrap,
wrap, wrap-reverse, initial, or inherit

height: length Specifies the height of the element in one of the CSS units
of length

min-height: length Specifies the minimum height of the element

min-width: length Specifies the minimum width of the element

max-height: length Specifies the maximum height of the element

max-width: length Specifies the maximum width of the element

overflow: type Instructs the browser how to handle content that overflows the
dimensions of the element, where type is auto, inherit, visible,
hidden, or scroll

overflow-style: type Specifies the preferred scrolling method for overflow content,
where type is auto, marquee-line, or marquee-block

visibility: type Defines the element’s visibility, where type is hidden, visible,
or inherit

width: length Specifies the width of the element in one of the CSS units
of length

Fonts and Text Styles that Format the Appearance of Fonts and Text

color: color Specifies the color of the element’s foreground (usually the
font color)

direction: type Specifies the direction of the text flow, where type equals ltr, rtl,
or inherit

font: style variant weight
size/line-height family

Defines the appearance of the font, where style is the font’s style,
variant is the font variant, weight is the weight of the font, size is
the size of the font, line-height is the height of the lines, and family
is the font face; the only required attributes are size and family

font-effect: type Controls the special effect applied to glyphs where type is none,
emboss, engrave, or outline

font-emphasize: emphasize
position

Sets the style of the font emphasis and decoration

font-emphasize-position:
position

Sets the font emphasis position, where position is before or
after

font-emphasize-style:
style

Sets the emphasis style, where style is none, accent, dot, circle,
or disc

(Continues)

Table C–7
(Continued):

Attributes and values

07140_AppC_ptg01_001-018.indd 12 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix C Cascading Styles and Selectors | HTML 5 and CSS HTML C13

Attribute Description
font-family: family Specifies the font face used to display text, where family is

sans-serif, serif, fantasy, monospace, cursive, or the name of an
installed font

font-size: value Specifies the size of the font in one of the CSS units of length

font-size-adjust: value Specifies the aspect value (which is the ratio of the font size to the
font’s ex unit height)

font-smooth: type Specifies the type of font smoothing, where type is auto, never,
always, or a specified size

font-stretch: type Expands or contracts the font, where type is narrower, wider,
ultra-condensed, extra-condensed, condensed, semi-condensed,
normal, semi-expanded, extra-expanded, or ultra-expanded

font-style: type Specifies a style applied to the font, where type is normal, italic,
or oblique

font-variant: type Specifies a variant of the font, where type is inherit, normal, or
small-caps

font-weight: value Defines the weight of the font, where value is 100, 200, 300, 400,
500, 600, 700, 800, 900, normal, lighter, bolder, or bold

hanging-punctuation: type Determines whether a punctuation mark may be placed outside
the text box, where type is none, start, end, or end-edge

letter-spacing: value Specifies the space between letters, where value is a unit of
length or the keyword "normal"

line-height: value Specifies the height of the lines, where value is a unit of length or
the keyword "normal"

punctuation-trim: type Determines whether or not a full-width punctuation character
should be trimmed if it appears at the start or end of a line, where
type is none, start, end, or adjacent

text-align: type Specifies the horizontal alignment of text within the element,
where type is inherit, left, right, center, or justify

text-align-last: type Specifies how the last line of a block is aligned for fully justified
text, where type is start, end, left, right, center, or justify

text-decoration: type Specifies the decoration applied to the text, where type is blink,
line-through, none, overline, or underline

text-emphasis: type
location

Specifies the emphasis applied to the text, where type is none,
accent, dot, circle, or disk and location is before or after

text-indent: length Specifies the amount of indentation in the first line of the text,
where length is a CSS unit of length

text-justify: type Specifies the justification method applied to the text, where
type is auto, inter-word, inter-ideograph, inter-cluster, distribute,
kashida, or tibetan

text-outline: value1
value2

Specifies a text outline, where value1 represents the outline
 thickness and value2 represents the optional blur radius

text-shadow: color x
y blur

Applies a shadow effect to the text, where color is the color of
the shadow, x is the horizontal offset in pixels, y is the vertical
offset in pixels, and blur is the size of the blur radius (optional);
multiple shadows can be added with shadow effects separated by
 commas

text-transform: type Defines a transformation applied to the text, where type is
 capitalize, lowercase, none, or uppercase

text-wrap: type Specifies the type of text wrapping, where type is normal,
 unrestricted, none, or suppress

(Continues)

Table C–7
(Continued):

Attributes and values

07140_AppC_ptg01_001-018.indd 13 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix C Cascading Styles and SelectorsHTML C14

Attribute Description
unicode-bibi: type Allows text that flows left-to-right to be mixed with text that

flows right-to-left, where type is normal, embed, bibi-override, or
inherit

vertical-align: type Specifies how to vertically align the text with the surrounding
 content, where type is baseline, middle, top, bottom, text-top,
text-bottom, super, sub, or one of the CSS units of length

white-space: type Specifies the handling of white space (blank spaces, tabs, and
new lines), where type is inherit, normal, pre (to treat the text as
preformatted text), or nowrap (to prevent line-wrapping)

white-space-collapse: type Defines how white space inside the element is collapsed, where
type is preserve, collapse, preserve-breaks, or discard

word-break: type Controls line-breaks within words, where type is normal, keep-all,
loose, break-strict, or break-all

word-spacing: length Specifies the amount of space between words in the text, where
length is either a CSS unit of length or the keyword "normal" to
use normal word spacing

Layout Styles that Define the Layout of Elements

bottom: y Defines the vertical offset of the element’s bottom edge, where y
is either a CSS unit of length or the keyword "auto" or "inherit"

clear: type Places the element only after the specified margin is clear of
 floating elements, where type is inherit, none, left, right, or both

float: type Floats the element on the specified margin with subsequent
 content wrapping around the element, where type is inherit,
none, left, right, or both

float-offset: horiz vert Pushes floated elements in the opposite direction of where they
would have been, where horiz is the horizontal displacement and
vert is the vertical displacement

left: x Defines the horizontal offset of the element’s left edge, where x is
either a CSS unit of length or the keyword "auto" or "inherit"

move-to: type Causes the element to be removed from the page flow and
 reinserted at later point in the document, where type is normal,
here, or an id value

position: type Defines how the element is positioned on the page, where type is
absolute, relative, fixed, static, and inherit

right: x Defines the horizontal offset of the element’s right edge, where x
is either a CSS unit of length or the keyword "auto" or "inherit"

top: y Defines the vertical offset of the element’s top edge, where y is a
CSS unit of length or the keyword "auto" or "inherit"

z-index: value Defines how overlapping elements are stacked, where value
is either the stacking number (elements with higher stacking
numbers are placed on top) or the keyword "auto" to allow the
browser to determine the stacking order

Grids Styles for CSS Grids

align-content: placement; Sets the vertical alignment of the grid within its container,
where placement is start, end, center, space-around,
space-between, or space-evenly

align-items: placement; Sets the vertical placement of content within a grid area or cell,
where placement is stretch, start, end, or center

display: grid Sets the display property of a page element to a block-level grid

display: inline-grid Sets the display property of a page element to an inline grid

(Continues)

Table C–7
(Continued):

Attributes and values

07140_AppC_ptg01_001-018.indd 14 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix C Cascading Styles and Selectors | HTML 5 and CSS HTML C15

Attribute Description
grid-area: area; Assigns items to areas within the grid where area is the name of

an area defined in the grid-template-areas property

grid-area: row-start/col-
start/row-end/col-end;

Places items within a grid area where row-start, col-start,
row-end, and col-end are the starting and ending gridline num-
bers from the grid’s rows and columns

grid-auto-columns: width1
width2 …;

Implicitly sets the size of the grid columns where width1,
width2, etc. are the widths of the columns with the sequence
repeating with each new set of columns added by the browser

grid-auto-rows: height1
height2 …;

Implicitly sets the size of the grid rows where height1, height2,
etc. are the heights of the rows with the sequence repeating with
each new set of rows added by the browser

grid-column: span value; Spans a grid item the number of columns specified by value

grid-column: start/end; Places or sizes a grid item between the start and end column
line numbers

grid-column-end: integer; Places an item within a grid where integer is the column line
number for ending the item

grid-column-gap: value; Sets the gap between grid columns where value is the size of the
column gap

grid-column-start: integer; Places an item within a grid where integer is the column line
number for starting the item

grid-gap: row column; Sets the space between grid rows and columns where row is
the internal space between grid rows and column is the internal
space between grid columns

grid-row: span value; Spans a grid item the number of rows specified by value

grid-row: start/end; Places or sizes a grid item between the start and end row line
numbers

grid-row-end: integer; Places an item within a grid where integer is the row line
number for ending the item

grid-row-gap: value; Sets the gap between grid rows where value is the size of the
row gap

grid-row-start: integer; Places an item within a grid where integer is the row line
number for starting the item

grid-template-areas: "row1"
"row2"
 …;

Defines the areas within the grid where row1, row2, etc. are text
strings containing the names of the areas for each row

grid-template-columns:
width1 width2 …;

Sets the number and size of the grid columns where width1,
width2, etc. defines the width of the columns or tracks within
the grid

grid-template-rows: height1
height2 …;

Sets the number and size of the grid rows where height1,
height2, etc. defines the height of the rows or tracks within
the grid

justify-content: placement; Sets the horizontal alignment of the grid within its container,
where placement is start, end, center, space-around,
space-between, or space-evenly

justify-items: placement; Sets the horizontal placement of content within a grid area or cell,
where placement is stretch, start, end, or center

minmax(min, max) A function that defines a grid track size where min is the minimum
track size for a row and column and max is the maximum

repeat(repeat, tracks) A function that repeats the size of grid tracks, where repeat is
the number of repetitions of the tracks specified in tracks

(Continues)

Table C–7
(Continued):

Attributes and values

07140_AppC_ptg01_001-018.indd 15 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix C Cascading Styles and SelectorsHTML C16

Attribute Description
Lists Styles that Format Lists

list-style: type image
position

Defines the appearance of a list item, where type is the marker
type, image is the URL of the location of an image file used for
the marker, and position is the position of the marker

list-style-image: url(url) Defines image used for the list marker, where url is the location of
the image file

list-style-type: type Defines the marker type used in the list, where type is disc,
circle, square, decimal, decimal-leading-zero, lower-roman,
 upper-roman, lower-alpha, upper-alpha, or none

list-style-position: type Defines the location of the list marker, where type is inside
or outside

marker-offset: length Defines the distance between the marker and the enclosing list
box, where length is either a CSS unit of length or the keyword
"auto" or "inherit"

Outlines Styles to Create and Format Outlines

outline: color style width Creates an outline around the element content, where color is
the color of the outline, style is the outline style, and width is the
width of the outline

outline-color: color Defines the color of the outline

outline-offset: value Offsets the outline from the element border, where value is the
length of the offset

outline-style: type Defines the style of the outline, where type is dashed, dotted,
double, groove, inset, none, outset, ridge, solid, or inherit

outline-width: length Defines the width of the outline, where length is expressed in a
CSS unit of length

Printing Styles for Printed Output

fit: type Indicates how to scale an element to fit on the page, where type
is fill, hidden, meet, or slice

fit-position: vertical
horizontal

Sets the position of the element in the page, where vertical is
top, center, or bottom; horizontal is left or right; or either or both
 positions are auto, a value, or a percentage

page: label Specifies the page design to apply, where label is a page design
created with the @page rule

page-break-after: type Defines how to control page breaks after the element, where type
is avoid (to avoid page breaks), left (to insert a page break until
a left page is displayed), right (to insert a page break until a right
page is displayed), always (to always insert a page break), auto,
or inherit

page-break-before: type Defines how to control page breaks before the element, where
type is avoid left, always, auto, or inherit

page-break-inside: type Defines how to control page breaks within the element, where
type is avoid, auto, or inherit

marks: type Defines how to display crop marks, where type is crop, cross,
none, or inherit

size: width height
orientation

Defines the size of the page, where width and height are the
width and the height of the page and orientation is the orientation
of the page (portrait or landscape)

(Continues)

Table C–7
(Continued):

Attributes and values

07140_AppC_ptg01_001-018.indd 16 8/8/19 12:08 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix C Cascading Styles and Selectors | HTML 5 and CSS HTML C17

Attribute Description
orphans: value Defines how to handle orphaned text, where value is the number

of lines that must appear within the element before a page break
is inserted

widows: value Defines how to handle widowed text, where value is the number
of lines that must appear within the element after a page break
is inserted

Special Effects Styles to Create Special Visual Effects

animation: name duration
timing delay iteration
direction

Applies an animation with the specified duration, timing, delay,
iteration, and direction

animation-delay: time Specifies the animation delay time in milliseconds

animation-direction:
direction

Specifies the animation direction, where direction is normal or
alternate

animation-duration: time Specifies the duration of the animation time in milliseconds

animation-iteration-count:
value

Specifies the number of iterations in the animation

animation-name: text Provides a name for the animation

animation-play-state: type Specifies the playing state of the animation, where type is running
or paused

animation-timing-function:
function

Provides the timing function of the animation, where function is
ease, linear, ease-in, ease-out, ease-in-out, cubic-Bezier, or a
number

backface-visibility:
visible

Specifies whether the back side of an element is visible during a
transformation, where visible is hidden or visible

image-orientation: angle Rotates the image by the specified angle

marquee-direction:
direction

Specifies the direction of a marquee, where direction is forward or
reverse

marquee-play-count: value Specifies how often to loop through the marquee

marquee-speed: speed Specifies the speed of the marquee, where speed is slow, normal,
or fast

marquee-style: type Specifies the marquee style, where type is scroll, slide, or
alternate

opacity: alpha Sets opacity of the element, ranging from 0 (transparent) to 1
(opaque)

perspective: value Applies a perspective transformation to the element, where value
is the perspective length

perspective-origin: origin Establishes the origin of the perspective property, where origin is
left, center, right, top, bottom, or a position value

rotation: angle Rotates the element by angle

rotation-point: position Sets the location of the rotation point for the element

transform: function Applies a 2D or a 3D transformation, where function provides the
transformation parameters

transform-origin: position Establishes the origin of the transformation of an element, where
position is the position within the element

transform-style: type Defines how nested elements are rendered in 3D space, where
type is flat or preserve-3d

Table C–7
(Continued):

Attributes and values

(Continues)

07140_AppC_ptg01_001-018.indd 17 8/8/19 12:09 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix C Cascading Styles and SelectorsHTML C18

Attribute Description
transition: property
duration timing delay

Defines a timed transition of an element, where property,
duration, timing, and delay define the appearance and timing of
the transition

transition-delay: time Sets the delay time of the transition in milliseconds

transition-duration: time Sets the duration time of the transition in milliseconds

transition-property: type Defines the name of the CSS property modified by the transition,
where type is all or none

transition-timing-function:
type

Sets the timing function of the transition, where type is ease,
linear, ease-in, ease-out, ease-in-out, cubic-Bezier, or a number

Tables Styles to Format the Appearance of Tables

border-collapse: type Determines whether table cell borders are separate or collapsed
into a single border, where type is separate, collapse, or inherit

border-spacing: length If separate borders are used for table cells, defines the distance
between borders, where length is a CSS unit of length or inherit

caption-side: type Defines the position of the caption element, where type is
 bottom, left, right, top, or inherit

empty-cells: type If separate borders are used for table cells, defines whether to
display borders for empty cells, where type is hide, show, or
inherit

table-layout: type Defines the algorithm used for the table layout, where type is
auto (to define the layout once all table cells have been read),
fixed (to define the layout after the first table row has been read),
or inherit

07140_AppC_ptg01_001-018.indd 18 8/8/19 12:09 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML D1

Making the Web
More Accessible
Studies indicate that about 20% of the population has some type of
 disability. Many of these disabilities do not affect an individual’s ability to
interact with the web. However, other disabilities can severely affect an
individual’s ability to participate in the web community. For example, on
a news website, a blind user could not see the latest headlines. A deaf
user would not be able to hear a news clip embedded in the site’s main
page. A user with motor disabilities might not be able to move a mouse
pointer to activate important links featured on the site’s home page.

Disabilities that inhibit an individual’s ability to use the web fall
into four main categories:

• Visual disability: A visual disability can include complete
 blindness, color-blindness, or an untreatable visual impairment.

• Hearing disability: A hearing disability can include complete
 deafness or the inability to distinguish sounds of certain frequencies.

• Motor disability: A motor disability can include the inability to use
a mouse, to exhibit fine motor control, or to respond in a timely
manner to computer prompts and queries.

• Cognitive disability: A cognitive disability can include a learning
disability, attention deficit disorder, or the inability to focus on
large amounts of information.

While the web includes some significant obstacles to full use
by disabled people, it also offers the potential for contact with
a great amount of information that is not otherwise cheaply or
easily accessible. For example, before the web, in order to read
a newspaper, a blind person was constrained by the expense of
Braille printouts and audio tapes, as well as the limited availability
of sighted people willing to read the news out loud. As a result,
blind people would often only be able to read newspapers after
the news was no longer new. The web, however, makes news
 available in an electronic format and in real-time. A blind user can
use a browser that converts electronic text into speech, known
as a screen reader, to read a newspaper website. Combined with
the web, screen readers provide access to a broader array of
 information than was possible through Braille publications alone.

APPENDIX D

STARTING DATA FILES

There are no starting Data Files needed for this appendix.

“The power of the Web is in its universality. Access by everyone regardless of
disability is an essential aspect.”

— Tim Berners-Lee, W3C Director and inventor of the World Wide Web

07140_AppD_ptg01_001-018.indd 1 8/8/19 12:09 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix D Making the Web More AccessibleHTML D2

In addition to screen readers, many other programs and devices—known collectively
as assistive technology or adaptive technology—are available to enable people with
different disabilities to use the web. The challenge for the web designer, then, is to
 create web pages that are accessible to everyone, including (and perhaps especially) to
people with disabilities. In addition to being a design challenge, for some designers, web
 accessibility is the law.

Working with Section 508 Guidelines
In 1973, Congress passed the Rehabilitation Act, which aimed to foster economic
 independence for people with disabilities. Congress amended the act in 1998 to reflect
the latest changes in information technology. Part of the amendment, Section 508,
requires that any electronic information developed, procured, maintained, or used by
the federal government be accessible to people with disabilities. Because the web is one
of the main sources of electronic information, Section 508 has had a profound impact
on how web pages are designed and how web code is written. Note that the standards
apply to federal websites, but not to private sector websites; however, if a site is provided
under contract to a federal agency, the website or portion covered by the contract has
to comply. Required or not, though, you should follow the Section 508 guidelines
not only to make your website more accessible, but also to make your HTML code
more consistent and reliable. The Section 508 guidelines are of interest not just to web
 designers who work for the federal government, but to all web designers.

The Section 508 guidelines encompass a wide range of topics, covering several types of
disabilities. The part of Section 508 that impacts web design is sub-section 1194.22, titled

§ 1194.22 Web-based intranet and internet information and applications.

Within this section are 15 paragraphs, numbered (a) through (p), which describe how
each facet of a website should be designed so as to maximize accessibility. Let’s examine
each of these paragraphs in detail.

Graphics and Images
The first paragraph in sub-section 1194.22 deals with graphic images. The standard for
the use of graphic images is that

§1194.22 (a) A text equivalent for every nontext element shall be provided (e.g., via
“alt”, “longdesc”, or in element content).

In other words, any graphic image that contains page content needs to include a text
alternative to make the page accessible to visually impaired people. One of the simplest
ways to do this is to use the alt attribute with every inline image that displays page
 content. For example, in Figure D–1, the alt attribute provides the text of a graphical
logo for users who can’t see the graphic.

Figure D–1 Using the alt attribute

07140_AppD_ptg01_001-018.indd 2 8/8/19 12:09 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix D Making the Web More Accessible | HTML 5 and CSS HTML D3

Not every graphic image requires a text alternative. For example, a decorative image
such as a bullet does not need a text equivalent. In those cases, you should include
the alt attribute, but set its value to an empty text string. You should never neglect to
include the alt attribute. If you are writing XHTML-compliant code, the alt attribute
is required. In other cases, screen readers and other nonvisual browsers will recite the
filename of a graphic image file if no value is specified for the alt attribute. Since the
filename is usually of no interest to the end-user, this results in needless irritation.

The alt attribute is best used for short descriptions that involve five words or fewer.
It is less effective for images that require long descriptive text. You can instead link these
images to a document containing a more detailed description. One way to do this is with
the longdesc attribute, which uses the syntax

where url for the longdesc attribute points to a document containing a detailed description
of the image. Figure D–2 shows an example that uses the longdesc attribute to point to a
web page containing a detailed description of a sales chart.

<img src="chart.jpg" alt="Sales Chart"
 longdesc="sales.html" />

sales.html

Figure D–2 Using the alt attribute

In browsers that support the longdesc attribute, the attribute’s value is presented as a
link to the specified document. However, since many browsers do not yet support this
attribute, many web designers currently use a D-link. A D-link is an unobtrusive “D”
placed next to the image on the page, which is linked to an external document containing
a fuller description of the image. Figure D–3 shows how the sales chart data can be
 presented using a D-link.

07140_AppD_ptg01_001-018.indd 3 8/8/19 12:09 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix D Making the Web More AccessibleHTML D4

To make your pages accessible to visually-impaired users, you will probably use a
combination of alternative text and linked documents.

Multimedia
Audio and video have become important ways of conveying information on the web.
However, creators of multimedia presentations should also consider the needs of deaf
users and users who are hard of hearing. The standard for multimedia accessibility is

§1194.22 (b) Equivalent alternatives for any multimedia presentation shall be
 synchronized with the presentation.

This means that any audio clip needs to be accompanied by a transcript of the audio’s
content, and any video clip needs to include closed captioning. Refer to your multimedia
software’s documentation on creating closed captioning and transcripts for your video
and audio clips.

Color
Color is useful for emphasis and conveying information, but when color becomes an
essential part of the site’s content, you run the risk of shutting out people who are color
blind. For this reason the third Section 508 standard states that

§1194.22 (c) Web pages shall be designed so that all information conveyed with color
is also available without color, for example from context or markup.

About 8% of men and 0.5% of women are afflicted with some type of color blindness.
The most serious forms of color blindness are

• deuteranopia: an absence of green sensitivity; deuteranopia is one example of
red-green color blindness, in which the colors red and green cannot be easily
distinguished.

• protanopia: an absence of red sensitivity; protanopia is another example of red-green
color blindness.

• tritanopia: an absence of blue sensitivity; people with tritanopia have much less loss of
color sensitivity than other types of color blindness.

• achromatopsia: absence of any color sensitivity.

The most common form of serious color blindness is red-green color blindness.
Figure D–4 shows how each type of serious color blindness would affect a person’s
view of a basic color wheel.

D

sales.html

Figure D–3 Using a D-link

07140_AppD_ptg01_001-018.indd 4 8/8/19 12:09 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix D Making the Web More Accessible | HTML 5 and CSS HTML D5

Figure D–4 Types of color blindness

Color combinations that are easily readable for most people may be totally unreadable
for users with certain types of color blindness. Figure D–5 demonstrates the accessibility
problems that can occur with a graphical logo that contains green text on a red background.
For people who have deuteranopia, protanopia, or achromatopsia, the logo is much more
difficult to read.

Figure D–5 The effect of color blindness on graphical content

To make your page more accessible to people with color blindness, you can do the
following:

• Provide noncolor clues to access your page’s content. For example, some web forms
indicate required entry fields by displaying the field names in a red font. You can
supplement this for color blind users by marking required fields with a red font and
with an asterisk or other special symbol.

• Avoid explicit references to color. Don’t instruct your users to click a red button in a
web form when some users are unable to distinguish red from other colors.

• Avoid known areas of color difficulty. Since most color blindness involves red-green
color blindness, you should avoid red and green text combinations.

07140_AppD_ptg01_001-018.indd 5 8/8/19 12:09 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix D Making the Web More AccessibleHTML D6

• Use bright colors, which are the easiest for color blind users to distinguish.
• Provide a grayscale or black and white alternative for your color blind users, and be

sure that your link to that page is easily viewable.

Several sites on the web include tools you can use to test your website for color blind
accessibility. You can also load color palettes into your graphics software to see how your
images will appear to users with different types of color blindness.

Style Sheets
By controlling how a page is rendered in a browser, style sheets play an important role
in making the web accessible to users with disabilities. Many browsers, such as Internet
Explorer, allow a user to apply their own customized style sheet in place of the style sheet
specified by a web page’s designer. This is particularly useful for visually impaired users
who need to display text in extra large fonts with a high contrast between the text and the
 background color (yellow text on a black background is a common color scheme for such
users). In order to make your pages accessible to those users, Section 508 guidelines state that

§1194.22 (d) Documents shall be organized so they are readable without requiring an
associated style sheet.

To test whether your site fulfills this guideline, you should view the site without the
style sheet. Some browsers allow you to turn off style sheets; alternately, you can redirect
a page to an empty style sheet. You should modify any page that is unreadable without
its style sheet to conform with this guideline.

Image Maps
Section 508 provides two standards that pertain to image maps:

§1194.22 (e) Redundant text links shall be provided for each active region of a
server-side image map.

and

§1194.22 (f) Client-side image maps shall be provided instead of server-side image
maps except where the regions cannot be defined with an available
geometric shape.

In other words, the preferred image map is a client-side image map, unless the map
uses a shape that cannot be defined on the client side. Since client-side image maps
allow for polygonal shapes, this should not be an issue; however if you must use a
server-side image map, you need to provide a text alternative for each of the map’s links.
Because server-side image maps provide only map coordinates to the server, this text
is necessary in order to provide link information that is accessible to blind or visually
impaired users. Figure D–6 shows a server-side image map that satisfies the Section 508
guidelines by repeating the graphical links in the image map with text links placed below
the image.

Figure D–6 Making a server-side image map accessible

07140_AppD_ptg01_001-018.indd 6 8/8/19 12:09 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix D Making the Web More Accessible | HTML 5 and CSS HTML D7

Client-side image maps do not have the same limitations as server-side maps because
they allow you to specify alternate text for each hotspot within the map. For example, if
the image map shown in Figure D–6 were a client-side map, you could make it accessible
using the following HTML code:

<img src="servermap.jpg" alt="Jackson Electronics"
 usemap="#links" />
<map name="links">
 <area shape="rect" href="home.html" alt="home"
 coords="21,69,123,117" />
 <area shape="rect" href="products.html" alt="products"
 coords="156,69,258,117" />
 <area shape="rect" href="stores.html" alt="stores"
 coords="302,69,404,117" />
 <area shape="rect" href="support.html" alt="support"
 coords="445,69,547,117" />
</map>

Screen readers or other nonvisual browsers use the value of the alt attribute within
each <area /> tag to give users access to each area. However, because some older
browsers cannot work with the alt attribute in this way, you should also include the text
alternative used for server-side image maps.

Tables
Tables can present a challenge for disabled users, particularly for those who employ
screen readers or other nonvisual browsers. To render a web page, these browsers
employ a technique called linearizing, which processes web page content using a few
general rules:

 1. Convert all images to their alternative text.
 2. Present the contents of each table one cell at a time, working from left to right

across each row before moving down to the next row.
 3. If a cell contains a nested table, that table is linearized before proceeding to the

next cell.

Figure D–7 shows how a nonvisual browser might linearize a sample table.

07140_AppD_ptg01_001-018.indd 7 8/8/19 12:09 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix D Making the Web More AccessibleHTML D8

One way of dealing with the challenge of linearizing is to structure your tables so that
they are easily interpreted even when linearized. However, this is not always possible,
especially for tables that have several rows and columns or may contain several levels of
nested tables. The Section 508 guidelines for table creation state that

§1194.22 (g) Row and column headers shall be identified for data tables.

and

§1194.22 (h) Markup shall be used to associate data cells and header cells for data
tables that have two or more logical levels of row or column headers.

To fulfill the 1194.22 (g) guideline, you should use the <th> tag for any table cell that
contains a row or column header. By default, header text appears in a bold centered
font; however, you can override this format using a style sheet. Many nonvisual browsers
can search for header cells. Also, as a user moves from cell to cell in a table, these
browsers can announce the row and column headers associated with each cell. In this
way, using the <th> tag can significantly reduce some of the problems associated with
linearizing.

You can also use the scope attribute to explicitly associate a header with a row,
 column, row group, or column group. The syntax of the scope attribute is

<th scope="type"> … </th>

where type is either row, column, rowgroup, or colgroup. Figure D–8 shows how to
use the scope attribute to associate the headers with the rows and columns of a table.

table linearized content

Desktop PCs
Model
Processor
Memory
DVD Burner
Modem
Network Adapter
Paragon 2.4
Intel 2.4GHz
256MB
No
Yes
No
Paragon 3.7
Intel 3.7GHz
512MB
Yes
Yes
No
Paragon 5.9
Intel 5.9GHz
1024MB
Yes
Yes
Yes

Figure D–7 Linearizing a table

07140_AppD_ptg01_001-018.indd 8 8/8/19 12:09 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix D Making the Web More Accessible | HTML 5 and CSS HTML D9

A nonvisual browser that encounters the table in Figure D–8 can indicate to users
which rows and columns are associated with each data cell. For example, the browser
could indicate that the cell value “512MB” is associated with the Memory column and
the Paragon 3.7 row.

For more explicit references, HTML also supports the headers attribute, which
 specifies the cell or cells that contain header information for a particular cell. The syntax
of the headers attribute is

<td headers="ids"> … </td>

where ids is a list of id values associated with header cells in the table. Figure D–9
 demonstrates how to use the headers attribute.

tableHTML code

<table border="1" cellpadding="5">
<tr>
 <th scope="col">Model</th>
 <th scope="col">Processor</th>
 <th scope="col">Memory</th>
</tr>
<tr>
 <th scope="row">Paragon 2.4</th>
 <td>Intel 2.4GHz</td>
 <td>256MB</td>
</tr>
<tr>
 <th scope="row">Paragon 3.7</th>
 <td>Intel 3.7GHz</td>
 <td>512MB</td>
</tr>
</table>

Figure D–8 Using the scope attribute

tableHTML code

<table>
<tr>
 <th id="c1">Model</th>
 <th id="c2">Processor</th>
 <th id="c3">Memory</th>
</tr>
<tr>
 <th id="r1" headers="c1">Paragon 2.4</th>
 <td headers="r1 c2">Intel 2.4GHz</td>
 <td headers="r1 c3">256MB</td>
</tr>
<tr>
 <th id="r2" headers="c1">Paragon 3.7</th>
 <td headers="r2 c2">Intel 3.7GHz</td>
 <td headers="r2 c3">512MB</td>
</tr>
</table>

Figure D–9 Using the headers attribute

Note that some older browsers do not support the scope and headers attributes.
For this reason, it can be useful to supplement your tables with caption and summary
 attributes in order to provide even more information to blind and visually impaired users.

07140_AppD_ptg01_001-018.indd 9 8/8/19 12:09 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix D Making the Web More AccessibleHTML D10

Frame Sites
When a nonvisual browser opens a frame site, it can render the contents of only one
frame at a time. Users are given a choice of which frame to open. So, it’s important that
the name given to a frame indicates the frame’s content. For this reason, the Section 508
guideline for frames states that

§1194.22 (i) Frames shall be titled with text that facilitates frame identification and
 navigation.

Frames can be identified using either the title attribute or the name attribute, and
 different nonvisual browsers use different attributes. For example, the Lynx browser uses
the name attribute, while the IBM Home Page Reader uses the title attribute. For this
reason, you should use both attributes in your framed sites. If you don’t include a title
or name attribute in the frame element, some nonvisual browsers retrieve the document
specified as the frame’s source and then use that page’s title as the name for the frame.

The following code demonstrates how to make a frame site accessible to users with
disabilities.

<frameset cols="25%, *">
 <frame src="title.htm" title="banner" name="banner" />
 <frameset rows="100, *">
 <frame src="links.htm" title="links" name="links" />
 <frame src="home.htm" title="documents" name="documents" />
 </frameset>
</frameset>

Naturally, you should make sure that any document displayed in a frame follows the
Section 508 guidelines.

Animation and Scrolling Text
Animated GIFs, scrolling marquees, and other special features can be sources of irritation
for any web user; however, they can cause serious problems for certain users. For
example, people with photosensitive epilepsy can experience seizures when exposed to
a screen or portion of a screen that flickers or flashes within the range of 2 to 55 flashes
per second (2 to 55 Hertz). For this reason, the Section 508 guidelines state that

§1194.22 (j) Pages shall be designed to avoid causing the screen to flicker with a
 frequency greater than 2 Hz and lower than 55 Hz.

In addition to problems associated with photosensitive epilepsy, users with cognitive
or visual disabilities may find it difficult to read moving text, and most screen readers are
unable to read moving text. Therefore, if you decide to use animated elements, you must
ensure that each element’s flickering and flashing is outside of the prohibited range, and
you should not place essential page content within these elements.

Scripts, Applets, and Plug-Ins
Scripts, applets, and plug-ins are widely used to make web pages more dynamic and
interesting. The Section 508 guidelines for scripts state that

§1194.22 (l) When pages utilize scripting languages to display content, or to create
interface elements, the information provided by the script shall be
 identified with functional text that can be read by adaptive technology.

07140_AppD_ptg01_001-018.indd 10 8/8/19 12:09 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix D Making the Web More Accessible | HTML 5 and CSS HTML D11

Scripts are used for a wide variety of purposes. The following list describes some of
the more popular uses of scripts and how to modify them for accessibility:

• Pull-down menus: Many web designers use scripts to save screen space by inserting
pull-down menus containing links to other pages in the site. Pull-down menus are
 usually accessed with a mouse. To assist users who cannot manipulate a mouse,
include keyboard shortcuts to all pull-down menus. In addition, the links in a pull-down
menu should be repeated elsewhere on the page or on the site in a text format.

• Image rollovers: Image rollovers are used to highlight linked elements. However, since
image rollovers rely on the ability to use a mouse, pages should be designed so that
 rollover effects are not essential for navigating a site or for understanding a page’s content.

• Dynamic content: Scripts can be used to insert new text and page content. Because
some browsers designed for users with disabilities have scripting turned off by default,
you should either not include any crucial content in dynamic text, or you should
 provide an alternate method for users with disabilities to access that information.

Applets and plug-ins are programs external to a web page or browser that add special
features to a website. The Section 508 guideline for applets and plug-ins is

§1194.22 (m) When a Web page requires that an applet, plug-in or other application
be present on the client system to interpret page content, the page must
 provide a link to a plug-in or applet that complies with §1994.21(a)
through (i).

This guideline means that any applet or plug-in used with your website must be
 compliant with sections §1994.21(a) through (i) of the Section 508 accessibility law,
which deal with accessibility issues for software applications and operating systems. If
the default applet or plug-in does not comply with Section 508, you need to provide a
link to a version of that applet or plug-in that does. For example, a web page containing
a Real Audio clip should have a link to a source for the necessary player. This places the
responsibility on the web page designer to know that a compliant application is available
before requiring the clip to work with the page.

Web Forms
The Section 508 standard for web page forms states that

§1194.22 (n) When electronic forms are designed to be completed on-line, the form
shall allow people using assistive technology to access the information,
field elements, and functionality required for completion and submission
of the form, including all directions and cues.

This is a general statement that instructs designers to make forms accessible, but it
doesn’t supply any specific instructions. The following techniques can help you make
web forms that comply with Section 508:

• Push buttons should always include value attributes. The value attribute contains the
text displayed on a button, and is rendered by different types of assistive technology.

• Image buttons should always include alternate text that can be rendered by nonvisual
browsers.

• Labels should be associated with any input box, text area box, option button, checkbox,
or selection list. The labels should be placed in close proximity to the input field and
should be linked to the field using the label element.

• Input boxes and text area boxes should, when appropriate, include either default text
or a prompt that indicates to the user what text to enter into the input box.

• Interactive form elements should be triggered by either the mouse or the keyboard.

07140_AppD_ptg01_001-018.indd 11 8/8/19 12:09 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix D Making the Web More AccessibleHTML D12

The other parts of a web form should comply with other Section 508 standards. For
example, if you use a table to lay out the elements of a form, make sure that the form still
makes sense when the table is linearized.

Links
It is common for web designers to place links at the top, bottom, and sides of every
page in their websites. This is generally a good idea, because those links enable users to
move quickly and easily through a site. However, this technique can make it difficult to
 navigate a page using a screen reader, because screen readers move through a page from
the top to bottom, reading each line of text. Users of screen readers may have to wait
several minutes before they even get to the main body of a page, and the use of repetitive
links forces such users to reread the same links on each page as they move through a
site. To address this problem, the Section 508 guidelines state that

§1194.22 (o) A method shall be provided that permits users to skip repetitive
navigation links.

One way of complying with this rule is to place a link at the very top of each page that
allows users to jump to the page’s main content. In order to make the link unobtrusive,
it can be attached to a transparent image that is one pixel wide by one pixel high. For
example, the following code lets users of screen readers jump to the main content of the
page without needing to go through the content navigation links on the page; however,
the image itself is invisible to other users and so does not affect the page’s layout or
appearance.

 <img src="spacer.gif" height="1" width="1" alt="Skip to main
content" />

...

page content goes here …

One advantage to this approach is that a template can be easily written to add this
code to each page of the website.

Timed Responses
For security reasons, the login pages of some websites automatically log users out after
a period of inactivity, or if users are unable to log in quickly. Because disabilities may
prevent some users from being able to complete a login procedure within the prescribed
time limit, the Section 508 guidelines state that

§1194.22 (p) When a timed response is required, the user shall be alerted and given
sufficient time to indicate that more time is required.

The guideline does not suggest a time interval. To satisfy Section 508, your page
should notify users when a process is about to time out and prompt users whether
 additional time is needed before proceeding.

07140_AppD_ptg01_001-018.indd 12 8/8/19 12:09 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix D Making the Web More Accessible | HTML 5 and CSS HTML D13

Providing a Text-Only Equivalent
If you cannot modify a page to match the previous accessibility guidelines, as a last
resort you can create a text-only page:

§1194.22 (k) A text-only page, with equivalent information or functionality, shall
be provided to make a Web site comply with the provisions of this
part, when compliance cannot be accomplished in any other way. The
content of the text-only pages shall be updated whenever the primary
page changes.

To satisfy this requirement, you should

• provide an easily accessible link to the text-only page.
• make sure that the text-only page satisfies the Section 508 guidelines.
• duplicate the essential content of the original page.
• update the alternate page when you update the original page.

By using the Section 508 guidelines, you can work toward making your website
accessible to everyone, regardless of disabilities.

Understanding the Web Accessibility Initiative
In 1999, the World Wide Web Consortium (W3C) developed its own set of guidelines for
web accessibility called the Web Accessibility Initiative (WAI). The WAI covers many of
the same points as the Section 508 rules, and expands on them to cover basic website
design issues. The overall goal of the WAI is to facilitate the creation of websites that are
accessible to all, and to encourage designers to implement HTML in a consistent way.

The WAI sets forth 14 guidelines for web designers. Within each guideline is a
 collection of checkpoints indicating how to apply the guideline to specific features of a
website. Each checkpoint is also given a priority score that indicates how important the
guideline is for proper web design:

• Priority 1: A web content developer must satisfy this checkpoint. Otherwise, one or
more groups will find it impossible to access information in the document. Satisfying
this checkpoint is a basic requirement for some groups to be able to use web
documents.

• Priority 2: A web content developer should satisfy this checkpoint. Otherwise, one or
more groups will find it difficult to access information in the document. Satisfying this
checkpoint will remove significant barriers to accessing web documents.

• Priority 3: A web content developer may address this checkpoint. Otherwise, one or
more groups will find it somewhat difficult to access information in the document.
Satisfying this checkpoint will improve access to web documents.

The following table lists WAI guidelines with each checkpoint and its corresponding
priority value. You can learn more about the WAI guidelines and how to implement them
by going to the World Wide Web Consortium website at www.w3.org.

07140_AppD_ptg01_001-018.indd 13 8/8/19 12:09 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix D Making the Web More AccessibleHTML D14

WAI Guidelines Priority
1. Provide equivalent alternatives to auditory and visual content

1.1 Provide a text equivalent for every nontext element (e.g., via alt, longdesc, or in
element content).
This includes: images, graphical representations of text (including symbols), image map
regions, animations (e.g., animated GIFs), applets and programmatic objects, ascii art,
frames, scripts, images used as list bullets, spacers, graphical buttons, sounds (played
with or without user interaction), stand-alone audio files, audio tracks of video, and video.

1

1.2 Provide redundant text links for each active region of a server-side image map. 1

1.3 Until user agents can automatically read aloud the text equivalent of a visual track,
provide an auditory description of the important information of the visual track of a
multimedia presentation.

1

1.4 For any time-based multimedia presentation (e.g., a movie or animation), synchronize
equivalent alternatives (e.g., captions or auditory descriptions of the visual track) with
the presentation.

1

1.5 Until user agents render text equivalents for client-side image map links, provide
redundant text links for each active region of a client-side image map.

3

2. Don’t rely on color alone

2.1 Ensure that all information conveyed with color is also available without color, for
example from context or markup.

1

2.2 Ensure that foreground and background color combinations provide sufficient
 contrast when viewed by someone having color deficits or when viewed on a black
and white screen. [Priority 2 for images, Priority 3 for text].

2

3. Use markup and style sheets and do so properly

3.1 When an appropriate markup language exists, use markup rather than images to
 convey information.

2

3.2 Create documents that validate to published formal grammars. 2

3.3 Use style sheets to control layout and presentation. 2

3.4 Use relative rather than absolute units in markup language attribute values and style
sheet property values.

2

3.5 Use header elements to convey document structure and use them according to
specification.

2

3.6 Mark up lists and list items properly. 2

3.7 Mark up quotations. Do not use quotation markup for formatting effects such as
indentation.

2

4. Clarify natural language usage

4.1 Clearly identify changes in the natural language of a document’s text and any text
equivalents (e.g., captions).

1

4.2 Specify the expansion of each abbreviation or acronym in a document where it
first occurs.

3

4.3 Identify the primary natural language of a document. 3

5. Create tables that transform gracefully

5.1 For data tables, identify row and column headers. 1

5.2 For data tables that have two or more logical levels of row or column headers, use
markup to associate data cells and header cells.

1

5.3 Do not use a table for layout unless the table makes sense when linearized. If a
table does not make sense, provide an alternative equivalent (which may be a
linearized version).

2

5.4 If a table is used for layout, do not use any structural markup for the purpose of visual
formatting.

2

07140_AppD_ptg01_001-018.indd 14 8/8/19 12:09 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix D Making the Web More Accessible | HTML 5 and CSS HTML D15

WAI Guidelines Priority
5.5 Provide summaries for tables. 3

5.6 Provide abbreviations for header labels. 3

6. Ensure that pages featuring new technologies transform gracefully

6.1 Organize documents so they may be read without style sheets. For example, when an
HTML document is rendered without associated style sheets, it must still be possible
to read the document.

1

6.2 Ensure that equivalents for dynamic content are updated when the dynamic content
changes.

1

6.3 Ensure that pages are usable when scripts, applets, or other programmatic objects
are turned off or not supported. If this is not possible, then provide equivalent
 information on an alternative accessible page.

1

6.4 For scripts and applets, ensure that event handlers are input device-independent. 2

6.5 Ensure that dynamic content is accessible or provide an alternative presentation or page. 2

7. Ensure user control of time-sensitive content changes

7.1 Until user agents allow users to control flickering, avoid causing the screen to flicker. 1

7.2 Until user agents allow users to control blinking, avoid causing content to blink
(i.e., change presentation at a regular rate, such as turning on and off).

2

7.3 Until user agents allow users to freeze moving content, avoid movement in pages. 2

7.4 Until user agents provide the ability to stop the refresh, do not create periodically
auto-refreshing pages.

2

7.5 Until user agents provide the ability to stop auto-redirect, do not use markup to
 redirect pages automatically. Instead, configure the server to perform redirects.

2

8. Ensure direct accessibility of embedded user interfaces

8.1 Make programmatic elements such as scripts and applets directly accessible or
compatible with assistive technologies [Priority 1 if functionality is important and not
 presented elsewhere, otherwise Priority 2.]

2

9. Design for device-independence

9.1 Provide client-side image maps instead of server-side image maps except where the
regions cannot be defined with an available geometric shape.

1

9.2 Ensure that any element with its own interface can be operated in a
 device-independent manner.

2

9.3 For scripts, specify logical event handlers rather than device-dependent event handlers. 2

9.4 Create a logical tab order through links, form controls, and objects. 3

9.5 Provide keyboard shortcuts to important links (including those in client-side image
maps), form controls, and groups of form controls.

3

10. Use interim solutions

10.1 Until user agents allow users to turn off spawned windows, do not cause pop-ups or
other windows to appear and do not change the current window without informing
the user.

2

10.2 Until user agents support explicit associations between labels and form controls,
ensure that labels are properly positioned for all form controls with implicitly
 associated labels.

2

10.3 Until user agents (including assistive technologies) render side-by-side text correctly,
provide a linear text alternative (on the current page or some other) for all tables
that lay out text in parallel, word-wrapped columns.

3

10.4 Until user agents handle empty controls correctly, include default, place-holding
characters in edit boxes and text areas.

3

10.5 Until user agents (including assistive technologies) render adjacent links distinctly,
include nonlink, printable characters (surrounded by spaces) between adjacent links.

3

07140_AppD_ptg01_001-018.indd 15 8/8/19 12:09 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix D Making the Web More AccessibleHTML D16

WAI Guidelines Priority
11. Use W3C technologies and guidelines

11.1 Use W3C technologies when they are available and appropriate for a task and use
the latest versions when supported.

2

11.2 Avoid deprecated features of W3C technologies. 2

11.3 Provide information so that users may receive documents according to their
 preferences (e.g., language, content type, etc.)

3

11.4 If, after best efforts, you cannot create an accessible page, provide a link to an
 alternative page that uses W3C technologies, is accessible, has equivalent information
(or functionality), and is updated as often as the inaccessible (original) page.

1

12. Provide context and orientation information

12.1 Title each frame to facilitate frame identification and navigation. 1

12.2 Describe the purpose of frames and how frames relate to each other if this is not
obvious from frame titles alone.

2

12.3 Divide large blocks of information into more manageable groups where natural and
appropriate.

2

12.4 Associate labels explicitly with their controls. 2

13. Provide clear navigation mechanisms

13.1 Clearly identify the target of each link. 2

13.2 Provide metadata to add semantic information to pages and sites. 2

13.3 Provide information about the general layout of a site (e.g., a site map or table of
contents).

2

13.4 Use navigation mechanisms in a consistent manner. 2

13.5 Provide navigation bars to highlight and give access to the navigation mechanism. 3

13.6 Group related links, identify the group (for user agents), and, until user agents do
so, provide a way to bypass the group.

3

13.7 If search functions are provided, enable different types of searches for different skill
levels and preferences.

3

13.8 Place distinguishing information at the beginning of headings, paragraphs, lists, etc. 3

13.9 Provide information about document collections (i.e., documents comprising
 multiple pages).

3

13.10 Provide a means to skip over multiline ASCII art. 3

14. Ensure that documents are clear and simple

14.1 Use the clearest and simplest language appropriate for a site’s content. 1

14.2 Supplement text with graphic or auditory presentations where they will facilitate
comprehension of the page.

3

14.3 Create a style of presentation that is consistent across pages. 3

07140_AppD_ptg01_001-018.indd 16 8/8/19 12:09 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix D Making the Web More Accessible | HTML 5 and CSS HTML D17

Checking Your Website for Accessibility
As you develop your website, you should periodically check it for accessibility. In
 addition to reviewing the Section 508 and WAI guidelines, you can do several things to
verify that your site is accessible to everyone:

• Set up your browser to suppress the display of images. Does each page still convey all
of the necessary information?

• Set your browser to display pages in extra large fonts and with a different color
scheme. Are your pages still readable under these conditions?

• Try to navigate your pages using only your keyboard. Can you access all of the links
and form elements?

• Open your page in a screen reader or other nonvisual browser. (The W3C website
contains links to several alternative browsers that you can download as freeware or on
a short-term trial basis in order to evaluate your site.)

• Use tools that test your site for accessibility. (The WAI pages at the W3C website
 contain links to a wide variety of tools that report on how well your site complies with
the WAI and Section 508 guidelines.)

Following the accessibility guidelines laid out by Section 508 and the WAI will result
in a website that is not only more accessible to a wider audience, but whose design is
also cleaner, easier to work with, and easier to maintain.

07140_AppD_ptg01_001-018.indd 17 8/8/19 12:09 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

07140_AppD_ptg01_001-018.indd 18 8/8/19 12:09 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML E1

Designing for
the Web
Before you begin creating links between your website pages,
it’s worthwhile to use a technique known as storyboarding to
map out exactly how you want the pages to relate to each other.
A storyboard is a diagram of a website’s structure, showing all
the pages in the site and indicating how they are linked together.
Because websites use a variety of structures, it’s important to
 storyboard your website before you start creating your pages.
This helps you determine which structure works best for the type
of information your site contains. A well-designed structure ensures
that users will be able to navigate the site without getting lost or
missing important information.

Every website should begin with a single home page that acts as
a focal point for the website. It is usually the first page that users
see. From that home page, you add links to other pages in the site,
defining the site’s overall structure. The websites you commonly
encounter as you navigate the web employ several different web
structures. You’ll examine some of these structures to help you
decide how to design your own sites.

Linear Structures
If you wanted to create an online version of a famous play, like
Shakespeare’s Hamlet, one method would be to link the individual
scenes of the play in a long chain. Figure E–1 shows the storyboard
for this linear structure, in which each page is linked with the
pages that follow and precede it. Readers navigate this structure by
moving forward and backward through the pages, much as they
might move forward and backward through the pages of a book.

APPENDIX E

STARTING DATA FILES

There are no starting Data Files needed for this appendix.

07140_AppE_ptg01_001-006.indd 1 8/8/19 12:10 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix E Designing for the WebHTML E2

Linear structures work for websites that are small in size and have a clearly defined
order of pages. However, they can be difficult to work with as the chain of pages
increases in length. An additional problem is that in a linear structure, you move farther
and farther away from the home page as you progress through the site. Because home
pages often contain important general information about a site and its author, this is
 usually not the best design technique.

You can modify this structure to make it easier for users to return immediately to the
home page or other main pages. Figure E–2 shows this online play with an augmented
linear structure, in which each page contains an additional link back to the opening
page of each act.

Figure E–2 An augmented linear structure

Each page is linked with the preceding
and following pages with an additional

link to the first scene page.

Act I
Scene 1

Act I
Scene 2

Act I
Scene 3

Act II
Scene 1

Act II
Scene 2

Act II
Scene 3

. . .

Each page is linked with the
preceding and following pages.

Act I
Scene 1

Act I
Scene 2

Act I
Scene 3

Act II
Scene 1

Act II
Scene 2

Act II
Scene 3

. . .

Figure E–1 A linear structure

Hierarchical Structures
Another popular structure is the hierarchical structure, in which the home page links
to pages dedicated to specific topics. Those pages, in turn, can be linked to even more
specific topics. A hierarchical structure allows users to easily move from general to
specific and back again. In the case of the online play, you could link an introductory
page containing general information about the play to pages that describe each of
the play’s acts, and within each act you could include links to individual scenes.
See Figure E–3.

07140_AppE_ptg01_001-006.indd 2 8/8/19 12:10 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix E Designing for the Web | HTML 5 and CSS HTML E3

Mixed Structures

Within this structure, a user could move quickly to a specific scene within the play,
bypassing the need to move through each scene that precedes it.

With larger and more complex websites, you often need to use a combination of
structures. Figure E–4 shows the online play using a mixture of hierarchical and linear
structures. The overall form is hierarchical, as users can move from a general introduction
down to individual scenes; however, users can also move through the site in a linear
fashion, going from act to act and scene to scene. Finally, each individual scene contains
a link to the home page, allowing users to jump to the top of the hierarchy without
 moving through the different levels.

Figure E–3 A hierarchical structure

Pages are arranged in a hierarchy from
the general down to the specific; users

can move up and down the tree.

Act I

Play Intro

Act II Act III

home page

acts

scenes

1 2 3 1 2 3 4 1 2 3

07140_AppE_ptg01_001-006.indd 3 8/8/19 12:10 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix E Designing for the WebHTML E4

As these examples show, a little foresight can go a long way toward making your
website easier to use. Also keep in mind that search results from a web search engine
such as Google or Yahoo! can point users to any page in your website—not just your
home page—so users will need to be able to quickly understand what your site contains
and how to navigate it. At a minimum, each page should contain a link to the site’s
home page or to the relevant main topic page. In some cases, you might want to supply
your users with a site index, which is a page containing an outline of the entire site and
its contents. Unstructured websites can be difficult and frustrating to use. Consider the
storyboard of the site displayed in Figure E–5.

Figure E–4 A mixed structure

Pages are linked in a variety of ways.

Act I

Play Intro

Act II Act III

home
page

acts

scenes

individual scenes

Play Intro

1 2 3 1 2 3 4 1 2 3

07140_AppE_ptg01_001-006.indd 4 8/8/19 12:10 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix E Designing for the Web | HTML 5 and CSS HTML E5

This confusing structure makes it difficult for users to grasp the site’s contents and
scope. The user might not even be aware of the presence of some pages because there
are no connecting links, and some of the links point in only one direction. The web is
a competitive place; studies have shown that users who don’t see how to get what they
want within the first few seconds often leave a website. How long would a user spend on
a site like the one shown in Figure E–5?

Protected Structures
Sections of most commercial websites are often off-limits except to subscribers and
 registered customers. Storyboarding a protected structure is particularly important to
ensure that no unauthorized access to the protected area is allowed in the site design. As
shown in Figure E–6, these sites have a password-protected web page that users must go
through to get to the off-limits areas.

Figure E–5 Website with no coherent structure

07140_AppE_ptg01_001-006.indd 5 8/8/19 12:10 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix E Designing for the WebHTML E6

The same website design principles apply to the protected section as the regular, open
section of the site. As always, you want to create and maintain detailed storyboards to
improve your site’s performance and accessibility to all users.

Figure E–6 A protected structure

public site protected section

password-protected
access

07140_AppE_ptg01_001-006.indd 6 8/8/19 12:10 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML F1

Page Validation
with XHTML

APPENDIX F

STARTING DATA FILES

There are no starting Data Files needed for this appendix.

Introducing XHTML
In these tutorials, you have worked with documents written to
correspond with the specifications of HTML 5. However, other
versions of HTML have applications both on the web and in the
business world. One of these versions is XHTML. To understand
what XHTML is, you will look at the XML language first.

XML
Extensible Markup Language or XML is a language for designing
specialized markup languages called XML vocabularies, which
can be used for a variety of document needs. Some popular XML
vocabularies include MathML for mathematical content, CML for
documenting chemical structures, and MusicML for describing
musical scores. Individual users and businesses can also create
markup languages tailored for their specific needs. The content
of XML documents resembles what you have seen for HTML
documents in which content is marked with element tags that can
contain element attributes. For example, the following code is
an excerpt from a MusicML document describing Mozart’s Piano
Sonata in A Major:

<work>
 <work-number>K. 331</work-number>
 <work-title>Piano Sonata in A Major</work-title>
</work>
<identification>
 <creator type="composer">Wolfgang Amadeus
 Mozart</creator>
 <rights>Copyright 2018 Recordare LLC</rights>
</identification>

XHTML is another XML vocabulary in which the content and
structure is written in XML but uses the tags and attributes
associated with HTML. However, the structure of an XHTML
document differs from an HTML document in ways you will
explore next.

07140_AppF_ptg01_001-014.indd 1 8/8/19 12:11 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix F Page Validation with XHTMLHTML F2

Starting an XHTML Document
All XML documents, and thus all XHTML documents, must begin with a prolog that
indicates the document adheres to the syntax rules of XML. The form of the XML
prolog is

<?xml version="value" encoding="type" ?>

where the version attribute indicates the XML version of the document and the
encoding attribute specifies its character encoding. For XHTML documents, set the
version to “1.0”. The encoding depends on the character set being used. For example,
if a document is saved using the UTF-8 character set, you would start the XHTML
document with the following prolog:

<?xml version="1.0" encoding="UTF-8" ?>

With XHTML documents, you can define the character encoding within the XML
prolog or with the following meta element, added to the document head

<meta http-equiv="Content-type" content="text/html;charset=type" />

where type is once again the character encoding. Thus, the meta element

<meta http-equiv="Content-type" content="text/html;charset=UTF-8" />

defines the content type as using the UTF-8 character set.

Creating Well-Formed Documents
Once an XML document has been created, a program called an XML parser checks the
file for errors in syntax and content. An XML document that employs the correct syntax
is known as a well-formed document. Browsers usually accept HTML documents that
violate HTML syntax as long as the violation is not too severe; however, an XML parser
rejects any XML document that is not well formed. See Figure F–1.

Figure F–1 Testing for well formedness

the parser checks for syntax
errors in the XML document

the document author writes the
code of the XML document

if the document is well formed,
it is passed by the parser and its
content is displayed by the
browser or other XML application

XML parser

07140_AppF_ptg01_001-014.indd 2 8/8/19 12:11 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix F Page Validation with XHTML | HTML 5 and CSS HTML F3

For example, the following code is an example of code that is not well formed
because it violates the basic rule that every two-sided tag must have both an opening
and closing tag:

Not well-formed code:

<body>
 <h1>Web Page Title
</body>

An XML parser rejects documents that are not well formed and thus the document
content will not be displayed by the browser. To correct this error and make the code
well formed, you need to add the closing tag as shown next.

Well-formed code:

<body>
 <h1>Web Page Title </h1>
</body>

When you write XHTML code, it is important to be familiar with all of the rules
of proper syntax. Figure F–2 lists seven syntax requirements that all XML documents
(and therefore all XHTML documents) must follow.

In addition to the rules specified in Figure F–2, all XML documents must also
include a single root element that contains all other elements. For XHTML, that root
element is the html element. You should already be familiar with many of these rules
because you have been working with well-formed HTML since Tutorial 1. However, on
older websites, you may find document code that violates this basic syntax but which
most browsers still support.

In some older HTML documents, you might find cases of attribute minimization,
a situation in which an element attribute lacks a value. XHTML does not allow
attribute minimization so XHTML uses the name of the attribute as the attribute
value. Figure F–3 lists the minimized attributes found in some HTML documents,
along with the XHTML-compliant versions of these attributes.

Rule Incorrect Correct
Element names must be
lowercase.

<P>This is a
paragraph.</P>

<p>This is a paragraph.</p>

Elements must be properly
nested.

<p>This text is
bold</p>.

<p>This text is
bold.</p>

All elements must be closed. <p>This is a paragraph. <p>This is a paragraph.</p>

Empty elements must be
terminated.

This is a line break.

This is a line break.

Attribute names must be
lowercase.

<td COLSPAN="3"> <td colspan="3">

Attribute values must be
quoted.

<td colspan=3> <td colspan="3">

Attributes must have values. <option selected> <option selected="selected">

Figure F–2 Rules for well-formed XML code

07140_AppF_ptg01_001-014.indd 3 8/8/19 12:11 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix F Page Validation with XHTMLHTML F4

HTML XHTML
compact compact="compact"

checked checked="checked"

declare declare="declare"

readonly readonly="readonly"

disabled disabled="disabled"

selected selected="selected"

defer defer="defer"

ismap ismap="ismap"

nohref nohref="nohref"

noshade noshade="noshade"

nowrap nowrap="nowrap"

multiple multiple="multiple"

noresize noresize="noresize"

Figure F–3 Attribute minimization in HTML and XHTML

For example, in HTML, the following code can be used to indicate that a radio
button should be selected by default:

<input type="radio" checked>

In XHTML, this code would be rewritten as follows:

<input type="radio" checked="checked" />

Failure to make this change would cause the XHTML document to be rejected as not
well formed. Note that in HTML, either form is accepted: You can write a minimized
attribute either with the attribute value or without it.

Creating Valid XHTML Documents
In addition to being tested for well formedness, XML documents can also be checked
to see if they are valid. A valid document is a well-formed document that also contains
only those elements, attributes, and other features that have been defined for its XML
vocabulary. For example, if the code

<body>
 <mainhead>Web Page Title</mainhead>
</body>

was entered into an XHTML file, the code would be considered well formed because
it complies with the syntax rules of XML—but it would not be valid because XHTML
does not support a mainhead element. To specify the correct content and structure for
a document, the developers of an XML-based language can create a collection of rules
called the document type definition or DTD, which are stored either within the XML
file or externally in a text file known as a DTD file. As shown in Figure F–4, an XML
parser tests the content of a document against the rules in the DTD file. If the document
does not conform to those rules, the parser rejects the document as not valid.

07140_AppF_ptg01_001-014.indd 4 8/8/19 12:11 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix F Page Validation with XHTML | HTML 5 and CSS HTML F5

For example, an XML vocabulary designed for a business might contain elements
naming each product in its inventory. The DTD for that document could require that each
product name element be accompanied by an id attribute value and that no products
share the same name or id. An XML parser would reject any XML document that didn’t
satisfy those rules, even if the document was well formed. In this way, XML differs from
HTML, which does not include a mechanism to force web page authors to adhere to
rules for syntax and content.

Transitional, Frameset, and Strict DTDs
There are several different DTDs associated with HTML and XHTML documents.
Some DTDs represent older versions of HTML. For example, if you want to create a
document that is validated only against the standards of HTML 5, a DTD is available for
this purpose.

For XHTML 1.0, there are three DTDs available for testing the validity of XHTML
documents:

• transitional DTD: The transitional DTD supports many presentational features of
HTML, including elements and attributes that have been deprecated in HTML 5. It is
best used with websites that need to support older standards.

• frameset DTD: The frameset DTD is used for documents containing frames, as well
as deprecated elements and attributes. It is best used with older websites that rely
on frames.

• strict DTD: The strict DTD does not allow for any deprecated HTML elements
and attributes, and it does not support frames or inline frames. It is best used for
 documents that must conform strictly to the latest standards.

All three DTDs require that every valid XHTML document include the following
elements: html, head, title, and body. If these elements are omitted, the document
will be rejected by the XML parser.

Figure F–4 Testing for validity

the parser checks for syntax
errors in the XML document
and compares the document
content with the rules speci�ed
in the DTD

the document author writes the
code of the XML document

if the document is well formed
and valid, it is passed by the
parser and displayed by the
browser or other XML application

XML parser

DTD

07140_AppF_ptg01_001-014.indd 5 8/8/19 12:11 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix F Page Validation with XHTMLHTML F6

There are elements that are allowed in one DTD but not in another. For example,
the following elements are allowed under the transitional DTD but they are not
allowed under the strict DTD for XHTML 1.0:

• applet
• basefont
• center
• dir
• font
• isindex
• menu
• noframes
• s
• strike
• u

In addition to using these elements in the transitional DTD, you often will encounter
them in older websites.

The frameset DTD supports these elements as well as the frame, frameset, and
noframes elements. Therefore, the following code, which uses the deprecated font
element and color attribute,

Wizard Works

would be considered valid code under the transitional and frameset DTDs but not
under the strict DTD.

In addition to prohibiting the use of certain elements, the strict DTD also requires
a particular document structure. For example, you cannot nest a block-level element
within an inline element. Figure F–5 lists the prohibited child elements under the
strict DTD.

Figure F–5 Child elements prohibited under the XHTML strict DTD

Element Prohibited Children
inline elements any block-level element

body a, abbr, acronym, b, bdo, big, br, button, cite, code, dfn, em, i, img,
input, kbd, label, map, object, q, samp, select, small, span, strong, sub,
sup, textarea, tt, var

button button, form, fieldset, iframe, input, isindex, label, select, textarea

blockquote a, abbr, acronym, b, bdo, big, br, button, cite, code, dfn, em, i, img,
input, kbd, label, map, object, q, samp, select, small, span, strong, sub,
sup, textarea, tt, var

form a, abbr, acronym, b, bdo, big, br, cite, code, dfn, em, form, i, img, kbd,
map, object, q, samp, small, span, strong, sub, sup, tt, var

label label

pre big, img, object, small, sub, sup

Thus, the following code would be disallowed under the strict DTD because it
places an inline image as a child of the body element:

<body>

</body>

07140_AppF_ptg01_001-014.indd 6 8/8/19 12:11 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix F Page Validation with XHTML | HTML 5 and CSS HTML F7

However, you could make this code compliant with the strict DTD by placing the
inline image within a paragraph, as follows:

<body>
 <p>

 </p>
</body>

The goal of this rule is to enforce the inline nature of the img element. Because an
inline image is displayed inline within a block element such as a paragraph, it should
not be found outside of that context. For the same reason, form elements (such as the
input or select elements) should be found only within a form, not outside of a form,
under the strict DTD.

The Valid Use of Attributes
DTDs also include different rules for attributes and their use. Under the strict DTD,
deprecated attributes are not allowed. A list of these prohibited attributes with their
corresponding elements is displayed in Figure F–6.

Figure F–6 Attributes prohibited under the XHTML strict DTD

Element Prohibited Attribute(s)
a target

area target

base target

body alink, bgcolor, link, text, vlink

br clear

caption align

div align

dl compact

form name, target

hn align

hr align, noshade, size, width

img align, border, hspace, name, vspace

input align

li type, value

link target

map name

object align, border, hspace, vspace

ol compact, start

p align

pre width

script language

table align, bgcolor

td bgcolor, height, nowrap, width

th bgcolor, height, nowrap, width

tr bgcolor

ul type, compact

07140_AppF_ptg01_001-014.indd 7 8/8/19 12:11 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix F Page Validation with XHTMLHTML F8

Many of the attributes listed in Figure F–6 are called presentational attributes because
they define how browsers should render the element. Note that all of the attributes
listed in Figure F–6 are supported in the transitional and frameset DTDs. Therefore, the
following code, which uses the align attribute to float an inline image on the left margin
of the page, would not be valid under the strict DTD because the align attribute is
prohibited; however, it would be allowed under the frameset and transitional DTDs.

The strict DTD also requires the use of the id attribute in place of the name attribute for
several elements. For example, the following tag that you might see in older HTML code

would be written in XHTML under the strict DTD using the id attribute as follows:

Whereas some attributes are prohibited, others are required. A list of the required
attributes and the elements they are associated with is shown in Figure F–7.

Figure F–7 Required attributes for XHTML elements

Element Required Attribute(s)
applet height, width

area alt

base href

basefont size

bdo dir

form action

img src, alt

map id

meta content

optgroup label

param name

script type

style type

textarea cols, rows

For example, an inline image is valid only if it contains both the src and alt
attributes, and a form element is valid only if it contains an action attribute.

Although the list of rules for well-formed and valid documents may seem long and
onerous, these rules simply reflect good coding practice. You would not, for example,
want to create an image map without an ID or an inline image without alternate text.

Inserting the DOCTYPE Declaration
To specify which DTD is used by an XML document, you add the following DOCTYPE
declaration directly after the XML prolog

<!DOCTYPE root type "id" "url">

where root is the name of the root element of the document, type identifies the type
of DTD (either PUBLIC or SYSTEM), id is an id associated with the DTD, and url is the
location of an external file containing the DTD rules. For XHTML documents, you set
the root value to html and the type value to PUBLIC.

07140_AppF_ptg01_001-014.indd 8 8/8/19 12:11 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix F Page Validation with XHTML | HTML 5 and CSS HTML F9

Figure F–8 lists the complete DOCTYPE declarations for different versions of HTML
and XHTML. Note that you can validate a document not only against different versions
of XHTML 1.0, but even against different W3C specifications for HTML; this can be
beneficial if you need to develop code for older browsers that do not support current
standards. You can access the most recent versions of these DTDs on the W3C website.

Figure F–8 DTDs for different versions of HTML and XHTML

DTD DOCTYPE
HTML 4.01 strict <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

HTML 4.01 transitional <!DOCTYPE html PUBLIC

"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

HTML 4.01 frameset <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"

"http://www.w3.org/TR/html4/frameset.dtd">

HTML 5 <!DOCTYPE html>

XHTML 1.0 strict <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

XHTML 1.0 transitional <!DOCTYPE html PUBLIC

"-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

XHTML 1.0 frameset <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

XHTML 1.1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

XHTML 5 <!DOCTYPE html>

Setting the XHTML Namespace
As noted earlier, XHTML is only one of hundreds of XML vocabularies. In some
situations, a document author may want to combine elements and attributes from
different vocabularies in the same document. For example, a mathematician might
want to create a single document that combines elements from both the XHTML and
MathML vocabularies. Each element or attribute that belongs to a particular language
is part of that language’s namespace. There are two types of namespaces: default and
local. For now, you will focus only on the default namespace. A default namespace is
the namespace that is assumed to be applied, by default, to any element or attribute
in the document. To declare a default namespace, you add the following xmlns (XML
namespace) attribute to the root element of the document

<root xmlns="namespace">

where namespace is the namespace id. Every XML vocabulary has a unique namespace
id. For example, if you wish to declare that the elements in your document belong to
the XHTML namespace by default, you add the following attribute to the html element:

<html xmlns="http://www.w3.org/1999/xhtml">

The namespace id for XHTML looks like a URL but it is not treated as one by
XML parsers. The id can actually be any string of characters as long as it uniquely
identifies the document namespace. For XHTML 1.0, it was decided by the W3C to
use http://www.w3.org/1999/xhtml as the unique identifier.

07140_AppF_ptg01_001-014.indd 9 8/8/19 12:11 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix F Page Validation with XHTMLHTML F10

Even if you don’t intend to combine different XML-based languages within the same
document, it is still a good idea to add a namespace to an XHTML file to explicitly
identify the XML vocabulary in use. In practical terms, though, an XHTML document is
still interpretable by most browsers without a namespace.

Validating a File on the Web
Once you have created an XHTML or HTML document, you can check it for well
formedness and validity using any one of the validators available on the web. One such
validator is located at the W3C website: https://validator.w3.org . To use the validator:

1. Go to https://validator.w3.org in your browser.
2. Choose the location of your file:

a. For a page on the web, click the Validate by URI tab and enter the address of
the page.

b. For a file on your computer, click the Validate by File Upload tab, click the
Choose File button, then locate and select the file on your computer.

c. For code you wish to enter directly, click the Validate by Direct Input tab and
enter the markup code in text box.

3. Click the Check button to run the validator.

Figure F–9 shows part of an XHTML document that can be tested against the W3C
validator.

Figure F–9 Contents of an XHTML file

XML prolog

DTD for XHTML 1.0
strict

meta element
indicating the
character encoding

XHTML 1.0
namespace

When tested by the validator using the XHTML Strict DTD, the W3C validator returns
the results shown in Figure F–10.

07140_AppF_ptg01_001-014.indd 10 8/8/19 12:11 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix F Page Validation with XHTML | HTML 5 and CSS HTML F11

Figure F–10 Results for an invalid document

list and description
of errors in the
XHTML document

3 errors are found
in the document

A total of three errors are reported by the validator. The first error is on Line 13:
Error Line 13, Column 18: there is no attribute “bgcolor”

 <body bgcolor="white">

This is an error because there is no bgcolor attribute for the body element. Instead,
the bgcolor attribute, used to define the background color, is a presentational attribute
that has been deprecated in more recent versions of HTML and XHTML. To correct this
error, you would have to remove the bgcolor attribute and use a CSS style to define
the background color.

The next error is on Line 15:
Error Line 15, Column 29: required attribute “alt” not specified

This error occurs because the alt attribute is missing from the inline image. To correct
this error, you would have to specify an alternate text for the inline image.

The third and final error also occurs on Line 15:
Error Line 15, Column 30: end tag for “img” omitted, but OMITTAG NO was

specified

07140_AppF_ptg01_001-014.indd 11 8/8/19 12:11 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS | Appendix F Page Validation with XHTMLHTML F12

This error occurs because the improper syntax was used for the one-sided tag. The
correct syntax for the inline image should appear as

with “Wizard Works” used as the alternate text for the logo image and / added to the
closing tag.

Once all of these corrections have been made, you should rerun the validator on
the revised markup code to ensure no other errors exist. As shown in Figure F–11, the
validator reports a successful test of the markup code.

When your document passes the validation test, you might want to make a note of
this fact in the body of your web page. The W3C provides code that you can paste into
your document to let others know that your document matches all of the validation tests.

Conclusion
Browsers are very forgiving of lapses in syntax. In fact, this is one of the reasons that
non-programmers were able to quickly create their own web pages in the early days of
the web.

You may wonder if it is really important to validate a document and follow syntax
rules when browsers are so accommodating. In fact, there are several good reasons to
enforce syntax rules and follow good coding practices:

• Although many browsers accommodate variations in syntax, not all browsers do so
and not always in the same way, which can result in varying display results when
using different browsers. However, when you follow the syntax rules of the W3C, all
browsers enforce those rules and in the same way.

• Web pages tend to be rendered more quickly when they use good syntax because
browsers don’t have to interpret poorly written code.

Figure F–11 Page that successfully passes validation

document passes
validation under
the XHTML 1.0
Strict DTD

07140_AppF_ptg01_001-014.indd 12 8/8/19 12:11 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix F Page Validation with XHTML | HTML 5 and CSS HTML F13

• If a browser renders one of your pages incorrectly, it is easier to debug the page if it
is written in compliance with standard syntax. Many web developers do a validation
check as part of the debugging process to locate errors in the code.

• In a working group where several people are tasked with maintaining the same web-
site code, you need to have a common set of rules to avoid confusion and mistakes.
So, for collaboration purposes, it is best to use the rules set down by the W3C.

• Even if you are writing your document in HTML, your business might also need to
create XML-based documents. Given the similarity between the two markup lan-
guages, it is easier for everyone to use the same set of syntax rules.

Thus, even if you are writing your code in HTML rather than XHTML, it may be best
to follow the syntax rules of XHTML. This does not mean you have to run a validation
check every time or add a namespace or an XML prolog to your document, but you
should use XHTML standards such as lowercasing element and attribute names, and
you should always provide attribute values enclosed within quotes.

07140_AppF_ptg01_001-014.indd 13 8/8/19 12:11 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

07140_AppF_ptg01_001-014.indd 14 8/8/19 12:11 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS, 8th Edition, Comprehensive REF 1

GLOSSARY
!important CSS keyword that forces a particular
style to override the default style sheet cascade.
HTML 96

@charset CSS rule defining the character
encoding used in a style sheet. HTML 86

@font-face CSS rule that defines a web font.
HTML 108

@import CSS rule used to import a style sheet file
into the current style sheet. HTML 98

@keyframe CSS rule that defines key frame styles
used in an animation. HTML 641

@page CSS rule that defines the size and
margins of the printed page. HTML 418

<a> HTML tag that marks a hypertext link to an
external resource. HTML 46

<body> HTML tag that marks the document body.
HTML 2

<cite> HTML tag that marks a citation. HTML 22

 HTML tag that marks emphasized text.
HTML 22

<h1> HTML tag that marks a major heading.
HTML 22

<head> HTML tag that marks the document head
within an HTML file. HTML 2

<html> HTML tag that marks the beginning of
the HTML document. HTML 2

 HTML tag that marks an image using
the file specified in the src attribute.
HTML 22

 HTML tag that marks a list item. HTML 46

<meta> HTML tag that marks metadata
 containing information about the document.
HTML 2

<nav> HTML tag that marks a list of hypertext links
used for navigation. HTML 46

<p> HTML tag that marks a document paragraph.
HTML 22

 HTML tag that marks text of major
importance or seriousness. HTML 22

<title> HTML tag that marks the page title,
which appears in the browser title bar or browser
tab. HTML 2

 HTML tag that marks an unordered list.
HTML 46

3D transformation A transformation that involves
three spatial axes. HTML 332

A
AAC. See Advanced Audio Coding

absolute path A folder path that starts from the
root folder and processes down the entire folder
structure. HTML 61

absolute positioning A layout technique that
places an element at specified coordinates within
its container element. HTML 238

absolute unit Units that are fixed in size
regardless of the output devices. HTML 123

access key A single key on the keyboard that
can be pressed in conjunction with another key
to jump to a location on the web page.
HTML 531

Accessible Rich Internet Application (ARIA) An
HTML standard that assists screen readers in
interpreting web page content. HTML 44

action HTML attribute that indicates
the server program that processes a web form.
HTML 518

active CSS pseudo-class that selects actively-
clicked links. HTML 136

adaptive technology Technology that enables
people with disabilities to use the web. HTML D2

Advanced Audio Coding (AAC) A standard audio
 coding for all Apple products, as well as YouTube
and several gaming systems. HTML 608

after CSS pseudo-element that selects page
space directly after the element. HTML 136

align WEBVTT attribute that aligns the text
within a track cue. HTML 618

American Standard Code for Information
Interchange. See ASCII (American Standard Code
for Information Interchange)

animation CSS style that applies a key frame
animation to an object. HTML 641

animation-play-state CSS style that defines
whether an animation is running or is paused.
HTML 641

ARIA. See Accessible Rich Internet Application
(ARIA)

array A collection of JavaScript values organized
under a single name. HTML 752

array literal JavaScript syntax that defines
an array using a comma-separated list of
 values within a set of square brackets.
HTML 758

ASCII (American Standard Code for Information
Interchange) The character set used for the
English alphabet. HTML 33

assignment operator An operator that assigns a
value to an item. HTML 720

assistive technology Technology that enables
people with disabilities to use the web. HTML D2

asymmetric transition A transition in which the
initial state to end state transition is not the
reverse of the end state to initial state transition.
HTML 652

attribute minimization Element attributes that
do not require an attribute value. HTML 11

audio HTML element that embeds an audio file
in the web page. HTML 602

augmented linear structure A linear structure in
which each page contains an additional link to the
opening page of the structure. HTML E2

B
background CSS property that defines all
background options, including the use of multiple
backgrounds. HTML 274

background-color CSS property that sets the
background color. HTML 86

background-image CSS property that applies an
image file to the element background. HTML 274

before CSS pseudo-element that selects page
space directly before the element. HTML 136

binary operator An operator that works with two
operands. HTML 720

bitmap image An image format in which the
image is comprised of pixels that can be
marked with different colors. HTML 280

BOM. See browser object model

Boolean value A data type whose values are
limited to true or false. HTML 710

border The part of the box model that surrounds
the padding space. HTML 143

border CSS property that adds a border around
all sides of an element. HTML 274

border box model A layout model in which the
width property refers to the width of the element’s
content, padding, and border spaces. HTML 197

border-collapse CSS attribute that specifies
which table borders are separated or collapsed
into each other. HTML 453

07140_Gloss_ptg01_001-010.indd 1 8/8/19 1:00 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

New Perspectives SeriesREF 2

border-image CSS property that defines an
image file to create a graphic border. HTML 274

border-left CSS property that adds a border to
the left edge of an element. HTML 274

border-radius CSS property that creates
rounded corners with a specified radius. HTML 274

border-right CSS property that adds a border
to the right edge of an element. HTML 274

box model A layout model in which element
 content is surrounded by padding, border, and
margin spaces. HTML 143

box-shadow CSS property that adds a drop
shadow to a block element. HTML 302

breakpoint A location in the program code where
the browser will pause the program, allowing the
programmer to determine whether an error has
already occurred in the script’s execution.
HTML 694

browser extension An extension to CSS
 supported by a specific browser. HTML 92

browser object An object that is part of the web
browser. HTML 700

browser object model (BOM) A hierarchical
structure that defines the relationship of the
object within the web browser. HTML 700

browser style A style built into the web browser
itself. HTML 89

built-in object An object that is intrinsic to the
JavaScript language. HTML 700

C
calendar control A web form control for selecting
date and time values. HTML 520

caption HTML element that marks a web table
caption. HTML 452

caption-side CSS property that specifies the
location (top or bottom) of the web table caption.
HTML 453

Cascading Style Sheets (CSS) A style sheet
 language supported by the W3C and used in web
page design. HTML 32

case statement. See switch statement

CGI. See Common Gateway Interface

character encoding The process by which the
computer converts text into a sequence of bytes
and then converts those bytes back into
 characters. HTML 17

character entity reference An HTML string that
inserts a character based on a defined name.
HTML 22

character set A collection of characters and
symbols. HTML 33

check box A web form control used for selecting
data limited to two possible values. HTML 520

checkbox HTML element that marks a check box
control. HTML 544

child element An element contained within a par-
ent element. HTML 110

clear CSS property that displays an element only
when the left, right, or both floated objects have
been cleared. HTML 176

client A device that receives network information
or services. HTML 4

client-server network A network in which clients
access information provided by one or more
servers. HTML 4

client-side image map An image map that is
defined within the web page and handled entirely
by the web browser. HTML 341

client-side programming The programming
 environment in which program code is run locally
on the user’s computer with scripts that are
downloaded from the server. HTML 684

client-side validation Validation that takes place
in the user’s browser. HTML 575

closing tag The tag that marks the end of the
 element content. HTML 2

codec A computer program that encodes and
decodes streams of data. HTML 604

col HTML element that marks individual columns
in a web table. HTML 476

colgroup HTML element that marks groups of
columns in a web table. HTML 476

color CSS property that sets the text color.
HTML 56

color gradient A background in which one color
gradually blends into another color. HTML 312

color picker A web form control for choosing
color values. HTML 520

color value A numeric expression that defines a
color. HTML 99

color-stop A parameter of a color gradient that
defines the extent of the color. HTML 302

colspan HTML attribute that indicates a table
cell should cover several columns. HTML 452

command block A set of JavaScript commands
enclosed within a set of curly braces. HTML 773

command button A web form button that runs a
program. HTML 572

Common Gateway Interface (CGI) A server-
based program, written in Perl, used for
 processing web form data. HTML 522

compare function A function used with the
JavaScript sort()method to define a sorting
order. HTML 764

comparison operator An operator that compares
the value of one expression to another, returning a
Boolean value indicating whether the comparison
is true or not. HTML 776

compiler A software program that translates
 program code into machine language. HTML 685

conditional comment An Internet Explorer
 extension that encloses content that should only
be run by particular versions of Internet Explorer.
HTML 20

conditional expression An expression that is
either true or false. HTML 786

conditional operator An operator used in an
expression that returns one value if the condition
is true and another if it is false. Also called ternary
operator. HTML 791

conditional statement A statement that runs a
command or command block only when certain
circumstances are met. HTML 789

container An object that handles the packaging,
transportation, and presentation of multimedia
data. HTML 604

container collapse A layout challenge that occurs
when an element contains only floated content
and thus collapses in height. HTML 201

content CSS property that inserts content into a
page element. HTML 136

content box model A layout model in which the
width property only refers to the width of the
 element content. HTML 197

content-box CSS keyword that specifies the
 background extends only over the element
 content. HTML 274

contextual selector A selector that specifies the
context under which a particular page element is
matched. HTML 110

continue expression The Boolean expression in
a for loop that must be true for the loop to
 continue. HTML 770

continue statement JavaScript statement that
stops the processing of the commands in the
 current iteration of the loop and continues to the
next iteration. HTML 806

control An object within a web form that allows
users to interact with the form. HTML 520

07140_Gloss_ptg01_001-010.indd 2 8/8/19 1:00 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS, 8th Edition, Comprehensive REF 3

controls HTML attribute that displays player
controls for a multimedia clip. HTML 602

counter variable A variable within a for loop
that changes value each time the loop is run.
HTML 770

cover CSS keyword that specifies that the
background image should completely cover
the background. HTML 274

cross axis The flexbox axis that is perpendicular
to the main axis. HTML 394

CSS. See Cascading Style Sheets (CSS)

CSS at-rule CSS rule that directs how the browser
should interpret and parse the CSS code.
HTML 98

CSS grid model A set of CSS design styles to
 create grid-based layouts. HTML 210

CSS pixel A pixel that is the fundamental unit in
CSS measurements. HTML 375

CSS The third, and most current version, of CSS.
HTML 88

cue HTML pseudo-element that selects the cues
from a media track. HTML 619

cursive A typeface that mimics handwriting with
highly stylized elements and flourishes. HTML 118

customized object An object that is created by
the programmer for use in an application.
HTML 700

D
data attribute HTML attribute that stores
 customized data. HTML 494

data field The part of a web form in which data
values are stored. HTML 521

data list A list of possible values that a form field
can have. HTML 569

data type The type of information stored within a
variable including numeric values, text strings,
Boolean values, objects, and null values.
HTML 710

datalist HTML element that defines a set of
suggested field values. HTML 562

Date object JavaScript object used for storing
date and time values. HTML 711

debugging The process of locating and fixing a
programming error. HTML 692

declaring The process by which a variable is
 introduced and defined. HTML 709

decrement operator A unary operator that
decreases the value of the operand by 1.
HTML 720

default namespace The namespace that is
assumed to be applied to any element or
 attribute in the document. HTML F9

deprecated The features and code from earlier
HTML versions that have been phased out and
are either no longer supported or developed.
HTML 6

descendant element An element that descends
from a parent element within the document
 hierarchy. HTML 110

description list A list of terms and matching
descriptions. HTML 51

device pixel A pixel that refers to the actual
physical pixel on a screen. HTML 375

device-pixel ratio A measure of the number of
device pixels matched to a single CSS pixel.
HTML 375

display CSS property that defines how an ele-
ment should be laid out. HTML 176

do/while loop A program loop in which a
 stopping condition is tested right after the last
command block is run. HTML 775

document body The part of an HTML file
 containing all of the content that will display in
the web page. HTML 2

document head The part of an HTML file
 containing information about the document.
HTML 2

document object An object that is part of the
web page document. HTML 700

document object model (DOM) A hierarchical
structure that defines the relationship of the
object within the web document. HTML 700

document type declaration A processing
 instruction indicating the markup language used
in the document. HTML 2

document type definition A collection of rules
for an XML vocabulary that defines the content
and structure of a valid document in that
 vocabulary. HTML F4

DOM. See document object model

domain name The server name portion of a URL.
HTML 65

drop cap A design element in which the initial
letter in a body of text drops down into the text
body. HTML 193

DTD. See document type definition

DTD file A text file in which a DTD is stored.
HTML F4

dynamic pseudo-class A pseudo-class based on the
actions of the user within the element. HTML 152

E
elastic layout A layout in which all measurements
are expressed in em units and based on the
default font size. HTML 183

element attribute The part of an element that
provides information to the browser about the
purpose of the element or how the element
should be handled by the browser. HTML 11

element tag The fundamental building block of
an HTML file, used to mark every document
 element. HTML 9

em CSS relative unit of length that expresses a
size relative to the font size of the containing
 element. HTML 106

email harvester An automated program that
scans web pages for e-mail addresses. HTML 67

embedded content Content that is imported from
another resource, often nontextual. HTML 36

embedded element An element containing
embedded content such as graphic images, audio
soundtracks, video clips, or interactive games.
HTML 36

embedded object An object, such as a graphic
image or media clip, that appears within a web
page. HTML 605

embedded script A program script that is loaded
within the HTML file. HTML 686

embedded style A style added to the head of an
HTML file. HTML 89

empty element An element that is either
 nontextual or contains directives to the browser
about how the page should be treated. HTML 9

ending tag The tag that marks the end of the
 element content. HTML 9

explicit grid A grid in which the number and size
of the rows and columns are defined within the
CSS style sheet. HTML 216

Extensible Markup Language A language for
designing specialized markup languages. HTML F1

extension The top level of a URL, indicating the
general audience supported by the web server.
HTML 65

external style A style created by the page author
and placed into a CSS file and linked to the page.
HTML 89

F
fantasy A highly ornamental typeface used for
page decoration. HTML 118

field The part of a web form in which data values
are stored. HTML 521

07140_Gloss_ptg01_001-010.indd 3 8/8/19 1:00 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

New Perspectives SeriesREF 4

field set A web form feature that groups fields
that share a common characteristic or purpose.
HTML 525

fieldset HTML element that groups fields
within a web form. HTML 518

FIFO. See first-in first-out

Free Lossless Audio Codec (FLAC) A free open-
source digitial music format that offers bit-perfect
copies of CD-quality music at half the size
HTML 608

filter CSS property used to modify an object’s
color, brightness, contrast, or general purpose.
HTML 326

first-in first-out (FIFO) A data structure principle
in which the first item added to an array is the
first one removed. HTML 766

first-of-type CSS pseudo-class that selects the
first element type of the parent element. HTML 136

fixed grid A grid layout in which the widths of the
columns and margins are specified in pixels with
fixed positions. HTML 209

fixed layout A layout in which the size of the
page and the page elements are fixed, usually
using pixels as the unit of measure. HTML 182

FLAC. See Free Lossless Audio Codec

flex CSS property that defines the size of the flex
items and how they will grow or shrink in response
to the changing size of the flexbox. HTML 392

flex-basis CSS property that provides the basis
or initial size of the item prior to flexing. HTML 392

flexbox A box that contains items whose sizes
automatically expand or contract to match the
dimensions of the box. HTML 392

flex-flow CSS property that defines the orienta-
tion of the flexbox and whether items can wrap to
a new line. HTML 392

flex-grow CSS property that specifies how fast
the item grows above its basis size relative to
other items in the flex box. HTML 392

flex-shrink CSS property that specifies how
fast the item shrinks below its basis size relative
to other items in the flex box. HTML 392

float CSS property that takes an object out of
 normal document flow and floats it on the left or
right margin of its container element. HTML 176

floating A design technique in which an element
is taken out of its default document position and
placed along the left or right edge of its parent
element. HTML 189

fluid grid A grid layout in which the widths of the
columns and margins are specified in percentages.
HTML 209

fluid layout A layout in which the size of the page
elements are set using percentages.
HTML 183

focus The state in which an element has been
clicked by the user, making it the active control
on the web form. HTML 582

font Definition of the style and appearance of
each character in an alphabet. HTML 117

font stack A list of fonts defined in the font- family
property. HTML 117

font-family CSS property that defines a font
stack. HTML 108

font-size CSS property that sets the text size.
HTML 108

for HTML attribute that associates a label with
an input control. HTML 518

for loop A programming structure in which a set
of commands is repeated based on the changing
values of a counter variable. HTML 770

form HTML element that encloses a web form.
HTML 518

form button A button on a web form that can be
clicked to either run, submit, or reset the form.
HTML 572

fr (fractional) unit CSS grid unit that represents
a fraction of the available space left on the grid
after all other rows and columns have attained
their maximum allowable size. HTML 217

frameset DTD The DTD used by XHTML that
supports frames and those HTML features that
were deprecated in HTML 5. HTML F5

framework A software package that provides a
library of tools to design a website. HTML 210

Free Lossless Audio Codec (FLAC) A free, open-
source digital music format that offers bit-perfect
copies of CD-quality music at half the size of
other formats. HTML 608

function A collection of JavaScript commands that
performs an action or returns a value. HTML 730

G
generic font A general description of a font face.
HTML 117

get method HTML method applied to web forms
that tells the browser to append the form data to
the end of the URL specified by the action attri-
bute. HTML 523

getElementById() JavaScript method that
selects a web page element based on its ID value.
HTML 698

getFullYear() JavaScript method that gets the
4-digit year value from a Date object. HTML 718

GIF (Graphic Interchange Format) The oldest
bitmap image format, limited to 256 colors, but
that also supports transparent colors and
 animated images. HTML 280

global scope The scope of a variable that can be
referenced anywhere within the JavaScript file.
HTML 733

global variable A variable with global scope.
HTML 733

grid area A region that covers several rows and/
or columns with a grid layout HTML 206.

grid cell A cell at the intersection of a grid row
and grid column. HTML 224

grid column A column floated within the rows of
a grid row. HTML 206

grid layout A layout that arranges the page
within grid rows with grid columns floated inside
those rows. HTML 208

grid row A row found within a grid layout.
HTML 206

grid tracks Rows or columns within a grid layout
HTML 211.

gridline names Descriptive names for row and
 column gridlines in the CSS grid model. HTML 226.

grouping element An element that organizes
similar content into a distinct group, much like a
paragraph groups sentences that share a
 common theme. HTML 26

H
H.264 A video codec that is the industry standard
for high-definition video streams. HTML 620

hanging indent A layout in which the first line
extends to the left of the block. HTML 128

hexadecimal number A number expressed in the
base 16 numbering system. HTML 100

hidden field A web form field that is not
 displayed within the web form. HTML 552

hierarchical structure A website structure in
which the home page links to pages dedicated to
specific topics, which are linked to even more
specific topics. HTML E2

host Any network device that is capable of send-
ing and/or receiving data electronically. HTML 4

hotspot A region within an image that can be
linked to a specific URL. HTML 341

hover CSS pseudo-class that selects links that are
being hovered over. HTML 136

HSL color value Color defined by its hue,
 saturation, and lightness values. HTML 86

HTML 5 The latest version of HTML, compatible
with earlier HTML releases. HTML 5

07140_Gloss_ptg01_001-010.indd 4 8/8/19 1:00 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS, 8th Edition, Comprehensive REF 5

HTML 5 Shiv A script that provides support for
HTML 5 in older browsers. HTML 39

HTML (Hypertext Markup Language) A markup
language that supports the tagging of distinct
document elements and connecting documents
through hypertext links. HTML 5

HTML 4.01 The fourth version of HTML,
released in 1999, that provided support for
multimedia, online commerce, and interactive
scripts. HTML 5

HTML comment A descriptive note added to an
HTML file that does not get rendered by a user
agent. HTML 2

HTTP. See Hypertext Transfer Protocol (HTTP)

hue The tint of a color, represented by a direction
on the color wheel. HTML 101

hyperlink A link within a hypertext document
that can be activated to access a data source.
HTML 4

hypertext A method of organizing information in
which data sources are interconnected through a
series of hyperlinks that users activate to jump
from one data source to another. HTML 5

Hypertext Markup Language. See HTML
(Hypertext Markup Language)

Hypertext Transfer Protocol (HTTP) The protocol
used by devices on the web. HTML 64

I
IANA. See Internet Assigned Numbers Authority
(IANA)

IDE (Integrated Development Environment) A
software package providing comprehensive
 coverage of all phases of the HTML development
process. HTML 6

if else statement JavaScript conditional expres-
sion that runs a specified command if the condi-
tion is true and a different command if the
condition is false. HTML 786

if statement JavaScript conditional expression
that runs a specified command if the condition is
true. HTML 786

iframe HTML element used to insert windows
showing external content within a web page.
HTML 637

image map Information that specifies the location
and URLs associated within each hotspot within
an image. HTML 341

implicit grid A grid in which the number and size
of the rows and columns are determined by the
browser as it populates the grid with content
from the grid container.

increment operator A unary operator that
increases the value of the operand by 1.
HTML 720

index A number used with an array to distinguish
one array value from another. HTML 757

inline element An element in which the
content is placed in line with surrounding page
 content rather than starting on a new line.
HTML 29

inline frames Windows within a web page that
show external content. HTML 637

inline image An image that is placed, like
 text-level elements, in line with the surrounding
content. HTML 37

inline style A style added as attributes of an
HTML element. HTML 89

inline validation A technique in which invalid
data from a web form is highlighted as it is
entered by the user. HTML 563

innerHTML JavaScript method that returns or
defines the HTML code contained within a web
page element. HTML 698

input HTML element that creates an input
 control for a web form. HTML 518

input box A web form control for inserting text
strings and numeric values. HTML 520

inset CSS keyword that places a box shadow
inside the element. HTML 302

interactive element An element that allows for
interaction between the user and the embedded
object. Also called embedded element.
HTML 36

Internet A wide area network incorporating an
almost uncountable number of networks and
hosts across the world. HTML 4

Internet Assigned Numbers Authority (IANA)
The registration authority used to register the top
levels of every domain name. HTML 65

interpreted language A computer language in
which the program code is executed directly
 without requiring a compiler. HTML 685

ISO 8859-1 An extended version of the ASCII
character set. HTML 33

J
JavaScript A programming language used for
 client-side programs. HTML 685

JPEG (Joint Photographic Experts Group) A
 bitmap image format that supports a palette of
over 16 million colors, as well as file compression.
HTML 280

K
kerning A measure of the space between
 characters. HTML 108

key frames A series of images that are displayed
in rapid succession to create the illusion of
motion. HTML 652

kind HTML attribute that specifies the type of
text track attached to a media clip. HTML 618

L
label HTML element that associates a text string
with an input control. HTML 518

LAN. See Local area network (LAN)

last-in first-out (LIFO) A data structure principle
in which the last item added to an array is the first
one removed. HTML 766

last-of-type CSS pseudo-class that selects
the last element type of the parent element.
HTML 136

Latin-1 An extended version of the ASCII
 character set. HTML 33

layout viewport The part of the mobile layout
containing the entire page content. HTML 372

leading A measure of the amount of space
between lines of text, set using the line-height
property. HTML 127

left CSS property that defines the left
coordinates of an element placed using relative,
absolute, or fixed positioning. HTML 238

legend HTML element that provides the text of a
field set legend. HTML 518

letter-spacing CSS property that sets the
space between letters. HTML 108

LIFO. See last-in first-out

lightness The brightness of a chosen color,
 ranging from 0% to 100%. HTML 101

line WEBVTT attribute that sets the vertical
position of cue text. HTML 618

linear structure A website structure in which each
page is linked with the pages that follow it and
precede it. HTML E1

linear-gradient CSS property that creates a
color gradient proceeding along a straight line.
HTML 302

line-height CSS property that sets the height
of a line. HTML 108

link CSS pseudo-class that selects unvisited
links. HTML 136

list marker A symbol displayed alongside a list
item. HTML 138

07140_Gloss_ptg01_001-010.indd 5 8/8/19 1:00 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

New Perspectives SeriesREF 6

list-style-image CSS property that inserts an
image for the list marker. HTML 136

list-style-type CSS property that defines the
appearance of the list marker. HTML 136

load-time error A program error that occurs
when the browser initial loads and reads the
 program code. HTML 692

local area network (LAN) A network confined to
a small geographic area, such as within a building
or department. HTML 4

local scope The scope of a variable that can only
be referenced within the function in which the
variable is defined. HTML 733

local variable A variable with local scope.
HTML 733

logical error A program error that is free from
syntax and executable mistakes but that results in
an incorrect result. HTML 692

logical operator An operator that allows you to
connect several Boolean expressions. HTML 776

lorem ipsum Nonsensical improper Latin
 commonly used in page design as filler text.
HTML 232

lossless compression File compression in which
redundant data are removed to achieve a smaller
file size. HTML 604

lossy compression File compression in which
nonessential data are removed to achieve a
smaller file size. HTML 604

M
mailto HTML communication scheme used to
 provide the URL for an e-mail link. HTML 46

main axis The central axis along which items
within a flexbox are laid out. HTML 394

margin area The page section that contains the
space between the printed content and the
edges of the page. HTML 422

margin space The part of the box model that
 surrounds the element border, extending to the
next element. HTML 143

margin-top CSS property that sets the margin
space above the element. HTML 136

markup language A language that describes
the content and structure of a document by
tagging different document elements. HTML 5

Math object JavaScript object used for
 performing mathematical tasks and storing
 mathematical values. HTML 723

Math.floor() JavaScript method that rounds a
numeric value down to the next nearest integer.
HTML 718

matrix A data structure in which data values are
arranged in a rectangular grid. HTML 763

max HTML attribute that specifies the maximum
value from a range of possible field values.
HTML 562

max-width CSS property that defines the maxi-
mum width of an element. HTML 176

media player A software program that decodes
and plays multimedia content. HTML 605

media query Code used to apply specified style
rules to a device based on the device type and
the device features. HTML 362

metadata Content that describes the document
or provides information about how the document
should be processed by the browser. HTML 15

method An action that can be performed on an
object. HTML 700

MIME type. See Multipurpose Internet Mail
Extension

min HTML attribute that specifies the minimum
value from a range of possible field values.
HTML 562

min-width CSS property that defines the
minimum width of an element. HTML 176

minifying The process of removing unnecessary
characters from HTML and CSS files in order to
increase processing speed. HTML 416

mobile device emulator A software program that
duplicates the look and feel of a mobile device.
HTML 379

mobile first A design principle by which the over-
all page design starts with base styles that apply
to all devices followed by style rules specific to
mobile devices. HTML 370

modernizr A script that provides support for
HTML 5 in older browsers. HTML 39

module A component of CSS that focuses on a
particular design topic. HTML 88

modulus operator An operator that returns the
integer remainder after dividing one integer by
another. HTML 790

monospace A typeface in which each character
has the same width, often used to display pro-
gramming code. HTML 117

MP3. See MPEG-1 Audio Layer 3

MP4. See MPEG-4

MPEG-1 Audio Layer 3 (MP3) A widely used
format for digital audio players. HTML 608

MPEG-4 (MP4) Proprietary video form developed
by Apple based on the Apple QuickTime movie
 format. HTML 620

multidimensional array A JavaScript structure in
which one array is nested within another.
HTML 763

multiple HTML attribute that allows for multiple
selections from a drop-down list. HTML 544

Multipurpose Internet Mail Extension (MIME) An
 extension that provides a way of attaching
 nontextual content to e-mail messages. HTML 609

N
name HTML attribute that provides the name of a
data field associated with an input control.
HTML 518

namespace The part of a document that
 combines several vocabularies that define which
part of the document belongs to which
 vocabulary. HTML F9

navicon A symbol, usually represented as three
horizontal lines, used to hide menu items in
mobile devices. HTML 412

navigation list An unordered list of hypertext
links placed within the nav element. HTML 55

nested element An element contained within
another element. HTML 9

nested list A list that is placed inside another list.
HTML 50

network A structure in which information and ser-
vices are shared among devices known as nodes
or hosts. HTML 4

node A network location that can access and
share information and services. HTML 4

no-repeat CSS keyword that specifies that no
 tiling should be done with the background image.
HTML 274

nth-of-type CSS pseudo-class that selects
the nth element type of the parent element.
HTML 136

number HTML data type for an input control that
 creates a spin box control. HTML 562

numeric character reference An HTML string
that inserts a character based on its code value.
HTML 22

numeric value A data type for storing numbers.
HTML 710

O
object An entity within the web browser or web
page. HTML 700

object collections A group of objects. HTML 701

object-based language A programming
 language that manipulates an object by changing
a property or applying a method. HTML 700

07140_Gloss_ptg01_001-010.indd 6 8/8/19 1:00 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS, 8th Edition, Comprehensive REF 7

Ogg (audio) An open source and royalty-free
audio format that provides better sound quality
than MP3. HTML 608

Ogg (video) An open source video format devel-
oped by the Xiph.org Foundation as an alterna-
tive to the MPEG-4 codec. HTML 620

one-sided element tag A tag used for empty
elements, containing no closing tag. HTML 9

opacity A measure of the solidness of a color,
ranging from 0 to 1. HTML 102

opacity CSS property that makes an object
semi-transparent. HTML 302

opening tag The tag that marks the start of the
element content. HTML 2

operand The variable or expression that
 operators act upon. HTML 720

operator A symbol used in JavaScript to act upon
an item or variable within an expression.
HTML 720

option HTML element that marks options from a
selection list. HTML 544

option button A web form control for selecting
data from a small predefined list of options. Also
called radio button. HTML 520

ordered list A list that is used for items that
 follow some defined sequential order.
HTML 48

orphans A property that limits the number of lines
stranded at the bottom of a page. HTML 418

outline CSS property that draws a line around
the selected elements. HTML 221

overflow CSS property that determines how the
browser should handle content that exceeds the
space allotted to the element. HTML 238

P
padding space The part of the box model that
extends from the element content to the element
border. HTML 143

padding-box CSS keyword that specifies the
 background extends through the padding space.
HTML 274

page area The page section that contains the
content of the document. HTML 422

page box The layout definition of the printed
page. HTML 422

page-break-before CSS property that inserts
page breaks before elements. HTML 418

page-break-inside CSS property that prohibits
page breaks within an element. HTML 418

parallel array An array in which an item matches,
or is parallel to, another entry in a
different array. HTML 788

parameter A variable that is associated with a
JavaScript function. HTML 730

parent element An element that contains one or
more child elements. HTML 110

pattern HTML attribute that specifies the
 general pattern that characters in a field value
must follow. HTML 562

Perl A programming language used with
 server-based programs. HTML 522

perspective CSS property and a function used
in 3D transformations to measure how rapidly
objects appear to recede or approach the viewer.
HTML 326

pixel A single dot on the output device. HTML 124

placeholder HTML attribute that inserts
descriptive text into an input control. HTML 518

placeholder A text string that appears within a
form control, providing a hint about the kind of
data that should be entered into the field.
HTML 540

plug-in A software program accessed by the
browser to provide a feature not native to the
browser. HTML 605

PNG (Portable Network Graphic) A bitmap
image format designed to replace the GIF format
with a palette of a million colors. HTML 280

position WEBVTT attribute that sets the
 horizontal position of cue text. HTML 618

post method HTML method applied to web
forms that tells the browser to send the form data
in its own separate data stream. HTML 523

poster HTML attribute that displays a preview
image of a video file. HTML 618

presentational attribute An attribute that
describes how page content should be rendered
by the browser. HTML 36

presentational element An element that
describes how page content should be rendered
by the browser. HTML 36

print style sheet A style sheet that formats the
printed version of the web document. HTML 420

program loop A programming structure in which
a set of commands is repeated until a stopping
condition is met. HTML 771

progressive enhancement A CSS technique in
which styles that conform to older standards are
entered first with newer standards placed last.
HTML 106

prolog The first line of an XML document that
indicates that the document adheres to the
 syntax rules of XML. HTML F2

property A defining characteristic of an object.
HTML 700

protocol A set of rules defining how
information is passed between two network
devices. HTML 64

pseudo-class A classification of an element based
on its current status, position, or use in the
 document. HTML 149

pseudo-element An object that exists only in the
rendered page. HTML 154

Q
queue A data structure principle in which items
are arranged in an array following the first-in
 first-out principle. HTML 766

quirks mode An operating mode in which the
browser renders the web page based on styles
and practices from the 1990s and early 2000s.
HTML 9

quotes CSS property that defines characters for
quotation marks. HTML 136

R
radial gradient A color gradient proceeding out-
ward from a central point in a series of concentric
circles or ellipses. HTML 302

radial-gradient CSS property that creates a
color gradient proceeding outward from a central
point. HTML 302

radio HTML element that marks an option
 button control. HTML 544

radio button A web form control for selecting
data from a small predefined list of options.
Also called option button. HTML 520

range HTML data type for an input control that
 creates a range slider control. HTML 562

read-only property An object property whose
value cannot be changed. HTML 704

regex. See regular expression

regular expression A concise description of a
character pattern that is used in data validation.
HTML 578

relative path A folder path expressed relative
to the location of the current document.
HTML 61

relative positioning A layout technique that shifts
an element from its default position in the docu-
ment flow. HTML 238

07140_Gloss_ptg01_001-010.indd 7 8/8/19 1:00 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

New Perspectives SeriesREF 8

relative unit A unit that is expressed relative to
the size of other objects within the web page or
relative to the display properties of the device
itself. HTML 123

rem. See Root em unit

required HTML attribute that indicates a field
value is required. HTML 562

reset HTML data type for an input control that
 creates a button that restores the form to its
default values. HTML 562

reset button A web form button that resets the
form, changing all fields to their original default
values. HTML 572

reset style sheet A base style sheet that
 supersedes the browser’s default styles, providing
a consisting starting point for page design.
HTML 178

responsive design A design principle in which
the layout and design of the page changes in
response to the device that is rendering the page.
HTML 183

RGB color value Color defined by its red, green,
and blue components. HTML 86

RGB triplet A color value indicating the red,
green, and blue values of a color. HTML 100

rollover effect An effect in which the page
appearance changes as the user hovers the
mouse pointer over a hypertext link.
HTML 59

root element The topmost element in an XML
document that contains all other elements.
HTML F3

Root em unit A relative unit of length that
expresses a size relative to the font size of the
root element. HTML 124

Root folder The folder at the top of the folder
hierarchy, containing all other folders.
HTML 60

rowspan HTML attribute that indicates a table
cell should cover several rows. HTML 452

run-time error A program error that occurs
after the script has been loaded, during the
time when the code is being executed.
HTML 692

S
sans-serif A typeface without any serif ornamen-
tation. HTML 117

saturation The intensity of a chosen color, rang-
ing from 0% to 100%. HTML 101

scalable The principle by which text is resized
using relative units. HTML 124

Scalable Vector Image. See SVG (Scalable Vector
Image)

scope The characteristic of a variable that
 indicates where it can be referenced within a
JavaScript program. HTML 733

script An external program that is run within the
browser. HTML 39

Section 508 A section from the 1973
Rehabilitation Act that requires any electronic
information to be accessible to people with
 disabilities. HTML D2

sectioning element An element used to define
major topical areas in the document. HTML 24

select HTML element that creates a drop-down
list box control. HTML 544

selected HTML attribute that indicates the
default option in a selection list. HTML 544

selection list A web form control for selecting
data from an extensive list of options. HTML 520

selector CSS code that defines what element or
elements are affected by the style rule. HTML 86

selector pattern A selector that matches only
those elements that correspond to the specified
pattern. HTML 110

semantic element An element in which the
 element name describes the purpose of the
element and the type of content it contains.
HTML 24

serif A typeface in which a small ornamentation
appears at the tail end of each character.
HTML 117

server A host that provides information or a service
to other devices on the network. HTML 4

server-side image map An image map that relies
on a program running on the web server to create
and manage the map. HTML 341

server-side programming The programming
environment in which program code is run from
the server hosting the website. HTML 684

server-side validation Validation that takes place
on the web server. HTML 575

setFullYear() JavaScript method that sets the
year value in a Date object. HTML 718

setInterval() JavaScript method used to
repeatedly run a command after an interval
expressed in milliseconds. HTML 718

sibling selector A selector that matches elements
based on the elements that are adjacent to them
in the document hierarchy. HTML 111

site index A page containing an outline of the
entire website structure and its contents.
HTML E4

size HTML attribute that sets the number
of visible options in a drop-down list.
HTML 544

slider control A web form control for entering
numeric values confined to a specified range
that includes a marker the user can drag
 horizontally across a range of possible field
 values. HTML 520

source HTML element that provides the source
of a multimedia file. HTML 602

spaghetti code A pejorative programming term
that refers to convoluted or poorly written code.
HTML 808

spam Unsolicited e-mail sent to large numbers of
people. HTML 67

sparse array An array in which some array values
are left undefined. HTML 761

specific font A font that is identified by name.
HTML 117

spin box A web form control for entering
 integer values confined to a specified range.
HTML 520

spinner control A web form control that displays
an up or a down arrow to increase a field value by
a set amount. HTML 564

sprite An animated image that is made from
 several frames shown in rapid succession at timed
steps. HTML 658

stack A data structure in which new data items
are added to the end of an array. HTML 766

standards mode An operating mode in which
the browser renders the web page in line
with the most current HTML specifications.
HTML 9

start expression The expression in a for loop
that provides the starting value of the counter
variable. HTML 770

starting tag The tag that marks the start of the
element content. HTML 9

statement label A label used to identify a
 statement in the JavaScript code so that you can
reference those lines elsewhere in the program.
HTML 807

static positioning A layout technique that
places an element where it would have fallen
naturally within the flow of the document.
HTML 240

step HTML attribute that sets the interval
between values in a data field. HTML 562

storyboard A diagram of a website’s structure,
showing all of the pages in the site and how they
are linked together. HTML E1

07140_Gloss_ptg01_001-010.indd 8 8/8/19 1:00 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS, 8th Edition, Comprehensive REF 9

strict DTD The DTD used by XHTML that does
not allow for deprecated elements, attributes, or
frames. HTML F5

strict mode A programming mode in which all
lapses in syntax result in load-time or run-time
errors. HTML 695

strongly typed language A programming
 language in which a variable’s data type must be
explicitly defined. HTML 711

structural pseudo-class A pseudo-class based on
the element’s location within the structure of the
HTML document. HTML 149

style comment Text that provides information
about the style sheet. HTML 86

style inheritance The principle by which style
properties are passed from a parent element to
its children. HTML 94

style property CSS code that specifies what
aspect of the selector to modify. HTML 86

style rule CSS code that sets the display properties
of a page element. HTML 84

style sheet A set of rules defining how page
 elements are displayed. HTML 32

subarray A section of an array. HTML 765

submit HTML data type for an input control that
 creates a button used for submitting the form for
processing. HTML 562

submit button A web form button that submits
the form to the server for processing. HTML 572

SVG (Scalable Vector Image) An XML markup
language that can be used to create vector
images. HTML 280

switch statement A JavaScript statement used
to run different commands based on different
 values of a specified variable. Also called case
statement. HTML 796

symmetric transition A transition in which the
 initial state to end state transition is the reverse of
the end state to initial state transition. HTML 652

syntax The rules governing how a language
should be used and interpreted. HTML 5

T
table HTML element that marks a web table.
HTML 452

tbody HTML element that marks the row(s) in a
web table body. HTML 476

td HTML element that marks a cell containing
table data. HTML 452

tel HTML communication scheme used to pro-
vide the URL for a telephone link. HTML 46

ternary operator. See conditional operator

text area box A web form control for entering
text strings that may include several lines of
 content. HTML 520

text string A data type for storing any group of
characters enclosed within either double or single
quotation marks. HTML 710

text-align CSS property that defines the horizon-
tal alignment of the content of an element.
HTML 108

textarea HTML element that marks a text area
control. HTML 544

textContent JavaScript method that returns or
defines the text contained within a web page
 element. HTML 698

text-level element An element within a grouping
element that contains strings of the characters or
page content. HTML 29

text-shadow CSS property that adds a drop
shadow to a text string. HTML 302

tfoot HTML element that marks the row(s) in a
web table footer. HTML 476

th HTML element that marks a cell containing
a table header. HTML 452

thead HTML element that marks the row(s) in a
web table header. HTML 476

Theora A royalty-free video codec that produces
video streams that can be used with almost any
container. HTML 620

tiling A process by which a background image is
repeated, filling up the background space.
HTML 281

time-delayed command A JavaScript command
that is run after a specific amount of time has
passed. HTML 734

toLocaleDateString() JavaScript method that
returns a text string containing the date using
local conventions. HTML 698

toLocaleTimeString() JavaScript method that
returns a text string containing the time using
local conventions. HTML 682

top CSS property that defines the top coordi-
nates of an element placed using relative, abso-
lute, or fixed positioning. HTML 238

tr HTML element that encloses a table row.
HTML 452

track HTML element that attaches a text track to
a media clip. HTML 618

tracking A measure of the amount of space
between words, set using the word-spacing
 property. HTML 127

tracks Rows or columns within a grid layout.

transform CSS property used to rotate, rescale,
skew, or shift a page object. HTML 326

transition A change in an object’s style from an
initial state to an ending state. HTML 640

transition CSS property that defines a transi-
tion between an initial state and an end state.
HTML 642

transitional DTD The DTD used by XHTML that
supports those HTML features that were
 deprecated in HTML 5. HTML F5

typography The art of designing the
 appearance of characters and letters on a page.
HTML 117

U
unary operator An operator that works with only
one operand. HTML 720

Unicode The largest character set supporting up
to 65,536 symbols that can be used with any of
the world’s languages. HTML 33

Uniform Resource Locator (URL) A standard
address format used to link to a variety of
resource documents. HTML 57

unordered list A list that is used for items that
do not follow a defined sequential order.
HTML 49

unstack The process of removing the last item
from an array. HTML 766

update expression The expression in a for loop
that updates the value of the counter variable
each time through the loop. HTML 770

URL. See Uniform Resource Locator (URL)

use strict JavaScript statement that specifies
syntax rules should be strictly applied.
HTML 683

user agent style A style built into the web
browser itself. HTML 89

user-defined style A style defined by the user
based on settings made in configuring the
browser. HTML 87

UTF-8 The most common character encoding in
present use. HTML 17

V
valid document A well-formed XML document
that contains only those elements, attributes, and
other features that have been defined for its XML
vocabulary. HTML F4

validation The process of ensuring the user has
supplied valid data. HTML 575

07140_Gloss_ptg01_001-010.indd 9 8/8/19 1:00 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

New Perspectives SeriesREF 10

validator A program that tests code to ensure
that it contains no syntax errors. HTML 7

value HTML attribute that provides the default
value for a data field. HTML 518

vanishing point An effect of perspective in
which parallel lines appear to converge to a
point. HTML 333

var JavaScript keyword used to declare a
 variable. HTML 698

variable A named item in a program that stores a
data value or an object. HTML 709

vector image An image format in which the lines
and curves that comprise the image are based on
mathematical functions. HTML 280

vendor prefix The prefix added to a browser
extension. HTML 92

video HTML element that embeds a video file in
a web page. HTML 618

viewport meta A meta tag used to set the
 properties of the layout viewport. HTML 362

viewport unit A relative unit of length that
expresses a size relative to the width or height of
the browser window. HTML 125

virtual keyboard A keyboard that exists as a
 software representation of a physical keyboard.
HTML 531

visited CSS pseudo-class that selects previ-
ously-visited links. HTML 136

visual viewport The part of the mobile layout
that displays the web page content that fits within
a mobile screen. HTML 372

VP8 An open source video codec used in
Google’s WebM video format. HTML 620

VP9 A video codec developed by Google as a
successor to VP8, offering the same video quality
at half the download size. HTML 620

W
W3C. See World Wide Web Consortium (W3C)

WAN. See wide area network (WAN)

watermark A translucent graphic that is part of
the page content and that displays a message
that the content is copyrighted or in draft form

or some other message directed toward the
reader. HTML 283

WAV The original audio format for Windows PCs,
commonly used for storing uncompressed audio,
making it impractical for all but the shortest audio
clips. HTML 608

weakly typed language A programming
 language in which variables are not strictly tied to
specific data types. HTML 711

web browser A software program that retrieves
and displays web pages. HTML 4

web content management system (wcms)
Provides authoring tools for website content and
administration. HTML 7

web font A font in which the font definition is
supplied to the browser in an external file.
HTML 119

web form A web page design element in which
users can enter data that can be saved and
 processed. HTML 520

web framework Software that provides the foun-
dation for the design and deployment of web
technologies including HTML, databases, and
web server programs for managing electronic
commerce and communication. HTML 7

Web Hypertext Application Technology
Working Group (WHATWG) A group formed in
2004 to develop HTML 5 as a rival version to
XHTML 2.0. HTML 5

web page A document stored by a web server
and accessed by a web browser. HTML 4

web safe font A font that is displayed mostly the
same way in all operating systems and on all
devices. HTML 118

web server A server that makes web pages
accessible to the network. HTML 4

web table An HTML structure consisting of
 multiple rows with each row containing one or
more table cells. HTML 454

Web Video Text Tracks (WebVTT) A text file for-
mat used for storing video text tracks. HTML 625

WebM An open source format introduced by
Google to provide royalty-free video and audio to
be used with the HTML audio and video
elements HTML 608

well-formed document An XML document that
employs the correct syntax. HTML F2

WHATWG. See Web Hypertext Application
Technology Working Group (WHATWG)

while loop A program loop in which the
 command block is run as long as a specified
 condition is met. HTML 774

white-space character An empty or blank
 character such as a space, tab, or line break.
HTML 12

wide area network (WAN) A network that
covers a wide area, such as several buildings or
cities. HTML 4

widget An object within a web form that
allows users to interact with the form. HTML 520

widows CSS property that limits the number
of lines stranded at the top of a page.
HTML 418

width CSS property that defines the width of an
element. HTML 176

wildcard selector A selector that matches all
 elements. HTML 111

window.alert JavaScript command to display an
alert dialog box in the browser window.
HTML 683

World Wide Web Consortium (W3C) A group
of web designers and programmers that set the
 standards or specifications for browser
 manufacturers to follow. HTML 5

World Wide Web (WWW) The totality of
 interconnected hypertext documents on the
Internet. HTML 4

WWW. See World Wide Web (WWW)

X
XHTML (Extensible Hypertext Markup
Language) A version of HTML in which syntax
standards are strictly enforced. HTML 5

XML. See Extensible Markup Language

XML parser A software program that checks
an XML file for errors in syntax and content.
HTML F2

XML vocabularies Markup languages developed
using XML. HTML F1

07140_Gloss_ptg01_001-010.indd 10 8/8/19 1:00 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS, 8th Edition, Comprehensive REF 11

INDEX
Note: Boldface indicates key terms.
Special Characters

– (minus sign), HTML 720
/ (forward slash), HTML 720
& (ampersand), HTML 35, HTML 777
(pound symbol), HTML 35
* (asterisk), HTML 111, HTML 720
+ (plus sign), HTML 720
% (percent sign), HTML 720
= (equal sign), HTML 721, HTML 776, HTML 786
[] (square brackets), HTML 758
< (left angle bracket), HTML 776
{}(curly braces), HTML 773
! (exclamation point), HTML 776, HTML 777
| (pipe), HTML 777, HTML 787
> (right angle bracket), HTML 776
• (numeric entity reference), HTML 23,
HTML 34

A
<a> tag, HTML 29, HTML 46, HTML B5

attributes, HTML 68–69
AAC format. See Advanced Audio Coding (AAC) format
<abbr> tag, HTML 29, HTML B5
absolute paths, HTML 61
absolute positioning, HTML 238, HTML 241–244
absolute units, font size, HTML 123, HTML 133
access keys, HTML 531
accessibility, HTML D1–D17

animation and motion sensitivity, HTML 666
ARIA, HTML 44
checking for, HTML D17
Section 508 guidelines. See Section 508
tables, HTML 474
WAI, HTML D13–D16

Accessible Rich Internet Applications (ARIA), HTML 44
achromatopsia, HTML D4, HTML D5
<acronym> tag, HTML B6
action attribute, HTML 518, HTML 523
active pseudo-class, HTML 136, HTML 152, HTML C3
adaptive technology, HTML D2
<address> tag, HTML 24, HTML B6
Advanced Audio Coding (AAC) format, HTML 608
after pseudo-class, HTML 136
after pseudo-element, HTML 154, HTML 418, HTML C2
align attribute, HTML 618
align-content property, HTML 410, HTML 411
aligning

along flexbox main axis, HTML 409
flex lines, HTML 410
items along flexbox cross axis, HTML 410–411
text, horizontally and vertically, HTML 130–131

align-items property, HTML 411
alt attribute, HTML 36, HTML D2, HTML D3
American Standard Code for Information Interchange
(ASCII), HTML 33
ampersand (&)

character encoding references, HTML 35
logical operators, HTML 777

analogic color scheme, HTML 106
animation(s), HTML 652–666

applying, HTML 655–657

controlling, HTML 658–666
key frames, HTML 652
properties, HTML 655
safe, HTML 666
Section 508 guidelines, HTML D10

animation style, HTML 641
animation-play-state style, HTML 641
applet(s), Section 508 guidelines, HTML D10–D11
<applet> tag, HTML B6
<area> tag, HTML B6
ARIA. See Accessible Rich Internet Applications (ARIA)
array(s), HTML 752–769

creating and populating, HTML 758–761
as data stacks, HTML 766–768
extracting and inserting items, HTML 765–766
filtering, HTML 782–783
indexes, HTML 757
length, HTML 761–763
mapping, HTML 781–782
methods, HTML 767–768
methods to loop through arrays, HTML 780–781
multidimensional, HTML 763
parallel, HTML 788
passing a value to a callback function, HTML 782
program loops, HTML 777–784
random shuffle, HTML 765
returning random values, HTML 780
reversing, HTML 763–764
running a function for each array item, HTML 781
sorting, HTML 764–765
sparse, HTML 761

array literals, HTML 758–759
<article> tag, HTML 24, HTML B6
ASCII. See American Standard Code for Information
Interchange (ASCII)
aside blockquote selector, HTML 108
<aside> tag, HTML 24, HTML B6
assignment operators, HTML 720–721
assistive technology, HTML D2
asterisk (*)

JavaScript operators, HTML 720
wildcard selector, HTML 111

asymmetric transitions, HTML 652
at-rules, CSS, HTML 98, HTML C4
attribute(s), HTML B2–B5. See also specific attribute
names

adding to elements, HTML 12
aural browsers, HTML C6–C7
autocomplete, HTML 539
backgrounds, HTML C7–C8
block-level styles, HTML C8–C9
browsers, HTML C9–C10
column, HTML C10
content, HTML C10–C11
core, HTML B2
core events, HTML B3
display styles, HTML C11–C12
document events, HTML B3
drag and drop event, HTML B4
elements, HTML 11–12
event, HTML B3
fonts and text, HTML C12–C14

form, HTML B2
form events, HTML B4
formatting tables using, HTML 492
grids, HTML C14–C15
hypertext, HTML 68–69
language, HTML B2
layout, HTML C14
lists, HTML C16
meta element, HTML 17
multimedia event, HTML B4–B5
outlines, HTML C16
presentational, HTML 36
printing, HTML C16–C17
required for XHTML elements, HTML F8
special effects, HTML C17–C18
tables, HTML C18
valid use of, HTML F7–F8

attribute minimization, HTML 11
attribute selectors, HTML 113–116
audio element, HTML 602, HTML 607
audio formats, browser support, HTML 607–610
<audio> tag, HTML 36, HTML B6–B7
augmented linear structures, HTML E2
aural browsers, attributes, HTML C6–C7
autocomplete attribute, HTML 539
autofocus, HTML 557

B
 tag, HTML 29, HTML B7
background

attributes, HTML C7–C8
setting color, HTML 102–105

background images, HTML 280–290
attaching, HTML 282–283
background property, HTML 286–287
defining extent, HTML 284
multiple backgrounds, HTML 288–290
setting image options, HTML 286
setting image position, HTML 283–284
sizing and clipping, HTML 285
tiling, HTML 281–283

background property, HTML 274, HTML 286–287
background styles, HTML 280–290
background-color property, HTML 86
background-image property, HTML 274
balance, HTML 259
<base> tag, HTML 15, HTML 62, HTML B7
<basefont> tag, HTML B7
<bdi> tag, HTML B7
<bdo> tag, HTML B7
before pseudo-class, HTML 136
before pseudo-element, HTML 154, HTML C2
Berners-Lee, Timothy, HTML 4, HTML D1
<big> tag, HTML B7
binary operators, HTML 720
bitmap images, HTML 280
block elements, centering, HTML 187
block quotes, HTML 39–41, HTML 157
block-level styles, attributes, HTML C8–C9
<blockquote> tag, HTML 27, HTML B7
blur function, HTML 338
body, HTML 24–31

07140_index_ptg01_011-022.indd 11 8/8/19 1:03 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

New Perspectives SeriesREF 12

grouping elements, HTML 26–28
sectioning elements, HTML 24–26
text-level elements, HTML 29–31

<body> tag, HTML 2, HTML 10, HTML 24, HTML B7
BOM. See browser object model (BOM)
Boolean values, HTML 710
border(s), HTML 143, HTML 290–300

adding to tables using CSS, HTML 459–464
applying border images, HTML 297–300
collapse style, HTML 464
collapsing, HTML 463–464
color, HTML 290–291
design, HTML 291–293
hidden, reconciling, HTML 462
reconciling different styles, HTML 463
rounded corners, HTML 293–296
style, HTML 463
width, HTML 290–291

border box model, HTML 197
border property, HTML 274
border-collapse property, HTML 453, HTML 461
border-color property, HTML 290–291
border-image property, HTML 274, HTML 297–300
border-left property, HTML 274
border-radius property, HTML 274, HTML 293–296
border-right property, HTML 274
border-side property, HTML 292
border-style property, HTML 291–293
border-width property, HTML 290–291, HTML 292
box model, HTML 143–144
box shadow(s), HTML 306–311, HTML 341
box-shadow property, HTML 302, HTML 306–311,
HTML 341

 tag, HTML 29, HTML B7
break statement, HTML 806
break-after property, HTML 502
break-before property, HTML 502
breakpoints, HTML 694

inserting, HTML 694–695
brightness function, HTML 338
browser developer tools, HTML 95–96
browser extensions

gradients, HTML 320
style rules, HTML 92–93

browser object(s), HTML 700
browser object model (BOM), HTML 700
browser styles, HTML 89
browser(s). See web browsers
built-in objects, HTML 700
<button> tag, HTML B7
buttons. See also specific buttons

command, HTML 572
form. See form buttons
image, HTML D11
option (radio), HTML 520, HTML 553–555
push, HTML D11

C
calCaption() function, HTML 752, HTML 759–760
calendar app, HTML 754–757, HTML 796–805

createCalendar() function, HTML 756–757
highlighting the current date, HTML 801–803
placing first day of the month, HTML 798–799
setting first day of the month, HTML 797–798
structure, HTML 755–756
writing calendar days, HTML 799–801

calendar controls, HTML 520

callback functions, passing values to, HTML 782
callto: scheme, HTML 67
canvas pseudo-class, HTML C3
<canvas> tag, HTML 36, HTML B8
caption(s)

adding to tables, HTML 471–473
formatting, HTML 473

caption attribute, HTML D9
caption element, HTML 452, HTML 471–473
<caption> tag, HTML B8
caption-side property, HTML 453, HTML 472
Cascading Style Sheets (CSSs), HTML 32, HTML 85–174.
See also entries beginning with CSS

@ rules, HTML 98, HTML C4
adding table borders, HTML 459–464
attributes and values, HTML C6–C17
color. See color in CSS
creating pulldown menus, HTML 376–379
drop caps, HTML 193
filters, HTML 337–341
frameworks, HTML 210
generating content, HTML 155–156
grids. See CSS grids
introducing grids, HTML 210–213
lists. See formatting lists
modules, HTML 88
positioning objects, HTML 244
pseudo-classes, HTML C3
pseudo-elements, HTML C2
quotation marks, HTML 157–158
selectors, HTML C2–C17
style rules. See style rules
style sheets. See style sheets
styles. See style(s); table styles
syntax, HTML C4
transformations. See transformations
typography. See CSS typography; font(s); selector
patterns
units, HTML C5–C6
white space, HTML 257

case statement, HTML 796
cells

spanning rows and columns, HTML 464–471
types, HTML 456

<center> tag, HTML B8
centering block elements, HTML 187
centering vertically, HTML 188–189

using flexboxes, HTML 412
CGI. See Common Gateway Interface (CGI)
&char; character encoding reference, HTML 33, HTML 34
character encoding, HTML 17, HTML 33–34

defining, HTML 97–98
character entity references, HTML 22, HTML 34–35
character sets, HTML 33
charset meta element, HTML 17
@charset rule, HTML 86, HTML 97, HTML C4
check boxes, HTML 520
checkbox data type, HTML 544
checked pseudo-class, HTML 582, HTML C3
child elements, HTML 110
<cite> tag, HTML 22, HTML 23, HTML 29, HTML 30,
HTML B8
class attribute, HTML 11

attribute selectors, HTML 115–117
clear property, HTML 176
clearing floats, HTML 193–197
client(s), HTML 4
client-server networks, HTML 4

client-side image maps, HTML 341
client-side programming, HTML 684–685
client-side validation, HTML 575
clip property, HTML 257–258
clipping

background images, HTML 285
elements, HTML 257–258

closing tags, HTML 2
&#code; character encoding reference, HTML 33, HTML 34
<code> tag, HTML 29, HTML B8
codecs

audio, HTML 604
video, HTML 620–621

cognitive disability, HTML D1
col element, HTML 476
<col> tag, HTML B8
colgroup element, HTML 476, HTML 482
<colgroup> tag, HTML B8
collapsing table borders, HTML 463–464
color

borders, HTML 290–291
CSS. See color in CSS
gradients. See color gradients
Section 508 guidelines, HTML D4–D6

color blindness, HTML D4–D6
color gradients, HTML 312–322

browser extensions, HTML 320
color stops, HTML 315–316
creating, HTML 321
linear, HTML 312–315
radial, HTML 316–319
repeating, HTML 320–321
transparency, HTML 314

color in CSS, HTML 98–106
choosing color schemes, HTML 99
color names, HTML 98
defining semi-opaque colors, HTML 102
HSL color values, HTML 101–102
progressive enhancement, HTML 106
RGB color values, HTML 99–101
setting text and background colors, HTML 102–105

color names with color values and HTML character entities,
HTML A1–A8
color pickers, HTML 520
color property, HTML 86
color stops, gradients, HTML 315–316
color values

HSL, HTML 101–102
RGB, HTML 99–101

color-stop, HTML 302
colspan attribute, HTML 452, HTML 464–466
column(s)

applying layout, HTML 497–498
attributes, HTML C10
banded, creating, HTML 485
creating layout, HTML 504
gap between, HTML 498–501
setting number, HTML 496–498
spanning, HTML 464–466, HTML 503–504

column breaks, HTML 501–503
column groups, HTML 482–484

defining, HTML 483
formatting, HTML 483–484
identifying, HTML 482

column width
defining, HTML 498–501
setting, HTML 486, HTML 489

column-count property, HTML 496, HTML 498–501

07140_index_ptg01_011-022.indd 12 8/8/19 1:03 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS, 8th Edition, Comprehensive REF 13

column-gap property, HTML 499
column-rule property, HTML 500
columns property, HTML 498–501
command(s). See also specific commands

JavaScript, writing, HTML 690–691
running at specified intervals, HTML 734–736
time-delayed, HTML 734

command blocks, HTML 773
command buttons, HTML 572
<command> element, HTML B8
comments, HTML 18–20

adding to JavaScript code, HTML 689–690
conditional, HTML 20
style sheets, HTML 96–97

Common Gateway Interface (CGI), HTML 522
compare functions, HTML 764–765
comparison operators, HTML 776
compilers, HTML 685
complementary color scheme, HTML 106
compressing, speeding up websites, HTML 416
concat() method, HTML 768
conditional comments, HTML 20
conditional expressions, HTML 786
conditional operators, HTML 791
conditional statements, HTML 786–809
constants, Math object, HTML 728–730
container(s), HTML 604
container collapse, HTML 201–203
content

assigning to grid cells, HTML 234
attributes, HTML C10–C11
clipping, HTML 258
CSS, generating, HTML 155–156
CSS, inserting, HTML 156
floating, HTML 189–204
generating with lorem ipsum, HTML 232
reordering using flexboxes, HTML 407–408

content box model, HTML 197
content property, HTML 136, HTML 155–156

attribute values, HTML 156
content-box keyword, HTML 274
contextual selectors, HTML 110–112
continue expression, HTML 770
continue statement, HTML 806–807
contrast, HTML 259
contrast function, HTML 326, HTML 338
controls, HTML 520. See also widgets
controls attribute, HTML 602
copyWithin() method, HTML 768
core attributes, HTML B2
core event attributes, HTML B3
counter variables, HTML 772, HTML 773, HTML 774
cover keyword, HTML 274
createCalendar() function, HTML 752
creating using dynamic pseudo-classes, HTML 152
cross axis, flexboxes, HTML 394

aligning items along, HTML 410–411
cross-browser flexboxes, HTML 395
CSS(s). See Cascading Style Sheets (CSSs)
CSS at-rules, HTML 98, HTML C4
CSS display property, HTML 490
CSS grid model, HTML 210
CSS grids, HTML 210–213

creating, HTML 213–215
defining, HTML 224

CSS pixels, HTML 375

CSS typography, HTML 109–135
fonts. See font(s); font size; font styles
selector patterns. See selector patterns
spacing and indentation, HTML 127–129

CSS, HTML 88
cubic-bezier function, HTML 646
cue label, HTML 618
cue pseudo-element, HTML 619, HTML 630–632
cue text, HTML 618, HTML 619
curly braces (), command blocks, HTML 773
cursive fonts, HTML 118
custom form buttons, designing, HTML 575
customized objects, HTML 700

D
data attributes, HTML 494
data cells, tables, marking, HTML 458
data fields, HTML 521
<data> tag, HTML 29
data types, HTML B1

validating based on, HTML 577–578
variables, HTML 710

data validation, HTML 563–585
data lists, HTML 569–571
form buttons. See form buttons
numeric data. See numeric data validation

datalist, HTML 569
datalist element, HTML 562
<datalist> tag, HTML B8
date(s), writing for global marketplace, HTML 715
Date objects, HTML 698, HTML 711–716

applying Date methods, HTML 713–715
creating, HTML 712
setting date and time values, HTML 716
storing dates, HTML 712

days left in year, calculating, HTML 721–723
<dd> tag, HTML 27, HTML B8
debugging, HTML 692–696

applying strict usage of JavaScript,
HTML 695–696
error types, HTML 692
inserting breakpoints, HTML 694–695
opening debugging tool, HTML 692–693

declaring variables, HTML 709
decrement operator (– –), HTML 720
default field values, HTML 539–542
default namespace, HTML F9
default pseudo-class, HTML 582
 tag, HTML B9
delaying transitions, HTML 647
deprecated, HTML 6, HTML B1
descendant elements, HTML 110
description lists, HTML 51–54
design principles, HTML 259
desktop designs, HTML 387–389
<details> tag, HTML B9
deuteranopia, HTML D4, HTML D5
device pixels, HTML 375
device-pixel ratio, HTML 375
<dfn> tag, HTML 29, HTML B9
dir attribute, HTML 11
<dir> tag, HTML B9
disabled pseudo-class, HTML 582, HTML C3
display property, HTML 176, HTML 178, HTML 392,
HTML 418
display styles, attributes, HTML C11–C12

displaying. See also viewing
attribute values, HTML 156
values, HTML 156

<div> tag, HTML 26, HTML 27, HTML B9
<dl> tag, HTML 27, HTML 51–54, HTML B9
D-links, HTML D3
DOCTYPE declaration, HTML F8–F9
!doctype tag, HTML B5
document body, HTML 2
document event attributes, HTML B3
document head, HTML 2, HTML 15–18

adding metadata, HTML 16–18
setting page title, HTML 16

document object(s), HTML 700
document object model (DOM), HTML 700
document type declaration, HTML 2, HTML 8–9
document type definitions (DTDs), HTML F4–F7

HTML and XHTML versions, HTML F9
document.write() method, HTML 708
DOM. See document object model (DOM)
domain names, HTML 65
do/while loop, HTML 775–776
drag and drop event attributes, HTML B4
drop caps, HTML 193
drop shadows, HTML 304–311, HTML 341

box, HTML 306–311
text, HTML 304–306

drop-shadow function, HTML 338, HTML 341
<dt> tag, HTML 27, HTML B9
DTD files, HTML F4
DTDs. See document type definitions
dynamic content, HTML D11
dynamic pseudo-classes, HTML 152–154

E
elastic layout, HTML 183
element(s), HTML B5–B21. See also specific element names

attributes. See element attributes
clipping, HTML 257–258
embedded, HTML 36
empty, HTML 9
floating, HTML 190–193
grouping, HTML 26–28
hierarchy, HTML 10
inline, HTML 29
interactive, HTML 36
list, HTML B5–B21
metadata, HTML 16
nested, HTML 9
presentational, HTML 36
rounded corners, HTML 293–296
sectioning, HTML 24–26
semantic, HTML 24
stacking, HTML 258–260
text-level, HTML 29–31
width and height, HTML 184–189

element attributes, HTML 11–12
adding, HTML 12
list, HTML B5–B21

element tags, HTML 9–10
one-sided, HTML 9

else if statements, multiple, HTML 794
 tag, HTML 22, HTML 23, HTML 29, HTML 30,
HTML B9
em unit, HTML 108
email addresses, linking to, HTML 65–67

07140_index_ptg01_011-022.indd 13 8/8/19 1:03 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

New Perspectives SeriesREF 14

email harvesters, HTML 67
embed element, HTML 615
<embed> tag, HTML 36, HTML B9
embedded content, HTML 36
embedded elements, HTML 36
embedded objects, HTML 605, HTML 615–616
embedded script, HTML 686
embedded style(s), HTML 89
embedded style sheets, style rules, HTML 93
emphasis, HTML 259
empty elements, HTML 9
empty pseudo-class, HTML 149, HTML C3
enabled pseudo-class, HTML 582, HTML C3
enctype attribute, HTML 523–524
ending tags, HTML 9
equal sign (=)

assignment operators, HTML 721
comparison operators, HTML 776, HTML 786

equals operator (= = =), HTML 786
errors, types, HTML 692
event attributes, HTML B3
every() method, HTML 783
exclamation point (!)

comparison operators, HTML 776
logical operators, HTML 777

explicit grid, HTML 216
Extensible Hypertext Markup Language. See XHTML
(Extensible HyperText Markup Language)
Extensible Markup Language (XML), HTML F1
extensions, HTML 65
external styles, HTML 89

F
fallback, audio clips, HTML 613–614
fantasy fonts, HTML 118
fax scheme, HTML 64
field(s), HTML 521

hidden, HTML 552
field labels, HTML 532–533
field sets, HTML 525

legends, HTML 526–527
marking, HTML 525–526

field values
default, HTML 539–542
defining length, HTML 580
validating, HTML 579

fieldset element, HTML 518, HTML 525, HTML 553
<fieldset> tag, HTML B9
FIFI. See first-in first-out (FIFO) principle
<figcaption> tag, HTML 27, HTML B9
figure boxes, HTML 276–279
<figure> tag, HTML 27, HTML B9
file scheme, HTML 64
fill() method, HTML 768
filter() method, HTML 783
filter property, HTML 326, HTML 337–341
filtering arrays, HTML 782–783
filters, HTML 337–341
find() method, HTML 783
findIndex() method, HTML 783
finding information on networks, HTML 4
first pseudo-class, HTML C3
first-child pseudo-class, HTML 149, HTML C3
first-in first-out (FIFO) principle, HTML 766
first-letter pseudo-element, HTML 154, HTML C2
first-line pseudo-element, HTML 154, HTML C2
first-node pseudo-class, HTML C3

first-of-type pseudo-class, HTML 136, HTML 149,
HTML C3
fixed grids, HTML 209
fixed layouts, HTML 182–183
fixed positioning, HTML 244
FLAC format. See Free Lossless Audio Codec (FLAC)
format
Flash player, HTML 635–636
flex basis, setting, HTML 397–398
flex growth, defining, HTML 398–399
flex items, sizing, HTML 401
flex lines, aligning, HTML 410
flex property, HTML 392, HTML 401
flex-basis property, HTML 397–398
flex-basis value, HTML 392
flexbox(es), HTML 392, HTML 534–535

aligning flex lines, HTML 410
aligning items along cross axis, HTML 410–411
aligning items along main axis, HTML 409
applying flexbox layouts, HTML 402–407
centering elements vertically, HTML 412
cross-browser, HTML 395
defining, HTML 394, HTML 396
defining flex growth, HTML 398–399
defining shrink rate, HTML 399–401
flex property, HTML 401
reordering page content, HTML 407–408
setting flex basis, HTML 397–398
setting flexbox flow, HTML 395–396
sizing flex items, HTML 402

flexbox flow, setting, HTML 395–396
flexbox layouts, applying, HTML 402–407
flex-direction property, HTML 395, HTML 396
flex-flow property, HTML 392, HTML 395
flex-grow property, HTML 398–399, HTML 401
flex-grow value, HTML 392
flexible layouts, image maps, HTML 346
flex-shrink property, HTML 401
flex-shrink value, HTML 392
flex-wrap property, HTML 395, HTML 396, HTML 399
float property, HTML 176
floating, HTML 189–193

clearing a float, HTML 193–197
floating elements, HTML 176–205

container collapse, HTML 201–203
content, HTML 189–204
display style, HTML 178
negative space, HTML 204
page layout designs, HTML 182–183
refining layouts, HTML 197–201
reset style sheets, HTML 178–182
width and height, HTML 184–189

Flowplayer, HTML 637
fluid grids, HTML 209
fluid layout, HTML 183
focus, HTML 582
focus pseudo-class, HTML 152, HTML 581–583, HTML C3
folder path, specifying with links, HTML 60–62
font(s), HTML 117–127

attributes, HTML C12–C14
choosing, HTML 117–119
cursive, HTML 118
fantasy, HTML 118
@font-face rule, HTML 120–122
generic, HTML 117–118
Google, HTML 123
monospace, HTML 117

sans-serif, HTML 117, HTML 133
selecting, HTML 133
serif, HTML 117, HTML 133
size. See font size
specific, HTML 117
styles. See font styles
web, HTML 120–122

font families, specifying, HTML 119
font size, HTML 123–127

absolute units, HTML 123, HTML 133
page elements, setting, HTML 128–129
readability, HTML 133
relative units, HTML 123–124, HTML 133
scaling with ems and rems, HTML 124–125
sizing keywords, HTML 125–127
viewport units, HTML 125

font stacks, HTML 117
font styles, HTML 129–133

aligning text horizontally and vertically, HTML 130–131
combining all text formatting in single style, HTML
131–133

 tag, HTML B9
@font-face rule, HTML 108, HTML 120–122, HTML C4
font-family property, HTML 108
font-size property, HTML 108
<footer> tag, HTML 24, HTML B10
for attribute, HTML 518, HTML 532
for loop, HTML 770, HTML 772–773
forEach() method, HTML 783
form attributes, HTML B2
form buttons, HTML 572–575

command, HTML 572
custom, designing, HTML 575
submit and reset, HTML 563, HTML 572–575

form controls, tools, HTML 585
form element, HTML 518, HTML 522
form event attributes, HTML B4
Form Stack, HTML 585
<form> tag, HTML B10
formatting

captions, HTML 473
hyperlinks for printing, HTML 428–430
lists. See formatting lists
row groups, HTML 480–481
style, HTML 131–133
tables, using HTML attributes, HTML 492

formatting lists, HTML 138–143
images as list markers, HTML 141–142
list marker position, HTML 141, HTML 142–143
list style type, HTML 138
outline style, HTML 138–141

forward slash (/), JavaScript operators, HTML 720
fr (fractional) unit, HTML 217

track sizes with, HTML 217–218
frame sites, Section 508 guidelines, HTML D10
<frame> tag, HTML B10, HTML B11–B12
frameset DTDs, HTML F5–F6
<frameset> tag, HTML B10
frameworks, HTML 210
Free Lossless Audio Codec (FLAC) format, HTML 608
ftp scheme, HTML 64
function(s), HTML 730

JavaScript. See JavaScript functions
running for each array item, HTML 781

function keyword, HTML 718

07140_index_ptg01_011-022.indd 14 8/8/19 1:03 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS, 8th Edition, Comprehensive REF 15

G
generic fonts, HTML 117
geo scheme, HTML 64
get method, HTML 523
getElementById() method, HTML 698
getFullYear() method, HTML 718
GIF (Graphics Interchange Format), HTML 280
global scope, HTML 733
global variables, HTML 733
Google Chrome device emulator, HTML 380–381
Google Fonts, HTML 123
Google Forms, HTML 585
gradients. See color gradients
graphic design, legacy browsers, HTML 300
graphic design with CSS, HTML 273–360

backgrounds. See background
borders. See border(s)
drop shadows, HTML 304–311
file formats, HTML 280
filters, HTML 337–341
gradients. See color gradients
image maps, HTML 341–347
transformations. See transformations

graphics. See also image(s)
Section 508 guidelines, HTML D2–D4

Graphics Interchange Format. See GIF (Graphics
Interchange Format)
grayscale function, HTML 326, HTML 338
grid(s)

attributes, HTML C14–C15
gap, HTML 232–234

grid area, HTML 211
grid cell, HTML 224

alignment for single, HTML 235
grid columns, HTML 207

placing items by, HTML 224–226
repeating, HTML 218–219
working with, HTML 215–221

grid layouts, HTML 206–237
aligning grid, HTML 235–236
alignment for single grid cell, HTML 235
applying, HTML 219–221
creating CSS, HTML 213–215
CSS frameworks, HTML 210
CSS grids. See CSS grids
defining grid gap, HTML 232–234
fixed, HTML 209
fluid, HTML 209
introducing CSS, HTML 210–213
managing space within grid, HTML 234–236
outlining a grid, HTML 221–223
overview, HTML 208–209
placing grid items by area, HTML 228–232
placing items by row and column, HTML 224–226
placing items within, HTML 221–232
repeating columns and rows, HTML 218–219
track sizes with fractional units, HTML 217–218
using span keyword, HTML 226–227
working with grid rows and columns,
HTML 215–221

grid rows, HTML 207
placing items by, HTML 224–226
repeating, HTML 218–219
working with, HTML 215–221

grid tracks, HTML 211
gridline names, HTML 226

grouping, selection options, HTML 551–552
grouping elements, HTML 26–28

H
<h1> tag, HTML 22, HTML 23
h1-h6 elements, HTML 24
H.264 codec, HTML 620
hanging indents, HTML 128
<head> tag, HTML 2, HTML 10, HTML 15, HTML B11
header cells, tables, marking, HTML 456–459
<header> tag, HTML 24, HTML B11
headers attribute, HTML D9
headings, column-spanning, HTML 503–504
hearing disability, HTML D1
height

elements, HTML 184–186
table rows, setting, HTML 487–488

hexadecimal numbers, HTML 100
<hgroup> tag, HTML B11
<hi> tag, HTML B11
hidden attribute, HTML 11
hidden borders, tables, reconciling, HTML 462
hidden fields, HTML 552
hierarchical structures, HTML E2–E3
hosts, HTML 4
hotspots, HTML 341
hover event, touch devices, HTML 152
hover pseudo-class, HTML 136, HTML 152, HTML 154,
HTML C3
hover transitions, HTML 647–652
<hr> tag, HTML 27, HTML 39, HTML B11
href attribute, HTML 46
HSL color value, HTML 86, HTML 101–102
HTML (Hypertext Markup Language)

comments, HTML 2
definition, HTML 5
documents. See HTML documents
effective code, HTML 15
history, HTML 5–6
supporting with legacy browsers, HTML 39
testing code, HTML 7
tools, HTML 6–7

HTML 4.01, HTML 5
HTML code, writing with JavaScript, HTML 705–708
HTML comments, HTML 2
HTML documents, HTML 8–15

basic structure, creating, HTML 10
creating, HTML 13–14
document type declaration, HTML 8–9
element attributes, HTML 11–12
element hierarchy, HTML 10
element tags, HTML 9–10
linking to style sheets, HTML 32–33
viewing in browsers, HTML 12–13
white space, HTML 12

HTML elements and attributes, HTML B5–B21
<html> tag, HTML 2, HTML 10, HTML B11
HTML 5, HTML 5–6

video element, HTML 621–624
video players, HTML 637

HTML 5 Shiv, HTML 39
HTTP (Hypertext Transfer Protocol), HTML 64
http scheme, HTML 64
https scheme, HTML 64
hue, HTML 101
hue-rotate function, HTML 338

hyperlinks, HTML 4, HTML 57–68
applying pseudo-classes, HTML 153
creating, HTML 58
effective, HTML 69
formatting for printing, HTML 428–430
Internet and other resources, HTML 64–68
locations within documents, HTML 63–64
Section 508 guidelines, HTML D12
setting base path, HTML 62
specifying folder path, HTML 60–62
turning inline images into, HTML 59–60
URLs, HTML 57–68

hypertext, HTML 4. See also HTML (Hypertext Markup
Language)

creating using dynamic pseudo-classes, HTML 152
hypertext attributes, HTML 68–69
Hypertext Markup Language. See HTML (Hypertext
Markup Language)
Hypertext Transfer Protocol. See HTTP (Hypertext Transfer
Protocol)

I
<i> tag, HTML 29, HTML B11
id attribute, HTML 11, HTML 522, HTML 528

attribute selectors, HTML 115
IDE (Integrated Development Environment), HTML 6–7
if else statement, HTML 786, HTML 793–794
if statement, HTML 786, HTML 789–790

nesting, HTML 791–793
iframe element, HTML 36, HTML 637
<iframe> tag, HTML B11–B12
image(s)

background. See background images
list markers, HTML 141–142
navicon, HTML 412–415
Section 508 guidelines, HTML D2–D4

image buttons, HTML D11
image maps, HTML 341–347

applying, HTML 345–346
creating, HTML 344–345
flexible layouts, HTML 346
Section 508 guidelines, HTML D6–D7

image rollovers, HTML D11
 tag, HTML 22, HTML 36, HTML B12
implicit grid, HTML 216
@import rule, HTML C4
!important keyword, HTML 96, HTML C4
importing style sheets, HTML 98
increment operator (++), HTML 720
indentation, HTML 128
indeterminate pseudo-class, HTML 582
indexes, arrays, HTML 757
indexOf() method, HTML 768
inheritance, styles, HTML 94
inherited positioning, HTML 244
inline elements, HTML 29
inline frames, HTML 637
inline images, turning into links, HTML 59–60
inline styles, HTML 93–94
inline validation, HTML 563, HTML 581–585

focus pseudo-class, HTML 581–583
valid and invalid pseudo-classes, HTML 583–585

innerHTML property, HTML 698
input boxes, HTML 520, HTML 528–531, HTML D11

input types, HTML 528–531
virtual keyboards, HTML 531–532

07140_index_ptg01_011-022.indd 15 8/8/19 1:03 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

New Perspectives SeriesREF 16

input element, HTML 518, HTML 532
<input> tag, HTML B12–B13
in-range pseudo-class, HTML 582
<ins> tag, HTML B13
inset keyword, HTML 302
installing web fonts, HTML 121
Integrated Development Environment. See IDE
(Integrated Development Environment)
interactive elements, HTML 36
interactive form elements, HTML D11
Internet, HTML 4
Internet Assigned Numbers Authority (IANA), HTML 65
Internet Explorer, conditional comments, HTML 20
interpreted languages, HTML 685
invalid pseudo-class, HTML 583–585
invert function, HTML 338
irregular line wraps, HTML 254
ISO 8859-1, HTML 33

J
JavaScript, HTML 681–738

adding comments, HTML 689–690
converting between numbers and text, HTML
737–738
debugging code. See debugging
defining number format, HTML 737
development, HTML 685
fixing common programming mistakes, HTML 738
functions. See JavaScript functions
illegal operations, HTML 736–737
mathematical calculations, HTML 736–738
syntax, HTML 691–692
writing better code, HTML 696
writing commands, HTML 690–691

JavaScript functions, HTML 730–733
calling, HTML 732
to return a value, creating, HTML 733
scope, HTML 733

Joint Photographic Experts Group. See JPEG (Joint
Photographic Experts Group)
Jotform, HTML 585
JPEG (Joint Photographic Experts Group), HTML 280
justify-content property, HTML 409
JWPlayer, HTML 637

K
Kaltura Player, HTML 637
<kbd> tag, HTML 29, HTML B13
kerning, HTML 108
key frames, HTML 652

stepping between, HTML 658
@keyframes rule, HTML 641, HTML 652–654
<keygen> tag, HTML B13
keywords. See also specific keyword names

font sizes, HTML 125–127
kind attribute, HTML 618, HTML 625

L
label(s), HTML D11
label element, HTML 518, HTML 532
<label> tag, HTML B13
lang attribute, HTML 11
lang pseudo-class, HTML 149, HTML C3
language attributes, HTML B2
LAN(s). See local area networks (LANs)
last pseudo-class, HTML C3

last-child pseudo-class, HTML 149, HTML C3
last-in first-out (LIFO) principle, HTML 766
lastindexOf() method, HTML 768
last-of-type pseudo-class, HTML 136, HTML 149,
HTML C3
Latin-1, HTML 33
layout

forms, designing, HTML 534–539
pages. See page layout

layout viewports, HTML 372, HTML 373
leading, HTML 127
left angle bracket (<), comparison operators, HTML 776
left property, HTML 238
left pseudo-class, HTML C3
legacy browsers

graphic design, HTML 300
supporting HTML, HTML 39

legend(s), field sets, HTML 526–527
legend element, HTML 518, HTML 526
<legend> tag, HTML B14
letter-spacing property, HTML 108
 tag, HTML 27, HTML 46, HTML 48, HTML 49, HTML
50, HTML B14
LIFO. See last-in first-out (LIFO) principle
lightness, HTML 101
line attribute, HTML 618
line breaks, HTML 38–39
line wraps, irregular, HTML 254
linear gradients, HTML 312–315, HTML 321
linear structures, HTML E1–E2
linear-gradient function, HTML 302, HTML 312–313,
HTML 315–316, HTML 321
linearizing, HTML D7–D8
line-height property, HTML 108
link(s). See hyperlinks
link pseudo-class, HTML 152, HTML C3
<link> tag, HTML 15, HTML 32, HTML B14
list(s), HTML 48–57

attributes, HTML C16
description, HTML 51–54
formatting. See formatting lists
navigation, HTML 55–57
nested, HTML 50
ordered, HTML 48–49
unordered. See unordered lists

list markers, HTML 138
images, HTML 141–142
position, HTML 141, HTML 142–143

list-style-image property, HTML 136
list-style-type property, HTML 136
load-time errors, HTML 692
local area networks (LANs), HTML 4
local scope, HTML 733
local variables, HTML 733
logical errors, HTML 692
logical operators, HTML 776–777
longdesc attribute, HTML D2, HTML D3
lorem ipsum, HTML 232
lossless compression, HTML 604
lossy compression, HTML 604

M
mailto scheme, HTML 46, HTML 64
main axis, flexboxes, HTML 394

aligning items along, HTML 409
main element, HTML 27

map() method, HTML 783
<map> tag, HTML B14
mapping arrays, HTML 781–782
Marcotte, Ethan, HTML 365
margin area, HTML 422
margin space, HTML 143, HTML 146–148
margin-top property, HTML 136
<mark> tag, HTML B14
<marks> tag, HTML 29
markup languages, HTML 5
Math methods, HTML 723–727
Math object, HTML 723–730

constants, HTML 728–730
Math methods, HTML 723–727

Math.floor() method, HTML 718
matrix, HTML 763
matrix3d function, HTML 333
max attribute, HTML 562
max-width property, HTML 176
measuring units, CSS, HTML C5–C6
media attribute, HTML 365–366
media players, HTML 605

applying styles, HTML 610–613
media queries, HTML 362–391

applying to style sheets, HTML 369–372
creating a pulldown menu with CSS, HTML 376–379
desktop designs, HTML 387–389
device features, HTML 367–368
@media rule, HTML 366–367
for printed output, applying, HTML 421–422
tablet designs, HTML 383–386
testing mobile websites, HTML 379–383
viewports and device width, HTML 372–375

@media rule, HTML 366–367, HTML C4
<menu> tag, HTML B14
<meta> tag, HTML 2, HTML 15, HTML 16–18, HTML B14
metadata, HTML 15

adding to document, HTML 16–18
metadata elements, HTML 15
<meter >tag, HTML B14
method(s), HTML 700. See also specific methods

applying, HTML 704
method attribute, HTML 523
MIME type. See Multipurpose Internet Mail Extension
(MIME type)
min attribute, HTML 562
minifying, HTML 416
minmax function in grid, using, HTML 219
minus sign (−), JavaScript operators, HTML 720
min-width property, HTML 176
mixed structures, HTML E3–E5
mobile device(s), web tables, HTML 492–495
mobile device emulators, HTML 379–382
mobile first, HTML 370
mobile web, HTML 361–450

creating a pulldown menu with CSS, HTML 376–379
flexbox layouts. See flexbox layouts
media queries. See media queries
optimizing sites for, HTML 390
print styles. See print style(s)
support, HTML 7
testing websites, HTML 379–383
website design, HTML 375–383

Modernizr, HTML 39
modules, HTML 88
modulus operator, HTML 790

07140_index_ptg01_011-022.indd 16 8/8/19 1:03 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS, 8th Edition, Comprehensive REF 17

monochrome color scheme, HTML 106
monospace fonts, HTML 117
motion sensitivity, animations, HTML 666
motor disability, HTML D1
MP3 format, HTML 608
MP4 format, HTML 618, HTML 620
MPEG-1 Audio Layer 3 format, HTML 608
MPEG-4 format, HTML 620
multi-column layouts, attributes, HTML C10
multidimensional arrays, HTML 763
multimedia, Section 508 guidelines, HTML D4
multimedia event attributes, HTML B4–B5
multiple attribute, HTML 544
multiple backgrounds, HTML 288–290
Multipurpose Internet Mail Extension (MIME type),
HTML 609

N
name attribute, HTML 518, HTML 528, HTML D10
namespace

default, HTML F9
XHTML, setting, HTML F9–F10

@namespace rule, HTML C4
naming gridlines, HTML 226
nav > ul selector, HTML 108
<nav> tag, HTML 24, HTML 46, HTML B14
navicon(s), HTML 412
navicon menus, HTML 412–415
navigating forms with access keys, HTML 531
navigation lists, HTML 55–57
 character encoding reference, HTML 23,
HTML 33, HTML 34
negative space, HTML 204
nested elements, HTML 9
nested lists, HTML 50
nesting if statements, HTML 791–793
networks, HTML 4

locating information, HTML 4
<nobr> tag, HTML B15
nodes, HTML 4
<noembed> tag, HTML B15
<noframe> tag, HTML B15
no-repeat keyword, HTML 274
<noscript> tag, HTML B15
not pseudo-class, HTML 149, HTML C3
nth-child pseudo-class, HTML C3
nth-last-child pseudo-class, HTML C3
nth-last-of-type pseudo-class, HTML 149, HTML C3
nth-of-type pseudo-class, HTML 136, HTML 149,
HTML 151
number data type, HTML 562
numeric character references, HTML 22
numeric data validation, HTML 564–569

range sliders, HTML 566–569
spinner controls, HTML 564–566

numeric value, HTML 710

O
object(s), HTML 700–703

applying methods, HTML 704
properties, HTML 704
references, HTML 701, HTML 703
referencing by ID and name, HTML 703
referencing collections, HTML 701–703

object collections, HTML 701
referencing, HTML 701–703

<object> tag, HTML 36, HTML B15
object-based languages, HTML 700
OGG format, HTML 608
Ogg format, HTML 608, HTML 620
 tag, HTML 27, HTML 48–49, HTML B15
one-sided element tags, HTML 9
only-child pseudo-class, HTML 149, HTML C3
only-of-type pseudo-class, HTML 149, HTML C3
opacity, HTML 102
opacity function, HTML 338
opacity property, HTML 302, HTML 322
opening tags, HTML 2
operands, HTML 720–723
operators, HTML 720–723
<optgroup> tag, HTML B15
option buttons, HTML 520, HTML 553–555
option element, HTML 544
<option> tag, HTML B15
optional pseudo-class, HTML 582
or operator (||), HTML 787
order property, HTML 407
ordered lists, HTML 48–49
orphans, HTML 434–435
orphans property, HTML 418, HTML 434–435, HTML 501,
HTML 503
outline(s)

attributes, HTML C16
grids, HTML 221–223

outline property, HTML 206
outline style, lists, HTML 138–141
out-of-range pseudo-class, HTML 582
<output> tag, HTML B16
overflow, HTML 254–256
overflow property, HTML 238

P
<p> tag, HTML 22, HTML 23, HTML 27, HTML B16
padding space, HTML 143, HTML 144–146
padding-box keyword, HTML 274
page area, HTML 422
page boxes, HTML 422
page break(s), HTML 431–435

adding, HTML 431
automatic, set by browsers, HTML 432
preventing, HTML 432–434
widows and orphans, HTML 434–435

page groups, HTML 27
page layout, HTML 175–272

attributes, HTML C14
effective, HTML 236
elastic, HTML 183
fixed, HTML 182–183
flexbox. See flexbox(es)
flexible, image maps, HTML 346
floating elements. See floating elements
fluid, HTML 183
grid layouts. See grid layouts
positioning styles. See positioning styles
responsive design, HTML 183

page names, HTML 423–424
page property, HTML 423–427
@page rule, HTML 418, HTML 422–430, HTML C4

formatting hypertext links for printing, HTML
428–430
page names and page property, HTML 423–427
page pseudo-classes, HTML 423

setting page size, HTML 423
page size, setting, HTML 423
page styles, creating and applying, HTML 424
page validation with XHTML, HTML F1–F13

files on web, HTML F10–F12
frameset DTD, HTML F5–F6
inserting DOCTYPE declaration, HTML F8–F9
setting the XHTML namespace, HTML F9–F10
strict DTD, HTML F5–F7
transitional DTD, HTML F5–F6
valid use of attributes, HTML F7–F8
well-formed documents, HTML F2–F4

page-break-after property, HTML 431
page-break-before property, HTML 418,
HTML 431–432
page-break-inside property, HTML 418
paragraphs, grouping content by, HTML 28
parallel arrays, HTML 788
<param> tag, HTML B16
parameters, HTML 730
parent elements, HTML 110
pattern attribute, HTML 562
percent sign (%), JavaScript operators, HTML 720
Perl, HTML 522
perspective, HTML 333–336

setting in 3D, HTML 334
perspective function, HTML 333–336
perspective property, HTML 326, HTML 333,
HTML 334
phone numbers, linking to, HTML 67–68
pipe (|), logical operators, HTML 777, HTML 787
pixels, HTML 124

device and CSS, HTML 375
placeholder(s), HTML 540–542
placeholder attribute, HTML 518, HTML 540,
HTML 558
plug-ins, HTML 605–606

attributes, HTML 615–616
as fallback options, HTML 616
Section 508 guidelines, HTML D10–D11

plus sign (+), JavaScript operators, HTML 720
PNG (Portable Network Graphics), HTML 280
pop() method, HTML 767, HTML 768
position, list markers, HTML 141, HTML 142–143
position attribute, HTML 618
positioning, setting background image position,
HTML 283–284
positioning styles, HTML 239

absolute positioning, HTML 241–244
clipping elements, HTML 257–258
CSS, HTML 240
fixed positioning, HTML 244
inherited positioning, HTML 244
overflow, HTML 254–256
relative positioning, HTML 240–241
stacking elements, HTML 258–260
static positioning, HTML 240
using, HTML 244–254

post method, HTML 523
poster attribute, HTML 618
pound symbol (#), character encoding references,
HTML 35
<pre> tag, HTML 27, HTML B16
precedence, styles, HTML 94
presentational attributes, HTML 36
presentational elements, HTML 36

07140_index_ptg01_011-022.indd 17 8/8/19 1:03 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

New Perspectives SeriesREF 18

print style(s), HTML 418–436
formatting hyperlinks for printing, HTML 428–430
media queries for printed output, HTML 421–422
page breaks, HTML 431–435
page names, HTML 423–424
page property, HTML 423–427
page pseudo-classes, HTML 423
@page rule, HTML 422–430
previewing the print version, HTML 420–421
setting page size, HTML 423

printing
attributes, HTML C16–C17
effective, HTML 436

program loops, HTML 770–785. See also specific loops
arrays, HTML 777–784
command blocks, HTML 773
comparison operators, HTML 776
creating, HTML 777
efficient, HTML 784
logical operators, HTML 776–777

<progress> tag, HTML B16
progressive enhancement, HTML 106
prologs, HTML F2
properties, HTML 700
protanopia, HTML D4, HTML D5
protected structures, HTML E5–E6
protocols, HTML 64
pseudo-classes, HTML 149–151, HTML B3. See also spe-
cific pseudo-class names

applying to hypertext links, HTML 153–154
applying to unordered lists, HTML 150
dynamic, HTML 152–154
@page rule, HTML 423
structural, HTML 149

pseudo-elements, HTML 154–155, HTML B2
pull-down menus, HTML D11

creating with CSS, HTML 376–379
push buttons, HTML D11
push() method, HTML 767, HTML 768

Q
<q> tag, HTML 29, HTML 30, HTML B16
queries. See media queries
queues, HTML 766
quirks mode, HTML 9
quotation marks, HTML 157–158
quotes, block, HTML 39–41
quotes property, HTML 136

R
radial gradient(s), HTML 316–319, HTML 321
radial-gradient property, HTML 302, HTML 317–319,
HTML 321
radio buttons, HTML 520, HTML 553–555
radio data type, HTML 544
random numbers, generating, HTML 729
random shuffle, arrays, HTML 765
range data type, HTML 562
range slider controls, HTML 563, HTML 566–569
readability, font size, HTML 133
read-only properties, HTML 704
reduce() method, HTML 783
reduceRight() method, HTML 783
reflections, HTML 311
regular expressions (regex), HTML 578
Rehabilitation Act, HTML D2. See also Section 508
relative paths, HTML 61–62

relative positioning, HTML 238, HTML 240–241
relative units, font size, HTML 123–124, HTML 133
rem unit, HTML 124–125
reordering content using flexboxes, HTML 407–408
repeating gradients, HTML 320–321
required attribute, HTML 562
required pseudo-class, HTML 582
reset buttons, HTML 563, HTML 572–575
reset data type, HTML 562
reset style sheets, HTML 178–182
responsive design, HTML 183, HTML 364–365
reverse() method, HTML 767, HTML 768
reversing arrays, HTML 763–764
RGB color values, HTML 86, HTML 99–101
RGB triplets, HTML 100
rhythm, HTML 259
right angle bracket (>) comparison operators, HTML 776
right pseudo-class, HTML C3
rollover effect, HTML 59
root elements, HTML F3
root em unit, HTML 124–125
root folder, HTML 60
root pseudo-class, HTML 149, HTML C3
rotate function, HTML 328
rotate3d function, HTML 333
rotateX function, HTML 326, HTML 333
rotateY function, HTML 326, HTML 333
rotateZ function, HTML 326, HTML 333
rounded corners, borders, HTML 293–296
row(s)

banded, creating, HTML 485
cells spanning, HTML 464, HTML 466–468

row groups, HTML 478–481
formatting, HTML 480–481

row height, setting, HTML 487–488
rowspan attribute, HTML 452, HTML 464,

HTML 466–468
<rp> tag, HTML B16
<rt> tag, HTML B16
ruby tag, HTML B16
rules, columns, HTML 500
run-time errors, HTML 692

S
<s> tag, HTML 29, HTML B16
<samp> tag, HTML 29, HTML B16
sans-serif fonts, HTML 117, HTML 133
saturate function, HTML 326, HTML 338
saturation, HTML 101
scalable text, HTML 124–125
Scalable Vector Graphics. See SVG (Scalable Vector Graphics)
scale function, HTML 326, HTML 328
scale3d function, HTML 333
scaleX function, HTML 328, HTML 333
scaleY function, HTML 328, HTML 333
scaleZ function, HTML 333
scope, HTML 733
scope attribute, HTML D8–D9
screen readers, HTML D1
script(s), HTML 39

inserting in forms, HTML 525
Section 508 guidelines, HTML D10–D11

script element, HTML 686–689
inserting, HTML 686–688
loading, HTML 686–687
using with other programming languages, HTML 689

<script> tag, HTML 15, HTML B16

scrolling text, Section 508 guidelines, HTML D10
Section 508, HTML D2–D13

animation, HTML D10
applets, HTML D10–D11
color, HTML D4–D6
frame sites, HTML D10
graphics, HTML D2–D4
image maps, HTML D6–D7
images, HTML D2–D4
links, HTML D12
multimedia, HTML D4
plug-ins, HTML D10–D11
scripts, HTML D10–D11
scrolling text, HTML D10
style sheets, HTML D6
tables, HTML D7–D9
text-only equivalents, HTML D13
timed responses, HTML D12
web forms, HTML D11–D12

<section> tag, HTML 24, HTML B16
sectioning elements, HTML 24–26
select element, HTML 544
<select> tag, HTML B16–B17
selected attribute, HTML 544
selection lists, HTML 520, HTML 547–552

attributes, HTML 549–551
creating, HTML 547–552
grouping selection options, HTML 551–552

selection pseudo-element, HTML C2
selector, HTML 86
selector patterns, HTML 110–117

attribute selectors, HTML 113–116
calculating selector specificity, HTML 117
contextual selectors, HTML 110–112

semantic elements, HTML 24
semi-opaque colors, defining, HTML 102
semi-transparent objects, HTML 322–323
sepia function, HTML 326, HTML 338
serif fonts, HTML 117, HTML 133
server(s), HTML 4
server-based programs, forms, HTML 521–522
server-side image maps, HTML 341
server-side programming, HTML 684–685
server-side validation, HTML 575
set FullYear() method, HTML 718
setInterval() method, HTML 718
shift() method, HTML 768
shrink rate, flexboxes, defining, HTML 399–401
sibling selectors, HTML 111
site indexes, HTML E4
size

attributes, HTML C12–C14
scrolling, Section 508 guidelines, HTML D10

size attribute, HTML 544
sizing

background images, HTML 285
flex items, HTML 401

skew function, HTML 328, HTML 329
skewX function, HTML 328
skewY function, HTML 328
slice() method, HTML 767, HTML 768
slider controls, HTML 520, HTML 566
<small> tag, HTML 29, HTML B17
sms scheme, HTML 64
some() method, HTML 783
sort() method, HTML 767, HTML 768
sorting arrays, HTML 764–765

07140_index_ptg01_011-022.indd 18 8/8/19 1:03 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HTML 5 and CSS, 8th Edition, Comprehensive REF 19

source element, HTML 602
<source> tag, HTML B17
spacing, text, HTML 127–129
spaghetti code, HTML 808
spam, HTML 67
 tag, HTML 29, HTML B17
sparse arrays, HTML 761
special effects, attributes, HTML C17–C18
specific fonts, HTML 117
specificity

selectors, calculating, HTML 117
styles, HTML 94

spin boxes, HTML 520
spinner controls, HTML 563, HTML 564
splice() method, HTML 767, HTML 768
sprites, HTML 658
square brackets ([]), arrays, HTML 758
stacking elements, HTML 258–260
stack(s), arrays used as, HTML 766–768
standards mode, HTML 9
start expression, HTML 770
starting tags, HTML 9
statement labels, HTML 807
static positioning, HTML 240
step attribute, HTML 562
storyboards, HTML E1
strict DTDs, HTML F5–F7
strict mode, HTML 695–696
 tag, HTML 22, HTML 29, HTML 30, HTML B17
strongly typed languages, HTML 711
structural pseudo-classes, HTML 149
style(s), HTML 86

applying to media player, HTML 610–613
applying to track cues, HTML 630–634
background. See background images
browser, HTML 89
defining, HTML 96
embedded, HTML 89
external, HTML 89
flexible form layouts, HTML 535–536
fonts. See font styles
inline, HTML 89
page, creating and applying, HTML 424
positioning. See positioning styles
print. See print style(s)
specificity and precedence, HTML 84
tables. See table styles
user agent, HTML 89
user-defined, HTML 89
viewing pages, HTML 89–91
widgets, HTML 569

style attribute, HTML 11
style comments, HTML 86, HTML 96–97
style inheritance, HTML 94
style rules, HTML 86, HTML 92–96

browser developer tools, HTML 95–96
browser extensions, HTML 92–93
creating with contextual selectors, HTML 112
embedded style sheets, HTML 93
inline styles, HTML 93–94
style inheritance, HTML 94
style specificity and precedence, HTML 94

style sheets, HTML 88–91
creating, HTML 96–98
embedded, HTML 93
@font-face rule, HTML 120–122

importing, HTML 98
linking HTML documents, HTML 32–33
managing, HTML 160
reset, HTML 178–182
Section 508 guidelines, HTML D6
viewing pages, HTML 89–91

<style> tag, HTML 15, HTML B17
<sub> tag, HTML 29, HTML B17
subarrays, HTML 765
submit buttons, HTML 563, HTML 572–575
submit data type, HTML 562
summary attribute, HTML D9
<summary> tag, HTML B17
<sup> tag, HTML 29, HTML B17
SVG (Scalable Vector Graphics), HTML 280
switch statement, HTML 796
symmetric transitions, HTML 652
symmetrical balance, HTML 259
syntax, HTML 5

JavaScript, HTML 691–692

T
tab indexing, HTML 557
tabindex attribute, HTML 11, HTML 557
table(s)

attributes, HTML C18
narrow, creating, HTML 487
Section 508 guidelines, HTML D7–D9

table element, HTML 452, HTML 454–456
table styles, HTML 485–492

applying to other elements, HTML 490–491
width and height, HTML 486–490

<table> tag, HTML B17–B18
tablet designs, HTML 383–386
target attribute, HTML 69
target pseudo-class, HTML C3
tbody element, HTML 476, HTML 478
<tbody> tag, HTML B18
td element, HTML 452
<td> tag, HTML B18
tel scheme, HTML 46, HTML 64
ternary operators, HTML 791
testing mobile websites, HTML 379–383
tetrad color scheme, HTML 106
text. See also CSS typography; font(s); font styles;

selector patterns
aligning horizontally and vertically, HTML 131–133
quotation marks, HTML 158
scalable, HTML 124
scrolling, Section 508 guidelines, HTML 128–129
setting color, HTML 102–105
spacing HTML 128

text area boxes, HTML 520, HTML 558–560, HTML D11
text editors, HTML 6–7
text shadows, HTML 304–306
text strings, HTML 710
text tracks, HTML 624–634

applying styles, HTML 630–634
placing cue text, HTML 628–630
WebVTT, HTML 625–628

text-align property, HTML 108
textarea element, HTML 544
<textarea> tag, HTML B18–B19
textContent property, HTML 698
text-level elements, HTML 29–31
text-only equivalents, accessibility, HTML D13

text-shadow property, HTML 302, HTML 304–306
tfoot element, HTML 476, HTML 478
<tfoot> tag, HTML B19
th element, HTML 452
<th> tag, HTML B19
thead element, HTML 476, HTML 478, HTML 479
<thead> tag, HTML B20
Theora codec, HTML 620
3D transformations, HTML 332–333

applying, HTML 335–336
tiling, HTML 281–283
time(s), writing for global marketplace, HTML 715
<time> tag, HTML 29, HTML 55, HTML B20
timed responses, Section 508 guidelines, HTML D12
time-delayed commands, HTML 734
time-stamping, HTML 55
timing, transitions, setting, HTML 644–647
title, setting, HTML 16
title attribute, HTML 11, HTML D10
Title cue text, HTML 619
<title> tag, HTML 2, HTML 15, HTML 17, HTML B20
toLocalDateString() method, HTML 698
toLocalTimeString() method, HTML 698
top property, HTML 238
toString() method, HTML 768
touch devices, hover event, HTML 154
tr element, HTML 452, HTML 454–456
<tr> tag, HTML B20
track cues, HTML 618
track element, HTML 618, HTML 624
<track> tag, HTML B20
tracking, HTML 127
tracks, HTML 211
transform property, HTML 326
transformations, HTML 328–337

applying, HTML 329, HTML 331–332
3D, HTML 332–333

transition(s), HTML 641–652
delaying, HTML 647
hover, HTML 647–652
properties affected, HTML 644
setting timing, HTML 644–647
symmetric and asymmetric, HTML 652

transition property, HTML 642
transition style, HTML 640, HTML 642, HTML 644
transitional DTDs, HTML F5–F6
translate function, HTML 328, HTML 329
translate3d function, HTML 333
translateX function, HTML 328, HTML 333
translateY function, HTML 326, HTML 328, HTML 333
translateZ function, HTML 333
transparency, gradients, HTML 314
triad color scheme, HTML 106
tritanopia, HTML D4, HTML D5
<tt> tag, HTML B20
type attribute, HTML 528–531, HTML 602
typography. See also CSS typography; font size; selector
patterns

definition, HTML 117

U
<u> tag, HTML 29, HTML B20
 tag, HTML 27, HTML 46, HTML 49, HTML 50,
HTML B20
unary operators, HTML 720
Unicode, HTML 33

07140_index_ptg01_011-022.indd 19 8/8/19 1:03 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

New Perspectives SeriesREF 20

units
font size, HTML 123–125, HTML 133
of measure, CSS, HTML C5–C6

unity, HTML 259
Universal Resource Locators (URLs), HTML 57–68
unordered lists, HTML 49

applying pseudo-classes, HTML 150
unshift() method, HTML 768
unstacking, HTML 766
update expression, HTML 770
url function, HTML 338
URL(s). See Universal Resource Locators (URLs)
use strict statement, HTML 683
user agent styles, HTML 89
user-defined styles, HTML 89
UTF-8, HTML 17

V
valid documents, HTML F4–F9

frameset DTD, HTML F5–F6
inserting DOCTYPE declaration, HTML F8–F9
strict DTD, HTML F5–F7
transitional DTD, HTML F5–F6
valid use of attributes, HTML F7–F8

valid pseudo-class, HTML 583–585
validation

client-side, HTML 575
data. See data validation; numeric data validation
field values, HTML 579
inline. See inline validation
server-side, HTML 575
web forms. See web form validation

validators, HTML 7
value attribute, HTML 518, HTML 539, HTML 556,
HTML 564
vanishing point, HTML 333
var keyword, HTML 698
<var> tag, HTML 29, HTML B20
variables, HTML 709–711

data types, HTML 710
declaring, HTML 709
using, HTML 711

vector images, HTML 280
vendor prefixes, HTML 92
vertical centering, HTML 188–189
vertical-align property, HTML 488
video element, HTML 607, HTML 618

HTML 5, HTML 621–624
video formats, browser support, HTML 621
video players, third-party, HTML 634–637
<video> tag, HTML 36, HTML B20
VideoJS, HTML 637
viewing. See also displaying

HTML files in browsers, HTML 12–13
pages using different style sheets, HTML 89–91

viewport(s), HTML 372–375
viewport meta tag, HTML 362
viewport units, HTML 125
virtual keyboards, HTML 531–532
visited pseudo-class, HTML 136, HTML 152, HTML C3
visual disability, HTML D1
visual effects, effective use, HTML 324
visual viewports, HTML 372, HTML 373–374
VP8 codec, HTML 620
VP9 codec, HTML 620

W
WAI. See Web Accessibility Initiative (WAI)
WANs. See wide area networks (WANs)

watermarks, HTML 283
WAV format, HTML 608
<wbr> tag, HTML 29, HTML 38–39, HTML B21
weakly typed languages, HTML 711
Web Accessibility Initiative (WAI), HTML D13–D16
web audio, HTML 603–616

applying styles to media player, HTML 610–613
audio element, HTML 607–615
browsers and audio formats, HTML 607–610
codecs, HTML 604
containers, HTML 604
effective, HTML 615
embedded objects, HTML 615–616
fallback to audio clips, HTML 613–614
plug-in attributes, HTML 615–616
plug-ins, HTML 605–606
plug-ins as fallback options, HTML 616

web browsers, HTML 4–5. See also entries beginning
with term browser
attributes, HTML C9–C10
audio format support, HTML 607–610
aural, attributes, HTML C6–C7
automatic page breaks, HTML 432
cross-browser compatible forms, HTML 542
legacy, graphic design, HTML 300
legacy, supporting HTML, HTML 39
video format support, HTML 621
viewing HTML files, HTML 12–13

web fonts, HTML 119–122
web form(s), HTML 517–591

cross-browser compatible, HTML 542
default values, HTML 539–542
effective, creating, HTML 560
field labels, HTML 532–533
field sets. See field sets
input boxes. See input boxes
interacting with web server, HTML 521, HTML
523–525
layout, designing, HTML 534–539
parts, HTML 520–521
placeholders, HTML 539–542
scripts, inserting, HTML 525
Section 508 guidelines, HTML D11–D12
server-based programs, HTML 521–522
starting, HTML 522–525
structure of, HTML 519
widgets. See widgets

web form validation, HTML 575–580
based on data type, HTML 577–578
defining field value length, HTML 580
identifying required values, HTML 575–577
testing for valid patterns, HTML 578–580

Web Hypertext Application Technology Working Group
(WHATWG), HTML 5
web pages, HTML 4–5

accessibility, HTML 44
web resources, linking to, HTML 65
web safe fonts, HTML 118
web servers, HTML 4–5

interacting with, HTML 521, HTML 523–525
server-based programs, HTML 521–522

web tables, HTML 452–474
accessibility, HTML 474
adding borders with CSS, HTML 459–464
cell types, HTML 456
creating captions, HTML 471–473
effective, designing, HTML 495
marking table headings and table data, HTML 456–459

marking tables and table rows, HTML 454–456
mobile devices, HTML 492–495
spanning rows and columns, HTML 464–470

web video, HTML 619–638
animations. See animation(s)
codecs, HTML 620–621
effective, HTML 638
text tracks. See text tracks
third-party video players, HTML 634–637
transitions. See transition(s)
video element, HTML 621–624
video formats, HTML 620–621

Web Video Text Tracks (WebVTT), HTML 618,
HTML 625–628

cue attributes, HTML 629
WebM format, HTML 608, HTML 618, HTML 620
websites

managing, HTML 62
with no coherent structure, HTML E5
speeding up by minifying and compressing,
HTML 416
structure, HTML E1–E6

WebVTT. See Web Video Text Tracks (WebVTT)
well-formed documents, HTML F2–F4
while loop, HTML 774–775
white space, HTML 257
white-space characters, HTML 12
wide area networks (WANs), HTML 4
widgets, HTML 520, HTML 545–561

check boxes, HTML 556–557
entering time and date values, HTML 546–547
option buttons, HTML 553–555
selection lists. See selection lists
styles, HTML 569
text area boxes, HTML 558–560

widows, HTML 434–435
widows property, HTML 418, HTML 434–435, HTML 501,
HTML 503
width

borders, HTML 290–291
elements, maximum and minimum dimensions,
HTML 184–186
table columns, setting, HTML 486, HTML 489

width property, HTML 176, HTML 486
wildcard selector (*), HTML 111
window.alert command, HTML 683
Wistia, HTML 637
World Wide Web, HTML 4–5. See also mobile web
World Wide Web Consortium (W3C), HTML 5
Wufoo, HTML 585

X
XHTML (Extensible HyperText Markup Language),
HTML 5

page validation. See page validation with XHTML
XML. See Extensible Markup Language (XML)
XML parsers, HTML F2
<xml> tag, HTML B21
XML vocabularies, HTML F1
<xmp> tag, HTML B21

Y
YouTube, embedding videos from, HTML 636–637

Z
z-index property, HTML 258–259

07140_index_ptg01_011-022.indd 20 8/8/19 1:03 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

07140_index_ptg01_011-022.indd 21 8/8/19 1:03 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

07140_index_ptg01_011-022.indd 22 8/8/19 1:03 PM

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	Cover
	Preface��������������
	Brief Contents
	Table of Contents
	HTML Level I: Tutorials
	Tutorial 1: Getting Started with HTML 5: Creating a Website for a Food Vendor
	Session 1.1 Visual Overview: The Structure of an HTML Document
	Exploring the World Wide Web
	Introducing HTML
	Tools for Working with HTML
	Exploring an HTML Document
	Creating the Document Head
	Adding Comments to Your Document
	Session 1.1 Quick Check
	Session 1.2 Visual Overview: HTML Page Elements
	Writing the Page Body
	Linking an HTML Document to a Style Sheet
	Working with Character Sets and Special Characters
	Working with Inline Images
	Working with Block Quotes and Other Elements
	Session 1.2 Quick Check
	Session 1.3 Visual Overview: Lists and Hypertext Links
	Working with Lists
	Working with Hypertext Links
	Specifying the Folder Path
	Linking to a Location within a Document
	Linking to the Internet and Other Resources
	Working with Hypertext Attributes
	Validating Your Website
	Session 1.3 Quick Check
	Review Assignments
	Case Problems

	Tutorial 2: Getting Started with CSS: Designing a Website for a Fitness Club
	Session 2.1 Visual Overview: CSS Styles and Colors
	Introducing CSS
	Exploring Style Rules
	Creating a Style Sheet
	Working with Color in CSS
	Employing Progressive Enhancement
	Session 2.1 Quick Check
	Session 2.2 Visual Overview: CSS Typography
	Exploring Selector Patterns
	Working with Fonts
	Setting the Font Size
	Controlling Spacing and Indentation
	Working with Font Styles
	Session 2.2 Quick Check
	Session 2.3 Visual Overview: Pseudo Elements and Classes
	Formatting Lists
	Working with Margins and Padding
	Using Pseudo-Classes and Pseudo-Elements
	Generating Content with CSS
	Inserting Quotation Marks
	Validating Your Style Sheet
	Session 2.3 Quick Check
	Review Assignments
	Case Problems

	HTML Level II: Tutorials
	Tutorial 3: Designing a Page Layout: Creating a Website for a Chocolatier
	Session 3.1 Visual Overview: Page Layout with Floating Elements
	Introducing the display Style
	Creating a Reset Style Sheet
	Exploring Page Layout Designs
	Working with Width and Height
	Floating Page Content
	Session 3.1 Quick Check
	Session 3.2 Visual Overview: CSS Grid Layouts
	Introducing Grid Layouts
	Introducing CSS Grids
	Creating a CSS Grid
	Working with Grid Rows and Columns
	Outlining a Grid
	Placing Items within a Grid
	Defining the Grid Gap
	Managing Space within a Grid
	Session 3.2 Quick Check
	Session 3.3 Visual Overview: Layout with Positioning Styles
	Positioning Objects
	Handling Overflow
	Clipping an Element
	Stacking Elements
	Session 3.3 Quick Check
	Review Assignments
	Case Problems

	Tutorial 4: Graphic Design with CSS: Creating a Graphic Design for a Genealogy Website
	Session 4.1 Visual Overview: Backgrounds and Borders
	Creating Figure Boxes
	Exploring Background Styles
	Working with Borders
	Session 4.1 Quick Check
	Session 4.2 Visual Overview: Shadows and Gradients
	Creating Drop Shadows
	Applying a Color Gradient
	Creating Semi-Transparent Objects
	Session 4.2 Quick Check
	Session 4.3 Visual Overview: Transformations and Filters
	Transforming Page Objects
	Exploring CSS Filters
	Working with Image Maps
	Session 4.3 Quick Check
	Review Assignments
	Case Problems

	Tutorial 5: Designing for the Mobile Web: Creating a Mobile Website for a Daycare Center
	Session 5.1 Visual Overview: Media Queries
	Introducing Responsive Design
	Introducing Media Queries
	Exploring Viewports and Device Width
	Creating a Mobile Design
	Creating a Tablet Design
	Creating a Desktop Design
	Session 5.1 Quick Check
	Session 5.2 Visual Overview: Flexible Layouts
	Introducing Flexible Boxes
	Working with Flex Items
	Reordering Page Content with Flexboxes
	Exploring Flexbox Layouts
	Creating a Navicon Menu
	Session 5.2 Quick Check
	Session 5.3 Visual Overview: Print Styles
	Designing for Printed Media
	Working with the @page Rule
	Working with Page Breaks
	Session 5.3 Quick Check
	Review Assignments
	Case Problems

	HTML Level III: Tutorials
	Tutorial 6: Working with Tables and Columns: Creating a Program Schedule for a Radio Station
	Session 6.1 Visual Overview: Structure of a Web Table
	Introducing Web Tables
	Adding Table Borders with CSS
	Spanning Rows and Columns
	Creating a Table Caption
	Session 6.1 Quick Check
	Session 6.2 Visual Overview: Rows and Column Groups
	Creating Row Groups
	Creating Column Groups
	Exploring CSS Styles and Web Tables
	Tables and Responsive Design
	Designing a Column Layout
	Session 6.2 Quick Check
	Review Assignments
	Case Problems

	Tutorial 7: Designing a Web Form: Creating a Survey Form
	Session 7.1 Visual Overview: Structure of a Web Form
	Introducing Web Forms
	Starting a Web Form
	Creating a Field Set
	Creating Input Boxes
	Adding Field Labels
	Designing a Form Layout
	Defining Default Values and Placeholders
	Session 7.1 Quick Check
	Session 7.2 Visual Overview: Web Form Widgets
	Entering Date and Time Values
	Creating a Selection List
	Creating Option Buttons
	Creating Check Boxes
	Creating a Text Area Box
	Session 7.2 Quick Check
	Session 7.3 Visual Overview: Data Validation
	Entering Numeric Data
	Suggesting Options with Data Lists
	Working with Form Buttons
	Validating a Web Form
	Applying Inline Validation
	Session 7.3 Quick Check
	Review Assignments
	Case Problems

	Tutorial 8: Enhancing a Website with Multimedia: Working with Sound, Video, and Animation
	Session 8.1 Visual Overview: Playing Web Audio
	Introducing Multimedia on the Web
	Working with the audio Element
	Exploring Embedded Objects
	Session 8.1 Quick Check
	Session 8.2 Visual Overview: Playing Web Video
	Exploring Digital Video
	Using the HTML 5 video Element
	Adding a Text Track to Video
	Using Third-Party Video Players
	Session 8.2 Quick Check
	Session 8.3 Visual Overview: Transitions and Animations
	Creating Transitions with CSS
	Animating Objects with CSS
	Session 8.3 Quick Check
	Review Assignments
	Case Problems

	Tutorial 9: Getting Started with JavaScript: Creating a Countdown Clock
	Session 9.1 Visual Overview: Creating a JavaScript File
	Introducing JavaScript
	Working with the script Element
	Creating a JavaScript Program
	Debugging Your Code
	Session 9.1 Quick Check
	Session 9.2 Visual Overview: JavaScript Variables and Dates
	Introducing Objects
	Changing Properties and Applying Methods
	Writing HTML Code
	Working with Variables
	Working with Date Objects
	Session 9.2 Quick Check
	Session 9.3 Visual Overview: JavaScript Functions and Expressions
	Working with Operators and Operands
	Working with the Math Object
	Working with JavaScript Functions
	Running Timed Commands
	Controlling How JavaScript Works with Numeric Values
	Session 9.3 Quick Check
	Review Assignments
	Case Problems

	Tutorial 10: Exploring Arrays, Loops, and Conditional Statements: Creating a Monthly Calendar
	Session 10.1 Visual Overview: Creating and Using Arrays
	Introducing the Monthly Calendar
	Introducing Arrays
	Session 10.1 Quick Check
	Session 10.2 Visual Overview: Applying a Program Loop
	Working with Program Loops
	Comparison and Logical Operators
	Program Loops and Arrays
	Session 10.2 Quick Check
	Session 10.3 Visual Overview: Conditional Statements
	Introducing Conditional Statements
	Completing the Calendar App
	Managing Program Loops and Conditional Statements
	Session 10.3 Quick Check
	Review Assignments
	Case Problems

	Appendix A: Color Names with Color Values, and HTML Character Entities
	Appendix B: HTML Elements and Attributes
	Appendix C: Cascading Styles and Selectors
	Appendix D: Making the Web More Accessible
	Appendix E: Designing for the Web
	Appendix F: Page Validation with XHTML
	Glossary
	Index

